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ARTICLE

Inferring population structure
in biobank-scale genomic data

Alec M. Chiu,! Erin K. Molloy,2? Zilong Tan,* Ameet Talwalkar,> and Sriram Sankararaman!.2.6.7,*

Summary

Inferring the structure of human populations from genetic variation data is a key task in population and medical genomic studies.
Although a number of methods for population structure inference have been proposed, current methods are impractical to run on
biobank-scale genomic datasets containing millions of individuals and genetic variants. We introduce SCOPE, a method for population
structure inference that is orders of magnitude faster than existing methods while achieving comparable accuracy. SCOPE infers popu-
lation structure in about a day on a dataset containing one million individuals and variants as well as on the UK Biobank dataset con-
taining 488,363 individuals and 569,346 variants. Furthermore, SCOPE can leverage allele frequencies from previous studies to improve

the interpretability of population structure estimates.
Introduction

Inference of population structure is a central problem in
human genetics with applications that range from fine-
grained understanding of human history' to correcting
for population stratification in genome-wide association
studies (GWASs).” Approaches to population structure
inference®® typically formalize the problem as one of esti-
mating admixture proportions of each individual and
ancestral population allele frequencies given genetic varia-
tion data.

The growth of repositories of genetic variation data over
large numbers of individuals has opened up the possibility
of inferring population structure at increasingly finer reso-
lution.”!° For instance, the UK Biobank’ contains geno-
type data from approximately half a million British indi-
viduals across millions of SNPs. This development has
necessitated methods that can be applied to large-scale da-
tasets with reasonable runtime and memory requirements.
Existing methods, however, do not scale to these datasets.
Thus, we have developed SCOPE (scalable population
structure inference)—a scalable method capable of infer-
ring population structure on biobank-scale data.

SCOPE utilizes a previously proposed likelihood-free
framework® that involves estimation of the individual
allele frequency (IAF) matrix through a statistical tech-
nique known as latent subspace estimation (LSE)'' fol-
lowed by a decomposition of the estimated IAF matrix
into ancestral allele frequencies and admixture propor-
tions. SCOPE uses two ideas to substantially improve the
scalability of this approach. First, SCOPE uses randomized
eigendecomposition'? to efficiently estimate the latent
subspace. Specifically, SCOPE avoids the need to form

matrices that are expensive to compute on or require sub-
stantial memory and instead works directly with the input
genotype matrix. Second, SCOPE leverages the insight that
the resulting method involves repeated multiplications of
the genotype matrix and uses the Mailman algorithm for
fast multiplication of the genotype matrix."?

We benchmarked the accuracy and efficiency of SCOPE
on simulated and real datasets. In simulations, SCOPE ob-
tains accuracy comparable to existing methods while being
up to 1,800 times faster. Relative to the previous state-of-
the-art scalable method (TeraStructure’), SCOPE is three
to 144 times faster. SCOPE can estimate population struc-
ture in about a day for a simulated dataset consisting of
one million individuals and SNPs for six latent popula-
tions, whereas TeraStructure is extrapolated to require
approximately 20 days on this same dataset. We addition-
ally used SCOPE to infer continental ancestry proportions
(four ancestry groups) on the UK Biobank dataset (488,363
individuals and 569,346 SNPs) in about a day. We find that
the inferred continental ancestry proportions are highly
concordant with self-reported race and ethnicity (SIRE).

SCOPE additionally can be applied in a supervised
setting. Given allele frequencies from reference popula-
tions,'*'> SCOPE can estimate admixture proportions cor-
responding to the reference populations to enable greater
interpretability.

Subjects and methods

The structure/admixture model
The structure/admixture model links the mxn genotype matrix X
(where rows refer to single nucleotide polymorphisms [SNPs] and
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columns refer to individual diploid genotypes, x; € {0,1,2},ie
{1, ...,m},je {1, ...,n}) to the mxn individual allele frequency
(IAF) matrix F, mXk ancestral population allele frequencies P,
and the kxn individual admixture proportions Q (also termed
the global ancestry of an individual). Here, m denotes the number
of SNPs, n denotes the number of individuals, and k denotes the
number of latent populations. The IAF matrix, ancestral allele fre-
quencies, and admixture proportions are mathematically related
as F = PQ. Furthermore, there are constraints on P and Q. Each

element of P is constrained to lie between 0 and 1 (0 <p; <1,

ie{l,..,m},1le{l,.. k}). Each element of Q is non-negative
(q=0,1 € {1,....k},j € {1,...,n}) and the admixture proportion
of each individual must sum to one (},q; = 1). Finally, each entry
of the genotype matrix is an independent draw from the corre-
sponding entry of the IAF matrix F as: x;|f;j ~ Binomial(2, f;).
The goal of population structure inference under the structure/
admixture model is to estimate P and Q given X.

