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Abstract

The number of variants that have a non-zero effect on a trait (i.e. polygenicity) is a funda-

mental parameter in the study of the genetic architecture of a complex trait. Although

many previous studies have investigated polygenicity at a genome-wide scale, a detailed

understanding of how polygenicity varies across genomic regions is currently lacking. In

this work, we propose an accurate and scalable statistical framework to estimate regional

polygenicity for a complex trait. We show that our approach yields approximately unbi-

ased estimates of regional polygenicity in simulations across a wide-range of various

genetic architectures. We then partition the polygenicity of anthropometric and blood

pressure traits across 6-Mb genomic regions (N = 290K, UK Biobank) and observe that all

analyzed traits are highly polygenic: over one-third of regions harbor at least one causal

variant for each of the traits analyzed. Additionally, we observe wide variation in regional

polygenicity: on average across all traits, 48.9% of regions contain at least 5 causal

SNPs, 5.44% of regions contain at least 50 causal SNPs. Finally, we find that heritability

is proportional to polygenicity at the regional level, which is consistent with the hypothesis

that heritability enrichments are largely driven by the variation in the number of causal

SNPs.

Author summary

The proportion of SNPs with nonzero effects on a trait, or polygenicity, is a key quantity

used to describe the genetic architecture of a complex trait. Furthermore, identifying the

specific genomic regions that contribute to trait variation requires an understanding of

how the number of causal SNPs varies across regions of the genome (regional
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polygenicity). In this work, we propose a statistical framework to estimate regional poly-

genicity for a complex trait using marginal effect sizes from GWAS and LD information.

We demonstrate in simulation and empirical data that our approach accurately and effi-

ciently estimates regional polygenicity. We find that SNP-heritability is proportional to

polygenicity both on the genome-wide and regional scale, suggesting that the observed

differences in heritability across traits stem from differences in the underlying number

of causal SNPs.

Introduction

Polygenicity, i.e., the proportion of SNPs with nonzero effects on a trait, is a key quantity in

efforts to understand the genetic architecture of complex traits. Accurate estimates of

genome-wide polygenicity can be used to improve the prediction accuracy of polygenic risk

scores [1, 2], quantify the strength of selection acting on a trait [3, 4], or better understand

the biological complexity of the pathways driving disease risk [5, 6]. A major challenge in

estimating polygenicity from genome-wide association study (GWAS) data arises due to the

correlations between nearby SNPs, i.e. linkage disequilibrium (LD). In the presence of LD,

methods for estimating polygenicity need to search over all possible causal status configura-

tions at each SNP which, in turn, leads to an intractable computation for regions that harbor

even a modest number of SNPs. Several methods implicitly model polygenicity in the con-

text of phenotype prediction [7–11] whereas other methods explicitly aim to estimate poly-

genicity [2, 3], with recent methods overcoming the computational bottleneck by making

simplifying model assumptions about the relationship between LD and polygenicity [2].

While all previous studies have focused on genome-wide polygenicity and its variation

across traits [2], identification of genomic regions that are important for trait variation

requires an understanding of how the number of causal SNPs varies across the genome

(regional polygenicity).

In this work, we propose a statistical framework, Bayesian Estimation of Variants in a

Region (BEAVR), to estimate regional polygenicity for a complex trait. Our approach esti-

mates the proportion of causal variants in a given region (pr) using marginal effect sizes

from GWAS and in-sample LD information. In this work, we define ‘causal variants’ as a set

of variants measured in a given GWAS study that have either a nonzero effect on the trait or

tag unmeasured variants through LD that also have a nonzero effect. This particular defini-

tion does not imply a causal biological relationship nor formal causation as defined in causal

inference. Thus, the estimates of polygenicity are defined with respect to the set of variants

in the analyzed GWAS. This is similar to the definition of SNP-heritability estimates which

are also specific to each set of variants and cannot be extrapolated to other sets of SNPs

[12–15].

The Bayesian model in BEAVR imposes a prior on the true SNP effect sizes where the prob-

ability of a non-zero true effect size at each SNP in the region is given by pr [16, 17]. The

observed GWAS effect sizes are obtained as a noisy combination of the unobserved true SNP

effect sizes [18, 19]. We use Markov chain Monte Carlo (MCMC) [20] to approximate the pos-

terior probability of the regional polygenicity parameter. This inference problem is computa-

tionally challenging as it requires disentangling correlations between SNPs due to LD.

Leveraging the insight that the genetic architectures of most traits are likely to be sparse (so

that most SNPs are not causal), we obtain a substantially more efficient MCMC algorithm that

allows us to infer regional polygenicity across a large number of SNPs.
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We validate our approach using extensive simulations and find that our method accurately

estimates polygenicity in realistic settings; BEAVR estimates yield a relative bias < 2% across

all simulations whereas existing methods obtain biased estimates particularly in simulations

with high degrees of polygenicity (i.e. pr > 5%). Next, we estimate regional polygenicity across

6-Mb regions for five quantitative anthropometric and blood pressure traits in the UK Biobank

(N = 290, 641 unrelated British individuals) restricting to genotyped SNPs with MAF > 1%.

Consistent with previous works [2], we find that all analyzed traits are highly polygenic at the

genome-wide scale: over one-third of regions harbor at least one causal SNP across all traits.

The proportion of regions containing at least one causal SNP (typically defined as regions with

significant heritability) has been used as a proxy for polygenicity in earlier studies [12, 21]; we

find that the proportion of regions containing at least one causal SNP is much higher than the

estimated polygenicity. For example, while 79.6% of regions contain at least one causal SNP

for height, the genome-wide polygenicity is estimated to be 3.07%. Additionally, we observe

wide variation in regional polygenicity: on average across all analyzed traits, 48.9% of regions

contain at least 5 causal SNPs while 5.44% of regions contain at least 50 causal SNPs, demon-

strating the additional information provided from estimates of regional polygenicity. Finally,

we find that within traits, regional SNP-heritability is proportional to regional polygenicity,

suggesting that variation in heritability across the genome is largely driven by variation in the

number of causal SNPs.

Materials and methods

Generative model

We assume that the trait measured in individual i, yi, is a linear function of standardized geno-

types xi = (xi,1, � � �, xi,M) measured at M SNPs with true SNP effect sizes β = (β1, � � �, βM) and an

independent additive noise term �i.

yi ¼
XM

m¼1

bmxi;m þ �i; i 2 f1; � � �Ng ð1Þ

�i �
iid N ð0; s2

eÞ ð2Þ

We model a non-infinitesimal trait architecture in which a subset of the M SNPs are causal

by imposing a spike-and-slab prior on the causal effect sizes β [2, 3, 7]. We represent the

causal statuses across the SNPs as c = (c1, � � �, cM). Here, cm = 1 if SNP m is a causal SNP with

probability p and 0 otherwise. Thus, p denotes the proportion of causal SNPs or the

polygenicity.

