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Under strong selective pressure for survival, image-forming
vision set off an ongoing predatory arms race 500 million years
ago. Since then, and particularly so in the arthropods, predatory
behavior has driven a myriad of eye adaptations that increase
visual performance. In this review, we provide examples of how
different arthropod predators have achieved improvements in
key visual features such as spatial and temporal resolution of
their retina. We then describe morphological, neural and
behavioral strategies used by animals in this group to gather
crucial information about the prey, such as its distance, velocity
and size. We also highlight the importance of head and body
tracking movements to aid in categorizing the potential prey,
and briefly mention the ongoing work on the sensorimotor
transformations necessary for target interception.
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Introduction

A successful visual predator relies on a sensor system
that is extremely well adapted to its environment and
ecological demands. For many predators, this includes
the following attributes: the ability to see details in the
visual environment, a visual system that is fast enough to
track the movements of prey, the ability to correctly
gauge the distance of the prey and the ability to plan

trajectories according to the prey’s trajectory. Visual
performance needs to be supported by adequate com-
putational circuits. In the following sections, we sum-
marize key eye features that improve visual performance
and enable successful predation in the air, on land or in
water.

Spatial resolution — “all the better to see you
with” — the Wolf

The ability to perceive their environment as a high-
resolution image gives an edge to most visually guided
predators. Trilobites, some of the earliest-known ar-
thropods that lived 530 mya, already had image-forming
eyes of the compound type [1]. Compound eyes provide
spatial resolution capabilities via the repetition of its
sampling unit, called an ommatidium, each containing
photoreceptor(s) and a lens, and pointing in a slightly
different direction than its neighbors (Figure 1a). The
emergence of predation during the early Cambrian (circa
541-520 mya), with parallel increases in digestive and
visual abilities [2], likely drove the subsequent survival
arm-races and diversity explosion [3]. Shortly after,
Opabinia regalis (stim. 508 myo fossil), boasted a specia-
lized proboscis for predation, and five compound eyes of
different sizes [4] (IFigure 1b), indicating that compound
eyes within the same animal had already specialized for
different roles. In addition, Anomalocaris canadensis (515
myo) boasted a 4 cm wide eye with > 30 000 lenses [5].
Investing in such a large number of ommatidia, while
keeping each of them the same size, preserves sensi-
tivity and results in higher spatial resolution. This per-
formance increase allows the detection of potential prey
from further away, and thus improves predation success.
It also incurs a high energetic cost because the metabolic
rate of photoreceptors is high and because the animal
must carry the increased mass. For example, photo-
receptors are responsible for 8% of a fly’s metabolic
resting rate [6]. The cost of information transfer tends to
rise substantially with higher rates, with diminishing
returns [7]. Indeed, compound eyes cannot attain the
high resolution present in typical vertebrate camera-type
eyes, without reaching outrageous proportions [8].
Hence, the widespread assumption that only arthropods
with the largest bodies can bear eyes large enough to
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The compound eye is an ancient modular design. (a) The visual unit of the compound eye (ommatidium), is repeated to form a compound eye. The
parameters of each ommatidium can be tuned to the needs of the wearer. (b) Opabinia and Anomalocaris, two visually guided Cambrian predators
with well-developed compound eyes. (c) Artist's reconstruction of an Anomalocaris Briggsi eye (top), based on a fossil with larger lenses in the dorsal
area (bottom). (d) The eye of the tiny robber fly Holcocephala fusca exhibits an extreme forward-facing fovea. (e) The heads of predatory species: (i)
Dragonfly, (ii) Robber fly (iii) Killer fly, in comparison to that of a prey species (iv) the fruit fly. Image credits: Panels (a, d and e) by Sam Fabian.
Opabinia drawing in panel (b) reproduced from [4] with CC BY 4.0 license; Anomalocaris drawing in (b) reproduced with permission from [71]. Images
in (c) by Diego Garcia-Bellido and Katrina Kenny, reproduced with permission.

sustain a predatory lifestyle, as seen in dragonflies which
can have 3000 ommatidia [9] and a wvisual acuity
~0.3° [10]. An intrinsic solution to this conundrum re-
sides within the compound eye modular design. Loca-
lized changes to ommatidia parameters, which can occur
within a few generations [11], can result in areas of in-
creased resolution (termed acute zones or foveas) or

sensitivity (named bright zones). A dorsal specialization
was already present in the Awomalocaris Briggsi eye
(Figure 1c) [5], and is common in extant arthropods
[12,13], but has been taken to extremes by the tiny
Robber fly Holcocephala fusca (6 mm long body; Figure
1d).  Holcocephala  achieves  visual  (acceptance
angle=0.27°) and behavioral (object detection
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threshold =0.13°) spatial resolution on par with the
much larger dragonflies (Figure 1e). Holcocephala does so
by dramatically flattening the cornea/retina, increasing
the length of the pseudocone and reducing the width of
the photoreceptor in the frontal area of its eye [14].

