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Compound drought and heatwave (CDHW) events can be influenced by large scale teleconnections and
anthropogenic warming, leading to severe socio-economic impacts across various climate regions. In this study,
the relative influence of six different teleconnection patterns and anthropogenic global warming on the global
CDHW occurrences is quantified systematically using the instrumental data period, 1982-2016. The results from
the study suggest a substantial increase in the CDHW events (1-5 events per year) across various parts of the
globe at the beginning of 21st century (2000-2016). A Bayesian approach is implemented to identify the most
vulnerable climate regions based on the degree of susceptibility of heatwaves (DSHW) towards drought. As such,
top ten most vulnerable regions are selected based on the DSHW magnitude, and a partial correlation analysis is
performed to select the natural and anthropogenic drivers of CDHW in those regions, separately. A logistic
regression model is then used to determine significant changes in the odds of CDHW due to changes in the
selected drivers that suggest a significantly positive, and multiplicative effect of anthropogenic global warming in
the top ten most vulnerable climate regions. Finally, the same logistic regression model, integrated with an
analytical framework, is applied to determine the relative influence of anthropogenic global warming on the
changes in odds of CDHW for the future, 1.5 °C and 2 °C warming limits. The results suggest that relative to the
2 °C global warming, constraining to the 1.5 °C global warming limit may conduce about 17-fold reduction in the
odds of CDHW in the most vulnerable climate region, East Asia, 5-8-fold reduction in Western North America,
Northern Australia, Central North America, Central Europe, South Asia, and the Mediterranean region, and 3-4-
fold reduction in Northeastern Brazil, Eastern North America, and West Asia.

poleward shift in main storm tracks in mid-latitudes, associated with
warming (Lu et al., 2007; Pepler et al., 2019; Trenberth et al., 2014; Yin,
2005).

1. Introduction

Compound drought and heatwave (CDHW) events have had multiple

societal and eco-hydrological impacts including loss of crop yield (Ciais
etal., 2005; Zampieri et al., 2017), increased wildfires and tree mortality
(Allen et al., 2010), and health hazards (Poumadere et al., 2005). CDHW
events are typically triggered by anticyclonic flow patterns (Trenberth
and Fasullo, 2012), followed by land-atmosphere feedback processes
that modulate the surface energy budget (Mukherjee et al., 2020;
Mukherjee and Mishra, 2020). Natural modes of climate variability are
instrumental in influencing global circulation patters that lead to con-
ditions favoring the development of anticyclonic regimes over terrestrial
regions (Mukherjee et al., 2020; Pepler et al., 2019). Observations
indicate a poleward expansion of these regimes in both hemispheres
during the past few decades, which is attributed to intensification and
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The anticyclonic anomalies in the atmosphere are accompanied with
clear skies or lack of moisture in the lower atmosphere making condi-
tions less conducive for precipitation and thereby facilitating drought
conditions. The lack of surface moisture leads to excessive sensible
heating at the expense of decreased latent energy or evapotranspiration,
causing surface warming. The prolonged period of high surface tem-
peratures eventually lead to heatwaves (HW) (Horton et al., 2016;
Stéfanon et al., 2014), resulting in the occurrence of CDHW events.
Additionally, the rise in surface air temperature further exacerbates
drought conditions by initiating a land-atmosphere feedback loop with
the soil moisture by increasing the atmospheric demand (leading to
increased evapotranspiration). This feedback process is very common in
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the anticyclonic weather regimes and is generally referred as the soil-
temperature coupling (Betts et al., 1996; Seneviratne et al., 2010;
Whan et al., 2015). Anthropogenic climate change has already accel-
erated such processes leading to increased frequency of CDHW events
across many parts of the globe (Mazdiyasni and AghaKouchak, 2015;
Mukherjee and Mishra, 2020; Sun et al., 2017, 2018; Zhang et al.,
2019b).

Given the role of temperature anomalies in the occurrence of CHDW
events, drought quantification using only precipitation may lead to
underestimation of drying (Dai and Zhao, 2017), which can lead to
uncertainties in the characterization of CDHW events (Mukherjee et al.,
2020; Mukherjee and Mishra, 2020). Therefore, it is imperative that soil
moisture, and surface temperature anomalies are incorporated in the
estimation of CDHW using the energy budget framework. To this end,
Palmer Drought Severity Index (PDSI; Wells et al., 2004) is a compre-
hensive drought index that incorporates hydroclimatic variables rele-
vant to the estimation of drought under the changing climate
(Mukherjee et al., 2018). Furthermore, as previously noted, the large
scale natural modes of climate variability are instrumental in the for-
mation of anticyclonic regimes and that anthropogenic footprint is
detectable in the intensification of conditions that are conducive for the
occurrence of extreme dry and hot conditions (Hassan and Nayak, 2020;
Lau and Kim, 2012; Pepler et al., 2019). Therefore, there is a need to
establish analytical frameworks that not only identify relevant modes of
climate variability, that exert influence on distribution of CHDW events
across the globe, but also incorporate the relative influence of anthro-
pogenic warming (ANT) on the evolution of CDHW events (Hao et al.,
2018, 2019; Zhang et al., 2019b).

