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Abstract The kinematical difference between the descrip-
tion of radiative effects for fixed Q2 vs a fixed scattering
angle in the elastic lepton–proton (lp)-scattering is discussed.
The technique of calculation as well as explicit expressions
for radiative corrections to the lepton current in unpolar-
ized elastic lp-scattering for these two cases are presented
without using an ultrarelativistic approximation. A compar-
ative numerical analysis within kinematic conditions of Jef-
ferson Lab measurements and MUSE experiment in PSI is
performed.

1 Introduction

The elastic lepton–proton scattering is a recognized tool for
investigation of the internal proton structure. The observation
of the disagreement in Q2-behavior of the proton elastic form
factor ratio for unpolarized [1,2] and polarized [3,4] elec-
tron scattering, along with the proton radius puzzle coming
from the different outcomes of the measurements in electron-
proton systems [5,6] and in the muonic hydrogen [7] – all
of these require understanding of underlying QED processes
that may lead to systematic uncertainties at a per cent level.
Moreover, the results of the recent experiment PRAD [8]
was in agreement with muonium spectroscopy experiment
that contradicted the previous electron-proton scattering data.
This unexpected result motivates new efforts for the theoret-
ical and experimental investigations.

One of the important and essential tools for the investi-
gation of the electromagnetic properties of the proton is an
experimental program with high duty-cycle positron beams
at JLab [9]. This program with the electron beams allows to
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estimate the electromagnetic form factors of the proton sepa-
rately as well as to measure a change asymmetry that appears
at the lowest order as an interference of the matrix elements
with one- and two-photon exchanges.

Together with widely discussed two-photon exchange
[10], the important source of uncertainties for both lepton
and anti-lepton scattering is from the real photon emission
accompanying any process with the charge particle scatter-
ing, as well as the additional virtual particle contributions.
Due to smallness of muon beam momentum at MUSE exper-
iment in PSI [11], as well as scattering by extremely small
angles in PRAD-II experiment at Jefferson Lab [12], all cal-
culations have to be performed beyond the ultrarelativistic
approximation, i.e. retaining lepton’s mass during the entire
calculation. While for purely elastic scattering at a given
beam energy the four-momentum transfer Q2 is in one-to-
one correspondence with a lepton scattering angle, this is
not the case for radiative events. It is therefore of critical
importance to understand the role of QED radiative correc-
tions (RC) in different kinematic scenarios: fixed momentum
transfer Q2 vs fixed scattering angle of the detected lepton
(as done in MUSE [11] or in high-resolution spectrometers
with small angular acceptance used in some of Jefferson Lab
experiments).

It should be noted that rather often for estimation of the
similar corrections to the exclusive process the additional
particle contributions are calculated exactly or within ultra-
relativistic approximation (with respect to lepton’s mass)
while the real photon emission is considered within the soft
photon approximation. Particularly in the papers [13] and
[14] for Möller and virtual Compton scattering processes,
respectively, the virtual QED corrections have been calcu-
lated beyond the ultrarelativistic limit but only the soft part
of the real photon emission was taken into account.
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Mo and Tsai first developed a systemic approach to cal-
culate RC with hard photon emission in elastic and inelastic
electron-proton scattering [15]. One limitation in their calcu-
lations was the approximate way to consider the soft-photon
contribution, as a result, their final expressions depend on
an artificial parameter Δ that was introduced to separate the
photon momentum phase space into soft and hard parts.

Here we present the explicit expressions as well as the
numerical comparison of RC to the lepton current both for
fixed scattering angle and transferred momentum squared.
Such RC include hard real photon emission from the initial
and final leptons, vacuum polarization and vertex correction.
The presented RC are charge-even, therefore they directly
apply to a sum of positron- and electron scattering cross sec-
tions that could be measured by combined experiments with
added positron capabilities at JLab.

For extraction and cancellation of the infrared divergence
we use the covariant approach of Bardin-Shumeiko [16]. One
of the important advantages of this approach over [15] con-
sists in the independence of the final results from the parame-
ter Δ. A similar calculation but for fixed transferred momen-
tum squared was performed in Ref. [17].

Among the other recent results on RC calculations to the
lepton current with the hard photon emission and keeping the
lepton mass, we specifically mention two papers. The first
one is by Bucoveanu and Spiesberger [18] and includes the
second-order RC. The second publication describes FOR-
TRAN code developed by Banerjee, Engel, Signer, and
Ulrich [19] with a calculation of the first order RC to several
processes in elastic lepton–lepton and lepton–proton scatter-
ing.

The rest of the article is organized as follows. The kinemat-
ics of elastic process and radiative process are discussed in
detail in Sect. 2. In particular, we show that for the descrip-
tion of hard photon emission at fixed scattering angle the
ultrarelativistic approximation is not applicable even for rel-
ativistic electron-proton scattering. The hadronic tensor and
Born cross section are presented in Sect. 3. The additional
virtual particle contributions are given in Sect. 4. For the
parameterization of the infrared and ultraviolet divergences
the dimensional regularization is used. In the next two sec-
tions the real photon emission contribution for both fixed
Q2 and fixed scattering angle is presented. For both cases
the infrared divergence is extracted and cancelled using the
Bardin-Shumeiko approach [16]. The comparative numer-
ical analysis for MUSE [11] and [20,21] experiments can
be found in Sect. 7. A brief discussion and conclusions are
presented in the last section. The details of the approach for
the infrared divergence extraction are given in Appendix A.
The derivation of the compact expression for the Bardin-
Shumeiko function Sφ can be found in Appendix B.

