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A B S T R A C T   

Compound drought and heatwave (CDHW) events can be influenced by large scale teleconnections and 
anthropogenic warming, leading to severe socio-economic impacts across various climate regions. In this study, 
the relative influence of six different teleconnection patterns and anthropogenic global warming on the global 
CDHW occurrences is quantified systematically using the instrumental data period, 1982–2016. The results from 
the study suggest a substantial increase in the CDHW events (1–5 events per year) across various parts of the 
globe at the beginning of 21st century (2000–2016). A Bayesian approach is implemented to identify the most 
vulnerable climate regions based on the degree of susceptibility of heatwaves (DSHW) towards drought. As such, 
top ten most vulnerable regions are selected based on the DSHW magnitude, and a partial correlation analysis is 
performed to select the natural and anthropogenic drivers of CDHW in those regions, separately. A logistic 
regression model is then used to determine significant changes in the odds of CDHW due to changes in the 
selected drivers that suggest a significantly positive, and multiplicative effect of anthropogenic global warming in 
the top ten most vulnerable climate regions. Finally, the same logistic regression model, integrated with an 
analytical framework, is applied to determine the relative influence of anthropogenic global warming on the 
changes in odds of CDHW for the future, 1.5 ◦C and 2 ◦C warming limits. The results suggest that relative to the 
2 ◦C global warming, constraining to the 1.5 ◦C global warming limit may conduce about 17-fold reduction in the 
odds of CDHW in the most vulnerable climate region, East Asia, 5–8-fold reduction in Western North America, 
Northern Australia, Central North America, Central Europe, South Asia, and the Mediterranean region, and 3–4- 
fold reduction in Northeastern Brazil, Eastern North America, and West Asia.   

1. Introduction 

Compound drought and heatwave (CDHW) events have had multiple 
societal and eco-hydrological impacts including loss of crop yield (Ciais 
et al., 2005; Zampieri et al., 2017), increased wildfires and tree mortality 
(Allen et al., 2010), and health hazards (Poumadère et al., 2005). CDHW 
events are typically triggered by anticyclonic flow patterns (Trenberth 
and Fasullo, 2012), followed by land–atmosphere feedback processes 
that modulate the surface energy budget (Mukherjee et al., 2020; 
Mukherjee and Mishra, 2020). Natural modes of climate variability are 
instrumental in influencing global circulation patters that lead to con
ditions favoring the development of anticyclonic regimes over terrestrial 
regions (Mukherjee et al., 2020; Pepler et al., 2019). Observations 
indicate a poleward expansion of these regimes in both hemispheres 
during the past few decades, which is attributed to intensification and 

poleward shift in main storm tracks in mid-latitudes, associated with 
warming (Lu et al., 2007; Pepler et al., 2019; Trenberth et al., 2014; Yin, 
2005). 

The anticyclonic anomalies in the atmosphere are accompanied with 
clear skies or lack of moisture in the lower atmosphere making condi
tions less conducive for precipitation and thereby facilitating drought 
conditions. The lack of surface moisture leads to excessive sensible 
heating at the expense of decreased latent energy or evapotranspiration, 
causing surface warming. The prolonged period of high surface tem
peratures eventually lead to heatwaves (HW) (Horton et al., 2016; 
Stéfanon et al., 2014), resulting in the occurrence of CDHW events. 
Additionally, the rise in surface air temperature further exacerbates 
drought conditions by initiating a land–atmosphere feedback loop with 
the soil moisture by increasing the atmospheric demand (leading to 
increased evapotranspiration). This feedback process is very common in 
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the anticyclonic weather regimes and is generally referred as the soil- 
temperature coupling (Betts et al., 1996; Seneviratne et al., 2010; 
Whan et al., 2015). Anthropogenic climate change has already accel
erated such processes leading to increased frequency of CDHW events 
across many parts of the globe (Mazdiyasni and AghaKouchak, 2015; 
Mukherjee and Mishra, 2020; Sun et al., 2017, 2018; Zhang et al., 
2019b). 

Given the role of temperature anomalies in the occurrence of CHDW 
events, drought quantification using only precipitation may lead to 
underestimation of drying (Dai and Zhao, 2017), which can lead to 
uncertainties in the characterization of CDHW events (Mukherjee et al., 
2020; Mukherjee and Mishra, 2020). Therefore, it is imperative that soil 
moisture, and surface temperature anomalies are incorporated in the 
estimation of CDHW using the energy budget framework. To this end, 
Palmer Drought Severity Index (PDSI; Wells et al., 2004) is a compre
hensive drought index that incorporates hydroclimatic variables rele
vant to the estimation of drought under the changing climate 
(Mukherjee et al., 2018). Furthermore, as previously noted, the large 
scale natural modes of climate variability are instrumental in the for
mation of anticyclonic regimes and that anthropogenic footprint is 
detectable in the intensification of conditions that are conducive for the 
occurrence of extreme dry and hot conditions (Hassan and Nayak, 2020; 
Lau and Kim, 2012; Pepler et al., 2019). Therefore, there is a need to 
establish analytical frameworks that not only identify relevant modes of 
climate variability, that exert influence on distribution of CHDW events 
across the globe, but also incorporate the relative influence of anthro
pogenic warming (ANT) on the evolution of CDHW events (Hao et al., 
2018, 2019; Zhang et al., 2019b). 