In this study, we present a comprehensive global analysis on the
relative effect of anthropogenic warming and natural climate variability
on CDHW events, for the first time. First, we focus on the identification
of natural and anthropogenic climate forcings that play a significant role
in the occurrence of CDHW events during the 1982-2016 historical
period. Subsequently, we estimate the possible increase of such events at
1.5 °C and 2 °C future warming scenarios and discuss its implication for
mitigation strategies. The rest of the manuscript is structured as follows:
Section 2 focuses on the data and methodology applied in the study; the
results and relevant discussions are provided in Section 3; and finally,
the summary of major findings and concluding remarks are provided in
Section 4.

2. Data and methodology
2.1. Data

We selected 26 climate regions across the globe, proposed under the
IPCC-ARS, as the study area (as shown in Fig. S1). Gridded daily global
maximum and minimum 2 m air temperature (Tmax and Tmin) at 0.5°
spatial resolution was obtained from the Climate Prediction Center
(CPC) (from CPC Global Temperature data provided by the NOAA/OAR/
ESRL PSD, Boulder, Colorado, USA, from their website at https://psl.no
aa.gov/data/gridded/data.cpc.globaltemp.html). Gridded daily global
precipitation (Pr) at 1° spatial resolution was obtained from the Global
Precipitation Climatology Center (GPCC; Schamm et al., 2015). Avail-
able water content (AWC) was obtained from the global texture derived
AWC dataset by Webb et al. (2000). All datasets were regridded to the
same 2.5° spatial grids for the calculation of global weekly CDHW events
from 1982 to 2016.

To evaluate the relative influence of anthropogenic warming and
natural climate variability of the CDHW events, we calculated global
mean temeprature changes, and selected six different natural modes of
climate varability for analysis (Table S1). For the calculation of global
mean temeprature changes, global gridded monthly temperature
anomaly data provided by HadCRUT4 (Morice et al., 2012) was ob-
tained from https://crudata.uea.ac.uk/cru/data/temperature/. We
further re-calculated the anomalies over the globe using the pre-
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industrial era (1861-1890) as the baseline period, and then obtained
the global mean temperature change (referred hereafter as “ANT” in this
study). The six natural modes of varability include Southern Oscillation
Index (SOI), Dipole Mode Index (DMI/IOD), Southern Annular Mode
(SAM), Arctic Oscillation (AO), North Atlantic Oscillation (NAO), and
Pacific Decadal Oscillation (PDO). The SOI is available from the Bureau
of Meteorology (http://www.bom.gov.au/climate/current/soihtm1.sht
ml), and IOD was obtained from the NOAA Climate Prediction Centre
(NOAA CPGC; http://www.cpc.ncep.noaa.gov/). The monthly values of
SAM, AO, NAO, and PDO were also retrieved form NOAA CPC.

To assess the impacts of warming, we first used a 21-year window
(2008-2028) centered on year 2018 to calculate the current day
warming (hereafter referred to as the current world). The warming level
in the current world is estimated based on the globally averaged
monthly temperature outputs from 35 Coupled Model Intercomparison
Project Phase-5 (CMIP5; https://esgf-node.llnl.gov/search/cmip5/)
Global Climate Models (GCMs; Table S2) under the Representative
Concentration Pathways 8.5 (RCP8.5) emission scenario. We chose the
RCP8.5 scenario, as it matches the observed emissions more closley
(Sanford et al., 2014) compared to the other RCPs (RCP2.6, RCP4.5, and
RCP6).

2.2. Estimation of Compound drought and heatwave (CDHW) events

CDHW events are estimated following the procedure proposed in
Mukherjee et al. (2020). Drought estimation at weekly time scale can
help to retain the memory of soil temperature and moisture inherited
within a short time-scale (Mukherjee et al., 2020). This approach not
only captures the diurnal feedback loop but also produces a considerable
sample size required in the statistical analysis of rare events such as the
co-occurrence of HW and drought. In this study, we define a CDHW
event as a HW event that occurred during the drought weeks over a
given location and temporal period.

A threshold-based approach was used to identify CDHW events
during 1982-2016. At each grid point, the 10th percentile of weekly self-
calibrated PDSI (wPDSI sc) for the reference period, 1982-2011 were
obtained as a threshold, and any wPDSI sc value below that threshold
was estimated as a drought week for the period, 1982-2016 (Mukherjee
et al., 2020; Mukherjee and Mishra, 2020). CDHW events were then
identified when daily Tmax value exceeded the 90th percentile
(TX90pct) (Fischer and Knutti, 2015; Meehl and Tebaldi, 2004; Perkins
et al., 2012; Unkasevi¢ and Tosic, 2013) for 3 or more consecutive days
during these drought weeks. The TX90pct was caluclated for each
calender day as the 90th percentile of daily Tmax over each 31-day
window during the 30 years (1982-2011) climatological period
(Fischer and Schar, 2010).