2 Elastic and inelastic processes

The unpolarized elastic lp-scattering

l(k1) + p(p1) → l ′(k2) + p′(p2), (1)

is considered first. Here k1 and p1 (k2 and p2) are the four-
momenta of the initial (final) lepton and proton respectively
(k2

1 = k2
2 = m2, p2

1 = p2
2 = M2). Although we consider

this process in the target rest frame (p1 = 0), after definition
of the virtual photon momentum as q = k1 − k2, it will be
useful to introduce the kinematic invariants:

S = 2p1k1, Q2 = −q2, X = S − Q2,

λS = S2 − 4m2 M2, λX = X2 − 4m2 M2,

λm = Q2(Q2 + 4m2), (2)

in such a way, that the energies of the initial (k10) and final
(k20) leptons as well as the absolute value of their three-
momenta (|k1| and |k2|, respectively) read:

k10 = S

2M
, |k1| =

√
λS

2M
, k20 = X

2M
, |k2| =

√
λX

2M
. (3)

In the present paper we will consider two types of the
cross sections: dσ/d Q2 and dσ/d cos θ where the cosine of
the scattering angle θ can be expressed through the invariants:

cos θ = k1 · k2
|k1||k2| = SX − 2M2(Q2 + 2m2)√

λSλX
. (4)

Taking into account X = S − Q2, the quadratic equation
over Q2 has two solutions

Q2± = λS
S sin2 θ + 2M2 ± 2M cos θ

√
M2 − m2 sin2 θ

(S + 2M2)2 − λS cos2 θ
,

(5)

where the direct substitution into (4) shows that Q2− is the
correct expression while Q2+ corresponds to the scattering
on 180◦ − θ angle:

S(S − Q2±) − 2M2(Q2± + 2m2)
√

λS((S − Q2±)2 − 4m2 M2)

= ∓ cos θ. (6)

The restrictions on the scattering angle −1 < cos θ < 1
translate into the kinematical limits for Q2:

0 < Q2 <
λS

S + m2 + M2 . (7)

For the description of the inelastic process caused by real
photon emission

l(k1) + p(p1) → l ′(k2) + p′(p2) + γ (k) (8)

(k2 = 0) three additional variables have to be introduced.
We choose the standard set [22] of them: inelasticity v =
(p1+k1−k2)

2−M2, τ = kq/kp1 and the azimuthal angle φk

between (k1,k2) and (k,q) planes in the rest frame (p1 = 0).
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Using this set of variables, it is straightforward to show
that for real photon emission the expressions for the energy
and the three-momentum of the scattering lepton have to be
modified:

k20 = X − v

2M
, |k2| =

√
(X − v)2 − 4m2 M2

2M
. (9)

As a result, cos θ can be expressed through the inelasticity
value and Q2 in a following way:

cos θR = S(X − v) − 2M2(Q2 + 2m2)
√

λS((X − v)2 − 4M2m2)
, (10)

where we introduce the index R to emphasize that at a fixed
Q2 the value of cos θ depends on the inelasticity of the
radiative process. The restrictions on the scattering angle
−1 < cos θR < 1 set the upper limit for v at fixed Q2:

vq =
√

λS
√

λm − Q2(S + 2m2)

2m2 . (11)

Similar to the non-radiative process, there are two possible
ways to express Q2 from Eq. (10). After substitution of the
obtained expressions for Q2 into the r.h.s. of Eq. (10), the
correct solution here is:

Q2
R(v) = 1

(S + 2M2)2 − λS cos2 θ

×
[
(S + 2M2)(λS − vS) − λS(S − v) cos2 θ

−2M
√

λS

√
D cos θ

]
, (12)

where the index R poses the same meaning as in Eq. (10),
namely, at a fixed cos θ the value of Q2 depends on the inelas-
ticity of the radiative process. The quantity

D = M2(λS + v(v − 2S)) − m2(λS sin2 θ + 4vM2)

(13)

must be positive. It turns out that the upper limit of v for a
given scattering angle follows from that restriction:

vθ = S + 2m2 − m

M

√
(S + 2M2)2 − λS cos2 θ. (14)

Notice that minimizingD maximizes Q2
R if cos θ > 0 and

minimizes Q2
R if cos θ < 0. The energy and momentum of

the scattering lepton for fixed angle read:

k20 = S − Q2
R(v) − v

2M
,

|k2| = λS − vS − Q2
R(v)(S + 2M2)

2M cos θ
√

λS
. (15)

