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Abstract
Building on previous results [17,35], we complete the classification of compact oriented Ein-
stein 4-manifolds with det(W+) > 0. There are, up to diffeomorphism, exactly 15 manifolds
that carry such metrics, and, on each of these manifolds, such metrics sweep out exactly one
connected component of the corresponding Einstein moduli space.
Résumé
En s’appuyant sur les résultats de travaux antérieurs [17,35], on achève la classification des
variétés d’Einstein compactes orientées de dimension4dont la courbure deWeyl autoduale est
de déterminant strictement positif. À difféomorphisme près, il y a exactement quinze variétés
qui admettent de telles métriques; et, sur chacune de ces variétés, ces métriques remplissent
exactement une composante connexe de l’espace de modules des métriques d’Einstein.

Mathematics Subject Classification 53C25 (primary) ; 14J26 · 32C10 · 53C21 · 53C55
(secondary)

1 Introduction

A Riemannian metric h is said [3] to be Einstein if, for some real constant λ, it satisfies the
Einstein equation

r = λh,

where r is the Ricci tensor of h. Given a smooth compact n-manifold M , henceforth always
assumed to be connected and without boundary, one would like to completely understand
the Einstein moduli space

E (M) = {Einstein metrics on M}/(Diff(M) × R
+),

where the diffeomorphism groupDiff(M) acts on metrics via pull-backs, and where the posi-
tive realsR

+ act by rescaling. This moduli problem is well understood [27,28] in dimensions
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392 C. LeBrun

n ≤ 3, because in these low dimensions the Einstein equation is actually equivalent to just
requiring the sectional curvature to be constant. By contrast, when n ≥ 5, the abundance
of currently-available examples of “exotic” Einstein metrics on familiar manifolds [5,6,33]
seems to indicate that the problem could very well turn out to be fundamentally intractable
in high dimensions. On the other hand, there are certain specific 4-manifolds, such as real
and complex-hyperbolic 4-manifolds, the 4-torus, and K3, where the Einstein moduli space
E (M) is explicitly known, and in fact turns out to be connected [2,4,14,18]. This provides
clear motivation for the intensive study of Einstein moduli spaces in dimension four.

The idiosyncratic features of 4-dimensionalRiemanniangeometry are generally attributable
to the failure of the Lie group SO(4) to be simple; instead, its Lie algebra decomposes as a
direct sum of proper subalgebras:

so(4) = so(3) ⊕ so(3).

Because so(4) and ∧2
R
4 can both be realized as the space of skew 4× 4 matrices, this leads

to a natural decomposition

�2 = �+ ⊕ �−

of the bundle of 2-forms on an orientedRiemannian 4-manifold (M, h). Since the sub-bundles
�± coincide with the (±1)-eigenspaces of the Hodge star operator � : �2 → �2, sections of
�+ are called self-dual 2-forms, while sections of �− are called anti-self-dual 2-forms. But
because the Riemann curvature tensor can be naturally identified with a self-adjoint linear
map

R : �2 → �2,

the curvature of (M4, h) can consequently be decomposed into four pieces

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

W+ + s
12 I r̊

r̊ W− + s
12 I

⎞
⎟⎟⎟⎟⎟⎟⎠

,

corresponding to different irreducible representations of SO(4). Here s is the scalar curvature
and r̊ is the trace-free Ricci curvature, whileW± are by definition the trace-free pieces of the
appropriate blocks. The corresponding pieces W±a

bcd of the Riemann curvature tensor are
in fact both conformally invariant, and are respectively called the self-dual and anti-self-dual
Weyl curvature tensors. The sum W = W+ + W− is called the Weyl tensor or conformal
curvature tensor, and vanishes if and only if the metric h is locally conformally flat. It should
be emphasized that the distinction between the self-dual and anti-self-dual parts of the Weyl
tensor depends on a choice of orientation; reversing the orientation of M interchanges �+
and �−, and so interchanges W+ and W−, too.

The present paper is a natural outgrowth of previous work on the Einstein moduli spaces
E (M) for the smooth compact oriented 4-manifoldsM that arise asdel Pezzo surfaces. Recall
that a del Pezzo surface is defined to be a compact complex surface (M4, J )with ample anti-
canonical line bundle. Up to diffeomorphism, there are exactly ten such manifolds, namely
S2 × S2 and the nine connected sums CP2#mCP2, m = 0, 1, . . . , 8. These are exactly [7]
the smooth oriented compact 4-manifolds that admit both an Einstein metric with λ > 0
and an orientation-compatible symplectic structure. However, the currently-known Einstein
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Einstein metrics, conformal curvature 393

metrics on any of these spaces are all conformally Kähler. Indeed, on most del Pezzos, the
currently-known Einstein metrics [24,29] are actually Kähler–Einstein, although there are
two exceptional cases where they are instead non-trivial conformal rescalings of special
extremal Kähler metrics [7,21]. Inspired in part by earlier work by Derdziński [3,9], and
building upon his own results in [19,20], the author was eventually able to characterize [22]
the known Einstein metrics on del Pezzo manifolds by the property that W+(ω, ω) > 0
everywhere, where ω is a non-trivial (global) self-dual harmonic 2-form. An interesting
corollary is that the known Einstein metrics on each del Pezzo 4-manifold M exactly sweep
out one connected component of the corresponding Einstein moduli space E (M).

