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“Glitches”—transient noise artifacts in the data collected by gravitational wave interferometers like
the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo—are an ever-present obstacle
for the search and characterization of gravitational wave signals. With some having morphology similar
to high-mass, high-mass ratio, and extreme-spin binary black hole events, they limit sensitivity to such
sources. They can also act as a contaminant for all sources, requiring targeted mitigation before
astrophysical inferences can be made. We propose a data-driven, parametric model for frequently
encountered glitch types using probabilistic principal component analysis. As a noise analog of
parametrized gravitational wave signal models, it can be easily incorporated into existing search and
detector characterization techniques. We have implemented our approach with the open-source glitschen
package. Using LIGO’s currently most problematic glitch types, the “blip” and “tomte,” we demonstrate
that parametric models of modest dimension can be constructed and used for effective mitigation in both
frequentist and Bayesian analyses.
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I. INTRODUCTION

Detecting gravitational waves (GWs) is an immense
challenge, requiring the construction and monitoring of
the most sensitive interferometers ever built [1]. The strain
signal from a loud binary black hole (BBH) inspiral
typically perturbs the detectors’ arm lengths to one part
in 1021. Managing the noise background is an overwhelm-
ing portion of that challenge: an earthquake in another
hemisphere, a passing vehicle, a cosmic ray hit, a thirsty
raven [2], or scattered light from a blinking light-emitting
diode can all bring the data well short of the level necessary
for detection [3]. In spite of a myriad of obstacles, the
LIGO-Virgo Collaboration has detected 58 confident
compact binary coalescence (CBC) events as of the end
of the first half of the third observing run (O3a) [4,5]. Into
O4 these observatories may see confident CBC signals
upwards of once a day [6]. Upgrades to the detectors
will improve sensitivity and the addition of the Kamioka
Gravitational Wave Detector (KAGRA) to the LIGO-
Virgo-KAGRA network (LVK) will improve astrophysical
parameter estimation (PE) and sky localization. The LVK
still expects serious challenges overcoming the noise
background, carefully examining more near-threshold trig-
gers, and keeping all the pipelines going with the rapid
acquisition of a larger volume of data.
In Advanced LIGO data there are some transient noise

sources for which no physical cause has been identified [7].
These noise sources have the potential to impact

astrophysical searches significantly [8]. In particular, high-
mass and high-mass-ratio BBH searches are affected, in
which the astrophysical hypothesis predicts a short-duration
signal sweeping up into the sensitive frequency bands of the
detectors near merger. Blip glitches and the lower-frequency,
longer-duration tomte glitches are glitch types that are
capable of masquerading as these high-mass CBCs. These
occur on the order of 1=h [7] but sometimes much more
frequently, so the probability of coincidence in multiple
detectors is non-negligible. Coincident or nearly coincident
glitches can confuse search pipelines that strongly rely on
coherence between detectors to determine if a trigger is
astrophysical. Worse, the effect on the ranking statistic,
established by time-sliding data streams from multiple
detectors to establish false-alarm rates (FARs) [9], is affected
significantly by the presence of these glitches in the back-
ground, effectively down-ranking many events. There is
evidence that these glitches grow louder and more prevalent
with increasing sensitivity [10]. Blips and tomtes all but
eliminate our ability to evaluate high-mass, extreme-mass-
ratio, and extreme-spin single-detector triggers [11] from a
confident astrophysical perspective because the data are
contaminated with Oð104Þ loud glitches.
GravitySpy [12] is a pipeline developed to classify glitch

types. It leverages citizen science with an image recognition
neural network, specifically trained on q transforms, which
display power in time-frequency pixels [13]. Thanks to
these efforts, there are now over 106 glitches classified,
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each with an associated confidence metric and SNR [12].
GravitySpy itself can be used to effectively distinguish
different types of glitches from each other, but it cannot be
used to distinguish signal from glitch, or to subtract glitches
from data. For this we seek a parametric, generative model
for common glitch types. Barring the discovery and
mitigation of possible environmental, electronic, or instru-
mental causes [14–16] for these problematic classes of
glitch, distinction between glitchlike astrophysical events
and BBH signals that resemble common and problematic
glitch types may be our only tractable method for opening
up the high-mass and high-mass-ratio region of CBC
search parameter space.
With the glitschen package, we propose a data-driven,

