ARTICLE

Fast estimation of genetic
correlation for biobank-scale data

Yue Wu,! Kathryn S. Burch,? Andrea Ganna,®7.8 Pdivi Pajukanta,?® Bogdan Pasaniuc,2%>
and Sriram Sankararaman?.25*

Summary

Genetic correlation is an important parameter in efforts to understand the relationships among complex traits. Current methods that
analyze individual genotype data for estimating genetic correlation are challenging to scale to large datasets. Methods that analyze sum-
mary data, while being computationally efficient, tend to yield estimates of genetic correlation with reduced precision. We propose
SCORE (scalable genetic correlation estimator), a randomized method of moments estimator of genetic correlation that is both scalable
and accurate. SCORE obtains more precise estimates of genetic correlations relative to summary-statistic methods that can be applied at
scale; it achieves a 44% reduction in standard error relative to LD-score regression (LDSC) and a 20% reduction relative to high-definition
likelihood (HDL) (averaged over all simulations). The efficiency of SCORE enables computation of genetic correlations on the UK Bio-
bank dataset, consisting of =300 K individuals and =500 K SNPs, in a few h (orders of magnitude faster than methods that analyze
individual data, such as GCTA). Across 780 pairs of traits in 291, 273 unrelated white British individuals in the UK Biobank, SCORE iden-

tifies significant genetic correlation between 200 additional pairs of traits over LDSC (beyond the 245 pairs identified by both).

Introduction

Genetic correlation is an important parameter that quan-
tifies the genetic basis that is shared across two traits. Esti-
mates of genetic correlation can reveal pleiotropy, uncover
novel biological pathways underlying diseases, and
improve the accuracy of genetic prediction.’

While traditionally reliant on family studies, the avail-
ability of genome-wide genetic data has led to several ap-
proaches to estimate genetic correlation from these data-
sets.! An important class of methods for estimating
genetic correlation relies on computing the restricted
maximum likelihood within a bi-variate linear mixed
model (LMM), termed genomic restricted maximum likeli-
hood (GREML).?"® However, current GREML methods are
computationally expensive to be applied to large-scale da-
tasets such as the UK Biobank.®

While GREML methods need individual-level data, several
methods,”'? such as linkage disequilibrium (LD)-score
regression (LDSC),” have been proposed for estimating ge-
netic correlation with genome-wide association study
(GWAS) summary statistics. Although methods such as
LDSC often have substantially reduced computational re-
quirements relative to GREML, LDSC estimates tend to
have large standard errors that increase further when there
is a mismatch between the samples used to estimate sum-
mary statistics and the reference datasets that are used to es-
timate LD scores."® High-definition likelihood (HDL),'” a

more recent summary-statistic-based method, has been
shown to be more precise relative to LDSC. HDL, however,
requires computing a singular-value decomposition (SVD)
of the LD matrix, which increases its runtime. Further, recent
studies'*'* have shown that the accuracy of genetic correla-
tion estimates can deteriorate when there is a mismatch be-
tween reference and sample data. Thus, it is critical to
develop methods for estimating genetic correlation that
can work directly with large individual-level datasets.

We propose, SCORE (scalable genetic correlation esti-
mator), arandomized method of moments (MoM) estimator
of genetic correlations among traits via individual genotypes
that can scale to the dataset sizes typical of the UK Biobank.
While SCORE can estimate the heritability of traits as well as
the genetic correlation between pairs of traits, we focus on
the problem of estimating genetic correlation in this work.
SCORE achieves scalability by avoiding explicit computa-
tion of the genetic relationship matrix (GRM). Instead, we
show that the genetic correlation can be computed by using
a sketch of the genotype matrix, i.e., by multiplying the geno-
type matrix with a small number of random vectors.

