
comput. complex. (2022) 31:3
c© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

https://doi.org/10.1007/s00037-022-00219-w computational complexity

AMPLIFICATION WITH ONE NP
ORACLE QUERY

Thomas Watson

Abstract. We provide a complete picture of the extent to which am-
plification of success probability is possible for randomized algorithms
having access to one NP oracle query, in the settings of two-sided, one-
sided, and zero-sided error. We generalize this picture to amplifying
one-query algorithms with q-query algorithms, and we show our inclu-
sions are tight for relativizing techniques.

Keywords. Amplification, NP, oracle

Subject classification. 68Q15

1. Introduction

Amplification of the success probability of randomized algorithms
is a ubiquitous tool in complexity theory. We investigate amplifi-
cation for randomized reductions to NP-complete problems, which
can be modeled as randomized algorithms with the ability to make
queries to an NP oracle. The usual amplification strategy involves
running multiple independent trials, which would also increase the
number of NP oracle queries, so this does not generally work if
we restrict the number of queries. We study, and essentially com-
pletely answer, the following question:

If a language is solvable with success probability p by
a randomized polynomial-time algorithm with access to
one NP oracle query, what is the highest success proba-
bility achievable with one query (or q > 1 many queries)
to an NP oracle?

0123456789().: V,-vol Birkhäuser

 3 Page 2 of 47 Thomas Watson cc

The question makes sense for two-sided error (BPPNP[1]), one-sided
error (RPNP[1]), and zero-sided error (ZPPNP[1]), and it was men-
tioned in Cai & Chakaravarthy (2006) as “an interesting problem
worthy of further investigation.” Partial results for zero-sided er-
ror were shown in Chang & Purini (2008). The question is also
relevant to the extensive literature on bounded NP queries (the
boolean hierarchy); e.g., ZPPNP[1] shows up frequently in the con-
text of the “two queries problem” (Tripathi 2010), which was the
main application area of the results from Chang & Purini (2008).
A complementary question (about lowering the success probability
in exchange for fewer NP queries) was studied in Rohatgi (1995).

Our first contribution characterizes the best amplification
achievable by relativizing techniques in the two-sided error setting.
In general, the best strategy for amplifying plain randomized algo-
rithms is to take the majority vote of q independent trials, which
in our setting would naively involve q NP oracle queries. One may
suspect this majority vote strategy is optimal for us. We show this
intuition is a red herring; it is possible to do better by “combining”
NP oracle queries across different trials. As an extreme example,
consider the special case of randomized mapping reductions to NP
problems. These are equivalent to Arthur–Merlin games (AM), for
which amplification is possible by running independent trials and
simply having Merlin’s message consist of certificates for a majority
of the trials. However, if we allow one NP oracle query, but do not
necessarily output the same bit the oracle returns, then combin-
ing queries is less straightforward, and it turns out amplification is
only possible to a limited extent.

Our main take-home message is that starting with success prob-
ability greater than 1

2
+ 1

2
· 1

k+1
, where k is an integer, we can get

arbitrarily close to 1
2

+ 1
2

· 1
k

success probability while still using
one NP query; using q nonadaptive queries, roughly a factor q im-
provement over this is possible.

We give precise definitions in Section 2, but we now clarify our
notation before stating the theorem. For ε ∈ (0, 1] (the advan-
tage), BPPNP[1]

ε is the set of all languages solvable by a randomized
polynomial-time algorithm that may make one query to an NP or-
acle and produces the correct output with probability ≥ 1

2
+ 1

2
ε

cc Amplification with One NP Oracle Query Page 3 of 47 3

on each input. For convenience, we define BPP
NP[1]
>ε by requiring

that for some constant c there exists such an algorithm with ad-
vantage ≥ ε + n−c, and we define BPP

NP[1]
ε> by requiring that for

every constant d there exists such an algorithm with advantage
≥ ε− 2−nd

; the reason for these conventions is just that they natu-
rally arise in the proofs (e.g., standard majority amplification im-
plies BPP>0 = BPP1>). We make similar definitions for BPPNP‖[q]

but allowing q nonadaptive NP oracle queries. Allowing q adaptive
NP queries is equivalent to allowing 2q − 1 nonadaptive NP queries
(Beigel 1991). Like with the boolean hierarchy (which contains the
classes PNP‖[q]), it is helpful to distinguish between an odd or even
number of queries q.

Theorem 1.1 (Two-sided error). For integers 1 ≤ q ≤ k:

� If q is odd: BPP
NP[1]
>1/(k+1) ⊆ BPP

NP‖[q]
q/k> and

BPP
NP[1]
1/k �⊆ BPP

NP‖[q]
>q/k relative to an oracle.

� If q, k are even: BPP
NP[1]
>1/(k+1) ⊆ BPP

NP‖[q]
q/k> and

BPP
NP[1]
1/(k−1) �⊆ BPP

NP‖[q]
>q/k relative to an oracle.

The word “oracle” has two meanings here. Besides the bounded
NP oracle queries of central interest, “relative to an oracle” means
there exists a language such that the separation holds when all
computations (the randomized algorithm and the NP verifier) can
make polynomially many adaptive queries to an oracle for that
language. In particular, in the context of our relativized sepa-
rations, randomized algorithms have access to two oracles. The
separations in Theorem 1.1 are tight since the inclusions relativize.
This implies that using “black-box simulation” techniques, it is not
possible to significantly improve any of our inclusions.

If we start with advantage > 1
k+1

where k is an integer, then
Theorem 1.1 tells us the best advantage achievable with q non-
adaptive NP queries using relativizing techniques: if k is even we
can amplify to essentially q

k
; if k is odd we can amplify to essen-

tially q
k

if q is odd, and q
k+1

if q is even. (Theorem 1.1 does not
explicitly mention the case where q is even and k is odd, but in this
case the best inclusion and separation are obtained by applying the
theorem to the even integer k + 1.)

 3 Page 4 of 47 Thomas Watson cc

A subtle issue is whether “q/k >” in the inclusion subscripts
can be improved to “q/k”; e.g., it remains open to show that

BPP
NP[1]
>1/3 ⊆ BPP

NP[1]
1/2 or that BPP

NP[1]
>1/3 �⊆ BPP

NP[1]
1/2 relative to an

oracle.
The proof of Theorem 1.1 appears in Section 3. No such non-

trivial inclusion was known before; for relativized separations, the
case q = 1, k = 2 was shown in Watson (2020).

One-sided error algorithms must always output 0 if the answer
is 0, and must output 1 with probability at least some ε ∈ (0, 1] if
the answer is 1. We define the advantage (the subscript of RPNP‖[q])
to be this ε. In contrast to BPPNP‖[q]

ε (where the advantage ε
measures how much better than 1

2
the success probability is), for

RPNP‖[q]
ε the advantage ε measures how much better than 0 the

success probability is.

Theorem 1.2 (One-sided error).

� RP
NP[1]
>1/2 ⊆ RP

NP[1]
1> .

� RP
NP[1]
>0 ⊆ RP

NP[1]
1/2 ∩ RP

NP‖[2]
1> and

RP
NP[1]
1/2 �⊆ RP

NP[1]
>1/2 relative to an oracle.

The proof of Theorem 1.2 appears in Section 4 and is relatively
straightforward (and could serve as a warm-up for Theorem 1.1 if

the reader would like that). The inclusion RP
NP[1]
>0 ⊆ RP

NP[1]
1/2 (which

is stronger than RP
NP[1]
>0 ⊆ RP

NP[1]
1/2>) uses a trick described in Chang

& Purini (2008) for getting a tiny boost in the advantage.
Zero-sided error algorithms must output the correct bit with

probability at least some ε ∈ (0, 1] and output ⊥ (plead ignorance)
with the remaining probability. We define the advantage (the sub-
script of ZPPNP‖[q]) to be this ε.

Chang & Purini (2008) proved that ZPP
NP[1]
>0 ⊆ ZPP

NP[1]
1/4 and

ZPP
NP[1]
>1/2 ⊆ ZPP

NP[1]
1> ,1 and left it unresolved what happens between

advantages 1
4

and 1
2
. We settle this decade-old open problem: am-

plification is possible between 1
4

and 1
3

and between 1
3

and 1
2
.

1Watson (2020) gave an alternative proof of the latter but with only 1− 1
poly ,

rather than 1 − 1
exp , success probability.

cc Amplification with One NP Oracle Query Page 5 of 47 3

Theorem 1.3 (Zero-sided error). For integers 1 ≤ q ≤ k ≤ 4:

� If k = 4: ZPP
NP[1]
>0 ⊆ ZPP

NP‖[q]
q/k> .

� If k ≤ 3: ZPP
NP[1]
>1/(k+1) ⊆ ZPP

NP‖[q]
q/k> .

� If q = 1: ZPP
NP[1]
1/k �⊆ ZPP

NP‖[q]
>q/k relative to an oracle.

Moreover, the “q/k>” in the inclusion subscripts can be improved
to “q/k” if q < k and k ≥ 3.

The proof of Theorem 1.3 appears in Section 5. The “moreover”
part uses the trick from Chang & Purini (2008) for a tiny boost in
the advantage. Like the situation with BPPNP[1], it remains open to
show that ZPP

NP[1]
>1/3 ⊆ ZPP

NP[1]
1/2 or that ZPP

NP[1]
>1/3 �⊆ ZPP

NP[1]
1/2 relative

to an oracle. There is no reason to consider k > 4 in Theorem 1.3,
since then ZPP

NP[1]
>1/(k+1) ⊆ ZPP

NP[1]
>0 ⊆ ZPP

NP‖[q]
q/4> .

We conjecture that the third bullet in Theorem 1.3 also holds
for q > 1 (i.e., the relativized separations ZPP

NP[1]
1/4 �⊆ ZPP

NP‖[2]
>2/4

and ZPP
NP[1]
1/4 �⊆ ZPP

NP‖[3]
>3/4 and ZPP

NP[1]
1/3 �⊆ ZPP

NP‖[2]
>2/3). This re-

mains open, though we are aware of how to prove that ZPP
NP[1]
1/4 �⊆

ZPP
NP‖[2]
>3/4 . Anyway, q = 1 is the most natural case, and we provide

a complete proof for it.
Finally, we point out that none of the inclusions in this paper

can be strengthened to yield advantage exactly 1 via relativizing
techniques, since BPP ⊆ ZPP

NP[1]
>1/2 relativizes (Cai & Chakaravarthy

2006) but BPP �⊆ PNP relative to an oracle (Stockmeyer 1985).

2. Definitions

We formally define the relevant complexity classes in Section 2.1
and their decision tree analogues (which are used for relativized
separations) in Section 2.2.

 3 Page 6 of 47 Thomas Watson cc

2.1. Time complexity. We think of a randomized algorithm M
as taking a uniformly random string s ∈ {0, 1}r (for some number
of coins r that depends on the input length); we let Ms(x) denote
M running on input x with outcome s.

For ε ∈ (0, 1] (the advantage) and integer q ≥ 1, language L is
in BPPNP‖[q]

ε iff there is a polynomial-time randomized algorithm
M (taking input x and coin tosses s ∈ {0, 1}r) and a language
L′ ∈ NP such that the following hold.

Syntax: The computation of Ms(x) produces a tuple of query
strings (z1, . . . , zq) and a truth table out : {0, 1}q →
{0, 1}; then out(L′(z1), . . . , L′(zq)) is the output.

Correctness: The output is L(x) with probability ≥ 1
2

+ 1
2
ε.

RPNP‖[q]
ε is defined similarly except for correctness, we require the

output is always 0 if L(x) = 0, and is 1 with probability ≥ ε if
L(x) = 1. ZPPNP‖[q]

ε is defined similarly except out : {0, 1}q →
{0, 1, ⊥} and for correctness, we require the output is always L(x)
or ⊥, and is L(x) with probability ≥ ε.

For C ∈ {
BPPNP‖[q],RPNP‖[q],ZPPNP‖[q]}, we define

C>ε =
⋃

constants c

Cε+n−c and Cε> =
⋂

constants d

C
ε−2−nd .

When q = 1 we may drop the ‖ from the superscripts.

2.2. Decision tree complexity. We think of a randomized de-
cision tree T as the uniform distribution over a multiset of corre-
sponding deterministic decision trees Ts indexed by s ∈ {0, 1}r; we
denote this as T ∼ {

Ts : s ∈ {0, 1}r
}
. In this setting, “query”

actually has two meanings for us: a decision tree makes queries to
individual input bits, then it forms an NP-type (DNF—Disjunctive
Normal Form formula) oracle query. (This DNF does not repre-
sent a language in the time-bounded class NP, but it plays the
same role.)

We define a BPPNP‖[q]
ε -type decision tree T for f : {0, 1}n →

{0, 1} on input x as follows.

Syntax: T ∼ {
Ts : s ∈ {0, 1}r

}
where each Ts makes queries

to the bits of x until it reaches a leaf, which is la-

cc Amplification with One NP Oracle Query Page 7 of 47 3

beled with a tuple of DNFs (ϕ1, . . . , ϕq) and a func-
tion out : {0, 1}q → {0, 1}; then out(ϕ1(x), . . . , ϕq(x))
is the output.

Correctness: The output is f(x) with probability ≥ 1
2

+ 1
2
ε.

Cost: The maximum height of any Ts, plus the maximum
width (maximum number of literals in any term) of
any DNF appearing at a leaf. (The sizes of the DNFs
do not matter.)

An RPNP‖[q]
ε -type decision tree is defined similarly except for cor-

rectness we require the output is always 0 if f(x) = 0, and is 1
with probability ≥ ε if f(x) = 1. A ZPPNP‖[q]

ε -type decision tree is
defined similarly except out : {0, 1}q → {0, 1, ⊥} and for correct-
ness, we require the output is always f(x) or ⊥, and is f(x) with
probability ≥ ε.