2.3. Measurement of degree of susceptibility of HW (DSHW) towards
drought

To get a measure to which it is more likely that HW and drought will
co-occur in a particular location, we estimated the degree of suscepti-
bility of HW towards drought (DSHW) in the historical period. The
DSHW was estimated by using a Bayesian approach, based on the con-
ditional formulation of CDHW events followed by a statistical test for
significance. First, probability (pe, and pc) of occurrence of two mutually
exclusive extreme events, HW events with and without an already
existing drought (that influences the background state of the climate)
were estimated based on the observational record across the globe.
Statistically significant (at 5% significance level) pe/pc ratio greater than
1 was obtained using the two-proportion z-test (or Chi-square test). The
z-statistic is based on a standard normal distribution. Therefore, to
remove the normality assumption, the results were obtained for the two
mutually exclusive events (i.e., HW events with and without an already
existing drought) by resampling, producing 1000 realizations each with
replacement. The resampling is performed based on the following steps:
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a. First the number of days with drought occurrences (=d), no drought
occurrences (=nd), HW occurrences (=h), and non-occurrences
(=nh), are recorded for a given grid point.

b. The pe and pc values from the above information is used to calculate
the z-statistics from the observed sample.

c. A matrix consisting of binary elements (1 and 0), is generated based
on the number of HW occurrences (h) indicated by the number of
“1”s and non-occurrences (nh) indicated by the number of “0”s.

d. For a given realization (out of total 1000 selected here), total
d samples are chosen with replacement from the binary matrix and
stored as M1. Subsequently, pe is calculated as the sum of all 1 s and
zeroes from the matrix, M1, divided by the number of drought days
(d).

e. Similarly, total nd samples were chosen with replacement from the
binary matrix and stored as M2. Subsequently, pc is calculated as the
sum of all 1 s and zeroes from the matrix, M2, divided by the number
of non-drought days (nd).

f. The z-statistics from the sampling distribution is calculated based on
the pe and pc values from the sampling distribution.

g. Finally, 1000 samples of the z-statistics for the sampling distribution
are generated by repeating the steps in (c, d, e, and f) 1000 times.

Finally, the proportion of the z-statistic from the sampling distribu-
tion which had absolute values as large or larger than that observed z-
statistic is calculated. We rejected the null hypothesis of equal pro-
portions if that proportion was greater than 0.05. The pe/pc ratio
showing a significantly greater than 1 value was thus obtained at each
grid point and defined as the DSHW in this study. The detailed formu-
lation of z-statistics and the DSHW is provided in Appendix A of the

b1
1-=x

logit(Y) = zn( ) = (X1 + PoXo + oo+ B Xs)

Natural Component

supplemental information.

2.4. Estimation of partial correlaton

Partial correlation is the measure of association between two vari-
ables, while controlling or adjusting the effect of one or more additional
or confounding variables. The effect of the confounding variables is
adjusted based on their weights calculated as their regression co-
efficients. Partial correlation technique has been employed to derive
interferential impact of multiple large scale teleconnection patterns (e.
g., ENSO, PDO, NAO, and IOD) on temperature extremes and drought
across many regions of the globe (Ashok and Saji, 2007; Hu and Huang,
2009; Manatsa et al., 2008; Mukherjee and Mishra, 2020; Rajagopalan
et al., 2000; Zhang et al., 2019a). In this study, a non-parametric
spearman’s rank correlation analysis was performed to identify
possible drivers (Large-scale oscillation patterns and ANT) that influ-
ence the CDHW events. Hence, sstatistically significant (at 5% signifi-
cance level) Spearman’s partial correlation between the region-wise
area weighted number of MT-CDHW days and the interannual vari-
ability of the large-scale climate indices and ANT for the period,
1982-2016 were estimated for the selected climate regions, such that,

Ty = ‘ = (1)

where ryy; is the relative correlation between x (area weighted number
of MT-CDHW days), and y (largescale climate indices, or ANT) with the
effect of z, either of the other indices (or ANT) are removed. In order to
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account for the inter-dependence of different climate modes (Meyers
etal., 2007; Perkins et al., 2015) and ANT, we employ partial correlation
technique (equation 8) to isolate the influence of individual forcing.

2.5. Measurement of odds of occurrence of CDHW events

Previous studies have confirmed the link between the odds of
occurrence of extreme events and other climate variables using logistic
regression (Mahlstein et al., 2012; Zhai et al., 2005). In this study, we
investigated the relative effect of large-scale teleconnection patterns and
anthropogenic warming based on odds ratios calculated using the Firth
logistic regression model. The odds of occurrence of CDHW events in any
month is calculated using the interannual variability of large-scale
climate indices and changes in the global mean temperature during
the period, 1982-2016 as predictors. A detailed discussion on the
application of the logistic regression model is discussed in the following
section.

