

1 **Journal**

2 Nature Geoscience (Up to 3000 words. Abs. 180–200 words, 50 references, 4 Figs, max 6)

3 **Title**

4 **Damp to super-hydrous magmas recorded by arc root cumulates**

5

6 **Authors**

7 B. M. Urann^{1,2,3*}, V. Le Roux², O. Jagoutz⁴, O. Müntener⁵, M. D. Behn⁶, E. J. Chin⁷

8 ¹ MIT-WHOI Joint Program, Marine Geology and Geophysics, Woods Hole
9 Oceanographic Institution, Woods Hole, MA, USA

10 ² Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods
11 Hole, MA, USA

12 ³ Department of Geology and Geophysics, University of Wyoming, Laramie, WY, USA

13 ⁴ Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of
14 Technology, Cambridge, MA, USA

15 ⁵Institute of Earth Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland

16 ⁶ Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA,
17 USA

18 ⁷ Geosciences Research Division, Scripps Institution of Oceanography, University of
19 California San Diego, La Jolla, CA, USA

20

21 *Now at the University of Wyoming. email: burann@uwyo.edu

22 **Abstract**

23 Magmatic volatiles (e.g., H₂O) are abundant in arc melts and exert fundamental controls
24 on magma evolution, eruption dynamics, and the formation of economic ore deposits. To
25 constrain the H₂O content of arc magmas, most studies have relied on measuring extrusive
26 products and mineral-hosted melt inclusions. However, these methods have inherent
27 limitations that obfuscate the full range of H₂O in arc magmas. Here, we report secondary
28 ion mass spectrometry measurements of volatile (H₂O, F, P, S, Cl) abundances in lower-
29 crustal cumulate minerals from the Kohistan paleo-arc (NW Pakistan), and determine
30 H₂O abundances of melts from which the cumulates crystallized. Pyroxenes retained
31 magmatic H₂O abundances and record damp to hydrous (<1–10 wt.% H₂O) primitive
32 melts. Subsequent crystal fractionation led to formation of super-hydrous melts with ~12–
33 20 wt.% H₂O, predicted petrologically yet never recorded by melt inclusions. Fluid
34 exsolution from super-hydrous melts during ascent is key to porphyry copper deposit
35 formation, while foundering of hydrated lower arc crust provides an effective means of
36 transporting hydrogen back into the mantle.

37

38

39

40

41 **Introduction**

42 Subduction is the primary mechanism of fluid transfer from Earth's surface to the
 43 mantle and leads to the generation of volatile-rich arc magmas. Volatile contents (e.g.,
 44 H_2O , CO_2 , S , F , Cl) of arc magmas influence the dynamics of volcanic eruptions, the nature
 45 of volcanic gases and magmatic fluids, and the compositional and physical characteristics
 46 of arc crust¹. A major challenge in determining the range of H_2O abundances in arc melts
 47 is that H_2O solubility in basaltic melts decreases with decreasing pressure, from >20 wt.%
 48 H_2O at 1 GPa and 1200°C² to 0.1 wt.% at 1 atmosphere. As a result of this strong pressure
 49 dependence on volatile solubility, most arc magmas reach volatile saturation and exsolve
 50 volatiles during their ascent through arc crust. To circumvent the effects of volatile loss
 51 before and during eruption, workers have relied on melt inclusions entrapped in olivine and
 52 clinopyroxene (cpx) phenocrysts^{3,4}. Melt inclusions have been interpreted to preserve the
 53 H_2O content of arc magmas at depth where olivine crystallized⁴, yielding a range of 1.3–
 54 7.15 wt.% H_2O (melt Mg# 39–82; molar $\text{Mg}/(\text{Mg}+\text{Fe})$)⁵. However, subsequent studies
 55 have demonstrated that diffusive re-equilibration of hydrogen in melt inclusions is fast
 56 (days to hours)^{6–8}, and therefore melt inclusions may not record the initial H_2O content of
 57 arc magmas in the lower arc crust^{5,9}.

58 Other approaches to estimate H_2O contents of arc magmas have yielded promising
 59 results. Previous workers have shown that arc cumulate minerals may be more reliable
 60 indicators of magma hydration state at H_2O contents above ~8 wt.% than melt inclusions.
 61 Phase equilibria studies of cumulate amphibole suggest H_2O concentrations up to 10–15
 62 wt.%^{10–12}, while plagioclase compositional phase equilibria calculations indicate melts up to
 63 9 wt.% H_2O ¹³. Similar thermodynamic and experimental approaches at Mount Pinotubo¹⁴,
 64 the west-central Mexico volcanic belt¹⁵, and the porphyry copper-rich Gangdese magmatic
 65 belt¹⁶ (southern Tibet) have implicated the presence of super-hydrous (>10 wt.% H_2O)
 66 magmas. Combined approaches of experimental petrology and electrical conductivity have
 67 also inferred the presence super-hydrous magmas with >8 wt.% H_2O in andesitic melts
 68 beneath the central Andes and Cascades¹⁷. Results from these studies suggest that arc
 69 magmas should contain significantly more H_2O than inferred from melt inclusion
 70 measurements. Reconciling these disparate approaches to quantify arc magma H_2O
 71 abundances is critical for evaluating the propensity of copper porphyry formation, which is
 72 thought to result from exsolution of hydrous, Cl -rich magmas¹⁸.

73 Here we build on the arc cumulate approach to explore the H_2O content of
 74 primitive and evolved arc magmas by *in-situ* geochemical techniques. Lower-crustal
 75 cumulates typically crystallize at 20–50 km depth, prior to H_2O saturation, exsolution, and
 76 degassing at shallower levels. We present secondary ion mass spectrometry measurements
 77 of volatile abundances (H_2O , F , P , S , Cl) in cumulate minerals (clinopyroxene ±
 78 orthopyroxene, garnet, amphibole) from the Kohistan lower arc crust. New volatile, major,
 79 and trace element data on mineral phases are combined with petrological models and
 80 experimentally calibrated partition coefficients¹⁹ to determine the compositional evolution
 81 (and in particular H_2O abundances) of the silicate melts from which the cumulates
 82 crystallized. This approach provides a fruitful avenue to determine the range of H_2O
 83 abundances in arc melts, from primitive to evolved compositions.