However, the role of a global harmonic 2-form ω in the above criterion makes it disquiet-
ingly non-local. Fortunately, PengWu [35] has recently discovered that these known Einstein
metrics can instead be characterized by demanding that det(W+) be positive at every point,
where the self-dual Weyl curvature is considered as an endomorphism

W+ : �+ → �+

of the rank-3 bundle of self-dual 2-forms. The present author then found [17] an entirely
different proof of this characterization that actually strengthens the result, while at the same
time highlighting the previously-neglected point that this criterion only forces our compact
oriented Einstein manifold to be a del Pezzo if we explicitly require it to be simply connected.
In this paper, we will tackle this last issue head-on, by describing the moduli space

Edet(M) = {Einstein metrics on M with det(W+) > 0}/(Diff(M) × R
+)

for each compact oriented 4-manifold M where this moduli space is non-empty. Our first
main result is the following:

Theorem A There are exactly 15 diffeotypes of compact oriented 4-manifolds M that carry
Einstein metrics h with det(W+) > 0 everywhere. For each such manifold, the moduli space
Edet(M) of these special Einstein metrics is connected, and exactly sweeps out a single
connected component of the Einstein moduli space E (M).

In order to state our second, more detailed main result, we will first need to consider
two different Z2-actions on S2 × S2. Let a : S2 → S2 denote the antipodal map, and let
r : S2 → S2 denote reflection across the equator, so that

a =
⎡
⎣

−1
−1

−1

⎤
⎦ and r =

⎡
⎣
1
1

−1

⎤
⎦ (1)

as elements of O(3). Then a × r and a × a are both free, orientation-preserving involutions
of S2 × S2, and the smooth compact 4-manifolds

P := (S2 × S2)/〈a × r〉
Q := (S2 × S2)/〈a × a〉 (2)

are therefore both orientable. Note, however, these two manifolds are not even homotopy
equivalent [11, p. 101], because P is spin, whereas Q is not.

Theorem B Let M be a smooth compact oriented 4-manifold that is not simply connected.
Then, in the notation defined by (2), M admits an Einstein metric h with det(W+) > 0 if and
only if M is diffeomorphic toP or toQ#kCP2 for some k = 0, 1, 2, 3. Moreover, whenever
such an Einstein metric h exists, the universal cover (M̃, h̃) of (M, h) is necessarily isometric
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394 C. LeBrun

to a del Pezzo surface, equipped with a Kähler–Einstein metric, in such a manner that the
non-trivial deck transformation becomes a free anti-holomorphic involution.

The proofs of these results are given in Sect. 2.5 below, as the culmination of a series
of detailed case-by-case studies carried out in earlier parts of Sect. 2. Then, in Sect. 3, we
conclude the article by generalizing these results in variousways, while also pointing pointing
out some associated open problems.

2 Del Pezzos and Double Covers

We begin by carefully refining the statement of [17, Proposition 2.3] in order to emphasize
a key technical fact that lay buried in the proof.

Proposition 1 Let (M, h) be a compact oriented Einstein 4-manifold which satisfies
det(W+) > 0 at every point. Then either

(i) π1(M) = 0, and M admits an orientation-compatible complex structure J such that
(M, J ) is a del Pezzo surface, and such that the conformally rescaled metric g =
|W+|2/3h h is a J -compatible Kähler metric; or else,

(ii) π1(M) = Z2, and M is doubly covered by a del Pezzo surface (M̃, J ) on which the pull-
back of g = |W+|2/3h h is a J -compatible Kähler metric g̃, and where the non-trivial
deck transformation σ : M̃ → M̃ is an anti-holomorphic involution of (M̃, J ).

Proof The conformal rescaling of h used in [17] was actually constructed as α
2/3
h h, where

αh is the top eigenvalue of W+
h : �+ → �+. However, once this rescaled metric has been

shown to be Kähler, it then follows that −αh/2 is a repeated eigenvalue of W+
h , so that

one necessarily also has |W+|2h = 3
2α

2
h . Thus, the Kähler metric constructed in [17] simply

coincides, up to a constant factor of 3
√
3/2, with the metric g = |W+|2/3h h considered above.

The proof of [17, Proposition 2.3] actually focuses on the real line-bundle L ⊂ �+ given
by the top eigenspace of W+; this is well-defined, because the identity tr(W+) = 0 and the
hypothesis det(W+) > 0 together imply that the top eigenvalue of W+ has multiplicity one
everywhere. If L is trivial, one can then choose a global section ω of L such that |ω|g ≡ √

2,
and a Weitzenböck argument (made possible by the fact that any Einstein metric satisfies
δW+ = 0) is then used to show that ω is parallel. If, on the other hand, L is non-trivial,
M̃ = {ω ∈ L | |ω|g = √

2} defines a double cover of M that comes equipped with a
tautological self-dual 2-form ω that, by the same Weitzenböck argument as before, can then
be shown to be the Kähler form of the pulled-backmetric g̃ with respect to a suitable complex
structure J . In the latter case, the non-trivial deck transformation σ : M̃ → M̃ preserves g̃,
and sends ω to −ω, and so, because ω = g̃(J ·, ·), must send J to −J . Thus, in case (ii), σ
is an anti-holomorphic involution of (M̃, J ).

