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Abstract. We investigate the power of randomness in two-party com-
munication complexity. In particular, we study the model where the
parties can make a constant number of queries to a function that has an
efficient one-sided-error randomized protocol. The complexity classes
defined by this model comprise the Randomized Boolean Hierarchy,
which is analogous to the Boolean Hierarchy but defined with one-sided-
error randomness instead of nondeterminism. Our techniques connect
the Nondeterministic and Randomized Boolean Hierarchies, and we pro-
vide a complete picture of the relationships among complexity classes
within and across these two hierarchies. In particular, we prove that
the Randomized Boolean Hierarchy does not collapse, and we prove a
query-to-communication lifting theorem for all levels of the Nondeter-
ministic Boolean Hierarchy and use it to resolve an open problem stated
in the paper by Halstenberg and Reischuk (CCC 1988) which initiated
the study of this hierarchy.
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1. Introduction

A classic example of the power of randomness in communication
is the Equality function: Alice gets an n-bit string x, Bob gets
an n-bit string y, and they want to know whether x equals y.

Birkhäuser
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Though Equality is maximally hard for deterministic communi-
cation (Yao 1979), it can be solved by a randomized protocol using
O(1) bits of communication (in the public-coin model) using the
fingerprinting technique. Although this example (known for over
40 years) demonstrates the power of randomized communication
in the standard two-party setting, many questions remain about
the exact power of randomness in communication.

Much is still not understood about the power of randomness
in other important communication settings beyond the standard
two-party model. For example, in the Number-on-Forehead (NOF)
model, even for three parties, no explicit function is known to ex-
hibit a superpolylogarithmic separation between randomized and
deterministic communication (Linial et al. 2019) (despite the fact
that linear lower bounds for randomized NOF protocols were given
over 30 years ago in the seminal paper Babai et al. (1989)). An-
other example concerns randomness in the context of nondeter-
ministic two-party protocols (so-called Arthur–Merlin and Merlin–
Arthur models). While strong lower bounds are known for Merlin–
Arthur protocols (Klauck 2003) (though even here, explicit linear
lower bounds remain elusive), no strong lower bounds are known
for Arthur–Merlin protocols computing any explicit function—such
bounds are necessary for making progress on rigidity bounds and
circuit lower bounds and are also important for delegation (Alman
& Williams 2017; Göös et al. 2016b; Razborov 1989).

We wish to highlight that even in the standard setting of plain
randomized two-party communication protocols, many fundamen-
tal questions remain poorly understood. Our goal in this paper
is to make progress on some of these questions. Much is known
about the limitations of randomness—e.g., strong (indeed, lin-
ear) lower bounds are known for the classic Set-Disjointness

function (Babai et al. 1986; Bar-Yossef et al. 2004; Kalyanasun-
daram & Schnitger 1992; Razborov 1992), which can be viewed
as showing that coNPcc �⊆ BPPcc (where we use cc superscripts
to indicate the communication analogues of classical complexity
classes). However, surprisingly little is known about the power
of randomness. Most known efficient randomized protocols for
other functions, such as Greater-Than, can be viewed as or-
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acle reductions to the aforementioned Equality upper bound:
Greater-Than ∈ PEquality. Until recently, it was not even
known whether BPPcc = PEquality (assuming the classes are defined
to contain only total two-party functions), i.e., whether Equality
is the “only” thing randomness is good for. Chattopadhyay, Lovett,
and Vinyals (Chattopadhyay et al. 2019) answered this question in
the negative by exhibiting a total function that is in BPPcc (in-
deed, in RPcc) but not in PEquality (though the upper bound is
still a form of fingerprinting). Since Equality ∈ coRPcc, we have
PEquality ⊆ PRPcc where the latter class contains functions with
efficient deterministic protocols that can make (adaptive) oracle
queries to any function in RPcc. In fact, Chattopadhyay et al.
(2019) exhibited a strict infinite hierarchy of classes within PRPcc,
with PEquality at the bottom, and with subsequent levels having
increasingly powerful specific oracle functions.

However, it remains open whether BPPcc = PRPcc for total
functions (intuitively, whether two-sided error can be efficiently
converted to oracle queries to one-sided error). It is even open
whether BPPcc ⊆ PNPcc for total functions (Göös et al. 2018b),
although this is known to be false if the classes are defined to al-
low partial functions (Papakonstantinou et al. 2014). We obtain a
more detailed understanding of the structure of PRPcc by focusing
on restricting the number of oracle queries (rather than restricting
the RPcc function as in Chattopadhyay et al. (2019)). For con-

stants q = 0, 1, 2, 3, . . ., the class P
RP[q]cc
‖ consists of all two-party

functions with an efficient (polylogarithmic communication cost)
deterministic protocol that can make q many nonadaptive queries
to an oracle for a function in RPcc. (In contrast, the class PRP[q]cc

allows adaptive queries.) Even if partial functions are allowed, it
was not known whether these classes form a strict infinite hierar-
chy, i.e., whether P

RP[q]cc
‖ � P

RP[q+1]cc
‖ for all q. One of our main

contributions (Theorem 1.1) implies that this is indeed the case,
even for total functions.

With NPcc in place of RPcc,
⋃

q P
NP[q]cc
‖ forms the communication

version of the Boolean Hierarchy from classical complexity, which
was previously studied by Halstenberg and Reischuk (Halstenberg
& Reischuk 1988, 1990, 1993). We also prove results (Theorem 1.2
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and Theorem 1.3) that resolve a 31-year-old open question posed in

their work.
⋃

q P
RP[q]cc
‖ can be viewed as the communication version

of the Randomized Boolean Hierarchy, which has not been stud-
ied explicitly in previous works. Overall, we obtain a complete
understanding of the relationships among the classes within and
across the Nondeterministic and Randomized Boolean Hierarchies
in communication complexity. In the following subsection, we dis-
cuss the relevant communication complexity classes and describe
our theorems in detail.

1.1. Background and our contributions. Forgetting about
communication complexity for a moment, the Boolean Hierarchy
in classical complexity theory consists of problems that have a
polynomial-time algorithm making a constant number of queries
to an NP oracle. This hierarchy has an intricate relationship with
other complexity classes, and its second level (DP) captures the
complexity of certain “exact” versions of optimization problems. It
consists of an infinite sequence of complexity classes NP(q) for q =
1, 2, 3, . . . (where NP(1) = NP and NP(2) = DP). There are several
equivalent ways of defining these classes (Cai & Hemachandra 1986;
Köbler et al. 1987; Wagner 1988; Wechsung 1985), which we review
in Section 2. As illustrated in Figure 1.1, it is known that these
levels are intertwined with the classes P

NP[q]
‖ of all decision prob-

lems solvable in polynomial time using q nonadaptive NP queries
(for constant q) (Beigel 1991; Köbler et al. 1987; Wagner 1988):

NP(q) ⊆ P
NP[q]
‖ ⊆ NP(q + 1)

and

coNP(q) ⊆ P
NP[q]
‖ ⊆ coNP(q + 1)

(by closure of P
NP[q]
‖ under complementation). Here, coNP(q) is the

class of decision problems whose complement is in NP(q).
Analogous to the above Nondeterministic Boolean Hierarchy,

one can define the Randomized Boolean Hierarchy by using RP
(one-sided error randomized polynomial time) instead of NP in the
definitions (Bertoni et al. 1989). The analogous inclusions like in

Figure 1.1 hold among all the classes RP(q), coRP(q), and P
RP[q]
‖ ,
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Figure 1.1: Relations between classes in the Boolean Hierarchy.
Here, C1 → C2 represents C1 ⊆ C2

by similar arguments. Although the (suitably defined) Polynomial
Hierarchy over RP is known to collapse to its second level, which
equals BPP (Zachos & Heller 1986), the Boolean Hierarchy over
RP has not been widely studied.

Recall the basic (deterministic) model of communication (Ku-
shilevitz & Nisan 1997; Yao 1979), where Alice is given an input
x and Bob is given an input y, and they wish to collaboratively
evaluate some function F (x, y) of their joint input by engaging
in a protocol that specifies how they exchange bits of informa-
tion about their inputs. Many classical complexity classes (P, RP,
NP, and so on) have natural two-party communication analogues
(Babai et al. 1986) (including the classes in the Nondeterminis-
tic and Randomized Boolean Hierarchies). The area of structural
communication complexity, which concerns the properties of and
relationships among these classes, is undergoing a renaissance and
has turned out to yield new techniques and perspectives for un-
derstanding questions in a variety of other areas (circuit complex-
ity, proof complexity, data structures, learning theory, delegation,
fine-grained complexity, property testing, cryptography, extended
formulations, etc.) (Göös et al. 2018b). For any classical time-
bounded complexity class C, we use Ccc to denote its communica-
tion complexity analogue—the class of all two-party functions on n
bits that admit a protocol communicating at most polylog(n) bits,
in a model defined by analogy with the classical C.

Halstenberg and Reischuk (Halstenberg & Reischuk 1988, 1990)
initiated the study of the Nondeterministic Boolean Hierarchy in
two-party communication complexity. They observed that the
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inclusions shown in Figure 1.1 hold for the communication ver-
sions of the classes, by essentially the same proofs as in the time-
bounded setting. They also proved that NP(q)cc �= coNP(q)cc,
which simultaneously implies that each of the inclusions is strict:
NP(q)cc � P

NP[q]cc
‖ � NP(q + 1)cc.

The communication version of the Randomized Boolean Hier-
archy has not been explicitly studied as far as we know, but as
mentioned earlier it is interesting since Equality ∈ coRPcc and
many randomized protocols have been designed by reduction to
this fact (such as Greater-Than ∈ PRPcc). What can we say
about the power of a fixed number of queries to an RPcc oracle?
Our first contribution strengthens the aforementioned separation
due to Halstenberg and Reischuk.

Theorem 1.1. For total functions,

coRP(q)cc �⊆ NP(q)cc

for every constant q.

Since RPcc ⊆ NPcc, Theorem 1.1 simultaneously implies that
each of the inclusions in the Randomized Boolean Hierarchy is
strict: RP(q)cc � P

RP[q]cc
‖ � RP(q + 1)cc, and thus the hierarchy

does not collapse. Previously, no separation beyond the first level
seemed to be known in the literature. Our proof of Theorem 1.1
is completely different from (and more involved than) Halstenberg
and Reischuk’s proof of coNP(q)cc �⊆ NP(q)cc, which used the “easy-
hard argument” of Kadin (1988).

In Halstenberg & Reischuk (1988, 1990), Halstenberg and Reis-
chuk also explicitly asked whether the inclusion

P
NP[q]cc
‖ ⊆ NP(q + 1)cc ∩ coNP(q + 1)cc

is strict. When q = 0, this is answered by the familiar results
that Pcc = NPcc ∩ coNPcc when the classes are defined to contain
only total functions (Halstenberg & Reischuk 1993), whereas Pcc �

NPcc ∩ coNPcc (indeed, Pcc � ZPPcc) holds when partial functions
(promise problems) are allowed. For q > 0, we resolve this 31-year-
old open question by proving that the situation is analogous to the
q = 0 case.
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Theorem 1.2. For total functions,

P
NP[q]cc
‖ = NP(q + 1)cc ∩ coNP(q + 1)cc

and

P
RP[q]cc
‖ = RP(q + 1)cc ∩ coRP(q + 1)cc

for every constant q.

Theorem 1.3. For partial functions,

RP(q + 1)cc ∩ coRP(q + 1)cc �⊆ P
NP[q]cc
‖

for every constant q.