84
85 **Lower-crustal cumulates from the Kohistan arc terrane**
86 The Cretaceous Kohistan paleo-arc terrane, exposed in the western part of the
87 Himalaya Mountain range (NW Pakistan, [Supplementary Figure 1](#)) is a near-complete
88 section of volcanic, plutonic, and upper mantle rocks obducted 50 Ma ago onto India²⁰.
89 The Kohistan lower crust can be differentiated into two domains: the Jijal Complex at the
90 stratigraphic base (1.5–0.5 GPa, and the Chilas Complex, obliquely situated above (0.6–
91 0.7 GPa)²¹. Primitive Chilas samples crystallized at c.a. 1200°C²² and preserve primary
92 igneous textures and compositions on the cm-scale²³ whereas for Jijal crystallization and
93 equilibration temperatures were likely lower based on T_{REE} ([Supplementary Table 1](#)) and
94 experimental constraints^{24,25}. The two complexes are composed of a suite of plutonic rocks
95 that crystallized either from hydrous (> 4 wt. % H₂O) or damp (< 2 wt.% H₂O) primitive
96 liquids in the Jijal and Chilas complexes, respectively, each following a distinct liquid line
97 of descent (LLD) during differentiation^{22,26}. Chilas formed during a period of magmatism
98 at ~80–85 Ma²⁷, while Jijal magmatism is thought to have been prolonged, beginning at c.
99 120 Ma²⁸ with cessation and exhumation of the complex at ~80 Ma²⁹. Jijal exemplifies a
100 typical calc-alkaline (i.e., iron depletion trend) differentiation series, whereas Chilas
101 typifies an intermediate to arc tholeiitic arc series²⁴.

102 Here we investigated three fresh (<5% alteration) gabbronorites from the Chilas
103 Complex (C7, C48, C66) that were previously studied petrologically²². Detailed sample
104 descriptions and locations are provided in the Supplement. Mineral assemblages and
105 compositions of the Chilas gabbronorites indicate that the plutonic rocks crystallized from
106 a common parental magma that evolved along a damp LLD²². Sample C66, an olivine
107 gabbronorite, is the most primitive sample investigated; C48 and C7 gabbronorites are
108 more evolved and crystallized from a more fractionated melt than C66²². Three minimally
109 altered samples (<5% alteration) were also selected from the Jijal Complex, including two
110 garnet pyroxenites (KK5 and KK8) and a garnet diorite (P05-5A). Field observations and
111 experimental constraints suggest that the Jijal garnet pyroxenites and garnet diorite are
112 broadly related²⁴ along a hydrous LLD. However, in detail, Jijal samples require individual
113 batches of melt to satisfy field, experimental, and trace element constraints²⁴. For example,
114 Jijal garnet diorites yield U-Pb ages of ~92 Ma, whereas garnet pyroxenites formed
115 significantly earlier at 117 ± 7 Ma^{27,30}. In addition, Jijal exhibits deviations from
116 experimentally predicted cumulate assemblages, particularly the juxtaposition of pyroxene-
117 garnet hornblendites and garnet hornblende gabbros, suggesting that multiple magmas
118 (likely with different compositions and H₂O contents) were involved in Jijal genesis²⁴. As
119 a result, H₂O abundances in the two cumulate series are expected to vary significantly²⁶.
120

121 **Preservation of magmatic H₂O abundances in cumulate minerals**

122 In the Chilas gabbronorites, clinopyroxene H₂O abundances range from 152 ± 8
123 $\mu\text{g/g}$ (2σ) to $1061 \pm 399 \mu\text{g/g}$ ([Fig. 1](#)). Orthopyroxene and amphibole were also analyzed
124 in some of the samples, yielding 102–105 $\mu\text{g/g}$ and ~ 2 wt.% H₂O, respectively. In the Jijal
125 samples, clinopyroxene contains from $1770 \pm 204 \mu\text{g/g}$ H₂O to $3900 \pm 1000 \mu\text{g/g}$ H₂O.
126 Garnet and amphibole were also analyzed in some of the samples, yielding 94–167 $\mu\text{g/g}$

127 and ~ 1.8 wt.% H₂O, respectively. Data are available in [Table 1](#) and [Supplementary Table 2](#).

129 Several lines of evidence indicate that magmatic H₂O abundances should have been
130 largely preserved. First, samples are pristine and show no evidence for retrograde
131 overprinting or reaction with metamorphic fluids. This is important because significant
132 loss or addition of hydrogen in nominally anhydrous minerals are often observed in relation
133 with melt³¹⁻³³. Second, only minimal deviations in H₂O abundances are observed at the
134 clinopyroxene rims compared to cores, inconsistent with transient diffusion profiles of
135 hydrogen^{31,34} ([Supplementary Figure 2](#)). However, hydrogen diffusion length over 1 Ma
136 in clinopyroxene can be >10 m at temperatures of 800–1200°C^{33,35}, so that hydrogen may
137 have internally re-equilibrated between mineral phases during sub-solidus re-
138 equilibration³⁶. Few constraints exist on the effects of sub-solidus re-equilibration of H₂O
139 in lower-crustal lithologies. Nonetheless, H₂O inter-mineral partition coefficients between
140 clinopyroxene and garnet measured in Jijal samples ([Supplementary Figure 3](#)) are
141 consistent with experimental partitioning data at magmatic temperatures (>1000°C). The
142 distribution of H₂O between orthopyroxene and clinopyroxene in Chilas samples is similar
143 to what has been observed in other pyroxenites but cannot be compared directly to
144 experiments due to differences in mineralogy (see [Supplement](#) for details on inter-mineral
145 partitioning). Lastly, there is no reverse Mg# zoning in pyroxenes, nor major or trace
146 element rim enrichment that would indicate post crystallization modification of pyroxene
147 chemistry by late interstitial liquid. Pyroxenes adjacent to amphibole rims have similar H₂O
148 abundances to others. Therefore, mineral H₂O abundances likely reflect preservation of
149 magmatic H₂O contents at the time of crystallization, with cores largely unaffected by
150 diffusive reequilibration. The same arguments apply for other volatile elements (i.e.,
151 fluorine and chlorine), although their diffusivities are likely lower based on their larger ionic
152 radii.

153 Kohistan's tectonic history may have been crucial in preserving near-magmatic
154 H₂O abundances. Evidence from xenoliths highlights the potential for diffusive H₂O loss
155 during magmatic eruptions, where rapid pressure changes and steep geochemical gradients
156 lead to host-magma degassing, xenolith re-equilibration, and H₂O loss³⁵ visible in both
157 olivine and pyroxene at temperatures below 900 °C³⁴. In Kohistan, the absence of late fluid
158 metasomatism episodes after cumulate formation, followed by rapid exhumation at ~80–
159 85 Ma may have contributed to H₂O preservation.

