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ABSTRACT

Entropy of a random variable with unknown distribution function can be estimated nonparametrically by
spacing methods when independent and identically distributed (i.i.d.) observations of the random variable
are available. We extend the classical entropy estimator based on sample spacing to define an m-spacing
estimator for the Kullback-Liebler (KL) divergence between two i.i.d. observations with unknown distribution
functions, which can be applied to measure discrepancy between real-world system output and simulation
output as well as between two simulators’ outputs. We show that the proposed estimator converges almost
surely to the true KL divergence as the numbers of outputs collected from both systems increase under
mild conditions and discuss the required choices for m and the simulation output sample size as functions
of the real-world sample size. Additionally, we show Central Limit Theorems for the proposed estimator
with appropriate scaling.

1 INTRODUCTION

In this paper, we study nonparametric estimation of the Kullback-Liebler (KL) divergence between two
continuous-valued random variables whose distribution functions are unknown. Such a problem has
relevance in stochastic simulation when the objective is to measure discrepancy between the distribution
of the real-world system and simulation outputs when the simulator is built to mimic the system behavior.
Similarly, the same measure can be applied to quantify distributional discrepancy between outputs from
two different simulators.

Computing the KL divergence requires the probability density functions of two outputs. In the cases
of our interest, the distribution functions of the outputs or their parametric forms are typically unknown
although their samples may be observed and thus, it is sensible to consider a nonparametric approach.
With this motivation, we investigate a sample spacing estimator for the KL divergence constructed from
independent and identically distributed (i.i.d.) observations of the two outputs in comparison.

Given a size-n sample of a continuous random variable, the difference between the ith and (i+m)th
order statistics is referred to as m-spacing for m ≥ 1. Intuitively, m-spacing provides a measure on how
fast the probability distribution changes on the support of the random variable. For fixed m, m-spacing
is shorter for the observations near the mode of the distribution than at the tail allowing us to infer the
probability density function of the random variable nonparametrically. Thanks to this property, sample
spacing has been widely adopted in statistical procedures that require nonparameric density or likelihood
estimator, where its application ranges from tests for normality (Vasicek 1976) and uniformity (Dudewicz
and van der Meulen 1981; Hall 1986), parameter estimation (Cheng and Amin 1983; Ranneby 1984) and
more. A statistic that commonly appears in these work is a spacing estimator for the (differential) entropy
of a continuous random variable. First proposed by Tarasenko (1968), several variants of spacing entropy
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estimators have been studied. Fundamentally, these estimators take a form of the sample mean of the
logarithm of a spacing density estimator evaluated at the data points in the sample. Weak (Vasicek 1976;
Hall 1984) and strong (Beirlant and van Zuijlen 1985; van Es 1992) consistency as well as asymptotic
normality (van Es 1992) of the spacing entropy estimators are established under various conditions. See
Beirlant et al. (1997) for a comprehensive review on nonparametric entropy estimation.

As the focus of the literature moves to estimating the entropy of a high-dimensional random vector,
popularity of sample spacing in the entropy (or more generally, information measure) estimation literature
seems to have subsided as m-spacing can be defined only for a one-dimensional random variable. Neverthe-
less, some of more recent high-dimensional estimation approaches can be regarded as extensions of spacing
methods. Wang et al. (2006) estimate the KL-divergence of two distributions of d-dimensional random
vectors by first estimating their density functions using k-nearest neighbors (k-nn) method in which the
volume of the ball including the neighbors is used to measure how fast the probability distribution changes
on the support. For k = 1, they show their estimator’s mean squared error converges to 0 when the sample
sizes from both distributions increase to infinity. Wang et al. (2009) extend this work to general k and
show strong consistency of their estimator when k grows as a function of the sample size. Moon and Hero
(2014b) investigate the convergence rate of the variance and bias of the k-nn method applied to a general
f -divergence and devise an ensemble approach to boost the convergence rate. Moon and Hero (2014a)
show that the ensemble estimator has asymptotic normality when standardized by its mean and standard
deviation. However, such standardization does not provide an explicit form of the asymptotic variance that
can be easily computed; Moon and Hero (2014a) adopts bootstrapping to construct a confidence interval
of their KL divergence estimator. In all these works, the sample sizes from both distributions are assumed
to grow at the same rate.

Considering a simpler case of d = 1, our spacing estimator for the KL divergence is an extension of the
two-sided 2m-spacing entropy estimator that appears in Vasicek (1976). We establish strong consistency
and central limit theorems (CLTs) for the proposed KL divergence estimator when size-n and size-s i.i.d.
samples of real-world and simulation outputs, respectively, are available. In particular, we discuss the
requirements for the choices of m and s as increasing functions of n for the asymptotic results to hold.
The relationship between n and s provides a guidance on selecting the sample size s for the simulation
experiment when n real-world outputs are available, and vice versa. Moreover, our CLTs provide explicit
forms of the asymptotic variance, and thus facilitate confidence interval construction.

We note that there are several nonparametric estimators for the KL divergence and other information
measures proposed in the literature and only a small subset is reviewed here. We refer the readers to Verdú
(2019) for a comprehensive review on recent work.