Finally, the complex surface (M, J ) or (M̃, J ) is automatically a del Pezzo. Indeed, since
anyKähler surface satisfies det(W+) = s3/864,where s is its scalar curvature, the assumption
that det(W+) > 0 implies the scalar curvature of g or g̃ must be positive everywhere. Since
the Einstein metric h therefore has positive Einstein constant, and can now be rewritten as
24s−2g, the transformation law for the Ricci curvature under conformal changes implies
[19] that the (1, 1)-form ρ + 2i∂∂̄ log s is a positive representative of 2πc1, where ρ is the
Ricci form of our Kähler surface. The Kodaira embedding theorem thus implies that the anti-
canonical line-bundle K−1 is ample, and (M, J ) or (M̃, J ) is therefore a del Pezzo surface,
as claimed. 
�
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Einstein metrics, conformal curvature 395

Because case (i) was thoroughly analyzed in previous papers [17,22,24], we will only
need to carefully discuss case (ii) in this article. Fortunately, this part of the problem can
largely be reduced to well-explored questions in real algebraic geometric. Indeed, since
(M̃, J ) can be embedded in a projective space P([�(O(K−
)]∗) on which σ acts by complex
conjugation, M̃ can be viewed as a complex projective algebraic variety defined over R;
and because the action of σ on M̃ has no fixed points, this variety automatically has empty
real locus. The substantial classical and modern literature available concerning real forms of
del Pezzo surfaces [12,16,25,32] has therefore paved the road ahead of us, and will make it
comparatively easy to completely solve the problem.

Since traditional approaches to the subject emphasize the degree c21 > 0 of a del Pezzo
surface, it will be important for us to relate the degree of M̃ to the topology of M = M̃/〈σ 〉.
For this purpose, it is useful to remember that any almost-complex 4-manifold satisfies
c21 = 2χ + 3τ , where χ is the Euler characteristic and τ = b+ − b− is the signature. For the
del Pezzo surface M̃ , however, the Todd genus Td = h0,0 − h0,1 + h0,2 = (χ + τ)/4 must
equal 1, since h0,1 = h0,2 = 0 by the Kodaira vanishing theorem. It therefore follows that

c21(M̃) = 8 + τ(M̃) = 8 + 2τ(M),

where in the last stepwe have recalled that the signature τ ismultiplicative under finite covers.
On the other hand, b+(M) = 0, since the Kähler form ω spans the self-dual harmonic forms
on (M̃, g̃), but is σ -anti-invariant. Hence τ(M) = −b−(M) = −b2(M), and c21(M̃) =
2[4 − b2(M)]. As a consequence, the only possibilities are b2(M) = 0, 1, 2 or 3. We will
now proceed by discussing each of these cases separately.

2.1 The b2(M) = 0 Case

When b2(M) = 0, the double cover M̃ must have signature zero. Since this covering space is
therefore a del Pezzo surface of degree 8, classification [8,10] tells us that M̃ is diffeomorphic
to either S2 × S2 or CP2#CP2. Now, it is a classical fact [25,32] that any anti-holomorphic
involution of the one-point blow-up of CP2 must have a fixed point. But, as we will now
observe, this is actually preordained by a more general topological result. Although elemen-
tary, the proof is worth recounting here in some detail, as doing so will eventually save us
needless extra work in Sect. 3.

Lemma 1 No smooth orientable 4-manifold M with π1 �= 0 has a covering space homeo-
morphic to CP2#CP2.

Proof Let us proceed by contradiction, and assume there exists a coveringmap� : N → M ,
whereM is a smooth oriented non-simply-connected 4-manifold, andwhere N is homeomor-
phic (but perhaps not diffeomorphic) to CP2#CP2. Notice that M = �(N ) is automatically
compact, and that the simply connected manifold N is automatically its universal cover. We
now give N the orientation lifted from M , so that the degree ≥ 2 of � then equals |π1(M)|.
Since this in particular means that π1(M) is finite,

H1(M, R) = Hom(π1(M), R) = 0,

and Poincaré duality for the oriented 4-manifold M therefore implies

b3(M) = b1(M) = 0 and b4(M) = b0(M) = 1,
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396 C. LeBrun

where b j denotes the j th Betti number with R coefficients. The Euler characteristic of M is
therefore given by

χ(M) =
4∑
j=0

(−1) j b j (M) = 2 + b2(M) ≥ 2.

However, because the Euler characteristic χ is multiplicative under finite coverings, we also
have

χ(M) = χ(CP2#CP2)/|π1(M)| = 4/|π1(M)| ≤ 2.

It therefore follows that χ(M) = 2, and that b2(M) = 0. In particular, H2(M, Z) has trivial
free part, and so consists entirely of torsion elements.

On the other hand, any smooth, orientable 4-manifold is spinc. Thus, there exists [13,34]
an integral cohomology class a ∈ H2(M, Z) satisfying

�(a) = w2(M) := w2(T M),

where

� : H2(M, Z) → H2(M, Z2)

denotes the natural homomorphism induced by mod-2 reduction Z → Z2. However, since
� is a smooth submersion, �∗ : T N ∼= � ∗T M . Thus, the naturality of Stiefel-Whitney
classes with respect to pull-backs and the commutativity of the diagram

H2(N , Z)
�→ H2(N , Z2)

↑� ∗ ↑� ∗

H2(M, Z)
�→ H2(M, Z2)

together guarantee that

� (� ∗(a)) = � ∗(� (a)) = � ∗(w2(T M))

= w2(�
∗T M) = w2(T N )

= w2(N ) ∈ H2(N , Z2).

On the other hand, since a ∈ H2(M, Z) is a torsion element, it follows that� ∗a ∈ H2(N , Z)

is a torsion element, too. But

H2(N , Z) ∼= H2(CP2#CP2, Z) = Z ⊕ Z

is a free Abelian group, so this implies that � ∗a = 0. Hence

w2(N ) = � (� ∗(a)) = 0.