In this study, we present a comprehensive global analysis on the 
relative effect of anthropogenic warming and natural climate variability 
on CDHW events, for the first time. First, we focus on the identification 
of natural and anthropogenic climate forcings that play a significant role 
in the occurrence of CDHW events during the 1982–2016 historical 
period. Subsequently, we estimate the possible increase of such events at 
1.5 ◦C and 2 ◦C future warming scenarios and discuss its implication for 
mitigation strategies. The rest of the manuscript is structured as follows: 
Section 2 focuses on the data and methodology applied in the study; the 
results and relevant discussions are provided in Section 3; and finally, 
the summary of major findings and concluding remarks are provided in 
Section 4. 

2. Data and methodology 

2.1. Data 

We selected 26 climate regions across the globe, proposed under the 
IPCC-AR5, as the study area (as shown in Fig. S1). Gridded daily global 
maximum and minimum 2 m air temperature (Tmax and Tmin) at 0.5◦

spatial resolution was obtained from the Climate Prediction Center 
(CPC) (from CPC Global Temperature data provided by the NOAA/OAR/ 
ESRL PSD, Boulder, Colorado, USA, from their website at https://psl.no 
aa.gov/data/gridded/data.cpc.globaltemp.html). Gridded daily global 
precipitation (Pr) at 1◦ spatial resolution was obtained from the Global 
Precipitation Climatology Center (GPCC; Schamm et al., 2015). Avail
able water content (AWC) was obtained from the global texture derived 
AWC dataset by Webb et al. (2000). All datasets were regridded to the 
same 2.5◦ spatial grids for the calculation of global weekly CDHW events 
from 1982 to 2016. 

To evaluate the relative influence of anthropogenic warming and 
natural climate variability of the CDHW events, we calculated global 
mean temeprature changes, and selected six different natural modes of 
climate varability for analysis (Table S1). For the calculation of global 
mean temeprature changes, global gridded monthly temperature 
anomaly data provided by HadCRUT4 (Morice et al., 2012) was ob
tained from https://crudata.uea.ac.uk/cru/data/temperature/. We 
further re-calculated the anomalies over the globe using the pre- 

industrial era (1861–1890) as the baseline period, and then obtained 
the global mean temperature change (referred hereafter as “ANT” in this 
study). The six natural modes of varability include Southern Oscillation 
Index (SOI), Dipole Mode Index (DMI/IOD), Southern Annular Mode 
(SAM), Arctic Oscillation (AO), North Atlantic Oscillation (NAO), and 
Pacific Decadal Oscillation (PDO). The SOI is available from the Bureau 
of Meteorology (http://www.bom.gov.au/climate/current/soihtm1.sht 
ml), and IOD was obtained from the NOAA Climate Prediction Centre 
(NOAA CPC; http://www.cpc.ncep.noaa.gov/). The monthly values of 
SAM, AO, NAO, and PDO were also retrieved form NOAA CPC. 

To assess the impacts of warming, we first used a 21-year window 
(2008–2028) centered on year 2018 to calculate the current day 
warming (hereafter referred to as the current world). The warming level 
in the current world is estimated based on the globally averaged 
monthly temperature outputs from 35 Coupled Model Intercomparison 
Project Phase-5 (CMIP5; https://esgf-node.llnl.gov/search/cmip5/) 
Global Climate Models (GCMs; Table S2) under the Representative 
Concentration Pathways 8.5 (RCP8.5) emission scenario. We chose the 
RCP8.5 scenario, as it matches the observed emissions more closley 
(Sanford et al., 2014) compared to the other RCPs (RCP2.6, RCP4.5, and 
RCP6). 

2.2. Estimation of Compound drought and heatwave (CDHW) events 

CDHW events are estimated following the procedure proposed in 
Mukherjee et al. (2020). Drought estimation at weekly time scale can 
help to retain the memory of soil temperature and moisture inherited 
within a short time-scale (Mukherjee et al., 2020). This approach not 
only captures the diurnal feedback loop but also produces a considerable 
sample size required in the statistical analysis of rare events such as the 
co-occurrence of HW and drought. In this study, we define a CDHW 
event as a HW event that occurred during the drought weeks over a 
given location and temporal period. 

A threshold-based approach was used to identify CDHW events 
during 1982–2016. At each grid point, the 10th percentile of weekly self- 
calibrated PDSI (wPDSI_sc) for the reference period, 1982–2011 were 
obtained as a threshold, and any wPDSI_sc value below that threshold 
was estimated as a drought week for the period, 1982–2016 (Mukherjee 
et al., 2020; Mukherjee and Mishra, 2020). CDHW events were then 
identified when daily Tmax value exceeded the 90th percentile 
(TX90pct) (Fischer and Knutti, 2015; Meehl and Tebaldi, 2004; Perkins 
et al., 2012; Unkašević and Tošić, 2013) for 3 or more consecutive days 
during these drought weeks. The TX90pct was caluclated for each 
calender day as the 90th percentile of daily Tmax over each 31-day 
window during the 30 years (1982–2011) climatological period 
(Fischer and Schär, 2010). 