160

161 H₂O and halogen abundances in Kohistan parental melts

162 Preservation of magmatic H₂O abundances in lower-crustal minerals permits the
163 calculation of H₂O abundances in the parental melts from which the cumulates formed at
164 lower-crustal depths. Partition coefficients for hydrogen between clinopyroxene and melt
165 at relevant *P-T* conditions have been calibrated empirically from experimental studies¹⁹ and
166 range here from 0.0096 to 0.0199 ([Table 1](#)). The most primitive Chilas olivine
167 gabbronorite, C66, yields a parental melt H₂O concentration of 1.21 ± 0.09 wt.% (2SE,
168 n=9). More differentiated samples C48 and C7 are in equilibrium with more hydrous melt
169 compositions with 6.38 ± 0.96 (2SE, n=3) and 10.95 ± 4.09 (2SE, n=6) wt.% H₂O,
170 respectively ([Fig. 2](#)). The Jijal garnet pyroxenites KK5 and KK8 yield parental melt H₂O
171 concentrations of 8.44 ± 0.39 (2SE, n=5) and 12.44 ± 0.34 (2SE, n=6) wt.%, respectively,

172 and garnet diorite P05-5A is in equilibrium with a melt that contained 19.6 ± 1.5 wt.%
173 H_2O (2SE, n=5) (Fig. 2). In addition, calculated F and Cl abundances (Table 1) in super-
174 hydrous melts match the highest halogen abundances recorded by melt inclusions (Fig. 2),
175 suggesting that H_2O is lost from melt inclusions compared to halogens.

177 Crystal fractionation controls H_2O abundances

178 The large variability in H_2O abundances measured in cumulate minerals and
179 calculated for the melts in equilibrium with the cumulates can be explained by examining
180 correlations between H_2O and other trace and major elements. During crystallization, H_2O
181 preferentially remains in the melt phase and is incompatible in clinopyroxene³⁷. In Chilas,
182 clinopyroxene H_2O abundances increase from the most primitive sample C66 (cpx Mg#
183 81.8) to progressively more evolved C48 (cpx Mg# 78.9) and C7 (cpx Mg# 77.8) (Fig. 1).
184 In addition, H_2O in clinopyroxene positively correlates with other incompatible elements,
185 such as Ce (and all other rare-earth elements), Zr, F (Fig. 3), Na (Fig. 1), and Ti
186 (Supplementary Fig. 4). Ba and Li concentrations may be higher with increasing cpx H_2O .
187 Sr and H_2O correlate negatively due to the presence of plagioclase (Fig. 3). Plagioclase
188 anorthite content (An#, atomic Ca/(Ca+Na)) in C66 (An#89.8), C48 (An# 75.0) and C7
189 (An# 56.4) also displays a negative correlation with clinopyroxene H_2O abundances,
190 consistent with crystal fractionation. Finally, an equilibrium crystallization model²² for melt
191 Sr/Y ratio (fluid-mobile/fluid-immobile element) and H_2O concentration links the
192 gabbronorite suite from the most primitive sample (C66) to more evolved compositions
193 (C48 and C7) through a single LLD²² (Fig. 4A; Supplement). Therefore, increasing H_2O
194 abundances in Chilas pyroxenes and parental melts reflect increasing degrees of crystal
195 fractionation from a single primitive melt. The fit between the data and the model also
196 reinforces the hypothesis that H_2O concentrations in clinopyroxene are near-magmatic.

197 In the Jijal samples, clinopyroxene H_2O abundances also increase from the two
198 garnet pyroxenites (Mg# 76.2–81.5) to the more evolved P05-5A garnet diorite (Mg#
199 70.7). P05-5A has the highest Na clinopyroxene content of the series, consistent with its
200 more evolved nature. Unlike Chilas, the Jijal sample series does not exhibit compelling
201 correlations between H_2O and most other incompatible elements due to the fact that Jijal
202 cumulates were derived from individual batches of melt²⁴, and that elements such as high-
203 field strength elements and REEs were taken up by accessory phases, e.g., ilmenite, zircon,
204 and apatite (Supplementary Figure 5). Nonetheless, H_2O positively correlates with fluid-
205 mobile elements F, Ba and Li in Jijal clinopyroxene (Supplementary Figure 5). In addition,
206 the calculated Sr/Y and H_2O variability of parental melts in equilibrium with Jijal
207 cumulates is consistent with fractional crystallization²² of individual batches of melts with
208 varying initial H_2O abundances (Fig. 4B), and precipitation of garnet where Y is
209 compatible. Therefore, H_2O variations in Jijal minerals likely reflect varying degrees of
210 crystal fractionation from distinct primitive melts.

212 Damp to super-hydrous primitive arc melts

213 The H_2O abundances of primitive melts before extensive crystal fractionation can
214 be back-calculated, assuming that H_2O degassing before cumulate formation was
215 negligible. The solubility of H_2O in basaltic melts at 0.4–0.6 GPa is thought to be ~7–11

216 wt.%^{38,39} and increases with increasing pressure to 20.6 ± 0.9 wt.% H₂O (2σ) at 1 GPa and
217 1200°C². Barometry estimates of 0.6–0.7 GPa for Chilas and 0.8–1.5 GPa for Jijal,
218 therefore, suggest that equilibrium melts were likely H₂O-undersaturated and did not
219 degas before cumulate crystallization.

220 To constrain the H₂O contents of primitive melts for the Chilas complex, an
221 additional fractionation correction is needed (see [Supplement](#)). Based on previous studies²²,
222 it is assumed that parental liquids in equilibrium with the most primitive gabbro-norite
223 (C66) were already evolved with an Mg# of ~53 and underwent 30–50% olivine and
224 clinopyroxene fractionation prior to C66 crystallization. After applying this additional
225 fractionation correction, primitive Chilas melts are inferred to contain 0.61–0.85 wt.%
226 H₂O. This range is consistent with primitive tholeiitic melts formed by decompression
227 melting in an intra-arc extensional setting, i.e., a damp basaltic parental magma with a
228 minor slab contribution^{22,26,40}.

229 Similar to the Chilas complex, Jijal cumulates also formed from melts that
230 underwent prior crystallization. Because of the complexity of Jijal, two independent
231 approaches are used to evaluate H₂O concentrations in primitive melts (see [Supplement](#)).
232 The first method is based on comparison with crystallization sequences from laboratory
233 experiments, where melts have undergone between 35 and 60% fractional crystallization of
234 olivine and pyroxene prior to amphibole and garnet saturation^{24,25}. As H₂O is highly
235 incompatible in both pyroxene and olivine, this correction is rather insensitive to mineral
236 modes and partition coefficients and yields H₂O abundances in Jijal primitive melts of 3.4–
237 8.0 wt.% H₂O for KK5 and KK8. This method cannot be used to evaluate P05-5A, due to
238 its evolved nature. The second method is based on a quantitative petrogenetic model of the
239 Jijal liquid line of descent⁴¹, which permits us to explore a range of initial H₂O abundances
240 for each sample ([Fig. 5](#)). The presence of moderately fractionated amphibole-bearing
241 garnet pyroxenites in the fractionation sequence as modeled by previous studies⁴¹ places a
242 lower bound on initial melt H₂O abundances of ~3.25 wt.%. Modeling results are
243 consistent with primitive melt H₂O abundances of ~4–5 wt.% for P05-5A and 6–10 wt.%
244 for KK5 and KK8 ([Fig. 5](#)). These values support input from a hydrous slab component
245 during flux melting in a mantle wedge²⁶.