The Gaussian slab is parametrized with mean 0 and variance
h2
GW
Mp where h2

GW is the genome-

wide heritability. We draw independent Gaussian random variables for each of the M SNPs:

γ = (γ1, � � �, γM). The effect size βm is γm if SNP m is causal and 0 otherwise.

gm � N ð0;
h2
GW

Mp
Þ ð3Þ

bm j cm; gm ¼

(
gm if cm ¼ 1

0 if cm ¼ 0
ð4Þ
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We model the conditional distribution of the GWAS effect sizes given the true effect sizes

where b̂m is the estimated marginal effect size of SNP m for the trait.

β̂jβ � N ðVβ;Vs2
eÞ ð5Þ

Here the covariance matrix is parametrized by the environmental noise s2
e and the correla-

tions among SNPs, i.e. the linkage disequilibrium (LD) matrix V. The variance of the environ-

mental noise term is parameterized by s2
e ¼

1�h2
GW

N , where N is the number of individuals in the

study.

We impose a symmetric Beta prior on the polygenicity parameter, p.

p � Betaða; aÞ ð6Þ

In practice, we use α = 0.2 to put a higher weight on the tails of the Beta distribution. The

full graphical model can be found in S1 Fig.

In this work, we focus on accurately estimating the proportion of causal variants in a given

region r (regional polygenicity, pr). We assume that the above proposed genome-wide genera-

tive model holds when applied only within a specific region of the genome. This includes

modeling the heritability only within that region (h2
r ) instead of the genome-wide heritability

(h2
GW). Modeling each region separately also assumes that there are no correlations between

regions, such as correlations due to long-range LD. This assumption is reasonable when

regions are chosen to correspond to LD blocks or when regions are sufficiently large such that

correlations with adjacent regions may be ignored. Therefore, the LD matrix used in the

regional model would only be the LD computed from SNPs within that particular region (Vr).

Additionally, although our framework naturally estimates the SNP effect sizes and posterior

inclusion probabilities (i.e., the probability that a given SNP is causal), we focus in this work

on the posterior probability of pr.
The posterior probability of the model parameters of interest (pr, γr, cr) for a given region r

is given by:

Pðpr; γr; cr j β̂r; a; h2
r Þ / Pðpr j aÞPðcr j prÞPðγr j h2

r ; prÞPðβ̂r j γr; cr; h2
r Þ ð7Þ

Inference

We use Markov Chain Monte Carlo (MCMC) to approximate the posterior probability as

defined in Eq 7. Specifically, we derive a Gibbs sampler [22] to sample from the posterior dis-

tribution of the regional polygenicity pr and latent variables (cr, γr). The method takes as input

the marginal effect sizes from GWAS for a single trait in a region r ðβ̂rÞ, the matrix of SNP cor-

relations or LD per region (Vr), an estimate of the SNP heritability in that region (hr2), and the

sample size of the GWAS (N). As output, we estimate the posterior probability of the regional

polygenicity for region r (pr).
Transforming GWAS effect sizes. To facilitate efficient inference, we transform the mar-

ginal effects from GWAS: ~βr � V�1
2

r βr. The conditional probability of these transformed

effects is given by:

~βr j βr � N V1
2
r βr; IMr

s2
e

� �

Here, IMr
is the identity matrix of size Mr ×Mr where Mr is the number of SNPs in region r.

We note that this is a one-time transformation that is performed before running the sampler.

These transformed effects can be efficiently computed and stored for each genomic region.
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Sampling γr and cr. We recall that the true effect size at SNP m in region r (βr,m) is given

by a spike-and-slab prior parametrized by the causal effect size (γr,m) and the causal status at

that SNP (cr,m) (see Eq 4). We choose to sample γr,m and cr,m together in a block step in the

Gibbs sampler update.

Let θr ¼ fðγ:r;m; c:r;mÞ; h2
r ; pr; ag, where γ¬r,m denotes all effect sizes except for the effect of

the mth SNP; this similarly follows for c¬r,m.

Pðgr;m; cr;m j θr;
~βrÞ ¼ Pðgr;m j cr;m; θr;

~βrÞPðcr;m j θr;
~βrÞ

We are interested in the posterior probability of the causal effect size γr,m when cr,m = 1

since P(γr,m | cr,m = 0) = 0 due to the spike-and-slab prior. This can be expressed as:

Pðgr;m j cr;m ¼ 1; θr;
~βrÞ / Pð~βr j gr;m; cr;m ¼ 1; θrÞPðgr;m j cr;m ¼ 1; θrÞ

Working with the transformed GWAS effect sizes, the posterior distribution of γr,m becomes

univariate Gaussian with the following mean and variance. Here we denote

rr;m ¼ ~βr � V1
2
rγr � cr þ V1

2
r;mgr;mcr;m, which is the residual from subtracting the effects of all

SNPs except for SNP m (here V1
2
r;m denotes column m of the matrix V1

2
r). We define s2

r;g ¼
h2
r

Mrpr

and s2
e ¼

1�h2
r

N for the region-specific model. See S1 File for full derivation details.

Pðgr;m j cr;m ¼ 1; θr;
~βrÞ ¼ N ðgr;m; mr;m; s2

r;mÞ

1

s2
r;m

¼
1

s2
r;g

þ
1

s2
e

V1
2

>

r;mV
1
2
r;m

mr;m ¼ s2
r;m

1

s2
e

r>

r;mV
1
2
r;m

ð8Þ

We sample cr;m j θr;
~βr from a Bernoulli distribution with parameter Pðcr;m ¼ 1 j θr;

~βrÞ:

Pðcr;m ¼ 1 j θr;
~βrÞ ¼

Z

Pðcr;m ¼ 1; gr;m j θr;
~βrÞdgr;m

¼

Z Pð~βr j gr;m; cr;m ¼ 1; θrÞPðgr;m; cr;m ¼ 1 j θrÞ

Pð~βr j θrÞ
dgr;m

¼

ðprÞ

ffiffiffiffiffiffiffiffi
s2
r;m

s2
r;g

s

exp f 1

2s2
r;m

m2
r;mg

ðprÞ

ffiffiffiffiffiffiffiffi
s2
r;m

s2
r;g

s

exp f 1

2s2
r;m

m2
r;mg þ ð1 � prÞ

¼ dr;m

Sampling pr. The complete conditional posterior distribution of pr depends not only on

the causal status of each SNP (cr,m), but also on the latent variable (γr,m) since pr parametrizes

the variance term of γr,m. We sample from this distribution using a random-walk Metropolis-

Hastings step [20]. We use a Beta distribution as a proposal distribution:

p�
r � Qðp�

r j prÞ

¼ Betaða þ Cpr; a þ Cð1 � prÞÞ
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Here, C is a constant that controls the variance of the proposal distribution. In practice we

found that C = 10 yield effective mixing.