easy to use, and computationally cheap framework for the
modeling of short-duration transient glitches. Our model
uses an analytical maximum likelihood (ML) estimation
approach to fit a probabilistic principal component analysis
(PPCA) model to all of the training data, operating under
the hypothesis of a transient glitch superimposed on
Gaussian noise [17]. While PCAs have previously been
used in the context of glitch categorization [18,19], we
focus on the construction of glitch-class-specific para-
metrized models for glitch mitigation. Relative to other
glitch mitigation techniques [20–24], these targeted para-
metrized models have minimal flexibility and are in many
ways analogous to the parametrized CBC models used to
search for and characterize signals, making them straight-
forward to incorporate in existing LVK analyses. In
comparison to current glitch mitigation techniques such
as BayesWave (BW) [21], our approach naturally allows for
informed priors, allowing us to leverage the extensive glitch
population. Our approach can be naturally used in existing
analysis libraries such as Bilby, whereas BW’s use of
reverse-jump sampling means that only a point estimate
from BW can be used to remove a glitch during astro-
physical parameter inference. While powerful, our methods
require large training sets for each glitch type and will
likely be unable to model glitches that are extensive in time-
frequency, such as scattered light.

II. METHOD

A. Modeling the Advanced LIGO noise background

The noise in the detector is a superposition of many noise
sources, and is modeled as a stochastic process, drawing
randomly from a stationary background spectrum at each
frequency [25]. The detector produces a time series, nðtÞ,
which we can represent as a vector, n. Transforming to the
frequency domain we obtain ñ, with ni indicating the noise
in the ith frequency bin. Assuming Gaussianity, the
probability distribution becomes

pðñÞ¼ 1

detð2πCÞ1=2exp
�
−
1

2

X
ij

ðeni−μÞðenj−μÞC−1
ij

�
; ð1Þ

where Cij ¼ 1
M−1 ðni − μÞðnj − μÞ is the covariance matrix

of the observations and μ is the mean of the data [9].
Stationarity means that the noise spectrum is not changing
over time, so in the frequency domain the covariance matrix
is diagonal: Cij ¼ δijSnðfiÞ, giving the power spectral
density (PSD), SnðfÞ which is equal to the square of the
amplitude spectral density (ASD). The noise is typically
stationary on the timescales (minutes) relevant for PSD
computation, but on the hour timescale may need to be
updated [9].
We “whiten” the data by dividing the frequency domain

data by an estimate of the ASD, resulting in noise with an
equal (unitary) noise in all frequencies. We train and test
our model using whitened data.
This treatment is highly effective for “well-behaved”

noise sources which remain stationary over the duration of
ASD calculation; however, the motivation for building our
model is to mitigate transient glitches, which can occur at
any time and pose the greatest challenge for searches that
look for transient astrophysical events.

B. The transient glitch background

The characteristics of the noise background are well
covered in [3,9,10,12]. The morphologies of a typical blip
and tomte glitch are explored in Fig. 1. Blip glitches are
short, at around 5–10 ms, while tomtes are typically 100 ms
long. To properly mitigate these glitches we examine their
morphology as they appear to searches, after any whitening
and postprocessing. Physically, it is possible that the
glitches are a very brief dc offset that appears in the strain
channel, the result of either a single physical perturbation to
some component of the detector or the result of a digital
error. We will have to consider the additional morphology
of finite impulse response whitening filters as being part of
the glitch, since the searches must also contend with these
features.
While GravitySpy examines q transforms [13] of

glitches, we train on the frequency series of glitches.
There is a loss of phase information and direction of
amplitude in q transforms, which record only power for
each time-frequency pixel. This may be important for
future efforts in distinguishing auxiliary witnesses for these
glitches, since a preferential directional perturbation to a
part of the detector could show up as a bias in amplitude
(positive or negative) in the strain channel for a certain
detector and glitch type. We have yet to determine if this is
a bias introduced in GravitySpy’s curation of the highest
confidence and loudest glitches, or if this extends to the
large number of lower confidence glitches as well, but we
see a vast majority of confident, loud L1 O3a tomtes with
negative amplitudes. Other detectors and glitch types
exhibit a certain “glitch signature” in amplitude bias,
sometimes across multiple observing runs.
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C. The glitschen model