SCOPE

For scalable inference, SCOPE uses as its starting point a likeli-
hood-free estimator of population structure previously proposed
in ALStructure.® This estimator has two major steps: latent sub-
space estimation (LSE) and alternating least-squares (ALS). LSE at-
tempts to estimate the subspace spanned by the rows of Q'' by
computing a low-rank approximation to the matrix G =
(1/m)X"X — D where each entry d; of the nxn diagonal
matrix D is obtained as d; = (1 /m)>_ 1%, 2x;; — x% The latent sub-
space of Q is estimated as the span of the top k eigenvectors of G:
Vi, ..., V. After obtaining the top k eigenvectors V = [vi, ..., %],
ALStructure projects the data X onto V to obtain an estimate of
F: F = (1/2)XVVT, It then uses truncated alternating least-
squares (ALS) to factorize the estimate, F , into estimates of P
and Q: F = IA’(A)‘ (2 are the estimates of the individual admixture
proportions.

A naive approach to compute the top k eigenvectors of G would
involve first forming the matrix G and then computing its top
k eigenvectors, which would require O(n?m+ n?k) (if a full
SVD is performed, this step would require O(min(n, m)nm)). To
perform scalable LSE, SCOPE uses techniques from randomized
linear algebra,'” specifically the implicitly restarted Arnoldi
method,'® to obtain the top k eigenvectors. This step involves
repeatedly multiplying estimates of the eigenvectors v;:le
{1,...,k} with the genotype matrix: ((1/m)X*X —-D)v; = (1 /m)
((Xv))"X)T — Dv; and can be performed without explicitly form-
ing the matrix G. Instead, this approach requires repeatedly
computing w;=Xv,, wlTX, and Dv;, which can be computed in
O(nmk) time. We use the C++ Spectra library (web resources) to
implement these computations in SCOPE.

To efficiently compute P and Q with truncated ALS, we
randomly initialized the matrix P with all values between 0 and
1(0 <p; <1). We iteratively solve for estimates of P and Q, projec-
ting the estimates onto the constraint space until convergence:

Q=

%(i’Ti’)’li’Txva

p

-1

Xvv'Q(QQ')

N =

All values in P are truncated to be between 0 and 1 while Q is pro-
jected onto the appropriate simplex. Each step of the ALS algo-

rithm has runtime O(nmk). We note here that we never store F
but instead compute it implicitly per iteration. This allows us to

reduce the memory footprint of SCOPE, as F is a continuous,
real-valued matrix with the same dimensions as the genotype ma-
trix. It is not feasible for most computers to be able to store this in
memory. For instance, to store our larger UK Biobank dataset
(488,363 individuals and 569,346 SNPs), one is estimated to
require around 2,072 GB of memory.

Each of the computations in SCOPE requires multiplying a ge-
notype matrix with entries consisting of only 0, 1, and 2 for
diploid genotype. These operations can be efficiently performed
with the Mailman algorithm,'® which provides computational
savings when there are repeated multiplications involving a
matrix with a finite alphabet. We utilize the Mailman algorithm
in computations involving the genotype matrix in both LSE
and ALS so that the final time complexity of SCOPE is
O(nmk /max(logzn,log;m)).

Supervised population structure inference

SCOPE can utilize allele frequencies from reference populations to
infer corresponding admixture proportions. In this scenario, we
assume P, the population allele frequencies, are known. As a
result, one only needs to compute Q by using the supplied P.
This allows the admixture proportions corresponding to the
reference populations to be inferred in a single step of ALS once
the LSE step is completed.

Permutation matching of inferred results

The output of population structure inference methods can result
in output that is permuted even between different runs of the
same method. It is critical to correctly match latent populations
between methods and runs in order to properly assess results. To
perform permutation matching, we employed a strategy similar
to that of Behr et al.'” This permutation matching problem is bet-
ter known as the assignment problem, which can be solved effi-
ciently with linear programming. We first construct a score matrix
by using the distance metric created in Behr et al.'” The optimal
permutation match can then be found by optimizing the total
score from assignments through linear programming. We utilize
the IpSolve (web resources) package in R to solve the linear
program.