But this is absurd, because N ≈ CP2#CP2 has odd intersection form, and so is not spin. It
follows that the oriented 4-manifold M cannot exist, as claimed. 
�

In our context, this simple fact has a striking consequence:

Theorem 1 Let (M, h) be a compact oriented non-simply-connected Einstein 4-manifold
that satisfies det(W+) > 0 at every point. Then M is doubly covered by a del Pezzo surface
(M̃, J ) on which the pull-back h̃ of h is a J -compatible Kähler–Einstein metric.
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Einstein metrics, conformal curvature 397

Proof Case (ii) of Proposition 1 tells us that the Einstein manifold (M̃, h̃) is conformally
Kähler. However, by [20, Theorem A], CP2#CP2 and CP2#2CP2 are the only two compact
4-manifolds that carry Einstein metrics that are conformally Kähler, but not Kähler–Einstein.
But neither of these is the double cover of an oriented 4-manifold; the second is prohibited
because its signature is odd, while the first is ruled out by Lemma 1. 
�

As an immediate consequence, any compact oriented Einstein 4-manifold (M, h) with
det(W+) > 0 and b2 = 0 must be doubly covered by CP1 × CP1, equipped with a Kähler–
Einstein metric. However, a theorem of Matsushima [23, Théorème 1] implies that any
Kähler–Einstein metric on CP1 × CP1 must be invariant under a maximal compact sub-
group ∼= SO(3) × SO(3) of the identity component PSL(2, C) ×PSL(2, C) of the complex
automorphism group. Thus, the universal cover (M̃, h̃) of (M, h) must be homothetic to the
homogeneous Einstein manifold (S2, g0) × (S2, g0), where g0 is the “round” unit-sphere
metric on S2 = CP1. This allows us to deduce the following:

Proposition 2 Modulo constant rescalings, any compact orientedEinstein 4-manifold (M, h)

with det(W+) > 0 and b2 = 0 is isometric to exactly one of the Riemannian quotients
described by (2). Since the two 4-manifolds P and Q are not diffeomorphic, it thus follows
that the moduli spaces Edet(P) and Edet(Q) each consist of a single point.

Proof With respect to the product metric g0 ⊕ g0, the sectional curvature K (�) of a 2-plane
� ⊂ T (S2 × S2) belongs to [0, 1], and satisfies K (�) = 1 iff � is tangent to an S2 factor.
Thus, any isometry of (S2 × S2, g0 ⊕ g0) must send each 2-sphere S2 ×{pt} or {pt}× S2 to
a 2-sphere of one of these two types. On the other hand, because the orientation-preserving
isometric involution σ : S2 × S2 → S2 × S2 must not have fixed points, the Lefschetz
fixed-point theorem tells us that its Leftschetz number must vanish. That is,

0 = L(σ ) =
∑
j

(−1) j tr
(
σ∗|Hj (S2×S2)

)
= 2 + tr

(
σ∗|H2(S2×S2)

)
,

where σ∗ is the induced map on homology with R coefficients. Since (σ∗)2 = I and
tr

(
σ∗|H2(S2×S2)

) = −2, it follows that σ∗ = −I on H2(S2 × S2, R). Hence each sphere
S2 × {pt} must be sent isometrically by σ to a sphere of the same kind, in an orientation-
reversingmanner; and the same conclusion similarly applies to spheres of the form {pt}×S2.
Since the projection of S2×S2 to either factor is aRiemannian submersion, it therefore follows
that σ must be the product of two isometric, orientation-reversing involutions of (S2, g0).
However, any such involution is diagonalizable, with eigenvalues ±1. Up to conjugation,
the only candidates for these maps of S2 are therefore the involutions a and r described by
(1). However, r × r can be excluded as a candidate for σ , since it has fixed points. Thus,
after interchanging factors if necessary, the only remaining possibilities for σ are the free
anti-holomorphic involutions a × r and a × a of S2 × S2 = CP1 × CP1.

It therefore only remains to show that P := (S2 × S2)/〈a × r〉 is not diffeomorphic
to Q := (S2 × S2)/〈a × a〉. To see this, first notice that w2(Q) �= 0, since the diagonal
S2 ⊂ S2 × S2 projects to an RP

2 ⊂ Q that has normal bundle ∼= TRP
2, and so has self-

intersection χ(RP
2) = 1 mod 2. By contrast, H2(P, Z2) is generated by the RP

2-image of
S2 × {(1, 0, 0)} and the S2-image of {pt} × S2; and since each of these submanifolds has
small perturbations that do not intersect it, both have self-intersection zero, and it follows
that w2(P) = 0. Thus, the 4-manifolds P and Q certainly aren’t diffeomorphic, because
one is spin, while the other isn’t. 
�
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398 C. LeBrun

2.2 The b2(M) = 1 case

When b2(M) = 1, the del Pezzo surface (M̃, J ) has degree c21 = 6. Because this complex
surface has K−1 ample, surface classification easily allows one to show [8,10] that it must
exactly be the blow-up ofCP2 at three non-collinear points, whichwemay take to be [1, 0, 0],
[0, 1, 0], and [0, 0, 1]. By adjusting our coordinates if necessary, the free anti-holomorphic
involution σ : M̃ → M̃ can moreover then be identified [32, p. 60] with the map

ϒ : CP2#3CP2 → CP2#3CP2

given by the conjugated Cremona transformation

[z1 : z2 : z3] �−→
[
1

z̄1
: − 1

z̄2
: 1

z̄3

]
.