In contrast to the aquatic and aerial predators discussed
above, tiger beetles are terrestrial arthropods. These
medium-sized predators use their particularly well-
developed compound eyes [15] to hunt a variety of other
insects in relatively flat habitats. As their world is re-
stricted to two dimensions, their compound eyes are
adjusted accordingly; with a streak of high acuity mat-
ched to the horizon plane. This eye organization is
particularly well suited for the flat environment and even
allows them to use the elevation of their prey as a
distance cue [16].

Widespread as compound eyes are in arthropod adults,
the larvae of some predatory insects use another type of
image-forming eye; ocellar-like simple eyes that are
called stemmata. For example, each of the 12 stemmata
(6 on each side of the head) of the tiger beetle larvae is
capped by a large cuticular lens, which in the posterior
eye serves ~5000 photoreceptors [17]. Tiger beetle
larvae use their upwards facing stemmata to monitor the

Figure 2

environment for potential prey, such as small insects.
Although all 12 stemma work synergistically, the ma-
jority of the overlying space is sampled by two particu-
larly large stemmata [18]. A somewhat similar
organization is also found in the diving beetle larvae
Thermonectus marmoratus [19,20] (Figure 2a). As the
name ‘water tigers’ implies, these highly active larvae
are voracious aquatic predators. The two principal eyes
are large image-forming eyes that look directly forward
and are important for visually guided prey capture [21].
The anatomies and functions of these tubular eyes
(Figure 2b) are unusual in that they are divided into two
relatively large and distinct retinas, namely, distal and
proximal retinas. Both retinas expand horizontally, but
are very narrow vertically (Figure Zc¢). These eyes are
particularly interesting because they are characterized by
unusual optics that involve bifocal lenses [22]. Of note is
that the single-lens eyes are distributed to monitor dif-
ferent areas of space and have a layered retina, with a
relatively small and unidirectional visual field. Both
features are reminiscent of the eye organization in
jumping spiders (Figure 2d) [13,23], which are well-
known visual predators that can stalk their prey prior to
pouncing on it [24]. Upon prey detection, a jumping
spider will turn its body to bring the prey into view of
their elaborate principal eyes [25] which have a
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Similar simple eyes have evolved in predators of phylogenetically distant arthropod lineages. (a) Sunburst diving beetle larvae are sophisticated visual
predators with 12 eyes, including four forward-facing principal eyes. They come into action when a prey is detected, and the larvae orients towards it.
(b) The larvae’s principal eyes are relatively long tubes with corneal lenses and a retina that has two layers that are sensitive to light of different colors.
Drawing modified after [28,72]. (c) As illustrated by an ophthalmoscope image, the proximal retina of T. marmoratus presents as a horizontal stripe with
two rows of photoreceptors. Although their eyes cannot move inside the head, the larvae perform scanning movements to expand their visual fields.
(d) An eye organization that in many ways is similar exists in jumping spiders, which have 8 eyes, 2 of which (the anterior-medium eyes) are particularly
large, serving as their principal eyes. (e) The spider’s principal eyes share many characteristics with those of the diving beetle larvae, including their
tubular shape, the presence of a corneal lens, and a retina with multiple layers that are sensitive to light of specific colors. (f) The jumping spider retina
has the shape of a boomerang that can be moved right and left and even twist through movements of the eye tube. This allows the spider to expand its
visual fields even though its body remains stationary.
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boomerang-shaped retina with particularly high spatial
acuity (Figure 2e), several layers and the ability to move
to track prey internally without moving the body [26]
(Figure 2f). Their tiered retinal layers placed at the focus
distances of the different wavelengths compensate
for chromatic aberration and are used in distance
estimation [27,28].