246 247 Implications for ore deposit formation, continental crust, and H₂O fluxes in arcs

248 Our results show that primitive arc magmas may contain ~0.6–10 wt.% H₂O and
249 reach H₂O saturation of ~20 wt.% H₂O after extensive crystal fractionation in the lower
250 arc crust with Cl abundances up to several thousand µg/g ([Fig. 5, Table 1](#)). The estimated
251 H₂O concentrations in primitive arc magmas from this study are more variable and
252 significantly higher than the average of 4 wt. % previously inferred from olivine and
253 clinopyroxene-hosted melt inclusions⁵ ([Figures 2 and 5B](#)), and support the presence of
254 damp to super-hydrous melts in arc settings^{10–12}. The occurrence of super-hydrous, Cl-rich
255 melts under arc roots is important for understanding the formation of ore deposits. Upon
256 magma ascent, H₂O solubility decreases to ~7 wt.% at 0.5 GPa and 950°C for a basaltic
257 composition (~12 wt.% for rhyolite)⁴², leading to exsolution of a Cl-rich fluid phase⁴³.
258 Exsolved fluids, thought to be important in porphyry Cu, Mo and Au deposit formation^{44–}
259 ⁴⁶, may be a natural consequence of H₂O exsolution by fractionated, super-hydrous magmas

260 at mid-crustal depths. Such a process is substantiated by mass balance calculations⁴⁷, phase
261 equilibria modeling¹⁶, and crystallization experiments¹⁴, all of which implicate H₂O-rich
262 melts (> 10 wt.%) in the formation of porphyry copper deposits, where exsolution may
263 initiate in the mid-crust. Future work will require parameterizing Cl partitioning behavior
264 between nominally anhydrous minerals and melt, as copper extraction efficiency during
265 exsolution is highly sensitive to melt Cl concentrations¹⁸.

266 The andesitic average bulk composition of continental crust may also, in part, be
267 an eventuality of super-hydrous magmas. Crystallization of such magmas at the base of arc
268 crust drives precipitation of thick plagioclase-free, ultramafic sequences, which are
269 seismically indistinguishable from ambient lithospheric mantle⁴⁸⁻⁵¹. Thus, average bulk
270 continental crust estimates using seismic Moho thresholds effectively shift to more evolved
271 (i.e., andesitic) compositions^{52,53}. Finally, foundering of hydrated lower arc crust will deliver
272 H₂O fluxes back to the mantle and impact global volatile cycling. The hydrated lower arc
273 crust can therefore modulate volatile cycling between the crust and mantle.

274 275 References Cited

- 276 1 Wallace, P. J., Plank, T., Edmonds, M. & Hauri, E. H. in *The encyclopedia of*
277 *volcanoes* 163-183 (Elsevier, 2015).
- 278 2 Mitchell, A. L., Gaetani, G. A., O'leary, J. A. & Hauri, E. H. H₂O solubility in
279 basalt at upper mantle conditions. *Contrib Mineral Petr* **172**, 85 (2017).
- 280 3 Dobson, P. F., Skogby, H. & Rossman, G. R. Water in boninite glass and
281 coexisting orthopyroxene: concentration and partitioning. *Contrib Mineral*
282 *Petr* **118**, 414-419 (1995).
- 283 4 Sisson, T. & Layne, G. H₂O in basalt and basaltic andesite glass inclusions
284 from four subduction-related volcanoes. *Earth Planet Sc Lett* **117**, 619-635
285 (1993).
- 286 5 Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H. & Wallace, P. J. Why do
287 mafic arc magmas contain~ 4 wt% water on average? *Earth Planet Sc Lett*
288 **364**, 168-179 (2013).
- 289 6 Gaetani, G. A., O'Leary, J. A., Shimizu, N., Bucholz, C. E. & Newville, M. Rapid
290 reequilibration of H₂O and oxygen fugacity in olivine-hosted melt inclusions.
291 *Geology* **40**, 915-918 (2012).
- 292 7 Portnyagin, M., Almeev, R., Matveev, S. & Holtz, F. Experimental evidence for
293 rapid water exchange between melt inclusions in olivine and host magma.
294 *Earth Planet Sc Lett* **272**, 541-552 (2008).
- 295 8 Bucholz, C. E., Gaetani, G. A., Behn, M. D. & Shimizu, N. Post-entrapment
296 modification of volatiles and oxygen fugacity in olivine-hosted melt
297 inclusions. *Earth Planet Sc Lett* **374**, 145-155 (2013).
- 298 9 Annen, C., Blundy, J. & Sparks, R. The genesis of intermediate and silicic
299 magmas in deep crustal hot zones. *J Petrol* **47**, 505-539 (2006).
- 300 10 Goltz, A. E., Krawczynski, M. J., Gavrilenko, M., Gorbach, N. V. & Ruprecht, P.
301 Evidence for superhydrous primitive arc magmas from mafic enclaves at
302 Shiveluch volcano, Kamchatka. *Contrib Mineral Petr* **175**, 1-26 (2020).

304 11 Grove, T. L. *et al.* Magnesian andesite and dacite lavas from Mt. Shasta,
305 northern California: products of fractional crystallization of H₂O-rich
306 mantle melts. *Contrib Mineral Petr* **148**, 542-565 (2005).

307 12 Krawczynski, M. J., Grove, T. L. & Behrens, H. Amphibole stability in primitive
308 arc magmas: effects of temperature, H₂O content, and oxygen fugacity.
309 *Contrib Mineral Petr* **164**, 317-339 (2012).

310 13 Zellmer, G. F. *et al.* Petrogenesis of antecrust-bearing arc basalts from the
311 Trans-Mexican Volcanic Belt: Insights into along-arc variations in magma-
312 mush ponding depths, H₂O contents, and surface heat flux. *Am Mineral* **101**,
313 2405-2422 (2016).

314 14 Prouteau, G. & Scaillet, B. Experimental constraints on the origin of the 1991
315 Pinatubo dacite. *J Petrol* **44**, 2203-2241 (2003).

316 15 Carmichael, I. S. The andesite aqueduct: perspectives on the evolution of
317 intermediate magmatism in west-central (105–99 W) Mexico. *Contrib
318 Mineral Petr* **143**, 641-663 (2002).

319 16 Lu, Y.-J., Loucks, R. R., Fiorentini, M. L., Yang, Z.-M. & Hou, Z.-Q. Fluid flux
320 melting generated postcollisional high Sr/Y copper ore-forming water-rich
321 magmas in Tibet. *Geology* **43**, 583-586 (2015).

322 17 Laumonier, M., Gaillard, F., Muir, D., Blundy, J. & Unsworth, M. Giant
323 magmatic water reservoirs at mid-crustal depth inferred from electrical
324 conductivity and the growth of the continental crust. *Earth Planet Sc Lett*
325 **457**, 173-180 (2017).