In the glitschen parametric glitch mitigation model, we
employ PPCA. This is a simple and effective way for
us to decompose a frequency-domain signal into a set of
Gaussian distributed latent variables. It is frequently used
as a dimensionality reduction tool, making problems in
many areas of data science more tractable. There are many
ready-made principal component analysis (PCA) imple-
mentations available. We found it most transparent and
effective to write our own PPCA implementation, closely
following the original PPCAmodel [17]. This enabled us to
find a fast and computationally cheap way to analytically
maximize our likelihood. PPCA differs from PCA in that it
includes a Gaussian noise term.
We employ an isotropic Gaussian noise model:

N ð0; σ2IÞ; ð2Þ

with a d-dimensional observation vector, d̃:

d̃jZtrain ∼N ðWZtrain þ μ; σ2IÞ: ð3Þ

We assume the marginal distribution Ztrain ∼N ð0; IÞ over
q latent variables of the training set, and W has size d × q,
containing q training eigenvectors. We recover normal
PCA in the limit of σ → 0. We can marginalize over the
latent variables to obtain a distribution for d̃:

d̃ ∼N ðμ;CÞ; ð4Þ

where C ¼ WWT þ σ2I is the covariance model for the
observed data, with dimension d × d. In our case these
data are frequency-series data. With N training glitches, our
log likelihood for the entire model and all our observed
(training) data is then

lnLtraining ¼ −
N
2
½d lnð2πÞ þ ln jCj þ trðC−1SÞ�; ð5Þ

with the sample covariance matrix of the observations, S:

S ¼ 1

N

XN
n¼1

ðd̃n − μÞðd̃n − μÞT: ð6Þ

This likelihood is often maximized iteratively, and many
packaged implementations of PPCA find W in this
way [26]. However we find the global maximum of the
likelihood using an analytical method detailed in [17].
Later, we use this likelihood, with an Occam’s penalty

accounting for the effective degrees of freedom in the
model, to find the optimal number of components, q, to use.
Performing an eigenvalue decomposition on S, the sample
covariance matrix of the observations, we obtain the d × q
matrix Uq containing q principal eigenvectors (or “eigen-
glitches”) of S, and the q × q diagonal matrix Λq with

FIG. 1. Typical loud blip (above) and tomte (below) glitches
chosen from the test set from Livingston in O3a, to demonstrate
glitch morphology. Q scans indicate power in each time-
frequency pixel, and the time series (below in blue) shows
additional morphology. Note that the timescales and frequency
ranges plotted vary. Blips are sometimes shorter than 5 ms, where
tomtes can last over 100 ms.
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corresponding eigenvalues. All eigenvalue decompositions
and matrix inversions are conveniently handled by an open-
source computer algebra library with NumPy [27]. The
likelihood is maximized when

W ¼ WML ¼ UqðΛq − σ2IÞ1=2: ð7Þ

Going forward, we can consider W ¼ WML to always
contain the ML eigenvectors. See an example time-domain
representation in Fig. 2.
In order to obtain a projection of a new observation

vector, d̃obs, onto the latent variables we use Bayes’ rule to
get from d̃jZtrain to

Ztrainjd̃obs ∼N ðM−1WTðd̃obs − μÞ; σ2M−1Þ; ð8Þ

where M ¼ WTW þ σ2I, with dimensions q × q. This
allows us to perform reconstructions of suspected glitches
using a trained model. We define

Zrec ≡M−1WTðd̃obs − μÞ ð9Þ

as the set of q latent optimal (i.e., maximum likelihood)
reconstruction weights up to an arbitrary rotation matrix.
We can obtain a reconstruction with

g̃rec ¼ WZrec þ μ: ð10Þ

To evaluate the quality of our reconstruction given the
data, we employ the standard Gaussian noise likelihood,
identical to that used by CBC searches and PE, and
specifically Bilby [28]. We define the standard noise

weighted inner product of any two frequency-series
vectors, a and b:

