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Abstract

Human reasoning goes beyond knowledge about individual entities, extending to inferences based on relations
between entities. Here we focus on the use of relations in verbal analogical mapping, sketching a general approach
based on assessing similarity between patterns of semantic relations between words. This approach combines research
in artificial intelligence with work in psychology and cognitive science, with the aim of minimizing hand coding of
text inputs for reasoning tasks. The computational framework takes as inputs vector representations of individual
word meanings, coupled with semantic representations of the relations between words, and uses these inputs to form
semantic-relation networks for individual analogues. Analogical mapping is operationalized as graph matching under
cognitive and computational constraints. The approach highlights the central role of semantics in analogical mapping.
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The early Romantic poet Samuel Taylor Coleridge
observed that the creative mind needs to become
“accustomed to contemplate not things only, but like-
wise and chiefly the relations of things” (as quoted in
Holyoak, 2019, p. 35; italics in original). If “things” and
“relations” have distinct yet interconnected representa-
tions in the human mind, then new combinations can
be formed, revealing more abstract similarities. Rela-
tional similarity underlies the ability to grasp everyday
metaphors, such as “Life is a roller coaster,” and scien-
tific theories, such as the famous Rutherford-Bohr anal-
ogy explaining the structure of an atom (an unfamiliar
target analogue) in terms of the structure of the solar
system (a more familiar source analogue). In complex
examples, the similarity involves not just individual
relations, but patterns of relations (e.g., very crudely,
electromagnetism makes an electron revolve around
the nucleus of an atom, similarly to the way gravity
makes the earth revolve around the sun).

Cognitive scientists aim to explain how people can
detect such patterns of relational similarity and use
them to make plausible inferences based on analogy.
A general approach is to build computational models
that can actually accomplish these tasks. A computa-
tional model has to operate on some basic inputs—in

the case of analogy, representations of “things” and the
“relations” between them. Here we sketch one general
approach to building a computational model that takes
elementary building blocks and puts them together
to create knowledge structures—semantic-relation
networks—that make it possible to find systematic cor-
respondences, or mappings. By finding sensible map-
pings, it is possible to solve complex analogies, such
as that between the solar system and the atom. As we
show, this approach combines research in artificial
intelligence (AD with research in psychology and cogni-
tive science.

An overarching goal is to model complex reasoning
while avoiding hand coding of the inputs (i.e., having
the modeler create representations based on the mod-
eler’s own beliefs about what knowledge should be
included in them). Besides creating a danger that
apparent successes of the reasoning model will actu-
ally depend on unrealistic inputs, hand coding is pro-
hibitively labor-intensive (in practice, impossible for
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large databases). Moreover, hand coding may miss
opportunities to exploit rich semantic associations that
can inform relational reasoning, as a modeler is
unlikely to anticipate all the subtle aspects of meaning
that may be encoded in the human semantic system.
Current machine-learning algorithms can create high-
dimensional vectors that implicitly encode detailed
aspects of word meanings in ways a modeler could
not anticipate.

The general approach we describe in this review is
to start from machine-generated representations of the
meanings of words (e.g., “read” and “book”), learn rep-
resentations of the semantic relations between words
(e.g., “read” is an action performed on a “book”), sys-
tematically combine words and their relations to form
semantic-relation networks, and then use these networks
for analogical reasoning. Figure 1 gives an overview of
the approach, using the Rutherford-Bohr analogy as an
example. We describe a specific instantiation of the gen-
eral computational framework, but any component could
potentially be realized in a different way.

Word Meanings as Embeddings

In recent years, advances in machine learning have
enabled the creation of a new kind of mathematical
“dictionary” in which the meanings of individual
words are represented by high-dimensional vectors of
continuous-value features, termed embeddings (for a
general overview, see Giuinther et al., 2019). Embeddings
correspond to activation states in a hidden layer (i.e., a
layer that lies between the input and output layers) of a
neural network that has been trained to predict patterns
of words in sequence as they appear in large text cor-
pora (e.g., billions of articles in Google News). This
general approach to word meaning is termed distribu-
tional semantics: Meanings of individual words are
derived from their statistical distribution in texts. Many
embedding models have been developed in machine
learning, including GloVe (Pennington et al., 2014),
BERT (Devlin et al., 2019), and GPT3 (Brown et al.,
2020). Here we focus on Word2vec (Mikolov et al., 2013).
In Word2vec, every word in English (or any other lan-
guage) is typically coded by a vector of values on a
common set of 300 feature dimensions. Ideally, an
embedding captures core semantics of the input so that
semantically similar words are placed close together in
the embedding space. For example, “cat” and “dog”
would be in close proximity (i.e., the meanings are
highly similar), whereas “cat” and “microscope” would
be far apart (the meanings are dissimilar).