2.5.1. Logistic regression model

We applied a multiple-predictor based Firth logistic regression model
that is a special form of generalized linear model (Lindsey, 2000) to
estimate the penalized regression coefficients corresponding to natural
and anthropogenic variability of the climate. The Firth’s model applies
penalized likelihood estimation rather than performing the conventional
maximum likelihood estimation to obtain the penalized regression co-
efficients. The penalization allows for convergence of the likelihood to
finite estimates in conditions of separation and also with sparse data and
therefore, may alleviate overfitting (Albert and Anderson, 1984).

In our analysis, we used the following logistic regression model:

+ PanrXant Anthropogenic +a, @)

Component

where (l—fﬂ) is the odds of having more than two CDHW events per year;

X1, Xa, ..., Xy are the large scale climate indices used in the model and
Xant is the change in global mean temperature with respect to the pre-
industrial period, 1861-1900; a, 31, fa, ----.f», and By are the corre-
sponding penalized regression coefficients (or scaling factors). Once the
model was fitted for the observational distribution the penalized
regression coefficients were obtained that we refer as the scaling factors
in this study.

2.6. Estimating odd ratio for 1.5 °C, and 2 °C global warming

One of our objectives is to answer the science question — “How much
more likely will there be a CDHW day (in a month) at 1.5 °C and 2 °C
global warming scenarios than there is at the current level of anthro-
pogenic warming?”. This was achieved by changing the anthropogenic
component to different warming levels (Current, 1.5 °C, and 2 °C), while
keeping the natural component constant in the regression model. We
estimated the current level of warming based on the average of monthly
temperature anomalies (estimated with respect to the pre-industrial
period, 1861-1890) for the current world. Finally, the odd ratio (OR)
of monthly occurrence CDHW day for the future warming limits (1.5 °C,
and 2 °C) to that for the current warming level was estimated as,
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where T is the selected warming limit of 1.5 °C, and 2 °C, and Xcyrrent
refers to the current warming level with respect to the pre-industrial
period.

3. Results
3.1. Annual increase in the number of CDHW events

The number of CDHW events has increased annually during the 21st
century (Post-2000) compared to that observed during the last two de-
cades of the 20th century (Pre-2000) (Fig. 1a). Figs. S2a and 1(a) show
the spatial distribution of the average number of events during the Pre-
2000 and Post-2000 periods, and the corresponding difference in the
same between the two periods, respectively. Fig. 1(b) show the
nonparametric probability density for the average number of CDHW
events during the Pre-, and Post-2000 periods of the globe. We also
performed the Kolmogorov-Smirnov and Wilcoxon rank sum tests to
show that there is a statistically significant (at 5% significance level)
difference between the distributions and medians of the CDHW events,

—60° T T T T T
-180° -120° -60° 0 60° 120° 180°

-5 4 3 -2 -1 0 1 2 i 4 b
(c) Ratio (= pe/pc)

—60D T T | T |
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1 2 3 4 5
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respectively, between these two periods. Our analysis suggests an
overall annual range of 1-5 events during the Post-2000 period
(Fig. S2b) with major portions included in most of the climate regions
showing an increase of 1-3 number of events per year (Fig. 1a). Those
regions include the Southern parts of WNA and CAN, Eastern NAU,
eastern and southeastern SAF, northeastern SAS, eastern ENA, northern
MED, central NEU, and almost all over WAS, CEU and NEB. In addition
to that, regions such as the southern EAS, eastern ALA, western CGI, and
central AMZ show an increase of as high as 5 annual events during the
Post-2000 period. However, CGI and ALA are excluded form rest of the
analyses due to poor quality of available data over these regions.

3.2. Degree of susceptibility of HW (DSHW) towards drought

We focus on finding the locations where it is significantly more likely
to have HW and drought co-occurred on a particular day based on ob-
servations (Fig. S3). We find that majority of grid points show higher
DSHW towards a persistent drought week (pe/pc greater than 1; Fig. 1c).
However, the percentage of total area showing such DSHW varies across
the different climate regions (Fig. 1d). Climate regions, SEA, WAF, EAF,
CAM, NAS, TIB, and CGI exhibit more than half of the area with statis-
tically significant pe/pc ratio greater than 1, while SAH, WSA, SSA, and
AMZ have less than half of the total area satisfying such conditions. More
importantly, the rest of the 26 climate regions, CAN, CEU, EAS, WNA,
WAS, NEB, ENA, NAU, SAS, MED, CAS, ALA, NEU, SAF, and SAU exhibit
more than 2/3rd of the area that shows statistically significant degree of
susceptibility of HW under an ongoing drought condition with majority
of them showing pe/pc ratio as high as more than 5 (Fig. 1c). Therefore,
out of all 26 climate regions considered in this study, we selected the top
10 climate regions that show a significant DSHW over more than 2/3rd
of the total area (Fig. 1d). Interestingly, these regions also show an

(b)
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Fig. 1. (a) Difference between the average number of CDHW events during the Pre-2000 period (1983-1999) and Post-2000 period (2000-2016), (b) kernel density
plot of the average number of CDHW events during the two periods of the globe, (c) spatial distribution of the ratio of the probabilities where the probability of heat
wave day conditioned on drought (pe) is significantly (at 5% significance level) greater than the probability of heat wave day conditioned on drought (pe), and (d)
percentage area of each climate region showing significantly (at 95% confidence level) greater probability of heat wave day conditioned on drought (pe) than that

conditioned on no drought (pc).
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increase in the number of CDHW events during the Post-2000 period, as
shown in Fig. 1a. Consequently, we performed the rest of the analyses
based on these 10 climate regions.