From Fig. 1 one can see that when the observable quantity
Q2 is close to its kinematical boundaries, the allowed range
of the inelasticity reduces to zero that makes it impossible to
emit any real photon. The maximum value of the inelasticity

vmax
q = S − 2m(

√
S + m2 + M2 − m) (16)

0.2

0.202

0.204

0.10.050

vq
vθ

vmax =vmax
θ q

vmin
θ

Q2 (vmax)R q| | |||
Q2

cos(θ)
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v (GeV 2)
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0.10.050
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| | |||
Q2

cos(θ)
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Fig. 1 The dependence of the upper inelasticity limits vq and vθ on the
observable variables for the muon beam momentum |k1| = 200 MeV.
Lowest: a full kinematic range. Upper: a close-up of the region near the
kinematic boundary. The quantities vmax

θ = vmax
q , vmin

θ and Q2
R(vmax

q )

are defined by Eqs. (16), (18) and (17) respectively

comes at the point that can be obtained after substitution (16)
into (12),

Q2
R(vmax

q ) = m(S + 2m2)√
S + m2 + M2

− 2m2. (17)

From the upper plot of Fig. 1 we can see that for fixed
angle the upper inelasticity limit reaches its maximum value
vmax
θ = vmax

q at the kinematical boundaries cos θ = ±1 and
has a minimum

vmin
θ = (S − 2m M)

(
1 − m

M

)
(18)

at cos θ = 0.
The dependence of Q2

R on the inelasticity at different fixed
angles is presented in Fig. 2. From this plot one can see that
even for θ = 0◦ real photon emission is not prohibited by
any kinematical restrictions. Opposite to the elastic process,
the scattering under zero angle induces non-zero transferred
momentum.

After substitution of (14) into (12) we find the line with
boundary common points for θ and 180◦ − θ curves

Q2
R(vθ ) = m(S(S + 2M2) − λS cos2 θ)

M
√

(S + 2M2)2 − λS cos2 θ
− 2m2 (19)

as it is presented in the right plot of Fig. 2. The quantity
Q2

R(vmax
θ ) is defined by Eq. (17) while

Q2
R(vmin

θ ) = m

(
S

M
− 2m

)
. (20)
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Fig. 2 The dependence of Q2
R on v, as given by Eq. (12) for the differ-

ent fixed scattering angles and the muon beam momentum |k1| = 200
MeV. Left: a full kinematic range. Right: a close-up of the region near
the kinematic boundary. The joining curves θ and 180◦−θ line describes
by Eq. (19). The two indicated points are (vmin

θ , Q2
R(vmin

θ )) according
to Eqs. (18) and (20), and (vmax

θ , Q2
R(vmax

θ )) according to Eqs. (16) and
(17)

From Eq. (19) it can be seen that for the description of
hard photon emission at fixed scattering angle even for high-
energy electron-proton scattering the ultrarelativistic approx-
imation is not applicable.

In practice, however, the contribution of the hard real pho-
ton emission to the cross section can be essentially reduced
by applying a cut vcut on the inelasticity which is also a mea-
sured quantity in the single-arm measurement of the elasti-
cally scattered lepton only. Therefore, keeping in mind the
inelasticity maximum values, for an upper limit of this quan-
tity both for the fixed Q2 and scattering angle we will use
vcut as an experimentally observable variable.

The other invariant quantity τ can be calculated in the rest
frame as

τ = 1

M
(q0 − |q| cos θk), (21)

where q0 (q) is the energy (three-momentum) of the transfer
momentum q and θk is the polar angle between the three-
momenta q and k. The range of this variable is defined
through −1 < cos θk < 1 and for fixed Q2 and fixed angle
θ it reads:

τ
q
max/min = Q2 + v ± √

λq

2M2 ,

τ θ
max/min = Q2

R(v) + v ± √
λv

2M2 (22)

with λq = (Q2 + v)2 + 4M2 Q2 and λv = (Q2
R(v) + v)2 +

4M2 Q2
R(v).

At the end of this section it is necessary to say about the
orientation of the azimuthal photon angle φk . It can be defined
by choosing a sing in the expression of sin φk through the
pseudoscalar quantity as

sin φk = ± εαβγ δ pα
1 qβkγ

1 kδ

M |q||k⊥
l |k0 sin θk

, (23)

where k⊥
l is the transverse three-momenta of the incom-

ing or scattering lepton with respect to q, k0 is a photon
energy. However, during the estimation of the real photon
contribution to elastic or inclusive lepton–proton scattering
even for polarized particles in contrast to the exclusive or
semi-inclusive hadron leptoproduction the sine of φk does
not appear for any stage of calculations. Therefore, we are
not concerned about this problem and integrate over φk with-
out taking into account its orientation.