ðãjb̃Þ ¼ 2

Z
∞

0

ãðfÞb̃�ðfÞ þ ã�ðfÞb̃ðfÞ
SnðfÞ

df: ð11Þ

Sn ¼ σ2 is the noise PSD, and σ is the ASD [9]. In practice,
the noise term can be taken to be 1, because the model is
trained on whitened data. When we assume stationary,
Gaussian noise that is uncorrelated between detectors, our
reconstruction log likelihood becomes

lnLrec ¼ −
1

2

X
k

�jd̃obs;k − g̃ðθÞrec;kj2
Sk

þ lnð2πSkÞ
�
; ð12Þ

where k is the frequency bin index, g̃ðθÞrec;k is the frequency-
domain reconstruction with PPCA parameters θ. With this
inner product and likelihood we can compare our model’s
reconstruction of an event, after training on a certain glitch
class, with the likelihood of the astrophysical hypothesis.
We can select q based on an Occam’s penalty, or we can try
to replicate the number of effective free parameters in the
CBC model to give equal flexibility.

D. Implementation and performance

1. Selection of training data

Wecurate glitches classified byGravitySpy [12] with high
“confidence,” where the score ranges from (0,1). Note that
confidence is not a normalized probability, but instead
reflects the certainty of classification by the convolutional
neural network used. We utilize the newest, LVK-internal
version of the GravitySpy model, which has the benefit of
training on data from all of O3. Publicly available glitch and
event data can be obtained from theGravitationalWaveOpen
ScienceCenter (GWOSC) [29]. This analysiswas completed
using an older version of the calibrated data: the HOFT_C00
strain data frame within the GDS-CALIB_STRAIN_
CLEAN channel. Note that some (< 1%) of the glitches
used in training are outside of “science mode” times.
All glitches used first must clear our confidence cutoff

(0.95–1, depending on type, detector, and epoch), and are
then sorted by SNR. Lower SNR glitches can contaminate
the model with more unrelated noise features. As such, we
have kept a high SNR threshold for inclusion in training
(dependent on type, detector, and epoch), where we use the
1500–2000 loudest glitches. It is more productive to limit
the set to “golden” examples curated by GravitySpy, even if
the glitch or event in the run segment has low SNR, since
we believe quiet and loud glitches (5–50 SNR) exhibit
similar morphology, based on our exploration of the data.

FIG. 2. L1 O3a tomte glitch model eigenvectors. Increasing
weight from top to bottom.
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2. Preprocessing and training

To train our model, we whiten with an ASD calculated
from between 16 and 128 s of data, depending on the glitch
type in question. Because we are concerned with the low-
frequency content of glitches (in the range of astrophysical
searches) all data are downsampled to 2048 Hz, and then
for certain glitch types we further bandpass training data to
aid in reconstruction efficiency. For Tomte glitches, which
have a peak frequency around 50–60 Hz, a 10–128-Hz
bandpass to the training data ensures we are not overfitting
noise outside the glitch time, but still recover more than
99% of the SNR from more than 99% of training glitches.
We find that a 0.5-s training window is always adequate
for tomtes, with typical duration 0.1 s. For blips, peak
frequencies are typically 500–1000 Hz, so we obtain
similar recovered SNR by bandpassing from 10 to
1024 Hz. We find that a 0.1-s window is almost always
adequate for blips (allowing one full cycle at 10 Hz). Blips
are shorter in duration (almost always shorter than 30 ms).
For run segments on test glitches and marginal/glitchlike
events we keep data in 10–2048 Hz, retaining higher-
frequency noise. All training examples are centered on the
peak amplitude time sample. All preprocessing is per-
formed using open-source libraries including NumPy [27]
and GWpy [30].

3. Performance

The model is easily run and benchmarked on a laptop
with six cores. The training process takes less than 1 s for
2000 glitches. Maximum likelihood reconstruction takes
1 ms − 1 μs depending on how much leeway in center time
we allow. Sampling proceeds quickly, giving 10,000
independent samples of the posterior distribution in about
5 min, depending on the glitch.
By weighing the likelihood against an Occam’s penalty,

we can ensure our model has the appropriate number of
dimensions (q) and is not overfitting. We employ a Laplace
approximation to the marginal likelihood [31], along with
the Bayesian information criterion, described further in the
Appendix, to choose the optimal number of eigenvectors
for calculating the residuals of the test sets, in the next
section. To roughly match the degrees of freedom (per
detector) of the CBC model, we employ q ¼ 5 in all
sampled cases.