Since RPcc ⊆ NPcc, Theorem 1.3 implies that

P
NP[q]cc
‖ � NP(q + 1)cc ∩ coNP(q + 1)cc

and

P
RP[q]cc
‖ � RP(q + 1)cc ∩ coRP(q + 1)cc

for partial functions. Taken together, Theorem 1.1, Theorem 1.2
and Theorem 1.3 complete the picture of the relationships among
the classes within and across both hierarchies, for both total and
partial functions.

1.2. Query-to-communication lifting. In our proof of The-
orem 1.3, we use the paradigm of query-to-communication lifting
(Göös 2015; Göös et al. 2019, 2016a, 2018a, 2020; Raz & McKen-
zie 1999; Watson 2020). This approach to proving communication
lower bounds has led to breakthroughs on fundamental questions
in communication complexity and many of its application areas.
The idea consists of two steps:

(1) First prove an analogous lower bound in the simpler setting
of decision tree depth complexity (a.k.a. query complexity).
This step captures the combinatorial core of the lower bound
argument without the burden of dealing with the full power of
communication protocols.
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(2) Then apply a lifting theorem, which translates the query lower
bound into a communication lower bound for a related two-
party function. This step encapsulates the general-purpose
machinery for dealing with protocols and can be reused from
one argument to the next.

The availability of a lifting theorem greatly simplifies the task of
proving certain communication lower bounds, because it divorces
the problem-specific aspects from the generic aspects. The format
of a lifting theorem is that if f : {0, 1}n → {0, 1} is any partial
function and g : X × Y → {0, 1} is a certain “small” two-party
function called a gadget, then the communication complexity of the
two-party composed function f ◦ gn : X n × Yn → {0, 1}—in which
Alice gets x = (x1, . . . , xn), Bob gets y = (y1, . . . , yn), and their
goal is to evaluate (f ◦ gn)(x, y) := f(g(x1, y1), . . . , g(xn, yn))—
should be approximately the query complexity of the outer function
f . One direction is generally straightforward: given a query upper
bound for f , a communication upper bound for f ◦ gn is witnessed
by a protocol that simulates the decision tree for f and evaluates
g(xi, yi) whenever it queries the ith bit of the input to f ; the number
of bits of communication is at most the number of queries made
by the decision tree times the (small) cost of evaluating a copy of
g. The other direction is the challenging part: despite Alice and
Bob’s ability to send messages that depend in arbitrary ways on
all n coordinates, they nevertheless cannot do much better than
just simulating a decision tree, which involves “talking about” one
coordinate at a time.

A lifting theorem must be stated with respect to a particular
model of computation, such as deterministic, one-sided error ran-
domized, nondeterministic, etc., which we associate with the cor-
responding complexity classes. Indeed, lifting theorems are known
for P (Göös et al. 2018a; Raz & McKenzie 1999), RP (Göös et al.
2020), NP (Göös 2015; Göös et al. 2016a), and many other classes.
It is convenient to recycle complexity class names to denote the
complexity of a given function in the corresponding model, e.g.,
Pdt(f) is the minimum worst-case number of queries made by any
decision tree that computes f , and Pcc(F ) is the minimum worst-
case communication cost of any protocol that computes F . With
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this notation, the deterministic lifting theorem from Göös et al.
(2018a); Raz & McKenzie (1999) can be stated as: for all f ,
Pcc(f ◦ gn) = Pdt(f) · Θ(log n) where g : [m] × {0, 1}m → {0, 1}
is the “index” gadget defined by g(x, y) = yx with m := n20. (Note
that Pcc(g) = O(log n) since Alice can send her log m-bit “pointer”
to Bob, who responds with the pointed-to bit from his string.) The
index gadget has also been used in lifting theorems for several other
complexity classes.

We prove lifting theorems for all classes in the Nondeterministic
Boolean Hierarchy, with the index gadget.

Theorem 1.4. For every partial function f : {0, 1}n → {0, 1} and
every constant q,

(i) NP(q)cc(f ◦ gn) = NP(q)dt(f) · Θ(log n)

(ii) P
NP[q]cc
‖ (f ◦ gn) = P

NP[q]dt
‖ (f) · Θ(log n)

where g : [m] × {0, 1}m → {0, 1} is the index gadget defined by
g(x, y) = yx with m := n20.

Only part (ii) is needed for proving Theorem 1.3, but part
(i) forms an ingredient in the proof of (ii) and is of independent
interest.

The most closely related lifting theorem to Theorem 1.4 is the
one for PNP (Göös et al. 2019), corresponding to computations that
make an unbounded number of adaptive queries to an NP oracle. In
that paper, the overall idea was to approximately characterize PNP

complexity in terms of decision lists (DL) and then prove a lifting
theorem directly for DLs. Briefly, a conjunction DL (introduced by
Rivest (1987)) is a sequence of small-width conjunctions each with
an associated output bit, and the output is determined by finding
the first conjunction in the list that accepts the given input. A
rectangle DL is similar but with combinatorial rectangles instead
of conjunctions. The proof from Göös et al. (2019) shows how to
convert a rectangle DL for f ◦ gn into a conjunction DL for f .

The gist of our arguments for both parts of Theorem 1.4 is to
approximately characterize (via different techniques than for PNP)
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these classes in terms of DLs with a bounded number of alterna-
tions (how many times the associated output bit flips as we walk
down the entire DL). The DL lifting argument from Göös et al.
(2019) does not preserve the number of alternations, but we show
how it can be adapted to do this. Our techniques also yield an
approximate lifting theorem for PNP

‖ (corresponding to computa-
tions that make an unbounded number of nonadaptive NP oracle
queries) because our P

NP[q]
‖ lifting theorem works when q is not

constant, albeit with a poly(q) factor loss.

2. Preliminaries

We assume familiarity with deterministic computation in query
and communication complexity (Jukna 2012; Kushilevitz & Nisan
1997). Recall the following standard definitions of nondeterministic
and one-sided error randomized models:

◦ An NPdt decision tree is a DNF formula Φ. Given an input
z, the output of such a decision tree is Φ evaluated on z. A
function f is computed by Φ if f(z) = Φ(z) on all inputs
z for which f(z) is defined. The cost of Φ is the maximum
width (number of literals) in any conjunction in Φ.

◦ An NPcc protocol is a set R of combinatorial rectangles.
Given an input (x, y), the output R(x, y) of such a proto-
col is 1 iff there exists an R ∈ R containing (x, y). A two-
party function F is computed by R if F (x, y) = R(x, y) on
all inputs (x, y) for which F (x, y) is defined. The cost of R
is �log(|R| + 1)	, which intuitively represents the number of
bits required to specify a rectangle in R or indicate that the
input is in no such rectangle.

◦ An RPdt decision tree is a distribution T over deterministic
decision trees. Given an input z, the output of such a decision
tree is computed by sampling a deterministic decision tree T
from T and evaluating T (z). A function f is computed by
T if for all z ∈ f−1(0), PrT∼T [T (z) = 1] = 0 and for all
z ∈ f−1(1), PrT∼T [T (z) = 1] ≥ 1/2. The cost of T is the
maximum number of bits queried in any T in its support.
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◦ An RPcc protocol is a distribution Π over deterministic com-
munication protocols. Given an input (x, y), the output of
such a protocol is computed by sampling a deterministic pro-
tocol Π from Π and evaluating Π(x, y). A function F is com-
puted by Π if for all (x, y) ∈ F−1(0), PrΠ∼Π[Π(x, y) = 1] = 0
and for all (x, y) ∈ F−1(1), PrΠ∼Π[Π(x, y) = 1] ≥ 1/2. The
cost of Π is the maximum number of bits exchanged in any
Π in its support.

Let C be an arbitrary complexity class name representing a
model of computation (such as NP or RP). We let Ccc(F ) denote
the communication complexity of a two-party function F in the
corresponding model: the minimum cost of any Ccc protocol com-
puting F . We let Cdt(f) denote the query complexity of a Boolean
function f in the corresponding model: the minimum cost of any
Cdt decision tree computing f . Often we will abuse notation by
having F or f refer to an infinite family of functions, where there
is at most one function in the family for each possible input length.
In this case, Ccc(F ) or Cdt(f) will be the complexity parameterized
by the input length n; we typically express this with asymptotic
notation. When written by itself, Ccc or Cdt denotes the class of
all families of functions with complexity at most polylogarithmic
in n, in the corresponding model. We will always clarify whether
a class Ccc or Cdt is meant to contain partial functions or just total
functions, since this is not explicit in the notation.

For RPcc and RPdt, the constant 1/2 in the success probability is
arbitrary: by amplification, choosing a different positive constant
in the definition would only affect the complexity of any function
by a constant factor. Also note that NPdt(f) ≤ RPdt(f) for all f ,
and since we defined RPcc using the public-coin model, we have
NPcc(F ) ≤ RPcc(F ) + O(log n) for all F (by decreasing the num-
ber of random bits for sampling a protocol to O(log n) and using
nondeterminism to guess an outcome that results in output 1).

2.1. Nondeterministic and Randomized Boolean Hierar-
chies. In the following definitions, restrict C to be either NP or
RP. We will use two different but equivalent definitions of the con-
stituent levels of the Nondeterministic and Randomized Boolean
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Hierarchies. Our “official” definition is in terms of the following
“decision list functions” (also known as “odd-max-bit”):

Definition 2.1. Δq : {0, 1}q → {0, 1} is defined inductively as
follows:

◦ Δ1(z1) := z1.

◦ If q is odd, Δq(z1, . . . , zq−1, zq) := Δq−1(z1, . . . , zq−1) ∨ zq.

◦ If q is even, Δq(z1, . . . , zq−1, zq) := Δq−1(z1, . . . , zq−1)∧ (¬zq).

In other words, letting ⊕ : N → {0, 1} denote the parity function,
we have Δq(z) := ⊕(i) where i is the greatest index such that
zi = 1 (or i = 0 if z is all zeros).

Definition 2.2. A C(q)cc protocol is an ordered list of q many
Ccc protocols Π = (Π1, . . . , Πq) which compute (total or partial)
functions F1, . . . , Fq, respectively. Given an input (x, y), the output
of the protocol is Π(x, y) := Δq(F1(x, y), . . . , Fq(x, y)). The cost
of a C(q)cc protocol is the sum of the costs of the component Ccc

protocols.

See Figure 2.1 for a visualization. When the constituent Ccc

protocols compute partial functions, those partial functions should
all have the same domain.

Note that we define the output of Π(x, y) as the function Δq ap-
plied to the outputs of the functions F1(x, y), . . . , Fq(x, y), not the
protocols Π1(x, y), . . . , Πq(x, y). This is important only for ran-
domized models of computation, as the output of a randomized
protocol may differ from the function it computes. In nondeter-
ministic models of computation, the output of the protocol always
agrees with the function computed by that protocol, and so we
often make the notation simpler by using protocols and functions
interchangeably.

The Nondeterministic Boolean Hierarchy is
⋃

constant q NP(q)cc,
and the Randomized Boolean Hierarchy is

⋃
constant q RP(q)cc. We

are also interested in the associated complement classes coNP(q)cc

and coRP(q)cc. As is standard, when we write coC(q)cc we refer
to the class co(C(q)cc) (that is, functions that are the negations of
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∧

¬F4(x, y)∨

F3(x, y)∧

¬F2(x, y)F1(x, y)

Figure 2.1: A visualization of a C(4)cc protocol, where each Fi is
the function computed by Ccc protocol Πi

functions in C(q)cc) as opposed to (coC)(q)cc (that is, where the
component protocols are coCcc protocols).