3 Hadronic tensor and Born contribution

Born contribution to the process depicted by the Feynman
graph in Fig. 3a reads:

dσB = 1

2
√

λS
M2

BdΓ2, (24)

where the phase space has the form

dΓ2 = 1

(2π)2 δ4(p1 + k1 − p2 − k2)
d3k2

2k20

d3 p2

2p20

= d Q2

8π
√

λS
=

√
λX d cos θ

8π(S + 2M2 − cos θ X
√

λS/λX )
. (25)

The matrix element squared is expressed through the con-
volution of the leptonic and hadronic tensors

M2
B = e4

Q4 Wμν(q)Lμν. (26)

The leptonic tensor is well known:

Lμν
B = 1

2
Tr[γ μ(k̂1 + m)γ ν(k̂2 + m)], (27)

while the hadronic tensor can be defined through the on-shell
proton vertex

Γμ(q) = γμFd(−q2) + iσμνqν

2M
Fp(−q2), (28)

where Fd(Fp) is Dirac (Pauli) form factor, in the following
way

Wμν(q) = 1

2
Tr[Γμ(q)( p̂1 + M)Γν(−q)( p̂1 + q̂ + M)]

(29)
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Fig. 3 Feynman graphs corresponding to the Born contribution (a),
leptonic vertex correction (b), vacuum polarization (c), and real photon
emission from initial (d) and final (e) leptons

and then rearranged into covariant form

Wμν(q) = −
(

gμν − qμqν

q2

)
F1(−q2)

+
(

p1μ + qμ

2

) (
p1ν + qν

2

) F2(−q2)

2M2

=
2∑

i=1

wi
μν(q)Fi (−q2). (30)

Here

F1(−q2) = −q2(Fd(−q2) + Fp(−q2))2,

F2(−q2) = 4M2 Fd(−q2)2 − q2 Fp(−q2)2. (31)

As a result, after convolution we have

dσB

d Q2 = 2πα2

λS Q4

2∑

i=1

θ i
BFi (Q2),

dσB

d cos θ
= jθ

dσB

d Q2 , (32)

where

jθ =
√

λSλ
3/2
X

2M2(SX − 2m2(Q2 + 2M2))
, (33)

and

θ1
B = Q2 − 2m2, θ2

B = SX − M2 Q2

2M2 . (34)

4 Additional virtual particle contribution

The additional virtual particle contribution can be expressed
through Eqs. (24,26) with replacement of the leptonic tensor
(27) by

Lμν
V = 1

2
Tr[(k̂2 + m)Γ

μ
V (k̂1 + m)γ ν]

+1

2
Tr[(k̂2 + m)γ μ(k̂1 + m)Γ̄ ν

V ], (35)

where the leptonic vertex ΓV contains the sum of both the
lepton vertex correction Λμ and vacuum polarization by lep-
ton Π

lμ
α represented by the Feynman graphs in Fig. 3(b) and

Fig. 3(c), respectively

Γ
μ
V = Λμ + Π lμ

α γ α,

Γ̄ ν
V = γ0Γ

ν †
V γ0. (36)

Similar to [17] we do not consider the vacuum polarization
by the hadron.

Since Λμ and Π
lμ
α contain the ultraviolet divergence

while Λμ also includes the infrared divergent terms, both
of these contributions have to be calculated analytically, and
we choose dimensional regularization for this calculation.

After the analytical calculation – detail of which can be
found in Appendix D of [23] – Λμ and Π i

αμ read:

Λμ = α

2π

(
δU V

vert (Q2)γμ − 1

2
mLm[q̂, γμ]

)
,

Π l
αμ = α

2π

(
gαμ + qαqμ

Q2

) ∑

i=e,μ,τ

δi U V
vac (Q2). (37)

The term in Λμ proportional to

Lm = 1√
λm

log

√
λm + Q2

√
λm − Q2

(38)
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is the anomalous magnetic moment whose contribution reads

dσAM M

d Q2 = α3m2Lm

2M2 Q2λS

×
[
12M2F1(Q2) − (Q2 + 4M2)F2(Q2)

]
,

dσAM M

d cos θ
= jθ

dσAM M

d Q2 . (39)

The ultraviolet divergence contained in the remaining
terms of Eqs (37) can be removed by applying the mass-
shell renormalization procedure that requires their vanishing
at Q2 → 0:

δvert = δU V
vert (Q2) − δU V

vert (0),

δi
vac = δi U V

vac (Q2) − δi U V
vac (0). (40)

As a result, we obtain

δvert = −J0

(
PI R + log

m

μ

)
− 2 +

(
3

2
Q2 + 4m2

)
Lm

− Q2 + 2m2

√
λm

(
1

2
λm L2

m + 2Li2

[
2
√

λm

Q2 + √
λm

]

−π2

2

)
,

δl
vac =

∑

i=e,μ,τ

δi
vac =

∑

i=e,μ,τ

[2

3
(Q2 + 2m2

i )Li
m

−10

9
+ 8m2

i

3Q2

(
1 − 2m2

i Li
m

)]
. (41)

Here

J0 = 2((Q2 + 2m2)Lm − 1), (42)

μ is an arbitrary parameter of the dimension of a mass,

PI R = 1

n − 4
+ 1

2
γE + log

1

2
√

π
(43)

is the infrared divergent term,

Li2(x) = −
x∫

0

log |1 − y|
y

dy (44)

is Spence’s dilogarithm, and

Li
m = 1

√
λi

m

log

√
λi

m + Q2
√

λi
m − Q2

, λi
m = Q2(Q2 + 4m2

i ). (45)

Finally, the virtual particle contribution reads

dσV

dζ
= dσAM M

dζ
+ α

π
(δvert + δl

vac)
dσB

dζ
, (46)

where ζ = Q2 or cos θ .
It should be noted that the above obtained expressions for

the virtual particle contributions agree with the results given
in Section 3 of [13] and in Appendix A of [14]. Particularly,
while the comparison with [14] is straightforward, to verify

agreement of our results with [13] we present Eq. (46) in the
electron-muon scattering limit: Fd → 1, Fp → 0, M → mμ

and m → me.