2.3. Measurement of degree of susceptibility of HW (DSHW) towards 
drought 

To get a measure to which it is more likely that HW and drought will 
co-occur in a particular location, we estimated the degree of suscepti
bility of HW towards drought (DSHW) in the historical period. The 
DSHW was estimated by using a Bayesian approach, based on the con
ditional formulation of CDHW events followed by a statistical test for 
significance. First, probability (pe, and pc) of occurrence of two mutually 
exclusive extreme events, HW events with and without an already 
existing drought (that influences the background state of the climate) 
were estimated based on the observational record across the globe. 
Statistically significant (at 5% significance level) pe/pc ratio greater than 
1 was obtained using the two-proportion z-test (or Chi-square test). The 
z-statistic is based on a standard normal distribution. Therefore, to 
remove the normality assumption, the results were obtained for the two 
mutually exclusive events (i.e., HW events with and without an already 
existing drought) by resampling, producing 1000 realizations each with 
replacement. The resampling is performed based on the following steps: 
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a. First the number of days with drought occurrences (=d), no drought 
occurrences (=nd), HW occurrences (=h), and non-occurrences 
(=nh), are recorded for a given grid point.  

b. The pe and pc values from the above information is used to calculate 
the z-statistics from the observed sample.  

c. A matrix consisting of binary elements (1 and 0), is generated based 
on the number of HW occurrences (h) indicated by the number of 
“1′′s and non-occurrences (nh) indicated by the number of “0”s.  

d. For a given realization (out of total 1000 selected here), total 
d samples are chosen with replacement from the binary matrix and 
stored as M1. Subsequently, pe is calculated as the sum of all 1 s and 
zeroes from the matrix, M1, divided by the number of drought days 
(d).  

e. Similarly, total nd samples were chosen with replacement from the 
binary matrix and stored as M2. Subsequently, pc is calculated as the 
sum of all 1 s and zeroes from the matrix, M2, divided by the number 
of non-drought days (nd).  

f. The z-statistics from the sampling distribution is calculated based on 
the pe and pc values from the sampling distribution.  

g. Finally, 1000 samples of the z-statistics for the sampling distribution 
are generated by repeating the steps in (c, d, e, and f) 1000 times. 

Finally, the proportion of the z-statistic from the sampling distribu
tion which had absolute values as large or larger than that observed z- 
statistic is calculated. We rejected the null hypothesis of equal pro
portions if that proportion was greater than 0.05. The pe/pc ratio 
showing a significantly greater than 1 value was thus obtained at each 
grid point and defined as the DSHW in this study. The detailed formu
lation of z-statistics and the DSHW is provided in Appendix A of the 

supplemental information. 

2.4. Estimation of partial correlaton 

Partial correlation is the measure of association between two vari
ables, while controlling or adjusting the effect of one or more additional 
or confounding variables. The effect of the confounding variables is 
adjusted based on their weights calculated as their regression co
efficients. Partial correlation technique has been employed to derive 
interferential impact of multiple large scale teleconnection patterns (e. 
g., ENSO, PDO, NAO, and IOD) on temperature extremes and drought 
across many regions of the globe (Ashok and Saji, 2007; Hu and Huang, 
2009; Manatsa et al., 2008; Mukherjee and Mishra, 2020; Rajagopalan 
et al., 2000; Zhang et al., 2019a). In this study, a non-parametric 
spearman’s rank correlation analysis was performed to identify 
possible drivers (Large-scale oscillation patterns and ANT) that influ
ence the CDHW events. Hence, sstatistically significant (at 5% signifi
cance level) Spearman’s partial correlation between the region-wise 
area weighted number of MT-CDHW days and the interannual vari
ability of the large-scale climate indices and ANT for the period, 
1982–2016 were estimated for the selected climate regions, such that, 

rxyz =
rxy − rxzryz

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − r2

xz)(1 − r2
yz)

√ (1)  

where rxyz is the relative correlation between × (area weighted number 
of MT-CDHW days), and y (largescale climate indices, or ANT) with the 
effect of z, either of the other indices (or ANT) are removed. In order to 

account for the inter-dependence of different climate modes (Meyers 
et al., 2007; Perkins et al., 2015) and ANT, we employ partial correlation 
technique (equation 8) to isolate the influence of individual forcing. 

2.5. Measurement of odds of occurrence of CDHW events 

Previous studies have confirmed the link between the odds of 
occurrence of extreme events and other climate variables using logistic 
regression (Mahlstein et al., 2012; Zhai et al., 2005). In this study, we 
investigated the relative effect of large-scale teleconnection patterns and 
anthropogenic warming based on odds ratios calculated using the Firth 
logistic regression model. The odds of occurrence of CDHW events in any 
month is calculated using the interannual variability of large-scale 
climate indices and changes in the global mean temperature during 
the period, 1982–2016 as predictors. A detailed discussion on the 
application of the logistic regression model is discussed in the following 
section. 

2.5.1. Logistic regression model 
We applied a multiple-predictor based Firth logistic regression model 

that is a special form of generalized linear model (Lindsey, 2000) to 
estimate the penalized regression coefficients corresponding to natural 
and anthropogenic variability of the climate. The Firth’s model applies 
penalized likelihood estimation rather than performing the conventional 
maximum likelihood estimation to obtain the penalized regression co
efficients. The penalization allows for convergence of the likelihood to 
finite estimates in conditions of separation and also with sparse data and 
therefore, may alleviate overfitting (Albert and Anderson, 1984). 