In simulations, we show that SCORE yields accurate esti-
mates of genetic correlation across a range of genetic archi-
tectures (with varying heritability, genetic correlation, and
polygenicity). Relative to summary-statistic methods that
can be applied to biobank-scale data, SCORE obtains a reduc-
tion in standard error of 44% relative to LDSC and 20% rela-
tive to HDL (averaged across all simulations). Further,
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SCORE can estimate genetic correlation on =500 K SNPs in
=300 Kunrelated white British individuals in a few h, orders
of magnitude faster than methods that rely on individual
data (GCTA-GREML and GCTA-HE). Analyzing 780 pairs of
traits in 291, 273 unrelated white British individuals in the
UK Biobank, the estimates of genetic correlation at
454,207 common SNPs obtained by SCORE are largely
concordant with those from LDSC (Pearson correlation r =
0.95). Although 245 pairs of traits are identified as having
significant genetic correlation by both methods (with a Bon-
ferroni correction for the number of pairs of traits tested), the
reduced standard error of estimates from SCORE leads to the
discovery of significant genetic correlations between an
additional 200 pairs of traits relative to LDSC. Finally, SCORE
detects a significant positive correlation between serum liver
enzyme levels (alanine [ALT] and aspartate aminotransferase
[AST]) and coronary-artery-disease-related traits (angina and
heart attack), suggesting that coronary artery disease and
liver dysfunction harbor a shared genetic component.

Material and methods

Bi-variate linear mixed model
We describe our model in the general setting, where the traits are not
observed on the same set of individuals. Assume we have N; individ-
uals for trait 1 and N, individuals for trait 2 of which N individuals
(N <N;i,N <N,) contain measurements for both the traits. We
havedefined X1, X, tobe the N; XM and N, X M matrices of standard-
ized genotypes obtained by centering and scaling each column of the
unstandardized genotype matrices G| and G, sothat ), x; , » =0 for
allme {1,... M} te{1,2}.Lety,,y, denote the two vectors of pheno-
types with size N; and N, respectively. Additionally, we define an
N1 xN; indicator matrix, C, where C;; = 1 when individual i among
samples measured for the first phenotype and j in samples measured
for the second phenotype refer to the same individual and O other-
wise. We define 81, 3, to be vectors of SNP effect sizes of length M.
We assume the following model relating a pair of traits y;,y,:

Y1 =Xi6: +&

Y, =XoB; + 2. (Equation 1)

For the SNP effects, we assume E[3;] = 0, E[8,] = 0 and

cov(By, 1) = -

= MU)?lIM

cov(B2,B2) = Al/fole M (Equation 2)

1
cov(By,B2) = 7ol

Here, I is an M xM identity matrix, %%r denotes the genetic vari-
ance associated with trait t (te {1,2}), and v, denotes the genetic
covariance. For the environmental effects, we assume [E[e;] =

0,Elez] = 0 and
COV(€1 s 81) = 0'511]\/
cov(ez, e2) = 051y (Equation 3)
cov(er,e2) = 7, C.
The genetic correlation parameter p, is defined as p,=
/2 [:2 it
Yg/\/ 0511/ 752 Importantly, SCORE does not make additional as-

sumptions on the distribution of the genetic effect sizes or the
environmental noise.

Method of moments (MoM)
SCORE uses a method of moments (MoM) estimator to estimate
the parameters (v, ve,03,,02%,02,0%)-
Because the mean of y, and y, are zero, we focus on the covari-
ance. The population covariance of the concatenated phenotypes
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(Equation 4)

Here, K1 = (X1X] /M) is the GRM for the samples observed for
the first trait, while K = (X,X} /M) is the GRM for the samples
for the second trait and K, = (X;X /M) is the GRM for pairs of
samples across traits.

We obtain the MoM estimator by minimizing the sum of squared
differences between the population and empirical covariances:
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The MoM estimator for the genetic covariance satisfies the
normal equations
Yo | =
Ye

where K¢ = (X;XCT /M). Given the coefficients of the normal
equations, we can solve analytically for v, and 7,.

