

Review

# Pulse check: Potential opportunities in pulsed electrochemical CO<sub>2</sub> reduction

Q1 Rileigh Casebolt,<sup>1</sup> Kelsey Levine,<sup>1</sup> Jin Suntivich,<sup>2</sup> and Tobias Hanrath<sup>1</sup>

## SUMMARY

Developing affordable, robust, and selective CO<sub>2</sub> electroreduction technologies is crucial to address concerns about rising CO<sub>2</sub> emissions. Pulsed potential electrochemical CO<sub>2</sub> reduction (p-eCO<sub>2</sub>R) has emerged as a simple and responsive knob to increase electrolyzer durability and improve product selectivity. In this review, we summarize the recent findings of p-eCO<sub>2</sub>R on copper electrodes as a function of applied potential and pulse duration. We discuss how pulse methods present scientific and technological opportunities for electrochemical technologies beyond p-eCO<sub>2</sub>R, in particular, ones involving competing reactions or electrode deactivation.

## Q4 Q3 Q2 INTRODUCTION

Electrochemistry is pervasive in most aspects of our lives—from redox reactions that sustain our bodies, industrial productions of chemicals and materials, and biochemical sensors for healthcare monitoring, to batteries for personal electronics and electric vehicles.<sup>1–3</sup> The profound technological and industrial impacts of electrochemical processes derive from their scalability and our ability to control the electrochemical reactions with a simple electrochemical-potential knob. In the face of growing concerns about anthropogenic CO<sub>2</sub> emissions and related climate change, scientists and engineers are looking to electrochemistry as an approach to address the rising atmospheric CO<sub>2</sub> levels. Developing electrochemical routes to valorize CO<sub>2</sub>, a solution whereby renewable energy can be used to close the carbon cycle, thus transforming CO<sub>2</sub> into valuable molecules is within the realm of possibility.<sup>4–6</sup> Crucial to bringing this vision to fruition is the development of catalysts and electrochemical systems that can stably reduce CO<sub>2</sub> to value-added molecules at industrially relevant conditions with reasonable durability, lifetime, and product selectivity.<sup>7</sup>

Recent years have borne witness to exciting experimental and computational scientific achievements, which have significantly improved our understanding and design of electrodes, electrolytes, and electrolyzers for CO<sub>2</sub> electrolysis. Initially, efforts in the community have focused on improving the electrochemical rates (activities), reaction selectivity, and the overpotential at which CO<sub>2</sub> reduction products are formed by separately engineering the electrode, electrolyte, or balance of the system.<sup>5</sup> However, it is becoming clear that the processes in these different components are connected. We point the readers to several excellent reviews about the role of catalyst, electrolyte, and cell design in the electrochemical CO<sub>2</sub> reduction (eCO<sub>2</sub>R) reaction.<sup>5,6,8–19</sup> From a system-level perspective, it is important to consider not only the energy required to reduce CO<sub>2</sub> in the first place but also to address the downstream energy requirement of separating the resulting multitude of products. A recent techno-economic analysis concluded that for a system to operate at a favorable energy return on energy investment, the energy requirements of separation

## Context & scale

Pulsing electrochemical variables (e.g., voltage/current modulation) represents a simple experimental "knob" to influence product selectivity and electrode longevity in electrochemical CO<sub>2</sub> reduction (eCO<sub>2</sub>R). By tuning the interfacial factors (e.g., hydrodynamics, ad/desorption, surface reconstruction, catalyst oxidation, etc.) and their variations with pulse profile (e.g., duration and potential), the application of pulsed potential can tip the balance between transient physicochemical processes at electrode/electrolyte interfaces, the result of which can impact the eCO<sub>2</sub>R outcome.

Pulsed eCO<sub>2</sub>R (p-eCO<sub>2</sub>R) has broad implications spanning multiple length and timescales. At atomic scales, the pulsed potential influences the dynamic restructuring of surfaces and distribution of surface-adsorbed species; at millisecond-to-second timescales, the pulsed potential impacts the profiles of interfacial water, ions, and intermediates within the electrical double layer (EDL). Finally, at minute-to-hour timescales, the pulsed potential can mitigate surface deactivation to ensure electrode durability. Using pulsing to control the reaction microenvironment is a cost-effective "plug-and-play" approach to impact reaction durability and selectivity, bringing

should be less than half of the product enthalpy of combustion.<sup>20</sup> Using the separations costs listed in Greenblatt et al.,<sup>20</sup> the isolation of ethanol from an aqueous input stream requires 4.7 MJ/kg, which is 25% of the total energy required for converting CO<sub>2</sub> into ethanol (Section S2); this percentage increases drastically for less-concentrated input streams. Considering the high separation costs and necessary improvements in reaction selectivity, in this review we focus on selectivity, rather than activity.<sup>21,22</sup>

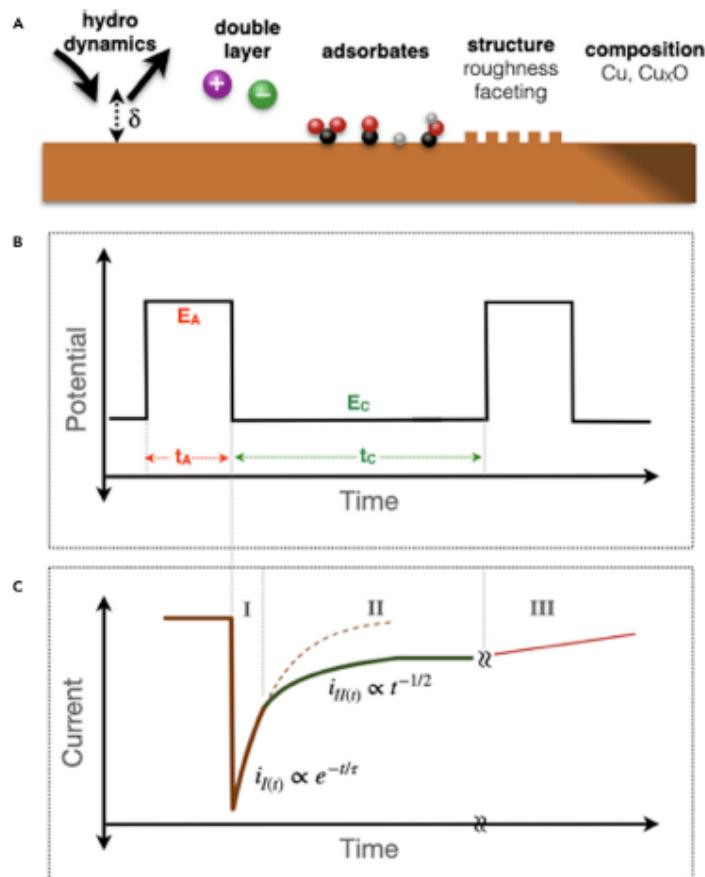
Although copper (Cu) electrodes are unique by virtue of the fact that they are the only monometallic electrocatalysts that yield high-value C<sub>2+</sub> products at reasonable rates, the Cu-catalyzed reaction is not very selective.<sup>5</sup> Cu's unique ability to promote C–C coupling comes from its favorable binding energies to eCO<sub>2</sub>R intermediates, specifically its binding energy to CO, a common eCO<sub>2</sub>R intermediate.<sup>23,24</sup> The CO binding on Cu is neither too weak that it desorbs from the surface before coupling, nor too strong that it desorbs too slowly and blocks active sites.<sup>25</sup> As a result, Cu can sustain a significant coverage of adsorbed CO on the surface, which can increase the probability of C<sub>2+</sub> product formation.<sup>26</sup> In addition to this paradigm of optimal CO binding energy, there is also increasing evidence that other adsorption energies contribute to resulting selectivity (including \*H, \*COOH, and \*CH<sub>3</sub>O).<sup>24</sup> However, the high activity to form C<sub>2+</sub> products on Cu comes at a cost of low product selectivity—up to 16 different products have been reported.<sup>27</sup> Instead of accepting this trade-off between producing multi-carbon products and paying significant energy costs for downstream separation processes, we endeavor to improve the product selectivity from the start. As detailed below, the application of a pulsed potential electrochemical CO<sub>2</sub> reduction (p-eCO<sub>2</sub>R) has emerged as an intriguing experimental knob to tune the product selectivity.