3.3. Possible natural and anthropogenic drivers

Previous studies suggest possible links between the large-scale global
circulation patterns or oceanic variabilities and anticyclonic regimes in
both the Northern and Southern Hemisphere (Abid et al., 2020; Garcia-
Serrano et al., 2017; Pepler et al., 2019; Singh et al., 2021; Song and
Zhou, 2013; Wang and Zhang, 2002). Therefore, understanding and
exploring such a relationship is key to identify the attributable factors
behind the occurrence of compound events such as the CDHW for the
climate regions that exhibit significant DSHW towards drought over
more than 2/3rd of the total area. More precisely, we explore possible
links between the monthly total number of CDHW (MT-CDHW) days and
the interannual variability in the natural climate (Song and Zhou, 2013)
as well as the influence of rise in ANT on such extremes during the
historical period.

We selected six (Table S1) natural modes of climate variability that
exert major influence on the variability of climate globally at seasonal to
decadal time scale. To represent the interannual variability of these
modes, monthly anomalies of their representative indices and global
mean temperature were smoothed by applying a 12-month running
mean filter. Since areal extent varies across different regions, area
weighted MT-CDHW days were estimated for all selected climate re-
gions. Fig. 2a show only the statistically significant (at 5% significance
level) Spearman’s partial correlation (see Methods) between the region-
wise area weighted MT-CDHW days and the interannual variability of
the large-scale climate indices and ANT for the period, 1982-2016 for
the selected climate regions.

The results suggest that ANT exerts strong influence on the observed
MT-CDHW days during the period 1982-2016 (Fig. 2a), which is
consistent with previous studies that have suggested a progressive global
warming footprint in the occurrence of heatwaves (Deng et al., 2018),
droughts (Wang et al., 2016), and CDHW events (AghaKouchak et al.,
2014) at the regional scale.

In addition to that, several natural modes of climate variability also
show a significant but relatively weak correlations with the occurrences
of CDHW events during the analyses period.

(a)
2E=2220F 2% 1

CEU l
CNA 0.75
EAS | - 05
ENA L 0.25
MED |

L0
NAU
NEB -0.25
SAS L 0.5
WAS Nl o5
WNA [

-1

Journal of Hydrology 605 (2022) 127396

3.3.1. Southern oscillation index

Interannual variability of SOI show statistically significant positive
correlation with the area weighted MT-CDHW days for the regions CNA
(0.3), EAS (0.273), ENA (0.27), MED (0.13), WAS (0.29) and WNA
(0.15), and negative correlation for the NAU (—0.2) (Fig. 2a). It is well
known that ENSO is one of the major natural modes of climate vari-
ability that exerts substantial influence in the global occurrences of
simultaneous droughts (Singh et al., 2021). It tele-connects with remote
regions through Rossby wave trains that either originate directly from
central equatorial Pacific or propagate as a result of inter-basin in-
teractions (Abid et al., 2020; Wang et al., 2017).

3.3.2. Indian ocean dipole

10D show significant positive correlation for the climate regions such
as CEU (0.17), CNA (0.1), EAS (0.23), MED (0.24), SAS (0.14), and WAS
(0.32) (Fig. 2a). The role of IOD has been suggested in the formation of
anticyclonic circulation over the Eastern Asia leading to unusual sum-
mer temperature in 1961 and 1994 (Saji and Yamagata, 2003). The IOD-
induced divergent flow and diabetic heating anomalies excite the Rossby
wave train propagation during summer towards the EAS climate region
(Qiu et al., 2014). Impact of IOD is also linked to the circulation changes
over the Europe and North America (Guan and Yamagata, 2003; Saji and
Yamagata, 2003), and negative rainfall anomaly over the WAS climate
region (Barlow et al., 2002). A significant warming trend and a 10-20%
reduction in rainfall is reported over the Indian subcontinent (included
in the SAS climate region) over 1901-2012 due to rapid warming of the
Indian Ocean (positive IOD phase) (Roxy et al., 2015).