We follow the convention of overloading complexity class names
as decision tree complexity measures: for C ∈ {

BPPNP‖[q],RPNP‖[q],
ZPPNP‖[q]}, Cdt

ε (f) denotes the minimum cost of any Cε-type deci-
sion tree for a partial function f , and Cdt

ε also denotes the class of
all families of f ’s with Cdt

ε (f) ≤ polylog(n), and we define

Cdt
>ε =

⋃

constants c

Cdt
ε+log−c n and Cdt

ε> =
⋂

constants d

Cdt
ε−n−d .

If f(x) = b then we say x is a b-input of f . When we use deci-
sion tree complexity separations to prove relativized separations of
time-bounded complexity classes, the decision tree’s input is not
the same as the time-bounded algorithm’s input—it is the truth
table of the oracle language at some input length.

3. Two-sided error

To prove Theorem 1.1, we first restate it in a more convenient form.

Theorem 3.1 (Two-sided error, restated). For integers 1≤q≤k:

 3 Page 8 of 47 Thomas Watson cc

(i) If k, q are odd: BPP
NP[1]
>1/(k+1) ⊆ BPP

NP‖[q]
q/k> .

(ii) If k is even: BPP
NP[1]
>1/(k+1) ⊆ BPP

NP‖[q]
q/k> .

(iii) If q, k are even: BPP
NP[1]
1/(k−1) �⊆BPP

NP‖[q]
>q/k relative to an oracle.

(iv) If q is odd: BPP
NP[1]
1/k �⊆BPP

NP‖[q]
>q/k relative to an oracle.

We prove the inclusions (i) and (ii) in Section 3.1 and the separa-
tions (iii) and (iv) in Section 3.2.

3.1. Inclusions. We prove the q = 1 case of (i) in Section 3.1.1
and the q = 1 case of (ii) in Section 3.1.3 (together these show that

BPP
NP[1]
>1/(k+1) ⊆ BPP

NP[1]
1/k> for all integers k ≥ 1), and we generalize

to the q > 1 case of (i) in Section 3.1.2 and the q > 1 case of
(ii) in Section 3.1.4. The techniques from Chang & Purini (2008)
for the zero-sided error setting are not particularly helpful for the
two-sided error setting, so we develop the ideas from scratch.

We now describe the common setup. For some constant c we
have L ∈ BPP

NP[1]
1/(k+1)+n−c , witnessed by a polynomial-time random-

ized algorithm M (taking input x and coin tosses s ∈ {0, 1}r) and
a language L′ ∈ NP. For an arbitrary constant d, we wish to show
L ∈ BPP

NP‖[q]
q/k−2−nd .

Fix an input x. The first step is to sample a sequence of m =
O(n2c+d) many independent strings s1, . . . , sm ∈ {0, 1}r, so with
probability ≥ 1 − 2−nd−1, the sequence is good in the sense that
on input x, M still has advantage strictly greater than 1

k+1
when

its coin tosses are chosen uniformly from the multiset {s1, . . . , sm}.
Then we design a polynomial-time randomized algorithm which,
given a good sequence, outputs L(x) with advantage ≥ q

k
after

making q nonadaptive NP oracle queries. Hence, over the random
s1, . . . , sm and the other randomness of our algorithm,

P[output is L(x)]

≥ P
[
output is L(x)

∣
∣ s1, . . . , sm is good

] − P[s1, . . . , sm is bad]

≥ (
1
2

+ 1
2

· q
k

) − 2−nd−1 = 1
2

+ 1
2

(
q
k

− 2−nd)
.

Henceforth, fix a good sequence s1, . . . , sm, and let zh and
outh : {0, 1} → {0, 1} be the query string and truth table produced

cc Amplification with One NP Oracle Query Page 9 of 47 3

by Msh(x) (so the output is outh(L′(zh))). We assume w.l.o.g. that
each outh is nonconstant and is hence either identity or negation.
Henceforth, assume that identity is at least as common as nega-
tion among out 1, . . . , outm; the proof is completely analogous if
negation is more common.

Taking probabilities over a uniformly random h ∈ [m], we make
the following definitions.

α = 1
2
P[outh = id]

β = 1
2
P[outh = neg]

a = P
[
outh = id and L′(zh) = 1

] − α

b = P
[
outh = neg and L′(zh) = 1

] − β

The key observation is now

(a + α) + (β − b)

= P
[
outh = id, output = 1

]
+

(
P[outh

= neg] − P
[
outh = neg, output = 0

])

= P
[
outh = id, output = 1

]
+ P

[
outh = neg, output = 1

]

= P[output = 1]

and thus, defining Δ = 1
2

· 1
k+1

, we have

a − b = (a + α) + (β − b) − 1
2

= P[output = 1] − 1
2

{
> Δ if L(x) = 1

< −Δ if L(x) = 0

because of M ’s advantage w.r.t. a good sequence s1, . . . , sm.
This figure shows an example of how these values may fall on

the number line if L(x) = 1:

a

b0

>Δ

P[outh = id, output = 1] P[outh = id, output = 0]

P[outh = neg, output = 0] P[outh = neg, output = 1]

−α

−β

α

β

 3 Page 10 of 47 Thomas Watson cc

The following summarizes the key properties so far.

α ≥ β a ∈ [−α, α] a − b > Δ if L(x) = 1

α + β = 1
2

b ∈ [−β, β] b − a > Δ if L(x) = 0

Also, for any rational p, testing whether a ≥ p can be expressed
as an NP oracle query: a witness consists of a list of witnesses for
L′(zh) = 1 for at least (p+α)m many h’s with outh = id. Similarly,
testing whether b ≥ p can be expressed as an NP oracle query.

3.1.1. Proof of (i): q = 1. For i ∈ [k] define γi = (i − k+1
2

)Δ.
We have β − γk ≤ Δ and γ1 − (−β) ≤ Δ since β ≤ 1

4
=

(
(k + 1) −

k+1
2

)
Δ. This figure shows an example with k = 7:

γ1

γ2

γ3

γ4

γ5

γ6

γ7

≤Δ ≤Δ
−α

−β

α

β

Our algorithm now picks one of these k possibilities uniformly at
random:2

� for some odd i ∈ [k]: output 1 iff a ≥ γi,
� for some even i ∈ [k]: output 0 iff b ≥ γi.

First, suppose L(x) = 1. We have a > γ1 since a − b > Δ and
b ≥ −β and γ1 − (−β) ≤ Δ. Consider the greatest odd j ∈ [k]
such that a ≥ γj; thus, a ≥ γi for j+1

2
many odd i’s (1, 3, . . . , j).

If j < k then b < γj+1 since a − b > Δ and a < γj+2; thus, b < γi

for at least k−j
2

many even i’s (j + 1, j + 3, . . . , k − 1). Hence, the

probability of outputting 1 is at least 1
k

(
j+1
2

+ k−j
2

)
= 1

2
+ 1

2
· 1

k
.

Now suppose L(x) = 0. We have a < γk since b − a > Δ and
b ≤ β and β − γk ≤ Δ. Consider the least odd j ∈ [k] such that
a < γj; thus, a < γi for k−j+2

2
many odd i’s (j, j + 2, . . . , k). If

j > 1 then b > γj−1 since b − a > Δ and a ≥ γj−2; thus, b ≥ γi for

2Of course, if k is not a power of 2 and we insist on using uniform coin flips
as our only source of randomness, then we must incur a tiny error since it is
not possible to exactly sample i ∈ [k] uniformly. We sweep this pedantic issue
under the rug throughout the paper.

cc Amplification with One NP Oracle Query Page 11 of 47 3

at least j−1
2

many even i’s (2, 4, . . . , j − 1). Hence, the probability

of outputting 0 is at least 1
k

(
k−j+2

2
+ j−1

2

)
= 1

2
+ 1

2
· 1

k
.

That concludes the formal proof, but here is an intuitive way
to visualize what is happening: Call γi for odd i “upper marks,”
and call γi for even i “lower marks,” and assume for convenience
all lower marks are in (−β, β). Suppose L(x) = 1 and b = −β so
a > γ1; then at least one upper mark is left of a and all k−1

2
lower

marks are right of b, resulting in k+1
2

of the algorithm’s possibilities
outputting 1. Now as we continuously sweep a and b to the right,
keeping a − b fixed, a passes each upper mark before b passes the
preceding lower mark, so at all times at least k+1

2
of the possibilities

output 1. Suppose L(x) = 0 and b = β so a < γk; then at least
one upper mark is right of a and all k−1

2
lower marks are left of b,

resulting in k+1
2

of the algorithm’s possibilities outputting 0. Now
as we continuously sweep a and b to the left, keeping b − a fixed, a
passes each upper mark before b passes the succeeding lower mark,
so at all times at least k+1

2
of the possibilities output 0.

3.1.2. Proof of (i): q > 1. For i ∈ [k] define Ii as the set of q
successive integers starting with i and wrapping around to 1 when
k is exceeded: Ii = {i, i + 1, . . . , i + q − 1} if i ≤ k − q + 1, and
Ii = {i, i + 1, . . . , k, 1, 2, . . . , i + q − 1 − k} if i > k − q + 1. Define
i →= min(odd i′ ∈ Ii) − k − 1 and i

→
= min(even i′ ∈ Ii) − k − 1;

the −k − 1 is a simple way to ensure i →, i
→
< min(i′ ∈ Ii). Since

k, q are odd, the sorted order of Ii ∪ {i →, i
→} alternates between

odd and even numbers.
Our algorithm picks i ∈ [k] uniformly at random and for each

i′ ∈ Ii does an oracle query to see whether a ≥ γi′ if i′ is odd,
or whether b ≥ γi′ if i′ is even. Consider the greatest odd i� ∈ Ii

such that a ≥ γi� , or let i� = i →if it does not exist. Consider the
greatest even i� ∈ Ii such that b ≥ γi� , or let i� = i

→
if it does not

exist. Our algorithm outputs 1 if i� > i�, or 0 if i� > i�.
The intuition is that if Ii were the whole set [k], then with

certainty we would have i� > i� if a − b > Δ, and i� > i� if
b − a > Δ. Since Ii is a q-subset of [k], comparing i� and i� gives
our best guess for L(x) based on the “limited view” provided by
these oracle queries. About q of the Ii sets are close enough to a to
detect whether a or b is larger. Among the other k − q sets, about

 3 Page 12 of 47 Thomas Watson cc

half get it right through luck. Thus, q + k−q
2

out of the k sets lead
to correct output, which implies the advantage is q

k
. Careful case

analysis is needed for the Ii sets that wrap around. Here is the
formal proof.

First, suppose L(x) = 1. Consider the greatest odd j ∈ [k] such
that a ≥ γj (which exists since a > γ1). We have i� > i� if one of
the following mutually exclusive events holds:

(1) j ∈ Ii, since then i� = j and i� ≤ j − 1
(since b < γj+1 if j < k);

(2) i is odd and i ≤ j − q − 1, since then i� = i + q − 1 and

trivially i� ≤ i + q − 2;

(3) i is even and j + 1 ≤ i ≤ j − q − 1 + k, since then either:
� i ≤ k − q, in which case i� = i →> i

→
= i�, or

� i = k − q + 2, in which case i� = 1 and i� = i
→
< 1, or

� i ≥ k − q + 4, in which case i� = i + q − 1 − k and
i� ≤ i + q − 2 − k.

There are q many type-(1) i’s. If j > q then there are j−q
2

many

type-(2) i’s (1, 3, . . . , j − q − 1) and k−j
2

many type-(3) i’s (j +

1, j + 3, . . . , k − 1). If j ≤ q then there are k−q
2

many type-(3) i’s
(j +1, j +3, . . . , j − q −1+k). Either way, i� > i� holds for at least
q + k−q

2
= k+q

2
many i’s, and hence, the probability of outputting

1 is at least 1
k

· k+q
2

= 1
2

+ 1
2

· q
k
.

Now suppose L(x) = 0. Consider the least odd j ∈ [k] such
that a < γj (which exists since a < γk). As a special case, if j = 1
then i� = i →and so i� > i� if i

→
> i →, which happens for k+q

2
many

i’s (1, 3, . . . , k − q + 1 and k − q + 2, k − q + 3, . . . , k). Now assume
j > 1. We have i� > i� if one of the following mutually exclusive
events holds:

(1) j − 1 ∈ Ii, since then i� ≤ j − 2 and i� ≥ j − 1
(since b > γj−1 if j > 1);

(2) i is even and i ≤ j − q − 2, since then i� = i + q − 2 and

i� = i + q − 1;

(3) i is odd and j ≤ i ≤ j − q − 2 + k, since then either:
� i ≤ k − q + 1, in which case i� = i →< i

→≤ i�, or

cc Amplification with One NP Oracle Query Page 13 of 47 3

� i ≥ k − q + 3, in which case i� = i + q − 2 − k and
i� ≥ i + q − 1 − k.

There are q many type-(1) i’s. If j > q then there are j−q−2
2

many type-(2) i’s (2, 4, . . . , j − q − 2) and k−j+2
2

many type-(3)

i’s (j, j + 2, . . . , k). If j ≤ q then there are k−q
2

many type-(3) i’s
(j, j + 2, . . . , j − q − 2 + k). Either way, i� > i� holds for at least
q + k−q

2
= k+q

2
many i’s, and hence, the probability of outputting

0 is at least 1
k

· k+q
2

= 1
2

+ 1
2

· q
k
.