PSD model simulations

We perform simulations under the STRUCTURE or Pritchard-Ste-
phens-Donnelly (PSD) model.” In the PSD model, priors are placed
on P and Q:

b 1-Fg 1-F .
pi1~iBeta< T, ST(1pr)>,z e {1,...m}le {1,. .k}
FST FST

q.j % Dirichlet (alk),je {1,...,n}.
The allele frequencies p; are drawn from the Balding-Nichols
model,'® which is a beta distribution parametrized by the fixation
index (Fsr) and an initial allele frequency (p4). For our simula-
tions, we calculated Fsr and p,4 from our real datasets. Admixture
proportions q. ; are drawn at random from a Dirichlet distribution.
We take the product of the two matrices to form the IAF matrix,
F = PQ, and draw each genotype from a binomial distribution
parametrized by entries of F: x;; ~ Binomial(2,fj;).
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Spatial model simulations

We also perform simulations under a spatial model similar to that
in Ochoa and Storey.'? In the spatial model, allele frequencies p;
are drawn as in the PSD model, but the admixture proportions,
q, are drawn from a 1D geography.

z=(1,...,k)

v~ i Uniform(0,k + 1)

a5 =
1 (v)

Populations are placed at integer values on a line. We get the re-
sulting population position vector, z = (1, ...,k). Each individual
has a position, y; drawn from a uniform distribution between
0 and k + 1. Proportions for each population are generated via a
normal distribution, where f;, denotes the normal density func-
tion with z; (I € {1,...,k}) as the mean and ¢? as variance. The re-
sulting vector of proportions is then normalized to satisfy the con-
straints on Q. We used ¢2 = 4 for our simulations.

Assessment of results

We assess our results by using two metrics: average Jensen-Shan-
non divergence (JSD) and average root-mean-square error
(RMSE). We calculate the metrics between the true global ancestry
proportions, Q, and the estimates, Q, after a has been permuta-
tion matched to the true proportions.

1 ~
lQ-Ql;

RMSE(Q, Q) =7

1

ISD(Q.Q) =5

1 ~ ~ 1 ~
[KL(Q,E[QJr Q]> +KL<Q,§[Q+Q])]
||+l represents the Frobenius norm. KL is the Kullback-Leibler
divergence, which is defined as:

n k

1
KLQ Q)= > > djlog <q”>

j=1 I=1

In the JSD calculations, we replace values of 0 in Q or Q with 1x
10-? to avoid numerical issues.

Datasets

We use the 1000 Genomes Project (TGP),'*'> Human Origins
(HO),?° Human Genome Diversity Project (HGDP),?"** and the
UK Biobank (UKB)’ in this study. The HGDP dataset is the com-
plete Stanford HGDP SNP genotyping data filtered to only include
individuals in the H952 set,”® greater than 95% genotyping rate,
and greater than 1% minor allele frequency (MAF), resulting in
940 individuals and 642,951 SNPs. The TGP dataset is the 2012-
01-31 Omni Platform genotypes filtered to only include unrelated
individuals, greater than 95% genotyping rate, and greater than
1% MAF, resulting in 1,718 individuals and 1,854,622 SNPs. The
HO dataset was filtered for human-only samples, greater than
99% genotyping rate, and greater than 5% MAF, resulting in
1,931 individuals and 385,089 SNPs. For the UK Biobank, we
filtered the UK Biobank Axiom Array genotypes for greater than
1% MAF, long-range linkage disequilibrium (LD), and pairwise
LD pruning in 50 kilobase windows, 80 variant step size, and an

r? threshold of 0.1, resulting in 488,363 individuals and 568,346
SNPs. This is similar to the UK Biobank manuscript’s first round
of quality control for principal-component analysis (PCA)° with
the differences of using all individuals and no genotype filter.
We also use the UK Biobank’s final set of PCA SNPs,” which
consists of 147,604 SNPs, to explore higher number of latent
populations. We calculate metrics such as Fsr from the provided
population and superpopulation labels provided by each dataset.
To perform our supervised analyses, we use the common SNPs
between the datasets involved. All genotype processing was per-
formed with PLINK.?* Links to the publicly available datasets as
well as scripts to apply our preprocessing are available in the
code repository for SCOPE.

Visualization of results

We visualize our inferred admixture proportions as stacked bar
plots. We permutation matched estimates from all methods to
enable easy comparison. For our PSD simulations, we performed
hierarchical clustering with complete linkage on a Euclidean dis-
tance matrix calculated from the true admixture proportion ma-
trix (Q) to obtain the order of samples. For our spatial simulations,
we sorted by decreasing membership of the first population. For
our real datasets, we perform the same hierarchical clustering strat-
egy used for our PSD simulations but use the estimates from
ADMIXTURE (Q) in place of the true admixture proportions. For
the HGDP, TGP, and UK Biobank, we first took the average propor-
tions for each SIRE group and performed hierarchical clustering on
the averages to determine the order of the SIRE groups. We then
performed hierarchical clustering within each SIRE group to deter-
mine the order of individuals within groups. For large datasets, we
utilized genieclust,”® a scalable method for hierarchical clustering.