Leveraging sparsity of the genetic architecture to improve the

computational efficiency

The key computational bottleneck in the Gibbs sampling scheme involves computing the

mean of the posterior distribution of the causal effect size at SNP m (μr,m in Eq 8). Specifically,

the matrix computations associated with the residual term, rr;m ¼ ~βr � V1
2
rγr � cr þ V 1

2
r;mgr;mcr;m,

naively scales as OðM2
r Þ due to the middle term, which is a matrix of size Mr ×Mr multiplied

by a vector of size M × 1. Because this computation must be performed for every SNP, the

overall complexity of the sampler is OðM3
r Þ if implemented in this straightforward fashion.

Below, we will break down the posterior mean term such that the complexity of computing

rr,m will only be OðKrÞ, where Kr is the number of causal SNPs in the region, and the complex-

ity of the sampler will be OðKrMrÞ. This is accomplished by two steps: i) breaking the equation

into constant terms that do not need to be updated at every iteration of the sampler, ii) leverag-

ing the expected sparsity of the true causal vector and only performing computations over the

causal SNPs.

Writing out the posterior mean term and expanding, we have:

mr;m ¼
s2
r;m

s2
e

r>

r;mV
1
2
r;m

¼
s2
r;m

s2
e

~βr � V1
2
rgr � cr þ V1

2
r;mgr;mcr;m

h i>

V1
2
r;m

¼
s2
r;m

s2
e

~βr �
XMr

m6¼l

V
1
2

r;lγr;lcr;l

" #>

V1
2
r;m

¼
s2
r;m

s2
e

~β>

r V
1
2
r;m �

XMr

l6¼m;cr;l¼1

V
1
2

r;l

>

V1
2
r;mgr;lcr;l

2

4

3

5

The first term, ~β>
r V

1
2
r;m, is composed of the vector of GWAS effect sizes and a vector of the

LD matrix corresponding to the mth SNP, neither of which are updated within the sampler.

Second, the term V
1
2

r;lV
1
2
r;m can also be pre-computed since it is only the product of two columns

within the LD matrix. Aside from the variance terms at the beginning of the equation, which

are only scalars, the only term that varies at each iteration of the sampler is γr,l cr,l since both

the effect size and causal status need to be re-sampled at each iteration. Since this term is

wrapped in a summation over Mr SNPs, the complexity of computing μr,m is currently OðMrÞ.

However, even with this simplification, the overall complexity of the sampler is OðM2
r Þ since

this mean term must be computed at every SNP at every iteration.

To further simplify the computation, we can leverage the observation that most complex

traits contain only a small proportion of causal SNPs (Kr) in each region. As the sampler con-

verges to the stationary distribution, we would expect the causal status vector (cr) to be sparse,

where Kr � Mr. When this occurs, the summation term will only include a few non-zero

terms. By only subtracting the non-zero terms, this term is simply reduced to the number of

causal variants and the complexity becomes OðKrÞ. Even though this computation must be
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done at each SNP, the overall complexity of the sampler is only OðKrMrÞ which is tractable

under the assumption of Kr � Mr.

Simulation analysis

Simulations for marginal effects using LD information. Using pre-computed LD infor-

mation, we generated marginal effect sizes for a given region from synthetic GWAS that reflect

a variety of genetic architectures. We denote the number of SNPs in a region as Mr and the

regional polygenicity as pr. We denote the causal indicator status of each SNP in each region as

cr,m 2 {0, 1}, where cr,m = 1 if the mth SNP is causal and 0 otherwise for m = 1, � � �, Mr and

regions r = 1, � � �, R.

The causal status of a SNP is generated from:

cr;m � BerðprÞ

If cr,m = 1, the effect size of SNP m within the rth region is drawn from a univariate Gaussian

distribution with mean 0 and variance equal to the regional heritability ðh2
r Þ divided by the

number of casual SNPs:

br;m �

0; cr;m ¼ 0;

N 0;
h2
r

Mrpr

� �
; cr;m ¼ 1

8
><

>:

Marginal association statistics for the region are then generated from the following model:

β̂r j βr � N ðV rβr;V rs
2
eÞ

Here, the environmental noise is a function of the sample size and heritability of the trait,

s2
e ¼

1�h2
r

N . We use regional LD computed with genotypes from 337, 205 unrelated (less related

than third-degree relatives), white, British individuals (Mr = 1, 000 array SNPs) from the UK

Biobank [23]. The LD matrix for a region is computed as V r ¼
X>
r Xr
N , where Xr is the genotype

matrix using only SNPs within region r.
Using the framework above, we generated marginal effect sizes where we varied the

regional polygenicity from pr = 0.005, 0.01, 0.05, and 0.10, genome-wide heritability from

h2
GW ¼ 0:10, 0.25, and 0.50, and the sample size from N = 50K, 500K, 1M individuals, which is

comparable to the sample sizes of many current GWAS studies [24, 25]. For each simulated

region, we set the number of SNPs per region to 1, 000. For the regional heritability parameter,

we used the simulated genome-wide heritability scaled by the number of SNPs in the region,

Mr, and the number of SNPs on the array, M: h2
r ¼

h2
GWMr
M .

To estimate the regional polygenicity, we ran BEAVR for 1,000 iterations with a burn-in of

250 iterations. We used the same LD information that was used for simulation (i.e. “in-sample”

LD). We also computed regional polygenicity using GENESIS [2]. We ran GENESIS using the

default parameter settings and LD information from 1000 Genomes [26]. We used both the

2-component and 3-component settings when running GENESIS. We note that the imple-

mentation of GENESIS uses the 1000 Genomes LD matrix as a default and there is no option

to specify an alternative LD matrix. We averaged the performance of each method across 100

replicates.

Simulations for marginal effects computed from individual genotype and phenotype

data. Using SNP data (M = 9, 564 array SNPs from chromosome 22, N = 337K individuals)

from a group of unrelated, self-identified British, white ancestry individuals from the UK
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Biobank [23], we simulated marginal effects by generating phenotypes from real genotype

array data. For this analysis, the set of unrelated individuals is defined as pairs of individuals

with kinship coefficient < 1

2

ð9=2Þ
(greater than third-degree relatives) [23]. Then we performed

ordinary least squares to estimate the marginal effect size of each SNP. Given the standardized

genotype matrix X and the genome-wide SNP heritability h2
GW , phenotypes are generated as

follows.