The remainder of the paper is organized as follows. In Section 2, we provide some background on
entropy and its spacing estimator. We discuss the KL divergence and the corresponding spacing estimators in
Section 3 assuming the distribution function of the real-world system output is unkonwn, but the simulation
output distribution is known. Section 4 extends the KL divergence estimator to the case when both
distributions are unknown, and discusses its asymptotic properties. Empirical demonstration is presented
in Section 5.

2 BACKGROUND

Throughout the paper, we denote the probability density function (pdf) and cumulative distribution function
(cdf) of the continuous-valued real-world output random variable, X , with f and F , respectively. Without
loss of generality, X may represent another simulator’s output random variable if the objective is to measure
the discrepancy between two simulators’ output distributions.

For absolutely continuous random variable X with density function f , its differential entropy is

H( f ) =−
∫

f (x) log( f (x))dx = E[− log( f (X))]. (1)
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Note that log(·) refers to the natural logarithm in this paper while in some work, base 2 logarithm is adopted
instead.

Let Xi
i.i.d.∼ F , and X(i) denote the ith order statistics such that X(1) ≤ X(2) ≤ ·· · ≤ X(n). An m-spacing

estimator for f is

fn,m(x) =
m
n

1
X(im)−X((i−1)m)

, where x ∈
[
X((i−1)m),X(im)

)
. (2)

For intuition, consider when m = 1. Then, (2) uniformly assigns the probability mass of 1/n to the interval,[
X(i−1),X(i)

)
. For m > 1, (2) assigns m/n to each interval of m order statistics. Several variations of

m-spacing density estimators have been proposed, but their underlying ideas are similar to that of (2).
Vasicek (1976) adopts a 2m-spacing density estimator to nonparametrically estimate H( f ) by

Hmn =
1
n

n

∑
i=1

log
( n

2m

(
X(i+m)−X(i−m)

))
, (3)

where X( j) = X(n), if j > n and X( j) = X(1), if j < 1. Observe that Hmn replaces the expectation in (1) with
the sample mean while f (X(i)) is replaced with a 2m-spacing density estimator centered at X(i).

To characterize estimation error of Hmn, (3) can be written as the sum of three components (Vasicek
1976). Namely, Hmn =− 1

n ∑
n
i=1 log( f (Xi))+Vmn−Wmn, where

Vmn ,
1
n

n

∑
i=1

log
( n

2m

(
F
(
X(i+m)

)
−F

(
X(i−m)

)))
, and Wmn ,

1
n

n

∑
i=1

log

(
F
(
X(i+m)

)
−F

(
X(i−m)

)
f
(
X(i)
)(

X(i+m)−X(i−m)

)) . (4)

Observe that the first term in the sum is the Monte Carlo estimate of the entropy given f , which does
not depend on m, while Vmn corresponds to the error caused by replacing F with the empirical cdf, and
Wmn can be viewed as the discretization error of the 2m-spacing density estimator. Thus, consistency and
asymptotic normality of Hmn can be shown by characterizing each sample mean in the sum.

Note that for 1 ≤ i ≤ n, F
(
X(i)
)
=U(i), where U(1) ≤ ·· · ≤U(n) is the order statistics from an i.i.d.

n-sample U1, . . . ,Un of Uniform(0,1) random variables. We additionally define U(0) = 0 and U(n+1) = 1.
From the well-known relationship between uniform order statistics and the Beta distribution, we have
U(k)−U( j) ∼ Beta(k− j,n− (k− j)+1) and E

[
log
(
U(k)−U( j)

)]
= ψ(k− j)−ψ(n+1) for k > j, where

ψ(x) =Γ′(x)/Γ(x) is called the digamma function. From these, Vasicek (1976) shows thatVmn is independent
of F and derives its mean as

E[Vmn] = log(n)− log(2m)−ψ(n+1)+
(

1− 2m
n

)
ψ(2m)+

2
n

m

∑
i=1

ψ(i+m−1), (5)

Because log(x)−1/x<ψ(x)< log(x)−1/(2x) for x> 0 (Alzer 1997) and the sum of the last two items in (5)
cancels with log(2m) in the limit, E[Vmn]→ 0 as m→∞ and n→∞. He further suggests H ′mn ,Hmn−E[Vmn]
as a bias-corrected estimator for H( f ), and shows that given f has finite variance, H ′mn is weakly consistent
when m = o(n) as m→ ∞ and n→ ∞.

van Es (1992) shows that H ′mn is strongly consistent under a different set of assumptions as stated in
Assumption 1, which we adopt in the remainder of the paper.
Assumption 1 There exist ρ f and γ f such that 0 < ρ f ≤ f (x) ≤ γ f < ∞ for all x ∈ supp( f ) and X is an
absolutely continuous random variable with respect to Lebesgue measure.
For generic density f , H( f ) may be arbitrarily large. However, finite variance implies H( f ) < ∞ and
boundedness of f implies H( f ) > −∞. Thus Assumption 1 constrains our discussion on finite entropy
only. van Es (1992) also shows CLTs for H ′mn when scaled appropriately. We restate his results below to
later invoke it to show strong consistency and asymptotic normality for our KL divergence estimator.
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Lemma 2 (Theorems 2 and 4 in van Es (1992)) Suppose Assumption 1 holds and supp( f ) is an interval.
Moreover, let m/ logn→ ∞ as n→ ∞.