326 18 Tattitch, B., Chelle-Michou, C., Blundy, J. & Loucks, R. R. Chemical feedbacks
327 during magma degassing control chlorine partitioning and metal extraction
328 in volcanic arcs. *Nature communications* **12**, 1-11 (2021).

329 19 O'Leary, J. A., Gaetani, G. A. & Hauri, E. H. The effect of tetrahedral Al³⁺ on the
330 partitioning of water between clinopyroxene and silicate melt. *Earth Planet
331 Sc Lett* **297**, 111-120 (2010).

332 20 Tahirkheli, R. A. K. & Jan, M. Q. Geology of Kohistan, Karakorum Himalaya,
333 northern Pakistan. *Special issue of the Geological Bulletin of the University of
334 Peshawar, Pakistan* **11**, 1-30 (1979).

335 21 Jagoutz, O. & Schmidt, M. W. The formation and bulk composition of modern
336 juvenile continental crust: The Kohistan arc. *Chem Geol* **298**, 79-96 (2012).

337 22 Jagoutz, O. *et al.* Petrology and mineral chemistry of lower crustal intrusions:
338 the Chilas Complex, Kohistan (NW Pakistan). *J Petrol* **48**, 1895-1953 (2007).

339 23 Loucks, R. R. Restoration of the elemental and stable-isotopic compositions of
340 diffusionally altered minerals in slowly cooled rocks. *Contrib Mineral Petr*
341 **124**, 346-358 (1996).

342 24 Müntener, O. & Ulmer, P. Arc crust formation and differentiation constrained
343 by experimental petrology. *American Journal of Science* **318**, 64-89 (2018).

344 25 Ulmer, P., Kaegi, R. & Müntener, O. Experimentally derived intermediate to
345 silica-rich arc magmas by fractional and equilibrium crystallization at 1–0
346 GPa: An evaluation of phase relationships, compositions, liquid lines of
347 descent and oxygen fugacity. *J Petrol* **59**, 11-58 (2018).

348 26 Jagoutz, O., Müntener, O., Schmidt, M. W. & Burg, J. P. The roles of flux- and
349 decompression melting and their respective fractionation lines for

350 continental crust formation: Evidence from the Kohistan arc. *Earth Planet Sc*
351 *Lett* **303**, 25-36, doi:10.1016/j.epsl.2010.12.017 (2011).

352 27 Schaltegger, U., Zeilinger, G., Frank, M. & Burg, J. P. Multiple mantle sources
353 during island arc magmatism: U-Pb and Hf isotopic evidence from the
354 Kohistan arc complex, Pakistan. *Terra Nova* **14**, 461-468 (2002).

355 28 Bouilhol, P., Jagoutz, O., Hanchar, J. M. & Dudas, F. O. Dating the India-Eurasia
356 collision through arc magmatic records. *Earth Planet Sc Lett* **366**, 163-175
357 (2013).

358 29 Burg, J. P., Jagoutz, O., Dawood, H. & Hussain, S. S. Precollision tilt of crustal
359 blocks in rifted island arcs: structural evidence from the Kohistan Arc.
360 *Tectonics* **25** (2006).

361 30 Dhuime, B. *et al.* Multistage evolution of the Jijal ultramafic-mafic complex
362 (Kohistan, N Pakistan): implications for building the roots of island arcs.
363 *Earth Planet Sc Lett* **261**, 179-200 (2007).

364 31 Demouchy, S., Jacobsen, S. D., Gaillard, F. & Stern, C. R. Rapid magma ascent
365 recorded by water diffusion profiles in mantle olivine. *Geology* **34**, 429-432
366 (2006).

367 32 Le Roux, V. *et al.* Postmelting hydrogen enrichment in the oceanic
368 lithosphere. *Science Advances* **7**, eabf6071, doi:10.1126/sciadv.abf6071
369 (2021).

370 33 Peslier, A. H. & Luhr, J. F. Hydrogen loss from olivines in mantle xenoliths
371 from Simcoe (USA) and Mexico: Mafic alkalic magma ascent rates and water
372 budget of the sub-continental lithosphere. *Earth Planet Sc Lett* **242**, 302-319
373 (2006).

374 34 Xu, Y. *et al.* Reconciling the discrepancy between the dehydration rates in
375 mantle olivine and pyroxene during xenolith emplacement. *Geochim*
376 *Cosmochim Ac* **267**, 179-195 (2019).

377 35 Ferriss, E., Plank, T. & Walker, D. Site-specific hydrogen diffusion rates during
378 clinopyroxene dehydration. *Contrib Mineral Petr* **171**, 55 (2016).

379 36 Schaffer, L. A. *et al.* Effects of melting, subduction-related metasomatism, and
380 sub-solidus equilibration on the distribution of water contents in the mantle
381 beneath the Rio Grande Rift. *Geochim Cosmochim Ac* **266**, 351-381 (2019).

382 37 Hauri, E. H., Gaetani, G. A. & Green, T. H. Partitioning of water during melting
383 of the Earth's upper mantle at H₂O-undersaturated conditions. *Earth Planet*
384 *Sc Lett* **248**, 715-734 (2006).

385 38 Berndt, J. *et al.* A combined rapid-quench and H₂-membrane setup for
386 internally heated pressure vessels: Description and application for water
387 solubility in basaltic melts. *Am Mineral* **87**, 1717-1726 (2002).

388 39 Hamilton, D., Burnham, C. W. & Osborn, E. The solubility of water and effects
389 of oxygen fugacity and water content on crystallization in mafic magmas. *J*
390 *Petrol* **5**, 21-39 (1964).

391 40 Jagoutz, O., Müntener, O., Burg, J.-P., Ulmer, P. & Jagoutz, E. Lower continental
392 crust formation through focused flow in km-scale melt conduits: The zoned
393 ultramafic bodies of the Chilas Complex in the Kohistan island arc (NW
394 Pakistan). *Earth Planet Sc Lett* **242**, 320-342 (2006).

395 41 Jagoutz, O. E. Construction of the granitoid crust of an island arc. Part II: a
396 quantitative petrogenetic model. *Contrib Mineral Petr* **160**, 359-381,
397 doi:10.1007/s00410-009-0482-6 (2010).

398 42 Newman, S. & Lowenstern, J. B. VolatileCalc: a silicate melt-H₂O-CO₂
399 solution model written in Visual Basic for excel. *Computers & Geosciences* **28**,
400 597-604 (2002).

401 43 Alletti, M. *et al.* Chlorine partitioning between a basaltic melt and H₂O-CO₂
402 fluids at Mount Etna. *Chem Geol* **263**, 37-50 (2009).

403 44 Lee, C.-T. A. & Tang, M. How to make porphyry copper deposits. *Earth Planet
404 Sc Lett* **529**, 115868 (2020).