There are analogous definitions in query complexity:

Definition 2.3. A C(q)dt decision tree is an ordered list of q many
Cdt decision trees T = (T1, . . . , Tq) which compute (total or partial)
functions f1, . . . , fq, respectively. Given an input z, the output of
the decision tree is T (z) := Δq(f1(z), . . . , fq(z)). The cost of a
C(q)dt decision tree is the sum of the costs of the component Cdt

decision trees.

Our alternative definition of the Nondeterministic and Ran-
domized Boolean Hierarchies simply replaces Δq with the parity
function ⊕q : {0, 1}q → {0, 1}. In Section 2.4, we provide the
standard proof that these official and alternative definitions are
equivalent:

Lemma 2.4. For C ∈ {NP,RP}, if the definitions of C(q)cc and
C(q)dt are changed to use ⊕q in place of Δq, it only affects the
complexity measures C(q)cc(F ) and C(q)dt(f) by a constant factor
(depending on q).

We use both definitions in this paper. We found that the Δq

definition makes it easier to prove the lifting theorems, and the
⊕q definition makes it easier to prove concrete upper and lower
bounds.
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2.2. Decision lists. The reason we call Δq a “decision list func-
tion” is that it highlights the connection between the Boolean Hi-
erarchy classes and the decision list models of computation:

Definition 2.5. A rectangle decision list LR is an ordered list of
pairs (R1, �1), (R2, �2), . . . where each Ri is a combinatorial rectan-
gle, �i ∈ {0, 1} is a label, and the final rectangle in the list contains
all inputs in the domain. For an input (x, y), the output LR(x, y)
is �i where i is the first index for which (x, y) ∈ Ri. The cost of
LR is the log of the length of the list.

Definition 2.6. A conjunction decision list LC is an ordered list
of pairs (C1, �1), (C2, �2), . . . where each Ci is a conjunction, �i ∈
{0, 1} is a label, and the final conjunction in the list accepts all
inputs in the domain. For an input z, the output LC(z) is �i where
i is the first index for which Ci(z) = 1. The cost of LC is the
maximum width of any conjunction in the list.

Note that the restriction on the final rectangle/conjunction is
without loss of generality. The complexity measures DLcc(F ) and
DLdt(f) are the minimum cost of any rectangle/conjunction deci-
sion list computing F or f , and the classes DLcc and DLdt contain
those functions with complexity at most polylog(n).

We now define q-alternating decision lists to have the additional
restriction that the sequence of output labels �1, �2, . . . only flips
between 0 and 1 at most q times, and furthermore the last label is 0.
This restriction partitions the list into contiguous levels where all
labels in the same level are equal; without loss of generality, the last
level consists only of the final “catch-all” entry. For convenience,
in the list entries we replace the labels with the level numbers
themselves.

Definition 2.7. A q-alternating rectangle decision list LR is an
ordered list of pairs (R1, �1), (R2, �2), . . . where each Ri is a combi-
natorial rectangle, �i ∈ {0, 1, . . . , q} is a level such that �i ≥ �i+1

for all i, and the final rectangle in the list contains all inputs in the
domain and is the only rectangle at level 0. For an input (x, y),
the output LR(x, y) is ⊕(�i) where i is the first index for which
(x, y) ∈ Ri. The cost of LR is the log of the length of the list.
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Definition 2.8. A q-alternating conjunction decision list LC is
an ordered list of pairs (C1, �1), (C2, �2), . . . where each Ci is a con-
junction, �i ∈ {0, 1, . . . , q} is a level such that �i ≥ �i+1 for all i, and
the final conjunction in the list accepts all inputs in the domain
and is the only conjunction at level 0. For an input z, the output
LC(z) is ⊕(�i) where i is the first index for which Ci(z) = 1. The
cost of LC is the maximum width of any conjunction in the list.

The complexity measures DL(q)cc(F ) and DL(q)dt(f) are the
minimum cost of any q-alternating rectangle/conjunction decision
list computing F or f , and the classes DL(q)cc and DL(q)dt contain
those functions with complexity at most polylog(n).

It turns out that q-alternating decision lists are equivalent to
NP(q) in both communication and query complexity. This follows
almost immediately from the definition of Δq — in fact, NP(q) is
just DL(q) without an ordering on entries in the same level. For
completeness, we include the argument in Section 2.5.

Lemma 2.9. For every constant q,

DL(q)cc(F ) = Θ(NP(q)cc(F ))

and

DL(q)dt(f) = Θ(NP(q)dt(f)).

Thus, DL(q)cc = NP(q)cc and DL(q)dt = NP(q)dt for partial func-
tions.

This can be contrasted with the lemma from Göös et al. (2019)
stating that DLcc = PNPcc and DLdt = PNPdt for partial functions.

2.3. Parallel queries. In the following definitions, restrict C to
be either NP or RP.

Definition 2.10. A P
C[q]cc
‖ protocol consists of a deterministic

protocol Πdet that maps an input (x, y) to two things: a function
out : {0, 1}q → {0, 1} and an ordered list of q many Ccc protocols
(Π1, . . . , Πq) which compute (total or partial) functions F1, . . . , Fq,
respectively. The output is then out(F1(x, y), . . . , Fq(x, y)). The

cost of a P
C[q]cc
‖ protocol is the communication cost (depth) of Πdet
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plus the maximum over (x, y) of the sum of the costs of the Ccc

protocols produced by Πdet(x, y).

Definition 2.11. A P
C[q]dt
‖ decision tree consists of a determinis-

tic decision tree Tdet that maps an input z to two things: a func-
tion out : {0, 1}q → {0, 1} and an ordered list of q many Cdt deci-
sion trees (T1, . . . , Tq) which compute (total or partial) functions
f1, . . . , fq, respectively. The output is then out(f1(z), . . . , fq(z)).

The cost of a P
C[q]dt
‖ decision tree is the query cost (depth) of Tdet

plus the maximum over z of the sum of the costs of the Cdt decision
trees produced by Tdet(z).

The following lemma states that at each leaf of Πdet or Tdet, we
can replace the q “C oracle queries” with one “C(q) oracle query”
(where some leaves may output the oracle’s answer, while other
leaves output the negation of it). This was shown in classical
time-bounded complexity using the so-called mind-change argu-
ment (Beigel 1991), and this argument can be translated directly
to communication and query complexity. For example, Halsten-
berg & Reischuk (1990) used this method to show that P

NP[q]cc
‖ ⊆

NP(q + 1)cc ∩ coNP(q + 1)cc. For completeness, we provide the
proof in Section 2.6. We will only need to use the result for C = NP.

Lemma 2.12. For C ∈ {NP,RP} and for every constant q, we have

P
C[q]cc
‖ (F ) = Θ(PC(q)[1]cc(F )) and P

C[q]dt
‖ (f) = Θ(PC(q)[1]dt(f)).

2.4. Decision list versus parity.

Restatement of Lemma 2.4. For C ∈ {NP,RP}, if the defini-
tions of C(q)cc and C(q)dt are changed to use ⊕q in place of Δq, it
only affects the complexity measures C(q)cc(F ) and C(q)dt(f) by a
constant factor (depending on q).

Wagner (Wagner 1988) showed that these alternative character-
izations are equivalent for the classical Nondeterministic Boolean
Hierarchy, and Halstenberg and Reischuk (Halstenberg & Reischuk
1990) observed the same (up to a constant factor) in communi-
cation complexity. This latter proof uses only the property that
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NPcc is closed under intersection and union; that is, if NPcc(F1) and
NPcc(F2) are both at most k, then NPcc(F1 ∧F2) and NPcc(F1 ∨F2)
are both O(k). We observe that since this property also holds for
RPcc, NPdt, and RPdt, their proof works for these models of com-
putation as well. In fact, in all of these models, the cost of the
intersection or union of i cost-k computations is at most ik.

Proof of Lemma 2.4. We prove this using the language of
communication complexity. The query complexity proof is com-
pletely analogous.

For transforming Δq to ⊕q, the idea is to observe that Δq =
⊕q ◦ h where h : {0, 1}q → {0, 1}q is defined by

h(z1, . . . , zq) = (z1 ∨ · · · ∨ zq, z2 ∨ · · · ∨ zq, . . . , zq−1 ∨ zq, zq).

In other words, given a protocol Π = (Π1, . . . , Πq) of cost k that
computes Δq(F1, . . . , Fq), we can transform it into an equivalent
protocol Π′ = (Π′

1, . . . , Π
′
q) that computes ⊕q(F

′
1, . . . , F

′
q) where F ′

i

is the function “does there exist a j ≥ i for which Fj outputs 1?”.
This works because if i is the greatest index such that Fi outputs
1, then Π outputs ⊕(i) and Π′ also outputs ⊕(i) since there are
exactly i many values of j such that F ′

j outputs 1, namely 1, . . . , i.
For the implementation of Π′

i: If C = NP, then a witness for Π′
i

can specify a j ≥ i together with a witness for Πj, incurring a cost
of O(k); thus, the cost of Π′ is O(qk) = O(k). If C = RP, then Π′

i

can run Πj for every j ≥ i, each amplified to have error probability
≤ 1/2q, and see whether at least one of them outputs 1, incurring
a cost of O(k log q); thus, the cost of Π′ is O(qk log q) = O(k).

For transforming ⊕q to Δq, the idea is to observe that ⊕q =
Δq ◦ h where h : {0, 1}q → {0, 1}q is defined by

h(z) = (thr(z, 1), thr(z, 2), . . . , thr(z, q))

where thr(z, i) indicates whether the Hamming weight of z is at
least i. In other words, given a protocol Π = (Π1, . . . , Πq) of cost k
that computes ⊕q(F1, . . . , Fq), we can transform it into an equiv-
alent protocol Π′ = (Π′

1, . . . , Π
′
q) that computes Δq(F

′
1, . . . , F

′
q)

where F ′
i is the function “are there at least i many values of j

for which Fj outputs 1?” This works because if there are exactly
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i values of j for which Fj outputs 1, then Π outputs ⊕(i) and Π′

also outputs ⊕(i) since i is the greatest index such that F ′
i outputs

1. For the implementation of Π′
i: If C = NP, then a witness for

Π′
i can specify a set of i values of j together with a witness for

each of those Πj, incurring a cost of O(k); thus, the cost of Π′ is
O(qk) = O(k). If C = RP, then Π′

i can run every Πj, each ampli-
fied to have error probability ≤ 1/2q, and see whether at least i of
them output 1, incurring a cost of O(k log q); thus the cost of Π′ is
O(qk log q) = O(k). �

2.5. Boolean hierarchy versus decision lists.

Restatement of Lemma 2.9. For every constant q,

DL(q)cc(F ) = Θ(NP(q)cc(F ))

and

DL(q)dt(f) = Θ(NP(q)dt(f)).

Thus, DL(q)cc = NP(q)cc and DL(q)dt = NP(q)dt for partial func-
tions.

Proof. To see that DL(q)cc(F ) ≤ NP(q)cc(F ), consider any
NP(q)cc protocol for F with cost k, say Π = (R1, . . . ,Rq) where
each Ri is a nonempty set of rectangles. To form a q-alternating
rectangle decision list, let level q be the rectangles of Rq in any
order, then level q − 1 be the rectangles of Rq−1 in any order,
and so on, and finally let level 0 be the rectangle containing all
inputs. This has the same output as Π, so it correctly computes
F . Assuming Ri has cost ki, the length of the list is

∑
i |Ri| + 1 ≤∏

i(|Ri| + 1) ≤ ∏
i 2

ki = 2k, so the cost is at most k.
To see that NP(q)cc(F ) = O(DL(q)cc(F )), consider any q-alter-

nating rectangle decision list LR for F with cost k. To form an
NP(q)cc protocol Π = (R1, . . . ,Rq), for each i let Ri be the set of
rectangles at level i in LR. This has the same output as LR, so it
correctly computes F . Since |Ri| ≤ 2k − 1 for each i, the cost of
Π is at most

∑
i k = qk.