Benchmarking
We compared SCOPE to ADMIXTURE v1.3.0,° fastSTRUCTURE,®
TeraStructure,” ALStructure v0.1.0,® and sNMF v1.2.%°

ADMIXTURE computes maximum-likelihood estimates while
TeraStructure and fastSTRUCTURE compute approximate poste-
rior estimates in a Bayesian model with variational inference.
ALStructure, the framework that SCOPE builds upon, utilizes a
two-stage strategy of first performing dimensionality reduction
(latent subspace estimation) followed by matrix factorization
(alternating least-squares).

Each method was run with eight threads with the exception of
fastSTRUCTURE and ALStructure, which do not have multi-
threaded implementations. Default parameters were used. TeraS-
tructure has an additional “rfreq” parameter, which was set to
10% of the number of SNPs as recommended by its authors. For
SCOPE, we used convergence criteria of either 1,000 iterations of
the ALS algorithm or a change between iterations less than 1 x
103, which we calculate as the RMSE between the estimated
admixture matrices between two iterations. All experiments were
performed on a server with two AMD EPYC 7501 32-Core Proces-
sors and 1 terabyte of RAM.

Results

Accuracy

We assessed the accuracy of SCOPE by using simulations
under the Pritchard-Stephens-Donnelly (PSD) model® to
study accuracy under a standard population genetics

The American Journal of Human Genetics 109, 727-737, April 7, 2022 729



R e 'rv
L

"w
ot MMW u(

o TRy

W bl
T dd | I
e L . i
T a N
mmwmmmwr e r'v S

oM

R
' i

ﬂ |

i m

Figure 1.

Truth

A TR

]

o MWW"”
: W *a‘w
m Y e

i i

N W
| m

AL

Population structure inference for simulations under PSD model generated with 1000 Genomes Phase 3 data

PSD model parameters were drawn from TGP data to generate a simulation dataset with 10,000 samples and 10,000 SNPs. The true
admixture proportions and resulting inferred admixture proportions from each method are shown. Colors and order of samples are

matched between each method to the truth.

model and a basic model of spatial structure'? to study the
robustness of SCOPE and other methods in the presence of
model violations. We simulated several independent data-
sets by using parameters calculated from two real datasets:
the 1000 Genomes Project (TGP)'° and the Human
Genome Diversity Project (HGDP)?’ (see “benchmarking”
sections of subjects and methods). It is important to note
that each simulation dataset was created independently
of the others and they are not subsets of the largest dataset.
Thus, performance should only be compared between
methods run on the same dataset.

Under the PSD model, which matches the assumptions
of the methods tested, ADMIXTURE is the most accurate
followed by SCOPE and ALStructure (Figures 1, S1, S2, S3,
and S4). Among the scalable methods, TeraStructure and
SCOPE, SCOPE tends to be more accurate in terms of
both Jensen-Shannon divergence (JSD) (Table 1) and
root-mean-square error (RMSE) (Table 2). We also assessed

accuracy under a spatial model, which violates the assump-
tions of the PSD model by inducing a spatial relationship
between the admixture proportions (Figures 2, S5, S6,
and S7). Under this scenario, SCOPE, ALStructure, and
sNMF are typically the most accurate (Tables 1 and 2).
We also observe similar trends when calculating Kull-
back-Leibler (KL) divergence (Tables S1 and S2) but opt to
use JSD as a primary accuracy measurement because of
the asymmetric nature of KL divergence, which changes
depending on the order of inputs. We also assessed
whether SCOPE can consistently arrive at similar solutions
across runs regardless of the stochastic approximations
used in SCOPE's algorithm. We ran five replicates of SCOPE
from 2-40 inferred populations on a HGDP PSD simula-
tion (Figure S8A), TGP PSD simulation (Figure S8B),
HGDP dataset (Figure S8C), and HO dataset (Figure S8D).
We observe in our simulated datasets that SCOPE is consis-
tent across both JSD and RMSE between solutions up to the

730 The American Journal of Human Genetics 109, 727-737, April 7, 2022



Table 1.