We set the genome-wide proportion of causal variants to be p = 0.01. We denote the causal

indicator status of each SNP as cm 2 {0, 1}, where cm = 1 if the mth SNP is causal and 0 other-

wise for m = 1, � � �, M. Standardized effects and phenotypes are generated from the following

model. Note that s2
m ¼ 0 if cm = 0.

s2
m ¼ cm

h2
GW

Mp

ðb1; � � � ; bMÞ
>

� N ð0; diagðs2
1
; � � � ; s2

MÞÞ

ðy1; � � � ; yNÞ
>

j β � N ðXβ; ð1 � h2
GWÞINÞ

Finally, given the phenotypes for all individuals, y = (y1, � � �, yN)> and genotypes

X ¼ ðx>
1

; � � � ; x>
NÞ

>
, we compute marginal association statistics through the OLS estimator,

β̂ ¼ 1

N X
>y.

We generated 100 sets of marginal effect sizes where we fixed p = 0.01 and h2
GW ¼ 0:50. We

then estimated the regional polygenicity within each 6-Mb window for chromosome 22

(M = 9,564 array SNPs) using BEAVR. This windowing formed 6 consecutive regions. We

used HESS (Heritability Estimator from Summary Statistics) [12], a method for estimating

regional heritability at a single region from GWAS summary statistics, to estimate the regional

heritability which is then used as input for BEAVR. HESS is run with all default parameters

and the same LD matrices used in the simulation framework (i.e. in-sample LD). We finally

ran BEAVR for 1,000 iterations with a burn-in of 250 iterations and using the same LD infor-

mation that was used for simulation.

Analysis of UK Biobank phenotypes

We estimated the partitioned polygenicity for five complex traits in the UK Biobank [23]

across 6-Mb windows. We limited our analyses to unrelated individuals with self-identified

British, white ancestry. Here, the set of unrelated individuals is defined as pairs of individuals

with kinship coefficient < 1

2

ð9=2Þ
(greater than third-degree relatives) [23]. We additionally

excluded individuals with putative sex chromosome aneuploidy. All genotypes were standard-

ized, where for each SNP m and individual n, we computed xnm ¼ ðgnm � 2fmÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fmð1 � fmÞ

p
,

where gnm 2 {0, 1, 2} is the number of minor alleles and fm is the in-sample minor allele fre-

quency (MAF). We then used PLINK [27] (https://www.cog-genomics.org/plink2) to exclude

SNPs with MAF < 0.01, genotype missingness > 0.01, and SNPs that fail the Hardy-Weinberg

test at significance threshold 10−7. We obtained a final set of N = 290, 641 individuals for our

analyses.

Marginal association statistics were computed through OLS using PLINK. Age, sex, and the

top 20 genetic PCs were used as covariates in the regression, where these top 20 PCs were pre-

computed by the UK Biobank from a superset of 488, 295 individuals. Additional covariates

were used for waist-to-hip ratio (adjusted for body mass index (BMI)) and diastolic/systolic

blood pressure (adjusted for cholesterol-lowering medication, blood pressure medication,

insulin, hormone replacement therapy, and oral contraceptives).
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The genome is then divided into 6-Mb windows. Using HESS [12], we estimated the

regional heritability within each window for each trait. HESS is run with all default parameters

specified and in-sample LD. Using BEAVR and the computed regional heritability estimates,

we estimated the regional polygenicity in each 6-Mb window. To initialize the MCMC sam-

pler, we must set initial values for the vector of causal statuses, causal effect sizes, and regional

polygenicity (cr, γr, pr). For each SNP m, if the z-score estimated from GWAS is � 3.5, then

cr,m is initialized to 1 and 0 otherwise. Each causal effect size is drawn from the prior distribu-

tion (see Eq 3). The initial value of pr is set to the proportion of 1’s in the initialized causal

status vector. We ran the Gibbs sampler for 1, 000 iterations and the first 250 samples were dis-

carded as burn-in. For each region, we computed the posterior mean and posterior standard

deviation for pr from the MCMC samples.

Annotations in regression analysis

We performed a multivariate regression of the heritability on the estimated number of SNPs

from BEAVR, the number of causal SNPs, and genomic annotations within a region. The

genomic annotations include the number of genes, median B value (a measure of background

selection), and functional annotations [28]. We computed the number of protein coding genes

within a region using the protein coding gene sets that have been defined in previous work

[29]. If a gene body overlapped two regions, we included the presence of the gene in both

regions. Using previously computed B values [30], we computed the median B value of all the

SNPs in a region. This quantity was used as the annotation value for that particular region. We

additionally included a combination of binary and continuous functional annotations [28].

For each region, we computed the median annotation value for continuous annotations and

the proportion of variants with a binary annotation.

Results

Simulations

We compare BEAVR to GENESIS [2], an approach that employs a spike-and-slab mixture

model to capture both large and small effect sizes at causal SNPs in order to estimate polygeni-

city at a genome-wide scale (see Materials and methods). To be applicable in genome-wide set-

tings, GENESIS assumes that LD patterns are independent of the probability of a SNP

belonging to different mixture components which, in turn, leads to a scalable algorithm. As

shown in Fig 1, BEAVR obtains approximately unbiased estimates of polygenicity across each

scenario (relative bias < 2% across the simulations). Both the two and three mixture compo-

nent models from GENESIS obtain relatively unbiased estimates when the true polygenicity

is low but demonstrates a severe downward bias in the high polygenicity setting (relative

bias > 70% when pr = 0.10). This observation is consistent with our hypothesis that not fully

modeling LD limits the ability of GENESIS to accurately estimate parameters, consistent with

previously reported downward bias when GENESIS was run with external LD information [2].

Next, we assessed the robustness of our approach to sample size and heritability. We vary

the genome-wide heritability to be 0.10 and 0.25 and the sample size to be 50K and 1 million

individuals (Fig 2) to fully explore the limitations of our method. We note that when the

regional polygenicity pr is high, BEAVR demonstrates a downward bias either when sample

sizes are relatively small (N = 50K individuals) (relative bias 56% and 80% for pr = 0.05 and

pr = 0.10 when h2
GW ¼ 0:50) or when the heritability is low (h2

GW ¼ 0:10) (relative bias 54%

and 73% for pr = 0.05 and pr = 0.10 for N = 500K). These biases likely arise due to the causal

effect sizes being similar in magnitude to the environmental noise, making it difficult to
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correctly identify the causal status of a SNP. Thus, we recommend applying BEAVR to herita-

ble traits measured in large sample sizes.