A holistic approach to bring eCO<sub>2</sub>R to technological fruition must also consider the longevity of the electrolyzer. Conventional Cu-based electrolysis cells commonly used in academic studies suffer from short operating lifetimes, which presents a significant barrier to translate these advances from lab to market.<sup>28,29</sup> Starting in the 1990s, electrochemical approaches briefly reversing the applied voltage (i.e., anodic treatments) were explored to recover catalyst activity. Seminal work by Shiratsuchi et al. found that periodically interrupting the electrolysis with short anodic pulses prolongs the lifetime of the copper catalyst and alters the product selectivity.<sup>30</sup> Whereas the conventional constant-potential cells typically lasted only a few hours before experiencing a loss of catalytic activity and a corresponding shift in product selectivity toward the undesirable hydrogen side product, pulsing studies have shown drastic improvements in catalyst operating time, demonstrating stable eCO<sub>2</sub>R performance of at least ten times longer.<sup>31–34</sup> The majority of eCO<sub>2</sub>R studies reported to date have focused on constant-potential operation, and these potential-reversing studies establish anodic treatments and pulsed-potential methods as a promising approach to improve durability of the eCO<sub>2</sub>R.<sup>30,31,35–43</sup>

More recently, similar pulse methods have garnered increasing attention as an attractive option to influence electrocatalytic processes and reaction selectivity beyond mainstream efforts to modify the catalyst and electrolyte.<sup>32,44–57</sup> These mainstream efforts include surface faceting, nanostructuring the catalyst, modifying the electrochemical cell design, including additives in the electrolyte to control the ionic environment and pH, as well as combining copper with other metals to create bimetallic catalysts.<sup>5</sup> Catalysts structured with predominantly (100) facets, high electrochemically active surface areas, and more undercoordinated sites can favor C<sub>2+</sub> products.<sup>5</sup> Bimetallic catalysts can use the combination of chemical and electronic

eCO<sub>2</sub>R one step closer to practical application. The insights shared here present scientific and technological opportunities beyond p-eCO<sub>2</sub>R studies to other electrochemical technologies, in particular, ones involving competing reactions or electrode deactivation.

<sup>1</sup>Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA


<sup>2</sup>Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA

<https://doi.org/10.1016/j.joule.2021.05.014>

properties of the two different metals advantageously to control adsorbates on the surface to favor specific products.<sup>5</sup> Changes in electrochemical cell design can increase CO<sub>2</sub> availability at the surface to increase reaction activity, and electrolyte modifications can be made to create high-pH environments that favor C<sub>2+</sub> product formation.<sup>5</sup> All of these techniques have achieved significant advances in improving reaction selectivity and activity, though stability remains an issue, especially with nanostructured catalysts where some have been reported to experience degradation within tens of minutes.<sup>58</sup> A complementary approach to improving reaction performance is to pulse the applied potential, which, in addition to being a simple technique to apply without any complex syntheses or pre-treatments, can also enact changes in the reaction environment such as electrode restructuring, roughening, improved mass transport, and interfacial pH control to achieve goals similar to the work of catalyst and electrolyte modification. Another advantage of pulsing methods is that the applied pulse profile can be altered during electrolysis, creating a responsive system that can adjust to the needs of the user, which is not possible to do with the catalyst and electrolyte modification techniques. From a technoeconomic perspective, the viability of p-eCO<sub>2</sub>R needs to consider the balance of the "cost" of lost production during the "off-" pulse relative to the benefit of (1) lower product separation costs (due to better selectivity) and (2) extended electrolyzer durability (due to reduction of electrode fouling). From a scientific perspective, despite the ostensible simplicity of using pulse profiles to tailor the electrochemical reaction, many foundational questions concerning the mechanism and underlying physicochemical processes remain. Recent pulse studies have shed light onto the underlying relationship between pulse profile and electrochemical performance.<sup>32,44,46,48–50,52,53,56</sup> These studies have elucidated some of the general principles underlying pulsed eCO<sub>2</sub>R (p-eCO<sub>2</sub>R); the emerging mechanistic picture involves a concerted interplay (arguably a symphony) between dynamic changes in surface adsorbates, mass transport, and changes in catalyst composition and structure (*vide infra*). In this review, we summarize the emerging understandings relevant to p-eCO<sub>2</sub>R and the broad opportunity space for discovery and advances ahead. We have organized this "review and perspective" as follows: we first discuss general electrochemical considerations and then review past and present achievements with regards to p-eCO<sub>2</sub>R, before diving into the specific aspects of physical processes and the reaction mechanism. We end by providing an outlook to both future scientific challenges and potential technological applications.

### FUNDAMENTAL ASPECTS OF PULSED ELECTROCHEMICAL CO<sub>2</sub> REDUCTION (P-eCO<sub>2</sub>R)

Figure 1 provides a schematic illustration of the basic physical and chemical aspects that need to be considered in heterogeneous electrocatalytic redox processes. We will first discuss the general principles and then the considerations related to the case of a transient (i.e., pulsed) applied potential. The physicochemical processes involved in heterogeneous electrocatalysis have different potential dependencies and span a range of time and length scales; which means that each of the processes detailed below has a different characteristic response to an applied potential. Since the reaction occurs at a heterogeneous solid-liquid interface in the case of aqueous eCO<sub>2</sub>R, or at a three-phase gas-solid-liquid interface in the case of a gas diffusion electrode flow cell, mass transport of reactants and products between the bulk and the double layer must be considered, especially since eCO<sub>2</sub>R is very sensitive to concentration polarization.<sup>26</sup> Within the double layer, species adsorption and relevant intermediate binding energies need to be considered.<sup>26</sup> The adsorbed species can then undergo reaction and may desorb. On the solid side of the interface, a



**Figure 1. Physicochemical processes and dynamic current response in p-eCO<sub>2</sub>R**

(A) Overview of basic physicochemical processes involved in heterogeneous electrocatalysis that exist in dynamic equilibrium.

(B) Example applied pulse profile with important pulse parameters noted.

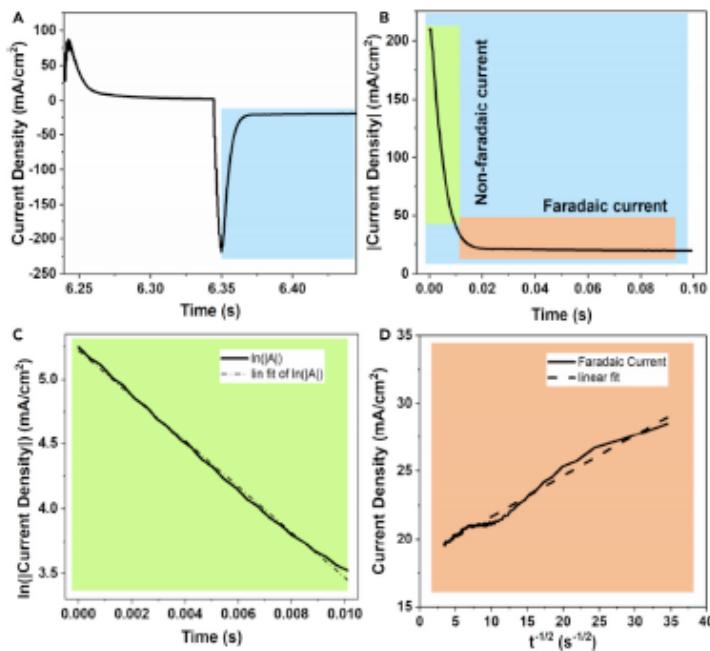
(C) Expected current response to an applied cathodic potential. (1) Capacitive charging current decays exponentially with time.

(2) Faradic current decays with  $t^{-1/2}$  in a diffusive system.

(3) Catalyst deactivation/degradation resulting in a decrease in catalytic activity.

number of aspects need to be considered, including the electrode geometry and electrochemically active surface area (ECSA),<sup>59,60</sup> the detailed faceting and reconstruction,<sup>5,19</sup> and the catalyst chemistry (i.e., oxidation state and composition).<sup>5,19,61</sup> We note that although this review focuses on the specific case of pulsed electrochemical  $\text{CO}_2$  reduction (p-eCO<sub>2</sub>R), the effects of pulsing are generally applicable to other electrochemical processes, such as organic electrosynthesis,<sup>62–70</sup> or the processes of element extraction and contaminant removal<sup>71–76</sup> (see Section S1 for more information).