405 45 Hedenquist, J. W., Arribas, A. & Reynolds, T. J. Evolution of an intrusion-
406 centered hydrothermal system; Far Southeast-Lepanto porphyry and
407 epithermal Cu-Au deposits, Philippines. *Economic Geology* **93**, 373-404
408 (1998).

409 46 Rezeau, H. & Jagoutz, O. The importance of H₂O in arc magmas for the
410 formation of porphyry Cu deposits. *Ore Geology Reviews* **126**, 103744 (2020).

411 47 Klemm, L. M., Pettke, T. & Heinrich, C. A. Fluid and source magma evolution of
412 the Questa porphyry Mo deposit, New Mexico, USA. *Mineralium Deposita* **43**,
413 533 (2008).

414 48 Loucks, R. R. Deep entrapment of buoyant magmas by orogenic tectonic
415 stress: Its role in producing continental crust, adakites, and porphyry copper
416 deposits. *Earth-Science Reviews* **220**, 103744 (2021).

417 49 Kodaira, S. *et al.* Seismological evidence for variable growth of crust along the
418 Izu intraoceanic arc. *Journal of Geophysical Research: Solid Earth* **112** (2007).

419 50 Kodaira, S. *et al.* New seismological constraints on growth of continental
420 crust in the Izu-Bonin intra-oceanic arc. *Geology* **35**, 1031-1034 (2007).

421 51 Behn, M. D. & Kelemen, P. B. Stability of arc lower crust: Insights from the
422 Talkeetna arc section, south central Alaska, and the seismic structure of
423 modern arcs. *Journal of Geophysical Research: Solid Earth* **111** (2006).

424 52 O'Reilly, S. Y. & Griffin, W. Moho vs crust-mantle boundary: evolution of an
425 idea. *Tectonophysics* **609**, 535-546 (2013).

426 53 Müntener, O. & Ulmer, P. Experimentally derived high - pressure cumulates
427 from hydrous arc magmas and consequences for the seismic velocity
428 structure of lower arc crust. *Geophysical Research Letters* **33** (2006).

429

430 430 **Corresponding Author**
431 Ben Urann, burann@uwyo.edu

432 432 **Acknowledgements**
433 We thank Brian Monteleone and Neel Chatterjee for their technical expertise on the
434 Cameca 1280 at the Northeast National Ion Microprobe Facility at WHOI and electron
435 microprobe at MIT, respectively. We thank S. Parman, W.J. Collins and R. Loucks for
436 their constructive comments which improved the manuscript.
437

438 **Contributions**

439 BU conceived the study, BU and VLR collected and interpreted the data, and wrote the
440 manuscript. OJ and OM provided samples, data, and geochemical models. BU, VLR, MB,
441 and EC acquired financial support. All authors contributed to editing the manuscript.

442
443 **Funding Statement**

444 Funding for this study was supported by the Woods Hole Oceanographic Institution
445 Ocean Venture Fund to BMU, NSF awards EAR-P&G #1839128 and EAR-
446 P&G/Geophysics #1855302 to VLR, and EAR-18-55430 to MDB and EJC. VLR also
447 acknowledges the support from the Visiting Scholar at SCIENCE program at the
448 University of Copenhagen, Denmark. BMU also acknowledges continued support from
449 NSF OCE Post-doctoral Research Fellow grant (#2126559).

450
451 **Data Availability Statement**

452 All data which support the findings of this study are presented herein, or cited in the text
453 and Methods. Olivine-hosted arc melt inclusion data for Figure 5B was downloaded
454 from the Georoc Database (<http://georoc.mpch-mainz.gwdg.de/georoc/>).