Next, we performed simulations where GWAS marginal effects are computed from pheno-

types simulated from individual genotypes and the regional heritability is estimated directly

from the data. Specifically, we simulate phenotypes using individual genotypes for N = 337K

individuals from the UK Biobank. Each phenotype is simulated to have h2
GW ¼ 0:50 and poly-

genicity p = 0.01. We limit our simulations to SNPs from chromosome 22 (M = 9, 564 SNPs)

as each chromosome would be analyzed separately in real data analyses. We then estimate the

marginal effect sizes. We divide the simulated data into consecutive regions of 6-Mb for a total

of 6 regions, where each region contains 1,000 SNPs on average. We use estimates of regional

heritability from GWAS marginal effects (using HESS [12]; see Materials and methods) as

input to BEAVR. We find that BEAVR obtains relatively unbiased estimates of polygenicity

across all regions (Fig 3A; relative bias < 2% across simulations). These simulations indicate

that the polygenicity estimates obtained by BEAVR are robust to heritability estimates that are

used as input as well as when LD spans regions. The LD does not significantly affect the esti-

mates likely because the correlation due to LD tends to diminish with genomic distance.

We also explored the robustness of BEAVR to the number of SNPs in the region. Using a

simulated GWAS with genome-wide heritability h2
GW ¼ 0:50, sample size N = 500K, and

polygenicity pr = 0.01, we vary the size of the region from Mr = 500, 1K, 5K SNPs. From Fig

3B, we can see that the estimates of pr tend to be unbiased across regions of various sizes

although the standard errors tend to increase in smaller regions (relative bias 13%, 1%, and

Fig 1. BEAVR is relatively unbiased in simulated data. We ran 100 replicates (M = 1, 000 SNPs, N = 500K

individuals) where the genome-wide heritability was set to h2
GW ¼ 0:5 and the true polygenicity of the region was pr =

0.005, 0.01, 0.05, 0.10. We compared BEAVR to GENESIS-M2 and GENESIS-M3 which employs a spike-and-slab

model with either 2 or 3 components (point-mass and either 1 or 2 slabs). All methods are unbiased when the

polygenicity is low (pr = 0.005, 0.01). However, when polygenicity is higher (pr = 0.05, 0.10), both GENESIS-M2 and

GENESIS-M3 are severely downward biased whereas BEAVR provides unbiased estimates across all settings. Dashed

red lines denote true regional polygenicity values in each setting.

https://doi.org/10.1371/journal.pcbi.1009483.g001
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1.2% for Mr = 500, 100, 5000 SNPs). This trend occurs because larger regions have a higher

number of SNPs to inform the posterior distribution, meaning that there will be higher cer-

tainty in the posterior estimates. Additionally, if a region is small, there is a larger impact on

the estimated polygenicity when misidentifying causal SNPs due to the small denominator of

SNPs in the region. For example, misidentifying a single causal SNP from a set of 10 SNPs will

have a greater impact on the bias of polygenicity estimates compared to a set of 1,000 SNPs.

These results suggest that BEAVR could potentially be applied to regions of varying length and

be used to estimate regional polygenicity around genes or within larger LD blocks.

We next assess the sensitivity of our results when using different hyper-parameters for our

prior on the polygenicity parameter pr. Using a simulated GWAS with genome-wide heritabil-

ity h2
GW ¼ 0:50, sample size N = 500K, and polygenicity pr = 0.01, we vary our choice of hyper-

parameter for the prior on pr: α = 0.2, 1, 2. We find that the accuracy of our results is relatively

robust to the choice of prior (Fig 3C); we use α = 0.2 for all subsequent analyses.

Fig 2. BEAVR is relatively unbiased across various genetic architectures. We ran 100 replicates where we vary the genome-wide heritability to be h2
GW ¼ 0:10, 0.25,

0.5, the polygenicity of the region to be pr = 0.005, 0.01, 0.05, 0.10, and the sample size N = 50K, 500K, 1 million individuals. We compared BEAVR to GENESIS-M2

(2-component) and GENESIS-M3 (3-component). The x-axis denotes the simulated values for the regional polygenicity and the y-axis denotes the estimated values

across 100 replicates. Dashed red lines denote the true regional polygenicity value in each setting.

https://doi.org/10.1371/journal.pcbi.1009483.g002
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Although we assume that causal effect size distributions follow a Gaussian distribution,

there are likely traits which do not follow this assumption. We next evaluate the performance

of BEAVR when the true causal effect sizes deviate from the assumption of normality. In S2

Fig, we show the distribution of our estimates of regional polygenicity across 3 causal effect

size distributions defined by mixture of Gaussian distributions with the following set of vari-

ance components and mean 0: [1 × 10−3, 1 × 10−4]; [1 × 10−4, 1 × 10−5]; [1 × 10−3, 1 × 10−4,

1 × 10−5]. We assume a sample size of N = 500K, total regional polygenicity pr = 0.01, and

assume the true heritability of the region is known. The number of causal SNPs are spread

equally amongst all the mixture components. We see that for causal effect sizes drawn from

the distribution with larger variances components (e.g. 1 × 10−3), our estimates are relatively

unbiased. However, for distributions with smaller variance components (e.g. 1 × 10−5), we

start to see a downward bias proportional to the fraction of SNPs drawn from the distribution

with the smaller variance component(s). Thus, it is not necessarily the exact shape of the distri-

bution of effect sizes, but the magnitude of the causal effect sizes, which affects the accuracy of

the estimates.

Effect of out-of-sample LD

Although we recommend using in-sample LD when computing estimates of regional polygeni-

city, we also investigate the scenario where only LD derived from a reference panel is available.

We simulate two scenarios: i) reference panel LD is computed from genotypes from individu-

als of a similar continental population as the target GWAS population but from a separate

study (e.g. European ancestry individuals from the 1000 Genomes Project); ii) reference panel

LD is computed with genotypes from a specific cohort/study and the target GWAS is also con-

ducted with a subset of data from the same the cohort/study or a different version of the study

(e.g. ‘White, British’ individuals from the UK Biobank). This second scenario closely reflects

situations where many groups separately apply for freezes of data from the same study yet

share GWAS summary statistics across applications.

We simulate the first scenario by simulating 1,000 GWAS regions with M = 1, 000 SNPs,

regional polygenicity pr = 0.01, regional heritability, h2
r ¼ 0:0001 (corresponding to a genome-

wide heritability of 0.50), a sample size of N = 500K, and use a LD matrix computed from 337,

205 genotypes from unrelated individuals within the ‘White, British’ population from the UK

Fig 3. BEAVR is robust in realistic settings. (A) Using SNP data from chromosome 22 (M = 9, 564 array SNPs, N = 337K individuals), we simulated 100 replicates

where the genome-wide heritability was h2
GW ¼ 0:50 and p = 0.01. We divided the data into 6-Mb consecutive regions for a total of 6 regions and estimated the regional

heritability using external software (HESS [12]). Using BEAVR and the estimated regional heritability, we estimated the regional polygenicity to be unbiased across all

regions. (B) We ran 100 replicates where the genome-wide heritability is fixed h2
GW ¼ 0:50, polygenicity pr = 0.01, sample size N = 500K, and then varied the number of

SNPs in the region from M = 500, 1K, 5K SNPs. We used BEAVR to estimate the polygenicity in each region and found our results to be unbiased across all regions.