3.3.3. North atlantic oscillation (NAO)

Strong influence of NAO over European heat wave and drought is
evidenced through observational studies that suggest excitation of sta-
tionary wave train that facilitates anticyclonic weather regimes over the
region (Cassou et al., 2005). Moreover, NAO can be associated with the
North Atlantic Jet variability that has strong influence over temperature
and precipitation variability over the US and Europe (Mahlstein et al.,
2012; Trouet et al., 2018). This is also evident in our correlation analysis
that show statistically significant Spearman’s correlation coefficient
over MED (—0.16) (Fig. 2a). Besides MED, three more climate regions
(EAS (—0.33), NEB (—0.16), and WAS (—0.28)) also show a significant
correlation with the MT-CDHW days (Fig. 2a). Except for NEB, where

'V¢»

Fig. 2. (a) Correlogram showing the significant (at 5% significance level) partial correlation between the number of monthly CDHW days and the interannual
variability of large-scale climate indices during the 1982-2016 period based on non-parametric Spearman’s rho, and (b) Chord diagram showing the large-scale

indices chosen based on the mechanistic explanation.
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the Atlantic Multidecadal Oscillation (AMO) is the major driver (Knight
et al., 2006), the NAO show marked influence on the precipitation and
temperature variability over WAS (Filippi et al., 2014) and EAS (Bolla-
sina and Messori, 2018). Note that due to the short span of the temporal
period 1982-2016, we did not include AMO in our analysis.

3.3.4. Pacific decadal Oscillation (PDO)

PDO show relatively strong negative correlation for three north
American regions: CNA (—0.38), ENA (—0.31), and WNA (-0.11)
(Fig. 2a), which is consistent with the findings of previous studies that
have documented significant influence of PDO on drought and heat
wave events across the conterminous US (Duliere et al., 2013; McCabe
et al., 2004; Peterson et al., 2013). Moreover, we find negative corre-
lation with the interannual variability of PDO (Fig. 2a) and the number
of MT-CDHW days over the EAS (—0.33), and WAS (—0.33) (Fig. 2a)
climate regions, which is also supported by previous observational
studies (Yu et al., 2018). However, significant correlations between
variability in PDO and climate regions such as NAU (0.11), CEU (—0.11),
and MED (—0.24) indicate a possible indirect influence on the CDHW
events over these regions. Therefore, we exclude such influences in the
further analysis of CDHW events over these regions.

3.3.5. Arctic Oscillation (AO) and Southern Annular mode (SAM)

SAM shows positive correlation for the climate regions in the
northern hemisphere such as, CEU (0.11), EAS (0.2), ENA (0.12), MED
(0.22), SAS (0.19), WAS (0.4), and WNA (0.1) (Fig. 2a). On the other
hand, significant correlation is found for climate regions, NAU (—0.14),
and NEB (0.34) in the southern hemisphere (Fig. 2a). It is evidenced that
positive SAM has a strong influence on the frequency and poleward
expansion of anticyclones in the southern hemisphere (Gillett et al.,
2006; Marshall et al., 2014; Pepler et al., 2019) with intensification of
Rossby wave in the eastern Australia. However, except for EAS (Wu
et al., 2015), there is no such evidence of SAM index in the northern
hemisphere therefore the impact of SAM is not considered in the further
analysis of CDHW events over the northern hemisphere climate regions
(CEU, ENA, MED, SAS, WAS, and WNA). On the other hand, AO that has
significant influence over the increased frequency and expansion of
anticyclones in the northern hemisphere (Pepler et al., 2019) also show
significantly weak correlation for climate regions, CEU (0.14), CNA
(0.17), NEB (0.19), and WAS (0.1). In our further analysis, we exclude
the effect of AO over the climate regions such as WAS, and NEB.
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Finally, based on the correlative evidence provided in this section, a
chord diagram is presented (Fig. 2b) to show the selected large-scale
climate indices along with the ANT that has a significant impact on
the occurrence of CDHW events for the selected climate regions.

3.4. Scaling factors associated with CDHWs

The selected large-scale meteorological perturbations, and ANT
(Fig. 2b) were used as independent variables to fit the FLM (see Methods
section) for the 10 climate regions. Our aim is to find the possible
relationship between the odds of having at least one CDHW-day in a
month and the combined effect of large-scale modes of climate vari-
ability and ANT based on the observational record. The odds of having at
least one CDHW-day in a month indicate the minimum possible risk
associated with the increasing anomalies in these global climate patterns
and ANT.

Therefore, monthly binary outcomes (0 and 1) of occurrence, and
non-occurrence of COHW day were used as dependent variables into the
FLM (see Methods). To account for the anthropogenic component into
the FLM, changes in the monthly global mean temperature with respect
to the pre-industrial period, 1861-1890 was also added as one of the
independent variables. Note that all the independent monthly variables
(natural and ANT) were first smoothed by applying a 12-month running
mean and then regressed against the monthly time series of the binary
variable. Finally, the scaling factors and their 5% and 95% confidence
intervals (CI) obtained after fitting the FLM for each of the climate re-
gions are shown in Fig. 3. These scaling factors and their CI suggest the
multiplicative increase (f > 1) or decrease (§ < 1) in the monthly odds of
a CDHW day for per unit increase in the large-scale climate indices, and
ANT. In addition to that, we consider a signal from these large-scale
natural modes of climate variability and ANT to have been detected
when the CI do not cross zero and consider only the detected signals in
our further discussion.