5 Real photon emission for fixed Q2

The contribution of real photon emission from the lepton leg
presented in Fig. 3(d, e) has a form:

dσR = 1

2
√

λS
M2

RdΓ3, (47)

where the phase space can be expressed through the photonic
variables introduced after (8)

dΓ3 = 1

(2π)5
δ4(p1 + k1 − p2 − k2 − k)

d3k

2k0

d3k2

2k20

d3 p2

2p20

= d Q2vdvdτdφk

28π4(1 + τ)2
√

λSλq
. (48)

The matrix element squared reads

M2
R = e6

t2 Wμν(q − k)Lμν
R , (49)

where t = −(q−k)2 = Q2+τ R and R = 2p1k = v/(1+τ).
The leptonic tensor reads:

Lμν
R = −1

2
Tr[Γ μα

R (k̂1 + m)Γ̄ ν
Rα(k̂2 + m)], (50)

with

Γ
μα
R =

(
kα

1

kk1
− kα

2

kk2

)
γ μ − γ μk̂γ α

2kk1
− γ α k̂γ μ

2kk2
,

Γ ν
Rα =

(
k1α

kk1
− k2α

kk2

)
γ ν − γ ν k̂γα

2kk2
− γα k̂γ ν

2kk1
. (51)

It is convenient to introduce the following convolutions inte-
grated over φk :

2π∫

0

dφk Lμν
R wi

μν(q − k) = −4π
√

λq

ki∑

j=1

R j−3

×θi j (v, τ, Q2). (52)
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Here ki = {3, 4}, θi1(v, τ, Q2) = 4θ i
B FI R and the other

components of θi j (v, τ, Q2) tensor read:

θ12 = 4τ FI R,

θ13 = −4F − 2τ 2 Fd ,

θ22 = 1

2M2

[
2(Q2 − 2τ M2 − 2(1 + τ)S)FI R

+Sp(Q2 F1+ + 2F2− − τ Sp Fd)

]
,

θ23 = 1

2M2

[
(τ (2τ M2 − Q2) + 4m2)Fd − Sp F1+

+2(1 + τ)(τ Sp Fd + X F1+ + FI R − F2−)

]
+ 2F,

θ24 = − 1

2M2 τ(1 + τ)(F1+ + (τ + 2)Fd), (53)

where Sp = S + X = 2S − Q2, and

Fd = 1

τ

(
1√
C2

− 1√
C1

)
,

F1+ = 1√
C1

+ 1√
C2

,

F2± = m2
(

B2

C3/2
2

± B1

C3/2
1

)
,

FI R = F2+ − (Q2 + 2m2)Fd ,

F = 1
√

λq
. (54)

Here:

C1 = 4m2(Q2 + τ(Q2 + v) − τ 2 M2)

+ (Q2 + τ S)2,

C2 = 4m2(Q2 + τ(Q2 + v) − τ 2 M2)

+ (Q2 + τ(v − X))2,

B1 = τ(S(Q2 + v) + 2M2 Q2)

+ Q2(Sp − v),

B2 = τ((X − v)(Q2 + v) − 2M2 Q2)

+ Q2(Sp − v). (55)

As a result, we obtain

dσR = − α3d Q2dτdv

2λS(1 + τ)t2

2∑

i=1

ki∑

j=1

Fi (t)R j−2θi j (v, τ, Q2).

(56)

A straightforward integration over the photon phase space
is not possible because of infrared divergence coming from
the term with j = 1 in (52) at the point v = 0 (or R = 0).
For the consistent extraction and cancellation of the infrared
divergence we use the Bardin- Shumeiko approach [16]. Fol-

lowing this method, the identical transformation,

dσR = dσR − dσ I R
R + dσ I R

R = dσ F
R + dσ I R

R , (57)

allows us to split dσR into the infrared-free dσ F
R and infrared-

dependent dσ I R
R parts. The last one can be obtained before

integration over φk as a term factorized in front of the Born
cross section:

dσ I R
R = 1

R
lim
R→0

RdσR = − α

π2 dσB
vdvdτdφk

2(1 + τ)2
√

λq
FIR,

(58)

where

FIR = 1

4

(
k1

kk1
− k2

kk2

)2

. (59)

Note that

FI R = R2

2π
√

λq

2π∫

0

dφkFIR. (60)

The treatment of the infrared divergence by the Bardin-
Shumeiko approach requires to separate dσ I R