Jensen-Shannon divergence measurements for methods on simulated data

Dataset type Basedataset k n m ADMIXTURE fastStructure TeraStructure ALStructure sNMF SCOPE
PSD HGDP 6 10,000 10,000 2.4* 6.3 13.7 3.6 2.4* 3.6
PSD TGP 6 10,000 10,000 0.8* 11.3 8.8 1.9 2.4 1.9
PSD TGP 6 10,000 1,000,000 0.03* 8.1 0.2 - - 0.2
PSD TGP 6 100,000 1,000,000 - - 0.3 - - 0.2*
PSD TGP 6 1,000,000 1,000,000 - - - - - 0.2*
Spatial HGDP 6 10,000 10,000 6.5 339 5.7 2.1* 2.3 2.6
Spatial TGP 6 10,000 10,000 6.8 31.1 3.4 2.4* 4.0 3.3
Spatial TGP 10 10,000 100,000 12.4 34.7 6.3 8.1 5.7 5.6*
Spatial TGP 10 10,000 1,000,000 - - 10.0 - - 8.2*

Jensen-Shannon divergence (JSD) was computed against the ground truth admixture proportions for each simulation. Values are displayed as percentages
rounded to one decimal place. Estimated proportions of 0 were set to 1x10~? (see subjects and methods). A dash denotes that the method was not run because
of projected time or memory usage. Values with an asterisk denote the best value for each dataset.

simulated number of populations. Both accuracy measures
decrease when inferred more populations than simulated.
For the HGDP and HO datasets, we observed that SCOPE is
mostly consistent even up to 40 inferred populations. On
occasion, we see slight inconsistency, but this is largely
because one replicate differed from the other (Figure S9).

Runtime and memory

Using simulated and real datasets, we compared the run-
time of SCOPE to ADMIXTURE, fastStructure, TeraStruc-
ture, SNMF, and ALStructure (Table 3). Not all of the
compared methods could be run on all datasets within
practical constraints of time and memory. On the largest
PSD datasets that each method could be run on, SCOPE
is over 150 times faster than ADMIXTURE (10,000 individ-
uals by 1 million SNPs), over 500 times faster than fast-
Structure (10,000 individuals by 1 million SNPs), about
100 times faster than ALStructure (10,000 individuals by
100,000 SNPs), over 110 times faster than TeraStructure
(100,000 individuals by 1 million SNPs), and as fast as
sNMF (10,000 individuals by 10,000 SNPs). SCOPE is

also capable of running on a dataset containing one
million SNPs and individuals in just over 24 h (= 1 day),
whereas TeraStructure is extrapolated to require about
500 h (= 20 days) on the basis of times reported in its
manuscript’ as well as our experiments (see “bench-
marking” sections of subjects and methods).

The runtime of all methods increases under the spatial
model. In this scenario, SCOPE is over 1,800 times faster
than ADMIXTURE (10,000 individuals by 100,000 SNPs),
about 210 times faster than fastStructure (10,000 individ-
uals by 100,000 SNPs), over 155 times faster than
ALStructure (10,000 individuals by 100,000 SNPs), about
nine times faster than TeraStructure (10,000 individuals
by 1 million SNPs), and four times faster than sNMF
(10,000 individuals by 100,000 SNPs) on the largest data-
set each method could be run on. Over all of the data-
sets, SCOPE is up to 1,800 times faster than existing
methods and three to 144 times faster than TeraStruc-
ture. Furthermore, SCOPE scales linearly with the num-
ber of latent populations inferred (Figure S10). Addi-
tional threads can also be used by SCOPE to speed up

Table 2. Root-mean-square error measurements for methods on simulated data

Dataset type Basedataset k n m ADMIXTURE fastStructure TeraStructure ALStructure sNMF SCOPE
PSD HGDP 6 10,000 10,000 4.0* 10.3 16.6 5.6 4.1 5.6
PSD TGP 6 10,000 10,000 1.8* 15.9 13.7 3.2 4.1 3.2
PSD TGP 6 10,000 1,000,000 0.2* 12.4 0.9 - - 0.3
PSD TGP 6 100,000 1,000,000 - - 1.0 - - 0.4*
PSD TGP 6 1,000,000 1,000,000 - - - - - 0.5*
Spatial HGDP 6 10,000 10,000 11.9 31.1 10.2 5.7* 5.7* 6.5
Spatial TGP 6 10,000 10,000 12.5 29.1 6.8* 7.5 9.4 7.3
Spatial TGP 10 10,000 100,000 10.8 22.8 8.8 8.5 6.7* 6.7*
Spatial TGP 10 10,000 1,000,000 - - 6.6* - - 7.2

Root-mean-square error (RMSE) was computed against the ground truth admixture proportions for each simulation. RMSE is displayed in percentage and rounded
to the first decimal place. A dash denotes that the method was not run due to projected time or memory usage. Values with an asterisk denote the best value for

each dataset.
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Figure 2. Population structure inference for simulations under a spatial model generated with 1000 Genomes Phase 3 data
Model parameters were drawn from TGP data to generate a simulation dataset with 10,000 samples and 10,000 SNPs under a spatial
model (see subjects and methods). The true admixture proportions and resulting inferred admixture proportions from each method
are shown. Colors and order of samples are matched between each method to the truth.

runtime up until a fundamental I/O bound is reached
(Figure S11).