In our analysis, we used the following logistic regression model:  

where 
(

π
1−π

)
is the odds of having more than two CDHW events per year; 

X1, X1, …., Xn are the large scale climate indices used in the model and 
XANT is the change in global mean temperature with respect to the pre- 
industrial period, 1861–1900; α, β1, β2, ….,βn, and βANT are the corre
sponding penalized regression coefficients (or scaling factors). Once the 
model was fitted for the observational distribution the penalized 
regression coefficients were obtained that we refer as the scaling factors 
in this study. 

2.6. Estimating odd ratio for 1.5 ◦C, and 2 ◦C global warming 

One of our objectives is to answer the science question – “How much 
more likely will there be a CDHW day (in a month) at 1.5 ◦C and 2 ◦C 
global warming scenarios than there is at the current level of anthro
pogenic warming?”. This was achieved by changing the anthropogenic 
component to different warming levels (Current, 1.5 ◦C, and 2 ◦C), while 
keeping the natural component constant in the regression model. We 
estimated the current level of warming based on the average of monthly 
temperature anomalies (estimated with respect to the pre-industrial 
period, 1861–1890) for the current world. Finally, the odd ratio (OR) 
of monthly occurrence CDHW day for the future warming limits (1.5 ◦C, 
and 2 ◦C) to that for the current warming level was estimated as, 

logit(Y) = ln
( π

1 − π

)
= (β1X1 + β2X2 + ..... + βnXn)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟Natural Component
+ βANT XANT

⏟̅̅̅̅̅ ⏞⏞̅̅̅̅̅ ⏟ Anthropogenic

Component

+ α, (2)   
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ORT◦ C =

(
π

1−π

)

T◦ C
(

π
1−π

)

Current

=

exp
(

α + (β1X1 + β2X2 + ..... + βnXn)
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

Natural Component

+ (βANT T)

)

exp
(

α + (β1X1 + β2X2 + ..... + βnXn)
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

Natural Component

+ (βANT XCurrent)

)

=
exp(βANT T)

exp(βANT XCurrent)
(3)  

where T is the selected warming limit of 1.5 ◦C, and 2 ◦C, and XCurrent 
refers to the current warming level with respect to the pre-industrial 
period. 

3. Results 

3.1. Annual increase in the number of CDHW events 

The number of CDHW events has increased annually during the 21st 
century (Post-2000) compared to that observed during the last two de
cades of the 20th century (Pre-2000) (Fig. 1a). Figs. S2a and 1(a) show 
the spatial distribution of the average number of events during the Pre- 
2000 and Post-2000 periods, and the corresponding difference in the 
same between the two periods, respectively. Fig. 1(b) show the 
nonparametric probability density for the average number of CDHW 
events during the Pre-, and Post-2000 periods of the globe. We also 
performed the Kolmogorov-Smirnov and Wilcoxon rank sum tests to 
show that there is a statistically significant (at 5% significance level) 
difference between the distributions and medians of the CDHW events, 

respectively, between these two periods. Our analysis suggests an 
overall annual range of 1–5 events during the Post-2000 period 
(Fig. S2b) with major portions included in most of the climate regions 
showing an increase of 1–3 number of events per year (Fig. 1a). Those 
regions include the Southern parts of WNA and CAN, Eastern NAU, 
eastern and southeastern SAF, northeastern SAS, eastern ENA, northern 
MED, central NEU, and almost all over WAS, CEU and NEB. In addition 
to that, regions such as the southern EAS, eastern ALA, western CGI, and 
central AMZ show an increase of as high as 5 annual events during the 
Post-2000 period. However, CGI and ALA are excluded form rest of the 
analyses due to poor quality of available data over these regions. 

3.2. Degree of susceptibility of HW (DSHW) towards drought 

We focus on finding the locations where it is significantly more likely 
to have HW and drought co-occurred on a particular day based on ob
servations (Fig. S3). We find that majority of grid points show higher 
DSHW towards a persistent drought week (pe/pc greater than 1; Fig. 1c). 
However, the percentage of total area showing such DSHW varies across 
the different climate regions (Fig. 1d). Climate regions, SEA, WAF, EAF, 
CAM, NAS, TIB, and CGI exhibit more than half of the area with statis
tically significant pe/pc ratio greater than 1, while SAH, WSA, SSA, and 
AMZ have less than half of the total area satisfying such conditions. More 
importantly, the rest of the 26 climate regions, CAN, CEU, EAS, WNA, 
WAS, NEB, ENA, NAU, SAS, MED, CAS, ALA, NEU, SAF, and SAU exhibit 
more than 2/3rd of the area that shows statistically significant degree of 
susceptibility of HW under an ongoing drought condition with majority 
of them showing pe/pc ratio as high as more than 5 (Fig. 1c). Therefore, 
out of all 26 climate regions considered in this study, we selected the top 
10 climate regions that show a significant DSHW over more than 2/3rd 
of the total area (Fig. 1d). Interestingly, these regions also show an 

Fig. 1. (a) Difference between the average number of CDHW events during the Pre-2000 period (1983–1999) and Post-2000 period (2000–2016), (b) kernel density 
plot of the average number of CDHW events during the two periods of the globe, (c) spatial distribution of the ratio of the probabilities where the probability of heat 
wave day conditioned on drought (pe) is significantly (at 5% significance level) greater than the probability of heat wave day conditioned on drought (pe), and (d) 
percentage area of each climate region showing significantly (at 95% confidence level) greater probability of heat wave day conditioned on drought (pe) than that 
conditioned on no drought (pc). 
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increase in the number of CDHW events during the Post-2000 period, as 
shown in Fig. 1a. Consequently, we performed the rest of the analyses 
based on these 10 climate regions. 