III. RESULTS

A. Testing with maximum likelihood reconstruction

We reserve 10% of glitches for testing (the model has
never encountered these examples), and to evaluate the
performance of our model we examine residuals after
maximum likelihood reconstruction and subtraction, as

FIG. 3. Frequency-domain residuals after subtraction from
the test set (10%) reserved from each glitch type, detector,
and epoch. The bins are scaled such that the lowest visible
represent single samples from single glitches. Note that extremal
samples are louder in Livingston. It has been observed that with
greater sensitivity and range transient glitches become louder
as well [10].
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seen in Fig. 3 histograms. This demonstrates the efficacy of
the model in mitigating an entire class of glitches. Test sets
shown include 100–200 glitches. We will soon extend this
to cleaning entire search backgrounds, and attempt rerank-
ing of CBC searches.
We plot residuals after glitch subtraction in the frequency

domain. They obey a Gaussian distribution after perfect
glitch cleaning under the hypothesis of stationary, uncorre-
lated noise. Cleaning models are trained with the automatic
choice of dimensionality via Laplace approximation
(described in the Appendix): (15, 2, 9, 8), for H1 blips
(truncated from 23 to 15), H1 tomtes, L1 blips, L1 tomtes,
respectively.
The binning in Fig. 3 extends down to single samples

from single test glitches, showing that for all classes
and detectors our results are consistent with Gaussian
noise. The performance is somewhat higher for tomte
glitches, mainly due to the greater homogeneity in their
morphology compared to blips. Tomtes in Livingston
were 10–20 times more prevalent than in Hanford [10].

This has been partly attributed to Livingston operating at
greater sensitivity than Hanford during O3a, but may also
be due to unknown environmental factors. It is observed
that blips and tomtes are louder at higher sensitivity.
Higher SNR and greater numbers allow for better model-
ing, but show the increasing importance of mitigation as
sensitivity improves in future observing runs.

B. Sampling

We employ two well-developed Markov chain
Monte Carlo (MCMC) toolkits, EMCEE [32], and
KOMBINE [33], to perform a full Bayesian posterior
estimation of our reconstruction. By allowing the center
time of the hypothesized glitch to vary, we sample in qþ 1
dimensions. A priori, we assume glitches are equally likely
at any time, and thus adopt a uniform prior in center time.
The localization of the samples in center time is a good
indicator of how glitchlike the morphology of the test
signal is. To aid in the efficiency of sampling, we initialize

FIG. 4. H1 O3a test blip: full posterior estimation. Note the repeating blips afterward. This example shows the tendency of the sampler
to converge on the loudest glitch available. The histogram of center time samples shows high certainty (just below the time-series
reconstruction). In the corner plot for the latent space weights (z1-z5), we see that this test set glitch is typical of the class.
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walkers in a Gaussian around the suspected glitch time. In
the q PPCAweights, we use a less restrictive wide Gaussian
prior, or alternately a highly informed kernel density
estimate prior based on the entire training set’s maximum

likelihood weights. The latter is generally more restrictive
and can limit the flexibility of the sampler to fit more
general morphologies, which in some cases may be ideal,
and in others can be adjusted. For all MCMC sampled

FIG. 5. L1 O3a test tomte: full posterior estimation. This is a very typical tomte glitch, with all walkers converging on the same center
time, low uncertainties in the time-series reconstruction, and the posterior distribution aligning well with the distributions on the training
set latent weights.

TABLE I. Selecting short-duration, heavy BBH mergers we provide an important test for the model, which should give lower SNRs
than the CBC model. Events are in order of detector frame chirp mass (Mdet,M⊙). For all of these events we see lower SNRs by a factor
of 2–3, whereas we expect to recover nearly all of the SNR in confirmed glitches. CBC parameter estimation results from [4].