455
456 **Code Availability Statement**

457 Code used in the generation of figures is available by request.

458

459

460

461

462

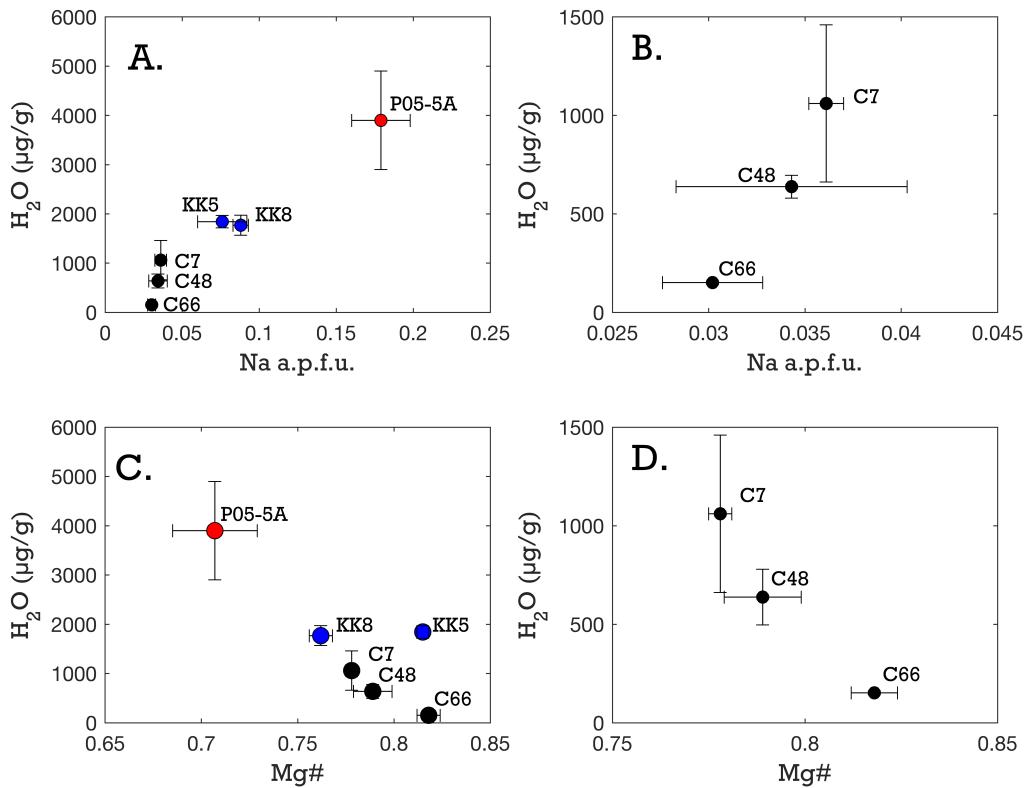
463

464

465

466

467

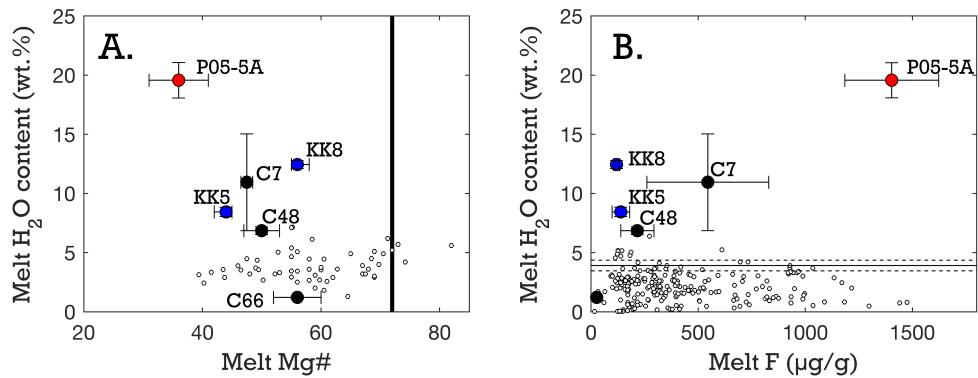

468

469

470

471

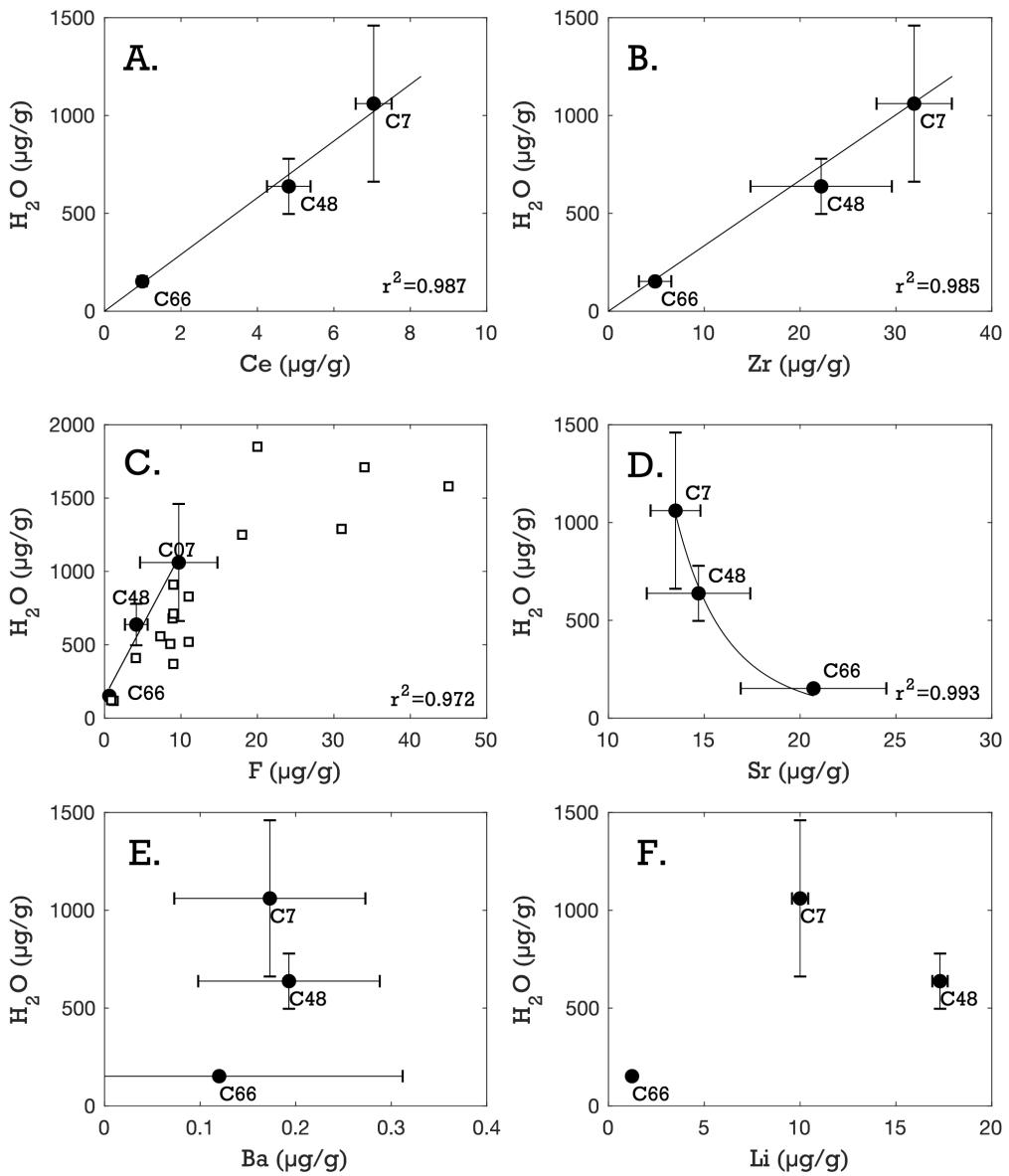
472 Figures



473

474 Figure 1. Clinopyroxene H_2O abundances plotted against major element compositions in
 475 clinopyroxene for the both the Jijal and Chilas (A. and C.) and Chilas only (B. and
 476 D.). Panels A. and B. show octahedrally coordinated Na in atoms per formula unit,
 477 panels C. and D. Mg# (molar Mg/(Mg+Fe)). Error bars are 2SE of the mean.

478


479

480

481 **Figure 2. A.** Equilibrium melt H_2O abundances plotted against melt Mg#. Melt Mg#
 482 inferred from clinopyroxene Mg# for both Chilas (black circles) and Jijal (blue and red
 483 circles) cumulates. Mg# error bars denote highest and lowest measured cpx Mg# for each
 484 sample, H_2O error bars are 2SE of the mean. Melt inclusion literature data (white circles)
 485 are maximum water abundances for individual arc volcanoes⁵ converted from olivine
 486 forsterite content to melt Mg#. Thick vertical black line denotes Mg# of melts in
 487 equilibrium with mantle olivine Fo_{90} (i.e., Mg# 72). **B.** Fluorine and H_2O abundances of
 488 arc melt inclusions (See Methods for relevant citations) compared to parental melts
 489 calculated for Kohistan. Horizontal line signifies mean H_2O content of arc melts (dashed
 490 lines are 1 s.d.) as interpreted from melt inclusions⁵.

491

492

493 Figure 3. Chilas clinopyroxene H_2O concentrations plotted against trace element
 494 concentrations with various geochemical affinities. Plots show: the rare earth element Ce
 495 (A.), the high field strength element Zr (B.), the volatile halogen F (C.) and the fluid
 496 mobile elements Sr (D.), Ba (E.) and Li (F.). Concentrations are the mean of each
 497 sample (clinopyroxene cores only for H_2O). Error bars are two standard error of the
 498 mean. White squares denote experimental partitioning data from the literature^{19,37}. Black
 499 solid lines and curves denote best fit slopes calculated using MATLAB functions poly1
 500 (A., B. and C.) and power1 (D.).