R into the soft
δS and hard δH parts

dσ I R
R

d Q2 = α

π
δI R

dσB

d Q2 = α

π
(δS + δH )

dσB

d Q2 (61)

by introducing of the infinitesimal inelasticity v̄

δS = − 1

π

v̄∫

0

dv

∫
d3k

k0
δ((p1 + q − k)2 − M2)FIR,

δH = − 1

π

vcut∫

v̄

dv

∫
d3k

k0
δ((p1+|q−k)2−M2)FIR. (62)

This separation allows us to calculate δS in the dimensional
regularization by choosing the individual reference systems
for each leptonic propagator 1/kk1 and 1/kk2, as well as
their combination to make them independent of the azimuthal
angle φk while the hard part can be calculated in straightfor-
ward way without any regularization.

It can be seen from the explicit expressions for δS and δH

– details of their calculation can be found in Appendix A –
that for Q2 → 0 both of them tend to zero and their sum

δI R = J0

[
PI R + log

vcut

μM

]
+ 1

2
SL S + 1

2
X L X

+Sφ(k1, k2, p2) (63)

does not depend on the separated inelasticity v̄ and contains
the infrared term PI R as well as a parameter μ that have to
be cancelled against corresponding terms in δvert.

Therefore RC for fixed Q2 read:

dσRC

d Q2 = α

π
(δV R + δl

vac)
dσB

d Q2 + dσAM M

d Q2 + dσF

d Q2 . (64)
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Here the expression for δl
vac is defined in Eq. (41), δV R is an

infrared-free sum δvert and δR :

δV R = δI R + δvert = J0 log
vcut

m M
+ 1

2
SL S + 1

2
X L X

+ Sφ(k1, k2, p2) − 2 +
(

3

2
Q2 + 4m2

)
Lm

− Q2 + 2m2

√
λm

(
1

2
λm L2

m + 2Li2

[
2
√

λm

Q2 + √
λm

]

−π2

2

)
. (65)

The general expression for Sφ(k1, k2, p2) is reproduced in
Appendix B and for our case

Sφ(k1, k2, p2) = Q2 + 2m2

√
λm

(
1

4
λX L2

X − 1

4
λS L2

S

+ Li2

[
1 − (X + √

λX )ρ

8m2 M2

]

+ Li2

[
1 − ρ

2(X + √
λX )

]

− Li2

[
1 − Q2(S + √

λS)ρ

2M2(Q2 + √
λm)2

]

− Li2

[
1 − 2m2 Q2ρ

(Q2 + √
λm)2(S + √

λS)

])
,

(66)

where ρ = (Q2 + √
λm)(Sp − √

λm)/
√

λm .
The anomalous magnetic moment contribution is repre-

sented by Eqs. (39). At last, the finite part of the cross section
reads:

dσF

d Q2 = − α3

2λS

vcut∫

0

dv

2∑

i=1

[
4

J0θ
i
BFi (Q2)

vQ4

+
τ

q
max∫

τ
q
min

dτ

(1 + τ)t2

ki∑

j=1

Fi (t)R j−2θi j (v, τ, Q2)

]
,

(67)

where the integration limits over τ are defined by Eq. (22).

6 Real photon emission for fixed scattering angle

The phase space for this case reads:

dΓ3 = Jθ (v)
vdvd cos θdτdφk

28π4(1 + τ)2
√

λSλv

, (68)

where

Jθ(v) = λS − vS − Q2
R(v)(S + 2M2)

(S + 2M2)2 − λS cos2 θ

×
(

S + 2M2

cos θ
+ M

√
λS

D (S − v + 2m2)

)
, (69)

and Jθ (0) = jθ .
After some algebra similar to the previous section, we

have:

dσRC

d cos θ
= α

π
(δV R + δl

vac)
dσB

d cos θ
+ dσAM M

d cos θ
+ dσF

d cos θ
,

(70)

while the finite part has the following structure:

dσF

d cos θ
= − α3

2λS

vcut∫

0

dv

2∑

i=1

[
4 jθ

J0θ
i
BFi (Q2)

vQ4 + Jθ (v)

×
τ θ

max∫

τ θ
min

dτ

(1 + τ)t2

ki∑

j=1

Fi (t)R j−2θi j (v, τ, Q2
R(v))

]
.

(71)

7 Numerical results

Here we present the relative RC which is defined as a ratio
of RC to the Born cross section

δRC = dσRC/dζ

dσB/dζ
(72)

both for fixed Q2 (ζ = Q2) and the scattering angle (ζ =
cos θ ) presented in Eqs. (64) and (70), respectively. Corre-
sponding Born contributions are defined by Eqs. (32).

As mentioned above, a cut applied on the upper integration
limit over inelasticity allows to reduce the contribution of
hard photon emission. On the other hand, for the radiative
process the energy of the scattering lepton depends on the
inelasticity as it is presented in Eqs. (9) for the fixed Q2 and
(15) for the fixed scattering angle. Therefore instead of the
upper limit over inelasticity, we can set a cut on the lower
limit of the scattered-lepton energy.