(a) If m = o(n), then we have H ′mn
a.s.→ H( f ).

Furthermore, suppose f is Lipschitz continuous in supp( f ).

(b) If f is not the pdf of U(0,1) and m = o(n1/2), then n1/2 (H ′mn−H( f )) D→N (0,Var[log( f (X))]).

(c) If f is identical to the pdf of U(0,1) almost everywhere and m = o(n1/3), then (mn)1/2H ′mn
D→

N (0,1/3) .

We note that in van Es (1992), Lemma 2 is written for one-sided m-spacing estimator. However, the
same results hold for the two-sided variant considered here. One can show that the two estimators are almost
surely equivalent under the same set of assumptions made above. van Es (1992) further shows the strong
consistency when the support is a finite union of intervals, by replacing m/ logn→ ∞ with m = O(n1−ε)
for some 0 < ε < 1. This condition is also employed in Beirlant and van Zuijlen (1985), where strong
consistency for the two-sided m-spacing estimator is proved, given that f is absolutely continuous and has
finite variance, but no constraint on the support.

We close this section by introducing the definition of KL divergence. Let g and G respectively denote
the pdf and cdf of the continuous-valued simulation output random variable, Y . The KL divergence of g
with respect to f is defined as

D( f ||g) =
∫

f (x) log
(

f (x)
g(x)

)
dx = E f

[
log
(

f (X)

g(X)

)]
, (6)

where E f indicates that the expectation is taken with respect to f . The following two sections discusses
estimation of D( f ||g) when G is known and unknown, respectively.

3 SPACING ESTIMATOR FOR KL DIVERGENCE WITH KNOWN G

Using the spacing estimator of the density function, H ′mn can be extended to estimate D( f ||g). Assuming
G is known, the corresponding spacing estimator for D( f ||g) is

Dmn =
1
n

n

∑
i=1

log

(
2m/n

G
(
X(i+m)

)
−G

(
X(i−m)

))+E[Vmn], (7)

where E[Vmn] in (5) is added for bias correction. Essentially, (7) is the sample mean of the log of the

estimated likelihood ratio at X(i) where f
(
X(i)
)

is replaced with
2m/n

X(i+m)−X(i−m)
as in (3) and g

(
X(i)
)

is

with
G
(
X(i+m)

)
−G

(
X(i−m)

)
X(i+m)−X(i−m)

. Similar to the decomposition of Hmn, we can rewrite (7) as

Dmn =
1
n

n

∑
i=1

log
(

f (Xi)

g(Xi)

)
−Vmn +Wmn−Zmn +E[Vmn], (8)

where Vmn and Wmn are defined in (4), and

Zmn ,
1
n

n

∑
i=1

log

(
G
(
X(i+m)

)
−G

(
X(i−m)

)
g
(
X(i)
)(

X(i+m)−X(i−m)

)) . (9)
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We may interpret Zmn as the discretization error of using the finite difference method to estimate g
(
X(i)
)
.

Decomposition (8) supports adding E[Vmn] for bias correction in (7).
A quantity similar to (7) is studied by Ekström (1999) in the context of parameter estimation when

F has a known distribution family with unknown parameter vector θ 0. As an alternative to maximum
likelihood estimation, the maximum spacing estimator for θ 0 is defined as θ that minimizes the estimated
KL divergence of F(x;θ) with respect to true distribution F(x;θ 0):

1
n−m+2

n−m+1

∑
i=0

log

(
F
(
X(i+m);θ 0

)
−F

(
X(i);θ 0

)
F
(
X(i+m);θ

)
−F

(
X(i);θ

) ) , (10)

where X(0) = −∞ and X(n+1) = ∞. Compared to (7), observe that (10) uses one-sided m-spacing density
estimator. Moreover, (10) assumes both F(·;θ) and F(·;θ 0) have known functional forms as the common
distribution family is assumed for parameter estimation, whereas (7) assumes only G is known, not F .
Ekström (1999) provides several strong consistency results for (10) and related quantities, one of which
we restate below as a lemma.
Lemma 3 (Corollary 1 in Ekström (1999)) Suppose Ξ is a nondecreasing bounded function on [0,1] and
there exists function ξ such that ξ (t) = dΞ(t)/dt almost everywhere for t ∈ (0,1) and ξ (t)≥ ρξ for some
ρξ > 0. If m = o(n), then

1
n−m+2

n−m+1

∑
i=0

log

(
Ξ
(
U(i+m)

)
−Ξ

(
U(i)
)

U(i+m)−U(i)

)
a.s.−−→

∫ 1

0
log(ξ (t))dt.

Although Lemma 3 is written for one-sided m-spacing estimator, the same consistency result holds
when U(i) and n−m+2 are replaced with U(i−m) and n, respectively, whilst defining X(i) = X(1) for i < 1
and X(i) = X(n) for i > n. We apply this variant of Lemma 3 in the proof of Theorem 5 that states strong
consistency of Dmn, below. We first state an additional assumption on the density function g.
Assumption 4 There exist ρg and γg such that 0 < ρg ≤ g(y) ≤ γg < ∞ for all y ∈ supp( f ) and Y is an
absolutely continuous random variable with respect to Lebesgue measure.