(C) We set the genome-wide heritability to h2
GW ¼ 0:50, regional polygenicity pr = 0.01, and sample size N = 500K. We find that the accuracy of our results is invariant

to our choice of prior hyper-parameter (α).

https://doi.org/10.1371/journal.pcbi.1009483.g003
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Biobank [23]. However, inference is then performed using a reference panel derived LD matrix

computed from 503 European ancestry individuals from the 1000 Genomes Project [26]. We

find that when using LD from these separate studies, BEAVR fails to accurately estimate the

regional polygenicity (S3 Fig). Although the reference panel is constructed using individuals of

European ancestry, these individuals were sampled from multiple subcontinental ancestries in

Europe (e.g. Italy, Spain, Finland). In comparison, the target GWAS population from the UK

Biobank is ancestrally homogeneous since it is limited to ‘White, British’ individuals within

the UK.

The second scenario uses the same simulation parameters as above, except the GWAS effect

sizes are computed using a LD matrix derived from 168,602 individuals from the unrelated,

‘White, British’ population within the UK Biobank. Inference is then performed using LD esti-

mated from a separate, non-overlapping set of 168,602 individuals also from the unrelated,

‘White, British’ population within the UK Biobank. When using LD computed from a separate

set of individuals from the same study, we find that our estimates are approximately unbiased

(S3 Fig). Our findings show that one can perform inference using a reference panel con-

structed from a separate set of individuals than used in the GWAS when both sets of individu-

als are from the same study (e.g. UK Biobank). These findings suggest that LD reference panels

cannot solely be matched based on the continental ancestry level but need to be matched on a

much finer scale. Additionally, differences in study designs between the genotypes used for the

LD reference panel and the genotypes used when performing the GWAS may also contribute

to discrepancies between the estimated LD structure.

Computational efficiency

BEAVR uses Gibbs sampling [20] to estimate the posterior probability of the regional polyge-

nicity parameter. A naive implementation of the Gibbs sampler has a per-iteration computa-

tional complexity of OðM2
r Þ, where Mr is the number of SNPs in the region. By leveraging the

expected sparsity of the causal status at each SNP, we can improve the run-time of the algo-

rithm to OðMrKrÞ, where Kr is the number of causal SNPs in the region. Fig 4A shows that this

improvement leads to a 12-fold improvement in run-time for a region with 5, 000 SNPs. To

assess how the number of causal SNPs affects the efficiency of our algorithm, we generated

Fig 4. BEAVR is computationally efficient. (A) We show the run-time in terms of seconds per iteration of the Gibbs sampler (log-scale). We compare the version of

BEAVR with the algorithmic speedup outlined in Materials and methods (‘speedup’) versus the straightforward implementation (‘baseline’). We vary the number of

SNPs in the region while fixing the polygenicity of each region to pr = 0.01. (B) We show the runtime of the sampler when the number of SNPs in the region is fixed to

M = 1, 000 and we vary the polygenicity.

https://doi.org/10.1371/journal.pcbi.1009483.g004

PLOS COMPUTATIONAL BIOLOGY Estimating regional polygenicity of complex traits

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009483 October 21, 2021 13 / 21

https://doi.org/10.1371/journal.pcbi.1009483.g004
https://doi.org/10.1371/journal.pcbi.1009483


simulated GWAS data for 1,000 SNPs and varied the regional polygenicity from pr = 0.005,

0.01, 0.02, 0.03, 0.04, 0.05 and observe efficiency gains across the range of parameters (Fig 4B).

The optimization of our method makes it possible to efficiently analyze regions of various sizes

as well as densely imputed regions with thousands of variants.

Contrasting genome-wide and regional polygenicity across complex traits

We applied BEAVR to estimate regional polygenicity from marginal effect size estimates for

five anthropometric and blood pressure traits from the UK Biobank (see Table 1). Marginal

association statistics were computed for each of these traits from a subset of unrelated individ-

uals identified as White British (see Materials and methods). We applied BEAVR by dividing

the genome into a total of 470 6-Mb regions where each region has on average 1, 000 SNPs.

Since BEAVR requires an estimate of LD between the SNPs, we used in-sample LD, i.e., LD

computed on the White British subset of the UK Biobank. We additionally used HESS [12] to

estimate regional heritability. Since BEAVR produces a posterior distribution of the regional

polygenicity, we report a region to have nonzero polygenicity if the posterior mean—(2× pos-

terior standard deviations) does not overlap 0. Furthermore, we estimate the genome-wide

polygenicity for a trait as the sum of the posterior means of regional polygenicity across all

regions.

Consistent with previous estimates of genome-wide polygenicity [2], we observe that all the

analyzed traits are highly polygenic. Across the traits, we observe that over one-third of the

regions in the genome contain at least one causal SNP and overall each of the traits is estimated

to harbor at least 1, 000 causal SNPs (Table 1). We also observe variation across traits: for

height, nearly 80% of the regions contain at least one causal SNP and the total number of

causal SNPs could be as high as 15, 000 while blood pressure traits are estimated to harbor

about 2, 500 − 3, 000 causal SNPs. Our estimates for the proportion of causal SNPs for height

is significantly higher than previously reported [2] (Table 1): the 95% credible interval esti-

mated by BEAVR is (3.0%, 3.2%) while the estimates from prior work [2] are 0.9% with stan-

dard error 0.1%. We hypothesize that this difference is due, in part, to our method capturing

smaller effect sizes by fully modeling LD, which is consistent with our simulations, but could

also arise from the differences in SNP sets and GWAS summary statistics analyzed.

Previous studies have used the proportion of genomic regions with nonzero heritability as a

proxy for polygenicity since nonzero heritability requires at least one causal SNP in the region

[12, 21]. However, the distribution of regional heritability does not fully reflect the distribution

of regional polygenicity (Fig 5, S4 and S5 Figs). Across the traits, the proportion of regions

Table 1. Genome-wide estimates of polygenicity and total SNP heritability.

