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Abstract

Building on previous results [17,35], we complete the classification of compact oriented Ein-
stein 4-manifolds with det(W™) > 0. There are, up to diffeomorphism, exactly 15 manifolds
that carry such metrics, and, on each of these manifolds, such metrics sweep out exactly one
connected component of the corresponding Einstein moduli space.

Résumé

En s’appuyant sur les résultats de travaux antérieurs [17,35], on acheve la classification des
variétés d’Einstein compactes orientées de dimension 4 dont la courbure de Weyl autoduale est
de déterminant strictement positif. A difféomorphisme prés, il y a exactement quinze variétés
qui admettent de telles métriques; et, sur chacune de ces variétés, ces métriques remplissent
exactement une composante connexe de 1’espace de modules des métriques d’Einstein.

Mathematics Subject Classification 53C25 (primary) ; 14J26 - 32C10 - 53C21 - 53C55
(secondary)

1 Introduction

A Riemannian metric / is said [3] to be Einstein if, for some real constant A, it satisfies the
Einstein equation
r =M,

where r is the Ricci tensor of /. Given a smooth compact n-manifold M, henceforth always
assumed to be connected and without boundary, one would like to completely understand
the Einstein moduli space

& (M) = {Einstein metrics on M} /(Dif(M) x R,

where the diffeomorphism group Dif M) acts on metrics via pull-backs, and where the posi-
tive reals R™ act by rescaling. This moduli problem is well understood [27,28] in dimensions
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n < 3, because in these low dimensions the Einstein equation is actually equivalent to just
requiring the sectional curvature to be constant. By contrast, when n > 5, the abundance
of currently-available examples of “exotic” Einstein metrics on familiar manifolds [5,6,33]
seems to indicate that the problem could very well turn out to be fundamentally intractable
in high dimensions. On the other hand, there are certain specific 4-manifolds, such as real
and complex-hyperbolic 4-manifolds, the 4-torus, and K 3, where the Einstein moduli space
& (M) is explicitly known, and in fact turns out to be connected [2,4,14,18]. This provides
clear motivation for the intensive study of Einstein moduli spaces in dimension four.
The idiosyncratic features of 4-dimensional Riemannian geometry are generally attributable

to the failure of the Lie group SO(4) to be simple; instead, its Lie algebra decomposes as a
direct sum of proper subalgebras:

50(4) = s0(3) ®s0(3).

Because s0(4) and AZR?* can both be realized as the space of skew 4 x 4 matrices, this leads
to a natural decomposition

A*=ATdA™

of the bundle of 2-forms on an oriented Riemannian 4-manifold (M, h). Since the sub-bundles
AT coincide with the (£1)-eigenspaces of the Hodge star operator » : A2 — A2, sections of
AT are called self-dual 2-forms, while sections of A~ are called anti-self-dual 2-forms. But
because the Riemann curvature tensor can be naturally identified with a self-adjoint linear
map

R:A? A2,

the curvature of (M*, h) can consequently be decomposed into four pieces

o ;
Wr+ 51 7

corresponding to different irreducible representations of SO(4). Here s is the scalar curvature
and # is the trace-free Ricci curvature, while W are by definition the trace-free pieces of the
appropriate blocks. The corresponding pieces W¥¢y.4 of the Riemann curvature tensor are
in fact both conformally invariant, and are respectively called the self-dual and anti-self-dual
Weyl curvature tensors. The sum W = W' + W™ is called the Weyl tensor or conformal
curvature tensor, and vanishes if and only if the metric % is locally conformally flat. It should
be emphasized that the distinction between the self-dual and anti-self-dual parts of the Weyl
tensor depends on a choice of orientation; reversing the orientation of M interchanges A™
and A~, and so interchanges W™ and W™, too.

The present paper is a natural outgrowth of previous work on the Einstein moduli spaces
& (M) for the smooth compact oriented 4-manifolds M that arise as del Pezzo surfaces. Recall
that a del Pezzo surface is defined to be a compact complex surface (M*, J) with ample anti-
canonical line bundle. Up to diffeomorphism, there are exactly ten such manifolds, namely
52 x §2 and the nine connected sums CPy#mCPy, m = 0, 1, ..., 8. These are exactly [7]
the smooth oriented compact 4-manifolds that admit both an Einstein metric with A > 0
and an orientation-compatible symplectic structure. However, the currently-known Einstein
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metrics on any of these spaces are all conformally Kéhler. Indeed, on most del Pezzos, the
currently-known Einstein metrics [24,29] are actually Kéhler-Einstein, although there are
two exceptional cases where they are instead non-trivial conformal rescalings of special
extremal Kéhler metrics [7,21]. Inspired in part by earlier work by Derdzinski [3,9], and
building upon his own results in [19,20], the author was eventually able to characterize [22]
the known Einstein metrics on del Pezzo manifolds by the property that W (w, w) > 0
everywhere, where w is a non-trivial (global) self-dual harmonic 2-form. An interesting
corollary is that the known Einstein metrics on each del Pezzo 4-manifold M exactly sweep
out one connected component of the corresponding Einstein moduli space & (M).