3.1.3. Proof of (ii): q = 1. For i ∈ [k] define ζi = −β + iΔ
and ηi = −α + iΔ. Note that α − ζk = Δ (so ζ1, . . . , ζk divide
the interval [−β, α] into k + 1 subintervals each of length Δ) and
β − ηk = Δ (so η1, . . . , ηk divide the interval [−α, β] into k + 1
subintervals each of length Δ). This figure shows an example with
k = 6:

ζ1

ζ2

ζ3

ζ4

ζ5

ζ6η1

η2

η3

η4

η5

η6−α

−β

α

β

Our algorithm now picks one of these 2k possibilities uniformly at
random:

� for some odd i ∈ [k]: output 1 iff a ≥ ζi,
� for some even i ∈ [k]: output 0 iff b ≥ ζi,
� for some even i ∈ [k]: output 1 iff a ≥ ηi,
� for some odd i ∈ [k]: output 0 iff b ≥ ηi.

First, suppose L(x) = 1. We have a > ζ1 since a − b > Δ
and b ≥ −β. Consider the greatest odd j ∈ [k] such that a ≥ ζj;
thus, a ≥ ζi for j+1

2
many odd i’s (1, 3, . . . , j). We have b < ζj+1

since a − b > Δ and either a < ζj+2 (if j < k − 1) or a ≤ α and
α − ζk = Δ (if j = k − 1); thus, b < ζi for at least k−j+1

2
many

even i’s (j + 1, j + 3, . . . , k). Consider the greatest even j′ ∈ [k]
such that a ≥ ηj′ , or let j′ = 0 if it does not exist; thus, a ≥ ηi

for j′
2

many even i’s (2, 4, . . . , j′). If j′ < k then b < ηj′+1 since

 3 Page 14 of 47 Thomas Watson cc

a − b > Δ and a < ηj′+2; thus, b < ηi for at least k−j′
2

many odd
i’s (j′ + 1, j′ + 3, . . . , k − 1). Hence, the probability of outputting
1 is at least 1

2k

(
j+1
2

+ k−j+1
2

+ j′
2

+ k−j′
2

)
= 1

2
+ 1

2
· 1

k
.

Now suppose L(x) = 0. Consider the least odd j ∈ [k] such
that a < ζj, or let j = k + 1 if it does not exist; thus, a < ζi for
k−j+1

2
many odd i’s (j, j + 2, . . . , k − 1). If j > 1 then b > ζj−1

since b − a > Δ and a ≥ ζj−2; thus, b ≥ ζi for at least j−1
2

many
even i’s (2, 4, . . . , j − 1). We have a < ηk since b − a > Δ and
b ≤ β and β − ηk = Δ. Consider the least even j′ ∈ [k] such that
a < ηj′ ; thus, a < ηi for k−j′+2

2
many even i’s (j′, j′ +2, . . . , k). We

have b > ηj′−1 since b − a > Δ and either a ≥ ηj′−2 (if j′ > 2)

or a ≥ −α (if j′ = 2); thus, b ≥ ηi for at least j′
2

many odd i’s
(1, 3, . . . , j′ − 1). Hence, the probability of outputting 0 is at least
1
2k

(
k−j+1

2
+ j−1

2
+ k−j′+2

2
+ j′

2

)
= 1

2
+ 1

2
· 1

k
.

That concludes the formal proof, but here is an intuitive way
to visualize what is happening: Call ζi for odd i and ηi for even i
“upper marks,” and call ζi for even i and ηi for odd i “lower marks,”
and assume for convenience all lower marks are in (−β, β). Suppose
L(x) = 1 and b = −β so a > ζ1; then at least one upper mark is
left of a and all k lower marks are right of b, resulting in k + 1 of
the algorithm’s possibilities outputting 1. Now as we continuously
sweep a and b to the right, keeping a− b fixed, a passes each upper
mark (ζi or ηi) before b passes the corresponding preceding lower
mark (ζi−1 or ηi−1 respectively), so at all times at least k +1 of the
possibilities output 1. Suppose L(x) = 0 and b = β so a < ηk; then
at least one upper mark is right of a and all k lower marks are left
of b, resulting in k + 1 of the algorithm’s possibilities outputting
0. Now as we continuously sweep a and b to the left, keeping
b − a fixed, a passes each upper mark (ζi or ηi) before b passes the
corresponding succeeding lower mark (ζi+1 or ηi+1 respectively), so
at all times at least k + 1 of the possibilities output 0.

3.1.4. Proof of (ii): q > 1. We retain the definition of Ii from
Section 3.1.2. Now we have separate cases for whether q is even
or odd. The case q is even involves a natural combination of the
ideas from Section 3.1.2 and Section 3.1.3, but the case q is odd is
more subtle.

cc Amplification with One NP Oracle Query Page 15 of 47 3

If q is even: Our algorithm picks i ∈ [k] uniformly at random,
and with probability 1

2
each:

� Define i →= min(odd i′ ∈ Ii)−k and i
→
= min(even i′ ∈ Ii)−k.

For each i′ ∈ Ii do an oracle query to see whether a ≥ ζi′ if i′

is odd, or whether b ≥ ζi′ if i′ is even. Consider the greatest
odd i� ∈ Ii such that a ≥ ζi� , or let i� = i →if it does not exist.
Consider the greatest even i� ∈ Ii such that b ≥ ζi� , or let i� = i

→

if it does not exist. Output 1 if i� > i�, or 0 if i� > i�.
� Define i →= min(even i′ ∈ Ii)−k and i

→
= min(odd i′ ∈ Ii)−k.

For each i′ ∈ Ii do an oracle query to see whether a ≥ ηi′ if i′

is even, or whether b ≥ ηi′ if i′ is odd. Consider the greatest
even i� ∈ Ii such that a ≥ ηi� , or let i� = i →if it does not exist.
Consider the greatest odd i� ∈ Ii such that b ≥ ηi� , or let i� = i

→

if it does not exist. Output 1 if i� > i�, or 0 if i� > i�.

First, suppose L(x) = 1. Assume the algorithm picks the first
bullet. Consider the greatest odd j ∈ [k] such that a ≥ ζj (which
exists since a > ζ1). We have i� > i� if one of the following mutually
exclusive events holds:

(1) j ∈ Ii, since then i� = j and i� ≤ j − 1 (since b < ζj+1);

(2) i is even and i ≤ j − q − 1, since then i� = i + q − 1 and

trivially i� ≤ i + q − 2;

(3) i is even and j + 1 ≤ i ≤ j − q − 1 + k, since then either:
� i ≤ k − q, in which case i� = i →> i

→
= i�, or

� i = k − q + 2, in which case i� = 1 and i� = i
→
< 1, or

� i ≥ k − q + 4, in which case i� = i + q − 1 − k and
i� ≤ i + q − 2 − k.

There are q many type-(1) i’s. If j > q then there are j−q−1
2

many type-(2) i’s (2, 4, . . . , j − q − 1) and k−j+1
2

many type-(3) i’s

(j + 1, j + 3, . . . , k). If j ≤ q then there are k−q
2

many type-(3) i’s
(j + 1, j + 3, . . . , j − q − 1 + k). Either way, i� > i� holds for at
least q + k−q

2
= k+q

2
many i’s.

Assume the algorithm picks the second bullet. As a special case,
if a < η2 (so b < η1) then i� = i →and i� = i

→
and so i� > i� happens

 3 Page 16 of 47 Thomas Watson cc

for k+q
2

many i’s (1, 3, . . . , k − q +1 and k − q +2, k − q +3, . . . , k).
Otherwise, consider the greatest even j′ ∈ [k] such that a ≥ ηj′ .
We have i� > i� if one of the following mutually exclusive events
holds:

(1) j′ ∈ Ii, since then i� = j′ and i� ≤ j′ − 1
(since b < ηj′+1 if j′ < k);

(2) i is odd and i ≤ j′ − q − 1, since then i� = i + q − 1 and

trivially i� ≤ i + q − 2;

(3) i is odd and j′ + 1 ≤ i ≤ j′ − q − 1 + k, since then either:
� i ≤ k − q + 1, in which case i� = i →> i

→
= i�, or

� i ≥ k − q + 3, in which case i� = i + q − 1 − k
and i� ≤ i + q − 2 − k.

There are q many type-(1) i’s. If j′ > q then there are j′−q
2

many

type-(2) i’s (1, 3, . . . , j′ − q − 1) and k−j′
2

many type-(3) i’s (j′ +

1, j′ + 3, . . . , k − 1). If j′ ≤ q then there are k−q
2

many type-(3) i’s
(j′ + 1, j′ + 3, . . . , j′ − q − 1 + k). Either way, i� > i� holds for at
least q + k−q

2
= k+q

2
many i’s.

In summary, out of the 2k possible random outcomes, at least
k + q of them result in i� > i�, and hence, the probability of out-
putting 1 is at least 1

2k
(k + q) = 1

2
+ 1

2
· q

k
.

Now suppose L(x) = 0. Assume the algorithm picks the first
bullet. Consider the least odd j ∈ [k] such that a < ζj, or let
j = k + 1 if it does not exist. As a special case, if j = 1 then
i� = i →and so i� > i� if i

→
> i →, which happens for k+q

2
many i’s

(1, 3, . . . , k − q + 1 and k − q + 2, k − q + 3, . . . , k). Now assume
j > 1. We have i� > i� if one of the following mutually exclusive
events holds:

(1) j − 1 ∈ Ii, since then i� ≤ j − 2 and i� ≥ j − 1
(since b > ζj−1 if j > 1);

(2) i is odd and i ≤ j − q − 2, since then i� = i + q − 2 and

i� = i + q − 1;

(3) i is odd and j ≤ i ≤ j − q − 2 + k, since then either:
� i ≤ k − q + 1, in which case i� = i →< i

→≤ i�, or

cc Amplification with One NP Oracle Query Page 17 of 47 3

� i ≥ k − q + 3, in which case i� = i + q − 2 − k and
i� ≥ i + q − 1 − k.

There are q many type-(1) i’s. If j > q then there are j−q−1
2

many type-(2) i’s (1, 3, . . . , j − q − 2) and k−j+1
2

many type-(3) i’s

(j, j + 2, . . . , k − 1). If j ≤ q then there are k−q
2

many type-(3) i’s
(j, j + 2, . . . , j − q − 2 + k). Either way, i� > i� holds for at least
q + k−q

2
= k+q

2
many i’s.

Assume the algorithm picks the second bullet. Consider the
least even j′ ∈ [k] such that a < ηj′ (which exists since a < ηk).
We have i� > i� if one of the following mutually exclusive events
holds:

(1) j′ − 1 ∈ Ii, since then i� ≤ j′ − 2 and i� ≥ j′ − 1
(since b > ηj′−1);

(2) i is even and i ≤ j′ − q − 2, since then i� = i + q − 2 and

i� = i + q − 1;

(3) i is even and j′ ≤ i ≤ j′ − q − 2 + k, since then either:
� i ≤ k − q, in which case i� = i →< i

→≤ i�, or
� i = k − q + 2, in which case i� = i →< 1 and i� ≥ 1, or
� i ≥ k − q + 4, in which case i� = i + q − 2 − k and
i� ≥ i + q − 1 − k.

There are q many type-(1) i’s. If j′ > q then there are j′−q−2
2

many type-(2) i’s (2, 4, . . . , j′ − q − 2) and k−j′+2
2

many type-(3)

i’s (j′, j′ + 2, . . . , k). If j′ ≤ q then there are k−q
2

many type-(3) i’s
(j′, j′ + 2, . . . , j′ − q − 2 + k). Either way, i� > i� holds for at least
q + k−q

2
= k+q

2
many i’s.

In summary, out of the 2k possible random outcomes, at least
k + q of them result in i� > i�, and hence, the probability of out-
putting 0 is at least 1

2k
(k + q) = 1

2
+ 1

2
· q

k
.

If q is odd and β > α − Δ: We handle the case β ≤ α − Δ
later, in a different way. The assumption β > α − Δ ensures the ζ
and η marks are perfectly interspersed (as shown in the figure in
Section 3.1.3), which is essential for the algorithm we now describe.

For this case, we form ζ1, . . . , ζk and η1, . . . , ηk into one big
cycle, rather than two separate cycles. Thus, when Ii “wraps

 3 Page 18 of 47 Thomas Watson cc

around,” we switch between making “ζ queries” and making “η
queries.” To facilitate this idea, we partition Ii as follows.

I≥,odd
i = {odd i′ ≥ i in Ii} I≥,even

i = {even i′ ≥ i in Ii}
I<,odd
i = {odd i′ < i in Ii} I<,even

i = {even i′ < i in Ii}
Our algorithm picks i ∈ [k] uniformly at random, and with

probability 1
2

each:

� Define i →= min(I≥,odd
i ∪ I<,even

i) − k and i
→
= min(I≥,even

i ∪
I<,odd
i) − k. For each i′ ∈ Ii do an oracle query to see whether

a ≥ ζi′ if i′ ∈ I≥,odd
i , b ≥ ζi′ if i′ ∈ I≥,even

i ,

b ≥ ηi′ if i′ ∈ I<,odd
i , a ≥ ηi′ if i′ ∈ I<,even

i .

Consider the greatest i� ∈ I≥,odd
i ∪ I<,even

i such that the corre-
sponding oracle query returns 1, or let i� = i →if it does not
exist. Consider the greatest i� ∈ I≥,even

i ∪ I<,odd
i such that the

corresponding oracle query returns 1, or let i� = i
→
if it does

not exist. Output 1 if i� > i�, or 0 if i� > i�.

� Define i →= min(I≥,even
i ∪ I<,odd

i) − k and i
→
= min(I≥,odd

i ∪
I<,even
i) − k. For each i′ ∈ Ii do an oracle query to see whether

b ≥ ηi′ if i′ ∈ I≥,odd
i , a ≥ ηi′ if i′ ∈ I≥,even

i ,

a ≥ ζi′ if i′ ∈ I<,odd
i , b ≥ ζi′ if i′ ∈ I<,even

i .

Consider the greatest i� ∈ I≥,even
i ∪ I<,odd

i such that the corre-
sponding oracle query returns 1, or let i� = i →if it does not
exist. Consider the greatest i� ∈ I≥,odd

i ∪ I<,even
i such that the

corresponding oracle query returns 1, or let i� = i
→
if it does

not exist. Output 1 if i� > i�, or 0 if i� > i�.