Because the base measure of D( f ||g) is f , the boundedness assumption for g is made on the support
of f , not of g. The assumption also assures supp( f )⊂ supp(g), eliminating the case when D( f ||g) = ∞.
Below, we present our first main result on strong consistency of Dmn. Unlike Lemma 2 by van Es (1992),
note that Theorem 5 does not require supp( f ) to be an interval; it may be a union of intervals.
Theorem 5 Suppose Assumption 1 holds and we have known G whose density function satisfies Assump-
tion 4. If m/ logn→ ∞ and m = o(n), then Dmn

a.s.−−→ D( f ||g) as n→ ∞.

Proof. Let Ξ = G◦F−1. Then, Ξ is nondecreasing in [0,1] and ξ (t) =
g(F−1(t))
f (F−1(t))

≥
ρg

γ f
> 0 from the

assumptions. Let U(i) = F(X(i)). Then, Ξ(U(i)) = G(F−1(U(i))) = G(F−1(F(X(i)))) = G(X(i)). Because
both F and G are absolutely continuous and thus are differentiable almost everywhere, we apply Lemma 3
to obtain

1
n

n

∑
i=1

log

(
G
(
F−1

(
U(i+m)

))
−G

(
F−1

(
U(i−m)

))
U(i+m)−U(i−m)

)
a.s.−−→

∫ 1

0
log
(

g(F−1(t))
f (F−1(t))

)
dt =

∫
supp( f )

log
(

g(x)
f (x)

)
f (x)dx =−D( f ||g).

From (7), observe that

Dmn =−
1
n

n

∑
i=1

log

(
G
(
X(i+m)

)
−G

(
X(i−m)

)
U(i+m)−U(i−m)

)
− 1

n

n

∑
i=1

log
( n

2m

(
U(i+m)−U(i−m)

))
+E[Vmn], (11)
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where the first term converges to D( f ||g) almost surely as shown above and the remaining part is the
bias-corrected entropy estimator, H ′mn, for Uniform(0,1) and thus converges to 0 almost surely in the
limit.

To derive CLT results for Dmn, we first state extra conditions on smoothness of f and g.
Assumption 6 Suppose that there exist L f > 0 and Lg > 0 such that for any x1 and x2 in the support of
f , | f (x1)− f (x2)| ≤ L f |x1− x2| and |g(x1)−g(x2)| ≤ Lg|x1− x2|.

Again, the smoothness condition for g is only needed on the support of f as the base measure of
D( f ||g) is f .

To pave the way for the CLT results, we restate another lemma from Ekström (1999). The proof of
the following lemma can be found in the proof of Theorem 1 in van Es (1992).
Lemma 7 (Lemma 4 in Ekström (1999)) Let {mn} be a sequence of positive integers with mn/ logn→∞,
then

lim
n→∞

max
0≤ j≤n−mn+1

∣∣∣∣n+1
mn

(
U( j+mn)−U( j)

)
−1
∣∣∣∣= 0, almost surely.

We show asymptotic normality for Dmn when f 6= g and when f = g almost everywhere, respectively,
in the following.
Theorem 8 Suppose Assumptions 1, 4, and 6 hold. If the support of f is an interval and m/ logn→ ∞ as
n→ ∞, then we have the following results.

(a) If f 6= g and m = o
(
n1/2

)
, then n1/2(Dmn−D( f ||g)) D→N (0,Var[log( f (X)/g(X))]).

(b) If f = g almost everywhere and m = o
(
n1/3

)
, then (mn)1/2(Dmn−D( f ||g)) D→N (0,1/6).

Proof. Because supp( f ) is a bounded interval, there exists M > 0 such that supp( f )⊂ [−M,M]. Recall
the decomposition of Dmn in (8), we examine each error term in this sum starting with Wmn. By the mean
value theorem, for each 1 ≤ i ≤ n, there exists X̃i ∈

(
X(i−m),X(i+m)

)
such that F

(
X(i+m)

)
−F

(
X(i−m)

)
=

f
(
X̃i
)(

X(i+m)−X(i−m)

)
. Since n→ ∞ and m = o(n),∣∣∣∣∣ f
(
X̃i
)
− f

(
X(i)
)

f
(
X(i)
) ∣∣∣∣∣≤ L f

ρ f

∣∣X̃i−X(i)
∣∣≤ L f

ρ f

∣∣X(i+m)−X(i−m)

∣∣ a.s.→ 0

Because |log(1+ x)| ≤ 2|x| given |x| ≤ 1/2, for sufficiently large n, we have

|Wmn|=

∣∣∣∣∣1n n

∑
i=1

log

(
f
(
X̃i
)

f
(
X(i)
))∣∣∣∣∣=

∣∣∣∣∣1n n

∑
i=1

log

(
1+

f
(
X̃i
)
− f

(
X(i)
)

f
(
X(i)
) )∣∣∣∣∣≤ 2

n

n

∑
i=1

∣∣∣∣∣ f
(
X̃i
)
− f

(
X(i)
)

f
(
X(i)
) ∣∣∣∣∣

≤
2L f

nρ f

n

∑
i=1

∣∣X(i+m)−X(i−m)

∣∣≤ 2L f

nρ f
4Mm =

8L f M
ρ f

m
n
, almost surely.