Embedding models have proved broadly applicable
to predicting psychological phenomena that depend on
sensitivity to similarity of word meanings. Examples

include judgments of lexical similarity or association,
neural activity triggered by processing of words and
relations, and high-level inferences (for a review, see
Bhatia & Aka, 2022; for a discussion of and response
to critiques of embeddings as psychological models,
see Gunther et al., 2019). As building blocks for an
analogy model, embeddings can be used to code the
things (words). Figure 1 illustrates the extraction of
major concepts, corresponding to keywords, from texts
describing the solar system (source) and the atom
(target).

Semantic Relation Vectors

The next step is to code relations between concepts.
As is the case for individual word meanings, relations
can be represented as vectors. Once vector representa-
tions of semantic relations have been created, relational
similarity can be computed in much the same way as
lexical (word-to-word) similarity. But how should rela-
tion vectors be defined?

To reduce the need to hand-code relations, analogy
modelers have developed methods that exploit large-
scale knowledge bases, large text corpora, and methods
for learning relations. One general approach is search
based. For example, the CogSketch system (Forbus
et al.,, 2011) creates representations of hand-drawn
sketches using relations obtained by a search of a large
prestored knowledge base, OpenCyc, which includes
more than 58,000 concepts, 8,000 relations (both physi-
cal and conceptual), and 1.3 million facts. CogSketch
uses retrieved relations to build propositional represen-
tations that support a symbolic method for performing
analogical mapping. Latent Relational Analysis (LRA),
though very different from CogSketch, also implements
a search-based approach (Turney, 2008, 2013). LRA
forms vector representations of semantic relations for
individual word pairs without relying on predefined
relations (Turney, 2008, 2013). In this analogy model,
the semantic relation between two words is represented
by a vector in which the elements are computed from
frequency counts of short relational phrases containing
the two words, identified in a search through a large
text corpus. Statistical techniques are used to reduce
this co-occurrence table (word pairs on rows, phrases
on columns) to a relation vector with 300 dimensions.
Turney’s model achieved human-level accuracy solving
standard sets of verbal analogy problems. As an Al
system, LRA was not intended as a psychological
proposal—humans probably are not capable of search-
ing a large text corpus for each word pair in the process
of solving verbal analogies.

A second general approach is embedding based.
Rather than using search to create relation vectors,
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Fig. 1. An illustration of analogical reasoning based on semantic mapping, using the Rutherford-Bohr analogy as an example. Comprehension processes extract main concepts in
the source (solar system) and target (atom) analogues, as well as basic syntactic relations. (For illustration purposes, only some of the keywords are shown here.) A word embed-
ding (provided by Word2vec in this example) is obtained for each keyword; relation vectors (from Bayesian Analogy with Relational Transformations, or BART, in this example) are
obtained for pairs of keywords. These embeddings and relation vectors are used to generate semantic-relation networks, in which nodes are keywords and edges are semantic rela-
tions between keywords. Word embeddings are assigned as node attributes, and relation vectors are assigned as edge attributes. Probabilistic Analogical Mapping (PAM) uses these
networks to find optimal analogical mappings between the keywords in the source and target.
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models implementing this approach use a generic com-
putation to derive relation vectors directly from the
embeddings for individual words. Within these embed-
dings, some features carry relational information, but
in an implicit and “entangled” manner: There is no
simple correspondence between individual dimensions
of a vector and meaningful attributes, such as shape,
basic category, or animacy (although meaningful attri-
butes can be extracted from embeddings by statistical
techniques; Hollis & Westbury, 2016). For example, the
embeddings for the words “rich” and “poor” may each
include features associated (in a probabilistic manner)
with such relational concepts as “money,” “continuous
quantity,” and “relative extremity.”

It is possible that word embeddings contain enough
implicit relational information to solve some analogy
problems. A basic intuition is that in a valid verbal analogy
in the form A:B::C:D (e.g., “king:queen::man:woman”),
the vector representing A:B should be roughly parallel
to the C:D vector. Word2vec (or any other embedding
model) provides a simple way to create a generic rela-
tion vector: Take the difference between the relevant
word vectors (e.g., the relation vector for “king:queen”
is simply the difference between the embeddings for
“king” and “queen”).

Using this method, Word2vec achieved some success
for analogies based on semantically close concepts,
such as this example (Mikolov et al., 2013); however,
it fails to reliably solve problems based on more dis-
similar concepts (Peterson et al., 2020). A limitation of
Word2vec embeddings is that the features—including
those that carry relational information—are highly
entangled. Feature entanglement is inherited by Word-
2vec difference vectors, and this obscures information
about specific meaningful relations.