However, the role of a global harmonic 2-form w in the above criterion makes it disquiet-
ingly non-local. Fortunately, Peng Wu [35] has recently discovered that these known Einstein
metrics can instead be characterized by demanding that det(W ™) be positive at every point,
where the self-dual Weyl curvature is considered as an endomorphism

Wt AT > AT

of the rank-3 bundle of self-dual 2-forms. The present author then found [17] an entirely
different proof of this characterization that actually strengthens the result, while at the same
time highlighting the previously-neglected point that this criterion only forces our compact
oriented Einstein manifold to be a del Pezzo if we explicitly require it to be simply connected.
In this paper, we will tackle this last issue head-on, by describing the moduli space

&uet(M) = {Einstein metrics on M with det(W™) > 0}/ (DifAM) x R™)

for each compact oriented 4-manifold M where this moduli space is non-empty. Our first
main result is the following:

Theorem A There are exactly 15 diffeotypes of compact oriented 4-manifolds M that carry
Einstein metrics h with det(W) > 0 everywhere. For each such manifold, the moduli space
Eget (M) of these special Einstein metrics is connected, and exactly sweeps out a single
connected component of the Einstein moduli space &(M).

In order to state our second, more detailed main result, we will first need to consider
two different Z,-actions on S2 x §2. Let a : S — S2 denote the antipodal map, and let
v: 82 — $2 denote reflection across the equator, so that

—1 1
a= —1 and t= 1 (€))]

as elements of O(3). Then a x v and a x a are both free, orientation-preserving involutions
of §2 x $2, and the smooth compact 4-manifolds

P = (§? x §7)/{a x v)

2 := (82 x §%)/(a x a) )

are therefore both orientable. Note, however, these two manifolds are not even homotopy
equivalent [11, p. 101], because Z is spin, whereas 2 is not.

Theorem B Let M be a smooth compact oriented 4-manifold that is not simply connected.
Then, in the notation defined by (2), M admits an Einstein metric h with det(W™) > 0 ifand
only if M is diffeomorphic to 2 or to 2#kCP; for some k = 0, 1, 2, 3. Moreover, whenever
such an Einstein metric h exists, the universal cover (]VI s ﬁ) of (M, h) is necessarily isometric
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to a del Pezzo surface, equipped with a Kdhler—Einstein metric, in such a manner that the
non-trivial deck transformation becomes a free anti-holomorphic involution.

The proofs of these results are given in Sect. 2.5 below, as the culmination of a series
of detailed case-by-case studies carried out in earlier parts of Sect. 2. Then, in Sect. 3, we
conclude the article by generalizing these results in various ways, while also pointing pointing
out some associated open problems.

2 Del Pezzos and Double Covers

We begin by carefully refining the statement of [17, Proposition 2.3] in order to emphasize
a key technical fact that lay buried in the proof.

Proposition 1 Let (M, h) be a compact oriented Einstein 4-manifold which satisfies
det(W™) > 0 at every point. Then either

(i) my(M) = 0, and M admits an orientation-compatible complex structure J such that
(M, J) is a del Pezzo surface, and such that the conformally rescaled metric g =
|W+|2/3h is a J-compatible Kdhler metric; or else,

(ii) Ty (M) = Zp, and M is doubly covered by a del Pezzo surface (1\71 J) on which the pull-
back of g = |W+| 3 is a J-compatible Kéhler metric g, and where the non-trivial
deck tmnsformation o : M — M is an anti- -holomorphic involution of (M J).

Proof The conformal rescaling of 4 used in [17] was actually constructed as a,%/ 3h, where
oy is the top eigenvalue of WhJr : AT — AT. However, once this rescaled metric has been
shown to be Kéhler, it then follows that —«;, /2 is a repeated eigenvalue of W;r , so that
one necessarily also has |[W™ |% = %a%. Thus, the Kéhler metric constructed in [17] simply

coincides, up to a constant factor of /3/2, with the metric g = |W™* Ii/ 3 considered above.

The proof of [17, Proposition 2.3] actually focuses on the real line-bundle L C A™ given
by the top eigenspace of WT; this is well-defined, because the identity tr(W ) = 0 and the
hypothesis det(W™) > 0 together imply that the top eigenvalue of W has multiplicity one
everywhere. If L is trivial, one can then choose a global section w of L such that |w|, = V2,
and a Weitzenbock argument (made possible by the fact that any Einstein metric satisfies
SW* = 0) is then used to show that e is parallel. If, on the other hand, L is non-trivial,

i = {weL||ow = \/E} defines a double cover of M that comes equipped with a
tautological self-dual 2-form w that, by the same Weitzenbock argument as before, can then
be shown to be the Kihler form of the pulled-back metric g with respect to a suitable complex
structure J. In the latter case, the non-trivial deck transformation o : M— M preserves g,
and sends @ to —w, and so, because w = g(J+, -), must send J to —J. Thus, in case (ii), o
is an anti-holomorphic involution of (1171 ,J).