Event information Matched-filter SNR

Event name Mdet, M⊙ Duration(s) CBC H1 Tomte H1 Blip H1 CBC L1 Tomte L1 Blip L1

GW190521 114.8þ15.2
−17.6 0.15 7.87 4.11 3.21 12.38 5.93 4.06

GW190602_175927 72.9þ10.8
−13.7 0.22 6.56 3.60 3.55 11.02 4.43 4.88

GW190706_222641 75.1þ11.0
−17.5 0.15 9.07 4.91 4.22 9.18 3.92 3.93

GW190519_153544 65.1þ7.7
−10.3 0.17 9.50 4.42 4.76 11.85 5.42 4.25

GW190620_030421 57.5þ9.0
−11.2 2.3 (Offline) � � � � � � 11.70 3.78 4.63

GW190910_112807 43.9þ4.6
−3.6 1.8 (Offline) � � � � � � 13.86 6.29 4.26

GW190521_074359 39.8þ2.2
−3.0 0.24 12.67 5.85 6.30 22.68 8.83 7.24
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example glitches and CBC comparisons in the paper, we
employ q ¼ 5.

In Figs. 4 and 5 we demonstrate the results of sampling
on a test blip in Hanford, and a test tomte in Livingston.
The blip was chosen specifically due to its proximity to
further repeating blips. The sampler converges easily on the
loudest glitchlike event in the run segment.

C. Signal safety testing

To establish the model’s capability of distinguishing
glitch from astrophysical signal, we test if it remains flexible
enough to fit different glitch morphologies while being
(appropriately) unable to reconstruct and subtract an astro-
physical signal. We run our model on a selection of high-
mass, short-duration BBH signals from GWTC-2 [4],

TABLE II. Running samplers on these events, we obtain the DIC from our distributions of log likelihoods. The
DIC favors models with a lower value. The CBCmodel is highly preferred to the glitch model in all cases, indicating
that it passes the signal safety test.

DIC

Event name CBC H1 Tomte H1 Blip H1 CBC L1 Tomte L1 Blip L1

GW190521 −54.6 −5.4 8.7 −130.3 −26.7 9.94
GW190602_175927 −37.3 10.2 8.7 −105.6 −5.6 12.0
GW190706_222641 −71.0 13.2 9.6 −74.0 14.8 8.1
GW190519_153544 −87.7 18.4 −18.6 −145.2 25.1 13.1
GW190620_030421 � � � � � � � � � −133.9 17.5 12.5
GW190910_112807 � � � � � � � � � −190.3 −28.5 17.7
GW190521_074359 −152.8 34.0 36.4 −494.5 −67.1 −45.3

FIG. 6. GW190521 Full Posterior Estimation, L1. The distribution in the center time is multimodal, indicating that the glitch model
fails to capture the full morphology of the signal (LALInference maxL in black), no matter where it is placed. The reconstruction features
high uncertainty (samples in orange), and the posterior distribution in the latent variables lies outside the training set of glitches. All of
this indicates that the model has failed to reconstruct GW190521 as a glitch, as expected.
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acquiring data from the GWOSC [29]. Specifically,
we choose events with high detector frame chirp masses
(and by extension, short template durations), and
FAR < 10−3=yr. Being the confirmed astrophysical signals
with morphology closest to short transient glitches such as
blips and especially tomtes, these provide a good opportunity
to confuse the model.We quote maximum likelihood single-
detector SNR values for the CBC and alternately the glitch
hypotheses in Table I. Quoted durations are the template
duration for the preferred trigger from low latency detection.
Two events had H1 offline at the trigger time but were
included for their glitchlike morphology. We anticipate that
an effective glitch model may be instrumental in vetting
single-detector events in the future.
For a more rigorous comparison between the CBC and

glitch models we employ a full posterior estimation frame-
work and theDeviance InformationCriterion (DIC). This is a
variance-based approach. The DIC is given by

DIC ¼ Dðθ̄Þ þ varðDðθÞÞ; ð13Þ

where the deviance, D, is DðθÞ ¼ −2 lnðpðdjθÞÞ with
posterior distribution p, data y, and parameters θ. Given
the log likelihoods from samples obtained using both the

glitchen model and a CBC PE run we see that the glitch
hypothesis is heavily disfavored for all events tested. These
comparisons appear in Table II, where a lower DIC value
indicates a better model for the observed data.