A third type of approach is learning based. In this
approach, learning algorithms are applied to pairs of
individual concepts in order to acquire representations
of relations between them (Doumas et al., 2008, 2022).
As an example, here we focus on a computational model
developed by our group, Bayesian Analogy with Rela-
tional Transformations (BART; Lu et al., 2012, 2019).
BART operates on word embeddings, taking Word2vec
embeddings for pairs of individual words as inputs.
From these embeddings (which carry relational informa-
tion within their entangled features), the model learns
dimensions of disentangled relation vectors in a trans-
formed space. The dimensions in BART’s relation vec-
tors are meaningful semantic relations that have been
identified in classic psychometric and psycholinguistic
research (Bejar et al., 1991; Chaffin & Hermann, 1988),
such as class inclusion (“tree:oak”) and part-whole
(“hand:finger”). The model learns individual semantic
relations from a set of word pairs (taken from norms
collected by Jurgens et al., 2012) consisting of a mix of

positive examples of the target relation and negative
examples, for which the relation does not hold. BART
applies statistical methods to identify a predictive subset
of the embedding features, and to estimate associated
weights on these features that predict the probability
that the relation holds. BART depends on supervised
learning, using word pairs that were selected to exem-
plify each of a set of predetermined relations. But once
acquired, its learned weights can be applied to any pair
of words represented by their embeddings, which
enables significant generalization.

After learning a set of specific relations, BART can
compute a relation vector for any pair of words by
calculating the posterior probability that the pair instan-
tiates each of the learned relations (i.e., the probability
derived by combining the prior probability of the rela-
tion with the evidence provided by the given word
pair). The specific relation between any two words is
thus coded as a distributed representation (e.g., the
vector for “friend:enemy” might have relatively high
values for multiple relation dimensions, perhaps both
contrast and similarity). This representation is disen-
tangled, as each element in the relation vector corre-
sponds to the posterior probability that a particular
meaningful relation holds between the concepts. BART’s
distributed representations enable the model to gener-
alize to new word pairs that may be linked by specific
relations on which the model was not trained. By com-
paring the similarity between relation vectors (assessed
by cosine distance), BART can solve verbal analogies
in the A:B::C:D format, can predict human judgments
of the degree to which a word pair is a typical example
of a given relation (Lu et al., 2019), and also can predict
judgments of the similarity between relations expressed
as word pairs (Ichien et al., 2022). In addition, BART
has been used to predict patterns of similarity in neural
responses to relations during analogical reasoning
(Chiang et al., 2021). In the example shown in Figure
1, BART is used to create semantic relation vectors
linking pairs of keywords in each analogue (e.g., “solar
system” and “sun” in the source).

BART’s relation representations are thus composi-
tional, in that the specific relation between a pair of
words is approximated by a pattern of values across a
set of more elementary relations, as has been suggested
in previous theoretical work both in psychology (Chaffin
& Hermann, 1988) and in linguistics (Jackendoff, 2007).
However, BART is not committed to any particular set
of elementary relations; rather, it makes use of whatever
relations the model has been trained on. BART’s set
of learned relations is partially based on a theoretical
taxonomy (Bejar et al., 1991), but we do not assume
that this set is sufficient to encode the specific
aspects of all semantic relations between words. None-
theless, we have explored the extent to which BART’s
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approximations to specific relations may prove useful
in finding analogical mappings between relatively com-
plex situations.

Semantic-Relation Networks

Armed with vector representations of words and the
semantic relations between them, a computational
model can solve analogies using more complex knowl-
edge involving several concepts and their interrelation-
ships. As an example, we use an algorithm developed
by our group, Probabilistic Analogical Mapping (PAM,;
Lu et al., 2022). As illustrated in Figure 1, a semantic-
relation network has the form of an attributed graph
(Gold & Rangarajan, 1996) in which nodes and edges
(i.e., connections between nodes) are assigned numeri-
cal values (attributes) that capture the semantic mean-
ings of individual concepts and their pairwise relations.
In PAM, the attribute for each node is the Word2vec
embedding of a key concept word, and the attribute
for each edge is the corresponding relation vector gen-
erated by BART. The relation features in the BART vec-
tors used by PAM are augmented by additional features
representing the probability that the first word in a pair
fills the first role of the relation (e.g., for “finger:hand,”
the vector includes features coding the probability that
“finger” fills the part role in a part-whole relation).
These role features, which correspond to role-governed
categories that human reasoners use to represent rela-
tional information (e.g., Goldwater et al., 2011), aid in
finding mappings between words that fill similar roles
across multiple relations.