The recognition that each physicochemical subprocess illustrated in Figure 1A may occur at different intrinsic rates is essential to the p-eCO<sub>2</sub>R thinking. As such, abrupt changes in applied potential have a significant consequence on the interplay


between the subprocesses. The intention of pulsed potential methods is to manipulate these phenomena, for example, by applying an overpotential with frequencies comparable to the timescale of the subprocesses of interest. This strategy presents a simple and adjustable parameter (knob) to modulate the choreography of the dynamic interplay of mass transport, reaction kinetics, double layer charging/discharging, and surface adsorption/desorption.<sup>77</sup> In this way, we can create microenvironments that are inaccessible under potentiostatic conditions. Whereas a detailed description of the coupled transient processes during each pulse involves significant complexity, amid this complexity resides a compelling opportunity to tune and improve electrochemical processes.

The simplest form of a pulsed potential is the square wave profile shown in Figure 1B. We note that more complex waveforms (sine, asymmetric, sawtooth, etc.) are possible and likely offer additional tunability, once basic understanding of the relationship between pulse and electrochemical performance has been established. The pulsed electrolysis cell can be operated in galvanostatic (i.e., controlled current) or potentiostatic (i.e., controlled potential) mode. Figure 1B illustrates key control parameters in pulsed potential electrochemistry including the duration of the pulse, i.e., the anodic and cathodic pulse time ( $t_a$  and  $t_c$ ) and the respective anodic and cathodic potential ( $E_a$  and  $E_c$ ) applied during that time. The pulse duration, or time, can also be represented by the period of the cycle ( $t_p = t_a + t_c$ ) or frequency ( $1/t_p$ ). The pulse height is the magnitude of the pulse step, either in galvanostatic or potentiostatic mode. We note that the term "anodic" potential is used here to indicate the more positive potential of the two potential limits within the pulse sequence, although depending on its actual potential (relative to the potential of zero charge), the resulting current may be anodic or cathodic in nature. The value of the anodic potential is especially important in determining whether the catalyst experiences oxidation or just double layer rearrangement during the anodic pulse (discussed more below).

The transient cathodic current response of the aqueous electrolytic cell in response to a cathodic step change in the applied potential is schematically illustrated in Figure 1C. We can categorize the dynamic transient current profile into three temporal regimes (I–III).

- (1) The immediate response to a change in applied potential is the reorganization of the electrical double layer (EDL). In a non-adsorbing condition, one can use the Guoy-Chapman-Stern model to understand how the EDL changes in response to the application of the potential pulsing.<sup>78</sup> In the limit of highly concentrated electrolyte, the ions behave like an ideal capacitor, which contributes non-faradic charging current. This capacitive charging current decays exponentially with a characteristic time, similar to the charging current encountered when a potential step is applied to a series RC circuit (Figure 2).<sup>79</sup> The situation is more complex when specific adsorption is possible. Notably, the resulting EDL becomes a balance between the chemical and electrical potential of the interfacial species. It is not straightforward to describe the general EDL behavior under this condition, as the adsorption depends on the electrode chemistry as well as on the applied potential. Furthermore, the movement and adsorption rates are chemistry dependent, further increasing the complexity of the EDL.

The identity of ions present in the EDL, which is potential dependent, affects eCO<sub>2</sub>R activity and selectivity through cation promoter effects, buffering, and specific



**Figure 2. Separating current contributions into non-faradic and faradic current following the application of a potential pulse**

- (A) Full pulse profile of a 100 ms pulse ( $t_a = t_c$ ).
- (B) Absolute value of cathodic current from the blue inset.
- (C) Natural log of the absolute value of the non-faradic current from the green inset with a linear fit.
- (D) Faradic current from the orange inset with a linear fit. Reproduced from Kimura et al.,<sup>44</sup> with permission.

adsorption, which we will briefly mention here. Large cations such as  $\text{Cs}^+$  have the smallest hydrated cation radius and therefore have the smallest repulsion close to the electrode.<sup>80</sup> This allows for a higher cation concentration at the surface, leading to a large surface charge density and stronger interfacial electric field, which increases  $\text{CO}_2$  adsorption and enhances  $\text{C}_2$  production.<sup>80-82</sup> Electrolyte anion identity and buffering capacity have also been suggested to buffer the interfacial pH, which determines the reaction selectivity and activity.<sup>83</sup> Resasco et al. found that buffering anions favor protonated products by instead serving as hydrogen donors.<sup>84</sup> Specific adsorption of anions in the double layer has also been shown to impact product selectivity, with observations of hydrogen suppression as a result of  $\text{Cl}^-$  adsorption.<sup>85</sup> Studies exploring the effects of different anions have found that anion co adsorption can modify the \*CO binding energy and the electronic structure of local catalyst sites to promote C–C coupling.<sup>86</sup> Double layer rearrangement effects after the application of a potential typically happen on the order of milliseconds.

While we will not discuss all of the mechanistic complexities of EDL here, we point out the opportunity to use pulsing to fine-tune this complexity to build the best microenvironment possible for e $\text{CO}_2$ R.

- (2) The transition from the initial non-faradic charging to the subsequent faradic current can be analyzed with quantitative rigor as illustrated in Figure 2. Following the

initial exponential decay in current (within a characteristic time defined by the RC time constant), the subsequent transient regime is characterized by an I-versus- $t^{-1/2}$  response (Figure 2D). This regime reflects the faradic current due to the flow of electrons across the electrode/electrolyte interface (redox reaction) in a diffusive system, i.e., where kinetics is not the limitation. This transient can be described by the Cottrell equation.<sup>45</sup> At shorter times, the current described by the Cottrell equation decays rapidly, and at longtimes, the current tends toward a limiting value. In eCO<sub>2</sub>R, efforts to increase the limiting current involve increasing CO<sub>2</sub> solubility in solution (by modifying operational temperature and pressure or by using different electrolytes like ionic liquids) or by using pure CO<sub>2</sub> feedgas in a gas diffusion electrode configuration.

(3) If the potential is applied for an extended period (several seconds to hours), a third regime may be entered in which the electrochemical current decreases due to degradation or deactivation of the catalyst surface. Catalyst deactivation can be generally separated into three causes: chemical, mechanical, or thermal degradation.<sup>87</sup> In eCO<sub>2</sub>R, important degradation pathways with respect to Cu-based catalysts include fragmentation, Ostwald ripening, dissolution, detachment, agglomeration, reshaping, or poisoning.<sup>58</sup> Poisoning species include impurities from the electrolyte, glassware, CO<sub>2</sub> feed stream, reference or counter electrodes, and others, or eCO<sub>2</sub>R intermediates irreversibly bound to the surface.<sup>28,29,88–91</sup> These processes cause changes in the structure, morphology, and ECSA, which in turn change the catalytic activity as well as modify the reaction selectivity.

It is important to note that upon the application of an anodic potential, there is a similar current response as reported in Figure 1B, following the application of a reducing potential including non-faradic current due to double layer reorganization, faradic current due to CO<sub>2</sub> reduction or due to copper oxidation depending on the applied potential, and the possibility of catalyst poisoning depending again on the applied potential.

Consideration of these three temporal regimes thus points toward a timing "window of opportunity." In the language of the domains illustrated in Figure 1C, this timing window of opportunity refers to regime II. To make an informed decision about optimal pulse duration, one should therefore select a pulse that is (1) sufficiently long such that the majority of the current goes to faradic processes instead of double layer charging, but (2) not too long such that the current drops due to poisoning of the catalyst active sites.

To ensure that the pulse duration is sufficiently long to neglect the influence of double-layer charging, one needs to approximate the characteristic double-layer charging time. The relative importance of the non-faradic charging current compared with the faradic processes depends on the relative duration of the pulse compared with the capacitive charging time. For shorter pulse times, with a predominant portion of the pulse spent in regime I, the majority of current is used for double-layer charging, which reduces the process efficiency with which current is used to reduce CO<sub>2</sub>. The RC time constant (i.e., the time required for charge equilibration of the double layer) depends on the cell resistance and the capacitance of the electrode, both of which depend on the electrode area, applied potential, ionic concentration, and other experimental parameters.