The last inequality follows from that in ∑
n
i=1

∣∣X(i+m)−X(i−m)

∣∣, ∣∣X( j)−X( j−1)
∣∣ for each 2≤ j ≤ n is added

at most 2m times and that
∣∣X(n)−X(1)

∣∣ ≤ 2M. Similarly, we can show |Zmn| ≤ 8LgM
ρg

m
n with probability

one. Next we focus on the term Vmn. Recall that we define X( j−m) = X(1) for j−m < 1 and X( j+m) = X(n)

for j−m > n. Then, for the first m terms in the sum of Vmn, 1
n ∑

m
i=1 log

( n
2m

(
F
(
X(i+m)

)
−F

(
X(i−m)

)))
=

1
n ∑

m
i=1 log

( n
2m

(
U(i+m)−U(1)

))
, and

m
n

log
( n

2m

(
U(m+1)−U(1)

))
≤ 1

n

m

∑
i=1

log
( n

2m

(
U(i+m)−U(1)

))
≤ m

n
log
( n

2m

(
U(2m)−U(1)

))
.
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Combined with Lemma 7, we have

m
n

log
( n

2m

(
U(2m)−U(1)

))
=

m
n

log
(

n+1
2m−1

(
U(2m)−U(1)

))
+

m
n

log
(

n
n+1

2m−1
2m

)
= O

(m
n

)
almost surely. Similarly, one can show that m

n log
( n

2m

(
U(m+1)−U(1)

))
= O

(m
n

)
. The last m terms in the

sum of Vmn can also be shown to be O
(m

n

)
following the same logic. The remaining part of Vmn is

1
n

n−m

∑
i=m+1

log
( n

2m

(
U(i+m)−U(i−m)

))
=

(n−2m)

n
log
( n

2m

)
+

1
n

L2m,n−
1
n

log
(
U(2m)

)
− 1

n
log
(
1−U(n−2m+1)

)
,

where L2m,n , ∑
n−2m+1
j=0 log

(
U( j+2m)−U( j)

)
, is one of the statistics studied by Cressie (1976). From the

discussion on U order statistics in Section 2, it can be seen that E[L2m,n] = (n−2m+2)(ψ(2m)−ψ(n+1))
and E[L2m,n]/n+ log(n/2m)

a.s.→ 0 as n→ ∞, m→ ∞ and m = o(n). Cressie (1976) also shows that the
variance of L2m,n is of order n/(2m). Additionally, by Lemma 7,

√
mn
n

log
(
U(2m)

)
=

√
m
n

log
(

n+1
2m

U(2m)

)
+

√
m
n

log
(

2m
n+1

)
a.s.→ 0.

Similarly, 1
n log

(
1−U(n−2m+1)

) a.s.→ 0. Combining all pieces, we finally have

Dmn =
1
n

n

∑
i=1

log
(

f (Xi)

g(Xi)

)
− 1

n
(L2m,n−E[L2m,n])+o

(
1√
mn

)
+O

(m
n

)
+E[Vmn]

almost surely. The variance of the first four parts are of the order 1/n, 1/(mn), o(1/(mn)) and m2/n2.
Suppose f 6= g, then by choosing m = o

(
n1/2

)
, the variance of the first term dominates the others. When

f = g almost everywhere, the first term is 0. Additionally, Wmn and Zmn cancel out each other. Cressie
(1976) shows that provided m = o(n1/3), (2m/n)1/2 (L2m,n−E[L2m,n])

D→N (0,1/3), which leads to Part
(b) of our theorem.

We can also extend the result to the case when there are finite discontinuity points in the support of f .
Corollary 9 Suppose Assumptions 1 and 4 hold. If the support of f is a finite union of intervals and
Assumptions 6 holds on each interval, then Theorem 8 holds for such f .

Proof. Suppose there are k discontinuity points. We define A ⊆ {1,2, . . .n} as for any i ∈ A ,(
X(i−m),X(i+m)

)
overlaps at least one discontinuity point. Therefore the cardinality of A is at most

2km. We first consider the case f 6= g. From boundedness of f , for the ith term in the sum of Wmn,∣∣∣∣log
(

F(X(i+m))−F(X(i−m))
f(X(i))(X(i+m)−X(i−m))

)∣∣∣∣ ≤ ∣∣∣log
(

γ f
ρ f

)∣∣∣, for any 1 ≤ i ≤ n. With a similar analysis on G and g, we can

conclude that the contributions to Wmn and Zmn from all i ∈ A are at most O(m/n). The analysis on
Vmn is not affected by the new discontinuity assumption. When f = g, Wmn cancels Zmn. Therefore, the
conclusions still hold.