First, suppose L(x) = 1. As a special case, if a < η2 (so b < η1)
then i� = i

→
and so i� > i� if either i →> i

→
or i� ≥ 1, which happens

for k+q+1
2

many i’s in the first bullet (1 and 2, 4, . . . , k − q + 1 and

k − q + 2, k − q + 3, . . . , k) and k+q−1
2

many i’s in the second bullet
(1, 3, . . . , k − q and k − q + 2, k − q + 3, . . . , k).

Otherwise, consider the greatest odd j ∈ [k] such that a ≥ ζj

and the greatest even j′ ∈ [k] such that a ≥ ηj′ , and note that
j′ ∈ {j − 1, j + 1} since β > α − Δ.

cc Amplification with One NP Oracle Query Page 19 of 47 3

Assume the algorithm picks the first bullet. We have i� > i� if
one of the following mutually exclusive events holds:3

(1) j ∈ I≥,odd
i , since then i� = j and i� ≤ j − 1 (since b < ζj+1);

(2) i is odd and i ≤ j − q − 1, since then i� = i + q − 1 and

trivially i� ≤ i + q − 2;

(3) i is even and j + 1 ≤ i ≤ j′ − q − 1 + k, since then either:
� i ≤ k − q + 1, in which case i� = i →> i

→
= i�, or

� i ≥ k − q + 3, in which case i� = i + q − 1 − k and
i� ≤ i + q − 2 − k;

(4) j′ ∈ I<,even
i , since then i� = j′ (since i ≥ j′ + 2) and

i� ≤ j′ − 1 (since b < ηj′+1).

If j′ > q then there are q many type-(1) i’s (j−q+1, j−q+2, . . . , j)
and j−q

2
many type-(2) i’s (1, 3, . . . , j−q−1) and k−j+1

2
many type-

(3) i’s (j + 1, j + 3, . . . , k), so i� > i� holds for at least k+q+1
2

many
i’s. If j′ ≤ q then there are j many type-(1) i’s (1, 2, . . . , j) and
k−q+j′−j

2
many type-(3) i’s (j +1, j +3, . . . , j′ −q−1+k) and q−j′

many type-(4) i’s (j′ − q + 1 + k, j′ − q + 2 + k, . . . , k), so i� > i�

holds for at least k+q−j′+j
2

many i’s.
Assume the algorithm picks the second bullet. We have i� > i�

if one of the following mutually exclusive events holds:3

(1) j′ ∈ I≥,even
i , since then i� = j′ and i� ≤ j′ − 1

(since b < ηj′+1 if j′ < k);

(2) i is even and i ≤ j′ − q − 1, since then i� = i + q − 1 and

trivially i� ≤ i + q − 2;

(3) i is odd and j′ + 1 ≤ i ≤ j − q − 1 + k, since then either:
� i ≤ k − q, in which case i� = i →> i

→
= i�, or

� i = k − q + 2, in which case i� = 1 and i� = i
→
< 1, or

� i ≥ k − q + 4, in which case i� = i + q − 1 − k and
i� ≤ i + q − 2 − k;

(4) j ∈ I<,odd
i , since then i� = j (since i ≥ j + 2) and i� ≤ j − 1

(since b < ζj+1).

If j′ > q then there are q many type-(1) i’s (j′ − q + 1, j′ − q +
2, . . . , j′) and j′−q−1

2
many type-(2) i’s (2, 4, . . . , j′ −q−1) and k−j′

2

3(1) and (4) cannot happen simultaneously, since that would force q = k.

 3 Page 20 of 47 Thomas Watson cc

many type-(3) i’s (j′ + 1, j′ + 3, . . . , k − 1), so i� > i� holds for at
least k+q−1

2
many i’s. If j′ ≤ q then there are j′ many type-(1) i’s

(1, 2, . . . , j′) and k−q+j−j′
2

many type-(3) i’s (j′+1, j′+3, . . . , j−q−
1+k) and q−j many type-(4) i’s (j−q+1+k, j−q+2+k, . . . , k),
so i� > i� holds for at least k+q−j+j′

2
many i’s.

In summary, out of the 2k possible random outcomes, at least
k + q of them result in i� > i� (at least k+q+1

2
+ k+q−1

2
if a < η2 or

j′ > q, and at least k+q−j′+j
2

+ k+q−j+j′
2

if j′ ≤ q), and hence, the
probability of outputting 1 is at least 1

2k
(k + q) = 1

2
+ 1

2
· q

k
.

Now suppose L(x) = 0. Consider the least odd j ∈ [k] such
that a < ζj, or let j = k + 1 if it does not exist, and consider the
least even j′ ∈ [k] such that a < ηj′ (which exists since a < ηk),
and note that j′ ∈ {j − 1, j + 1} since β > α − Δ.

As a special case, if j = 1 then i� = i →and so i� > i� if
either i

→
> i →or i� ≥ 1, which happens for k+q−1

2
many i’s in

the first bullet (1, 3, . . . , k − q and k − q + 2, k − q + 3, . . . , k) and
k+q+1

2
many i’s in the second bullet (1 and 2, 4, . . . , k − q + 1 and

k − q + 2, k − q + 3, . . . , k). Otherwise, assume j > 1.
Assume the algorithm picks the first bullet. We have i� > i� if

one of the following mutually exclusive events holds:3

(1) j − 1 ∈ I≥,even
i , since then i� ≤ j − 2 and i� ≥ j − 1

(since b > ζj−1 if j > 1);

(2) i is even and i ≤ j − q − 2, since then i� = i + q − 2 and

i� = i + q − 1;

(3) i is odd and j ≤ i ≤ j′ − q − 2 + k, since then either:
� i ≤ k − q, in which case i� = i →< i

→≤ i�, or
� i = k − q + 2, in which case i� = i →< 1 and i� ≥ 1, or
� i ≥ k − q + 4, in which case i� = i + q − 2 − k and
i� ≥ i + q − 1 − k;

(4) j′ − 1 ∈ I<,odd
i , since then i� ≤ j′ − 2 (since i ≥ j′ + 1) and

i� ≥ j′ − 1 (since b > ηj′−1).

If j > q then there are q many type-(1) i’s (j−q, j−q+1, . . . , j−1)
and j−q−2

2
many type-(2) i’s (2, 4, . . . , j − q − 2) and k−j+1

2
many

type-(3) i’s (j, j + 2, . . . , k − 1), so i� > i� holds for at least

cc Amplification with One NP Oracle Query Page 21 of 47 3

k+q−1
2

many i’s. If j ≤ q then there are j − 1 many type-(1) i’s

(1, 2, . . . , j−1) and k−q+j′−j
2

many type-(3) i’s (j, j+2, . . . , j′ −q−
2+k) and q−j′+1 many type-(4) i’s (j′−q+k, j′−q+1+k, . . . , k),
so i� > i� holds for at least k+q−j′+j

2
many i’s.

Assume the algorithm picks the second bullet. We have i� > i�

if one of the following mutually exclusive events holds:3

(1) j′ − 1 ∈ I≥,odd
i , since then i� ≤ j′ − 2 and i� ≥ j′ − 1

(since b > ηj′−1);

(2) i is odd and i ≤ j′ − q − 2, since then i� = i + q − 2 and

i� = i + q − 1;

(3) i is even and j′ ≤ i ≤ j − q − 2 + k, since then either:
� i ≤ k − q + 1, in which case i� = i →< i

→≤ i�, or
� i ≥ k − q + 3, in which case i� = i + q − 2 − k and
i� ≥ i + q − 1 − k;

(4) j − 1 ∈ I<,even
i , since then i� = j − 2 (since i ≥ j + 1) and

i� ≥ j − 1 (since b > ζj−1).

If j > q then there are q many type-(1) i’s (j′−q, j′−q+1, . . . , j′−1)
and j′−q−1

2
many type-(2) i’s (1, 3, . . . , j′ − q − 2) and k−j′+2

2
many

type-(3) i’s (j′, j′+2, . . . , k), so i� > i� holds for at least k+q+1
2

many
i’s. If j ≤ q then there are j′ −1 many type-(1) i’s (1, 2, . . . , j′ −1)
and k−q+j−j′

2
many type-(3) i’s (j′, j′ + 2, . . . , j − q − 2 + k) and

q− j +1 many type-(4) i’s (j −q+k, j −q+1+k, . . . , k), so i� > i�

holds for at least k+q−j+j′
2

many i’s.
In summary, out of the 2k possible random outcomes, at least

k + q of them result in i� > i� (at least k+q−1
2

+ k+q+1
2

if j = 1 or

j > q, and at least k+q−j′+j
2

+ k+q−j+j′
2

if j ≤ q), and hence, the
probability of outputting 0 is at least 1

2k
(k + q) = 1

2
+ 1

2
· q

k
.

If q is odd and β ≤ α − Δ: We can reduce this case back to
(i). Specifically, for i ∈ [k − 1] we define γi = (i − k

2
)Δ (where

Δ = 1
2
· 1

k+1
) and use the algorithm from Section 3.1.2 with the odd

number k − 1 in place of k. Note that β ≤ α − Δ ensures β ≤ k
2
Δ

(since α + β = 1
2
) and thus β − γk−1 ≤ Δ and γ1 − (−β) ≤ Δ,

which is all that is needed for the analysis to go through. Thus,
we can achieve advantage q

k−1
, which is even better than q

k
.

 3 Page 22 of 47 Thomas Watson cc

3.2. Separations. The relativized separations follow from the
corresponding decision tree complexity separations:

(iii) If q, k are even: BPP
NP[1]dt
1/(k−1) �⊆ BPP

NP‖[q]dt
>q/k .

(iv) If q is odd: BPP
NP[1]dt
1/k �⊆ BPP

NP‖[q]dt
>q/k .

We prove (iii) in Section 3.2.1 and (iv) in Section 3.2.2; the
arguments are similar in structure. Our proof of (iv) also works if
q is even, but in that case the result is subsumed by (iii). The case
q = 1, k = 2 of (iv) was proven in Watson (2020), but our proof is
somewhat different even specialized to that case.

For completeness, in Section 3.2.3 we explain the standard ar-
gument for translating these decision tree separations into rela-
tivized separations for the corresponding time-bounded complex-
ity classes. See Vereshchagin (1999) for a general discussion of this
phenomenon.

Let wt(·) refer to Hamming weight. Henceforth, fix the con-
stants q and k, and assume q < k since otherwise there is nothing
to prove.

3.2.1. Proof of (iii). Define the partial function f : {0, 1}n →
{0, 1} that interprets its input as (x, y) ∈ {0, 1}n/2×{0, 1}n/2, such
that

f(x, y) =

{
1 if wt(x) = wt(y) + 1 ≤ k

2

0 if wt(x) = wt(y) ≤ k
2

− 1
.

(The valid inputs of this f are those (x, y) such that either wt(x) =
wt(y) + 1 ≤ k

2
or wt(x) = wt(y) ≤ k

2
− 1. In the proof of the rela-

tivized separation, (x, y) will correspond to an oracle truth table,
and we will only need to consider oracles whose truth tables are
valid inputs of f .)

Lemma 3.2. BPP
NP[1]dt
1/(k−1)(f) ≤ k

2
.

Lemma 3.3. BPP
NP‖[q]dt
q/k+δ (f) ≥ Ω(δn) for every δ(n).

The separation follows by taking δ = log−c n for any constant
c.

cc Amplification with One NP Oracle Query Page 23 of 47 3

Proof (of Lemma 3.2). Given (x, y), pick one of these k − 1
possibilities uniformly at random:

� for some i ∈ [k
2
]: output 1 iff wt(x) ≥ i,

� for some i ∈ [k
2

− 1]: output 0 iff wt(y) ≥ i.

The decision tree does not directly query any bits of (x, y), and
the DNF has width i ≤ k

2
(it is the or over all i-subsets of either

x’s bits or y’s bits, of the and of those bits), so the cost is k
2
. If

f(x, y) = 1 with wt(x) = j and wt(y) = j −1, then the probability

of outputting 1 is j+((k/2−1)−(j−1))
k−1

= 1
2
+ 1

2
· 1

k−1
since conditioned on

picking x, the output is 1 iff i ≤ j, and conditioned on picking y, the
output is 1 iff i ≥ j. Similarly, if f(x, y) = 0 with wt(x) = wt(y) =

j, then the probability of outputting 1 is j+((k/2−1)−j)
k−1

= 1
2

− 1
2

· 1
k−1

. �

Proof (of Lemma 3.3). By the minimax principle, it suffices to
show that for some distribution on valid inputs (x, y) to f , every
cost-o(δn) PNP‖[q]-type decision tree T has advantage < q

k
+ δ over

a random input. Let T (x, y) denote the output produced after T
receives the answers to its DNF queries. Let u be the leaf reached
after seeing only 0’s, and say u is labeled with DNFs (ϕ1, . . . , ϕq)
and function out : {0, 1}q → {0, 1} (so if (x, y) leads to u then
T (x, y) = out(ϕ1(x, y), . . . , ϕq(x, y))).

We generate the distribution on valid inputs (x, y) as follows.
Let v0 = w0 ∈ {0, 1}n/2 be the all-0 string, and for i = 1, . . . , k

2

obtain vi by flipping a uniformly random 0 of vi−1 to a 1, and for
i = 1, . . . , k

2
− 1 obtain wi by flipping a uniformly random 0 of

wi−1 to a 1. Pick a uniformly random j ∈ [k
2
], and then let (x, y)

be either the 1-input (vj, wj−1) or the 0-input (vj−1, wj−1) with
probability 1

2
each.