This last uniqueness assertion might come as something of a surprise. For instance, if we
blow up CP1 × CP1 at a generic pair of distinct points that are interchanged by a × r, the
anti-holomorphic involution thereby induced on the blow-up is actually isomorphic to the
one we would have produced had we instead started with a × a; for although identifying
the two-point blow-up of CP1 × CP1 with the three-point blow up CP2 in the standard way
produces two anti-holomorphic involutions that look superficially different, these actually
turn out to simply differ by a Cremona transformation [25]. In particular, it follows that the
non-spin 4-manifolds P#CP2 and Q#CP2 are both diffeomorphic to (CP2#3CP2)/〈ϒ〉.

Our discussion thus far has revealed that any compact oriented Einstein manifold (M4, h)

withπ1 �= 0, b2 = 1, and det(W+) > 0must be diffeomorphic toQ#CP2.Wewill now show
that, conversely, this possibility actually arises, and that it does so moreover in an essentially
unique way:

Proposition 3 There is an Einstein metric h on Q#CP2 that satisfies det(W+) > 0 at every
point. Moreover, any compact oriented Einstein manifold (M4, h′) with π1 �= 0, b2 = 1, and
det(W+) > 0 is isometric to (Q#CP2, ah) for some positive constant a. As a consequence,
the restricted Einstein moduli space Edet(Q#CP2) therefore consists of exactly one point.

Proof Siu [26, p. 621] proved thatCP2#3CP2 admits a J -compatible Kähler–Einstein metric
g with Einstein constant 1 that is invariant under the compact group of automorphisms
generated by the permutations

α1 =
⎡
⎣
1

1
1

⎤
⎦ , α2 =

⎡
⎣

1
1

1

⎤
⎦ , α3 =

⎡
⎣

1
1

1

⎤
⎦ ,

along with the action of the 2-torus

T
2 := S(U(1) × U(1) × U(1)) =

⎧⎨
⎩

⎡
⎣
eiθ

eiφ

e−i(θ+φ)

⎤
⎦

⎫⎬
⎭ ,

lifted in the obvious way to act on the three-point blow-up. In point of fact, Matsushima’s
theorem [23] tells us that invariance under the torus action is automatic here, because T

2/Z3

is actually the unique maximal compact subgroup of the identity component (C× × C
×)/Z3

of the complex automorphism group of CP2#3CP2. By contrast, its invariance with respect
to the specific finite group S3 generated by the {α j }, together with the normalization of
choosing the Einstein constant to be 1, uniquely picks out Siu’s Kähler–Einstein metric g.
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Einstein metrics, conformal curvature 399

Indeed, the Bando–Mabuchi uniqueness theorem [1] tells us that any other J -compatible
Kähler–Einstein metric ĝ on CP2#3CP2 with Einstein constant 1 must be obtained from g
by moving it by an element of the connected component of (C× × C

×)/Z3 of the complex
automorphism group. However, any such rival Einstein metric ĝ �= g is then invariant under a
different representation ofS3, where the generators α̂ j = A−1◦α j ◦ A have been conjugated
by a diagonal matrix A of determinant 1 whose eigenvalues do not all have norm 1. If ĝ were
also invariant under the original α j , it would then be invariant α j ◦ A−1 ◦α j ◦ A ∈ C

× ×C
×

for each j = 1, 2, 3, and the powers of at least one such diagonal matrix will then diverge in
C

× × C
×. But this is a contradiction, since the isometry group of any compact Riemannian

manifold is compact. This proves that Siu’s Kähler–Einstein metric is uniquely determined
by its S3-invariance, together with our (arbitrarily chosen) normalization of its Einstein
constant.

Now notice that

ϒ ◦ α j = β j ◦ α j ◦ ϒ, j = 1, 2, 3,

where the β j ∈ T
2 are defined by

β1 =
⎡
⎣
1

−1
−1

⎤
⎦ , β2 =

⎡
⎣
1
1
1

⎤
⎦ , β3 =

⎡
⎣

−1
−1

1

⎤
⎦ .

Since the Kähler–Einstein metric g is compatible with both J and −J , and since ϒ just
interchanges these two integrable complex structures, it follows that ĝ := ϒ∗g is a J -
compatible λ = +1 Kähler–Einstein metric. But, using the invariance of g under α j and β j ,
we now see that

α∗
j ĝ = α∗

jϒ
∗g = (ϒ ◦ α j )

∗g
= (β j ◦ α j ◦ ϒ)∗g = ϒ∗(β j ◦ α j )

∗g
= ϒ∗g = ĝ.

This shows that ĝ is another λ = +1 Kähler–Einstein metric that is invariant under the
action ofS3 generated by the {α j }. But since Siu’s metric is uniquely characterized by these
properties, we must have g = ĝ = ϒ∗g. Thus, the free anti-holomorphic involution ϒ is
an isometry of (CP2#3CP2, g), and g therefore descends to Q#CP2 = (CP2#3CP2)/〈ϒ〉
as an Einstein metric h with det(W+) > 0 everywhere. Moreover, since there is only one
del Pezzo surface of degree 6, Proposition 1 and the Bando–Mabuchi uniquess theorem
together guarantee that any other compact oriented Einstein manifold (M4, h′) with π1 �= 0,
b2 = 1, and det(W+) > 0 must be isometric to a rescaled version of this Einstein manifold
(Q#CP2, h). 
�

2.3 The b2(M) = 2 case

When b2(M) = 2, the del Pezzo surface (M̃, J ) has degree c21 = 4. Because this complex
surface has K−1 ample, the Riemann–Roch–Hirzebruch and Kodaira vanishing theorems
immediately tell us that h0(M̃,O(K−1)) = 5, and h0(M̃,O(K−2)) = 13. On the other
hand, surface classification tells us that M̃ must be obtained by blowing up CP2 at five
distinct points, no three of which are collinear. Using these facts, one can then deduce [8,10]
that the anti-canonical system embeds M̃ in P([H0(O(K−1)]∗) ∼= CP4, and that the image
of (M̃, J ) is actually the transverse intersection of two non-singular quadrics in CP4. In our
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case, though, we also have an anti-hololomorphic involution σ : M̃ → M̃ , and this then
induces a complex-anti-linear involution