To see that DL(q)dt(f) ≤ NP(q)dt(f), consider any NP(q)dt de-
cision tree for f with cost k, say T = (Φ1, . . . , Φq) where each Φi is
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a DNF. To form a q-alternating conjunction decision list, let level
q be the conjunctions of Φq in any order, then level q − 1 be the
conjunctions of Φq−1 in any order, and so on, and finally let level 0
be the conjunction that accepts all inputs. This has the same out-
put as T , so it correctly computes f . Since every Φi has maximum
width at most k, the list also has cost at most k.

To see that NP(q)dt(f) = O(DL(q)dt(f)), consider any q-alter-
nating conjunction decision list LC for f with cost k. To form an
NP(q)dt decision tree T = (Φ1, . . . , Φq), for each i let Φi be the
disjunction of all conjunctions at level i in LC. This has the same
output as LC, so it correctly computes f . Since each Φi has maxi-
mum width at most k, the cost of T is at most

∑
i k = qk. �

2.6. Leaves with parallel queries.

Restatement of Lemma 2.12. For C ∈ {NP,RP} and for every

constant q, we have P
C[q]cc
‖ (F ) = Θ(PC(q)[1]cc(F )) and P

C[q]dt
‖ (f) =

Θ(PC(q)[1]dt(f)).

Proof. It is trivial to show that P
C[q]cc
‖ (F ) ≤ PC(q)[1]cc(F ) and

P
C[q]dt
‖ (f) ≤ PC(q)[1]dt(f) since one “C(q) oracle query” can be ex-

pressed with q nonadaptive “C oracle queries.” For the other di-
rection, we just show the argument for NPcc, but essentially the
same argument works for RPcc, NPdt, and RPdt.

The main idea of this proof is to decompose the arbitrary out
function at any leaf of a protocol into Δq applied to some functions

which have low nondeterministic complexity. Consider a P
NP[q]cc
‖

protocol Π for F of cost k. We convert it to a PNP(q)[1]cc protocol
for F of cost O(k). The deterministic phase Πdet stays the same.
Henceforth fix any leaf of Πdet and its associated output function
out : {0, 1}q → {0, 1} and q nonempty sets of rectangles R1, . . . ,Rq.
Also fix any input (x, y) that reaches this leaf, and define w ∈
{0, 1}q by wi = Ri(x, y) for each i ∈ [q], so that out(w) = Π(x, y) =
F (x, y).

For u, v ∈ {0, 1}q, we say u ≤ v iff ui ≤ vi for each index i ∈ [q].
Consider the q-dimensional Hamming cube DAG : this is the graph
where the set of nodes is {0, 1}q and there is a directed edge from
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u to v iff u ≤ v and u and v only differ by one index. Each node v
has a corresponding output value out(v), and on any directed path
v1 → v2 → · · · → vj, we say there is a mind-change on the path
at node vi iff out(vi) �= out(vi−1). For any directed path in the
Hamming cube DAG from 0q to v, the number of mind-changes on
the path is even if out(v) = out(0q) and odd if out(v) �= out(0q).
Thus, letting mmc(v) be the maximum number of mind-changes on
any directed path from 0q to v, we have ⊕(mmc(v)) is the indicator
for out(v) �= out(0q).

Since out(0q) is fixed at the leaf, it is sufficient for Alice and Bob
to determine ⊕(mmc(w)) in order to compute out(w) = F (x, y).

Claim 2.13. For fixed i ∈ [q], the cost of an NPcc protocol that
determines “is mmc(w) ≥ i?” (given input (x, y) that reaches the
leaf) is at most q + k.

Before we prove Claim 2.13, we use it to finish the proof of
Lemma 2.12. At the leaf, for each i ∈ [q] we form an NPcc protocol
of cost ≤ q +k for determining if mmc(w) ≥ i, and we use these to
form a single NP(q)cc oracle query. We output the same answer as
the oracle if out(0q) = 0, and the opposite answer if out(0q) = 1;
this is correct because mmc(w) is the maximum value of i for which
the ith NPcc protocol would output 1, and thus, the oracle query
returns ⊕(mmc(w)), which is the indicator for out(w) �= out(0q).
The NP(q)cc oracle query has cost ≤ q(q + k) = O(k). Thus, the
overall PNP(q)[1]cc protocol for F has cost O(k), and this concludes
the proof of Lemma 2.12. �

Proof of Claim 2.13. The idea is to find some (possibly not
proper) prefix of a directed path from 0q to w in the Hamming
cube DAG, where this prefix has i mind-changes. If we can find
such a prefix, it confirms that some 0q-to-w directed path has at
least i mind-changes, and therefore mmc(w) ≥ i.

The witness itself is some v ∈ {0, 1}q, along with witnesses of
Rj(x, y) = 1 for every j where vj = 1. This can be represented
by simply giving a rectangle R′ such that (x, y) ∈ R′ and R′ is
the intersection of (Hamming weight of v many) rectangles, one
from each Rj with vj = 1. The number of possibilities for R′ is
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at most
∏

j |Rj| ≤ 2k, so R′ contributes ≤ k to the cost of the
NPcc protocol. Alice and Bob can verify the witness by checking
that there exists a 0q-to-v path with i mind-changes (this does not
depend on the input) and that (x, y) ∈ R′ and thus v ≤ w. �

3. Separations

Restatement of Theorem 1.1. For total functions,

coRP(q)cc �⊆ NP(q)cc

for every constant q.

In Section 3.1, we prove a weaker version of Theorem 1.1 that
holds for partial functions, by showing the analogous query com-
plexity separation coRP(q)dt �⊆ NP(q)dt then applying our lifting
theorem for NP(q), Theorem 1.4.(i). (The query complexity sepa-
ration is known to be false for total functions: coRP(q)dt ⊆ PRPdt ⊆
BPPdt ⊆ Pdt ⊆ NP(q)dt (Nisan 1991)). This serves two purposes:
it is a warmup for our direct proof of Theorem 1.1 for total func-
tions in Section 3.2, and it forms a component in our proof of
Theorem 1.3 in Section 3.3.

3.1. Proof of Theorem 1.1 for partial functions. Fix any
constant q. Let ⊕qGapOr : ({0, 1}n)q → {0, 1} be the partial
function where the input is divided into q blocks z = (z1, . . . , zq)
having the promise that each zi ∈ {0, 1}n is either all zeros or at
least half ones (call such an input valid), and which is defined by
⊕qGapOr(z) := 1 iff an odd number of blocks i are such that zi

is nonzero. Note that RP(q)dt(⊕qGapOr) = O(1) by Lemma 2.4
and the fact that RPdt(GapOr) = 1. Letting g : [m] × {0, 1}m →
{0, 1} be the index gadget with m := (qn)20, this implies that
RP(q)cc(⊕qGapOr◦gqn) = O(log n) (here, we have used the “easy
direction” of RP(q) lifting; the “hard direction” remains an open
problem) and thus ⊕qGapOr ◦ gqn ∈ coRP(q)cc. We will now
prove that NP(q)dt(⊕qGapOr) = Ω(n), which by Theorem 1.4.(i)
implies that NP(q)cc(⊕qGapOr ◦ gqn) = Ω(n log n).

Suppose for contradiction ⊕qGapOr has an NP(q)dt decision
tree of cost k ≤ n/2, say T = (Φ1, . . . , Φq) where each Φi is a
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DNF. By Lemma 2.4, we may assume the decision tree outputs 1
iff an odd number of these DNFs accept the input, in other words,
T (z) := ⊕q(Φ1(z), . . . , Φq(z)).

We will iteratively construct a sequence of partial assignments
ρj ∈ ({0, 1, ∗}n)q for j = 0, . . . , q, where each ρj+1 is a refinement
of ρj, such that (i) there are at least j many values of i for which
Φi accepts all inputs that are consistent with ρj, and (ii) ρj is
consistent with a valid input where exactly j blocks are nonzero.
We obtain the contradiction when j = q: by (ii) some valid input z
consistent with ρq has zi nonzero for all i and thus ⊕qGapOr(z) =
1 − ⊕(q), yet by (i) we have Φi(z) = 1 for all i and thus T (z) =
⊕(q), contradicting the supposed correctness of T .

We will actually maintain stronger invariants than the above
(i) and (ii): For (i), we will actually have for some j values of
i—we assume they are 1, . . . , j for notational convenience—some
individual conjunction Ci of Φi accepts all inputs consistent with
ρj. For (ii), ρj will actually have the following form: for some
fixed assignment lj = (l1, . . . , lj) ∈ ({0, 1}n)j such that li is at least
half ones for all i ∈ [j] (“left”), and for some partial assignment
rj ∈ ({0, ∗}n)q−j (“right”), we have ρj := ljrj. The valid input zj

obtained by filling in a 0 for each ∗ in ρj has exactly j nonzero
blocks, as needed for (ii).

In fact, we will maintain that rj has at least half stars in each
block. Specifically, the total number of zeros in rj will be at most
the sum of the widths of the conjunctions C1, . . . , Cj, which is at
most the sum over all i ∈ [q] of the maximum width of Φi, which
equals k ≤ n/2. At the end, rq ∈ ({0, ∗}n)q−q will be the empty
tuple, which means ρq will be the fixed valid input lq = zq, which
has all blocks nonzero.

We start with ρ0 = r0 = (∗n)q, which indeed has no zeros. Now,
supposing we already have lj and rj satisfying all the properties
from the previous two paragraphs, we explain how to obtain lj+1 ∈
{0, 1}n and rj+1 ∈ ({0, ∗}n)q−(j+1) so these properties again hold
(with lj+1 := ljlj+1).

We first observe that zj := lj(0n)q−j, which is consistent with
ρj, must be accepted by at least one conjunction from Φj+1, . . . , Φq.
This is because zj is already accepted by all of the conjunctions
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C1, . . . , Cj, and these cannot be the only values of i such that
Φi(z

j) = 1 since otherwise we would have T (zj) = ⊕(j) while
⊕qGapOr(zj) = 1−⊕(j), contradicting the supposed correctness
of T . Now, pick any one conjunction from Φj+1, . . . , Φq that accepts
zj, and assume this conjunction is Cj+1 from Φj+1 for notational
convenience. Defining the partial assignment r̃j from rj by filling
in a 0 for each ∗ corresponding to a negative literal in Cj+1 (note
that Cj+1 has no positive literals among the last q − j blocks since
it accepts zj), we see that the total number of zeros in r̃j is at most
the sum of the widths of the conjunctions C1, . . . , Cj+1.

Let rj+1 be all but the first block of r̃j and obtain lj+1 by
replacing the remaining stars in the first block of r̃j with ones,
noting that lj+1 is at least half ones since the first block of r̃j was
at least half stars. Now, ρj+1 := lj+1rj+1 maintains the desired
properties: (ii) is maintained since each block of lj+1 is at least half
ones, and rj+1 has at most (sum of widths of C1, . . . , Cj+1) many
zeros and the rest stars. To see that (i) is maintained, consider
any input z consistent with ρj+1. Then, z is also consistent with ρj

and is thus accepted by each of C1, . . . , Cj. Moreover, Cj+1(z) = 1
since Cj+1(z

j) = 1 and z and zj differ only in locations that are
stars in r̃j and therefore do not appear in Cj+1.