Let v denote (v0, . . . , vk/2) and w denote (w0, . . . , wk/2−1), and
call (v, w) good iff:

� for each j ∈ [k
2
]:

both inputs (vj, wj−1) and (vj−1, wj−1) lead to u, and
� for each j ∈ [k

2
] and each i ∈ [q]:

ϕi(v
j, wj−1) ≥ ϕi(v

j−1, wj−1) ≥ ϕi(v
j−1, wj−2)

(the latter inequality is only required if j > 1).

 3 Page 24 of 47 Thomas Watson cc

We claim that

(1) P[(v, w) is bad] < δ
2
, and

(2) P
[
T (x, y) = f(x, y)

∣
∣ (v, w) is good

] ≤ 1
2

+ 1
2

· q
k
,

from which it follows that

P[T (x, y) = f(x, y)] ≤ P
[
T (x, y) = f(x, y)

∣
∣ (v, w) is good

]

+ P[(v, w) is bad]

< 1
2

+ 1
2
(q

k
+ δ).

We argue claim (1). Since the path to u queries o(δn) locations,
with probability ≥ 1−o(kδ) > 1− δ

4
each of the 1’s placed through-

out v and w avoids these locations, in which case the first bullet
holds in the definition of good. Fixing j and i in the second bul-
let, if we condition on ϕi(v

j−1, wj−1) = 1 and choose an arbitrary
term of ϕi that accepts (vj−1, wj−1), then since the term has width
o(δn), with probability ≥ 1 − o(δ) the 1 that is placed to obtain
vj from vj−1 avoids this term, in which case the term continues to
accept (vj, wj−1) and so ϕi(v

j, wj−1) = 1. Thus, P
[
ϕi(v

j, wj−1) ≥
ϕi(v

j−1, wj−1)
] ≥ P

[
ϕi(v

j, wj−1) = 1
∣
∣ ϕi(v

j−1, wj−1) = 1
] ≥ 1 −

o(δ). Similarly, P
[
ϕi(v

j−1, wj−1) ≥ ϕi(v
j−1, wj−2)

] ≥ 1 − o(δ). A
union bound over j and i shows that the second bullet holds with
probability ≥ 1 − o(kqδ) > 1 − δ

4
, so finally the two bullets hold

simultaneously with probability > 1 − δ
2
.

We argue claim (2). Condition on any particular good (v, w).
We abbreviate the q-tuple (ϕ1(x, y), . . . , ϕq(x, y)) as ϕ(x, y) ∈
{0, 1}q. Consider the sequence of k inputs (v0, w0), (v1, w0),
(v1, w1), (v2, w1), . . . (like climbing a ladder but placing both feet
on each rung). Each of these possibilities for (x, y) leads to u and
thus T (x, y) = out(ϕ(x, y)). Also, the corresponding sequence of
ϕ(x, y)’s is monotonically nondecreasing in each of the q coordi-
nates. Thus, the sequence of inputs can be partitioned into seg-
ments of lengths say
0,
1, . . . ,
q (which sum to k) such that for the
first
0 (x, y)’s in the sequence, ϕ(x, y) has weight 0 (hence T (x, y)
is the same), and for the next
1 (x, y)’s in the sequence, ϕ(x, y)
is the same weight-1 string (hence T (x, y) is the same), and so on.
Since each segment alternates between 0-inputs and 1-inputs of f ,

cc Amplification with One NP Oracle Query Page 25 of 47 3

we have T (x, y) = f(x, y) for at most
⌈

�i

2

⌉ ≤ �i+1
2

inputs in the ith

segment.
Thus, out of the k possibilities for (x, y) given (v, w), at most∑q

i=0
�i+1
2

= k
2

+ q+1
2

are such that T (x, y) = f(x, y). This implies

that P
[
T (x, y) = f(x, y)

∣
∣ (v, w) is good

] ≤ 1
2

+ 1
2

· q+1
k

, which is
almost what we want. This issue can be fixed by observing that
since k is even and q + 1 (the number of segments) is odd, at least
one segment must have even length, in which case

⌈
�i

2

⌉
= �i

2
. Thus,

out of the k possibilities for (x, y) given (v, w), T (x, y) = f(x, y)
holds for at most k

2
+ q

2
of them, which gives (2). �

3.2.2. Proof of (iv). Define the partial function f : {0, 1}n →
{0, 1} that interprets its input as (x, y) ∈ {0, 1}n/2×{0, 1}n/2, such
that

f(x, y) =

{
1 if wt(x) = wt(y) + 1 ≤ k

0 if wt(y) = wt(x) + 1 ≤ k
.

Lemma 3.4. BPP
NP[1]dt
1/k (f) ≤ k.

Lemma 3.5. BPP
NP‖[q]dt
q/k+δ (f) ≥ Ω(δn) for every δ(n).

The separation follows by taking δ=log−c n for any constant c.

Proof (of Lemma 3.4). Given (x, y), pick one of these 2k pos-
sibilities uniformly at random:

� for some i ∈ [k]: output 1 iff wt(x) ≥ i,
� for some i ∈ [k]: output 0 iff wt(y) ≥ i.

The decision tree does not directly query any bits of (x, y), and
the DNF has width i ≤ k (it is the or over all i-subsets of either
x’s bits or y’s bits, of the and of those bits), so the cost is k. If
f(x, y) = 1 with wt(x) = j and wt(y) = j −1, then the probability

of outputting 1 is j+(k−(j−1))
2k

= 1
2
+ 1

2
· 1
k

since conditioned on picking
x, the output is 1 iff i ≤ j, and conditioned on picking y, the output
is 1 iff i ≥ j. The correctness argument is analogous if f(x, y) = 0.

�

 3 Page 26 of 47 Thomas Watson cc

Proof (of Lemma 3.5). By the minimax principle, it suffices to
show that for some distribution on valid inputs (x, y) to f , every
cost-o(δn) PNP‖[q]-type decision tree T has advantage < q

k
+ δ over

a random input. Let T (x, y) denote the output produced after T
receives the answers to its DNF queries. Let u be the leaf reached
after seeing only 0’s, and say u is labeled with DNFs (ϕ1, . . . , ϕq)
and function out : {0, 1}q → {0, 1} (so if (x, y) leads to u then
T (x, y) = out(ϕ1(x, y), . . . , ϕq(x, y))).

We generate the distribution on valid inputs (x, y) as follows.
Let v0 = w0 ∈ {0, 1}n/2 be the all-0 string, and for i = 1, . . . , k
obtain vi by flipping a uniformly random 0 of vi−1 to a 1, and
obtain wi by flipping a uniformly random 0 of wi−1 to a 1. Pick a
uniformly random j ∈ [k], and then let (x, y) be either the 1-input
(vj, wj−1) or the 0-input (vj−1, wj) with probability 1

2
each.

Let v denote (v0, . . . , vk) and w denote (w0, . . . , wk), and call
(v, w) good iff:

� for each j ∈ [k]:

both inputs (vj, wj−1) and (vj−1, wj) lead to u, and
� for each j ∈ [k − 1] and each i ∈ [q]:

ϕi(v
j, wj+1) ≥ ϕi(v

j, wj−1) and ϕi(v
j+1, wj) ≥ ϕi(v

j−1, wj).

We claim that

(1) P[(v, w) is bad] < δ
2
, and

(2) P
[
T (x, y) = f(x, y)

∣
∣ (v, w) is good

] ≤ 1
2

+ 1
2

· q
k
,

from which it follows that

P[T (x, y) = f(x, y)] ≤ P
[
T (x, y) = f(x, y)

∣
∣ (v, w) is good

]

+ P[(v, w) is bad]

< 1
2

+ 1
2
(q

k
+ δ).

We argue claim (1). Since the path to u queries o(δn) loca-
tions, with probability ≥ 1 − o(kδ) > 1 − δ

4
each of the 1’s placed

throughout v and w avoids these locations, in which case the first
bullet holds in the definition of good. Fixing j and i in the second
bullet, if we condition on ϕi(v

j, wj−1) = 1 and choose an arbitrary

cc Amplification with One NP Oracle Query Page 27 of 47 3

term of ϕi that accepts (vj, wj−1), then since the term has width
o(δn), with probability ≥ 1 − o(δ) both of the 1’s placed to obtain
wj+1 from wj−1 avoid this term, in which case the term continues to
accept (vj, wj+1) and so ϕi(v

j, wj+1) = 1. Thus, P
[
ϕi(v

j, wj+1) ≥
ϕi(v

j, wj−1)
] ≥ P

[
ϕi(v

j, wj+1) = 1
∣
∣ ϕi(v

j, wj−1) = 1
] ≥ 1 − o(δ).

Similarly, P
[
ϕi(v

j+1, wj) ≥ ϕi(v
j−1, wj)

] ≥ 1 − o(δ). A union
bound over j and i shows that the second bullet holds with prob-
ability ≥ 1 − o(kqδ) > 1 − δ

4
, so finally the two bullets hold simul-

taneously with probability > 1 − δ
2
.

We argue claim (2). Condition on any particular good (v, w).
We abbreviate the q-tuple (ϕ1(x, y), . . . , ϕq(x, y)) as ϕ(x, y) ∈
{0, 1}q. Consider the sequence of k inputs (v1, w0), (v1, w2),
(v3, w2), (v3, w4), . . . (climbing the ladder starting with the left
foot). Each of these possibilities for (x, y) leads to u and thus
T (x, y) = out(ϕ(x, y)). Also, the corresponding sequence of ϕ(x, y)’s
is monotonically nondecreasing in each of the q coordinates. Thus,
the sequence of inputs can be partitioned into segments of lengths
say
0,
1, . . . ,
q (which sum to k) such that for the first
0 (x, y)’s
in the sequence, ϕ(x, y) has weight 0 (hence T (x, y) is the same),
and for the next
1 (x, y)’s in the sequence, ϕ(x, y) is the same
weight-1 string (hence T (x, y) is the same), and so on. Since each
segment alternates between 0-inputs and 1-inputs of f , we have
T (x, y) = f(x, y) for at most

⌈
�i

2

⌉ ≤ �i+1
2

inputs in the ith segment.
Similarly, the sequence of k inputs (v0, w1), (v2, w1), (v2, w3),

(v4, w3), . . . (climbing the ladder starting with the right foot) can
be partitioned into segments of lengths say
′

0,

′
1, . . . ,

′
q such that

T (x, y) = f(x, y) for at most
�′
i+1

2
inputs in the ith segment. Thus,

out of the 2k possibilities for (x, y) given (v, w), at most
∑q

i=0

(
�i+1
2

+
�′
i+1

2

)
= k + q +1 are such that T (x, y) = f(x, y). This implies that

P
[
T (x, y) = f(x, y)

∣
∣ (v, w) is good

] ≤ 1
2

+ 1
2

· q+1
k

, which is almost
what we want.

This issue can be fixed using the following observation. Since
there is only one string in {0, 1}q of weight 0, T (x, y) must ac-
tually be the same for all
0 +
′

0 inputs in the union of the 0th

segments from the two sequences. Since the number of 0-inputs
and the number of 1-inputs in this union differ by at most 1, we

have T (x, y) = f(x, y) for at most
�0+�′

0+1

2
of these inputs. Now,

 3 Page 28 of 47 Thomas Watson cc

out of the 2k possibilities for (x, y) given (v, w), T (x, y) = f(x, y)

holds for at most
�0+�′

0+1

2
+

∑q
i=1

(
�i+1
2

+
�′
i+1

2

)
= k + q + 1

2
of them.

Since this count is an integer, it is in fact at most k + q, which
gives (2). (Alternatively, the +1

2
can be removed using a similar

observation for the qth segments.) �

3.2.3. Decision tree separations imply relativized separa-
tions. To illustrate this, we just consider the case q = 1, k = 2,
but exactly the same approach works for all cases, as well as for
the separations in Theorem 1.2 and Theorem 1.3.

We showed that BPP
NP[1]dt
1/2 �⊆ BPP

NP[1]dt
>1/2 . Now we explain how

to construct an oracle language O : {0, 1}∗ → {0, 1} such that(
BPP

NP[1]
1/2

)O �⊆ (
BPP

NP[1]
>1/2

)O
. For all even N , let fN : {0, 1}N →

{0, 1} be the partial function from Section 3.2.2 with

fN ∈ BPP
NP[1]dt
1/2 and fN �∈ BPP

NP[1]dt

1/2+log−c N
for every constant c.

For any O : {0, 1}∗ → {0, 1}, let On : {0, 1}n → {0, 1} be its re-
striction to input length n, and also interpret this truth table as a
bit string On ∈ {0, 1}N of length N = 2n indexed by the elements
of {0, 1}n. Say that O is valid iff On is a valid input to fN for every
n. For any valid O, define the unary language LO : {1}∗ → {0, 1}
by LO(1n) = fN(On). We claim that

∀O : LO ∈ (
BPP

NP[1]
1/2

)O
and ∃O : LO �∈ (

BPP
NP[1]
1/2+n−c

)O

for every constant c

where the quantifiers are over valid O.

To see LO ∈ (
BPP

NP[1]
1/2

)O
, note that an algorithm for LO on

input 1n can run the BPP
NP[1]
1/2 -type decision tree for fN (from the

proof of Lemma 3.4) on input On: Denoting the halves of On as
(x, y) ∈ {0, 1}N/2 × {0, 1}N/2, pick one of these 4 possibilities uni-
formly at random:

cc Amplification with One NP Oracle Query Page 29 of 47 3

� ask the NPO oracle whether wt(x) ≥ 1,
and output the same answer

� ask the NPO oracle whether wt(x) ≥ 2,
and output the same answer

� ask the NPO oracle whether wt(y) ≥ 1,
and output the opposite answer

� ask the NPO oracle whether wt(y) ≥ 2,
and output the opposite answer

To achieve LO �∈ (
BPP

NP[1]
1/2+n−c

)O
for every constant c, we design

a valid O such that for every polynomial-time randomized algo-
rithm M , every polynomial-time nondeterministic algorithm M ′,
and every constant c, LO is not solved with advantage 1

2
+ n−c by

running M with oracle access to O and one query to the language
decided by M ′ with oracle access to O.