Finally, the complex surface (M, J) or (M , J) is automatically a del Pezzo. Indeed, since
any Kihler surface satisfies det(W,.) = 53 /864, where s is its scalar curvature, the assumption
that det(W™) > 0 implies the scalar curvature of g or g must be positive everywhere. Since
the Einstein metric & therefore has positive Einstein constant, and can now be rewritten as
245~2g, the transformation law for the Ricci curvature under conformal changes implies
[19] that the (1, 1)-form p + 2i 90 log s is a positive representative of 27 ¢y, where p is the
Ricci form of our Kihler surface. The Kodaira embedding theorem thus implies that the anti-
canonical line-bundle K ! is ample, and (M, J) or (1\7 , J) is therefore a del Pezzo surface,
as claimed. O
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Because case (i) was thoroughly analyzed in previous papers [17,22,24], we will only
need to carefully discuss case (ii) in this article. Fortunately, this part of the problem can
largely be reduced to well-explored questions in real algebraic geometric. Indeed, since
(A7 , J) can be embedded in a projective space P([T"(O(K —£)1*) on which ¢ acts by complex
conjugation, M can be viewed as a complex projective algebraic variety defined over R;
and because the action of o on M has no fixed points, this variety automatically has empty
real locus. The substantial classical and modern literature available concerning real forms of
del Pezzo surfaces [12,16,25,32] has therefore paved the road ahead of us, and will make it
comparatively easy to completely solve the problem.

Since traditional approaches to the subject emphasize the degree c1 > 0 of a del Pezzo
surface, it will be important for us to relate the degree of M to the topology of M = M /(o).
For this purpose, it is useful to remember that any almost-complex 4-manifold satisfies
cl = 2x + 37, where x is the Euler characteristic and T = by — b_ is the signature. For the
del Pezzo surface M however, the Todd genus Td = hOO — pO1 4 p02 — ( 4 7)/4 must
equal 1, since h%1 = 192 = 0 by the Kodaira vanishing theorem. It therefore follows that

A(M) =8+ t(M) =8+ 2t(M),

where in the last step we have recalled that the signature 7 is multiplicative under finite covers.
On the other hand, b (M) = 0, since the Kéhler form w spans the self-dual harmonic forms
on (IVI, 2), but is o-anti-invariant. Hence t(M) = —b_(M) = —by(M), and c%(]\?) =
2[4 — bp(M)]. As a consequence, the only possibilities are by (M) = 0, 1,2 or 3. We will
now proceed by discussing each of these cases separately.

2.1 The b, (M) = 0 Case

When by (M) = 0, the double cover M must have signature zero. Since this covering space is
therefore a del Pezzo surface of degree 8, classification [8,10] tells us that Mis diffeomorphic
to either §2 x S2 or CP,#CP,. Now, it is a classical fact [25,32] that any anti-holomorphic
involution of the one-point blow-up of CP, must have a fixed point. But, as we will now
observe, this is actually preordained by a more general topological result. Although elemen-
tary, the proof is worth recounting here in some detail, as doing so will eventually save us
needless extra work in Sect. 3.

Lemma 1 No smooth orientable 4-manifold M with 7wy # 0 has a covering space homeo-
morphic to CP#CP;.

Proof Let us proceed by contradiction, and assume there exists a coveringmap @ : N — M,
where M is a smooth oriented non-simply-connected 4-manifold, and where N is homeomor-
phic (but perhaps not diffeomorphic) to CP,#CP,. Notice that M = w (N) is automatically
compact, and that the simply connected manifold N is automatically its universal cover. We
now give N the orientation lifted from M, so that the degree > 2 of e then equals |7 (M)].
Since this in particular means that 771 (M) is finite,

H'(M,R) = Hom(r (M), R) = 0,
and Poincaré duality for the oriented 4-manifold M therefore implies

b3(M) = b1 (M) =0 and by(M) =bo(M) =1,
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where b; denotes the j* Betti number with R coefficients. The Euler characteristic of M is
therefore given by

4
X(M) = (=1)7b;j(M) =2+ by(M) > 2.
j=0

However, because the Euler characteristic x is multiplicative under finite coverings, we also
have

X (M) = x (CP#HCP) /|1 (M)] = 4/|m1 (M)] < 2.

It therefore follows that x (M) = 2, and that by (M) = 0. In particular, H>(M, Z) has trivial
free part, and so consists entirely of torsion elements.

On the other hand, any smooth, orientable 4-manifold is spin®. Thus, there exists [13,34]
an integral cohomology class a € H>(M, Z) satisfying

o(a) = wr (M) := wr(TM),
where
0:H*(M,7) — H*(M, Z»)

denotes the natural homomorphism induced by mod-2 reduction Z — Z,. However, since
@ is a smooth submersion, @, : TN = @w*T M. Thus, the naturality of Stiefel-Whitney
classes with respect to pull-backs and the commutativity of the diagram
H3(N.Z) % H*(N,Z,)
T T
H*M,Z) % H*(M, Z»)

together guarantee that

@™ (0 (a)) = " (w2 (T M))
wr(w*TM) = wa(TN)
= wa(N) € H*(N, Z»).

o (@*(a))

On the other hand, since a € H? (M, Z) is a torsion element, it follows that w*a € H 2 (N, 7Z)
is a torsion element, too. But

H*(N,Z) = H*(CP#CP,,Z) =2 & Z
is a free Abelian group, so this implies that = *a = 0. Hence
w2(N) = ¢ (@™ (a)) = 0.