3.2. Proof of Theorem 1.1 for total functions. Fix any con-
stant q. Let ⊕qNonEq : ({0, 1}n)q × ({0, 1}n)q → {0, 1} be the
two-party total function where Alice’s and Bob’s inputs are di-
vided into q blocks x = (x1, . . . , xq) and y = (y1, . . . , yq) with each
xi, yi ∈ {0, 1}n, and which is defined by ⊕qNonEq(x, y) := 1 iff
there are an odd number of blocks i such that xi �= yi. Note that
RP(q)cc(⊕qNonEq) = O(1) by Lemma 2.4 and the standard fact
that RPcc(NonEq) = O(1). Thus, ⊕qNonEq ∈ coRP(q)cc. We
will now prove that NP(q)cc(⊕qNonEq) = Ω(n).

Suppose for contradiction ⊕qNonEq has an NP(q)cc proto-
col of cost k ≤ n/2q, say Π = (R1, . . . ,Rq) where each Ri is
a nonempty set of rectangles. By Lemma 2.4, we may assume
the protocol outputs 1 iff the input is contained in an odd num-
ber of the rectangle unions

⋃
R∈Ri

R for i ∈ [q], in other words,
Π(x, y) := ⊕q(R1(x, y), . . . ,Rq(x, y)). Note that, assuming Ri has
cost ki, the total number of rectangles in these unions is at most
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∑
i |Ri| ≤ ∏

i(|Ri| + 1) ≤ ∏
i 2

ki = 2k.

We will iteratively construct a sequence of rectangles Qj for
j = 0, . . . , q, where each Qj+1 is contained in Qj, such that (i) there
are at least j many values of i for which Qj ⊆ ⋃

R∈Ri
R, and (ii) Qj

contains an input where exactly j blocks are unequal. We obtain
the contradiction when j = q: by (ii) some input (x, y) ∈ Qq has
xi �= yi for all i and thus ⊕qNonEq(x, y) = 1−⊕(q), yet by (i) we
have Ri(x, y) = 1 for all i and thus Π(x, y) = ⊕(q), contradicting
the supposed correctness of Π.

We will actually maintain stronger invariants than the above
(i) and (ii): For (i), we will actually have for some j values of
i—we assume they are 1, . . . , j for notational convenience—some
individual rectangle Ri ∈ Ri contains Qj. For (ii), Qj will actually
have the following form: for some fixed strings aj = (a1, . . . , aj) ∈
({0, 1}n)j and bj = (b1, . . . , bj) ∈ ({0, 1}n)j such that ai �= bi for
all i ∈ [j], and for some nonempty set Sj ⊆ ({0, 1}n)q−j, we have
Qj := {ajs : s ∈ Sj} × {bjs : s ∈ Sj}, which we abbreviate
as ajSj × bjSj. Defining a diagonal input in Qj to be one of the
form (ajs, bjs) for any particular s ∈ Sj, we see that each diagonal
input has exactly j unequal blocks, as needed for (ii). (In our
notation, R and Q always refer to rectangles, while S is a set of
strings associated with the diagonal entries of some rectangle.)

In fact, we will maintain not just that Sj is nonempty, but that
it is sufficiently large. Specifically, the deficiency of Sj, defined as
D∞(Sj) := n(q − j) − log |Sj|, will be at most (2j − 1)(2k + 1). At
the end, since (2q − 1)(2k + 1) < ∞, this guarantees that Sq will
contain at least one element from ({0, 1}n)q−q. The latter set only
has one element, namely the empty tuple, so this means Qq will
contain the single input (aq, bq), which has all blocks unequal.

We start with S0 = ({0, 1}n)q, which indeed has D∞(S0) = 0 =
(20 −1)(2k +1), and thus Q0 is the rectangle of all possible inputs.
Now, supposing we already have aj, bj, and Sj satisfying all the
properties from the previous two paragraphs, we explain how to
obtain aj+1, bj+1 ∈ {0, 1}n and Sj+1 ⊆ ({0, 1}n)q−(j+1) so these
properties again hold (with aj+1 := ajaj+1 and bj+1 := bjbj+1).

We first observe that each diagonal input in Qj must be con-
tained in at least one rectangle from Rj+1 ∪ · · · ∪ Rq. This is
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because such an input (x, y) is already contained in the rectan-
gles R1 ∈ R1, . . . , Rj ∈ Rj, and these cannot be the only val-
ues of i such that Ri(x, y) = 1 since otherwise we would have
Π(x, y) = ⊕(j) while ⊕qNonEq(x, y) = 1 − ⊕(j), contradicting
the supposed correctness of Π. Now, pick one of the (at most
2k) rectangles from Rj+1 ∪ · · · ∪ Rq that contains the largest frac-
tion (at least 1/2k) of diagonal inputs from Qj, and assume this
rectangle is Rj+1 ∈ Rj+1 for notational convenience. Defining
S̃j := {s ∈ Sj : (ajs, bjs) ∈ Rj+1}, we see that D∞(S̃j) ≤
D∞(Sj) + k ≤ (2j − 1)(2k + 1) + k.

Since Rj+1 is a rectangle, it must in fact contain the entire
rectangle ajS̃j × bjS̃j. Since ajS̃j × bjS̃j ⊆ ajSj × bjSj = Qj, by
assumption it is also contained in each of R1, . . . , Rj. In the end,
we will ensure Qj+1 is a subrectangle of ajS̃j × bjS̃j, which will
maintain property (i): Qj+1 is contained in each of R1, . . . , Rj+1.

To maintain (ii), we will find some aj+1 �= bj+1 and then define
Sj+1 := {s : aj+1s ∈ S̃j and bj+1s ∈ S̃j}. Then, aj+1S

j+1 ⊆ S̃j

and bj+1S
j+1 ⊆ S̃j ensure that Qj+1 := aj+1Sj+1 × bj+1Sj+1 is

indeed a subrectangle of ajS̃j × bjS̃j, as we needed for (i). The
fact that this can be done with a not-too-small Sj+1 is encapsulated
in the following technical lemma, which we prove shortly:

Lemma 3.1. Consider any bipartite graph with left nodes U and
right nodes V , and suppose 1 ≥ ε ≥ 2/|U |. If an ε fraction of all
possible edges are present in the graph, then there exist distinct
nodes u, u′ ∈ U that have at least (ε2/2) · |V | common neighbors.

Specifically, take U := {0, 1}n and V := ({0, 1}n)q−(j+1) (so
|V | = 1 if j = q − 1, but that is fine), put an edge between u ∈ U

and v ∈ V iff uv ∈ S̃j, and let ε := |S̃j|/2n(q−j) = 1/2D∞(S̃j).
Notice that ε ≥ 2/|U | holds since D∞(S̃j) ≤ (2j − 1)(2k + 1) +
k ≤ 2j+1k − 1 ≤ n − 1 follows from our assumption that k ≤
n/2q. Thus, Lemma 3.1 guarantees we can pick strings aj+1 �=
bj+1 (corresponding to the nodes u, u′) such that Sj+1 (the set of
common neighbors) has size at least (ε2/2) · 2n(q−(j+1)). Thus,
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D∞(Sj+1) := n(q − (j + 1)) − log |Sj+1| ≤ log(2/ε2)

= 2D∞(S̃j) + 1 ≤ 2
(
(2j − 1)(2k + 1) + k

)
+ 1

=
(
2(2j − 1) + 1

)
(2k + 1) = (2j+1 − 1)(2k + 1)

as we needed for (ii). This finishes the proof of Theorem 1.1.

Proof of Lemma 3.1. Let du and dv denote the degrees of
nodes u ∈ U and v ∈ V , and let du,u′ denote the number of com-
mon neighbors of u, u′ ∈ U . The sum of common neighbors over
ordered pairs u, u′ of not-necessarily-distinct left nodes is equiva-
lent to the sum of pairs of not-necessarily-distinct neighbors over
right nodes v, and so we have

∑

u,u′∈U

du,u′ =
∑

v∈V

d2
v ≥ ( ∑

v∈V

dv

)2
/|V | = ε2 · |U |2 · |V |

by Cauchy–Schwarz and the assumption
∑

v∈V dv = ε · |U | · |V |.
Now, sampling u, u′ independently uniformly at random from U ,
we have

ε2 · |V | ≤ E
u,u′

[du,u′ ] ≤ E
u,u′

[du,u′ | u �= u′] + E
u

[du] · Pr
u,u′

[u = u′]

(the conditioning is valid by the assumption |U | ≥ 2). Since
Eu[du] = ε · |V | and Pru,u′ [u = u′] = 1/|U |, rearranging gives

E
u,u′

[du,u′ | u �= u′] ≥ ε2 · |V | − ε · |V |/|U | ≥ (ε2/2) · |V |

where the last inequality holds by the assumption 1/|U | ≤ ε/2.
Thus, there must be some u �= u′ such that du,u′ is at least this
large. �

3.3. Proof of Theorem 1.3.

Restatement of Theorem 1.3. For partial functions,

RP(q + 1)cc ∩ coRP(q + 1)cc �⊆ P
NP[q]cc
‖

for every constant q.
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Fix a constant q. Let Which⊕q+1GapOr : ({0, 1}2n)2(q+1) →
{0, 1} be the following partial function: The input is divided into
two halves z = (z0, z1), and each half is divided into q + 1 blocks
zh = (zh

1 , . . . , zh
q+1) having the promise that each zh

i ∈ {0, 1}2n

is either all zeros or at least a quarter ones, and moreover, it is
promised that the number of nonzero blocks in z0 has the opposite
parity as the number of nonzero blocks in z1 (call such an input
valid). The partial function is defined by

Which⊕q+1GapOr(z) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if the number of nonzero
blocks is odd in z0 and
even in z1

0 if the number of nonzero
blocks is even in z0 and
odd in z1

.

We henceforth abbreviate Which⊕q+1GapOr as f . Note that
RP(q + 1)dt(f) = O(1) by applying the RP(q + 1)dt decision tree
for ⊕q+1GapOr on z0 (adapted for the different block length and
different threshold for fraction of ones in a block). By symmetry
(focusing on z1), we also have RP(q + 1)dt(f) = O(1). Letting
g : [m] × {0, 1}m → {0, 1} be the index gadget with m := N20

where N := 4(q + 1)n, this implies that

RP(q + 1)cc(f ◦ gN) = O(log n)

and
coRP(q + 1)cc(f ◦ gN) = O(log n)

(by the “easy direction” of RP(q + 1) lifting) and thus f ◦ gN ∈
RP(q + 1)cc ∩ coRP(q + 1)cc. We will now prove that P

NP[q]dt
‖ (f) =

Ω(n), which by Theorem 1.4.(ii) implies that P
NP[q]cc
‖ (f ◦ gN) =

Ω(n log n).
We show this by reduction from the fact that

NP(q)dt(⊕qGapOr) = Ω(n).

We henceforth abbreviate ⊕qGapOr as f ′, and as in Section 3.1
we assume f ′ has block length n and threshold half. Supposing f
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has a P
NP[q]dt
‖ decision tree T of cost k ≤ n/2, say with deterministic

phase Tdet, we will use it to construct an NP(q)dt decision tree T ′

of cost at most k for f ′.
By Lemma 2.12, we may assume that each leaf of Tdet produces

a single NP(q)dt decision tree and chooses whether to output the
same or opposite answer as that decision tree. Follow the root-
to-leaf path in Tdet where all queries are answered with zero. Let
ρ ∈ ({0, ∗}2n)2(q+1) be the partial assignment with at most k ≤ n/2
zeros that records these queries (so an input leads to this leaf iff it is
consistent with ρ). Let Tleaf = (Φ1, . . . , Φq) be the NP(q)dt decision
tree of cost at most k produced at this leaf, where each Φi is a
DNF. In the following, we assume that this leaf chooses to output
the same answer as Tleaf. If instead the leaf chooses the opposite
answer, simply swap the roles of z0 and z1 in the remainder of the
proof.