Given MoM estimates of the variance components, the MoM es-
timate of the genetic correlation is given by the plug-in estimate:
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SCORE: Scalable genetic correlation estimator
Naive computation of the MoM estimate of genetic covariance re-
quires computing tr(K4K}), which requires O(N;N,M) opera-
tions, where Ni, N, are the sample size of each of the traits.
To overcome this computational bottleneck, we replace
tr(K,K!) with an unbiased randomized estimate: tr(K,K?)."°
Given B random vectors, z,...,zg, zpe R"?, be 1...B drawn inde-
pendently from a distribution with zero mean and identity covari-
ance, our estimator is given by:

— 11 2
Ly=1r(K:K}) =3 WZ 1X2.X5 2 |-
b

We obtain the SCORE estimator (vy, 7,) by solving Equation 6 by

replacing tr(K,K?) with L.
Ly tr(Ke) | |7, | _ |ViKay2 |
Ve yiCy,

tr(Ke) N
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Here, tr(K¢) denotes the sum of the squared genotypes for individ-
uals measured on both traits so that tr(K¢) can be computed in time:
O(MN). Computing Lg requires multiplying the genotype matrices

X; and X, with B vectors resulting in a runtime of O(max(Ny,

N3)MB). Leveraging the fact that each element of the genotype ma-
trix takes values in the set {0,1,2}, Ly can be computed in time
O(max((Ny /max(logzNy,logzsM)), (N /max(logzN>, logsM)))MB) 7
(while the standardized genotypes are real-valued, SCORE computes
the equivalent quantities by operating on the unstandardized
genotype matrix to be able to leverage its discrete entries followed
by subtracting the product of the mean of a SNP and random vectors
and scaling by minor allele frequency [MAF]). Combined with our
previous efficient estimators of the genetic variance compo-
nents,'®'” we obtain an efficient estimator of p,.

In the setting where the two traits are measured on the same set
of individuals, we can estimate the p, directly without the need for
separately estimating v,, aﬁl, and a?z. This estimator does not rely
on any randomized approximations and can be computed in time
O(NM /max(log;N, log;M)). We term this modification SCORE—
OVERLAP (supplemental material and methods).

Simulations to assess accuracy

We performed simulations on a subset of 5,000 unrelated white
British individuals from the UK Biobank so that all methods
compared could be run in a reasonable time. Our simulations
used 305,630 SNPs with MAF above 1% (we chose these SNPs
because these were also used for benchmarking the HDL'* method
and had reference eigenvectors available).

Given the genotypes, we simulated pairs of traits under vary-
ing genetic architectures. Our first set of architectures assume
an infinitesimal model (where all variants have a non-zero effect
on both traits). We varied genetic correlation p, across

{0,0.2,0.5,0.8} and the heritability of the pair of traits, (12,

h3), across values of {(0.1,0.2),(0.2,0.6), (0.5,0.5), (0.6,0.8)} cor-
responding to the situation where both traits have low heritabil-
ity, one trait has low while the other has moderate heritability,
both traits have moderate heritability, and both have high
heritability.

Our next set of non-infinitesimal architectures explore traits with
medium polygenicity and low polygenicity. For each SNP m, we
specify a causal status, ¢,,, which is a 2x 1 vector with entries taking
valuesin {0, 1} according to whether SNP m has a non-zero effect on
each of the two traits. For medium polygenicity, causal status at SNP
m is drawn independently according to the following distribution:

A o ) )
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The effect size 3,, of SNP m on each trait is drawn from the
following distribution:
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The effect size 8,, for genetic variant m on both traits are drawn
from the following distribution:

0.05,

r 2

0X1 )
1 0.06M ‘¢ 1
ﬂm‘ctn: |:1:| NN(O7 2 ﬁm‘cm |:O:|
Ty
s 0.06M
- 051
~ N(0, | 0.06M Bl€m = {1}
XY 0
[0 0
~ N(01 0’;2
0.06M

We vary v, across {0,0.2,0.5,0.8}. Under this model, the true to-
tal expected genome-wide genetic correlation for medium polyge-
nicity is {0,0.06,0.15,0.24} and {0,0.0024,0.03,0.048} for low
polygenicity. Unless specified otherwise, we assume complete
sample overlap and no environmental correlation, set the envi-
ronmental variance so that the trait variance is 1, and simulate a
total of 100 replicates for each architecture.