But this is absurd, because N ~ CP,#CP, has odd intersection form, and so is not spin. It
follows that the oriented 4-manifold M cannot exist, as claimed. O

In our context, this simple fact has a striking consequence:

Theorem 1 Let (M, h) be a compact oriented non-simply-connected Einstein 4-manifold
that satisfies det(Wt) > 0at every point. Then M is doubly covered by a del Pezzo surface
(M, J) on which the pull-back h of h is a J-compatible Kdhler-Einstein metric.
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Proof Case (i) of Proposition 1 tells us that the Einstein manifold (M, k) is conformally
Kihler. However, by [20, Theorem A], CP,#CP, and CP,#2CP, are the only two compact
4-manifolds that carry Einstein metrics that are conformally Kihler, but not Kéhler—Einstein.
But neither of these is the double cover of an oriented 4-manifold; the second is prohibited
because its signature is odd, while the first is ruled out by Lemma 1. O

As an immediate consequence, any compact oriented Einstein 4-manifold (M, h) with
det(W™) > 0 and b, = 0 must be doubly covered by CPP; x CIPy, equipped with a Kihler—
Einstein metric. However, a theorem of Matsushima [23, Théoreme 1] implies that any
Kihler—Einstein metric on CP; x CP; must be invariant under a maximal compact sub-
group = SO(3) x SO(3) of the identity component PSL(2, C) x PSL(2, C) of the complex
automorphism group. Thus, the universal cover (1\7 , ﬁ) of (M, h) must be homothetic to the
homogeneous Einstein manifold (82, go) X (S2, 80), where go is the “round” unit-sphere
metric on §? = CIP;. This allows us to deduce the following:

Proposition 2 Modulo constant rescalings, any compact oriented Einstein 4-manifold (M , h)
with det(Wt) > 0 and by = 0 is isometric to exactly one of the Riemannian quotients
described by (2). Since the two 4-manifolds & and 2 are not diffeomorphic, it thus follows
that the moduli spaces &yt (D7) and Eget (2) each consist of a single point.

Proof With respect to the product metric go @ go, the sectional curvature K (IT) of a 2-plane
I C T(S% x S?) belongs to [0, 1], and satisfies K (IT) = 1 iff IT is tangent to an $2 factor.
Thus, any isometry of (52 x 82, go @ go) must send each 2-sphere §2 x {pt} or {pt} x % to
a 2-sphere of one of these two types. On the other hand, because the orientation-preserving
isometric involution o : S x §2 — S2 x $? must not have fixed points, the Lefschetz
fixed-point theorem tells us that its Leftschetz number must vanish. That is,

0=L)=Y (-D/u (O'*|Hj(szxsz)) =2+ tr (0ul y(s2nsy)) -
j

where o, is the induced map on homology with R coefficients. Since (0y)> = I and
tr (a*|H2(Sszz)) = —2, it follows that o, = —I on H(S*> x §%,R). Hence each sphere
$2 x {pt} must be sent isometrically by ¢ to a sphere of the same kind, in an orientation-
reversing manner; and the same conclusion similarly applies to spheres of the form { pr} x §2.
Since the projection of % x S to either factor is a Riemannian submersion, it therefore follows
that o must be the product of two isometric, orientation-reversing involutions of (52, go).
However, any such involution is diagonalizable, with eigenvalues £1. Up to conjugation,
the only candidates for these maps of S are therefore the involutions a and t described by
(1). However, v x t can be excluded as a candidate for o, since it has fixed points. Thus,
after interchanging factors if necessary, the only remaining possibilities for o are the free
anti-holomorphic involutions a x v and a x a of 52 x §2 = CP; x CP;.

It therefore only remains to show that 2 := (2 x $2)/(a x t) is not diffeomorphic
to 2 := (5% x S2)/(a x a). To see this, first notice that w,(Z2) # 0, since the diagonal
5% c §? x §? projects to an RP? C 2 that has normal bundle = TRP?, and so has self-
intersection (]RIP’Z) = 1 mod 2. By contrast, H>(Z, Z) is generated by the RIPZ-image of
$2 x {(1,0,0)} and the S2—image of {pt} x §2; and since each of these submanifolds has
small perturbations that do not intersect it, both have self-intersection zero, and it follows
that wy () = 0. Thus, the 4-manifolds &2 and 2 certainly aren’t diffeomorphic, because
one is spin, while the other isn’t. O
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2.2 The b, (M) = 1 case

When by(M) = 1, the del Pezzo surface (1\7 , J) has degree C12 = 6. Because this complex
surface has K ! ample, surface classification easily allows one to show [8,10] that it must
exactly be the blow-up of CIP; at three non-collinear points, which we may take tobe [1, 0, 0],
[0, 1, 0], and [0, O, 1]. By adjusting our coordinates if necessary, the free anti-holomorphic
involution o : M — M can moreover then be identified [32, p. 60] with the map