By selecting a cathodic pulse duration in regime II and avoiding regime III, one can regenerate the catalyst before loss of activity due to poisoning to ensure longevity of

the system. Moreover, "fine tuning" the cathodic pulse duration and applied pulse potential within regime II provides a compelling opportunity to modulate dynamic interplay of transport, adsorption, and reaction. The choice of applied potential and duration is equally important during the anodic pulse, since the choice for  $E_a$  can result in changes in the adsorbates in the double layer, copper oxidation, and electrode reconstruction, all of which can have persistent effects throughout the entire pulse cycle. "fine tuning" the cathodic and anodic pulse durations and potentials provides additional control over product selectivity during electrolysis (beyond what is possible by pre-engineering the catalyst and electrolyte). In context of the resurging interests in electrochemical methods, particularly  $\text{CO}_2$  reduction, we note that there are many more opportunities ahead. We anticipate that emerging insights into pulse design principles (i.e., the underlying relationship between product selectivity and pulse profile—pulse shape, duration, and potential) will spur on future advances in pulsed electrosynthesis.

#### Summary of pulsed electrochemical $\text{CO}_2$ reduction (p-e $\text{CO}_2$ R) experiments

Whereas the first reports of e $\text{CO}_2$ R date back to 1954,<sup>92</sup> the application of anodic treatments was not investigated until 1990.<sup>35</sup> Early pulsed potential methods have focused on relatively long interval (i.e., seconds to minutes) pulses aimed predominantly at avoiding catalyst degradation by restoring the activity of the electrode surface through the anodic potential application. The application of shorter (i.e., millisecond) pulses to tailor the product selectivity only emerged recently.<sup>48</sup> Below, we will first provide a synopsis of the recent p-e $\text{CO}_2$ R studies (tabulated at the end of this section). We organize the summary by pulse duration to reveal the role of the mechanisms at different timescales. Then, we go on to discuss the emerging understanding of the underlying mechanism in the following section.

##### "Long" pulses (>1s)

In 1990, Wasmus et al. demonstrated that periodic anodic pulses could be used to recover Cu electrode appearance and activity.<sup>35</sup> They interpreted the periodic anodic pulse as a means to reverse graphitic deposition, which was known to deactivate the electrode surface under constant-potential electrolysis.<sup>28</sup> Subsequent reports by Shiratsuchi, Nogami and co-workers systematically studied p-e $\text{CO}_2$ R on Cu and Ag electrodes.<sup>30,36,38</sup> Their studies demonstrated that 5-s pulses applied to Cu electrodes prevented graphite deposition and sustained hydrocarbon formation. They reasoned that periodic anodic pulses oxidize adsorbed intermediates (formic acid and/or formate) and thereby avoid the formation of inactive graphitic deposits.<sup>30</sup> Moreover, their *ex situ* X-ray photoelectron spectroscopy (XPS) measurements revealed that anodic pulses led to the formation of a thin  $\text{Cu}_2\text{O}$  film. A subsequent study by Jermann and Augustynski applied CV scans in 5-min intervals and also observed stable e $\text{CO}_2$ R.<sup>31</sup> Beyond confirming the role of the periodic anodic potential in hindering the adsorption of inactive amorphous carbon, Jermann and Augustynski also observed a shift in product selectivity. Like previous reports, they too suspected the role of oxidized species, suggesting that these persistent  $\text{Cu}^+$  regions favor ethylene.

A 1996 p-e $\text{CO}_2$ R study on Ag electrodes by Shiratsuchi et al. suggested that the pulsed potential influences the  $\text{CO}_2$  adsorption, as well as proton affinity, thereby impacting product selectivity.<sup>38</sup> In 2000, Ishimaru et al. studied p-e $\text{CO}_2$ R on Cu/Ag-alloyed electrodes and argued that by controlling the pulse profile and the alloy ratio, they could control the amount of adsorbed CO on the surface and thereby tailor product selectivity.<sup>37</sup> In a similar effort to use pulsing to control the adsorbed CO population on the surface, Lee and Cho et al. found that pulsing on Pd-based

catalysts could stably produce formate over the course of 45 h.<sup>33</sup> Poisoning by strongly adsorbed CO species can cause Pd catalysts to degrade. However, pulsed electrolysis selectively oxidizes CO, removing it from the surface and thereby enhancing eCO<sub>2</sub>R to make formate.

To understand the effects of p-eCO<sub>2</sub>R, in 1997, Friebe et al. examined pulsing on copper using differential electrochemical mass spectrometry (DEMS) to confirm stable eCO<sub>2</sub>R activity over time, suggesting that pulsing reverses the poisoning pathway.<sup>40</sup> In 2001, Lee and Tak used electrochemical quartz crystal microbalance (EQCM), which simultaneously measures mass change and current flow, to study p-eCO<sub>2</sub>R on copper.<sup>41</sup> During constant eCO<sub>2</sub>R, they observed an increase in the mass of the electrode, while the production of methane simultaneously decreased. They were able to identify this mass increase as deposited graphite (using *ex situ* scanning electron microscopy [SEM] and AES), which deactivated the electrode over time. This study revealed that pulsed potentials successfully mitigated any precipitation of graphite. Using *ex situ* XRD, they observed Cu<sub>2</sub>O on the surface, postulating that Cu dissolves during the anodic pulse, which then reacts with local hydroxides to precipitate Cu<sub>2</sub>O on the surface and thereby preventing carbon poisoning.<sup>41</sup>

A 2007 study by Yano et al. evaluated potential pulsing on Cu and Cu<sub>2</sub>O electrodes and demonstrated that optimization of the anodic pulse potential and duration enhances the selectivity (i.e., faradic efficiency, the efficiency with which electrons are transferred) of ethylene.<sup>43</sup> They interpreted the fact that the enhancement in ethylene selectivity observed with pulsing was more pronounced on Cu<sub>2</sub>O than on Cu electrodes as an indication that the Cu<sub>2</sub>O phase prevents immediate protonation of adsorbed CO intermediates, thereby allowing for C–C coupling and increased ethylene selectivity. In 2016, Lim et al. studied the effect of periodic CV scans and potential steps on the performance of galvanostatic eCO<sub>2</sub>R on Cu.<sup>51</sup> By applying this anodic treatment every 2 h, they showed that they could favor the production of CO at the expense of methane. From this result, the authors suggested that they were switching between the two surface coverages determined by the competitive intermediate adsorption.

New insights into the role of pulsed potentials and long-term stability were reported in a 2018 study by Engelbrecht et al.<sup>32</sup> Their pulsed electrolysis study demonstrated 95 h of stable p-eCO<sub>2</sub>R performance, reiterating that pulsing mitigates catalyst poisoning. To understand the role of pulsing in creating durable electrode activity, they monitored changes in the catalyst surface structure using SEM and found that applying a more negative upper potential conserved the surface structure, whereas more positive upper potentials led to increasing surface rearrangement. Under pulse profiles in which the upper potential was above the open-circuit potential, the electrode structure was observed to corrode, with material being deposited onto the electrode surface and in the catholyte. Based on these insights, they advised that the anodic pulse potential be chosen to create favorable surface modifications, while avoiding material dissolution.

The relationship between pulse profile, electrode structure, and product selectivity was recently illustrated by Jiang et al. who used pulsing to synthesize an electrode for eCO<sub>2</sub>R.<sup>94</sup> They cycled a Cu foil electrode 100 times between an upper and lower potential and found that cycling resulted in arranged nanocubes that exhibited high ethylene selectivity when tested under potentiostatic conditions. They attributed this observation to electrode roughening, which increases the reaction rate per geometric surface area. This led to an increase in local pH, which consequently

suppressed the competing hydrogen evolution reaction (HER) in favor of  $\text{C}_2$  product formation. Even though we are focusing on pulsed potential electrolysis and in this case, they used pulsing only for electrode synthesis, their findings offer additional insight into the effects of pulsing and what structural changes can be taking place during p-e $\text{CO}_2$ R.