SCOPE has a reasonable memory footprint: for large da-
tasets for which only TeraStructure and SCOPE were
feasible, SCOPE uses slightly less memory than TeraStruc-
ture. The memory usage of SCOPE also scales linearly in
the size of genotype matrix (i.e., the number of individuals
times the number of SNPs) (Table S3). SCOPE requires less
than 250 GB for the UK Biobank dataset (488,363 individ-
uals and 569,346 SNPs) and 750 GB for the dataset consist-
ing of one million individuals and SNPs. When using
smaller SNP sets such as the UK Biobank’s PCA set
(147,604 SNPs), SCOPE uses about 60 GB of memory
(488,363 individuals and 147,604 SNPs).

Accuracy of supervised analysis
Out of the methods tested, only SCOPE and ADMIXTURE
are able to use supplied allele frequencies to perform pop-

ulation structure inference in a supervised fashion (Tables
4 and S4). In the PSD model simulations, we observe a
small improvement to both RMSE and JSD relative to unsu-
pervised population structure inference (Figures S12, S13,
S14, S15, and S16). Under the spatial model simulations,
the use of supervision obtains much greater accuracy
compared to unsupervised inference (Figures 3, S17, S18,
and S19).

Application to real genotype data

We applied SCOPE to several real, genomic datasets: TGP
(1,718 individuals and 1,184,622 SNPs) with eight latent
populations (k= 8) (Figure S20), HGDP (940 individuals
and 642,951 SNPs) with ten populations (k= 10)
(Figure S21), Human Origins (HO) (1,931 individuals and
385,089 SNPs)*” with 14 populations (k= 14) (Figure S22),
the UK Biobank (488,363 individuals and 569,346 SNPs)
with four populations (k = 4) (Figure 4), and the UK Biobank
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Table 3.

Runtimes and fold-speedups of methods on simulations and real datasets

Dataset Base

type dataset k n m ADMIXTURE fastStructure TeraStructure ALStructure sNMF SCOPE
PSD HGDP 6 10,000 10,000 0:14 (48) 3:44 (746) 0:11 (36) 0:30 (101) < 1min*(1) < 1min*
PSD TGP 6 10,000 10,000 0:17 (206) 1:22 (987) 0:12 (144) 0:23 (271) < 1min* (1) < 1min*
PSD TGP 6 10,000 1,000,000 35:12 (156) 114:51 (509) 20:31 (91) - - 0:14*
PSD TGP 6 100,000 1,000,000 - - 237:02 (113) - - 2:06*
PSD TGP 6 1,000,000 1,000,000 - - - - - 24:37*
Spatial HGDP 6 10,000 10,000 5:52 (440) 4:06 (308) 0:03 (3) 1:39 (124) < 1min* (1) < 1min*
Spatial TGP 6 10,000 10,000 3:11 (239) 3:19 (249) 0:07 (9) 1:55 (144) ~1min* (1) < 1 min*
Spatial TGP 10 10,000 100,000 284:47 (1,808) 33:03 (210) 4:29 (28) 24:51 (158) 0:33 (4) 0:09*
Spatial TGP 10 10,000 1,000,000 - - 15:22 (9) - - 1:47*
Real HGDP 10 940 642,951 4:24 (31) 4:39 (33) 0:40 (5) 0:55 (7) 0:16 (2) 0:08*
Real HO 14 1,931 385,089 13:28 (122) 24:49 (224) 1:37 (15) 2:11 (20) 0:30 (4) 0:07*
Real TGP 8 1,718 1,854,622  31:33 (33) 8:53 (9) 4:20 (5) 11:16 (12) - 0:57*
Real UKB 4 488,363 569,346 - - - - - 25:57*
Real UKB 20 488,363 147,604 - - - - - 23:42*
Real UKB 40 488,363 147,604 - - - - - 51:25*

ADMIXTURE, TeraStructure, sSNMF, and SCOPE were run with eight threads. ALStructure and fastStructure were run on a single thread because of their lack of

reu

multithreading implementations. Default parameters were used. TeraStructure’s

—rfreq” parameter was set to 10% of the number of SNPs. Times are rounded

to the nearest minute and displayed in h:min. The fold-speedup (runtime of method in seconds divided by runtime of SCOPE in seconds) achieved by SCOPE is
denoted with each time in parentheses and rounded to the nearest integer. Values with an asterisk denote the best value for each dataset. Runtimes for SCOPE
under one minute are denoted as “< 1 min.” A dash denotes that the method was not run because of projected time or memory usage.