4 EXTENSION TO UNKNOWN G

Since we are interested in the case where both F and G are unknown, Dmn is not directly applicable to our
context. Instead, we consider estimator Ds

mn, which replaces G with an empirical cdf. Specifically, suppose
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Y1,Y2, . . . ,Ys are i.i.d. observations from G. Then, Gs(·) = s−1
∑

s
j=1 I(· ≤ Yj), where I(·) is an indicator

function. Replacing G in Dmn with Gs, we obtain

Ds
mn =−

1
n

n

∑
i=1

log
( n

2m

(
Gs
(
X(i+m)

)
−Gs

(
X(i−m)

)))
+E[Vmn]. (12)

In the simulation context, a natural question is how to balance the simulation sample size, s, with n and
m so that Ds

mn exhibits desired statistical properties, which we answer in this section.
Note that we can also write Ds

mn as Ds
mn =

1
n ∑

n
i=1 log

(
f (Xi)
g(Xi)

)
−Vmn +E[Vmn]+Wmn−Zmn−Ss

mn, where
Vmn and Wmn are defined as in (4), Zmn is given in (9) and

Ss
mn ,

1
n

n

∑
i=1

log

(
Gs
(
X(i+m)

)
−Gs

(
X(i−m)

)
G
(
X(i+m)

)
−G

(
X(i−m)

) ) . (13)

Compared to the representation of Dmn in Section3, Ss
mn is the additional error due to approximating G

with empirical cdf Gs.
Below, we show strong consistency and asymptotic normality of Ds

mn.
Theorem 10 Suppose Assumptions 1 and 4 hold. If m = o(n) and m/ logn→ ∞ as n→ ∞, then we have
the following results.

(a) If s = ω((n/m)2), then Ds
mn

p→ D( f ||g).
(b) If (n/m)2(log(log(s))/s)→ 0, then Ds

mn
a.s.→ D( f ||g).

Proof. Notice that Ds
mn = Dmn +Ss

mn and we have Dmn
a.s.−−→ D( f ||g) from Theorem 5. In the following,

we show that Ss
mn→ 0 in probability and almost surely with some suitable choices of m, n and s. We have

|Ss
mn| ≤ 1

n ∑
n
i=1 |log(1+∆i,1/∆i,2)|, where

∆i,1 , Gs
(
X(i+m)

)
−G

(
X(i+m)

)
−Gs

(
X(i−m)

)
+G

(
X(i−m)

)
and ∆i,2 , G

(
X(i+m)

)
−G

(
X(i−m)

)
.

We first analyze ∆i,2. Because F is absolutely continuous, F−1(F(X)) = X with probability one.
Therefore, in the almost surely sense, for m < i≤ n−m, G

(
X(i+m)

)
−G

(
X(i−m)

)
≥G

(
X(i+m)

)
−G

(
X(i)
)
=(

G◦F−1
)(

U(i+m)

)
−
(
G◦F−1

)(
U(i)
)
≥ ρg

γ f

(
U(i+m)−U(i)

)
from the mean value theorem, where the inequal-

ity follows from the boundedness of the densities; for 1≤ i≤ m, G
(
X(i+m)

)
−G

(
X(i−m)

)
= G

(
X(i+m)

)
−

G
(
X(1)
)
≥G

(
X(m+1)

)
−G

(
X(1)
)
≥ ρg

γ f

(
U(m+1)−U(1)

)
. Performing a similar analysis on n−m+1≤ i≤ n,

we conclude that

min
1≤i≤n

{
G
(
X(i+m)

)
−G

(
X(i−m)

)}
≥

ρg

γ f

m
n+1

min
1≤i≤n−m

{
n+1

m

(
U(i+m)−U(i)

)}
(14)

almost surely. Therefore, we have min1≤i≤n ∆i,2 ≥ O(m/n) almost surely by applying Lemma 7 to the
right-hand side of (14).

For ∆i,1, if there exist a positive sequence {an} such that P
(
sup1≤i≤n |∆i,1| ≤ an

)
→ 1 and an = o

(m
n

)
,

then sup1≤i≤n |∆i,1|/ inf1≤i≤n |∆i,2| → 0 in probability. Recall that given |x| ≤ 1/2, |log(1+ x)| ≤ 2|x|, we
can thus bound Ss

mn as

|Ss
mn| ≤

2
n

n

∑
i=1

|∆i,1|
|∆i,2|

≤ 2
sup1≤i≤n |∆i,1|
inf1≤i≤n |∆i,2|

for sufficiently large n, and conclude that Ss
mn converges to 0 in probability. In the following we give a

sufficient condition for such {an} to exist. By the triangle inequality, |∆i,1| ≤ |Gs
(
X(i+m)

)
−G

(
X(i+m)

)
|+
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|Gs
(
X(i−m)

)
−G

(
X(i−m)

)
| ≤ 2supx|Gs(x)−G(x)|, which implies sup1≤i≤n |∆i,1| ≤ 2supx|Gs(x)−G(x)|.

Then for any positive sequence {an}, by the Dvorsky-Kiefer-Wolfwitz inequality,

P
(

sup
1≤i≤n

|∆i,1|> an

)
≤ P

(
2sup

x
|Gs(x)−G(x)|> an

)
≤ 2exp

(
−sa2

n

2

)
. (15)

Hence, provided that sa2
n→ ∞, we have P

(
sup1≤i≤n |∆i,1| ≤ an

)
→ 1 as desired. Observe that if m and s

are chosen to satisfy s = ω((n/m)2), then we can always find an = o(m/n) such that sa2
n→ ∞. Therefore,

we have (15)→ 0, which concludes the proof of Part (a).
To prove Part (b), we derive an almost sure upper bound for sup1≤i≤n |∆i,1|. The Glivenko-Cantelli

theorem can be strengthened to a law of the iterated logarithm (Van der Vaart 2000):

limsup
s→∞

√
s

2log(log(s))
‖Gs−G‖

∞
≤ 1

2
almost surely.