Advances in *in situ* and *operando* spectroscopy characterization methods have been very beneficial to efforts focused on decoupling the complex transient processes in p-e $\text{CO}_2$ R. A study by Lin et al. used *operando* seconds-resolved x-ray absorption spectroscopy (XAS) to track the chemical state evolution of their mixed-valence oxide-derived copper catalysts.<sup>53</sup> Whereas observing no changes in morphology with TEM measurements under pulsed potential conditions ( $-1.15 \text{ V} < E_c < -0.7 \text{ V}$  versus RHE,  $E_a = 0.5 \text{ V}$ ;  $t_a = t_c = 10 \text{ s}$ ), they found that their catalysts achieved a steady state between half  $\text{Cu}^0$  and half  $\text{Cu}^+$  species, which selectively produced ethanol. Supplementing their experimental observations with DFT calculations, Lin also suggested that the co-existence of  $\text{Cu}^+$  and  $\text{Cu}^0$  under pulsed conditions enhanced OH species present at the boundary, which stabilized carbonyl intermediates, thereby preventing protonation of the terminal oxygen site and allowing oxygenated  $\text{CO}_2$ R product formation.

A 2020 study by Kim et al. tracked the temporal evolution of p-e $\text{CO}_2$ R products over time on Cu using DEMS.<sup>56</sup> The researchers hypothesized that CO accumulates on the Cu surface during the cathodic sweep, and that this inventory of adsorbed CO subsequently reduces to  $\text{C}_2\text{H}_4$  or desorbs as CO during the anodic sweep. Owing to DEMS with a time resolution of less than 0.5 s, Kim et al. were able to differentiate between transient and steady-state behaviors. By pulsing far below the Cu oxidation potential ( $E_c = -1.15 \text{ V}$  versus RHE;  $E_a = -0.8 \text{ V}$ ;  $t_c = 5, 10, \text{ and } 25 \text{ s}$ ;  $t_a = 5, 10, \text{ and } 60 \text{ s}$ ), they ruled out oxidation, and based on insights from the SEM images, they ruled out morphological changes. Another interesting discovery enabled by the fast time resolution of DEMS was that over time during p-e $\text{CO}_2$ R, the local concentration of ethylene increased, and the concentrations of CO and  $\text{H}_2$  decreased as pulsed operation went on. They attributed improved  $\text{C}_2$  selectivity under pulsed conditions to the enhanced surface concentration of CO versus H, which improved C-C coupling and suppressed HER.

In a time-dependent continuum model, Bui et al. tracked the effects of pH and  $\text{CO}_2$  concentration in the boundary layer on the kinetics for forming individual products to understand why  $\text{C}_{2+}$  product formation is enhanced under pulsed conditions.<sup>95</sup> Modeling a variety of different pulse profiles in 0.1 M  $\text{CsHCO}_3$  ranging from 5–20 s pulses, they were able to reproduce experimentally observed results by Kim et al.,<sup>56</sup> and proposed that a transient state of heightened pH,  $\text{CO}_2$  concentration, and driving potential under pulsed conditions are responsible for improved e $\text{CO}_2$ R performance. Testing a range of pulse shapes (modifying pulse amplitude, width, and duty cycle), they showed that more cathodic pulse amplitudes lead to higher current densities, but that too high of an overpotential favors methane formation over  $\text{C}_{2+}$  products. They also showed that shorter pulse widths improve current density and enhance  $\text{C}_{2+}$  FE, since the fraction of time spent in the state of increased pH,  $\text{CO}_2$  concentration, and overpotential is increased; however, too short of a pulse time is limited by double layer charging. This work further highlights the importance of understanding and controlling the reaction microenvironment under pulsed conditions.

Considering the myriad of dynamic processes on the electrolyte side of the electrode-electrolyte interface, the composition and concentration of the electrolyte

should also impact the p-eCO<sub>2</sub>R response. Oguma and Azumi examined the effects of pulsing on silver (Ag) in an electrolyte solution containing ionic liquids (1-ethyl-3-methylimidazolium ethyl sulfate (EMISE)).<sup>55</sup> Under pulsed conditions ( $E_c = -1.4$ ,  $-1.5$ , and  $-1.6$  V versus Ag/AgCl for 5 s, and  $E_a = 0$  V for 5 s), they observed that the formation of CO relative to H<sub>2</sub> was considerably higher than that obtained during potentiostatic electrolysis. Adding EMISE to their bicarbonate electrolyte further improved CO selectivity. The main conclusion of their work was that pulsing mitigated the evolution of a CO<sub>2</sub> reactant depletion layer (whether or not EMISE was present), while EMISE further enhanced reactant concentration at the interface by complexing CO<sub>2</sub> more strongly to the surface. Recent work from our group (Casebolt and Kimura et al.) showed that the relationship between electrolyte concentration/composition and product distribution for short (i.e., 50 ms) pulsed potential eCO<sub>2</sub>R is different from constant-potential eCO<sub>2</sub>R, due to the differences in reaction environment between pulsed and static eCO<sub>2</sub>R.<sup>45</sup> Under static conditions, increasing the electrolyte buffer concentration has been shown to significantly increase hydrogen formation and slightly increase methane formation, while under pulsed conditions, we find that HER is suppressed at all bicarbonate concentrations (0.1–1 M KHCO<sub>3</sub>) as a result of the preferential hydrogen desorption during the anodic pulse, whereas methane selectivity is significantly enhanced at increasing bicarbonate concentrations.<sup>45</sup> Recent modeling work by Bui et al. also showed a significant increase in methane selectivity when pulsing at increasing CsHCO<sub>3</sub> concentrations, reiterating our experimental observations.<sup>95</sup> Using our experimental parameters in the 1D continuum model developed by Gupta et al.,<sup>43</sup> we rule out differences in pH and instead suggest that bicarbonates role as a proton donor is the reason for increased methane selectivity at increased buffer concentrations.<sup>45,84</sup> We also explored the effects of increasing concentration in the unbuffered KCl electrolyte under static and pulsed conditions and found that under static conditions, there is no change in selectivity with both hydrogen and CO being the main products. However, at increasing KCl concentrations under pulsed conditions, C<sub>2</sub> selectivity is significantly increased, reaching over 70% FE. We hypothesize that C<sub>2</sub> products are favored at higher KCl concentrations because of the higher flux of CO<sub>2</sub> to the surface (using Cottrell analysis), which increases CO<sub>ads</sub> coverage, and the higher concentration of OH at the surface stabilizes the CO<sub>atop</sub> intermediates to promote C–C coupling.<sup>45,46</sup> This work highlights how pulsing can be used to control the micro-environment (through preferential H<sub>ads</sub> desorption and OH adsorption), as well as how the proton donor ability of the electrolyte determines the product selectivity. This is just the beginning of understanding electrolyte effects in p-eCO<sub>2</sub>R, and there is a lot more room for exploration.

p-eCO<sub>2</sub>R has proved advantageous beyond application in liquid cells. Lee et al. recently examined the effect of periodic anodic treatments on gas diffusion electrodes (GDEs) operated at high current densities ( $> 80$  mA/cm<sup>2</sup>).<sup>54</sup> Using a custom-built, gas-fed *operando* XAS cell coupled with gas chromatography (GC) measurements, Lee explored the relationship between the Cu-based catalyst oxidation state and the ethylene activity during CO reduction. Using two different periodic anodic treatments ([1] apply 1.5 or 0.1 V versus Ag/AgCl for 5 min after bulk electrolysis at  $-2.2$  V for 1 h, or [2] scan 20 times between  $-1.1$  and  $0.5$  V at 50 mV/s), they found no correlation between Cu oxidation state and ECSA to ethylene production. Using *ex situ* microscopic techniques, they suggested that ethylene activity improves with oxidative treatment because of morphological changes (their nanostructures coalesced into smooth surfaces during electrolysis independent of initial oxidation state or starting morphology, and then the nanostructures were regenerated after anodic treatment) that generate more active structures. Consistent with

previous studies, they found that anodic treatments improved catalyst stability, noting that their results show a technique for cell regeneration that can restore catalyst performance without cell disassembly, thereby mitigating gas-fed GDE cell degradation.