Y : CP,#3CP, — CP,#3CP,

given by the conjugated Cremona transformation

1 1 1
[z1:22 1 3] —> [T:_TIT:|~
21 2 73
This last uniqueness assertion might come as something of a surprise. For instance, if we
blow up CP; x CP; at a generic pair of distinct points that are interchanged by a x t, the
anti-holomorphic involution thereby induced on the blow-up is actually isomorphic to the
one we would have produced had we instead started with a x a; for although identifying
the two-point blow-up of CIP; x CIP; with the three-point blow up CP, in the standard way
produces two anti-holomorphic involutions that look superficially different, these actually
turn out to simply differ by a Cremona transformation [25]. In particular, it follows that the
non-spin 4-manifolds Z#CP, and 2#CP, are both diffeomorphic to (CPo#3CP,)/(Y).
Our discussion thus far has revealed that any compact oriented Einstein manifold (M*, h)
withy # 0,b, = 1,and det(W*) > 0 must be diffeomorphic to 2#CP,. We will now show
that, conversely, this possibility actually arises, and that it does so moreover in an essentially
unique way:

Proposition 3 There is an Einstein metric h on 2#CP, that satisfies det(W ') > 0 at every
point. Moreover, any compact oriented Einstein manifold (M*, b’y withty # 0, by = 1, and
det(Wt) > 0 is isometric to (2#CP,, ah) for some positive constant a. As a consequence,
the restricted Einstein moduli space &y (2#CP2) therefore consists of exactly one point.

Proof Siu [26, p. 621] proved that CP,#3CP, admits a J -compatible Kdhler—Einstein metric
g with Einstein constant 1 that is invariant under the compact group of automorphisms
generated by the permutations

1 1 1
o] = 1], ap= 1 , az=|1 s
1 1 ] 1
along with the action of the 2-torus
‘eie
T2 := S(U(1) x U(1) x U(1)) = e'?

e—i(0+9)

lifted in the obvious way to act on the three-point blow-up. In point of fact, Matsushima’s
theorem [23] tells us that invariance under the torus action is automatic here, because T? /73
is actually the unique maximal compact subgroup of the identity component (C* x C*)/Z3
of the complex automorphism group of CP,#3CP,. By contrast, its invariance with respect
to the specific finite group &3 generated by the {c;}, together with the normalization of
choosing the Einstein constant to be 1, uniquely picks out Siu’s Kéhler—Einstein metric g.
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Indeed, the Bando—Mabuchi uniqueness theorem [1] tells us that any other J-compatible
Kihler—Einstein metric g on CP,#3CP, with Einstein constant 1 must be obtained from g
by moving it by an element of the connected component of (C* x C*)/Z3 of the complex
automorphism group. However, any such rival Einstein metric g # g is then invariant under a
different representation of &3, where the generators &; = Ao o o A have been conjugated
by a diagonal matrix A of determinant 1 whose eigenvalues do not all have norm 1. If g were
also invariant under the original «;, it would then be invariant &t o A loa joAeC*xC~
foreach j = 1, 2, 3, and the powers of at least one such diagonal matrix will then diverge in
C* x C*. But this is a contradiction, since the isometry group of any compact Riemannian
manifold is compact. This proves that Siu’s Kéhler-Einstein metric is uniquely determined
by its &3-invariance, together with our (arbitrarily chosen) normalization of its Einstein
constant.
Now notice that

TOO[(,':,B_/OO(_/’OT, j:1,2,3,
where the §; € T? are defined by

1 1 —1

B = -1 . B= 1 . B3= -1
-1 1 1

Since the Kéhler—Einstein metric g is compatible with both J and —J, and since Y just
interchanges these two integrable complex structures, it follows that g := Y*g is a J-
compatible A = +1 Kéhler-Einstein metric. But, using the invariance of g under «; and 8},
we now see that

ajg=ajTg=(Toa)) g
= (BjoajoN)*'g=""(Bjoa)"g

This shows that g is another A = +1 Kihler—Einstein metric that is invariant under the
action of &3 generated by the {«/;}. But since Siu’s metric is uniquely characterized by these
properties, we must have g = g = Y*g. Thus, the free anti-holomorphic involution Y is
an isometry of (CP,#3CP,, g), and g therefore descends to 2#CP, = (CP,#3CP,)/(Y)
as an Einstein metric 4 with det(W™) > 0 everywhere. Moreover, since there is only one
del Pezzo surface of degree 6, Proposition 1 and the Bando—Mabuchi uniquess theorem
together guarantee that any other compact oriented Einstein manifold (M*, h') with 7y # 0,
by =1, and det(W™) > 0 must be isometric to a rescaled version of this Einstein manifold
(2#CPy, h). O

2.3 The b, (M) = 2 case

When by (M) = 2, the del Pezzo surface (M , J) has degree c% = 4. Because this complex
surface has K~! ample, the Riemann—-Roch-Hirzebruch and Kodaira vanishing theorems
immediately tell us that h°(M, O(K~')) = 5, and h°(M, O(K~2)) = 13. On the other
hand, surface classification tells us that A must be obtained by blowing up CP, at five
distinct points, no three of which are col]jnear. Using these facts, one can then deduce [8,10]
that the anti-canonical system embeds M in P([H 0(O(K~H]*) = CP4, and that the image
of (1\~4 , J) is actually the transverse intersection of two non-singular quadrics in CPy4. In our