Trait %regions h2
GW p Mc p-GENESIS

BMI 66.2 0.30 (0.004) (0.017, 0.018) (7.67 × 103, 8.41 × 103) 0.014(0.003)

Height 79.6 0.64 (0.004) (0.030, 0.032) (1.37 × 104, 1.45 × 104) 0.009(0.002)

Waist-hip ratio 40.6 0.18 (0.004) (0.007, 0.008) (3.12 × 103, 3.57 × 103) 0.009(0.003)

Diastolic blood pressure 35.5 0.16 (0.004) (0.006, 0.007) (2.54 × 103, 3.01 × 103) –

Systolic blood pressure 34.9 0.17 (0.004) (0.006, 0.007) (2.58 × 103, 3.01 × 103) –

We report the percentage of 6-Mb regions containing at least one causal SNP under the column ‘% regions’. Genome-wide estimates of polygenicity and heritability

were computed by aggregating estimates across all regions. The standard error is reported for genome-wide heritability estimates. Here, p denotes the proportion of

causal SNPs and Mc denotes the total number of causal SNPs (we report the 95% posterior credible interval for each of these parameters). The last column denotes the

estimates of polygenicity computed in a previous study [2] (twice the standard error is reported in parentheses). We omit estimates for traits not available in the prior

study.

https://doi.org/10.1371/journal.pcbi.1009483.t001
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containing at least one causal SNP is substantially higher than the estimated proportion of

causal SNPs across the genome (Table 1): while � 80% of regions contain at least one causal

SNP for height, we estimate that � 3% of the SNPs are casual. Further, we observe wide varia-

tion in regional polygenicity where, across the analyzed traits, nearly 50% of regions contain at

least 5 causal SNPs and about 5% of regions contain at least 50 causal SNPs (Fig 5 and S5 Fig).

These results demonstrate the additional information that can be obtained from estimates of

regional polygenicity.

Heritability is proportional to the number of causal SNPs

Previous studies have documented a linear relationship between chromosome length and the

per-chromosome heritability for multiple traits suggesting that the architecture of these traits

is highly polygenic [12, 31]. We replicate this relationship between the number of SNPs and

the heritability in a genomic region for each trait (p-value = 1.22 × 10−13; R2 = 0.162 averaged

across traits; Table 2). In addition, we observe that a linear regression of heritability on the

number of causal SNPs in the region is significant (p-value = 2.60 × 10−21; R2 = 0.278 averaged

across traits) (Table 2). We also observe that the number of causal SNPs in a region better

explains regional heritability than the number of overall SNPs in the region. This ranges from

approximately the same R2 in systolic blood pressure to nearly three times in WHR (Table 2).

Fig 5. Distribution of regional polygenicity and heritability. We divide the genome into 6-Mb regions and report the posterior mean of the regional polygenicity for

each region across height and diastolic blood pressure. Using external software [12], we report the distribution of regional heritability for each trait.

https://doi.org/10.1371/journal.pcbi.1009483.g005
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The slope of the regression of regional heritability on the number of causal SNPs averaged

across traits is 1.63 × 10−5, which can be interpreted as the heritability per additional causal

SNP (Table A in S1 File). Performing multiple regression, we find that both the number of

SNPs and number of causal SNPs have a significant relationship to the heritability in a region

(average p-value = 3.60 × 10−39; R2 = 0.374). We hypothesize that the number of SNPs and

causal SNPs together explain more of the variation in heritability than the number of causal

SNPs alone due, in part, to inaccurate estimates of the number of causal SNPs and regional

heritability as well as possible misspecifications in the model assumed by BEAVR.

We further investigate the relationship between genomic annotations and heritability as

well as the number of causal SNPs in a region. Including the number of genes, median B value,

and functional annotations [28] as covariates in the regression (see Materials and methods),

only the number of causal SNPs remains significant (average p-value = 6.37 × 10−11, p-value <

0.05/(number of annotations)) while the total number of SNPs in the region remains signifi-

cant for 3 out of 5 traits (Table B in S1 File). None of the other genomic annotations are signifi-

cant after the multiple testing correction.

While the expected regional heritability can be partly explained by the number of causal

SNPs, we also observe regions that have disproportionately high heritability given the number

of estimated causal SNPs (Fig 6 and S6 Fig and Table A in S1 File). These outlier regions

(defined as regions with an absolute studentized residual larger than 3) are likely to harbor

SNPs with larger effect sizes compared to other regions. Consistent with this hypothesis, 24

out of 27 outlier regions contain at least one genome-wide significant SNP for at least one

trait. This proportion is significantly higher than a randomly chosen set of 27 regions

(p-value < 1

1;000
). Taken together, our analyses indicate that the heritability of a trait is com-

posed of a mixture of small effect SNPs as well as some SNPs with relatively larger effects.

Finally, we also investigate whether the gene density in a region plays a role in the

observed regional polygenicity estimates. We perform a likelihood ratio test between the

following two models to assess the effect of gene density on the number of causal SNPs

ðMCr
Þ after adjusting for both regional heritability and the number of SNPs:

H0 : MCr
� h2

r þ Mr;H1 : MCr
� h2

r þ Mr þ #genes. As shown in Table C in S1 File, we find

that only the likelihood ratio test for height is significant after adjusting for the number of

tested traits (p-value < 0:05

5
). This observation could be due to the fact that we included all

protein coding genes in the analysis regardless of the specific biological mechanism of each

gene. For example, when analyzing BMI, one would expect regions with genes related to

Table 2. Linear relationship between heritability, number of SNPs, number of causal SNPs, and genomic annotations.

Trait R2ðh2
r � MrÞ R2ðh2

r � MCrÞ R2ðh2
r � Mr þ MCrÞ R2ðh2

r � all-annotationsÞ

BMI 0.182 (3.67 × 10−22) 0.226 (7.64 × 10−28) 0.347 (6.38 × 10−44) 0.532 (1.20 × 10−27)

Height 0.172 (5.34 × 10−21) 0.447 (2.96 × 10−62) 0.501 (3.30 × 10−71) 0.647 (3.23 × 10−47)

Waist-hip ratio 0.105 (6.13 × 10−13) 0.295 (2.05 × 10−37) 0.352 (1.08 × 10−44) 0.540 (8.23 × 10−29)

Diastolic blood pressure 0.183 (2.60 × 10−22) 0.254 (1.08 × 10−31) 0.359 (7.33 × 10−46) 0.530 (2.09 × 10−27)

Systolic blood pressure 0.168 (2.09 × 10−20) 0.169 (1.30 × 10−20) 0.311 (1.77 × 10−38) 0.532 (1.11 × 10−27)

In the first column, we model the linear relationship between the heritability of a trait and the number of SNPs across all regions of the genome. We report the

coefficient of determination (R2). The relationship is significant for all traits (p-values are reported in parentheses). We observe a similar trend relating the heritability

and number of causal SNPs in a region. We perform a multivariate regression to assess the relationship between the heritability and both the number of SNPs and

number of causal SNPs in a region. Finally, in the last column, we perform a multivariate regression of heritability on the number of SNPs, number of causal SNPs,

number of genes, median B value, and functional annotations [28]. Significant annotations are listed in Table B in S1 File.

https://doi.org/10.1371/journal.pcbi.1009483.t002
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lipids or metabolism to harbor more causal variants than genes related to seemingly unre-

lated biological mechanisms. This observed effect of gene density on the polygenicity of

height is consistent with the hypothesis that genes throughout the genome, regardless of the

specific biological function, contribute to the variance of height. Previous work has shown

that height is one of the most polygenic traits with numerous causal variants spread through-

out the genome [15]. This idea that numerous genes, regardless of functional mechanism,

have an effect on a trait is related to the recently proposed ‘omnigenic’ model [5].