Temporal resolution — “The velocity with
which time flies is infinite” — Seneca

In addition to providing a high-resolution image of the
stationary environment, the eyes of predators need to be
fast to minimize motion blur. Motion blur is the ‘smear’
that degrades the image when the motion of the predator
and/or the fleeing prey is faster than the photoreceptors’
temporal sampling rate. The compound eyes of ar-
thropods excel at this task because they have rhabdo-
meric photoreceptors, whose biochemical cascades allow
for much faster kinematics than the ciliary counterparts
[29]. Within Diptera (true flies), temporal dynamics are
adapted to lifestyle: those of nocturnal animals (such as
mosquitos), integrate light for the longest and thus are
the slowest, whereas those of diurnal predators are the
fastest [30]. While killer fly photoreceptors are the
fastest recorded so far, they contain thrice the number of
mitochondria profiles than those of fruit flies [31],
highlighting the direct correlation between energetic
cost and increased visual performance. Interestingly, al-
though killer flies have decreased the diameter of their
rhabdomeres to the apparent limit for transmitting light
efficiently, their pseudocone is kept short and the
corneafretina is not flattened. Thus, their spatial re-
solution is still an order of magnitude worse than that of
Holcocephala (see section above). As a result, killer flies
can only hunt prey at short range [32]. Under such
conditions, extreme investment into the best possible
temporal resolution holds the key to survival as the
physics of vision dictates stark trade-offs between spatial
and temporal resolution (see [33] and spatial resolution
below).

Resolution and sensitivity — “information is

the resolution of uncertainty” Claude Shannon
Overall visual performance is always bound by the trade-
off between sensitivity and resolution, both spatial and
temporal. To increase spatial and temporal resolution,
each photoreceptor must sample a smaller proportion of
the environment and do so for a shorter period, respec-
tively. Both result in fewer photons being collected by
each detector, and thus negatively impact the signal-to-
noise ratio of individual photoreceptors (see [34]). Spa-
tial and temporal resolution challenges are exacerbated
in compound eyes because each functional sampling
unit requires its own lens, the size of which is limited by
diffraction [35], but these are at least in part compen-
sated for with the much higher temporal resolution

provided by rhabdomeric photoreceptors [36]. Although
life on the ground often has a slower pace, motion blur is
also an issue for the fast-moving predators who run after
their prey. For example, the eyes of tiger beetles are too
slow to keep up with the rapid changes in their scenery
while they chase after their prey. They effectively be-
come blind in the middle of their pursuit and have to
pause chasing to increase the visual information quality,
before ultimately pouncing at their prey [15]. As a
strategy to minimize the number of stops, tiger beetles
use their rigidly held forward antennae as guides when
they suffer from motion blur [37]. Self-induced motion
blur is not a problem for their larvae because they are sit-
and-wait predators that do not move until their prey is
within jumping range [38]. Although aquatic diving
beetle larvae do stalk their prey, their approach is rela-
tively slow [21] when compared to that of aerial pre-
dators or tiger beetles, and the prey itself also moves
relatively little preceding most attacks (EKB personal
observation 2022). Hence, temporal resolution is less
critical for them. Likewise, the hunting strategy of
jumping spiders typically involves watching and stalking
the prey [39] rather than rapid pursuit. Still, as ex-
emplified by the reduced spatial resolution in the eyes of
jumping spiders that hunt in dark environments [40],
overall visual performance is always bound by the trade-
off between spatial and temporal resolution. Once the
limits of visual performance are reached, predators may
recruit other senses to increase reliability. For example,
although Ogre-faced spiders use the exceptional light
sensitivity of their large principal eyes to cast their net
and tangle their prey at night [41], they also recruit the
auditory system to detect airborne prey [42].

Eye position and depth perception — “...nada
hay verdad ni mentira, todo es segun el color,
del cristal con que se mira” — Campoamor

Post detection, the predator must decide if prey is sui-
table and can be caught. When making this decision,
the predator benefits from gathering information like the
velocity, size, type and distance to the object. A simple
spatial rule of thumb would negate the need for distance
information, as crabs do, by categorizing objects moving
above the horizon as predators, and those below it as
potential prey [43]. In addition, because many predatory
arthropods have two eyes with overlapping fields of
view, it gives them the potential for assessing distance
through stercopsis; the ability to perceive the world in
3D by using the disparity in the images from both re-
tinas. Although their small heads and relatively poor
spatial resolution limit the distance at which this strategy
is effective, stereovision has been proven in Mantids
[44,45], and proposed to play a part in Holcocephala [14].
Stereopsis has evolved independently in arthropods,
mollusks [46] and vertebrates, and consequently the
neural basis of stereopsis in Mantids differs from that of
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vertebrates [47]. In contrast, because Kkiller flies attack
insects outside of their potential stercopsis range, they
rely on matched filters, or heuristics rules: if the per-
ceived prey size and velocity match a preferred ratio, the
attack is released [48]. Dragonflies with eyes fused on
top of their head (holoptic eyes), also use heuristic rules
to inform the attack [49]. This eye design is believed to
have evolved in dragonflies that hunted in open fields,
where close-range 3D perception is not paramount [50].
Damselflies, the dragonfly sister group with character-
istically widely spaced eyes, integrate the binocular in-
formation from both eyes [51], but whether they exploit
this ability for stercovision purposes remains to be
shown. Visual information from multiple eyes may also
play a role in prey capture by tiger beetle larvae, which
have to correctly assess if the distance of a potential
morsel is within their ~15 mm jumping range [52]. Based
on an elegant study with occluded eyes and the addition
of prisms, these larvae use both monocular and binocular
clues [38]. The ability for some arthropods to correctly
estimate distances monocularly also has been illustrated
for aquatic diving beetle larvae [53] and behavioral ex-
periments under different light conditions suggest that
jumping spiders may use image-defocus cues to better
assess the distance of potential prey [54].