We enumerate the (M, M ′, c) triples in an arbitrary order, defin-
ing On for various input lengths n as we go along (finitely many at
a time). For each (M, M ′, c), we select some n such that On has not
been defined yet, and we use it to diagonalize against (M, M ′, c).
For all n′ �= n such that On′ has not been defined yet but running
M(1n) with M ′ (for the NPO oracle) might cause a query to a bit
of On′ , we define On′ to be an arbitrary valid input to fN ′ (where
N ′ = 2n′

). Now when we run M(1n) with M ′, both algorithms
have oracle access to the bits of On, and all other bits of O they
might access have already been fixed.

We claim that if M(1n) with M ′ outputs fN(On) with advan-
tage 1

2
+ n−c for all valid On, then we can turn the computation

into a BPP
NP[1]
1/2+n−c-type decision tree for fN : First, the decision tree

samples the same random string as M does. Then it adaptively
queries bits of On as M does. Then when M produces z and out,
the decision tree uses the same out and forms a DNF ϕ which eval-
uates M ′(z) as a function of On—for each possible witness, the
computation of M ′(z) is a deterministic decision tree that queries
bits of On, and it is a standard fact that the disjunction of these
trees (over all possible witnesses) can be expressed as a DNF. (Each
term in ϕ corresponds to a root-to-leaf path that outputs 1 in one
of these trees. Each positive literal is a query M ′ makes to On that

 3 Page 30 of 47 Thomas Watson cc

returns 1, and each negative literal is a query M ′ makes to On that
returns 0.)

Since M and M ′ run in time poly(n), this BPP
NP[1]
1/2+n−c-type

decision tree would have cost polylog(N), but Lemma 3.5 says
such a tree must have cost Ω(N/ logc N), which is a contradiction
if n is large enough. Thus, there exists an On such that M(1n) with
M ′ fails to compute LO(1n) = fN(On) with advantage 1

2
+n−c. We

fix this choice of On and move on to the next triple (M, M ′, c).

4. One-sided error

We now prove Theorem 1.2, restated here for convenience.

Theorem 4.1 (One-sided error, restated).

(i) RP
NP[1]
>1/2 ⊆ RP

NP[1]
1> .

(ii) RP
NP[1]
>0 ⊆ RP

NP[1]
1/2 ∩ RP

NP‖[2]
1> .

(iii) RP
NP[1]
1/2 �⊆ RP

NP[1]
>1/2 relative to an oracle.

We prove the inclusions (i) and (ii) in Section 4.1 and the separa-
tion (iii) in Section 4.2.

4.1. Inclusions. We prove (i) in Section 4.1.1 and then (ii) in
Section 4.1.2.

4.1.1. Proof of (i). For some constant c we have L ∈ RP
NP[1]
1/2+n−c ,

witnessed by a polynomial-time randomized algorithm M (taking
input x and coin tosses s ∈ {0, 1}r) and a language L′ ∈ NP. For

an arbitrary constant d, we wish to show L ∈ RP
NP[1]

1−2−nd .

Fix an input x. The first step is to sample a sequence of
m = O(n2c+d) many independent strings s1, . . . , sm ∈ {0, 1}r, so if
L(x) = 1 then with probability ≥ 1 − 2−nd

, the sequence is good
in the sense that on input x, M still has advantage strictly greater
than 1

2
when its coin tosses are chosen uniformly from the multi-

set {s1, . . . , sm}. Then we design a polynomial-time deterministic
algorithm which, given s1, . . . , sm, makes one NP oracle query and
outputs 1 if L(x) = 1 and s1, . . . , sm is good, and outputs 0 if

cc Amplification with One NP Oracle Query Page 31 of 47 3

L(x) = 0. Hence, over the random s1, . . . , sm,

P[output is 1]
{

≥ P[s1, . . . , sm is good]≥1−2−nd
if L(x)=1

=0 if L(x)=0
.

Henceforth, fix a sequence s1, . . . , sm, and let zh and outh : {0, 1}
→ {0, 1} be the query string and truth table produced by Msh(x)
(so the output is outh(L′(zh))). We assume w.l.o.g. that outh is
nonconstant and is hence either identity or negation.

If identity is more common among out 1, . . . , outm, then our
algorithm makes an NP oracle query to test whether there exists
an h such that outh = id and L′(zh) = 1, and outputs 1 if so and
0 otherwise. If L(x) = 1 and s1, . . . , sm is good, then there must
exist such an h (since the set of h’s for which Msh(x) outputs 1 has
size > m

2
and so must intersect the set of h’s for which outh = id).

If L(x) = 0 then there is no such h (since otherwise M(x) would
output 1 with positive probability).

If negation is at least as common as identity among out 1, . . . ,
outm, then our algorithm makes an NP oracle query to test whether
there does not exist an h such that outh = neg and L′(zh) = 0 (a
witness for the nonexistence of such an h consists of a witness for
L′(zh) = 1 for each h such that outh = neg), and outputs 0 if so and
1 otherwise. If L(x) = 1 and s1, . . . , sm is good, then there must
exist such an h (since the set of h’s for which Msh(x) outputs 1 has
size > m

2
and so must intersect the set of h’s for which outh = neg).

If L(x) = 0 then there is no such h (since otherwise M(x) would
output 1 with positive probability).

4.1.2. Proof of (ii). Let q ∈ {1, 2}. We show RP
NP[1]
>0 ⊆ RP

NP‖[q]
q/2>

(the argument is very similar to (i)), then later we show how to
strengthen the q = 1 case using a trick from Chang & Purini (2008).

For some constant c we have L ∈ RP
NP[1]
n−c , witnessed by a

polynomial-time randomized algorithm M (taking input x and coin
tosses s ∈ {0, 1}r) and a language L′ ∈ NP. For an arbitrary con-

stant d, we wish to show L ∈ RP
NP‖[q]
q/2−2−nd .

Fix an input x. The first step is to sample a sequence of
m = O(nc+d) many independent strings s1, . . . , sm ∈ {0, 1}r, so

 3 Page 32 of 47 Thomas Watson cc

if L(x) = 1 then with probability ≥ 1 − 2−nd
, the sequence is good

in the sense that M still has advantage strictly greater than 0 when
its coin tosses are chosen uniformly from the multiset {s1, . . . , sm}.
Then we design a polynomial-time randomized algorithm which,
given s1, . . . , sm, makes q nonadaptive NP oracle queries and out-
puts 1 with probability ≥ q

2
if L(x) = 1 and s1, . . . , sm is good, and

always outputs 0 if L(x) = 0. Hence, over the random s1, . . . , sm

and the other randomness of our algorithm,

P[output is 1]
{

≥ P[s1, . . . , sm is good] · q
2

≥ q
2

− 2−nd
if L(x) = 1

= 0 if L(x) = 0
.

Henceforth, fix a sequence s1, . . . , sm, and let zh and outh : {0, 1}
→ {0, 1} be the query string and truth table produced by Msh(x)
(so the output is outh(L′(zh))). We assume w.l.o.g. that outh is
nonconstant and is hence either identity or negation.

If q = 2 then our algorithm does the “id” NP oracle query
(∃h : outh = id and L′(zh) = 1 ?) and the “neg” NP oracle query
(¬∃h : outh = neg and L′(zh) = 0 ?). These two queries tell us
whether there exists an h for which Msh(x) outputs 1 (which is the
case if L(x) = 1 and s1, . . . , sm is good), so we output 1 if so and
0 otherwise.

If q = 1 then our algorithm picks one of the two queries with
probability 1

2
each, and outputs 1 iff the result of that query indi-

cates the existence of an h for which Msh(x) outputs 1. If L(x) = 1
and s1, . . . , sm is good, then at least one of the two queries will
cause us to output 1.

To strengthen the q = 1 result to RP
NP[1]
>0 ⊆ RP

NP[1]
1/2 , suppose

the bit length of witnesses for L′ is nb, and then use d = b + 1 and
consider the following algorithm: Pick uniformly random h ∈ [m]
and w ∈ {0, 1}nb

; if outh = id and w witnesses L′(zh) = 1, then
output 1, otherwise do the “id” query with probability 1

2
− 2−nd

and do the “neg” query with probability 1
2
+2−nd

(and output 1 iff
the query indicates the existence of an h for which Msh(x) outputs
1). If L(x) = 0, then this still always outputs 0. If L(x) = 1 and
s1, . . . , sm is good, then at least one of the following holds.

cc Amplification with One NP Oracle Query Page 33 of 47 3

� There is an h with outh = id and L′(zh) = 1, in which case we

find one with probability ≥ 1
m

· 2−nb ≥ 2−nd+2 in the first phase

and thus output 1 with probability ≥ 2−nd+2 +(1−2−nd+2)(1
2
−

2−nd
) ≥ 1

2
+ 2−nd

because of the “id” query.

� There is an h with outh = neg and L′(zh) = 0, in which case

we output 1 with probability ≥ 1
2

+ 2−nd
because of the “neg”

query.

Either way, overall we have P[output is 1] ≥ P[s1, . . . , sm is good] ·
(1
2

+ 2−nd
) ≥ 1

2
if L(x) = 1.

4.2. Separation: Proof of (iii). We prove the corresponding

decision tree complexity separation RP
NP[1]dt
1/2 �⊆ RP

NP[1]dt
>1/2 ; the rela-

tivized separation follows routinely from this by the same approach
as in Section 3.2.3.

Let wt(·) refer to Hamming weight. Define the partial function
f : {0, 1}n → {0, 1} that interprets its input as (x, y) ∈ {0, 1}n/2 ×
{0, 1}n/2, such that

f(x, y) =

{
1 if wt(x) = wt(y) ≤ 1

0 if wt(x) = 0 and wt(y) = 1
.

Lemma 4.2. RP
NP[1]dt
1/2 (f) ≤ 1.

Lemma 4.3. RP
NP[1]dt
1/2+δ (f) ≥ Ω(δn) for every δ(n).

The separation follows by taking δ = log−c n for any constant
c.

Proof (of Lemma 4.2). Given (x, y):

� with probability 1
2
, output 1 iff wt(x) ≥ 1,

� with probability 1
2
, output 0 iff wt(y) ≥ 1.

This has cost 1 (since the or function is a width-1 DNF), and it
outputs 1 with probability 1

2
if f(x, y) = 1 and with probability 0

if f(x, y) = 0. �

 3 Page 34 of 47 Thomas Watson cc

Proof (of Lemma 4.3). By the minimax principle, it suffices to
show that for some distribution on 1-inputs (x, y) to f , every cost-
o(δn) PNP[1]-type decision tree T has either P[T (x, y) = 1] < 1

2
+ δ

over this distribution or T (x, y) = 1 for some 0-input (x, y), where
T (x, y) denotes the output produced after T receives the answer
to its DNF query. Let u be the leaf reached after seeing only 0’s,
and say u is labeled with DNF ϕ and function out : {0, 1} → {0, 1}
(so if (x, y) leads to u then T (x, y) = out(ϕ(x, y))). W.l.o.g., out is
nonconstant and ϕ contains no terms with multiple positive literals
from x or from y, since such terms would never accept a valid input
to f .

We generate the distribution on 1-inputs (x, y) as follows. With
probability 1

2
let x = y = 0n/2, and with probability 1

2
let x and

y be independent uniformly random weight-1 strings. If out = id
then either ϕ has a term with no positive literals, in which case
some 0-input leads to u and is accepted by ϕ, or every term has
a positive literal, in which case 0n leads to u and is rejected by ϕ
and so P[T (x, y) = 1] ≤ P[(x, y) �= 0n] = 1

2
< 1

2
+ δ. Now assume

out = neg and there is no 0-input that leads to u and is rejected
by ϕ. Note that if a 0-input (0n/2, y) leads to u and we choose
an arbitrary term of ϕ that accepts (0n/2, y), then with probability
≥ 1 − o(δ) the 1 that is placed in a uniformly random weight-1 x
avoids both this term and all the bits queried on the path to u, in
which case (x, y) continues to lead to u and be accepted by that
term and hence by ϕ, so T (x, y) = 0. Thus,

P[T (x, y) = 1]

≤ 1
2

+ 1
2
P
[
T (x, y) = 1

∣
∣ wt(x) = wt(y) = 1

]

≤ 1
2

+ 1
2

(
P
[
(0n/2, y) does not lead to u

∣
∣ wt(y) = 1

]

+P
[
T (x, y) = 1

∣
∣ wt(x) = wt(y) = 1 and
(0n/2, y) leads to u

])

≤ 1
2

+ 1
2
(o(δ) + o(δ)) < 1

2
+ δ.

�

cc Amplification with One NP Oracle Query Page 35 of 47 3

5. Zero-sided error

We now prove Theorem 1.3, restated here for convenience.

Theorem 5.1 (Zero-sided error, restated). For integers 1 ≤ q ≤
k ≤ 4:

(i) If k = 4: ZPP
NP[1]
>0 ⊆ ZPP

NP‖[q]
q/k> .

(ii) If k ≤ 3: ZPP
NP[1]
>1/(k+1) ⊆ ZPP

NP‖[q]
q/k> .

(iii) ZPP
NP[1]
1/k �⊆ ZPP

NP[1]
>1/k relative to an oracle.

Moreover, the “q/k>” in the inclusion subscripts can be improved
to “q/k” if q < k and k ≥ 3.

We prove the inclusions (i) and (ii) in Section 5.1 and the separa-
tions (iii) in Section 5.2.

5.1. Inclusions. Straightforwardly generalizing the proof that
ZPP

NP[1]
>0 ⊆ ZPP

NP[1]
1/4 in Chang & Purini (2008) yields (i), but we

take a different tack by showing in Section 5.1.1 that (i) follows
directly from Theorem 1.2. We prove (ii) from first principles in
Section 5.1.2; our proof for the case k = 1 is equivalent to the one
in Chang & Purini (2008), but we include it for completeness.