The results (scaling factor, 5% to 95% CI) from the sensitivity anal-
ysis suggest that the rise in ANT has a statistically significant positive
impact on the odds of occurrence of CDHW days for all selected climate
regions, CEU (4.1, 2.9-5.2), CAN (3.8, 2.7-4.9), EAS (5.6, 4.1-7.3), ENA
(2.9, 2-3.9), MED (4.2, 3-5.6), NAU (3.7, 2.7-4.9), NEB (2.2, 1.3-2.3),
SAS (4.2, 3-5.4), WAS (3.2, 2-4.4), and WNA (3.3, 2.2-4.5) (Fig. 3).
These findings agree with previous studies that report a substantial in-
crease in dry and hot spells in various regions across the globe due to rise
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Fig. 3. Scaling factors (coefficient of regression) and their corresponding 5-95% CI indicating the sensitivity of odds of occurrence of monthly CDHW days against
the inter annual variability of large-scale climate variables and ANT obtained from the FLM for the 10 climate regions. The red color indicates the scaling factors for
the ANT, and the blue color indicate the same for the large-scale climate indices. The green circles with a blue cross indicate the scaling factors that are not sta-
tistically significant (at 5% significant level). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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in global warming (AghaKouchak et al., 2014; Mazdiyasni and Agha-
Kouchak, 2015; Sun et al., 2017, 2018; Zhang et al., 2019). However,
depending on the climate regions, the large-scale climate oscillations
show either positive or negative signals against the odds of occurrence of
CDHW day. For instance, positive phase of SOI shows a statistically
significant positive relationship (scaling factor, 5% to 95% CI) for the
climate regions, ENA (0.29, 0.05-0.53), MED (0.29, 0.07-0.53), WAS
(0.51, 0.11-0.62), and WNA (0.36, 0.11-0.62), while a negative rela-
tionship for NAU (—0.25, —0.44 to —0.07). Similarly, significant effect
of SAM can be seen for the climate regions, EAS (—0.6, —1.08 to —0.14),
NAU (-0.87, —1.26 to —0.5), and NEB (0.47, 0.14-0.82). Increase in
positive AO show a significantly positive relationship with the odds of
CDHW day for the climate regions, CEU (0.79, 0.29-1.3), CAN (0.72,
0.18-1.2), and increase in positive PDO showed a statistically significant
negative relationship for the climate regions, CAN (—0.51, —0.88 to
—0.14), and ENA (-0.379, —0.69 to —0.07). On the other hand, NAO
and IOD show significantly negative, and positive relationship with the
odds of CDHW day for the climate regions, EAS (—0.92, —1.8 to —0.05),
and WAS (2.96, 1.53-4.45), respectively. However, for SAS no statisti-
cally significant signal is found from the natural variability of the
climate.

Thus, CDHW occurrences can be strongly attributable to the ANT,
while natural variability has a very weak or no significant (in case of
SAS) influence over the odds of CDHW events for the selected regions.
Furthermore, the overall relationship of the natural modes of climate
variability and ANT with the odds of occurrence of CDHW day (Fig. 3)
are found to be consistent with that obtained from the correlation
analysis with the MT-CDHW events (Fig. 2a) over the same climate
regions.

3.5. Effect of 1.5 °C and 2 °C rise in global warming

Form the sensitivity analysis, the monthly odds of occurrence of
observed CDHW days can be attributed to the rise in ANT in almost all of
the climate regions. Moreover, the magnitude of the scaling factors for
all the climate regions indicates a substantial increase in the odds with
per unit rise in the ANT forcing in the future climate. Given the
continuous rise in global temperatures, it is likely that global warming
may exceed the 1.5 °C and 2 °C warming levels by the 2030, and mid-
21st century, respectively (Lee et al., 2021), which indicates a possi-
bility of higher odds in the future compared to the present climate. To
see the likely level of increase, we estimated the ORs for these climate
regions as the ratio of monthly odds of occurrence of CDHW day in the
1.5 °C, and 2 °C warming levels to that in the current warming level.

Fig. 4 presents the two-dimensional CI plot showing the OR and the
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corresponding CI for the studied regions that show significant DSHW
towards drought based on the observational record (Fig. 1d). We find OR
(5-95% CI) as high as 3.5 (2.5-5.2), 2.6 (1.98-3.5), 2.5 (1.9-3.4), 2.5
(1.9-3.2), 2.4 (1.8-3), 2.3 (1.8-3), 2.1 (1.6-2.8), 2 (1.6-2.7), 1.9
(1.6-2.4), and 1.7 (1.3-2) for the climate regions, EAS, MED, SAS, CEU,
CAN, NAU, WNA,WAS, ENA, and NEB, respectively (Fig. 4). These re-
sults suggest greater than 1.7-fold increase in the odds of CDHW is likely
in the 1.5 °C warmer world compared to the present climate. Note that
EAS exhibit even higher (3.5-fold) increase.