Semantic-relation networks can also easily incorporate
constraints on relation structures. By default, semantic
relations between concepts are treated as bidirectional
(e.g., for the words “finger” and “hand,” one direction
represents the relation that a finger is part of a hand,
and the other direction represents the relation that a
hand has a finger as a part of it). But to capture basic
syntactic structure, such as subject-verb-object, unidirec-
tional connections can be used to form semantic-relation
networks. For example, a description of the solar system
analogue might include a sentence stating that “the earth
revolves around the sun,” which of course means some-
thing very different from “the sun revolves around the
earth.” In forming a semantic-relation network as
depicted in Figure 1, the intended sentence structure can
be coded by unidirectional links between the keywords
(i.e., earth & revolves, revolves 2 sun, earth = sun).

Mapping Based on Semantic-Relation
Networks

Using the semantic-relation networks created for the
source and target analogues (e.g., solar system and

atom), PAM performs analogical mapping using a proba-
bilistic approach (Fig. 1). The basic procedure is to find
the mapping between nodes (keywords) that jointly
maximizes the similarity of both nodes and their cor-
responding edges, with the further constraint that one-
to-one mappings between nodes are preferred. A
parameter in PAM controls the relative importance of
lexical similarity (nodes) versus relational similarity
(edges) for mapping. A fundamental assumption is that
words (nodes) and relations (edges) constitute two
separable pools of semantic information (entity based
and relation based), which then drive judgments of simi-
larity between analogues. This assumption is consistent
with a wide variety of evidence for separable contribu-
tions of entity-based and relational similarity in human
comparison judgments (e.g., Goldstone et al., 1991).

Our initial work (Lu et al., 2022) has shown that the
PAM model is able to solve complex analogical map-
pings using verbal materials. For example, it finds seven
mappings between keywords associated with the
Rutherford-Bohr analogy (some of which are shown in
Fig. 1). Even without coding the subject-verb-object
configuration by unidirectional links, PAM is able to
find five of these seven mappings. More generally,
across a set of 20 science analogies and everyday meta-
phors coded by keywords, PAM achieved 85% accuracy
in mapping (as compared with 88% accuracy obtained
in a human experiment) without representing sentence
syntax at all. The model’s global relative emphasis on
lexical concepts (node similarity) versus relations (edge
similarity) can be varied so that it can account for the
human developmental shift toward increased sensitivity
to relations (Gentner & Rattermann, 1991). This shift
likely reflects an asymmetry in processing demands: A
relation (edge) can be computed only after the con-
cepts (nodes) that it relates are represented, whereas
an individual concept can be represented without nec-
essarily forming a relation representation. In addition,
the model provides a measure of global similarity
between analogues, which can be used to support the
retrieval of plausible source analogues from memory.
By building a reasoning model on top of learning mech-
anisms grounded in distributional semantics, the model
has drawn closer to the goal of automating analogical
reasoning for natural-language inputs.

Limitations and Future Directions

The project of linking semantic vectors to analogical
reasoning is still at an early stage, and many open ques-
tions remain. Human assistance is still required to iden-
tify key concepts and their relations in texts. Future work
should be aimed at more fully automating the generation
of semantic-relation networks from text inputs. The cur-
rent assumption that basic syntactic structure, such as
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subject-verb-object, is encoded by unidirectional con-
nections between keywords is simply a convenient heu-
ristic. Adopting natural-language processing techniques
that create relatively flat syntactic parses (perhaps with
a version of dependency grammar; see Jurafsky & Martin,
2021, Chapter 14) might make it possible to extract
syntactic relations automatically and use them to aug-
ment semantic-relation networks. Such advances could
contribute to efforts to automate the discovery of analo-
gies in online databases. In addition, analogical models
based on semantic vectors have yet to be extended to
address the later stages of analogical reasoning, in which
a mapping is used to develop plausible inferences about
the target and to learn a general schema that integrates
the source and target. The PAM model so far deals only
with verbal analogies. But in principle, semantic-relation
networks could be used to perform mapping given any
system for assigning vectors as attributes of nodes and
edges in a graph. The system could therefore be adapted
to solve mappings using perceptual inputs such as pic-
tures, once relevant object features and perceptual rela-
tions have been identified (for a preliminary effort to
apply PAM to visual analogies, see Fu et al., in press).
We hope that future work will foster the evolving syn-
ergy between theoretical ideas drawn from AI and from
cognitive science, in order both to provide a fuller under-
standing of human reasoning and to enhance the reason-
ing capacities of machines.
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