Given any valid input z′ to f ′, we show how to map it to a valid
input z to f such that (i) f ′(z′) = f(z), (ii) z is consistent with
ρ, and (iii) each bit of z either is fixed or is some preselected bit
of z′. Since (iii) implies that Tleaf(z) can be viewed as an NP(q)dt

decision tree T ′(z′) by substituting a constant or variable of z′ in
for each variable of z (which does not increase the width of any
conjunction), and T ′ would correctly compute f ′ since

f ′(z′) = f(z) = T (z) = Tleaf(z) = T ′(z′)

by (i), correctness of T , (ii), and (iii), respectively, this would
show that NP(q)dt(f ′) ≤ k ≤ n/2, which we know is false from
Section 3.1.

To define z, we start with ρ (that is, we place zeros everywhere
ρ requires, thus ensuring (ii)). Since ρ has at most n zeros in each
block (indeed, at most n/2 zeros total), we can then place more
zeros in such a way that each block now has exactly n zeros and
n stars. Next, we replace the stars in z0

q+1 with ones and replace
the stars in z1

q+1 with zeros. Finally, for each i ∈ [q], we fill in the
stars of z0

i with a copy of z′
i and fill in the stars of z1

i with another
copy of z′

i. This construction satisfies (iii).
To verify (i), first observe that since each block of z′ is either

all zeros or at least half (n/2) ones, this ensures each block of z is
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either all zeros or at least a quarter (2n/4) ones. Furthermore, if
z′ has exactly � nonzero blocks, then the number of nonzero blocks
is � + 1 in z0 (since z0

q+1 is nonzero) and � in z1 (since z1
q+1 is all

zeros). Hence, if f ′(z′) = 1 (� is even), then f(z) = 1 (since � + 1
is odd and � is even), and if f ′(z′) = 0 (� is odd), then f(z) = 0
(since � + 1 is even and � is odd). Thus, f ′(z′) = f(z), and this
finishes the proof of Theorem 1.3.

4. Total function collapse

Restatement of Theorem 1.2. For total functions,

P
NP[q]cc
‖ = NP(q + 1)cc ∩ coNP(q + 1)cc

and

P
RP[q]cc
‖ = RP(q + 1)cc ∩ coRP(q + 1)cc

for every constant q.

We start with the intuition for the nondeterministic case of
Theorem 1.2. This is proved in a way similar to the specific result
for q = 0 (that is, for total functions, Pcc = NPcc∩coNPcc). In that
proof, Alice and Bob can use the fact that the rectangles in the
NPcc protocol’s 1-monochromatic covering of F are disjoint from
the rectangles in the coNPcc protocol’s 0-monochromatic covering.
Specifically, if F (x, y) = 1, then (x, y) is in some 1-rectangle, which
is row-disjoint or column-disjoint from each 0-rectangle. (If a 1-
rectangle and 0-rectangle shared a row and a column, they would
intersect, which is not possible for a total function.) Therefore,
Alice and Bob can repeatedly eliminate from consideration at least
half of the remaining 0-rectangles, by identifying a 1-rectangle that
either has x in its row set but is row-disjoint from at least half the
remaining 0-rectangles, or has y in its column set but is column-
disjoint from at least half the remaining 0-rectangles. If (x, y) is
indeed in a 1-rectangle, then this process can always continue until
there are no 0-rectangles left. If (x, y) is in a 0-rectangle, then this
process will never eliminate that rectangle, so the process will halt
with a nonempty set of 0-rectangles.
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Figure 4.1: If a total function has an NP(4)cc protocol and a
coNP(4)cc protocol, then the rectangle unions from the NPcc func-
tions at depth one of each protocol are disjoint

We repeat a similar argument, but using the “top level” of the
NP(q + 1)cc and coNP(q + 1)cc protocols for F as our monochro-
matic rectangle sets. Here, we think of a coNP(q + 1)cc protocol
as computing F by applying Δq+1 (with negations pushed to the
leaves) to the indicators for q + 1 rectangle unions. Depending on
the parity of q, the rectangle union Rq+1 queried at depth 1 of the
NP(q + 1)cc protocol will correspond to either 1-monochromatic
rectangles or 0-monochromatic rectangles for F . The rectangle
union R′

q+1 queried at depth 1 of the coNP(q + 1)cc protocol will
be the opposite color of monochromatic rectangles. Crucially, this
means that no input is in a rectangle from both of these sets (as
we are assuming F is total). See Figure 4.1 for an illustration.

A key observation is that a deterministic protocol similar to
the one used in the q = 0 case, ran using these top-level rectangle
sets, will return the correct answer under the promise that (x, y)
is in one of these rectangles. Say, for example, that (x, y) is in
some rectangle in the 1-monochromatic top-level set. Then, the
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deterministic protocol will successfully eliminate all 0-rectangles
from the other top-level set and will announce that the answer is
1. If (x, y) was in one of the 0-rectangles, then that rectangle will
never be eliminated, and so the protocol would announce that the
answer is 0.

If (x, y) is in the top-level rectangle union for one of the pro-
tocols, then (x, y) is not in the top-level rectangle union of the
other protocol, so F (x, y) can be computed by the other proto-
col but where the top level is skipped (resulting in only q many
NPcc oracle queries). This boils down to the observation that
Δq+1(z1, . . . , zq, 0) = Δq(z1, . . . , zq).

What if (x, y) is in neither top-level rectangle union? Then, we
can make no guarantees about the behavior of the deterministic
protocol—it might answer 0 or 1 (which we interpret as merely a
“guess” for F (x, y)). However, in this case both protocols correctly
compute F (x, y) even if the top level is skipped. Therefore, we will
still get the correct answer no matter which guess is produced by
the deterministic protocol.

What follows is the formal proof.

Proof of Theorem 1.2 for the nondeterministic case.

We already know P
NP[q]cc
‖ ⊆ NP(q + 1)cc ∩ coNP(q + 1)cc (Halsten-

berg & Reischuk 1990). Let F : X × Y → {0, 1} be a two-party
total function with max{NP(q + 1)cc(F ), coNP(q + 1)cc(F )} = k.
Consider any NP(q + 1)cc protocol for F with cost at most k, say
Π = (R1, . . . ,Rq+1) where each Ri is a nonempty set of rectangles.
Consider any coNP(q + 1)cc protocol for F with cost at most k, say
Π′ = (R′

1, . . . ,R′
q+1) meaning that

F (x, y) = Δq+1(R′
1(x, y), . . . ,R′

q+1(x, y)).

Out of the two protocols Π and Π′, let Π∧ = (R∧
1 , . . . ,R∧

q+1) be
whichever one has ∧ as its root gate, and let Π∨ = (R∨

1 , . . . ,R∨
q+1)

be whichever one has ∨ as its root gate (after pushing negations
to the leaves in Π′). Similarly, out of the two functions Δq and
Δq, let Δ∧

q be whichever one has ∧ as its root gate, and let Δ∨
q be

whichever one has ∨ as its root gate. In other words:
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Π∧ Π∨ Δ∧
q Δ∨

q

if q is odd Π Π′ Δq Δq

if q is even Π′ Π Δq Δq

We claim that Algorithm 1 is a P
NP[q]cc
‖ protocol with cost O(k2)

that correctly computes F .

Algorithm 1 P
NP[q]cc
‖ protocol for F

1: function Guess

2: R0 ← R∧
q+1 (set of 0-monochromatic rectangles)

3: R1 ← R∨
q+1 (set of 1-monochromatic rectangles)

4: loop
5: if R0 = ∅ then return 1
6: else if there exists an R ∈ R1 whose row set contains

x and which is row-disjoint from at least half of
the rectangles in R0 then

7: Alice announces such an R
8: remove from R0 all rectangles that are row-disjoint

from R

9: else if there exists an R ∈ R1 whose column set con-
tains y and which is column-disjoint from at least
half of the rectangles in R0 then

10: Bob announces such an R
11: remove from R0 all rectangles that are column-

disjoint from R
12: else return 0

13: function Main

14: if Guess = 0 then return Δ∧
q (R∨

1 (x, y), . . . ,R∨
q (x, y))

15: if Guess = 1 then return Δ∨
q (R∧

1 (x, y), . . . ,R∧
q (x, y))

Claim 4.1. Algorithm 1 is a P
NP[q]cc
‖ protocol with cost O(k2).

Proof of Claim 4.1. Guess is a deterministic protocol. In
each iteration of the loop, either at least half of the remaining
rectangles in R0 get removed, or the loop terminates. Since |R0| ≤
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2k at the beginning, there can be at most k + 1 iterations. Each
iteration involves up to k+1 bits of communication, to specify one
of the at most 2k rectangles in R1 (or indicate the non-existence of
a suitable rectangle in R1). Thus, Guess has communication cost
O(k2). Also, the q many nonadaptive NPcc oracle queries on line
14 or line 15 contribute at most k to the cost since they are just
part of Π or Π′, so the overall cost is still O(k2). �

Claim 4.2. If R∧
q+1(x, y) = 1, then Guess = 0. If R∨

q+1(x, y) = 1
then Guess = 1.

Proof of Claim 4.2. Assume R∧
q+1(x, y) = 1, so (x, y) ∈ R

for some R ∈ R∧
q+1. Note that Guess only removes a rectangle

from R0 when it is certain that (x, y) is not in that rectangle (be-
cause x is not in its row set or y is not in its column set). Thus, R
will never be removed from R0 throughout Guess, which means
R0 will never be empty, and Guess will eventually return 0.

Assume R∨
q+1(x, y) = 1, so (x, y) ∈ R′ for some R′ ∈ R∨

q+1.
Observe that each rectangle in R∧

q+1 is 0-monochromatic for F
(since Π∧ outputs 0 on such inputs) and each rectangle in R∨

q+1 is
1-monochromatic for F (since Π∨ outputs 1 on such inputs). Since
F is total, R′ is disjoint—and hence either row-disjoint or column-
disjoint—from each rectangle R ∈ R∧

q+1 (since R′ contains only
1-inputs and R contains only 0-inputs). Thus, in each iteration of
the loop, either at least half the remaining rectangles in R0 are
row-disjoint from R′ ∈ R1 (which Alice would notice) or at least
half are column-disjoint from R′ (which Bob would notice). Either
way, the loop will continue with one party announcing a rectangle
(not necessarily R′) and shrinking R0, which means the loop will
not halt until R0 = ∅, and Guess will return 1. �

Claim 4.3. For all x ∈ X and y ∈ Y , Algorithm 1 correctly com-
putes F (x, y).
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Proof of Claim 4.3. If Guess = 0, then R∨
q+1(x, y) = 0 by

Claim 4.2, and thus

F (x, y) = Π∨(x, y) = Δ∧
q (R∨

1 (x, y), . . . ,R∨
q (x, y)) ∨ R∨

q+1(x, y)

equals the output on line 14. If Guess = 1, then R∧
q+1(x, y) = 0

by Claim 4.2, and thus

F (x, y) = Π∧(x, y) = Δ∨
q (R∧

1 (x, y), . . . ,R∧
q (x, y)) ∧ ¬R∧

q+1(x, y)

equals the output on line 15. �

Together, Claim 4.1 and Claim 4.3 show that Algorithm 1 wit-
nesses

P
NP[q]cc
‖ (F ) ≤ O(k2).