@ Springer



400 C. LeBrun

case, though, we also have an anti-hololomorphic involution o : M — M, and this then
induces a complex-anti-linear involution

o [HY(OK~NT* — [H Ok ~)1*

that looks like component-wise complex conjugation in C3. Obviously, the image of M
is automatically invariant under the involution of CP,4 induced by ¢*, and this involution
moreover restricts to M as the given anti-holomorphic involution o . In addition, there is an
induced complex-anti-linear involution

oy H(OK™?) - HO(OK™?))

that is compatible with the one induced by ¢* on the 15-dimensional space ©>H°(O(K 1))
of homogeneous quadratic polynomials. The 2-dimensional kernel of the restriction map
©2HY (O(K _1)) — H O((9(K _2)) therefore also carries an induced complex conjugation
map. Taking a generic real basis for this space, we thus see that M C CPy is actually the
transverse intersection of two non-singular quadrics with real coefficients, but with disjoint
real loci. By choosing a suitable basis for the real homogeneous polynomials vanishing on
M, and then altering our homogeneous coordinates by the action of GL(5, R), we may thus
arrange for M to be cut out [31,32] by the equations

5 5
N2 2
0= 2= a5

==

where ay, ..., as are distinct real numbers. Conversely, any such choice of the coefficients
aj defines a degree-four del Pezzo surface M with free anti-holomorphic involution o; the
requirement that the coefficients a; be distinct is exactly equivalent to requiring that inter-
section of the given quadrics be smooth. Replacing these quadrics with linear combinations
and then rescaling our coordinates has the effect of replacing ay, ..., as with their images
under a fractional linear transformation of R, so we may further refine our normal form so
thata; = 1,a» =2, a3 = 3, and 3 < a4 < as. This not only shows that the moduli space of
smooth degree-four del Pezzo surfaces with free anti-holomorphic involution is connected
[25,32], but also reveals that this moduli space has real dimension 2.

Now, every smooth degree-four del Pezzo surface admits a J-compatible Kihler—Einstein
metric [24,30]. Moreover, since there are no non-trivial holomorphic vector fields on such a del
Pezzo, the uniqueness theorem of Bando-Mabuchi guarantees that this J-compatible Kédhler—
Einstein metric g is completely unique once we exclude non-trivial constant rescalings by,
for example, normalizing the Einstein constant. However, if g is a Kéhler—Einstein metric,
then o *g is also Kihler—Einstein. Moreover, since g is compatible with the two integrable
almost-complex structures J, the same is true of o * g, since the anti-holomorphic involution
o exactly interchanges J and —J. Since the Einstein metrics g and o *g also have the same
Einstein constant, it thus follows that g = o*g. Since that the Einstein metric g is therefore
o-invariant. it pushes down to a unique Einstein metric # on M = M /(o). We have thus
arranged for g to become the pull-back I of an Einstein metric & on M with det(W ™) > 0.
To summarize:

Proposition 4 Any compact oriented, Einstein manifold (M*, h) with 1 # 0, by = 2, and
det(W) > 0 is orientedly diffeomorphic to 2#2CP,, and is doubly covered by a degree-
SJour del Pezzo surface equipped with a fixed-point-free free anti-holomorphic involution.
Moreover, the moduli space &y (2#2CPy) of these special Einstein metrics is non-empty,
connected, and of real dimension 2.
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2.4 The b, (M) = 3 case

We finally come to the case where b (M) = 3, and where (1\7[ J) is a del Pezzo surface
of degree c? 1 = 2. This time, Riemann-Roch-Hirzebruch and Kodaira vanishing tell us that
hO(M O(K~1)) = 3, while the classification of rational surfaces tells us that (M J) is
obtained from CPP; by blowing up 7 points, with no three of them collinear, and no six on a
conic. This can then be used [8,10] to show that the anti-canonical system is base-point free,
and so defines a degree-2 holomorphic map

M — P(HY(O(K~H]*) = CP;

further use of the ampleness of K ~1 then reveals that (I\N/I , J) is therefore a branched dou-
ble cover of the projective plane, with branch locus a smooth quartic curve. Thus, M is
biholomorphic to the subvariety of O(2) — CP,, given by {2 = —f(z1, 22, z3), Where
[z1, z2, 23] € CIPy, the fiber-coordinate ¢ is homogeneous of degree 2 in (z1, 22, z3), and
where f € H(CP,, O(4)) vanishes along a smooth quartic plane curve X.

However, in our case, we also have a fixed-point-free anti-holomorphic involution o :
M — M, , and the induced anti-holomorphic action of this involution on the line bundle
K~!' — M then induces a standard complex conjugation map on [HO(O(K~H]* = C3.
The induced anti-holomorphic action on CIP; then preserves the branch locus, and acts on X
without fixed points. We may thus take the defining equation f of X to bereal, and everywhere
positive on RP? C CP,. Fortunately, the moduli space of such smooth real quartics without
real points has been studied extensively, and is know to be connected. Indeed, it can be
naturally identified [12] with a specific arithmetic quotient of hyperbolic 6-space.