σ ∗ : [H0(O(K−1))]∗ → [H0(O(K−1))]∗
that looks like component-wise complex conjugation in C

5. Obviously, the image of M̃
is automatically invariant under the involution of CP4 induced by σ ∗, and this involution
moreover restricts to M̃ as the given anti-holomorphic involution σ . In addition, there is an
induced complex-anti-linear involution

σ∗ : H0(O(K−2)) → H0(O(K−2))

that is compatible with the one induced by σ ∗ on the 15-dimensional space �2H0(O(K−1))

of homogeneous quadratic polynomials. The 2-dimensional kernel of the restriction map
�2H0(O(K−1)) → H0(O(K−2)) therefore also carries an induced complex conjugation
map. Taking a generic real basis for this space, we thus see that M̃ ⊂ CP4 is actually the
transverse intersection of two non-singular quadrics with real coefficients, but with disjoint
real loci. By choosing a suitable basis for the real homogeneous polynomials vanishing on
M̃ , and then altering our homogeneous coordinates by the action of GL(5, R), we may thus
arrange for M̃ to be cut out [31,32] by the equations

0 =
5∑
j=1

z2j =
5∑
j=1

a j z
2
j

where a1, . . . , a5 are distinct real numbers. Conversely, any such choice of the coefficients
a j defines a degree-four del Pezzo surface M̃ with free anti-holomorphic involution σ ; the
requirement that the coefficients a j be distinct is exactly equivalent to requiring that inter-
section of the given quadrics be smooth. Replacing these quadrics with linear combinations
and then rescaling our coordinates has the effect of replacing a1, . . . , a5 with their images
under a fractional linear transformation of R, so we may further refine our normal form so
that a1 = 1, a2 = 2, a3 = 3, and 3 < a4 < a5. This not only shows that the moduli space of
smooth degree-four del Pezzo surfaces with free anti-holomorphic involution is connected
[25,32], but also reveals that this moduli space has real dimension 2.

Now, every smooth degree-four del Pezzo surface admits a J -compatible Kähler–Einstein
metric [24,30].Moreover, since there are nonon-trivial holomorphic vectorfields on such adel
Pezzo, the uniqueness theorem of Bando-Mabuchi guarantees that this J -compatible Kähler–
Einstein metric g is completely unique once we exclude non-trivial constant rescalings by,
for example, normalizing the Einstein constant. However, if g is a Kähler–Einstein metric,
then σ ∗g is also Kähler–Einstein. Moreover, since g is compatible with the two integrable
almost-complex structures±J , the same is true of σ ∗g, since the anti-holomorphic involution
σ exactly interchanges J and −J . Since the Einstein metrics g and σ ∗g also have the same
Einstein constant, it thus follows that g = σ ∗g. Since that the Einstein metric g is therefore
σ -invariant. it pushes down to a unique Einstein metric h on M = M̃/〈σ 〉. We have thus
arranged for g to become the pull-back h̃ of an Einstein metric h on M with det(W+) > 0.
To summarize:

Proposition 4 Any compact oriented, Einstein manifold (M4, h) with π1 �= 0, b2 = 2, and
det(W+) > 0 is orientedly diffeomorphic to Q#2CP2, and is doubly covered by a degree-
four del Pezzo surface equipped with a fixed-point-free free anti-holomorphic involution.
Moreover, the moduli space Edet(Q#2CP2) of these special Einstein metrics is non-empty,
connected, and of real dimension 2.
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2.4 The b2(M) = 3 case

We finally come to the case where b2(M) = 3, and where (M̃, J ) is a del Pezzo surface
of degree c21 = 2. This time, Riemann–Roch–Hirzebruch and Kodaira vanishing tell us that
h0(M̃,O(K−1)) = 3, while the classification of rational surfaces tells us that (M̃, J ) is
obtained from CP2 by blowing up 7 points, with no three of them collinear, and no six on a
conic. This can then be used [8,10] to show that the anti-canonical system is base-point free,
and so defines a degree-2 holomorphic map

M̃ → P([H0(O(K−1)]∗) ∼= CP2;
further use of the ampleness of K−1 then reveals that (M̃, J ) is therefore a branched dou-
ble cover of the projective plane, with branch locus a smooth quartic curve. Thus, M̃ is
biholomorphic to the subvariety of O(2) → CP2, given by ζ 2 = − f (z1, z2, z3), where
[z1, z2, z3] ∈ CP2, the fiber-coordinate ζ is homogeneous of degree 2 in (z1, z2, z3), and
where f ∈ H0(CP2,O(4)) vanishes along a smooth quartic plane curve �.

However, in our case, we also have a fixed-point-free anti-holomorphic involution σ :
M̃ → M̃ , and the induced anti-holomorphic action of this involution on the line bundle
K−1 → M̃ then induces a standard complex conjugation map on [H0(O(K−1)]∗ ∼= C

3.
The induced anti-holomorphic action on CP2 then preserves the branch locus, and acts on �

without fixed points.Wemay thus take the defining equation f of� to be real, and everywhere
positive on RP

2 ⊂ CP2. Fortunately, the moduli space of such smooth real quartics without
real points has been studied extensively, and is know to be connected. Indeed, it can be
naturally identified [12] with a specific arithmetic quotient of hyperbolic 6-space.