Discussion

In this work, we propose BEAVR, a novel, scalable method to estimate regional polygenicity

from GWAS effect size estimates in a Bayesian framework. We employ a fast inference algo-

rithm that enables efficient inference while fully accounting for LD. Applying BEAVR to

anthropometric and blood pressure traits in the UK Biobank, we observe that all of the ana-

lyzed traits are highly polygenic. At least a third of 6-Mb regions harbor at least one causal var-

iant with this fraction rising as high as 80% for height. We find that the proportion of regions

containing at least one causal SNP, which is often used as a proxy for polygenicity in previous

studies, is much higher than our estimates of the proportion of causal SNPs. Additionally, we

observe wide variation in regional polygenicity with an average of 48.9% of regions across the

analyzed traits containing at least 5 causal SNPs and 5.44% of regions containing at least 50

causal SNPs. Finally, we find that the number of causal SNPs better explains variation in SNP

heritability across regions compared to the total number of SNPs.

The observed polygenic architecture of complex traits supports the hypothesis that the

majority of trait variation is modulated by variants distributed across the genome. Trait herita-

bility is largely driven by the number of causal variants and most of these variants are spread

uniformly across the genome. This finding suggests that a large proportion of genes have at

least some, although limited, effect on a trait. These findings are consistent with the recently

Fig 6. Heritability is proportional to the number of causal SNPs in a region. We show the relationship between the number of causal SNPs and heritability for

each region across height and diastolic blood pressure. We fit a linear regression for each trait and report the slope of the regression, which can be interpreted as the

increase of heritability per additional causal SNP. Horizontal error bars represent two posterior standard deviations around our estimates for the number of causal

SNPs. Vertical error bars represent twice the standard error around the estimates of regional heritability. Dots in black denote outlier regions which have an absolute

studentized residual larger than 3.

https://doi.org/10.1371/journal.pcbi.1009483.g006
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proposed omnigenic model which suggests that disease risk is driven by a combination of a

small number of primary ‘core’ genes and numerous ‘peripheral’ genes which are connected to

core genes via highly interconnected gene networks [5].

We conclude by discussing limitations of our study and directions for future work. First,

our model assumes that the causal effects are drawn from a single Gaussian distribution. This

assumption can be relaxed and other distributions (such as mixtures of Gaussians) can be used

instead. Second, our estimates of genome-wide polygenicity assume that the LD matrix is

block structured which allows us to estimate genome-wide polygenicity by applying our

method to regions corresponding to LD blocks. Finally, our analyses in the UK Biobank were

limited to array data and thus the set of SNPs used in our analyses are missing true causal

SNPs that were not typed. We leave a more thorough investigation of this scenario and analy-

ses on imputed data as future work.

Supporting information

S1 Fig. A graphical model describing the generative process of our data. Directed graphical

model diagram for BEAVR.

(TIF)

S2 Fig. Inferring regional polygenicity from non-Gaussian causal effect size distributions.

We simulate effect sizes from mixture of Gaussian distributions with the following set of vari-

ance components: [1 × 10−3, 1 × 10−4]; [1 × 10−4, 1 × 10−5]; [1 × 10−3, 1 × 10−4, 1 × 10−5]. The

polygenicity of the region equals the sum of the mixture proportions and the number of causal

SNPs are spread equally amongst all the mixture components. For causal effect sizes drawn

from the distribution with larger variances (e.g. 1 × 10−3), our estimates are relatively unbiased.

However, for distributions with smaller variance components (e.g. 1 × 10−5), we start to see a

downward bias proportional to the fraction of SNPs drawn from the distribution with the

smaller variance component(s).

(TIF)

S3 Fig. Assessing the role of reference LD in estimating regional polygenicity. The first

GWAS (left) is simulated LD computed with genotypes from the UK Biobank (N = 337, 205)

and inference is performed using LD computed from the European individuals from the 1000

Genomes reference panel (N = 503). The second GWAS (right) is simulated with LD derived

from a subset of (N1 = 168, 602) genotypes from the UK Biobank and inference is performed

using LD computed from a separate, non-overlapping subset (N2 = 168, 602) of individuals

also from the UK Biobank. We find that when using LD from separate studies (1000

Genomes), BEAVR fails to accurately estimate the regional polygenicity. However, when we

use LD computed from a separate set of individuals from the same study, we find our estimates

are approximately unbiased.

(TIF)

S4 Fig. Distribution of regional heritability. We divide the genome into 6-Mb regions and

report the posterior mean of the regional polygenicity for each region across BMI, waist-hip

ratio (WHR), and systolic blood pressure.

(TIF)

S5 Fig. Distribution of regional polygenicity. Using external software [12], we estimate the

heritability in each 6-Mb region for each trait. We report the distribution of regional heritabil-

ity for BMI, waist-hip ratio (WHR), and systolic blood pressure.

(TIF)
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S6 Fig. Heritability is proportional to the number of causal SNPs in a region. We show the

relationship between the number of causal SNPs and heritability for each region across BMI,

waist-hip ratio (WHR), and systolic blood pressure. We fit a linear regression for each trait.

Horizontal error bars represent two posterior standard deviations around our estimates for the

number of causal SNPs. Vertical error bars represent twice the standard error around the esti-

mates of regional heritability. Dots in black denote outlier regions which have an absolute stu-

dentized residual larger than 3.

(TIF)

S1 File. Supplementary materials. Additional derivations for the Gibbs sampler. Table A.

Linear relationship between the number of causal SNPs and heritability. We model the lin-

ear relationship between the number of causal SNPs for a trait and the heritability across all

regions of the genome. We report the slope of the regression and the standard error. The slope

can be interpreted as the expected per-SNP heritability contribution per causal SNP. The last

column reports the number of ‘outlier’ regions for each trait, defined as a region with an abso-

lute studentized residual greater than 3. Table B. Covariates that are associated with regional

heritability h2
r . We perform a multivariate regression of heritability on the number of SNPs,

number of causal SNPs, number of genes, median B-statistic, and non-cell-type-specific anno-

tations [28]. Only the number of causal SNPs (MCr
) remains significant for all traits after the

multiple testing correction (average p-value = 6.37 × 10−11), and the number of SNPs (Mr)

remains significant for 3 our of 5 traits after the multiple testing correction. Table C. Likeli-

hood ratio test assessing the role of gene density in regional polygenicity estimates. We

perform a likelihood ratio test between the following two models to assess the effect of gene

density on the number of causal SNPs ðMCr
Þ after adjusting for both regional heritability and

the number of SNPs ðH0 : MCr
� h2

r þ Mr;H1 : MCr
� h2

r þ Mr þ #genesÞ.

(PDF)
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