(488,363 individuals and 147,604 SNPs) with 20 populations
(k=20) (Figure S24) and 40 populations (k= 40)
(Figure S25) (see subjects and methods for quality control).
We chose the number of latent populations to be
consistent with previous studies on these datasets.””® For
the UK Biobank analysis, we chose four latent populations
to infer continental ancestry groups for the larger SNP
set and 20 and 40 latent populations to explore SCOPE'’s
ability to infer larger numbers of latent populations on
real data. In terms of runtime and memory, we continued

to observe trends consistent with our simulations where
SCOPE is orders of magnitude faster than other methods
while consuming reasonable amounts of memory
(Tables 3 and S3). We note that the runtime for inference
on the larger UK Biobank dataset is about the same as
the runtime for our 1 million individual and SNP
simulation despite the fact that the UK Biobank dataset is
approximately a quarter of its size, consistent with the in-
crease in runtimes with model deviations as seen in the
context of spatial simulations.

Table 4. Accuracy of supervised population structure inference with supplied allele frequencies on simulations

Supervised Unsupervised
Dataset type Base dataset k n m RMSE Jsb RMSE JsD
PSD HGDP 6 10,000 10,000 2.9* 1.5* 5.6 3.6
PSD TGP 6 10,000 10,000 2.0* 0.9* 3.2 1.9
PSD TGP 6 10,000 1,000,000 0.2* 0.1* 0.3 0.2
PSD TGP 6 100,000 1,000,000 0.2* 0.1* 0.4 0.2
PSD TGP 6 1,000,000 1,000,000 0.2* 0.1* 0.5 0.2
Spatial HGDP 6 10,000 10,000 2.4* 0.6* 6.5 2.6
Spatial TGP 6 10,000 10,000 1.7* 0.3* 7.3 3.3
Spatial TGP 10 10,000 100,000 0.6* 0.3* 6.7 5.6
Spatial TGP 10 10,000 1,000,000 0.3* 0.1* 8.2 7.2

True allele frequencies were supplied to SCOPE to use in supervised population structure inference. Root-mean-square error (RMSE) and Jensen-Shannon diver-
gence (JSD) were computed against the true admixture proportions. Estimated proportions of 0 were set to 1x10~9 for JSD calculations (see subjects and
methods). Values are displayed in percentages and rounded to the first decimal place. Values with an asterisk denote the best value for each dataset.
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Model parameters were drawn from TGP data to generate a simulation dataset with 10,000 samples and 10,000 SNPs under a spatial
model. Both methods were provided the true population allele frequencies as input. Colors and order of samples are matched between

each method to the truth.

Because there is no ground truth to assess accuracy on
these datasets, we used concordance between SIRE and in-
ferred admixture proportions as a metric. We trained multi-
nomial logistic regression models to predict continental
ancestry for the TGP (five populations) and HGDP (seven
populations) by using the inferred admixture proportions
from each method (Table S5). We find that all methods
perform similarly on both datasets. For the UK Biobank,
SCOPE is able to obtain 88.27% accuracy when using labels
provided by UK Biobank (22 labels) and 95.75% accuracy
when ambiguous/heterogeneous labels (e.g., “other,”
“mixed”) are removed and population labels are collapsed
to continental groupings (eight labels). We did not perform
this analysis for the HO dataset because several population
labels only contained one sample.

We additionally assessed SCOPE's ability to infer finer
population structure by using the British individuals in

the UK Biobank. We trained ordinary least-squares models
to predict the self-reported birth location GPS coordinate
by using the inferred proportions from the different runs
of SCOPE under different numbers of latent populations
(four, 20, and 40 latent populations) (Table S6). Increasing
the number of latent populations generally improves the
prediction accuracy when measured through coefficient
of determination (R?). With four latent populations, the
R?is 0.007 and 0.008 for latitude and longitude prediction,
respectively. This increases to 0.2-0.3 and approximately
0.15 when increasing the number of latent populations
to 20 and 40. We also examined the prediction accuracy
in terms of residual distance (difference between predicted
and reported location). The 95% quantile for the residual
distances decreases from = 334 km to = 290 km when
increasing the number of inferred populations from four
to 20 or 40.
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Figure 4. Continental ancestry inference on the UK Biobank

We ran population structure inference by using SCOPE on the UK Biobank (488,363 individuals and 569,346 SNPs) both supervised with
1000 Genomes Phase 3 allele frequencies (top) and unsupervised with four latent populations (middle). For reference, we plot the self-
identified race/ethnicity (bottom). For visualization purposes, we reduced the number of self-identified British individuals to a random
subset of 5,000 individuals. Colors and order of samples are matched between each row of the figure. The full figure without individuals

removed can be found in Figure S23.