501

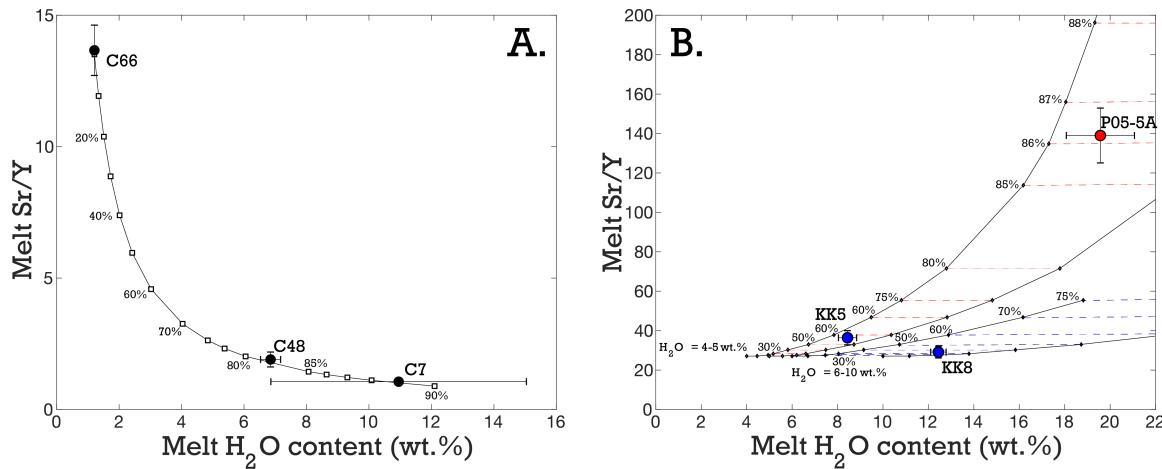
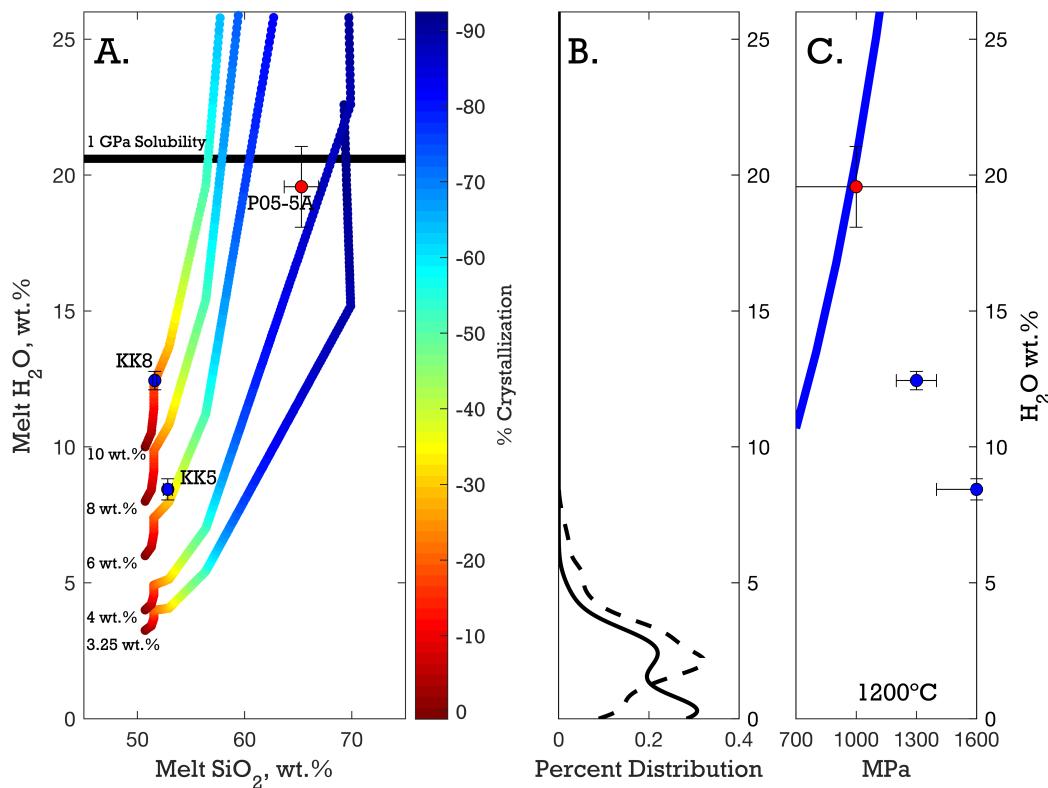



Figure 4. Crystallization models for both Chilas (A.) and Jijal (B.). A. Equilibrium crystallization model (white squares) for Chilas gabbro-norites showing the evolution of Sr/Y ratios against H₂O abundances in melts. Upon continued crystallization of plagioclase, Sr decreases as it is compatible in plagioclase, whereas Y increases, being incompatible in all crystallizing phases. Values along curves are percent crystallization. Parental melt has an H₂O concentration of 1.21 wt.% and is the melt parental to C66. B. Fractional crystallization models⁴¹ for Jijal cumulates showing the evolution of Sr/Y ratios against varying H₂O abundances in melts. The fitted range of H₂O contents in parental melts varies from 4 to 10 wt.% H₂O. Dashed blue and red lines are tie lines connecting identical extents of crystallization for different starting melt H₂O abundances. For details of the two models, see Supplement.

521

522 Figure 5. A. Jijal melt crystallization model based on published petrogenetic model⁴¹.
 523 Equilibrium melt SiO_2 content for each sample calculated based on clinopyroxene Mg#
 524 using modeled liquid line of descent. Thick black line denotes 1 GPa H_2O solubility for a
 525 basaltic melt². Silicic magmas tend to have higher water solubilities than basalt, however
 526 constraints at relevant P - T conditions are lacking. Values next to each curve represent the
 527 range of H_2O abundances in parental melts, with the lower bound constrained by the
 528 minimum amount of water needed to crystallize amphibole in the fractionation
 529 sequence⁴¹, i.e. 3.25 wt.% H_2O . See Supplement for details. B. Probability density
 530 function of olivine-hosted arc melt inclusions from the Georoc Database
 531 (<http://georoc.mpch-mainz.gwdg.de/georoc/>). Primitive melt inclusions (Mg#>65)
 532 shown as a solid back line (n=171). Melt inclusions with Mg# of 35 to 65 (n=879),
 533 similar to the Mg# calculated for Kohistan parental melts, are shown as a dashed black
 534 line. Primitive melt inclusions (solid black line) display two probability peaks at 0.3 and
 535 2.3 wt.% H_2O with a maximum H_2O of 4.8 wt.%, whereas those with an Mg# of 35 to
 536 65 show a single peak at 2.0 wt.% H_2O and a maximum of 7.5 wt.% H_2O . C. H_2O
 537 solubility curve for basaltic melts at 1200°C² compared to H_2O abundances in Jijal
 538 cumulates at various P .

539

540