Another recent study testing the efficacy of pulsing in a flow cell configuration, by Jännisch et al., found that pulsing enables stable ethylene production over the course of 16 h and that pulsing can recover the activity of deactivated electrodes.<sup>57</sup> While no characterization techniques were employed, they suggested that pulsing stabilizes active catalyst facets, probably through active surface reconstruction as proposed by Arán-Ais et al.<sup>52</sup> Another recent study by Xu et al. showed that pulsing can be used in a membrane electrode assembly as a self-cleaning strategy to avoid carbonate salt formation.<sup>34</sup> High current density electrolysis produces large quantities of hydroxide ions on the cathode, which react with potassium and carbonate ions (present in excess because of the high pH) to form salt precipitates that hinder CO<sub>2</sub> mass transport and destabilize cell performance. By carefully choosing a regeneration voltage, Xu et al. were able to momentarily halt hydroxide formation while maintaining an electric field which facilitated carbonate migration to the anode. This enabled the cathode to never reach the potassium carbonate solubility limit, which prevented salt formation and resulted in 236 h of stable operation at 138 mA/cm<sup>2</sup> with 80% C<sub>2</sub> product selectivity. In a study published earlier this year study, Jeon et al. demonstrated that pulsing modifies selectivity on copper nanocubes in a gas-fed flow device, observing a 10% enhancement toward C<sub>2</sub> products (reaching C<sub>2</sub> FE ~ 64% at E<sub>a</sub> = 0.9 V versus RHE) under pulsed conditions compared with potentiostatic conditions at current densities > 250 mA/cm<sup>2</sup>.<sup>96</sup> They attributed the enhanced selectivity toward ethylene and ethanol to irreversible morphological reconstruction resulting in a highly defective interface with more grain boundaries. Interestingly, as they pulsed to more anodic potentials, they observed decreasing selectivity toward C<sub>2</sub> products, which they attributed to OH<sup>-</sup> consumption at the surface (forming a Cu<sub>2</sub>O shell), resulting in an OH-poor environment that favors methane production. These studies indicate that pulsing has advantageous effects in not only aqueous cells, but in high current flow cell configurations required for industrial-scale implementation.<sup>34,54,57,96</sup>

#### *"Short" pulses (<1 s)*

We now turn our attention to shorter, sub-second pulses. To our best knowledge, the first study of sub-second pulses was reported in 2016 by Kumar et al. who demonstrated that the application of millisecond (square wave) pulses had a significant impact on the CO<sub>2</sub>R product selectivity on Cu, observing only H<sub>2</sub> and CO.<sup>48</sup> They speculated that the rapidly changing local electric field near the interface significantly affects the binding energy experienced by adsorbed intermediates leading to desorption of CO before it can reduce further to hydrocarbon products, as well as inhibiting the binding of CO<sub>2</sub> which results in HER promotion over CO at very short pulse times (<50 ms). They also suggested that *in situ* oxidation and reduction of Cu preferentially formed CO over other carbon products, resulting in tunable syngas formation.

A subsequent study employing millisecond pulses on copper electrodes by Kimura et al. reported the selective formation of methane for all pulse intervals, as well as significant HER suppression.<sup>44</sup> Although both studies by Kumar<sup>48</sup> and Kimura<sup>44</sup> used similar pulse times, potentials, and electrolyte, the variations in reported product selectivity reveal remarkably different responses of the product selectivity to pulsed potential. Whereas Kumar reported enhanced HER under millisecond pulse



conditions, Kimura reported the opposite trend finding that millisecond pulses suppressed HER. This difference underscores the critical role of the relative magnitude of the non-faradic and faradic transient currents during regimes I and II (see Figure 1). The differences in induction time and double layer charging rate are directly related to differences in electrode area. Whereas Kimura used  $0.1\text{ cm}^2$  electrodes (observing  $\text{H}_2$  suppression and  $\text{CH}_4$  enhancement), Kumar used  $5\text{ cm}^2$  electrodes (observing only  $\text{H}_2$  and CO production). With larger electrodes and slower RC response times, a relatively large fraction of the millisecond pulse is spent charging the double layer, i.e., the potential profiles at the electrode-electrolyte interface were not identical. This comparison highlights that to enhance eCO<sub>2</sub>R product formation under pulsed conditions, it is crucial that the electrochemical system has a sufficiently fast response time to cycling potential.<sup>44</sup> Breaking this down further, configuring the electrolysis cell to ensure relatively fast RC response time by reducing the ratio of electrode size to pulse time, minimizing cell resistance, and taking into account the optimal positioning of the reference electrode is essential to creating a reproducible application of pulsed potential. Further, we propose that in high current devices with high ohmic drops and high catalyst surface areas, the pulse duration will need to be scaled accordingly so that the ratio of pulse duration to charging time remains relatively "fast."

Further insights into the relationship between pulsed potential and product selectivity emerged from a 2017 study using online electrochemical mass spectrometry by Le Duff et al.<sup>47</sup> Using pulsed voltammetry (stepping between  $-0.2$  and  $-1.1\text{ V}$  versus RHE at  $10\text{ Hz}$ ) to track CO<sub>2</sub> reduction products over single crystal, Cu(111) and Cu(100) electrodes, Le Duff showed that oxygenated hydrocarbons were formed more favorably under alternating conditions. The authors attributed this higher product selectivity toward oxygenated hydrocarbons to the enhanced surface coverage of oxygen species ( $\text{OH}_{\text{ads}}$ ) during the pulse.

To understand the role of defect structures and oxidation state during p-eCO<sub>2</sub>R, Arán-Ais et al. tracked the surface composition of single crystal copper electrodes as a function of the anodic pulse potential (varied between  $0$  and  $0.8\text{ V}$  versus RHE) and cathodic pulse duration (varied between  $0.2$  and  $1\text{ s}$ ) using quasi *in situ* XPS.<sup>52</sup> This careful work allows a correlation between surface characteristics and product selectivity. They found that ethanol is favored when more Cu<sup>+</sup> is generated during the anodic pulse, and that ethylene has no dependence on Cu<sup>+</sup> concentration. Instead they found that ethylene depends on the length of Cu(100) domains. They also observed no significant changes in ECSA during the pulse program.

In a follow-up study by Tang et al., using (100)-textured polycrystalline copper foil, they too found that pulsing enhanced C<sub>2+</sub> product formation.<sup>57</sup> While Arán-Ais et al. found that Cu<sup>+</sup> stabilization during pulsing enhanced ethanol formation without affecting ethylene production,<sup>52</sup> Tang et al. demonstrated that the factor controlling selectivity between ethanol and ethylene is the reduction rate of the Cu<sup>+</sup> during the cathodic pulse, which they modified through temperature control. By decreasing the temperature to  $5^\circ\text{C}$ , thereby slowing the reduction kinetics, Tang et al. were able to achieve 40% selectivity to ethanol because the active Cu<sup>+</sup> species from the anodic pulse persisted through the cathodic pulse. Furthermore, they showed that the competition between ethylene and ethanol corresponds proportionally to the response time of the reduction cycle, providing insight into how temperature control can be used to tailor C<sub>2</sub> selectivity.

Both Strain et al. and Kimura et al. demonstrated that in addition to improving eCO<sub>2</sub>R performance, pulsing also improves CO reduction compared with HER.<sup>44,46,49</sup> The fact that the pulsing mechanism enhances performance even when starting from CO demonstrates that the influence of pulsing is not specific to the first eCO<sub>2</sub>R intermediates (\*CO<sub>2</sub><sup>-</sup>, \*COOH).<sup>5,98,99</sup> Strain et al. examined pulsed CO reduction on oxide-derived Cu electrodes under a range of pulse conditions ( $E_c = -0.35$  V,  $E_a = 0$  V versus RHE,  $0.01 \leq t_a = t_c \leq 50$  s) and showed that product selectivity depended on pulse duration.<sup>49</sup> Application of short ( $t \leq 1$  s) pulses resulted in the reduction being selective to the COR, specifically increasing selectivity toward C<sub>1</sub> products over C<sub>2</sub> products, and suppressing the HER. They suggested that non-faradic charging dominates at short pulse times and that the continually changing surface energetics prevent adjacently adsorbed CO species from binding.