Thus, choosing m and s such that(n/m)2(log(log(s))/s) → 0 as n → ∞ and combining the two in-
equalities, sup1≤i≤n |∆i,1| ≤ 2supx|Gs(x)−G(x)| and inf1≤i≤n ∆i,2 ≥ O(m/n) almost surely, we have that
sup1≤i≤n |∆i,1|/ inf1≤i≤n |∆i,2| → 0 with probability one. We proceed as

|Ss
mn| ≤

1
n

n

∑
i=1

∣∣∣∣log
(

1+
∆i,1

∆i,2

)∣∣∣∣≤ 2
n

n

∑
i=1

∣∣∣∣∆i,1

∆i,2

∣∣∣∣≤ 2sup1≤i≤n |∆i,1|
inf1≤i≤n |∆i,2|

≤
4ρg

γ f

n
m
‖Gs−G‖

∞

=

√
2log(log(s))

s
4ρg

γ f

n
m

√
s

2log(log(s))
‖Gs−G‖

∞
≤

4ρg

γ f

√
2log(log(s))

s
n
m
, almost surely.

Notice that strong consistency (Part (b)) requires slightly larger s than weak consistency (Part (a)).
Theorem 10 allows s to grow slower than n; for instance, m = n3/4 and s = n3/4 satisfy sample size
requirements for both weak and strong consistency. Despite the savings in the simulation effort, this choice
makes m large and thus introduces large discretization error of f and g, as we have shown that both |Wmn|
and |Zmn| are controlled by rate of O(m/n).

Lastly, CLT results for Ds
mn are derived in the following theorem.

Theorem 11 Suppose Assumption 1, 4, and 6 hold. If the support of f is an interval and m/ logn→ ∞

as n→ ∞, then we have the following results.

(a) If f 6= g, m = o
(
n1/2

)
and s = ω(n3/m2), then n1/2(Ds

mn−D( f ||g)) D→N (0,Var[log( f (X)/g(X))]).

(b) If f = g almost everywhere, m = o
(
n1/3

)
and s = ω(n3/m), (mn)1/2(Ds

mn−D( f ||g)) D→N (0,1/6).

Proof. Suppose f 6= g and m = o
(
n1/2

)
. Following the same steps as in the proof of Theorem 8, we

only need to show that n1/2Ss
mn

p−→ 0 under some suitable choices of m, n and s. Similar to Part (a) of
Theorem 10, if s = ω(n3/m2), then we can always find {an} such that an = o(m/n3/2), sa2

n→∞. Therefore,
we have P{n1/2|Ss

mn| ≤ n3/2

m an}→ 1 and n3/2

m an→ 0, which concludes Part (a). Part (b) can be shown in a
similar fashion given m = o

(
n1/3

)
.

Notice that Part (a) of Theorem 11 requires s = ω(n2). In contrast with Theorem 10, m/n needs to
decrease at a faster rate in order to make n−1/2 {∑n

i=1 log( f (Xi)/g(Xi))−D( f ||g)} the dominant term of
Ds

mn. As a consequence, s needs to increase faster to compensate for smaller m. For Part (b), notice that s
is required to grow even faster in n. Notice that in both Parts (a) and (b), the explicit expressions for the
asymptotic variances are provided.
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Similar to Corollary 9, we can extend the CLTs result to the case where the support of f is a finite
union of intervals.
Corollary 12 Suppose Assumptions 1 and 4 hold. If the support of f is a finite union of intervals and
Assumptions 6 holds on each of them, then Theorem 10 holds for such f .

5 EMPIRICAL STUDIES

In this section, we examine the empirical performance of the KL divergence estimator, Ds
mn. To meet

Assumptions 1 and 4, we first choose interval [a,b] to be the support of both f and g and consider the
truncated versions of f and g so that both the densities are bounded away from zero and infinity within the
interval. The truncated version of f can be computed as f̃ (x) = f (x)/

∫ b
a f (x)dx if x ∈ [a,b] and f̃ (x) = 0

if x /∈ [a,b]. Similarly, g̃ can be computed from g.
From the experiments, we observed that Ds

mn = ∞ for some instances. This is due to the fact that
multiple realizations of X can lie within a single interval [Y( j),Y( j+1)] with nonzero probability. When this
causes Gs(X(i+m)−Gs(Xi−m)) = 0 for some i, we have Ds

mn = ∞. To avoid this situation, we modify Gs
via linear interpolation. Namely, we define Y(0) = a and Y(s+1) = b and let

Gs(z) =
j

s+1
+

z−Y( j)

Y( j+1)−Y( j)
, if z ∈ [Y( j),Y( j+1)).

In the following, we compare D
(

f̃ ||g̃
)

with Ds
mn for several choices of f and g. For all cases in

Tables 1–3, f and g are truncated to f̃ and g̃, respectively, in [a,b] = [0,20]. The true value of D
(

f̃ ||g̃
)

is
computed via numerical integration. For all Gamma distributions discussed below, we adopt the shape-scale
parameterization. In all experiments, we chose m = n

1
2 log(log(n)) and s = n and 100 macro runs were

made to provide the average Ds
mn and its standard error.