Simulations to assess the impact of sample overlap

We simulated traits under an infinitesimal architecture with
(h2,h3) = (0.2,0.6) and p, = 0.5. For each trait, we fixed the sam-
ple size to 5,000 and varied the proportion of sample overlap
across {0,0.2,0.5,0.8,1} (ranging from no overlap to complete
overlap). Specifically, for overlap proportion equal to 0, we have
5,000 samples with observations on the first trait and a distinct
set of 5,000 samples with observations on the second trait. For
overlap proportion equal to 1, we have 5,000 samples with obser-
vations on both traits. We estimated genetic correlation with
SCORE, LDSC, and GCTA-GREML.

Simulations to assess accuracy for binary traits
Given 291,273 unrelated white British individuals in the UK
Biobank measured on 459,792 genetic variants, we simulated
pairs of traits under an infinitesimal architecture setting
(h2,h3) = (0.272,0.12) and p, = —0.23 while varying the environ-
mental correlation across {0.04, — 0.04,0}.

To simulate binary traits, we converted the second trait to a bi-
nary trait by thresholding the underlying continuous trait such
that the prevalence varied across {0.01%,0.5%,1%}.

Data processing
LD scores were computed from 305, 630 SNPs chosen for the sim-
ulations. The LD scores were computed from a random subset of
50,000 individuals in the UK Biobank (the individuals used
in our simulations were a subset of the 50,000 individuals
used for computation of LD score). For analysis of UK Biobank
data, LD scores were computed on 459,792 common SNPs (MAF
> 1%) present on the UK Biobank Axiom array. LD scores were
computed with flags — — 12 and — — Id — wind — kb2000.0.
Summary statistics input to LDSC were generated with PLINK.
We used linear regression to generate summary statistics for
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continuous traits and categorical traits and logistic regression for
binary traits. In computing summary statistics for traits in the
UK Biobank, we include the following covariates: age, gender,
principal components 1-10, assessment center, and genotype
measurement batch. We used the same covariates as input to
SCORE.

We ran LDSC under default settings with an unconstrained
intercept. In addition to summary statistics, HDL requires eigen-
vectors of the LD matrix. We used the eigenvectors that preserve
90% of the variance of the LD blocks that were released by the
study authors. Computation of the eigenvectors used the same
set of genetic variants as our simulations and 336,000 samples
in the UK Biobank.'?

Quality control of UK Biobank data

We restricted our analysis to SNPs genotyped on the UK Biobank
Axiom array, filtering out markers that had high missingness
rate (> 1%) and low MAF (< 1%), and we exclude the major histo-
compatibility complex (MHC) region. Moreover, SNPs that fail the
Hardy-Weinberg equilibrium (HWE) test at significance threshold
1077 were removed. We also filter the samples that have a genetic
kinship with any other sample (samples having any relatives in
the dataset using the field 22021: “Genetic kinship to other partic-
ipants”) and restricted the study to samples with self-reported
British white ancestry (field 21000 with coding 1001). After qual-
ity control, we obtained 291,273 individuals and 454,207 SNPs.

We performed similar quality control on the imputed genotypes
in the UK Biobank: filtering out markers with high missingness
rate (> 1%), low MAF (< 1%), and HWE p value < 1x10~7 and
that fall within the MHC region. After quality control, we ob-
tained 4,824,392 SNPs.

We chose traits that have missingness < 30% and disease traits
with prevalence larger than 0.5%, resulting in a total of 40 pheno-
types consisting of 14 binary traits, three categorical traits, and 23
continuous traits. The 40 phenotypes could be classified into nine
groups: glucose metabolism and diabetes, socioeconomic and gen-
eral medical information, environmental factor, coronary artery
disease related, autoimmune disorders, psychiatric disorders,
anthropometric, blood pressure and circulatory, and lipid meta-
bolism (Table S10).