To better understand the physicochemical processes within the double layer during pulsing, a 2020 paper by our group (Kimura et al.) examined p-eCO<sub>2</sub>R on polycrystalline copper using *in situ* XPS supplemented by a multi-species Langmuir isotherm model.<sup>46</sup> Using millisecond pulses and testing a range of pulse potentials, Kimura et al. found that pulsing selectively improved CO<sub>2</sub>R products over HER compared with the constant-potential eCO<sub>2</sub>R when  $E_a \geq 0.2$  V versus RHE ( $E_c = -1.05$  V,  $t_a = t_c = 50$  ms). When  $E_a \geq 0.2$  V, we also found that the baseline anodic current ( $i_a > 0$  mA/cm<sup>2</sup>) indicating the existence of an oxidative reaction. While copper oxidation could be behind this oxidative reaction, another possibility is that pulsing changes the composition of adsorbates at the interface, notably, the electro-adsorption of hydroxides (H<sub>2</sub>O → OH<sub>ads</sub> + H<sup>+</sup> + e<sup>-</sup>). These adsorbed hydroxides could promote the CO<sub>atop</sub> formation while preventing the CO<sub>bridge</sub> formation that could deactivate the Cu surface. We proposed that this CO<sub>atop</sub> formation leads to the favorable competition between CO<sub>ads</sub> and H<sub>ads</sub> to suppress the HER. *In situ* X-ray absorption near edge structure (XANES) revealed that Cu(OH)<sub>2</sub> was formed at a constant potential of 0.2 V versus RHE. However, the application of short (50 ms) pulses to  $E_a > 0.2$  V did not lead to any detectable Cu(OH)<sub>2</sub>. These spectroscopic insights show that pulsing enables the electrode to undergo an oxidation reaction without causing bulk copper oxidation, provided that the cathodic potential is sufficiently reductive (< -0.8 V). In this window with no bulk oxidation, improved CO<sub>2</sub>R is due to the changes within the interface (i.e., the active adsorption/desorption of ions). A three-part experiment going from pulsed reduction, to constant reduction, back to pulsed reduction with corresponding switches in observed selectivity further supported that pulsing is a reversible and transient treatment that cannot be explained by permanent surface reordering. And the four component (OH<sub>ads</sub>, H<sub>ads</sub>, CO<sub>bridge</sub>, CO<sub>atop</sub>) Langmuir model showed that pulsing favors OH<sub>ads</sub> accumulation consistent with the findings of Iijima et al.<sup>100</sup> Over long times (100–1,000 s), pulsing maintains CO<sub>atop</sub> coverage compared with constant reduction where CO<sub>atop</sub> slowly transforms to inactive CO<sub>bridge</sub>. The cathodic potential maintains the reduced state of copper and creates a high pH surface environment where residual OH<sup>-</sup> remains on the surface, inducing near neighbor coupling interactions with CO<sub>ads</sub>, thereby favoring CO<sub>2</sub>R products and suppressing HER.

A 2020 report by Blom et al. evaluated p-eCO<sub>2</sub>R methods on lead (Pb) electrodes, further demonstrating the utility of the p-eCO<sub>2</sub>R beyond that of copper.<sup>50</sup> Whereas lead electrodes typically deactivate after 30 min under potentiostatic conditions, pulsing enabled stable formate production for 16 h. Blom et al. examined symmetric and asymmetric square wave pulses and found that high frequency pulse cycles (cycle time = 0.002 s) were dominated by double layer charging and that this fast re-oxidation of intermediates inhibited formate production. Using longer cycle times

(cycle time = 0.02 to 0.2 s), they observed significant increases in formate partial current density and selectivity. *In situ* Raman spectroscopy revealed that the Pb surface oxidizes to form PbCO<sub>3</sub> during the anodic pulse which is hypothesized to be more active toward formate production, and that the Pb<sup>2+</sup> reduces back to Pb<sup>0</sup> during the cathodic pulse.

Pulsing in eCO<sub>2</sub>R has been used to prolong electrode lifetime and modulate product selectivity. Comparing trends between these various studies is not trivial as each group uses different electrochemical procedures, equipment, experimental conditions, and analysis methods. In an effort to make comparisons easier, we have included a table below outlining the conditions under which each experiment was run, including major observations and hypotheses (Tables 1 and 2). Despite differences in experimental parameters, several major mechanisms have been proposed, including surface oxidation, catalyst reconstruction, improved reactant concentration in the double layer, and changes in surface adsorbate coverage.

### MECHANISTIC INSIGHTS INTO (P-eCO<sub>2</sub>R)

Building on the summary of experimental results discussed above, we now turn our attention to describing the underlying mechanisms and the interplay between competing dynamic subprocesses previously illustrated in Figure 1A. We recapitulate our main hypothesis that differences in characteristic timescales and potential dependencies of competing subprocesses can be exploited through the judicious design of the pulse profile. The result is the ability to influence the reaction pathways and thereby tune product selectivity and catalyst longevity. Our intent here is to illustrate initial insights into the complex interplay between these processes and to inform the relative magnitude of their contribution rather than to identify the singular determinant. Pulsing improves catalyst lifetime and performance stability.<sup>5,101</sup> Whether it be impurities from some part of the electrolysis cell or irreversibly adsorbed intermediates and CO<sub>2</sub>R products (graphite), pulsing reverses these deactivation pathways thereby prolonging catalyst lifetime. However, despite these observed benefits, the mechanism by which pulsing modifies the eCO<sub>2</sub>R is still an open question. We have organized the mechanistic discussion below along the lines of the key processes illustrated in Figure 1A. In separate studies, processes within the boundary layer (i.e., hydrodynamics and mass transport),<sup>43,55,56</sup> at the electrode surface (i.e., adsorbates),<sup>37,38,44,46–49,51,53,56</sup> and within the electrode (i.e., structure and composition)<sup>30–32,36,37,39,41,42,48,50,52–54,57,94</sup> have been evoked to explain observed trends. It is important to recognize that these processes do not operate in isolation but rather in concert at the pulsed solid/electrolyte interface, so while we cannot rule out any process completely, we can speak about its relative contribution in different pulse conditions.

#### Hydrodynamics and the role of mass transport limitations

As with any liquid-phase electrochemical reaction, mass transport of the reactants from the bulk fluid to the electrode interface requires careful consideration. Fast surface reaction rates will deplete the reactant near the surface and result in concentration polarization (i.e., spatial gradients of the reactant concentration from the catalyst surface to the bulk fluid). In this mass transport limited regime, the overall reaction rate is limited by the transport (diffusion, migration, and convection) of reactants through the boundary layer to the active site (regime II, Figure 1C). Mass transport limitations are more pronounced for reactions at higher current densities where reactants are more rapidly consumed, though this can be overcome by optimizing electrolysis cell design or using gas-fed devices. In eCO<sub>2</sub>R, the overpotentials

Table 1. "Long" pulses ( $>1\text{s}$ )