5.1.1. Proof of (i). Let L ∈ ZPP
NP[1]
>0 ⊆ RP

NP[1]
>0 . By Theo-

rem 1.2 and closure of ZPP
NP[1]
>0 under complement,

L ∈ RP
NP[1]
1/2 by some algorithm M1,

L ∈ RP
NP‖[2]
1> by some algorithm M2,

L ∈ RP
NP[1]
1/2 by some algorithm M 1,

L ∈ RP
NP‖[2]
1> by some algorithm M 2.

We let each of these four M -algorithms refer to the entire com-
putation, including the NP oracle queries, which we elide for con-
venience. (Note that M i does not mean “complement of M i”—it
is a different algorithm.) We assume M2 and M 2 have advantage
≥ 1 − 2−nd

for an arbitrary constant d. Furthermore, we assume

 3 Page 36 of 47 Thomas Watson cc

all four algorithms have been modified to output ⊥ instead of 0,
and M 1 and M 2 have been modified to output 0 instead of 1.

If q = 1: L ∈ ZPP
NP[1]
1/4 by running M1 or M 1 with probability 1

2

each.

If q = 2: L ∈ ZPP
NP‖[2]
1/2 by running M1 and M 1, and if one of

them outputs a bit, outputting that bit or ⊥ otherwise.

If q = 4: L ∈ ZPP
NP‖[4]
1> by running M2 and M 2, and if one of

them outputs a bit, outputting that bit or ⊥ otherwise.

If q = 3: L ∈ ZPP
NP‖[3]
3/4> by running M1 and M 2 with probabil-

ity 1
2
, or M2 and M 1 with probability 1

2
, and if one

of them outputs a bit, outputting that bit or ⊥ other-
wise. This falls slightly short of our promise of showing

L ∈ ZPP
NP‖[3]
3/4 , but that can be fixed by noting that

the proof of Theorem 1.2 actually shows that M1 and
M 1 can have advantage ≥ 1

2
+ 2−ne

for some constant
e depending on L. Then taking d ≥ e ensures we get
advantage ≥ 1

2

(
1
2

+ 2−ne)
+ 1

2

(
1 − 2−nd) ≥ 3

4
.

5.1.2. Proof of (ii). We just prove ZPP
NP[1]
>1/(k+1) ⊆ ZPP

NP‖[q]
q/k> ;

the “moreover” part follows by exactly the same trick (due to

Chang & Purini (2008)) for strengthening RP
NP[1]
>0 ⊆ RP

NP[1]
1/2> to

RP
NP[1]
>0 ⊆ RP

NP[1]
1/2 , which is described in Section 4.1.2.

For some constant c we have L ∈ ZPP
NP[1]
1/(k+1)+n−c , witnessed by

a polynomial-time randomized algorithm M (taking input x and
coin tosses s ∈ {0, 1}r) and a language L′ ∈ NP. For an arbitrary

constant d, we wish to show L ∈ ZPP
NP‖[q]
q/k−2−nd .

Fix an input x. The first step is to sample a sequence of m =
O(n2c+d) many independent strings s1, . . . , sm ∈ {0, 1}r, so with
probability ≥ 1 − 2−nd

, the sequence is good in the sense that on
input x, M still has advantage strictly greater than 1

k+1
when its

coin tosses are chosen uniformly from the multiset {s1, . . . , sm}.
Then we design a polynomial-time randomized algorithm which,
given a good sequence, outputs L(x) with probability ≥ q

k
after

cc Amplification with One NP Oracle Query Page 37 of 47 3

making q nonadaptive NP oracle queries, and which has zero-sided
error for all sequences (good and bad). Hence, over the random
s1, . . . , sm and the other randomness of our algorithm,

P[output is L(x)] ≥ P
[
output is L(x)

∣
∣ s1, . . . , sm is good

]

− P[s1, . . . , sm is bad]

≥ q
k

− 2−nd
.

Henceforth, fix a good sequence s1, . . . , sm, and let zh and
outh : {0, 1} → {0, 1, ⊥} be the query string and truth table pro-
duced by Msh(x) (so the output is outh(L′(zh))). We assume
w.l.o.g. that outh is nonconstant. If there is an h such that outh ∈
{id, neg}, then our algorithm simply uses the NP oracle to evalu-
ate L′(zh) and then outputs outh(L′(zh)) = L(x). Otherwise, each
outh is one of the four functions outab (for ab ∈ {0, 1}2) that maps
a to b and 1 − a to ⊥:

out00 out01 out10 out11
0 0 1 ⊥ ⊥
1 ⊥ ⊥ 0 1

Now [m] is partitioned into four sets H00 ∪ H01 ∪ H10 ∪ H11 where
Hab = {h ∈ [m] : outh = outab}. Let

H = {h ∈ [m] : Msh(x) outputs L(x)}

and note that |H| > m
k+1

by the assumption that s1, . . . , sm is
good. If h ∈ H ∩ Hab then Msh(x) outputs b, so if we detect that
H ∩Hab �= ∅ then we can safely output b. Note that H ⊆ H0b ∪H1b

for b = L(x).
For each ab ∈ {0, 1}2 consider the “ab” query, which asks

whether H ∩ Hab �= ∅:

∃h : outh = outab and L′(zh) = a ?

If a = 1 then the “ab” query can be expressed as an NP oracle
query: a witness consists of an h with outh = outab and a witness
for L′(zh) = 1. If a = 0 then the “ab” query can be expressed as
the negation of an NP oracle query: a witness for the nonexistence

 3 Page 38 of 47 Thomas Watson cc

of such an h consists of a witness for L′(zh) = 1 for each h such that
outh = outab. We say the “ab” query returns yes iff it indicates the
existence of an h ∈ H ∩ Hab (i.e., the NP oracle returns the bit a).
If the “ab” query returns yes, we can safely output b since there
exists an h such that outh(L′(zh)) = outab(a) = b = L(x).

Our algorithm is:

1. Identify a set P ⊆ {0, 1}2 of size k for which there is guar-
anteed to exist an ab ∈ P such that the “ab” query would
return yes.

2. Pick a uniformly random Q ⊆ P of size q.
3. For each ab ∈ Q do the “ab” query and output b if it returns

yes.
4. Finally output ⊥ if all queries returned no.

This outputs L(x) with probability ≥ q
k
. We just need to prove

that we can indeed find such a P in step 1.

If k = 3: Let P contain all ab’s except the one with the small-
est Hab (which has size ≤ m

4
), breaking ties arbitrarily.

Then H ∩ Hab �= ∅ for at least one ab ∈ P assuming
|H| > m

4
.

If k = 2: If |H00 ∪H10| ≤ m
3

then L(x) = 1 assuming |H| > m
3
, so

we can let P = {01, 11}. Similarly, if |H01 ∪ H11| ≤ m
3

then we can let P = {00, 10}. (Although we know L(x)
in these cases assuming s1, . . . , sm is good, we must still
do queries to ensure zero-sided error if s1, . . . , sm is bad.)
Otherwise, the smaller of H00, H10 has size ≤ m

3
, and the

smaller of H01, H11 has size ≤ m
3
, so we can let P contain

the two ab’s corresponding to the larger of H00, H10 and
the larger of H01, H11, breaking ties arbitrarily.

If k = 1: If |H00 ∪ H10| ≤ m
2

then L(x) = 1 assuming |H| > m
2
,

and furthermore the smaller of H01, H11 has size ≤ m
2
,

so we can let P contain the ab corresponding to the
larger of H01, H11. Similarly, if |H01 ∪H11| < m

2
then we

can let P contain the ab corresponding to the larger of
H00, H10.

cc Amplification with One NP Oracle Query Page 39 of 47 3

5.2. Separations: Proof of (iii). We prove the correspond-

ing decision tree complexity separations ZPP
NP[1]dt
1/k �⊆ ZPP

NP[1]dt
>1/k ;

the relativized separations follow routinely from these by the same
approach as in Section 3.2.3.4

Henceforth, fix the constant k ∈ {2, 3, 4}. Define the partial
function f : {0, 1}n → {0, 1} that interprets its input as (a, b, x) ∈
{0, 1}√

n × {0, 1}√
n × {0, 1}n−2

√
n, viewing x as a

√
n × (

√
n − 2)

matrix and letting xi be the ith row, such that for B ∈ {0, 1},

f(a, b, x) = B if outaibi
(or(xi)) ∈ {B,⊥} for all i, and

outaibi
(or(xi)) = B for at least

√
n

k
many i’s

where outaibi
was defined in Section 5.1.2.

Lemma 5.2. ZPP
NP[1]dt
1/k (f) ≤ 3.

Proof. Pick a uniformly random i ∈ [√
n
]
, query the bits ai

and bi and the DNF or(xi), and output outaibi
(or(xi)). The cost

has a contribution of 2 from querying ai and bi, and 1 from the
width of or. �

Lemma 5.3. ZPP
NP[1]dt
1/k+δ (f) ≥ Ω(δ

√
n) for every δ(n).

The separation follows by taking δ = log−c n for any constant
c.

We prove Lemma 5.3 for the rest of this section. By the mini-
max principle, it suffices to show that for some distribution on valid
inputs (a, b, x) to f , every cost-o(δ

√
n) PNP[1]-type decision tree T

has either P[T (a, b, x) = f(a, b, x)] < 1
k

+ δ over this distribution
or T (a, b, x) �∈ {f(a, b, x), ⊥} for some valid input (a, b, x), where
T (a, b, x) denotes the output produced after T receives the answer
to its DNF query.

4For the k = 2 case of (iii), the slightly weaker relativized separation
ZPP

NP[1]
1/2> �⊆ ZPP

NP[1]
>1/2 follows from the facts that AM ∩ coAM ⊆ ZPP

NP[1]
1/2> and

ZPP
NP[1]
>1/2 ⊆ PP relativize (Göös et al. 2018) and AM ∩ coAM �⊆ PP relative to

an oracle (Vereshchagin 1995).

 3 Page 40 of 47 Thomas Watson cc

For a leaf u, say u is labeled with DNF ϕu and function outu :
{0, 1} → {0, 1, ⊥}, so if (a, b, x) leads to u then

T (a, b, x) = outu(ϕu(a, b, x)).

W.l.o.g., outu is nonconstant, and no term of ϕu is violated by the
bits read along the path to u, and if the path to u reads any bit
from ai, bi, xi then it reads both ai and bi, and if any term of ϕu has
a literal using a variable from ai, bi, xi then that term has literals
using both ai and bi (at most tripling the cost of T). We call a leaf
u blind iff the path to u reads no 1’s from x.

Claim 5.4. If there exists a blind leaf u such that outu is identity
or negation, then T (a, b, x) �∈ {f(a, b, x), ⊥} for some valid input
(a, b, x).

Proof. We show that if u is blind then there exists an (a, b, x)
that leads to u such that ϕu(a, b, x) �= f(a, b, x), which proves the
claim for identity. By symmetry, interchanging the roles of 0 and
1 proves the claim for negation.

If every term of ϕu contains ai ∧ bi ∧ xij for some i and j, then
construct the following input: For each i:

� If the path to u reads aibi ∈ {10, 01, 11} then let aibi be these
bits, and let xi be all-0’s.

� If the path to u reads aibi = 00 then let aibi be these bits, and
let xi be all-0’s except for a 1 in a location not read on the path
to u.

� If the path to u does not read aibi (or any bit of xi) then let
aibi = 01, and let xi be all-0’s.

This (a, b, x) leads to u (since u is blind) and ϕu(a, b, x) = 0 and
f(a, b, x) = 1 (since the path to u touches o(δ

√
n) many i’s and

hence outaibi
(or(xi)) = 1 for (1 − o(δ))

√
n ≥

√
n

k
many i’s, namely

at least those with aibi = 01).
Otherwise, there exists a term C of ϕu such that for every i,

if C contains ai ∧ bi then it does not contain xij for any j. Then
construct the following input: For each i:

cc Amplification with One NP Oracle Query Page 41 of 47 3

� If C contains ai ∧ bi or ai ∧ bi or ai ∧ bi then let aibi and any xij

variables mentioned in C be set consistent with satisfying C,
and let all other bits of xi be 0’s except for a 1 in a location not
read on the path to u and not mentioned in C (though the latter
is not necessary if C already contains a positive xij literal).

� If the path to u reads aibi ∈ {10, 01, 00} but the previous case
does not hold, then let aibi be these bits, and let xi be all-0’s
except for a 1 in a location not read on the path to u.

� If C contains ai ∧ bi or the path to u reads aibi = 11 then let
aibi = 11, and let xi be all-0’s.

� If neither C nor the path to u mentions/reads aibi (or any bit
of xi) then let aibi = 10, and let xi have a 1 in any location.

This (a, b, x) leads to u (since u is blind) and ϕu(a, b, x) = 1 (since
C is satisfied) and f(a, b, x) = 0 (since C and the path to u touch
o(δ

√
n) many i’s and hence outaibi

(or(xi)) = 0 for (1− o(δ))
√

n ≥√
n

k
many i’s, namely at least those with aibi = 10). �
Henceforth, assume T (a, b, x) ∈ {f(a, b, x), ⊥} for all valid in-

puts (a, b, x), so by Claim 5.4, outu ∈ {out00, out01, out10, out11} if
u is a blind leaf.