Table 1 shows the case when f and g are the pdfs of N (5,12) and Γ(10,0.5), respectively. Although
D( f ||g) = ∞ since g(x) = 0 for x≤ 0, the KL divergence after truncation, D

(
f̃ ||g̃
)
, is finite. The parameter

choices for this example makes g look similar to f , which results in relatively small D
(

f̃ ||g̃
)
= 0.1592.

In Table 1, we compare Ds
mn and Dmn with D

(
f̃ ||g̃
)
. Additionally, Wmn, Zmn and Ss

mn, are displayed to
understand the source of estimation error in Dmn and Ds

mn. All values in Table 1 are averaged over 100
macro runs and the standard errors are presented in the parentheses. As n and s grow, Ds

mn is as good as
Dmn on average with a slightly larger standard error. All error terms are relatively small, among which
Ss

mn shrinks to zero fastest. For our choice of m, the discretization errors Wmn and Zmn are small; f̃ and g̃
have similar shapes, making most X and Y samples generated within the same region, and the errors due
to empirical cdf surrogates become negligible since few points are evaluated at the right tail of Gs.

Table 2 shows the results when f and g are pdfs of N (5,12) and Γ(2.5,2), respectively. Notice that
both f and g have the same mean, however, compared to the first experiment, g is more right-skewed as the
shape parameter is smaller. This change is reflected in increased D

(
f̃ ||g̃
)
= 0.7153. Similar observations

can be made as in the first experiment; Dmn only outperforms Ds
mn in standard error when n and s are big.

Table 3 shows the case when we swap the choices for f and g from those in the second experiment.
This change results in much increased D

(
f̃ ||g̃
)
= 3.3209. Observe that both Dmn and Ds

mn have significant

Table 1: Comparison of estimated KL divergence with 100 macro-replications with f : N (5,12) and
g : Γ(10,0.5) before truncation and benchmark D

(
f̃ ||g̃
)
= 0.159.

n = s m Dmn Ds
mn Wmn Zmn Ss

mn
1000 61 0.194 (0.001) 0.197 (0.002) -0.045 (0.001) -0.039 (0.001) -0.003 (0.002)
5000 151 0.174 (0.001) 0.177 (0.001) -0.033 (0.001) -0.028 (0.001) -0.003 (0.001)
10000 222 0.154 (0.000) 0.156 (0.001) -0.027 (0.000) -0.023 (0.000) -0.002 (0.000)
100000 772 0.157 (0.000) 0.157 (0.000) -0.012 (0.000) -0.010 (0.000) -0.000 (0.000)
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Table 2: Comparison of estimated KL divergence with 100 macro-replications with f : N (5,12) and
g : Γ(2.5,2) before truncation and benchmark D

(
f̃ ||g̃
)
= 0.7153.

n = s m Dmn Ds
mn Wmn Zmn Ss

mn
1000 61 0.720 (0.002) 0.730 (0.004) -0.046 (0.001) -0.010 (0.000) -0.010 (0.004)
5000 151 0.709 (0.001) 0.711 (0.002) -0.033 (0.001) -0.007 (0.000) -0.002 (0.002)
10000 222 0.694 (0.001) 0.694 (0.001) -0.027 (0.000) -0.006 (0.000) 0.000 (0.001)
100000 772 0.707 (0.000) 0.708 (0.001) -0.013 (0.000) -0.004 (0.000) -0.001 (0.000)

Table 3: Comparison of estimated KL divergence with 100 macro-replications with f : Γ(2.5,2) and
g : N (5,12) before truncation and benchmark D

(
f̃ ||g̃
)
= 3.3209.

n = s m Dmn Ds
mn Wmn Zmn Ss

mn inf
1000 61 1.850 (0.015) 1.458 (0.012) -0.027 (0.001) 1.414 (0.017) 0.392 (0.013) 0
5000 151 2.386 (0.008) 1.780 (0.009) -0.015 (0.000) 0.914 (0.006) 0.605 (0.010) 0

10000 222 2.568 (0.006) 1.887 (0.007) -0.011 (0.000) 0.732 (0.003) 0.681 (0.008) 4
100000 772 Inf (NaN) 2.141 (0.004) -0.003 (0.000) -Inf (NaN) Inf (NaN) 100

biases. Compared to normal distribution, Gamma distribution, which serves as the base measure f̃ in this
experiment, has a heavier tail. Therefore, we have a relatively larger number of observations of X at the
right tail than that of Y and the function value of G̃ at the tail are not estimated very well, which results
in large biases.

While in all macro runs, Ds
mn were finite, some macro runs returned Ds

mn = Zmn = Ss
mn = ∞. The last

column of Table 3 counts the number of such instances out of the 100 macro-runs. For n = 10000, we
calculate the averages and standard errors for Ds

mn, Zmn, and Ss
mn based on the 96 finite instances. These

infinite values are due to sknewness of f . As explained earlier, relatively larger number of X are observed
at the tail of f and the difference, G(X(i+m))−G(X(i−m)), is indistinguishable from 0 given the computer’s
numerical precision, which becomes infinity after the logarithmic operation.
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