D. GW190521: Testing our model’s limits with the most
massive (and glitchlike) confident O3a event

GW190521 is the highest-mass (142þ28
−16 M⊙) and

shortest-duration (0.1 s) CBC event for which we have
strong evidence [34]. Being a loud triple-detector event, it
is confidently of astrophysical origin. But for us, it offers a
unique opportunity to test our model, since it exhibits
signal morphology which is the most glitchlike of all high-
significance astrophysical events. It spent only the last 4
cycles of its inspiral in the sensitive band of the detector,
peaking at 60 Hz. Tomte glitches look very similar.
Critically, any model for tomtes, at bare minimum, must

not be confused by such an event. Because the aim of
improved glitch mitigation is to open up this high-mass
region of parameter space, this is precisely the kind of test
we need to pass. Here we demonstrate our full posterior
estimation framework on GW190521, and by extension,
our ability to distinguish glitchlike astrophysical events

FIG. 7. GW190521 Full Posterior Estimation, H1.
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from glitches by comparing our glitch hypothesis results
with the astrophysical hypothesis results.
In both L1 and H1 (Figs. 6 and 7, respectively), we see

that the glitch model (MaxL glitch reconstruction in green)
is unable to fully capture the signal morphology, with the
MaxL CBC reconstruction in black, no matter where it is
placed. It remains multimodal in center time, and an outlier
in most of the training set weights, indicating that this is a
poor fit to the data, as we expect. High uncertainty is seen
in the broadness of the posterior reconstructions, in orange
on the time-series plots. See Tables I and II for a more
quantitative comparison of the glitch and CBC hypothesis,
for this and other events in O3a.

IV. CONCLUSION AND FUTURE WORK

We have introduced a PPCA-based approach to model-
ing transient noise in gravitational wave detector data,
implemented in the open-sourced glitschen package, pub-
licly available here: [35]. We welcome collaborative devel-
opment, testing, and feedback.
For both blip and tomte glitches—some of the most

impactful for BBH searches in O3—we have demonstrated
the effectiveness of the model for glitch subtraction, as well
as for Bayesian model comparisons with astrophysical
signal models.
In future work we will explore the use of clustering

algorithms in PPCA space for glitch classification and
subclassification. We will test the effectiveness of the
model in reducing the background for compact binary
searches. Wewill also integrate our model into the Bilby [28]
parameter estimation code, where composite signal and
noise models will allow us to marginalize over glitch
morphology when glitches are coincident with astrophysi-
cal signals.
We tested our model on high-mass events from O3a, but

in the future we will extend this testing to simulations in the
high-mass and high-mass-ratio region of parameter space,
where discoveries are still to be made and distinguishing
astrophysical events from noise is even more difficult.
Because burst searches also trigger on glitches, we plan

to test our model in this regime. Searches for cosmic string
cusps, supernova templates, and all agnostically unmodeled
sources could radically change the field, but only if we can
work on the serious blind spots in our searches. We have
already began an injection campaign with cosmic string
templates in the parameter space contaminated by blip
glitches to determine our ability to differentiate signal from
glitch in this context. We plan to extend the use of our
model beyond Blips and Tomtes, but because these are the
most impactful for BBH searches, they remain the first and
most important testing ground.
With more accurate models of glitches, we can improve

the detectability and significance of gravitational wave
events of all kinds.
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APPENDIX: OPTIMAL CHOICE OF THE
MODEL DIMENSIONALITY

To avoid over- or underfitting we can use various metrics
to find the optimal number of PPCA eigenvectors to
employ for each glitch type, detector, and observing run.
We tried a crude method: fraction of recovered SNR in test
set glitches. If we recover .99 of the known glitch SNR then
any gains added with additional dimensions are giving
diminishing returns. However this cutoff point is somewhat
arbitrary. Instead, balancing an Occam’s penalty against the
model’s training set likelihood is a much more rigorous
approach. We employed several methods, including the

FIG. 8. The relative Bayes factors as a function of dimension-
ality, q, for each detector and glitch type in the analysis. The
peaks of these curves allow for an automatic choice of dimen-
sionality that avoids overfitting.
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Akaike information criterion, the Bayesian information
criterion, and the Laplace approximation to the marginal
model log likelihood, following the method in [31]. By
maximizing these metrics we can use the optimal level of
model complexity. To arrive at the Laplace approximation,
we apply an uninformative conjugate prior on the model

parameters and marginalize over everything but q, the
PPCA dimensionality. The marginal log-likelihood values
are estimates of the model evidence and the ratio of these
for different q can be taken as Bayes factors, so far as the
Laplace approximation is accurate, which we show
in Fig. 8.
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