3.3. Possible natural and anthropogenic drivers 

Previous studies suggest possible links between the large-scale global 
circulation patterns or oceanic variabilities and anticyclonic regimes in 
both the Northern and Southern Hemisphere (Abid et al., 2020; García- 
Serrano et al., 2017; Pepler et al., 2019; Singh et al., 2021; Song and 
Zhou, 2013; Wang and Zhang, 2002). Therefore, understanding and 
exploring such a relationship is key to identify the attributable factors 
behind the occurrence of compound events such as the CDHW for the 
climate regions that exhibit significant DSHW towards drought over 
more than 2/3rd of the total area. More precisely, we explore possible 
links between the monthly total number of CDHW (MT-CDHW) days and 
the interannual variability in the natural climate (Song and Zhou, 2013) 
as well as the influence of rise in ANT on such extremes during the 
historical period. 

We selected six (Table S1) natural modes of climate variability that 
exert major influence on the variability of climate globally at seasonal to 
decadal time scale. To represent the interannual variability of these 
modes, monthly anomalies of their representative indices and global 
mean temperature were smoothed by applying a 12-month running 
mean filter. Since areal extent varies across different regions, area 
weighted MT-CDHW days were estimated for all selected climate re
gions. Fig. 2a show only the statistically significant (at 5% significance 
level) Spearman’s partial correlation (see Methods) between the region- 
wise area weighted MT-CDHW days and the interannual variability of 
the large-scale climate indices and ANT for the period, 1982–2016 for 
the selected climate regions. 

The results suggest that ANT exerts strong influence on the observed 
MT-CDHW days during the period 1982–2016 (Fig. 2a), which is 
consistent with previous studies that have suggested a progressive global 
warming footprint in the occurrence of heatwaves (Deng et al., 2018), 
droughts (Wang et al., 2016), and CDHW events (AghaKouchak et al., 
2014) at the regional scale. 

In addition to that, several natural modes of climate variability also 
show a significant but relatively weak correlations with the occurrences 
of CDHW events during the analyses period. 

3.3.1. Southern oscillation index 
Interannual variability of SOI show statistically significant positive 

correlation with the area weighted MT-CDHW days for the regions CNA 
(0.3), EAS (0.273), ENA (0.27), MED (0.13), WAS (0.29) and WNA 
(0.15), and negative correlation for the NAU (−0.2) (Fig. 2a). It is well 
known that ENSO is one of the major natural modes of climate vari
ability that exerts substantial influence in the global occurrences of 
simultaneous droughts (Singh et al., 2021). It tele-connects with remote 
regions through Rossby wave trains that either originate directly from 
central equatorial Pacific or propagate as a result of inter-basin in
teractions (Abid et al., 2020; Wang et al., 2017). 

3.3.2. Indian ocean dipole 
IOD show significant positive correlation for the climate regions such 

as CEU (0.17), CNA (0.1), EAS (0.23), MED (0.24), SAS (0.14), and WAS 
(0.32) (Fig. 2a). The role of IOD has been suggested in the formation of 
anticyclonic circulation over the Eastern Asia leading to unusual sum
mer temperature in 1961 and 1994 (Saji and Yamagata, 2003). The IOD- 
induced divergent flow and diabetic heating anomalies excite the Rossby 
wave train propagation during summer towards the EAS climate region 
(Qiu et al., 2014). Impact of IOD is also linked to the circulation changes 
over the Europe and North America (Guan and Yamagata, 2003; Saji and 
Yamagata, 2003), and negative rainfall anomaly over the WAS climate 
region (Barlow et al., 2002). A significant warming trend and a 10–20% 
reduction in rainfall is reported over the Indian subcontinent (included 
in the SAS climate region) over 1901–2012 due to rapid warming of the 
Indian Ocean (positive IOD phase) (Roxy et al., 2015). 