For each such real quartic curve, we conversely obtain a unique degree-two del Pezzo
surface (M, J) givenby 2 = — f(z1, 22, 23), and which is equipped with a fixed-point-free
anti-holomorphic 1nv01ut10n oc:M—> M given by (z1, 22, 23, ¢) — (21, 22, 23, §) But any
degree-two del Pezzo admits [24] a J-compatible Kihler—Einstein metric g, and pulling back
this metric by our anti-holomorphic involution then gives a second Kihler—Einstein metric
o *g with the same Einstein constant. But the del Pezzo surface M is also biholomorphic to
a blow-up of CIP, at seven points in general position, it carries no holomorphic vector fields.
Thus, the Bando—Mabuchi uniqueness theorem tells us that o*g = g. It therefore follows
that g descends to the quotient M = M /{o) as a uniquely defined Einstein metric & with
det(W™) > 0, thereby making g equal its pull-back h. We have thus proved the following:

Proposition 5 Any compact oriented, Einstein manifold (M*, h) with | # 0, by = 3, and
det(WT) > 0 is orientedly diffeomorphic to 2#3CP», and is doubly covered by a degree-
two del Pezzo surface equipped with a fixed-point-free free anti-holomorphic involution.
Moreover, the moduli space Eye(2#2CPy) of these special Einstein metrics is non-empty,
connected, and of real dimension 6.

2.5 Proofs of the main theorems

By putting together the above results, it is now straightforward to prove our main theorems.
For the sake of clarity, we will do so in reverse order.

Proof of Theorem B. 1f (M, h) is a compact oriented Einstein 4-manifold with 7; # 0 and
det(W™) > 0, case (ii) of Proposition 1 tells us that M = 1\7/(0), where M is a del Pezzo
surface, and o is a fixed-point-free anti-holomorphic involution; moreover, Theorem 1 tells
us that the pull-back Hto M is actually Kéhler-Einstein.
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Because 4 — by(M) = lc% (M) > (, the only possible values of b>(M) are O, 1, 2, or 3,
and we have thoroughly analyzed each of these possibilities. When b2 (M) = 0, Proposition
2 tells us that M must be diffeomorphic to & or 2; both cases actually arise, and they are
topologically distinct, because only one of them is spin. When b>(M) = 1, Proposition 3
tells us that M must be diffeomorphic to 2#CIP,, and that this manifold actually carries an
Einstein metric of the required type. When b, (M) = 2, M must instead be diffeomorphic
to 2#2CP, by Proposition 4, which also tells us that this manifold actually carries a family
of Einstein metrics with the required property. Finally, when b, (M) = 3, Proposition 5 tells
us that M is necessarily diffeomorphic to 2#3CPs, and that this manifold actually carries a
family of such Einstein metrics. O

Proof of Theorem A. By Theorem B, there are exactly five diffeotypes of non-simply con-
nected compact oriented 4-manifolds M that carry Einstein manifolds with det(W™) > 0
everywhere; namely, these are &2 and 2#kCP, for k = 0, 1, 2, and 3. Moreover, Proposi-
tions 2, 3, 4, and 5 tell us that in each case the moduli space &ye (M) of these special Einstein
metrics is actually connected. In addition, there are [17] exactly ten simply connected dif-
feotypes of compact oriented 4-manifolds that carry such metrics, corresponding to the ten
deformation types of del Pezzo surfaces; for each such diffeotype, our moduli space &yet (M)
of special Einstein metrics is connected, because it is in fact exactly the (connected) moduli
space of del Pezzo complex structures, modulo the Z;-action induced by J ~» —J. Taken
together, this means there are exactly 15 possible diffeotypes, and that in each case the moduli
space &get (M) of these special Einstein metrics is both non-empty and connected.

Finally, the moduli space &g (M) of these special Einstein metrics is always both open
and closed as a subset of the moduli space & (M) of all Einstein metrics. Indeed, by [17], these
special Einstein metrics are characterized among all Einstein metrics by the open condition
det(WT) > 0; whereas results of Derdziriski [9, Theorem 2] and Hitchin [3, Theorem 13.30]
instead characterize them, among Einstein metrics on these spaces, by the pair of closed
conditions det(W™) = ﬁ|W‘*‘|3 and s > 0. Thus, for each of these fifteen 4-manifolds
M, the connected space ;fdet(M ) is precisely a single connected component of the Einstein
moduli space &(M). O

3 Related results

For clarity and simplicity, we have supposed throughout this article that the Einstein metrics
h under investigation satisfied Wu’s condition det(W*) > 0. However, by [17, Theorem C],
we could have actually reached exactly the same conclusions if we had merely imposed an
ostensibly weaker hypothesis:

Theorem 2 Let (M, h) be a compact oriented Einstein 4-manifold. If

5v2
214/21
at every point of M, then (M, h) actually satisfies det(W™) > 0 everywhere. Consequently,
by Theorem A, there are exactly 15 diffeotypes of 4-manifolds M that carry such Einstein

metrics, and their moduli space &ge (M) is in each case exactly a connected component of
the Einstein moduli space &(M).