On the other hand, at the 2 °C warming level, EAS, MED, SAS, CEU,
CNA, NAU, WNA, WAS, ENA, and NEB, are likely to show ORs of 60.8
(20.4-209.18), 22.1 (9.1-58), 20.9 (9-51.3), 19.5 (8.7-45.9), 16.1
(7.4-37.2), 15.7 (7.2-35.5), 11.36 (5-27.4), 10.26 (4.5-24.7), 8.6
(4.4-17.5), and 5.2 (2.6-10.7), respectively (Fig. 4). Therefore, climate
regions such as, MED, and SAS show about 20-fold increase; CEU, CNA,
and NAU show more than 15-fold increase; WNA, and WAS show more
than 10-fold increase, and ENA, and NEB show 5-8-fold increase in the
2 °C warmer world. Again, EAS shows exceptionally higher levels of
odds of having CDHW day in a month with a 60-fold increase at 2 °C
warming. Therefore, limiting global warming to 1.5 °C level can sub-
stantially limit the risk of increase in the odds of CDHW day in a month,
as it can mitigate more than 17-fold increase over EAS, 5-8-fold increase
over WNA, NAU, CAN, CEU, SAS, and MED, and 3-4-fold increase over
NEB, ENA, WAS when compared to the odds at 2 °C warming level.
These results suggest pursuing active efforts to keep the warming levels
well below the 2 °C limit (Rogelj et al., 2016).

4. Summary and conclusion

Precipitation and temperature variability is affected by the large-
scale climate perturbations that often lead to the formation of anticy-
clonic weather regimes. Under such circumstances, the net radiation
received during the daytime becomes the primary component in the
surface energy budget that heats up the land surface (Betts et al., 1996).
The heating process has been accelerated and further intensified by the
increased emission of heat trapping gases due to anthropogenic activ-
ities (Samset, 2018) and conditions favored by large scale tele-
connections (Mukherjee et al., 2020), leading to increased probability of
co-occurrence of HW, and drought events. This study provides a quan-
titative assessment of the relative effect of anthropogenic warming and
large-scale teleconnection patterns on the occurrence of CDHW events
during the instrumental period, 1982-2016.

In this study, observational evidence has been provided that suggest
a substantial increase in the number of CDHW events per year (1-5
events per year) across various parts of the globe in the beginning of 21st
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Fig. 4. Ratio of odds (OR) for 1.5 °C and 2 °C warming limits with respect to the current level of warming.
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century (2000-2016). HW events were found to be susceptible to the
existing drought conditions to different levels in the different global
climate regions. For example, out of all the 26 climate regions, only
fifteen showed a significant DSHW to the existing drought conditions
over more than 2/3rd of their corresponding total area. Out of these 15
regions, the top 10 climate regions, showing the greatest magnitudes of
DSHW, are selected for the subsequent analyses. Monthly total number
of CDHW days showed significant positive and negative correlation with
the interannual variability of few natural modes of climate variability in
some of these climate regions. In contrast, anthropogenic warming
showed significant positive correlation over all the climate regions
during the observational period (1982-2016). Keeping in mind the
various shortcomings of the correlation coefficients, such as the sus-
ceptibility to outliers and errors arising from linearization, we selected
the potential large-scale climate indices based on the literature review to
avoid any statistical artifact in the results. Attribution study performed
based on a logistic regression approach suggest a significantly positive,
and multiplicative effect of anthropogenic global warming on the odds
of CDHW occurrences in the most vulnerable climate regions. Finally,
odd ratios were estimated for these climate regions that were found to be
in the range of 1.7-3.5, and as high as 5-60 at 1.5 °C, and 2 °C warming
levels, respectively, with respect to the current world. Moreover, these
odd ratios suggest about 17-fold reduction in the odds over EAS, 5-8-
fold reduction over WNA, NAU, CAN, CEU, SAS, and MED, and 3-4-fold
reduction over NEB, ENA, WAS at the 1.5 °C global warming level,
compared to the 2 °C global warming level. Our findings show that
among all the climate regions, EAS is the most affected region due to the
rise in anthropogenic warming.

Overall, this study offers a quantitative assessment and under-
standing of the combined effects of natural climate variability and
anthropogenic warming on the CDHW events during the past few de-
cades. Nevertheless, future period may see more amplified large-scale
teleconnections that may balance or reinforce the impact from
increasing anthropogenic warming. Therefore, further scope of im-
provements in such projections can be accomplished by incorporating
the possible effect of warming on large-scale climate perturbations. Even
anticyclonic weather regimes, which are accompanied by slow-moving
jet or stationary blocking zones (caused by the relatively high-pressure
ridges), may also get affected by increase in warming levels (Dong
et al., 2018), therefore, should also be considered as additional co-
factors. Besides that, a detailed analysis including the multiple compo-
nents of human influences, such as the land-use practices (Findell et al.,
2017), increased effect of dust aerosol (Huang et al., 2015), and surface-
energy partitioning (Mukherjee and Mishra, 2020) can also be beneficial
for accurately assessing the future changes in CDHW event character-
istics. Lastly, simple regression techniques can only identify the re-
lationships between variables and the CDHW events. These techniques
are restricted by model assumptions and have limitations in terms of
defining the causal linkages that often are more meaningful for predic-
tion purposes, therefore, necessitating development of more nuanced
statistical techniques that robustly captures the causal associations be-
tween the drivers and CDHW events.
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