Gaze shifting for prey tracking and sampling
— “jt is clear from our simulations that
batters, even professional batters, cannot
keep their eyes on the ball” — Professor A.
Terry Bahill

Often the ability to see motion is an important in-
gredient for target detection [55]. After detection, many
arthropods take the time to move their head and/or
body, and actively visually track the potential prey be-
fore deciding whether to attack. Since their eyes are
fixed to their heads, head tracking is the equivalent of
eye tracking in vertebrates, but the actual tracking
strategy is predator and purpose dependent. For ex-
ample, because Libellulid dragonflies track potential
prey with smooth head movements [49], this keeps the
prey image on the fovea [56], and thus provides the
highest possible image quality when categorizing prey
and conditions, ahead of launching the attack. In con-
trast, the robber fly Laphria saffrana cues onto the wing
beat frequency of the potential prey to categorize it, and
does so through a ‘saccade and fixate’ strategy [57]. Si-
milarly, the frequency of light flashes is exploited by
predatory female fireflies to attract unsuspecting males
of other species [58], and the ‘Saccade-and-fixate’
strategy is employed by many terrestrial species to sta-
bilize their visual input via head and/or body movements
[59]. For example, tiger beetles typically go through
phases of evaluating the position of their prey, which is
followed by an active pursuit informed by the position of
the prey detected during the stop. While their typical

pursuit is open loop [15], closed-loop pursuit has been
observed under laboratory conditions as well. Diving
beetle larvae have a different approach. Sometimes they
first detect a desired prey item from a distance, and
orient towards it to bring it into the visual field of their
principal eyes. Since the retina is extremely narrow
vertically, they engage in vertical scanning movements
during their approach to scout out the shape and position
of their prospective victims [21]. Another predatory
strategy is to remain stationary and allocate tracking to
the eyes within an otherwise motionless body, as is the
case in jumping spiders. Here too the boomerang-shaped
retina needs to perform scanning movements in order to
assess potential prey [26]. Recent work with a tracking
device that allows following the gaze of the principal
eyes during these scanning movements has revealed that
they are directed by the spider’s lateral eyes [60], sug-
gesting a sophisticated level of integration between the
dispersed eye units.

Approach strategy and neural underpinnings
“Still, intuitive assumptions about behavior is
only the starting point of systematic analysis,
for alone they do not yield many interesting
implications” — Gary Becker

We have briefly reviewed the eye and visual tracking
adaptations of predatory arthropods. Entire reviews
could be dedicated to analysis of prey approach strate-
gies and the neural processing that underpins them.
Here, we will simply highlight that visual feedback
[32,61] and internal models [62,63], appear to be used to
different degrees by different species. In insects, visual
information is routed from the optic lobes to the anterior
tubercle of the brain [64] and onwards to integration
centers, such as the central complex. From the lobula,
visual information is also routed to the posterior ventral
protocerebrum (PVLP) and the lateral accessory lobe,
brain areas that send projections to neck, legs and wings
motor centers through the ventral nerve cord [65]. The
fast PVLP route is used by fruit flies to activate the es-
cape response through a fast pathway that is mediated by
their Giant Descending Neurons. Concurrently, the
drive for catching a target is integrated with competing
tasks, such as obstacle avoidance [66]. With a visual la-
tency of circa 10 ms, we postulate that the Target Se-
lective Descending Neurons (TSDNSs) in killer flies [67]
use a similar circuit that also bypasses central integration
centers of the brain. TSDNs are cells that carry in-
formation about moving targets from the brain to the
thoracic centers and were described first in dragonflies
[68]. Recently, responses similar to those of dragonfly
TSDNs have been reported in predatory and conn-
specifics targeting Diptera [69]. TSDNs form a tight
bottleneck of information between the sensors and
movement of the head and body. As such, we expect
research about TSDN-like cells in a variety of predatory
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arthropod groups to yield valuable information on mul-
tisensory integration and sensorimotor transformations.
Of course, additional complexity needs to be considered,
as internal states, for example, hunger is known to reg-
ulate predatory behavior [48,70].
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