The result of these cuts under MUSE kinematic conditions
[11] is presented in Fig. 4. As we can see, the situation for the
scattering electron for fixed Q2 and scattering angle for soft
photon emission is almost identical while for hard photon
emission it is dramatically different: for the fixed scattering
angle RC increase to 80% while for the fixed Q2 RC do not
exceed 5% . This is a key observation for both electron and
positron scattering in the experimental analysis.

Another interesting issue consists in the ε-behavior at JLab
kinematic conditions [20,21]. Following our previous work
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Fig. 4 Relative RC vs the value of the scattering lepton kinetic energy for elastic ep and μp scattering, beam momenta is equal to 115 MeV, 153
MeV and 210 MeV for θ = 20◦ (1), 60◦ (2), 100◦ (3). Solid (dashed) line corresponds to fixed Q2 (cos θ)
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Fig. 5 Relative RC vs value of the scattering particle kinetic energy as
a function of ε at Q2 = 0.85 GeV2 and Q2 = 1.45 GeV2. The solid
(dashed) correspond fixed Q2 (cos θ)

[24] we can define

εq =
[

1 + 2

(
1 + Q2

4M2

)
M2(Q2 − 2m2)

S(X − vcut ) − M2 Q2

]−1

(73)

for fixed Q2 and in a similar way

εθ = εq
∣∣
Q2→Q2

R(vcut )
(74)

for fixed scattering angle. The numerical result presented
in Fig. 5 shows almost identical values of RC for the soft
photon emission and different behavior of RC with the hard
real photons for the fixed Q2 vs. a fixed scattering angle.
In the first case with growing vcut the value of the variable
ε decreases and RC for the hard photon (when vcut = vq )
does not exceed 1.6 times the Born contribution, while for
the fixed scattering angle ε goes a little bit up but the absolute
value of the relative RC rapidly increases reaching the values
up to 45 times (when vcut = vθ ). Such a rapid change of RC
near the kinematic limit of fixed-angle measurements sets
more stringent requirements on energy resolution for lepton
detection in the fixed-angle kinematic setting, as opposed to
fixed Q2 analysis.

8 Conclusion

We discussed essential differences between the kinematic
description of radiative effects for fixed Q2 vs. fixed scatter-
ing angle in the elastic lepton–proton scattering. In particular,
it was shown that for the description of hard-photon emission
at fixed scattering angle, even for the high-energy electron-
proton scattering the ultrarelativistic approximation is not
applicable in the considered kinematics as we approach the
limits of phase space. The technique of Bardin-Shumeiko for
the covariant extraction and cancellation of the infrared diver-
gence as well as the explicit expressions for RC to the lepton
current in unpolarized elastic lp-scattering within these two
cases were presented. The numerical analysis within kine-
matic conditions of Jefferson Lab measurements and MUSE
experiment in PSI has shown the almost identical values of
RC for the soft photon emission and significantly different
behavior of RC with the hard real photon for the fixed Q2

compared with fixing a lepton scattering angle. The presented
formalism may be of use also for the high-energy muon scat-
tering case of the AMBER proposal [25].

Based on our recent work [24], in the nearest future we
intend to generalize the numerical comparison of RC calcu-
lation for the fixed Q2 and scattering angle with an elec-
tron/positron and muon/antimuon charge asymmetry. We
also intend to include simulations of radiative events for the
fixed scattering angle into Monte Carlo generator ELRAD-
GEN [26,27], that is used for the hard photon generation in
the elastic lp-scattering.
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Appendix A: Calculation of δS and δH

For calculation of δS in the dimensional regularization

d3k′

k′
0

→ dn−1k′

(2πμ)n−4k0

= 2πn/2−1k′n−3
0 dk0(1 − x2)n/2−2dx

(2πμ)n−4Γ (n/2 − 1)
, (A.1)

where x = cos θ (θ is defined as the spatial angle between
the photon three-momentum and k′

i (i = 1 − 3) that are
introduced below) and μ is an arbitrary parameter of the
dimension of a mass the reference system p1 + q = 0 is
used.

The Feynman parameterization of (59) gives

FIR = 1

4k′2
0

1∫

0

dy

[
m2

k′2
10(1 − xβ1)2

+ m2

k′2
20(1 − xβ2)2

− Q2 + 2m2

k′2
30(1 − xβ3)2

]
= 1

4k′2
0

1∫

0

dyF(x, y). (A.2)

Here βi = |k′
i |/k′

i0 for i = 1, 2, 3 and k3 = yk1 +(1− y)k2.
After the substitution of Eqs. (A.1) and (A.2) into the

definition of δS by Eq. (62) and, using δ-function, integrated
over the photon energy k0 one can find that

δS = − 1

2(4μ
√

π)n−4Γ (n/2 − 2)

1∫

−1

dx(1 − x2)n/2−2

×
1∫

0

dyF(x, y)

v̄∫

0

dv

v

( v

M

)n−4
. (A.3)

The integration over v and the expansion of the obtained
expression into the Laurent series around n = 4 result in