Results

Accuracy and robustness of SCORE in simulations

We performed simulations to compare the accuracy of
SCORE to other estimators of genetic correlation under
different genetic architectures. Specifically, we compared
SCORE to methods that use individual data (bi-variate
GREML,” bi-variate Haseman-Elston regression) and
methods that rely on summary statistics (LD-score regres-
sion [LDSC]” and HDL'?). Bi-variate GREML (GCTA-GREML)
and Haseman-Elston regression (GCTA-HE) are imple-
mented in the GCTA software. LDSCis a widely used method
to estimate genetic correlation when only summary statistics
from GWASs on pairs of traits are available. HDL is a recent
summary-statistics-based method that has been shown to
obtain improved statistical efficiency relative to LDSC given
additional information about LD. We ran all methods on the
same set of SNPs to ensure a fair comparison.

We performed simulations to assess the estimation accu-
racy of each method by using a subset of 5,000 unrelated
white British individuals in the UK Biobank so that all
the methods could be run in a reasonable time. Unless
otherwise specified, all our simulations used 305,630
SNPs with MAF above 1%. We simulated pairs of traits un-
der a total of 48 genetic architectures: varying heritability
of the pair of traits (h%, h3), genetic correlation (p,), and
polygenicity (proportion of causal variants shared and
unique to each trait).

The simulations assume that the two traits are measured
on the same set of individuals so that both SCORE and
SCORE-OVERLAP can be applied in this setting. Because
SCORE is a randomized estimator, we first examined the
choice of the number of random vectors (B) on the esti-
mates of p,. First, we confirmed that SCORE (with B = 10
and B = 100 random vectors) and SCORE-OVERLAP yield
nearly identical results across the 48 architectures (Table
S1). Second, we ran SCORE with different choices of
B = 10 random vectors on a single replicate that was simu-
lated under the infinitesimal architecture with trait herita-
bility (h%,h3) = (0.2,0.6), and p, = 0.5. We observe that the
standard deviation of p, estimates across choices of
random vectors is about 18% of the total standard error
(SE), indicating that the choice of B = 10 makes a modest
contribution to variability in p, estimates. These results
lead us to use SCORE with B = 10 as our default.

Across the 48 architectures that we examined, the SE of
SCORE ranges from 0.89 to 1.17 relative to the SE of
GCTA-GREML; the SE of SCORE is 2.5% higher than that
of GCTA-GREML on average (Figures 1). Interestingly,
GCTA-HE tends to have an SE that is 1.38 times that of
SCORE on average (range 1.2 to 1.6). Compared to
methods that rely on summary statistics, LDSC has 1.8
times the SE of SCORE on average (range 1.08 to 2.63),
while the SE of HDL relative to SCORE is 1.24 (range
1.05 to 1.6S5) (Figure 1, Table S2). The reduction in the SE
of SCORE relative to the summary-statistic-based methods
is equivalent to a 3.24-fold increase in sample size over
LDSC and a 1.56-fold increase in sample size over HDL
on average. We find that the accuracy of SCORE relative
to the other methods is consistent across infinitesimal
(Figure S1) and non-infinitesimal architectures (Figure S2
for medium and Figure S3 for low polygenicity; the bias,
SE, and mean squared error (MSE) of each of the methods
is listed in Tables S3, S4, and S5). We additionally investi-
gated the accuracy of each of the methods across a larger
sample size of 10,000 unrelated white British individuals
chosen so that it was computationally feasible to run all
methods, including GCTA-GREML and GCTA-HE. Under
a non-infinitesimal architecture with medium polygenic-
ity, p, = 0.5 and (h%,h3) = (0.2,0.6). In this larger sample
size, we observe that SEs of GCTA-GREML, GCTA-HE,
and LDSC are 0.97,1.54, and 2.85 times that of SCORE,
respectively, consistent with our results on a N = 5,000.