3.3.3. North atlantic oscillation (NAO) 
Strong influence of NAO over European heat wave and drought is 

evidenced through observational studies that suggest excitation of sta
tionary wave train that facilitates anticyclonic weather regimes over the 
region (Cassou et al., 2005). Moreover, NAO can be associated with the 
North Atlantic Jet variability that has strong influence over temperature 
and precipitation variability over the US and Europe (Mahlstein et al., 
2012; Trouet et al., 2018). This is also evident in our correlation analysis 
that show statistically significant Spearman’s correlation coefficient 
over MED (−0.16) (Fig. 2a). Besides MED, three more climate regions 
(EAS (−0.33), NEB (−0.16), and WAS (−0.28)) also show a significant 
correlation with the MT-CDHW days (Fig. 2a). Except for NEB, where 

Fig. 2. (a) Correlogram showing the significant (at 5% significance level) partial correlation between the number of monthly CDHW days and the interannual 
variability of large-scale climate indices during the 1982–2016 period based on non-parametric Spearman’s rho, and (b) Chord diagram showing the large-scale 
indices chosen based on the mechanistic explanation. 
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the Atlantic Multidecadal Oscillation (AMO) is the major driver (Knight 
et al., 2006), the NAO show marked influence on the precipitation and 
temperature variability over WAS (Filippi et al., 2014) and EAS (Bolla
sina and Messori, 2018). Note that due to the short span of the temporal 
period 1982–2016, we did not include AMO in our analysis. 

3.3.4. Pacific decadal Oscillation (PDO) 
PDO show relatively strong negative correlation for three north 

American regions: CNA (−0.38), ENA (−0.31), and WNA (−0.11) 
(Fig. 2a), which is consistent with the findings of previous studies that 
have documented significant influence of PDO on drought and heat 
wave events across the conterminous US (Dulière et al., 2013; McCabe 
et al., 2004; Peterson et al., 2013). Moreover, we find negative corre
lation with the interannual variability of PDO (Fig. 2a) and the number 
of MT-CDHW days over the EAS (−0.33), and WAS (−0.33) (Fig. 2a) 
climate regions, which is also supported by previous observational 
studies (Yu et al., 2018). However, significant correlations between 
variability in PDO and climate regions such as NAU (0.11), CEU (−0.11), 
and MED (−0.24) indicate a possible indirect influence on the CDHW 
events over these regions. Therefore, we exclude such influences in the 
further analysis of CDHW events over these regions. 

3.3.5. Arctic Oscillation (AO) and Southern Annular mode (SAM) 
SAM shows positive correlation for the climate regions in the 

northern hemisphere such as, CEU (0.11), EAS (0.2), ENA (0.12), MED 
(0.22), SAS (0.19), WAS (0.4), and WNA (0.1) (Fig. 2a). On the other 
hand, significant correlation is found for climate regions, NAU (−0.14), 
and NEB (0.34) in the southern hemisphere (Fig. 2a). It is evidenced that 
positive SAM has a strong influence on the frequency and poleward 
expansion of anticyclones in the southern hemisphere (Gillett et al., 
2006; Marshall et al., 2014; Pepler et al., 2019) with intensification of 
Rossby wave in the eastern Australia. However, except for EAS (Wu 
et al., 2015), there is no such evidence of SAM index in the northern 
hemisphere therefore the impact of SAM is not considered in the further 
analysis of CDHW events over the northern hemisphere climate regions 
(CEU, ENA, MED, SAS, WAS, and WNA). On the other hand, AO that has 
significant influence over the increased frequency and expansion of 
anticyclones in the northern hemisphere (Pepler et al., 2019) also show 
significantly weak correlation for climate regions, CEU (0.14), CNA 
(0.17), NEB (0.19), and WAS (0.1). In our further analysis, we exclude 
the effect of AO over the climate regions such as WAS, and NEB. 

Finally, based on the correlative evidence provided in this section, a 
chord diagram is presented (Fig. 2b) to show the selected large-scale 
climate indices along with the ANT that has a significant impact on 
the occurrence of CDHW events for the selected climate regions. 

3.4. Scaling factors associated with CDHWs 

The selected large-scale meteorological perturbations, and ANT 
(Fig. 2b) were used as independent variables to fit the FLM (see Methods 
section) for the 10 climate regions. Our aim is to find the possible 
relationship between the odds of having at least one CDHW-day in a 
month and the combined effect of large-scale modes of climate vari
ability and ANT based on the observational record. The odds of having at 
least one CDHW-day in a month indicate the minimum possible risk 
associated with the increasing anomalies in these global climate patterns 
and ANT. 

Therefore, monthly binary outcomes (0 and 1) of occurrence, and 
non-occurrence of CDHW day were used as dependent variables into the 
FLM (see Methods). To account for the anthropogenic component into 
the FLM, changes in the monthly global mean temperature with respect 
to the pre-industrial period, 1861–1890 was also added as one of the 
independent variables. Note that all the independent monthly variables 
(natural and ANT) were first smoothed by applying a 12-month running 
mean and then regressed against the monthly time series of the binary 
variable. Finally, the scaling factors and their 5% and 95% confidence 
intervals (CI) obtained after fitting the FLM for each of the climate re
gions are shown in Fig. 3. These scaling factors and their CI suggest the 
multiplicative increase (β > 1) or decrease (β < 1) in the monthly odds of 
a CDHW day for per unit increase in the large-scale climate indices, and 
ANT. In addition to that, we consider a signal from these large-scale 
natural modes of climate variability and ANT to have been detected 
when the CI do not cross zero and consider only the detected signals in 
our further discussion. 