Wt £0 and det(Wt) > — WP ©)

In fact, the results of [17] apply more generally to oriented Riemannian 4-manifolds that
satisfy sW+ = 0 and (3). This led there to a complete diffeomorphism classification of all

@ Springer



Einstein metrics, conformal curvature 403

such manifolds with by # 0. Regarding the b, = 0, case, we can now at least say the
following:

Theorem 3 Let (M, h) be a compact oriented Riemannian 4-manifold with SW+ = 0, and
suppose that bo (M) = 0. If h satisfies (3) at every point, then M admits a double cover M
that is diffeomorphic to (L4 X S2)#2kCP,, where k and g are non-negative integers, and
where T is the compact oriented surface of genus g. Conversely, each of these possibilities
occurs: for every pair (k, g) of non-negative integers, there is a compact oriented 4-manifold
(M, h) withby =0, W+ =0, and det(W™) > 0 that is doubly covered by a manifold M
diffeomorphic to (£ x S*)#2kCP,.

Proof By [17, Proposition 3.2], any such manifold (M, k) is double-covered by a complex
surface (1\7 , J) on which the pull-back 1 of h becomes conformal to a J -compatible Kéhler
metric g of positive scalar curvature s. By [36], this implies that (M, J) has Kodaira dimension
—00, and so is rational or ruled. Since the signature r(1\71 ) = 2t (M) must be even, it follows
that M is diffeomorphic to either (X x S2)#2k@ for some g, k > 0, where X4 denotes
the compact oriented surface of genus g, or to the non-spin oriented 2-sphere bundle X4 x 52
over some X 4. However, the latter is excluded here by a variant of the proof of Lemma 1;
indeed, since the putative oriented 4-manifold M = [Xy x 52 /Zy would have signature
7 = 0 and b, = 0, its second cohomology group H2(M, Z) would be finite, and, since
Tor H*(Zg x §%,Z) = Tor Hi(Eq4 x 52, Z) = Tor H|(Xg4,Z) = 0, pulling back a spin®
structure on M would then yield a spin structure on the non-spin manifold M=~y g X S2. This
contradiction therefore shows that M must instead be diffeomorphic to (X4 x $2)#2kCP,
for some g, k > 0.

Conversely, let > = gt | RP? be the connected sum of g+ 1 copies of the real projective
plane, and let g¢; be a smooth Riemannian metric on ¥ that has positive Gauss curvature on
some non-empty open set U C X.Let & — X be the oriented double cover of %, let g1 be
the pull-back of g; to ¥, and let j : TX — T X be the integrable almost-complex complex
structure on ¥ induced by g; and the orientation of X. The non-trivial deck transformation
;1 : ¥ — X now becomes a fixed-point-free anti-holomorphic involution of the genus-g
compact complex curve (X, j), while g; becomes a j-compatible Kidhler metric on X that has
Gauss curvature k¥ > 0 on the non-empty fI-invariant region U that is the pre-image of U.. If g
is the usual unit-sphere metric on § 2 — CPy, then the Riemannian product (X, g1) x (S 2 e g0)
will have positive scalar curvature provided we take ¢ > 0 to be small enough so that
e~! > —mink. Moreover, the product Kihler metric g; @ ego on & x CP; has positive
holomorphic section curvature on the open subset U x CPj. Let us now endow X x CP,
with the fixed-point-free anti-holomorphic involution u := f x a, where a : §> — §2
is once again the antipodal map of (1), and, for a given k > 0, choose 2k distinct points
Pl .., p2k € U x CPPy such that u(pyj_1) = paj for j = 1,..., k. Letting M denote
the blow-up of ¥ x CPy at py, ..., pa, there is then a fixed-point-free anti-holomorphic
involution o : M — M induced by u, and, using a result of Hitchin [15], we will now
construct a o-invariant Kihler metric g of positive scalar curvature on M. The recipe only
calls for changing the previously constructed Kéhler metric g; @ £go within a disjoint union
of the Riemannian balls of radius € about the p;, and modifies the metric within these
balls by adding i tdd f (r) to the Kihler form, where r is the Riemannian distance from the
center p;, f(r) is a gently modified version of logr that is constant for r > ¢, and the
parameter t is any sufficiently small positive constant. For t > 0 sufficiently small, Hitchin’s
computation then shows that this modified Kihler metric g has positive scalar curvature
everywhere, because our background metric has positive holomorphic sectional curvature in
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the modification region, and positive scalar curvature everywhere else. On the other hand,
since we have carefully arranged for this Kéhler metric g on the blow-up to be o -invariant,
our g is automatically the pull-back of a unique Riemannian metric g on the oriented 4-
manifold M := [(Z x CP))#2kCP,] /(o). However, by construction, g has scalar curvature
s > 0, and is moreover everywhere locally isometric to a Kihler metric g. An observation
of Derdziriski [3,9] thus shows that the conformally rescaled metric 7 = s72 g therefore has
det(W™) > 0 and W+ = 0 at every point of M. o

While the above enumeration of the possibilities for M is similar in spirit to our discussion
of the Einstein case, Theorem 3 is certainly far weaker than our main results. First of all, we
have not tried to classify the possible Z;-actions that arise, although it seems clear that that
there must be many of them. Second, in stark contrast to the Einstein case, the moduli spaces
of solutions to the weaker equation W™ = 0 consistently turn out to be infinite dimensional
in the present context, and nothing substantial seems to be known concerning whether or not
they are connected. We leave these open questions for the reader’s further consideration, in
the hope that this will stimulate further research, and eventually lead to definitive answers.
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