For each such real quartic curve, we conversely obtain a unique degree-two del Pezzo
surface (M̃, J ) given by ζ 2 = − f (z1, z2, z3), and which is equipped with a fixed-point-free
anti-holomorphic involution σ : M̃ → M̃ given by (z1, z2, z3, ζ ) �→ (z̄1, z̄2, z̄3, ζ̄ ). But any
degree-two del Pezzo admits [24] a J -compatible Kähler–Einstein metric g, and pulling back
this metric by our anti-holomorphic involution then gives a second Kähler–Einstein metric
σ ∗g with the same Einstein constant. But the del Pezzo surface M̃ is also biholomorphic to
a blow-up of CP2 at seven points in general position, it carries no holomorphic vector fields.
Thus, the Bando–Mabuchi uniqueness theorem tells us that σ ∗g = g. It therefore follows
that g descends to the quotient M = M̃/〈σ 〉 as a uniquely defined Einstein metric h with
det(W+) > 0, thereby making g equal its pull-back h̃. We have thus proved the following:

Proposition 5 Any compact oriented, Einstein manifold (M4, h) with π1 �= 0, b2 = 3, and
det(W+) > 0 is orientedly diffeomorphic to Q#3CP2, and is doubly covered by a degree-
two del Pezzo surface equipped with a fixed-point-free free anti-holomorphic involution.
Moreover, the moduli space Edet(Q#2CP2) of these special Einstein metrics is non-empty,
connected, and of real dimension 6.

2.5 Proofs of themain theorems

By putting together the above results, it is now straightforward to prove our main theorems.
For the sake of clarity, we will do so in reverse order.

Proof of Theorem B. If (M, h) is a compact oriented Einstein 4-manifold with π1 �= 0 and
det(W+) > 0, case (ii) of Proposition 1 tells us that M = M̃/〈σ 〉, where M̃ is a del Pezzo
surface, and σ is a fixed-point-free anti-holomorphic involution; moreover, Theorem 1 tells
us that the pull-back h̃ to M̃ is actually Kähler–Einstein.
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Because 4 − b2(M) = 1
2c

2
1(M̃) > 0, the only possible values of b2(M) are 0, 1, 2, or 3,

and we have thoroughly analyzed each of these possibilities. When b2(M) = 0, Proposition
2 tells us that M must be diffeomorphic to P or Q; both cases actually arise, and they are
topologically distinct, because only one of them is spin. When b2(M) = 1, Proposition 3
tells us that M must be diffeomorphic to Q#CP2, and that this manifold actually carries an
Einstein metric of the required type. When b2(M) = 2, M must instead be diffeomorphic
to Q#2CP2 by Proposition 4, which also tells us that this manifold actually carries a family
of Einstein metrics with the required property. Finally, when b2(M) = 3, Proposition 5 tells
us that M is necessarily diffeomorphic to Q#3CP2, and that this manifold actually carries a
family of such Einstein metrics. 
�
Proof of Theorem A. By Theorem B, there are exactly five diffeotypes of non-simply con-
nected compact oriented 4-manifolds M that carry Einstein manifolds with det(W+) > 0
everywhere; namely, these are P and Q#kCP2 for k = 0, 1, 2, and 3. Moreover, Proposi-
tions 2, 3, 4, and 5 tell us that in each case the moduli space Edet(M) of these special Einstein
metrics is actually connected. In addition, there are [17] exactly ten simply connected dif-
feotypes of compact oriented 4-manifolds that carry such metrics, corresponding to the ten
deformation types of del Pezzo surfaces; for each such diffeotype, our moduli space Edet(M)

of special Einstein metrics is connected, because it is in fact exactly the (connected) moduli
space of del Pezzo complex structures, modulo the Z2-action induced by J � −J . Taken
together, this means there are exactly 15 possible diffeotypes, and that in each case themoduli
space Edet(M) of these special Einstein metrics is both non-empty and connected.

Finally, the moduli space Edet(M) of these special Einstein metrics is always both open
and closed as a subset of themoduli space E (M) of allEinsteinmetrics. Indeed, by [17], these
special Einstein metrics are characterized among all Einstein metrics by the open condition
det(W+) > 0; whereas results of Derdziński [9, Theorem 2] and Hitchin [3, Theorem 13.30]
instead characterize them, among Einstein metrics on these spaces, by the pair of closed
conditions det(W+) = 1

3
√
6
|W+|3 and s ≥ 0. Thus, for each of these fifteen 4-manifolds

M , the connected space Edet(M) is precisely a single connected component of the Einstein
moduli space E (M). 
�

3 Related results

For clarity and simplicity, we have supposed throughout this article that the Einstein metrics
h under investigation satisfied Wu’s condition det(W+) > 0. However, by [17, Theorem C],
we could have actually reached exactly the same conclusions if we had merely imposed an
ostensibly weaker hypothesis:

Theorem 2 Let (M, h) be a compact oriented Einstein 4-manifold. If

W+ �= 0 and det(W+) ≥ − 5
√
2

21
√
21

|W+|3 (3)

at every point of M, then (M, h) actually satisfies det(W+) > 0 everywhere. Consequently,
by Theorem A, there are exactly 15 diffeotypes of 4-manifolds M that carry such Einstein
metrics, and their moduli space Edet(M) is in each case exactly a connected component of
the Einstein moduli space E (M).