The results (scaling factor, 5% to 95% CI) from the sensitivity anal
ysis suggest that the rise in ANT has a statistically significant positive 
impact on the odds of occurrence of CDHW days for all selected climate 
regions, CEU (4.1, 2.9–5.2), CAN (3.8, 2.7–4.9), EAS (5.6, 4.1–7.3), ENA 
(2.9, 2–3.9), MED (4.2, 3–5.6), NAU (3.7, 2.7–4.9), NEB (2.2, 1.3–2.3), 
SAS (4.2, 3–5.4), WAS (3.2, 2–4.4), and WNA (3.3, 2.2–4.5) (Fig. 3). 
These findings agree with previous studies that report a substantial in
crease in dry and hot spells in various regions across the globe due to rise 

Fig. 3. Scaling factors (coefficient of regression) and their corresponding 5–95% CI indicating the sensitivity of odds of occurrence of monthly CDHW days against 
the inter annual variability of large-scale climate variables and ANT obtained from the FLM for the 10 climate regions. The red color indicates the scaling factors for 
the ANT, and the blue color indicate the same for the large-scale climate indices. The green circles with a blue cross indicate the scaling factors that are not sta
tistically significant (at 5% significant level). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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in global warming (AghaKouchak et al., 2014; Mazdiyasni and Agha
Kouchak, 2015; Sun et al., 2017, 2018; Zhang et al., 2019). However, 
depending on the climate regions, the large-scale climate oscillations 
show either positive or negative signals against the odds of occurrence of 
CDHW day. For instance, positive phase of SOI shows a statistically 
significant positive relationship (scaling factor, 5% to 95% CI) for the 
climate regions, ENA (0.29, 0.05–0.53), MED (0.29, 0.07–0.53), WAS 
(0.51, 0.11–0.62), and WNA (0.36, 0.11–0.62), while a negative rela
tionship for NAU (−0.25, −0.44 to −0.07). Similarly, significant effect 
of SAM can be seen for the climate regions, EAS (−0.6, −1.08 to −0.14), 
NAU (−0.87, −1.26 to −0.5), and NEB (0.47, 0.14–0.82). Increase in 
positive AO show a significantly positive relationship with the odds of 
CDHW day for the climate regions, CEU (0.79, 0.29–1.3), CAN (0.72, 
0.18–1.2), and increase in positive PDO showed a statistically significant 
negative relationship for the climate regions, CAN (−0.51, −0.88 to 
−0.14), and ENA (−0.379, −0.69 to −0.07). On the other hand, NAO 
and IOD show significantly negative, and positive relationship with the 
odds of CDHW day for the climate regions, EAS (−0.92, −1.8 to −0.05), 
and WAS (2.96, 1.53–4.45), respectively. However, for SAS no statisti
cally significant signal is found from the natural variability of the 
climate. 

Thus, CDHW occurrences can be strongly attributable to the ANT, 
while natural variability has a very weak or no significant (in case of 
SAS) influence over the odds of CDHW events for the selected regions. 
Furthermore, the overall relationship of the natural modes of climate 
variability and ANT with the odds of occurrence of CDHW day (Fig. 3) 
are found to be consistent with that obtained from the correlation 
analysis with the MT-CDHW events (Fig. 2a) over the same climate 
regions. 

3.5. Effect of 1.5 ◦C and 2 ◦C rise in global warming 

Form the sensitivity analysis, the monthly odds of occurrence of 
observed CDHW days can be attributed to the rise in ANT in almost all of 
the climate regions. Moreover, the magnitude of the scaling factors for 
all the climate regions indicates a substantial increase in the odds with 
per unit rise in the ANT forcing in the future climate. Given the 
continuous rise in global temperatures, it is likely that global warming 
may exceed the 1.5 ◦C and 2 ◦C warming levels by the 2030, and mid- 
21st century, respectively (Lee et al., 2021), which indicates a possi
bility of higher odds in the future compared to the present climate. To 
see the likely level of increase, we estimated the ORs for these climate 
regions as the ratio of monthly odds of occurrence of CDHW day in the 
1.5 ◦C, and 2 ◦C warming levels to that in the current warming level. 

Fig. 4 presents the two-dimensional CI plot showing the OR and the 

corresponding CI for the studied regions that show significant DSHW 
towards drought based on the observational record (Fig. 1d). We find OR 
(5–95% CI) as high as 3.5 (2.5–5.2), 2.6 (1.98–3.5), 2.5 (1.9–3.4), 2.5 
(1.9–3.2), 2.4 (1.8–3), 2.3 (1.8–3), 2.1 (1.6–2.8), 2 (1.6–2.7), 1.9 
(1.6–2.4), and 1.7 (1.3–2) for the climate regions, EAS, MED, SAS, CEU, 
CAN, NAU, WNA,WAS, ENA, and NEB, respectively (Fig. 4). These re
sults suggest greater than 1.7-fold increase in the odds of CDHW is likely 
in the 1.5 ◦C warmer world compared to the present climate. Note that 
EAS exhibit even higher (3.5-fold) increase. 