We performed additional simulations to investigate the
robustness of SCORE. First, we investigated the impact of
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Comparison of the estimates of genetic correlation from SCORE with GCTA-GREML, GCTA-HE, LDSC, and HDL (N = 5,000

(A-D) We simulated pairs of traits under 48 genetic architectures (with varying heritability, genetic correlation, and polygenicity). We
plot the standard error (SE) of each method relative to GCTA-GREML. (A), (B), and (C) display the standard error (SE) of each method
relative to GCTA-GREML as a function of heritability, genetic correlation, and polygenicity, while (D) summarizes the relative SE across
all architectures (see the simulations to assess accuracy section of material and methods). We ran LDSC with in-sample LD and HDL with
eigenvectors that preserve 90% variance (see the data processing section of material and methods). We estimate the standard error of the

relative SE by using Jackknife (error bars denote 1 standard error).

sample overlap under an infinitesimal genetic architec-
ture with p, = 0.5. The SE of SCORE relative to GCTA-
GREML and LDSC remains stable as a function of sample
overlap (Figure S4 and Table S6 for the bias, SE, and MSE
of SCORE, GCTA-GREML, and LDSC as a function of
sample overlap). Second, we verified that the Jackknife
standard error estimate used in SCORE is generally accu-
rate while being conservative for low trait heritability
(Table S7). Third, we verified the false positive rate of
SCORE is controlled in simulations where p, is zero. For
each of 100 replicates in a given genetic architecture,
we computed p values for the two-tailed test of the null
hypothesis that p, is zero. Averaging across all architec-
tures, we observe that the false positive rate (the fraction
of simulations for which the p value < 0.05) is 0.04 (Ta-

ble S8). We additionally verified that the false positive
rate in a large-scale simulation (N=291,273) with
different prevalences if one of the traits is binary and
the situation where both traits are continuous. We
observe that the false positive rate is not affected by
the prevalence of binary trait (Table S8). Finally, we eval-
uated the accuracy of SCORE when applied to pairs of
traits where one of the traits is binary while the other
is continuous. We observe that the p, estimates of SCORE
are unbiased across the range of prevalence of the binary
trait (Table S9). Further, the estimates of p, obtained by
SCORE tend to have relatively low SE provided the prev-
alence of the trait is greater than 0.5% (Table S9) so that
we recommend applying SCORE to traits whose preva-
lence is no less than 0.5%.
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Computational efficiency

We investigated the computational efficiency of SCORE
relative to GCTA-GREML and GCTA-HE. The runtime
and memory usage of summary statistic methods (LDSC
and HDL) depend on the time needed to compute LD
scores and summary statistics of each trait. In addition,
HDL also requires the computation of the singular value
decomposition (SVD) of LD matrices, which is a computa-
tionally expensive step. Thus, we do not include runtimes
for LDSC and HDL in these comparisons. We varied the
number of individuals, while the number of SNPs was fixed
at 454, 207. Figure 2 shows that GCTA-GREML and GCTA-
HE could not scale beyond sample sizes greater than
100,000 because of the requirement of computing and
operating on a GRM (we extrapolate the runtime of
GCTA-GREML and GCTA-HE to be about 340 days and
44 days on the set of 291, 273 unrelated white British indi-
viduals in the UK Biobank). On the other hand, SCORE ran
in about 1.5 h on the set of 291,273 individuals by using
partial overlap mode with B = 10 random vectors, while
the SCORE-OVERLAP variant ran in about 1 h on the
same dataset.

Application of SCORE to UK Biobank

We applied SCORE to estimate p, for pairs of phenotypes in
the UK Biobank across 291,273 unrelated white British in-
dividuals and 454,207 SNPs (material and methods). We
compared the p, estimates obtained by LDSC versus
SCORE for a subset of 28 traits in which LDSC produced
valid estimates, i.e., traits for which none of the p, esti-
mates were N/A (Figure 3). While the point estimates of
p, from the two methods are highly concordant (Pearson
correlation r = 0.95), the SE of LDSC is about 1.57 times
that of SCORE on average, which is equivalent to a 2.46-
fold increase in sample size via SCORE (see Figures S5
and S6). In total, 192 pairs of traits were detected to have
a significant non-zero p, by both SCORE and LDSC after
Bonferroni correction for all pairs across the original set
of 40 phenotypes (p< 0.05/780). Consistent with its
reduced SE, SCORE found 58 pairs with significant p, after
Bonferroni correction that were not detected as significant
by LDSC (p < (0.05 /780); stars in Figure 3). We conclude
that SCORE obtains improved power to identify statisti-
cally significant genetic correlations relative to LDSC.