This completes the proof that for total functions,

P
NP[q]cc
‖ = NP(q + 1)cc ∩ coNP(q + 1)cc. �

The corresponding argument for the Randomized Boolean Hi-
erarchy is very similar. Note that since RPcc ⊆ NPcc, we can
simply interpret the (q + 1)st components of our RP(q + 1)cc and
coRP(q + 1)cc protocols as NPcc protocols. Then, Algorithm 1
works in exactly the same way, except instead of using R∨

1 , . . . ,R∨
q

or R∧
1 , . . . ,R∧

q as the oracle queries at the end, these would be re-
placed by RPcc protocols (the first q components of our RP(q + 1)cc

or coRP(q + 1)cc protocols).
We remark that a similar approach shows that

P
NP[q]dt
‖ = NP(q + 1)dt ∩ coNP(q + 1)dt

for total functions. (The corresponding result for randomized query
complexity follows anyway from Pdt = BPPdt. (Nisan 1991))
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5. Query-to-communication lifting for NP(q)

Restatement of Theorem 1.4.(i). For every partial function
f : {0, 1}n → {0, 1} and every constant q,

NP(q)cc(f ◦ gn) = NP(q)dt(f) · Θ(log n)

where g : [m] × {0, 1}m → {0, 1} is the index gadget defined by
g(x, y) = yx with m := n20.

The big-O direction follows immediately from the same fact
for NP: for every f , NPcc(f ◦ gn) = NPdt(f) · O(log n) holds by
replacing each of the nO(k) conjunctions in a width-k DNF with
mk rectangles (each of which contains inputs where the gadget
outputs satisfy the conjunction), for a total of nO(k)mk = 2k·O(log n)

rectangles. In the rest of this section, we prove the big-Ω direction.
By Lemma 2.9, it suffices to show

DL(q)cc(f ◦ gn) = DL(q)dt(f) · Ω(log n).

5.1. Technical preliminaries. Our proof is closely related to
the PNP lifting theorem of Göös, Kamath, Pitassi, and Watson
(Göös et al. 2019), so we start by recalling some definitions and
lemmas that were used in that work. We will need to tweak some
of the statements and parameters, though.

Define G : [m]n × ({0, 1}m)n → {0, 1}n as G := gn. This parti-
tions the input domain into 2n slices G−1(z) = {(x, y) : g(xi, yi) =
zi for all i ∈ [n]}, one for each z ∈ {0, 1}n. For a set Z ⊆ {0, 1}n,
let G−1(Z) :=

⋃
z∈Z G−1(z).

Consider sets A ⊆ [m]n and B ⊆ ({0, 1}m)n. For I ⊆ [n], we
let AI := {xI : x ∈ A} and BI := {yI : y ∈ B} be the projections
onto the coordinates of I. The min-entropy of a random variable
x is H∞(x) := minx log(1/ Pr[x = x]). We say A is δ-dense if the
uniform random variable x over A satisfies the following: for every
nonempty I ⊆ [n], H∞(xI) ≥ δ|I| log m (that is, the min-entropy
of the marginal distribution of x on coordinates I is at least a δ
fraction of the maximum possible for a distribution over [m]I). The
deficiency of B is D∞(B) := mn − log |B|.
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Lemma 5.1 (Göös et al. 2019, Lemma 11). If A⊆[m]n is 0.8-dense
and B ⊆ ({0, 1}m)n has deficiency at most n4, then G(A × B) =
{0, 1}n, that is, for every z ∈ {0, 1}n there are x ∈ A and y ∈ B
with G(x, y) = z.

Here, the density parameter is δ = 0.8 and the deficiency is
D∞(B) ≤ n4, instead of δ = 0.9 and D∞(B) ≤ n2 as in the original.
Lemma 5.1 still holds because our gadget size has increased: we
use m := n20, whereas Göös et al. (2019) used m := n4. This can
be verified by a simple substitution in the proof.

The next lemma is altered enough from the original that we
will reprove it here.

Lemma 5.2 (A more general version ofGöös et al. 2019, Claim 12).
Let X ⊆ [m]n be 0.85-dense. If A′ ⊆ X satisfies |A′| ≥ |X |/2k+1,
then there exist an I ⊆ [n] of size |I| < 20(k + 1)/ log m and an
A ⊆ A′ such that A is fixed on coordinates I and A[n]�I is 0.8-dense.

The original version was for the special case X = [m]n. We
observe that it is sufficient for X to be δ-dense, for some suitable
constant δ greater than the desired density of the resulting set A
(here we use δ = 0.85).

Proof of Lemma 5.2. If A′ is already 0.8-dense, then we can
simply take I := ∅ and A := A′, so assume otherwise. Let I ⊆ [n]
be a maximal set of coordinates that violates 0.8-density: for
the uniform random variable x over A′, H∞(xI) < 0.8|I| log m.
Since the uniform random variable X over X has H∞(XI) ≥
0.85|I| log m, and |A′| ≥ |X |/2k+1, we also have

H∞(xI) ≥ 0.85|I| log m − (k + 1).

Combining these, we get that k + 1 > 0.05|I| log m, which implies
that |I| < 20(k + 1)/ log m.

We can now simply choose some α ∈ [m]I such that Pr[xI =
α] > 20.8|I| log m, and take A := {x ∈ A′ : xI = α}. This certainly
satisfies that A is fixed on coordinates I. To see that A is 0.8-
dense on all other coordinates, assume for contradiction there is
some nonempty J ⊆ [n] � I witnessing a 0.8-density violation of
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A. Then, it is straightforward to check that I ∪ J would be a
set of coordinates witnessing a 0.8-density violation of A′, which
contradicts the maximality of I. �

5.2. The simulation. We exhibit an algorithm that takes a q-
alternating rectangle decision list LR for f ◦ gn of cost k and con-
verts it to a q-alternating conjunction decision list LC for f of cost
O(k/ log n). The argument from Göös et al. (2019) does exactly
this except without preserving the bound on the number of alter-
nations. In Göös et al. (2019), the argument is formulated using a
“dual” characterization of DLdt, but it has the effect of building LC

in order, obtaining each conjunction by “extracting” it from one
of the rectangles in LR. The trouble is that the rectangles are not
necessarily “extracted from” in order: after extracting a conjunc-
tion from some rectangle, the next conjunction that gets put in LC

may be extracted from a rectangle that is earlier in LR. Thus, LC

may end up with more alternations than LR.
To fix this, we convert the argument to a “primal” form and ar-

gue that it still works when we force the rectangles to be extracted
from in order. The high-level view is that we iterate through the
rectangles of LR in order, and for each we extract as many conjunc-
tions as we can until the rectangle becomes “exhausted,” at which
time we remove the remaining “error” portion of the rectangle (by
deleting few rows and columns) and move on to the next rectangle.
With this modification, the rest of the technical details from Göös
et al. (2019) continue to work, and it now preserves the number of
alternations.

At any step of this process, we let X × Y be the remaining
rows and columns (after having removed the error portion of all
previous rectangles in LR), and we let Z ⊆ {0, 1}n be the remain-
ing inputs to f (which have not been accepted by any previous
conjunctions we put in LC). Suppose (Ri, �i) is our current entry
in LR. The goal is to find a subrectangle A × B ⊆ Ri ∩ (X × Y )
that is “conjunction-like” in the sense that G(A × B) is exactly
the inputs accepted by some small-width conjunction C, and such
that among all remaining inputs z ∈ Z, C only accepts those with
f(z) = ⊕(�i). These properties would ensure it is safe to put (C, �i)
next in LC.
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Combining Lemma 5.1 and Lemma 5.2 (using X = [m]n) sug-
gests an approach for finding a conjunction-like subrectangle: If A′

is not too small, we can restrict it to A that is fixed on few coordi-
nates I and dense on the rest (by Lemma 5.2). If B is also not too
small (low deficiency) and fixed on coordinates I, then G(A×B) is
fixed on I and takes on all possible values on the remaining coordi-
nates (by Lemma 5.1, which still works with [n]�I in place of [n]).
In other words, G(A × B) = C−1(1) for a small-width conjunction
C, as desired.

The other property we needed to ensure is that if this C is the
first conjunction in LC to accept a particular z, then f(z) = ⊕(�i)
(so LC is correct). This will follow if we know there is some (x, y) ∈
G−1(z) such that Ri is the first rectangle in LR to contain (x, y),
as that guarantees f(z) = f(G(x, y)) = (f ◦ gn)(x, y) = ⊕(�i). It
turns out this will hold automatically if A × B ⊆ Ri ∩ (X × Y ),
because A × B touches the slice of every z that is accepted by C,
and all inputs (x, y) ∈ G−1(Z) that were in some Rj with j < i
have already been removed from X × Y .

Our algorithm for building LC from LR is shown in Algorithm 2.
It is described as starting from some arbitrary initial rectangle
X × Y . For the purpose of proving Theorem 1.4.(i), we only need
to take X = [m]n and Y = ({0, 1}m)n, but when we invoke this as
a component in the proof of Theorem 1.4.(ii) we will need to start
from some X × Y that is merely “dense × large” rather than the
full input domain, so we state this more general version now.

Lemma 5.3. If LR computes f ◦ gn on X × Y and has cost k,
and if X is 0.85-dense and D∞(Y) ≤ n3, then LC produced by
Algorithm 2 computes f and has cost O(k/ log n). Moreover, if LR

is q-alternating, then so is LC.

Proof. To verify the cost, just note that lines 11 and 12 always
succeed by Lemma 5.2 (since X is 0.85-dense and |A′| ≥ |X |/2k+1),
so when a conjunction is added to LC on lines 14 and 15, it has
width |I| < 20(k + 1)/ log m = O(k/ log n). On line 13, we have
|B| ≥ |Yx′|/2m|I| ≥ 2mn−n4−m|I| = 2m(n−|I|)−n4

(since x′ ∈ A ⊆ A′)
and therefore D∞(B[n]�I) ≤ n4 (relative to ({0, 1}m)[n]�I). Thus,
by applying Lemma 5.1 to A[n]�I (which is 0.8-dense) and B[n]�I we
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Algorithm 2 Simulation algorithm

In: LR = (R1, �1), . . . , (R2k , �2k) and X ⊆ [m]n, Y ⊆
({0, 1}m)n

Out: LC

1: initialize X ← X , Y ← Y , Z ← domain of f , LC ←
empty list

2: for i = 1 to 2k do
3: while Z �= ∅ do
4: for each x ∈ X, let Yx := {y ∈ Y : (x, y) ∈ Ri∩G−1(Z)}
5: let A′ := {x ∈ X : |Yx| ≥ 2mn−n4}
6: if |A′| ≤ |X |/2k+1 then
7: update X ← X � A′

8: update Y ← Y �
⋃

x∈X�A′ Yx

9: break out of inner loop
10: else |A′| > |X |/2k+1

11: let A ⊆ A′, I ⊆ [n], α ∈ [m]I be such that:
12: |I| = O(k/ log n), AI is fixed to α, and A[n]�I is

0.8-dense

13: pick any x′ ∈ A and choose β ∈ ({0, 1}m)I to maxi-
mize the size of B := {y ∈ Yx′ : yI = β}

14: let C be the conjunction “zI = gI(α, β)”
15: update LC by appending (C, �i) to it
16: update Z ← Z � C−1(1)

have g[n]�I(A[n]�I ×B[n]�I) = {0, 1}n−|I| and therefore G(A×B) =
C−1(1). (Lemma 5.1 works with the same parameters even though
the sets are now on fewer than n coordinates.)