We also utilized the supervised mode of SCOPE by using
known population allele frequencies from TGP superpopu-
lations to infer continental ancestry for all individuals in
the UK Biobank. We find that the supervised mode of
SCOPE largely agreed with the unsupervised inference (Fig-
ures 4 and S23).

Discussion

We have presented SCOPE, a scalable method for inferring
population structure from biobank-scale genomic data. We
show that SCOPE remains accurate while being scalable in
terms of runtime and memory requirements. SCOPE is
also able to perform supervised analyses that leverage allele
frequency estimates from previous studies to improve
interpretability, runtime, and accuracy.

SCOPE enables new analyses by improving the scalabil-
ity of admixture proportion inference. The inclusion of
more individuals and/or genomic sites allows more rare
latent population structure to be discovered in addition
to improving estimation of the true latent population fre-
quencies. These are often the cases where scaling to bio-
bank-level data becomes a necessity. Furthermore, many

admixture tools are often used as an exploratory analysis
being run with different numbers of latent populations
(i.e., k). Being able to perform several runs quickly becomes
important for initial analysis.

The use of SCOPE is not without limitations for real data
analysis and interpretation. For instance, although larger
non-trivial numbers of latent populations (k) such as 20
(Figure S24) and 40 (Figure S25) from the UK Biobank
explored in this study increase our ability to dissect finer-
scale population structure, they remain very difficult to
interpret. Furthermore, when exploring these settings,
care must be taken to curate a well-defined SNP set. For
example, we see a decrease in prediction accuracy when
moving from 20 to 40 latent populations in the UK
Biobank. This may be attributed to the fact that the UK
Biobank’s PCA SNP set was curated to differentiate conti-
nental population structure rather than intracontinental
structure. We also observed that SCOPE is consistent
when inferring a large number of latent populations as
exemplified by our replicate studies on the HGDP
(Figure S8C) and HO (Figure S8D) datasets, which suggests
there is more fine-scale population structure being de-
tected and opens the question of what these latent popula-
tions may correspond to. While the ability to use
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supervised analysis as we did for the UK Biobank can
greatly improve interpretability, supervision with SCOPE
largely depends on the accuracy of the reference dataset
and frequencies used. Finally, there is still the open ques-
tion of choosing the appropriate number of latent popula-
tions (k). Although SCOPE allows one to run several
different values for k, we do not provide any criteria to
choose a specific value of k. We defer deeper analysis of
these questions for future studies.

The methodology used in SCOPE can also be extended in
several ways. Several methods that perform structure infer-
ence on other genomic datasets*®>? utilize semi-supervised
approaches where there are both known and unknown pop-
ulations. A possible approach for semi-supervision with
SCOPE is to perform a multi-stage inference procedure where
supervised inference is first applied and unsupervised infer-
ence is applied on the residual or unexplained structure.
Most current methods, including SCOPE, ignore additional
information within the data, such as correlation patterns
(i.e., linkage disequilibrium [LD]). Some methods such as fi-
neSTRUCTURE®" can perform LD-aware population struc-
ture inference but are challenging to scale. The development
of methods that can model LD while retaining scalability is a
key step in advancing population structure inference.

Though not directly related to the admixture model,
there are several approaches to finding broader forms of
structure that are not explicitly in the form of admixture
proportions. For instance, possible usage of non-linear
dimensionality reduction techniques such as UMAP’'
could provide promising ways to extend beyond current
methods, which solely utilize linear methods such as
PCA. Other approaches to detecting fine-scale structure
include using identity-by-descent (IBD)** or tree-based
methods.*? Finding ways to scalably bridge these different
approaches with the admixture model is still an open ques-
tion. Finally, extensions of the techniques used in SCOPE
can be used to infer relevant structure in other domains
such as metagenomics and single-cell transcriptomics.

Data and code availability

SCOPE can be found at https://github.com/sriramlab/SCOPE.
Scripts for simulations, visualization, assessment, downloading
of publicly available data, and real data filtering and additional
code used in this study can be found at the repository as well.
UK Biobank dataset is the only dataset used in this study that is
not publicly available but can be obtained by application
(https://www.ukbiobank.ac.uk/).

Supplemental information

Supplemental information can be found online at https://doi.org/
10.1016/j.ajhg.2022.02.015.
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