We obtain concordant results when analyzing all pairs in
our initial set of 40 traits. Although the point estimates of
SCORE and LDSC are highly correlated (Pearson correla-
tion r = 0.96), the SE of LDSC is about 1.8 times that of
SCORE on average, equivalent to a 3.24-fold increase in
the sample size. In this setting, SCORE found 200 addi-
tional pairs of traits over LDSC (beyond the 245 pairs iden-
tified by both), while LDSC detected one pair as significant
that SCORE did not detect as significant (Figure S7). To un-
derstand the impact of random vectors, we repeated our
analysis with a different set of random vectors and
observed that the Pearson correlation of p, estimates
with the two sets is 0.999 (Figure S11).
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Figure 2. Comparison of the runtime of SCORE with GCTA-
GREML and GCTA-HE as a function of the number of samples
The samples were obtained as subsets of unrelated, white British
individuals in the UK Biobank. We plot the runtime of both
SCORE (that can handle any degree of sample overlap) and its
variant, SCORE-OVERLAP (designed for 100% sample overlap).
SCORE runs in a few h on the largest dataset of 291,273 individ-
uals and 454,207 SNPs.

We also analyzed all pairs in our initial set of 40 traits
with HDL by using the set of 305, 630 SNPs for which refer-
ence eigenvectors are available.'” The SE of HDL is about
2.53 times that of SCORE on average, which is equivalent
to a 6.4-fold increase in the sample size (HDL failed to
converge for 11% of the pairs where at least one of the
traits is binary). Among these pairs, SCORE found 171
additional pairs of traits over HDL (beyond the 239 pairs
identified by both), while HDL detected 14 pairs as signif-
icant that SCORE did not detect as significant. The sum-
mary of SE ratio of HDL and SCORE is shown in Figure S8.

To gain further insights into SCORE, we examined the SE
of p, estimates for pairs of traits according to whether the
traits were both binary, both quantitative, or had one
member of the pair that was binary while the other was
quantitative. The SE is largest when both traits are binary,
intermediate when one of the traits is binary, and lowest
when both traits are quantitative (average SE: 0.082,
0.035, and 0.02, respectively; Figure S9). We note that
the SE increases when the prevalence of the binary trait de-
creases: the mean SE is 0.017 when the binary trait has
prevalence > 25%, while the mean SE is 0.047 for pairs
in which the binary trait has prevalence < 5% (Figure S10).

We also applied SCORE to imputed genotypes in
291,273 unrelated white British individuals and
4,824,392 SNPs (MAF > 1%). SCORE required about
19 h to analyze a single pair of traits for imputed SNPs
while requiring about 1.5 h on array SNPs (scaling linearly
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Figure 3. Genetic correlation estimates in the UK Biobank

We plot the genetic correlation estimates from SCORE (bottom triangle) and LDSC (upper triangle) across pairs of 28 phenotypes. Larger

filled squares correspond to significant pairs after Bonferroni correcti

on at a 5% significance level, while smaller squares correspond to

pairs that are significant at a 5% significance level but are not significant after accounting for multiple testing. Star indicates pairs that are

found to be significant by SCORE but not by LDSC.

with the number of variants). Because SCORE uses a
streaming approach that does not require all SNPs to be
stored in memory, it is memory efficient, requiring about
2.3 GB to analyze imputed data. The estimates of p, are
largely concordant across array and imputed SNPs (Pearson
correlation of the p, point estimates with two sets of SNPs
is 0.973). We found 423 trait pairs that have significant
non-zero p, estimates (after Bonferroni correction) across
both imputed and array genotypes, while 19 pairs are sig-
nificant only in the analysis of imputed genotypes and
22 pairs are significant in the analysis of array genotypes
(Figure S12).