The algorithm terminates because Z always shrinks on line 16:
for any y ∈ B we have G(x′, y) ∈ Z (from the definition of Yx′) and
C(G(x′, y)) = 1 (since x′

I = α and yI = β and thus G(x′, y)I =
gI(α, β)).

The algorithm maintains the invariant that for all j < i, Rj ∩
(X × Y ) ∩ G−1(Z) = ∅. This vacuously holds at the beginning
and is clearly maintained in the else case because i stays the same
and nothing gets added to X, Y , or Z. Lines 7 and 8 maintain
the invariant in the if case because the removed rows and columns
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X

Y

A

G−1(Z)

Ri

G−1(Z)
∩X × Y
∩Ri

Figure 5.1: A visualization of a step of Algorithm 2. In this exam-
ple, A′ is large, and so lines 10–16 will be executed

cover all of Ri ∩ (X × Y ) ∩ G−1(Z) and i goes up by 1.

Next, we argue that when the algorithm terminates, Z must
be empty. In each iteration of the outer loop, we throw out at
most |X |/2k+1 rows and at most |X | · 2mn−n4 ≤ mn · 2mn−n4 ≤
2mn−n3

/2k+1 ≤ |Y|/2k+1 columns. (We throw out columns in Yx

for x �∈ A′, all of these Yx had the property |Yx| < 2mn−n4
, we do

this for at most |X | values of x, and n4 − n log m ≥ n3 + k + 1.)
Since the outer loop executes 2k times, by the end at most half
the rows of X and half the columns of Y have been discarded, so
|X| ≥ |X |/2 and |Y | ≥ |Y|/2. This means X is essentially as dense
as X (only a −1 loss in any H∞(xI)) and Y is essentially as low-
deficiency as Y (only a +1 loss in D∞). Thus, Lemma 5.1 (with
a tiny perturbation of the parameters, which does not affect the
result) shows that G(X×Y ) = {0, 1}n. However, the last rectangle
that is processed, R2k , contains all of X × Y by definition (since
we assume LR is correct on X × Y). So, the invariant guarantees
(X × Y ) ∩ G−1(Z) = ∅ at termination. This can only happen if
G−1(Z) = ∅ and thus Z = ∅ (since G(X × Y ) = {0, 1}n).

We now argue that LC is correct. Consider any z in the domain
of f . Since Z is empty at termination, z must be accepted by some
conjunction in LC. Let (C, �i) be the first entry such that C(z) = 1,
so z ∈ Z during the iteration of the inner loop when this entry was
added. Since in this iteration we have G(A × B) = C−1(1) and
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z ∈ C−1(1), there is some (x, y) ∈ A × B with G(x, y) = z. Since
A × B ⊆ Ri, we have (x, y) ∈ Ri. Since A × B ⊆ X × Y , we have
(x, y) ∈ (X × Y ) ∩ G−1(Z) and thus (x, y) cannot be in Rj for any
j < i since Rj∩(X×Y )∩G−1(Z) = ∅ by the invariant. In summary,
Ri is the first rectangle in LR that contains (x, y). By correctness
of LR on X ×Y , we have ⊕(�i) = (f ◦gn)(x, y) = f(G(x, y)) = f(z).
Thus, LC also correctly outputs ⊕(�i) on input z.

The “moreover” part is straightforward to verify: the levels
assigned to conjunctions in LC come from the levels assigned to
rectangles in LR (namely {0, . . . , q}), in the same order (which is
non-increasing). �

6. Query-to-communication lifting for P
NP[q]
‖

Restatement of Theorem 1.4.(ii). For every partial function
f : {0, 1}n → {0, 1} and every constant q,

P
NP[q]cc
‖ (f ◦ gn) = P

NP[q]dt
‖ (f) · Θ(log n)

where g : [m] × {0, 1}m → {0, 1} is the index gadget defined by
g(x, y) = yx with m := n20.

For the big-O direction, the deterministic phase of a P
NP[q]dt
‖

decision tree can be simulated by a protocol that communicates
log m+1 = O(log n) bits to evaluate g(xi, yi) whenever the decision
tree queries the ith bit of the input to f . The NPdt oracle queries
can also be converted to NPcc oracle queries with O(log n) factor
overhead in their contribution to the cost (as was the case for
Theorem 1.4.(i)). In the rest of this section, we prove the big-Ω
direction. By Lemma 2.12, it suffices to show

PNP(q)[1]cc(f ◦ gn) = PNP(q)[1]dt(f) · Ω(log n).

6.1. Technical preliminaries. The high-level idea is to convert
a PNP(q)[1]cc protocol for f ◦ gn into a PNP(q)[1]dt decision tree for f
by using the P lifting theorem of Raz and McKenzie (Göös et al.
2018a; Raz & McKenzie 1999) to handle the deterministic phase,
followed by our NP(q) lifting theorem to handle the single NP(q)
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oracle query. To get these components to mesh, we need to review
some technical concepts from the deterministic lifting theorem.

We say that A ⊆ [m]n is δ-thick if A is nonempty and for every
i ∈ [n] and every α1 · · ·αi−1αi+1 · · ·αn ∈ [m][n]�{i}, if there is at
least one value of αi ∈ [m] for which the combined tuple α is in A,
then there are at least mδ many such values of αi. Recall that for
A ⊆ [m]n, B ⊆ ({0, 1}m)n, and I ⊆ [n], AI := {xI : x ∈ A} and
BI := {yI : y ∈ B} are the projections onto the coordinates of
I. Also recall that the deficiency of B is D∞(B) := mn − log |B|.
For a partial assignment ρ ∈ {0, 1, ∗}n, let free(ρ) := ρ−1(∗) ⊆ [n]
denote its free coordinates and fixed(ρ) := [n] � free(ρ) denote its
fixed coordinates. The rectangle A × B is called ρ-consistent if
every assignment in gn(A × B) is consistent with ρ.

The deterministic lifting theorem of Raz & McKenzie (1999)
and Göös et al. (2018a) proves the following result.1

Lemma 6.1. For every deterministic communication protocol Πdet

of cost k (with the same input domain as gn where g is the index
gadget with m := n20), there exists a deterministic decision tree
Tdet of cost ≤ 40k/ log m (with input domain {0, 1}n) such that the
following holds: For every leaf v of Tdet, letting ρ ∈ {0, 1, ∗}n be
the partial assignment recording the results of the queries on the
path to v (so |fixed(ρ)| ≤ 40k/ log m), there exists an associated
leaf v′ of Πdet and a rectangle A×B ⊆ [m]n × ({0, 1}m)n such that:

◦ A × B is contained within the rectangle of v′.

◦ A × B is ρ-consistent.

◦ Afree(ρ) is 0.85-thick.

◦ D∞(Bfree(ρ)) ≤ n2 (relative to ({0, 1}m)free(ρ)).

The idea is to apply Lemma 6.1 to the deterministic phase of
the PNP(q)[1]cc protocol and then apply Lemma 5.3 to each of the
leaves of the resulting deterministic decision tree. In order to do
so, we need the following claim, which observes that 0.85-thickness
implies 0.85-density.

1The exact statement of Lemma 6.1 does not appear in these papers, but
an inspection of their proof reveals that the lemma indeed holds.
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Claim 6.2. If X ⊆ [m]n is δ-thick, then X is δ-dense.

Proof. Let x be the uniform random variable over X. The basic
intuition is that thickness tells us that for any single coordinate i,
the probability that xi takes on a particular value, given that all of
the other coordinates are fixed, is at most m−δ. This implies that
the probability that xi takes on a particular value, conditioned on
setting any subset of the other coordinates to some values, is still
bounded by m−δ. Therefore, we can simply apply the chain rule
to prove that thickness implies density.

Assume for notational simplicity that I is the first k coordi-
nates, so I = {1, . . . , k}. Let α = α1 · · ·αk ∈ [m]I be an assignment
to the coordinates of I. By the chain rule,

Pr[xI = α1 · · ·αk] = Pr[x1 = α1] · Pr[x2 = α2 | x1 = α1]·
. . . · Pr[xk = αk | xI�{k} = α1 · · ·αk−1]

and each conditioning is valid, assuming Pr[xI = α] > 0.
Thickness of X tells us that for any coordinate i ∈ I, any

αi ∈ [m], and any β ∈ [m][n]�{i}, we have Pr[xi = αi | x[n]�{i} =
β] ≤ m−δ if the conditioning is valid. Thus, for any I ′ ⊆ [n] � {i},
and any assignment β′ to the coordinates of I ′, by the law of total
probability we have Pr[xi = αi | xI′ = β′] ≤ m−δ if the condition-
ing is valid. Therefore, each term in the chain rule expansion is at
most m−δ. This gives Pr[xI = α] ≤ (m−δ)k = 2−δ|I| log m, which im-
plies H∞(xI) ≥ δ|I| log m since α was arbitrary. Since this holds
for all nonempty subsets I ⊆ [n], this means that X is δ-dense. �

6.2. The simulation. Let Π be a PNP(q)[1]cc protocol for f ◦ gn

with cost k. We construct a PNP(q)[1]dt decision tree T for f with
cost O(k/ log n).

If k = Ω(n log n), we can construct a deterministic decision tree
for f with cost n that simply queries every bit in the input. This is
a PNP(q)[1]dt decision tree for f (with a trivial NP(q)dt phase) with
cost O(k/ log n). In the following, assume that k = o(n log n).

Let Πdet be the deterministic phase of Π. Each leaf v of Πdet

has an associated rectangle Rv and NP(q)cc protocol Πv of cost
≤ k that computes either f ◦ gn or its complement on inputs
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in Rv. Applying Lemma 6.1 to Πdet, which has communication
cost ≤ k, yields a deterministic decision tree Tdet having query
cost ≤ 40k/ log m = O(k/ log n), which will form the deterministic
phase of T . Henceforth consider any leaf of Tdet, say correspond-
ing to partial assignment ρ, and from Lemma 6.1 let v be the
associated leaf of Πdet and A × B ⊆ Rv be the associated rectan-
gle. Assume without loss of generality that Πv computes f ◦ gn on
Rv and hence on A × B (a symmetric argument handles the case
where Πv computes f ◦ gn on Rv). Abbreviate free(ρ) as J , and let
n′ := |J |. Since |fixed(ρ)| ≤ 40k/ log m ≤ n/2 (as we are assuming
k = o(n log n)), we have n′ ≥ n/2.

Since A × B is ρ-consistent, if we modify Πv by intersecting
each rectangle with A × B and then projecting to J , this yields an
NP(q)cc protocol that correctly computes fρ◦gJ on AJ ×BJ , where
fρ : {0, 1}J → {0, 1} is the restriction of f to ρ. After converting
this protocol to a q-alternating rectangle decision list of cost O(k)
by Lemma 2.9, we may apply Lemma 5.3 by substituting fρ for f ,
n′ for n, AJ for X (since AJ is 0.85-thick), and BJ for Y (since
D∞(BJ) ≤ n2 ≤ (n′)3),2 to get a q-alternating conjunction decision
list for fρ of cost O(k/ log n′) = O(k/ log n). By Lemma 2.9 again,
there is an NP(q)dt decision tree Tv with cost O(k/ log n) that cor-
rectly computes fρ. Therefore, we can complete T by having our
arbitrary leaf of Tdet use Tv as its oracle query and output the same
answer. Thus, T computes f and has total cost O(k/ log n).
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