In fact, the results of [17] apply more generally to oriented Riemannian 4-manifolds that
satisfy δW+ = 0 and (3). This led there to a complete diffeomorphism classification of all
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such manifolds with b+ �= 0. Regarding the b+ = 0, case, we can now at least say the
following:

Theorem 3 Let (M, h) be a compact oriented Riemannian 4-manifold with δW+ = 0, and
suppose that b+(M) = 0. If h satisfies (3) at every point, then M admits a double cover M̃
that is diffeomorphic to (�g × S2)#2kCP2, where k and g are non-negative integers, and
where �g is the compact oriented surface of genus g. Conversely, each of these possibilities
occurs: for every pair (k, g) of non-negative integers, there is a compact oriented 4-manifold
(M, h) with b+ = 0, δW+ = 0, and det(W+) > 0 that is doubly covered by a manifold M̃
diffeomorphic to (�g × S2)#2kCP2.

Proof By [17, Proposition 3.2], any such manifold (M, h) is double-covered by a complex
surface (M̃, J ) on which the pull-back h̃ of h becomes conformal to a J -compatible Kähler
metric g of positive scalar curvature s. By [36], this implies that (M̃, J )hasKodaira dimension
−∞, and so is rational or ruled. Since the signature τ(M̃) = 2τ(M) must be even, it follows
that M̃ is diffeomorphic to either (�g × S2)#2kCP2 for some g, k ≥ 0, where �g denotes
the compact oriented surface of genus g, or to the non-spin oriented 2-sphere bundle�g � S2

over some �g. However, the latter is excluded here by a variant of the proof of Lemma 1;
indeed, since the putative oriented 4-manifold M = [�g � S2]/Z2 would have signature
τ = 0 and b+ = 0, its second cohomology group H2(M, Z) would be finite, and, since
Tor H2(�g � S2, Z) = Tor H1(�g � S2, Z) = Tor H1(�g, Z) = 0, pulling back a spinc

structure onM would then yield a spin structure on the non-spinmanifold M̃ ≈ �g�S2. This
contradiction therefore shows that M̃ must instead be diffeomorphic to (�g × S2)#2kCP2

for some g, k ≥ 0.
Conversely, let �̆ = #g+1RP

2 be the connected sum of g+ 1 copies of the real projective
plane, and let ğ1 be a smooth Riemannian metric on �̆ that has positive Gauss curvature on
some non-empty open set Ŭ ⊂ �̆. Let � → �̆ be the oriented double cover of �̆, let g1 be
the pull-back of ğ1 to �, and let j : T� → T� be the integrable almost-complex complex
structure on � induced by g1 and the orientation of �. The non-trivial deck transformation
� : � → � now becomes a fixed-point-free anti-holomorphic involution of the genus-g
compact complex curve (�, j), while g1 becomes a j-compatibleKählermetric on� that has
Gauss curvature κ > 0 on the non-empty�-invariant regionU that is the pre-image of Ŭ . If g0
is the usual unit-spheremetric on S2 = CP1, then theRiemannian product (�, g1)×(S2, εg0)
will have positive scalar curvature provided we take ε > 0 to be small enough so that
ε−1 > −min κ . Moreover, the product Kähler metric g1 ⊕ εg0 on � × CP1 has positive
holomorphic section curvature on the open subset U × CP1. Let us now endow � × CP1

with the fixed-point-free anti-holomorphic involution i := � × a, where a : S2 → S2

is once again the antipodal map of (1), and, for a given k ≥ 0, choose 2k distinct points
p1, . . . , p2k ∈ U × CP1 such that i(p2 j−1) = p2 j for j = 1, . . . , k. Letting M̃ denote
the blow-up of � × CP1 at p1, . . . , p2k , there is then a fixed-point-free anti-holomorphic
involution σ : M̃ → M̃ induced by i, and, using a result of Hitchin [15], we will now
construct a σ -invariant Kähler metric g̃ of positive scalar curvature on M̃ . The recipe only
calls for changing the previously constructed Kähler metric g1 ⊕ εg0 within a disjoint union
of the Riemannian balls of radius ε about the p j , and modifies the metric within these
balls by adding it∂∂̄ f (r) to the Kähler form, where r is the Riemannian distance from the
center p j , f (r) is a gently modified version of log r that is constant for r > ε, and the
parameter t is any sufficiently small positive constant. For t > 0 sufficiently small, Hitchin’s
computation then shows that this modified Kähler metric g̃ has positive scalar curvature
everywhere, because our background metric has positive holomorphic sectional curvature in
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the modification region, and positive scalar curvature everywhere else. On the other hand,
since we have carefully arranged for this Kähler metric g̃ on the blow-up to be σ -invariant,
our g̃ is automatically the pull-back of a unique Riemannian metric g on the oriented 4-
manifold M := [(� × CP1)#2kCP2]/〈σ 〉. However, by construction, g has scalar curvature
s > 0, and is moreover everywhere locally isometric to a Kähler metric g̃. An observation
of Derdziński [3,9] thus shows that the conformally rescaled metric h = s−2g therefore has
det(W+) > 0 and δW+ = 0 at every point of M . 
�

While the above enumeration of the possibilities for M̃ is similar in spirit to our discussion
of the Einstein case, Theorem 3 is certainly far weaker than our main results. First of all, we
have not tried to classify the possible Z2-actions that arise, although it seems clear that that
there must be many of them. Second, in stark contrast to the Einstein case, the moduli spaces
of solutions to the weaker equation δW+ = 0 consistently turn out to be infinite dimensional
in the present context, and nothing substantial seems to be known concerning whether or not
they are connected. We leave these open questions for the reader’s further consideration, in
the hope that this will stimulate further research, and eventually lead to definitive answers.
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