To further illustrate its utility, we applied SCORE to esti-
mate genetic correlation between coronary-artery-disease-
related traits included in our set of 40 traits (angina and
heart attack) and serum biomarkers (alanine [ALT] and
aspartate aminotransferase [AST]). Serum liver enzyme
levels, including ALT and AST, are markers of liver health
and hepatic dysfunction, and they have been shown to
be associated with cardiovascular disease,”’** although
the strength and consistency has varied among the
studies.”’ We observed significant positive py between

ALT/AST and the two coronary-artery-disease-related traits
(0.257£0.04 and 0.169+0.032 for angina with ALT and
AST, respectively; 0.239 +0.053 and 0.148 =0.04 for heart
attack with ALT and AST, respectively). Our finding of sig-
nificant positive p, suggests that hepatic dysfunction
(higher serum levels of ALT and AST) and coronary artery
disease have a shared genetic component.

Discussion

We have described SCORE, a scalable and accurate esti-
mator of genetic correlation. We observe that the estimates
of genetic correlation obtained by SCORE have accuracy
comparable to GCTA-GREML'? while being scalable to bio-
bank-scale data. SCORE can estimate the genetic correla-
tion across pairs of traits when applied to =500K common
SNPs measured on = 300K unrelated white British individ-
uals in the UK Biobank within a few h. In simulations, we
showed that, compared to summary-statistic methods,
SCORE obtains a reduction in the average standard error
of 44% relative to LDSC and 20% relative to HDL,
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equivalent to a 3.24-fold and 1.56-fold increase in sample
size. In application to 780 pairs of traits in the UK Biobank,
SCORE discovered 200 pairs of traits with significant ge-
netic correlation (after correcting for multiple testing)
that were not discovered by LDSC. In application to 780
pairs, SCORE discovered 171 pairs of traits with significant
genetic correlation (after correcting for multiple testing)
that were not discovered by HDL, while HDL discovered
14 significant pairs not discovered by SCORE. It is plausible
that the results of HDL might be altered by the computa-
tion of eigenvectors from the analyzed genotypes,
although such an analysis can be computationally
expensive

The statistical accuracy gain of SCORE relative to LDSC
and HDL can be attributed to several factors. LDSC does
not use all the available covariances among the summary
statistics choosing to only model the variance. The LD in-
formation as summarized by the LD scores involve a num-
ber of approximations. Typically, LD scores are computed
from an external reference panel. Even when in-sample
LD is used (as we have here), computational considerations
lead to the LD scores’ being computed from a subset of the
samples and restricted to SNPs that fall within a fixed-
length genomic window. While HDL models the
covariance structure among the summary statistics,
thereby utilizing additional information relative to LDSC,
HDL relies on approximate computations of LD scores
like LDSC. To enable computational efficiency, HDL also
uses a truncated SVD of the LD score matrix that can
potentially further reduce accuracy.

We discuss several limitations of SCORE. First, SCORE re-
quires access to individual genotype and trait data. Sum-
mary-statistic methods such as LDSC and HDL have the
advantage of being applicable in settings where access to
individual-level data can be challenging. While sum-
mary-statistic methods also have the advantage of being
relatively efficient, it is important to keep in mind that
the summary statistics are dependent on specific choices
of marker sets and covariates. Applying these methods to
different sets of covariates and marker sets requires regen-
erating the summary statistics (and auxiliary information
such as LD score matrices). Second, the model underlying
SCORE assumes a quantitative trait. We have shown
empirically that SCORE provides accurate estimates of ge-
netic correlation when applied to binary traits provided
the traits are not too rare (prevalence > 0.5%). It would
be of interest to extend SCORE to the setting of binary
traits along the lines of the PCGC method.'' Finally, while
SCORE estimates genome-wide genetic correlation, effi-
cient methods that can partition genetic correlation across
genomic annotations can provide additional insights into
the shared genetic basis of traits.

Supplemental information

Supplemental information can be found online at https://doi.org/
10.1016/j.a2jhg.2021.11.015.
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Web resources

GCTA-GREML and GCTA-HE, https://yanglab.westlake.edu.cn/
software/gcta/

HDL reference panel,
Reference-panels

HDL software, https://github.com/zhenin/HDL

LDSC software, https://github.com/bulik/ldsc/

PLINK1.9, https://www.cog-genomics.org/plink/2.0

SCORE software, https://github.com/sriramlab/SCORE

UK Biobank, https://www.ukbiobank.ac.uk/

https://github.com/zhenin/HDL/wiki/
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