On the other hand, at the 2 ◦C warming level, EAS, MED, SAS, CEU, 
CNA, NAU, WNA, WAS, ENA, and NEB, are likely to show ORs of 60.8 
(20.4–209.18), 22.1 (9.1–58), 20.9 (9–51.3), 19.5 (8.7–45.9), 16.1 
(7.4–37.2), 15.7 (7.2–35.5), 11.36 (5–27.4), 10.26 (4.5–24.7), 8.6 
(4.4–17.5), and 5.2 (2.6–10.7), respectively (Fig. 4). Therefore, climate 
regions such as, MED, and SAS show about 20-fold increase; CEU, CNA, 
and NAU show more than 15-fold increase; WNA, and WAS show more 
than 10-fold increase, and ENA, and NEB show 5–8-fold increase in the 
2 ◦C warmer world. Again, EAS shows exceptionally higher levels of 
odds of having CDHW day in a month with a 60-fold increase at 2 ◦C 
warming. Therefore, limiting global warming to 1.5 ◦C level can sub
stantially limit the risk of increase in the odds of CDHW day in a month, 
as it can mitigate more than 17-fold increase over EAS, 5–8-fold increase 
over WNA, NAU, CAN, CEU, SAS, and MED, and 3–4-fold increase over 
NEB, ENA, WAS when compared to the odds at 2 ◦C warming level. 
These results suggest pursuing active efforts to keep the warming levels 
well below the 2 ◦C limit (Rogelj et al., 2016). 

4. Summary and conclusion 

Precipitation and temperature variability is affected by the large- 
scale climate perturbations that often lead to the formation of anticy
clonic weather regimes. Under such circumstances, the net radiation 
received during the daytime becomes the primary component in the 
surface energy budget that heats up the land surface (Betts et al., 1996). 
The heating process has been accelerated and further intensified by the 
increased emission of heat trapping gases due to anthropogenic activ
ities (Samset, 2018) and conditions favored by large scale tele
connections (Mukherjee et al., 2020), leading to increased probability of 
co-occurrence of HW, and drought events. This study provides a quan
titative assessment of the relative effect of anthropogenic warming and 
large-scale teleconnection patterns on the occurrence of CDHW events 
during the instrumental period, 1982–2016. 

In this study, observational evidence has been provided that suggest 
a substantial increase in the number of CDHW events per year (1–5 
events per year) across various parts of the globe in the beginning of 21st 

Fig. 4. Ratio of odds (OR) for 1.5 ◦C and 2 ◦C warming limits with respect to the current level of warming.  
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century (2000–2016). HW events were found to be susceptible to the 
existing drought conditions to different levels in the different global 
climate regions. For example, out of all the 26 climate regions, only 
fifteen showed a significant DSHW to the existing drought conditions 
over more than 2/3rd of their corresponding total area. Out of these 15 
regions, the top 10 climate regions, showing the greatest magnitudes of 
DSHW, are selected for the subsequent analyses. Monthly total number 
of CDHW days showed significant positive and negative correlation with 
the interannual variability of few natural modes of climate variability in 
some of these climate regions. In contrast, anthropogenic warming 
showed significant positive correlation over all the climate regions 
during the observational period (1982–2016). Keeping in mind the 
various shortcomings of the correlation coefficients, such as the sus
ceptibility to outliers and errors arising from linearization, we selected 
the potential large-scale climate indices based on the literature review to 
avoid any statistical artifact in the results. Attribution study performed 
based on a logistic regression approach suggest a significantly positive, 
and multiplicative effect of anthropogenic global warming on the odds 
of CDHW occurrences in the most vulnerable climate regions. Finally, 
odd ratios were estimated for these climate regions that were found to be 
in the range of 1.7–3.5, and as high as 5–60 at 1.5 ◦C, and 2 ◦C warming 
levels, respectively, with respect to the current world. Moreover, these 
odd ratios suggest about 17-fold reduction in the odds over EAS, 5–8- 
fold reduction over WNA, NAU, CAN, CEU, SAS, and MED, and 3–4-fold 
reduction over NEB, ENA, WAS at the 1.5 ◦C global warming level, 
compared to the 2 ◦C global warming level. Our findings show that 
among all the climate regions, EAS is the most affected region due to the 
rise in anthropogenic warming. 

Overall, this study offers a quantitative assessment and under
standing of the combined effects of natural climate variability and 
anthropogenic warming on the CDHW events during the past few de
cades. Nevertheless, future period may see more amplified large-scale 
teleconnections that may balance or reinforce the impact from 
increasing anthropogenic warming. Therefore, further scope of im
provements in such projections can be accomplished by incorporating 
the possible effect of warming on large-scale climate perturbations. Even 
anticyclonic weather regimes, which are accompanied by slow-moving 
jet or stationary blocking zones (caused by the relatively high-pressure 
ridges), may also get affected by increase in warming levels (Dong 
et al., 2018), therefore, should also be considered as additional co- 
factors. Besides that, a detailed analysis including the multiple compo
nents of human influences, such as the land-use practices (Findell et al., 
2017), increased effect of dust aerosol (Huang et al., 2015), and surface- 
energy partitioning (Mukherjee and Mishra, 2020) can also be beneficial 
for accurately assessing the future changes in CDHW event character
istics. Lastly, simple regression techniques can only identify the re
lationships between variables and the CDHW events. These techniques 
are restricted by model assumptions and have limitations in terms of 
defining the causal linkages that often are more meaningful for predic
tion purposes, therefore, necessitating development of more nuanced 
statistical techniques that robustly captures the causal associations be
tween the drivers and CDHW events. 
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