If k = 4: We generate the distribution on valid inputs (a, b, x) as

follows. With probability 1, let aibi = 00 for the first
√

n
4

i’s, aibi =

01 for the next
√

n
4

i’s, aibi = 10 for the next
√

n
4

i’s, and aibi = 11 for

the last
√

n
4

i’s, and let x00, x01, x10, x11 ∈ {0, 1}(
√

n/4)×(
√

n−2) refer to
the corresponding groups of rows of x. Define w00, w01, w10, w11 ∈
{0, 1}(

√
n/4)×(

√
n−2) by letting each row independently have a single

1 in a uniformly random column, and define 0̂ as the
√

n
4

×(
√

n−2)
all-0 matrix. With probability 1

4
each, let x be one of:

0̂ w01 0̂ 0̂ (so f(a, b, x) = 0),

w00 w01 w10 0̂ (so f(a, b, x) = 0),

w00 0̂ 0̂ 0̂ (so f(a, b, x) = 1),

w00 w01 0̂ w11 (so f(a, b, x) = 1).

Let u denote the blind leaf reached after seeing only 0’s in x and
seeing bits of a and b fixed as in our distribution, and let ϕ = ϕu

 3 Page 42 of 47 Thomas Watson cc

and out = outu. Let w denote (w00, w01, w10, w11), and call w good
iff:

� for each of the four possibilities of x, (a, b, x) leads to u, and
� ϕ

(
a, b, w00 w01 0̂ w11

) ≥ ϕ
(
a, b, 0̂ w01 0̂ 0̂

)
and

ϕ
(
a, b, w00 w01 w10 0̂

) ≥ ϕ
(
a, b, w00 0̂ 0̂ 0̂

)
.

We claim that

(1) P[w is bad] < δ, and

(2) P
[
T (a, b, x) = f(a, b, x)

∣
∣ w is good

] ≤ 1
4
,

from which it follows that

P[T (a, b, x) = f(a, b, x)] ≤ P
[
T (a, b, x) = f(a, b, x)

∣
∣ w is good

]

+ P[w is bad]

< 1
4

+ δ.

We argue claim (1). Since the path to u queries o(δ
√

n) loca-
tions of x, each of which has a 1√

n−2
probability of having a 1 in w,

by a union bound with probability ≥ 1 − o(δ) > 1 − δ
2

each of the
1’s placed throughout w avoids these locations, in which case the
first bullet holds in the definition of good. For the second bullet,
if we condition on ϕ

(
a, b, 0̂ w01 0̂ 0̂

)
= 1 and choose an arbitrary

term of ϕ that accepts
(
a, b, 0̂ w01 0̂ 0̂

)
, then since the term has

width o(δ
√

n), with probability ≥ 1 − o(δ) all the 1’s in w00 and
w11 avoid this term, in which case the term continues to accept(
a, b, w00 w01 0̂ w11

)
and so ϕ

(
a, b, w00 w01 0̂ w11

)
= 1. Thus, the

first part of the second bullet, and similarly also the second part,
holds with probability ≥ 1 − o(δ) > 1 − δ

4
. By a union bound, the

second bullet holds with probability > 1 − δ
2
, so finally the two

bullets hold simultaneously with probability > 1 − δ.
We argue claim (2). Condition on any particular good w. For

each of the four possibilities of x, out(ϕ(a, b, x)) = T (a, b, x) ∈
{f(a, b, x), ⊥}.

� If out = out00 then T (a, b, x) = ⊥ for both 1-inputs, and T
(
a, b,

w00 w01 w10 0̂
)

= ⊥ also since otherwise ϕ
(
a, b, w00 0̂ 0̂ 0̂

) ≤
ϕ
(
a, b, w00 w01 w10 0̂

)
= 0, in which case T

(
a, b, w00 0̂ 0̂ 0̂

)
= 0 �=

1 = f
(
a, b, w00 0̂ 0̂ 0̂

)
.

cc Amplification with One NP Oracle Query Page 43 of 47 3

� If out = out01 then T (a, b, x) = ⊥ for both 0-inputs, and T
(
a, b,

w00 w01 0̂ w11
)

= ⊥ also since otherwise ϕ
(
a, b, 0̂ w01 0̂ 0̂

) ≤
ϕ
(
a, b, w00 w01 0̂ w11

)
= 0, in which case T

(
a, b, 0̂ w01 0̂ 0̂

)
= 1 �=

0 = f
(
a, b, 0̂ w01 0̂ 0̂

)
.

� If out = out10 then T (a, b, x) = ⊥ for both 1-inputs, and T
(
a, b,

0̂ w01 0̂ 0̂
)

= ⊥ also since otherwise ϕ
(
a, b, w00 w01 0̂ w11

) ≥
ϕ
(
a, b, 0̂ w01 0̂ 0̂

)
= 1, in which case T

(
a, b, w00 w01 0̂ w11

)
= 0 �=

1 = f
(
a, b, w00 w01 0̂ w11

)
.

� If out = out11 then T (a, b, x) = ⊥ for both 0-inputs, and T
(
a, b,

w00 0̂ 0̂ 0̂
)

= ⊥ also since otherwise ϕ
(
a, b, w00 w01 w10 0̂

) ≥
ϕ
(
a, b, w00 0̂ 0̂ 0̂

)
= 1, in which case T

(
a, b, w00 w01 w10 0̂

)
= 1 �=

0 = f
(
a, b, w00 w01 w10 0̂

)
.

The arguments for k = 3 and k = 2 are similar to, but a little
simpler than, the argument for k = 4.

If k = 3: We generate the distribution on valid inputs (a, b, x) as

follows. With probability 1, let aibi = 00 for the first
√

n
3

i’s, aibi =

01 for the next
√

n
3

i’s, and aibi = 10 for the last
√

n
3

i’s, and let

x00, x01, x10 ∈ {0, 1}(
√

n/3)×(
√

n−2) refer to the corresponding groups
of rows of x. Define w00, w01, w10 ∈ {0, 1}(

√
n/3)×(

√
n−2) by letting

each row independently have a single 1 in a uniformly random
column, and define 0̂ as the

√
n
3

× (
√

n − 2) all-0 matrix. With
probability 1

3
each, let x be one of:

0̂ w01 0̂ (so f(a, b, x) = 0),

w00 0̂ 0̂ (so f(a, b, x) = 1),

w00 w01 w10 (so f(a, b, x) = 0).

Let u denote the blind leaf reached after seeing only 0’s in x and
seeing bits of a and b fixed as in our distribution, and let ϕ = ϕu

and out = outu. Let w denote (w00, w01, w10), and call w good iff:

� for each of the three possibilities of x, (a, b, x) leads to u, and
� ϕ

(
a, b, w00 w01 w10

) ≥ ϕ
(
a, b, w00 0̂ 0̂

)
.

 3 Page 44 of 47 Thomas Watson cc

We claim that

(1) P[w is bad] < δ, and

(2) P
[
T (a, b, x) = f(a, b, x)

∣
∣ w is good

] ≤ 1
3
,

from which it follows that

P[T (a, b, x) = f(a, b, x)] ≤ P
[
T (a, b, x) = f(a, b, x)

∣
∣ w is good

]

+ P[w is bad]

< 1
3

+ δ.

The argument for claim (1) is essentially identical to the cor-
responding argument from the case k = 4, so we omit it.

We argue claim (2). Condition on any particular good w. For
each of the three possibilities of x, out(ϕ(a, b, x)) = T (a, b, x) ∈
{f(a, b, x), ⊥}.

� If out ∈ {out01, out11} then T (a, b, x) = ⊥ for both 0-inputs.
� If out = out00 then T

(
a, b, w00 0̂ 0̂

)
= ⊥ and hence also T

(
a, b,

w00 w01 w10
)

= ⊥ since ϕ
(
a, b, w00 w01 w10

) ≥ ϕ
(
a, b, w00 0̂ 0̂

)
=

1.
� If out = out10 then T

(
a, b, w00 0̂ 0̂

)
= ⊥, and T

(
a, b, 0̂ w01 0̂

)
=

⊥ also since otherwise an argument completely analogous to the
proof of Claim 5.4 would show there exists a 1-input (a′, b′, x′)
that leads to u and ϕ(a′, b′, x′) ≥ ϕ

(
a, b, 0̂ w01 0̂

)
= 1, in which

case T (a′, b′, x′) = 0.

If k = 2: We generate the distribution on valid inputs (a, b, x)

as follows. With probability 1, let aibi = 00 for the first
√

n
2

i’s and

aibi = 01 for the last
√

n
2

i’s, and let x00, x01 ∈ {0, 1}(
√

n/2)×(
√

n−2)

refer to the corresponding groups of rows of x. Define w00, w01 ∈
{0, 1}(

√
n/2)×(

√
n−2) by letting each row independently have a single

1 in a uniformly random column, and define 0̂ as the
√

n
2

×(
√

n−2)
all-0 matrix. With probability 1

2
each, let x be one of:

0̂ w01 (so f(a, b, x) = 0), w00 0̂ (so f(a, b, x) = 1).

cc Amplification with One NP Oracle Query Page 45 of 47 3

Let u denote the blind leaf reached after seeing only 0’s in x and
seeing bits of a and b fixed as in our distribution, and let ϕ = ϕu

and out = outu. Let w denote (w00, w01), and call w good iff for
both possibilities of x, (a, b, x) leads to u. We claim that

(1) P[w is bad] < δ, and

(2) P
[
T (a, b, x) = f(a, b, x)

∣
∣ w is good

] ≤ 1
2
,

from which it follows that

P[T (a, b, x) = f(a, b, x)] ≤ P
[
T (a, b, x) = f(a, b, x)

∣
∣ w is good

]

+ P[w is bad]

< 1
2

+ δ.

The argument for claim (1) is as in the k = 4 and k = 3 cases.
For claim (2), if out ∈ {out01, out11} then T

(
a, b, 0̂ w01

)
= ⊥, and

if out ∈ {out00, out10} then T
(
a, b, w00 0̂

)
= ⊥.

6. Open problems

For all integers k ≥ 1, we proved that BPP
NP[1]
>1/(k+1) ⊆ BPP

NP[1]
1/k>

and BPP
NP[1]
1/k �⊆ BPP

NP[1]
>1/k relative to an oracle, but it remains open

whether BPP
NP[1]
>1/(k+1) ⊆ BPP

NP[1]
1/k , and we do not have a conjecture

about whether this should hold.
We conjecture that the third bullet in Theorem 1.3 also holds

for q > 1, which would mean all the inclusions are essentially
tight, leading to the following ideal statement (which echoes the
statement of Theorem 1.1).

Conjecture 6.1 (Zero-sided error). For integers 1 ≤ q ≤ k ≤ 4:

� If k ≤ 3: ZPP
NP[1]
>1/(k+1) ⊆ ZPP

NP‖[q]
q/k> and

ZPP
NP[1]
1/k �⊆ ZPP

NP‖[q]
>q/k relative to an oracle.

� If k = 4: ZPP
NP[1]
>0 ⊆ ZPP

NP‖[q]
q/k> and

ZPP
NP[1]
1/k �⊆ ZPP

NP‖[q]
>q/k relative to an oracle.

 3 Page 46 of 47 Thomas Watson cc

Acknowledgements

I thank anonymous referees for their comments. This work was
supported by NSF grants CCF-1657377 and CCF-1942742. An
extended abstract of this paper was published as Watson (2019).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

References

Richard Beigel (1991). Bounded Queries to SAT and the Boolean
Hierarchy. Theoretical Computer Science 84(2), 199–223.

Jin-Yi Cai & Venkatesan Chakaravarthy (2006). On Zero Error
Algorithms Having Oracle Access to One Query. Journal of Combina-
torial Optimization 11(2), 189–202.

Richard Chang & Suresh Purini (2008). Amplifying ZPPSAT[1]

and the Two Queries Problem. In Proceedings of the 23rd Conference
on Computational Complexity (CCC), 41–52. IEEE.

Mika Göös, Toniann Pitassi & Thomas Watson (2018). The
Landscape of Communication Complexity Classes. Computational
Complexity 27(2), 245–304.

Pankaj Rohatgi (1995). Saving Queries with Randomness. Journal
of Computer and System Sciences 50(3), 476–492.

Larry Stockmeyer (1985). On Approximation Algorithms for #P.
SIAM Journal on Computing 14(4), 849–861.

Rahul Tripathi (2010). The 1-Versus-2 Queries Problem Revisited.
Theory of Computing Systems 46(2), 193–221.

Nikolai Vereshchagin (1995). Lower Bounds for Perceptrons Solving
some Separation Problems and Oracle Separation of AM from PP. In
Proceedings of the 3rd Israel Symposium on Theory of Computing and
Systems (ISTCS), 46–51. IEEE.

Nikolai Vereshchagin (1999). Relativizability in Complexity The-
ory. In Provability, Complexity, Grammars, volume 192 of AMS Trans-
lations, Series 2, 87–172. American Mathematical Society.

cc Amplification with One NP Oracle Query Page 47 of 47 3

Thomas Watson (2019). Amplification with One NP Oracle Query.
In Proceedings of the 46th International Colloquium on Automata,
Languages, and Programming (ICALP), Track A, 96:1–96:13. Schloss
Dagstuhl.

Thomas Watson (2020). A ZPPNP[1] Lifting Theorem. ACM Trans-
actions on Computation Theory 12(4), 27:1–27:20.

Manuscript received 19 April 2019

Thomas Watson

Department of Computer Science,
University of Memphis,
Memphis
USA
Thomas.Watson@memphis.edu

	Amplification with One NP Oracle Query
	Introduction
	Definitions
	Time complexity
	Decision tree complexity

	Two-sided error
	Inclusions
	Proof of (i): q=1
	Proof of (i): q>1
	Proof of (ii): q=1
	Proof of (ii): q>1

	Separations
	Proof of (iii)
	Proof of (iv)
	Decision tree separations imply relativized separations

	One-sided error
	Inclusions
	Proof of (i)
	Proof of (ii)

	Separation: Proof of (iii)

	Zero-sided error
	Inclusions
	Proof of (i)
	Proof of (ii)

	Separations: Proof of (iii)

	Open problems
	Acknowledgements