δS = δ I R
S + δ1

S, (A.4)

where

δ I R
S = −1

2

[
PI R + log

v̄

μM

] 1∫

0

dy

1∫

−1

dxF(x, y) (A.5)

and

δ1
S = −1

4

1∫

0

dy

1∫

−1

dx log

[
1

4
(1 − x2)

]
F(x, y). (A.6)

Here PI R is the infrared divergent term defined by Eq. (43).
Taking into account that k2

3 = y(1 − y)Q2 + m2 the integra-
tion over x and y variables in δ I R

S is simple:

δ I R
S = J0

[
PI R + log

v̄

μM

]
, (A.7)

where J0 is defined by Eq. (42).
For the calculation of δ1

S we note that in the system p1 +
q = 0 the energies of the initial and scattering lepton through
the invariants:

k′
10 = X

2M2 , k′
20 = S

2M2 . (A.8)

As a result,

δ1
S = 1

2
SL S + 1

2
X L X + Sφ(k1, k2, p2), (A.9)

where

L S = 1√
λS

log
S + √

λS

S − √
λS

,

L X = 1√
λX

log
X + √

λX

X − √
λX

, (A.10)

and

Sφ(k1, k2, p2) = Q2 + 2m2

4

1∫

−1

dx

1∫

0

dy
log[(1 − x2)/4]
k′2

30(1 − xβ3)2
.

(A.11)

Notice that the standard expressions for Sφ are rather cum-
bersome, see for example Eqs. (35) and (A.14) of work [17].
In Appendix B we present a more compact analytical expres-
sion for this quantity.

For the calculation of δH the straightforward integration
is used. Taking into account (60), one can find that

δH = −
vcut∫

v̄

dv

v

τmax∫

τmin

dτ FI R = J0 log
vcut

v̄
. (A.12)

Appendix B: Calculation of Sφ

Here we present a general approach suggested by ’t Hooft
and Veltman in their work [28] for a compact representa-
tion of the Sφ-function introduced by Bardin and Shumeiko
in [16]. Let us consider a real photon with a momentum k
and three other time-like four-momenta ai (i = 1, 2, 3) with
masses m2

i = a2
i . The basic idea consists in Feynman param-

eterization. Instead of usual approach used in the standard
Bardin-Shumeiko technique with two fermionic propagator
presented in previous appendix, taken in the system a3 = 0:

1

a1k

1

a2k
= γ

1

a1k

1

γ a2k
= γ

k2
0

1∫

0

dy

a2
40(1 − xβ)2

. (B.1)

Here, as in the previous appendix x = cos θ , a new four-
vector a4 = ya1 + (1 − y)γ a2, and β = |a4|/a40. The
quantity γ is choosing in such a way, that (a1 − γ a2)

2 = 0,
i.e. a1 − γ a2 is lightlike vector.
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Now introduce the following invariants:

s1 = 2a1a3, λ1 = s2
1 − 4m2

1m2
3,

s2 = 2a2a3, λ2 = s2
2 − 4m2

2m2
3,

s3 = 2a1a2, λ3 = s2
3 − 4m2

1m2
2. (B.2)

Then equation (a1 − γ a2)
2 = 0 has the following two solu-

tions:

γ1 = 2m2
1

s3 + √
λ3

, γ2 = s3 + √
λ3

2m2
2

, (B.3)

and the generalized form of Sφ looks as (A.11):

Sφ = 1

4
γ s3

1∫

0

dy

a2
40

1∫

−1

dx
log[(1 − x2)/4]

(1 − xβ)2 . (B.4)

The first integration over x is straightforward

Sφ = 1

2
γ s3

1∫

0

dy

m2
4β

log
1 − β

1 + β
, (B.5)

where m2
4 = a2

4 = ym2
1 + (1 − y)γ 2m2

2. The second inte-
gration has to be performed after the standard substitutions,
while taking into account that for the first two momenta
ai0 = si/(2m3).

Finally, we can find that for the general case Sφ depends
on six variables and for γ = γ1 it has the following structure:

Sφ(a1, a2, a3) = s3√
λ3

(
log2 s1 + √

λ1

2m1m3
− log2 s2 + √

λ2

2m2m3

+ Li2

[
1 − (s1 + √

λ1)ρ

8m2
1m2

3

]

+ Li2

[
1 − ρ

2(s1 + √
λ1)

]

− Li2

[
1 − (s2 + √

λ2)ρ

4m2
3(s3 + √

λ3)

]

− Li2

[
1 − m2

2ρ

(s2 + √
λ2)(s3 + √

λ3)

]
,

(B.6)

where ρ = (2s1(s3 + √
λ3) − 4m2

1s2)/
√

λ3.

It should be noted that

Sφ(a1, a2, a3) = Sφ(a2, a1, a3) (B.7)

The r.h.s. of this equation corresponds γ = γ2.
In our case a1 = k1, a2 = k2, a3 = p2, and s1 = X ,

s2 = S, s3 = Q2 + 2m2, m1 = m2 = m, m3 = M .
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