| Catalyst                                           | Electrolyte <sup>a</sup>                        | Anodic treatment                                                                                                                                     |                                                           |                                                                                      | Subtlety | Selectivity <sup>b</sup> | Effect of anodic treatment                                                                                                                             | Hypothesis of poisoning                                                                                           | Ref.                                     |
|----------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------|----------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|                                                    |                                                 | $E_{\text{p}}/E_{\text{c}}$                                                                                                                          | $t_{\text{c}}$                                            | $E_{\text{p}}/I_{\text{c}}$                                                          |          |                          |                                                                                                                                                        |                                                                                                                   |                                          |
| <b>O<sub>6</sub> Cu</b><br>(12.3 cm <sup>2</sup> ) | 0.5 M $\text{KHCO}_3$                           | stepped to $-1.50\text{ mV}$ versus SCE for $E_{\text{c}}$ for no longer than 1 min, $-0.5\text{ V} \leq E_{\text{p}} \leq -2.4\text{ V}$ versus SCE | 5 s                                                       | $0.2\text{ V} \leq E_{\text{p}} \leq 1.5\text{ V}$ versus SCE                        | 5 s      | 25 h                     | $\text{H}_2 \sim 20\%$ , $\text{CH}_4 \sim 25\%$                                                                                                       | constant $\text{CH}_4$ and $\text{C}_2\text{H}_4$ selectivity and HER suppression, as well as long-term stability | Shiraishi et al. <sup>35</sup>           |
| Cu (1 cm <sup>2</sup> )                            | 0.1 M $\text{KHCO}_3$                           | $-1.8\text{ V}$ versus SCE                                                                                                                           | 1–9 s                                                     | 0 V versus SCE                                                                       | 1–9 s    | 25 h                     | $\text{H}_2 \sim 10\%$ , $\text{C}_2\text{H}_4 \sim 25\%$                                                                                              | inhibition of poisoning and surface oxidation                                                                     | Shiraishi et al. <sup>30</sup>           |
| Cu (1 cm <sup>2</sup> )                            | 0.1 M $\text{KHCO}_3$                           | $-1.6\text{ V} \leq E_{\text{p}} \leq -3.4\text{ V}$ versus SCE                                                                                      | 5 s                                                       | $0.2\text{ V} \leq E_{\text{p}} \leq 1.5\text{ V}$ versus SCE                        | 5 s      | 4 h                      | $\text{H}_2 \sim 30\%$ , $\text{CH}_4 \sim 15\%$                                                                                                       | selective production of hydrocarbons based on choice of $E_{\text{c}}$ and long-term stability                    | Nogami et al. <sup>36</sup>              |
| Au (0.2 cm <sup>2</sup> )                          | 0.1 M $\text{NaHCO}_3$ (pH = 8.0)               | scanned from $-1.01\text{ V}$ to $1.3\text{ V}$ versus NHE and back at 50 mV/s every 15 min                                                          | 3 stars every 1.72 s                                      | $-2.5\text{ V} \leq E_{\text{p}} \leq -1.75\text{ V}$ versus $\text{Ag}/\text{AgCl}$ | 5 s      | 1 h                      | –                                                                                                                                                      | restoration of catalytic activity                                                                                 | Kochiarczak and Agostynski <sup>39</sup> |
| Cu (0.28 cm <sup>2</sup> )                         | 0.1 M $\text{NaHCO}_3$ or 0.5 M $\text{KHCO}_3$ | 3 stars every 1.72 s from $-1.3\text{ V}$ versus NHE at 5 V/s                                                                                        | 5 min from $-1.72$ to $+1.3\text{ V}$ versus NHE at 5 V/s | $-0.8\text{ V} \leq E_{\text{p}} \leq -0.1\text{ V}$ versus $\text{Ag}/\text{AgCl}$  | 5 s      | 50 h                     | $\text{CH}_4 \sim 10\%$ , $\text{C}_2\text{H}_4 \sim 25\%$                                                                                             | maintained surface oxidation and roughening selectivity over long times                                           | Jemane and Agostynski <sup>41</sup>      |
| Ag (0.65 cm <sup>2</sup> )                         | 0.1 M $\text{KHCO}_3$                           | $-2.5\text{ V} \leq E_{\text{p}} \leq -1.75\text{ V}$ versus $\text{Ag}/\text{AgCl}$                                                                 | 5 s                                                       | $-0.8\text{ V} \leq E_{\text{p}} \leq -0.1\text{ V}$ versus $\text{Ag}/\text{AgCl}$  | 5 s      | 10 h                     | $\text{H}_2 \sim 10\%$ , $\text{CO} \sim 70\%$ , $\text{C}_2\text{H}_5\text{OH} \sim 22\%$ , $\text{CH}_4 \sim 55\%$ , $\text{C}_2\text{H}_4 \sim 3\%$ | selective hydrogenation formation                                                                                 | Shiraishi and Nogami <sup>38</sup>       |
| Cu (1 cm <sup>2</sup> )                            | 0.5 M $\text{KHCO}_3$ (pH = 7.3)                | $-2.2\text{ V}$ versus SHE                                                                                                                           | 50 s                                                      | 0.05 V versus SHE                                                                    | 10 s     | 0.5 h                    | –                                                                                                                                                      | recovered electrode activity                                                                                      | Friebe et al. <sup>40</sup>              |

(Continued on next page)

Table 1. Continued

| Catalyst                                                                      | Electrolyte <sup>a</sup>                       | Anodic treatment                                                                                                                                                                                                                                                                                    |                |                                                                                                             | Stability | Selectivity <sup>b</sup>                                               | Effect of anodic treatment                                                                                                                          | Hypothesis                                                                                                             | Ref.                               |
|-------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|                                                                               |                                                | $E_{\text{a}}/E_{\text{c}}$                                                                                                                                                                                                                                                                         | $t_{\text{a}}$ | $E_{\text{a}}/E_{\text{c}}$                                                                                 |           |                                                                        |                                                                                                                                                     |                                                                                                                        |                                    |
| Cu/Ag alloy                                                                   | 0.1 M $\text{KHCO}_3$<br>( $\text{pH} = 6.5$ ) | -2.5 V $\leq E_{\text{a}} \leq$<br>-1.9 V versus<br>$\text{Ag}/\text{AgCl}$                                                                                                                                                                                                                         | 5 s            | 0.5 V versus<br>$\text{Ag}/\text{AgCl}$                                                                     | 5 s       | 8 h                                                                    | -                                                                                                                                                   | selective<br>production of<br>Cu products,<br>tune Cu/Fe by<br>varying alloy<br>ratio                                  | Idomaru<br>et al. <sup>39</sup>    |
| Cu (0.2 cm <sup>2</sup> )                                                     | 0.1 M $\text{KHCO}_3$<br>( $\text{pH} = 6.5$ ) | -2.1 V versus<br>SCE                                                                                                                                                                                                                                                                                | 10 s           | 0 V versus SCE                                                                                              | 5 s       | 7.5 h                                                                  | -                                                                                                                                                   | inhibition of<br>passivation and<br>surface<br>oxidation                                                               | Lee and Tak <sup>41</sup>          |
| Cu and Cu<br>oxide (mixture<br>of $\text{Cu}_2\text{O}$ and<br>$\text{CuO}$ ) | 0.1 M $\text{KHCO}_3$                          | -4 V $\leq E_{\text{a}} \leq$<br>-1 V versus<br>$\text{Ag}/\text{AgCl}$                                                                                                                                                                                                                             | 3 s            | 0 V $\leq E_{\text{a}} \leq$<br>on Cu and<br>$-4 \text{ V} \leq E_{\text{a}} \leq$<br>-0.5 V on Cu<br>oxide | 1.9 s     | 1 h                                                                    | $\text{H}_2 > 10\% \text{CH}_4$<br>$\sim 50\% \text{C}_2\text{H}_4 \sim$<br>30%                                                                     | inhibition of<br>passivation and<br>surface<br>oxidation                                                               | Yano and<br>Yamazaki <sup>42</sup> |
| Cu                                                                            | 0.1 M $\text{KHCO}_3$                          | 50 $\text{A}/\text{m}^2$                                                                                                                                                                                                                                                                            | 5 s            | 0 $\text{A}/\text{m}^2$                                                                                     | 5 s       | -                                                                      | enhanced<br>ethylene<br>selectivity by<br>varying anodic<br>potential, even<br>more ethylene<br>observed on<br>copper oxide<br>electrode            | Yano and<br>Yamazaki <sup>42</sup>                                                                                     |                                    |
| Cu (3.14 cm <sup>2</sup> )                                                    | 0.2 M $\text{KHCO}_3$<br>( $\text{pH} = 7$ )   | galvanostatic<br>reduction<br>( $\sim 1 \text{ mA}/\text{cm}^2$ )<br>with 3 CV<br>scans ( $-1.2$<br>versus $\text{Ag}/\text{AgCl}$ ,<br>100 mV/s) every<br>15 min, 1, 2,<br>and 4 h or with<br>potential steps<br>to -0.25, -0.15,<br>-1.2 V versus<br>$\text{Ag}/\text{AgCl}$ for<br>8 s every 2 h | -              | -                                                                                                           | 10 h      | $\text{H}_2 \sim 40\% \text{CO}$<br>$\sim 50\% \text{CH}_4 \sim$<br>6% | frequent CV<br>scans reduced<br>CO-R activity,<br>short steps to<br>mild cathodic<br>potentials<br>favored CO at<br>the expense of<br>$\text{CH}_4$ | rearrangement<br>of surface<br>coverage<br>(specifically of<br>$\text{H}_{\text{ad}}$ and<br>$\text{CO}_{\text{ad}}$ ) | Gupta et al. <sup>43,44</sup>      |

(Continued on next page)

Table 1. Continued

| Catalyst                                                     | Electrolyte <sup>a</sup>           | Anodic treatment                                                                                        |                                 |                                                                        | t <sub>a</sub>                  | Selectivity <sup>b</sup> | Effect of anodic treatment                                                                                | Hypothesis                                                                                                                                                                                   | Ref.                             |
|--------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------|---------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|                                                              |                                    | E <sub>an</sub> , V                                                                                     | t <sub>a</sub>                  | E <sub>an</sub> , V                                                    |                                 |                          |                                                                                                           |                                                                                                                                                                                              |                                  |
| Cu-DHP (4.29 cm <sup>2</sup> )                               | 0.1 M KHCO <sub>3</sub>            | -1.8 V ≤ E <sub>a</sub> ≤ -1.5 V versus Ag/AgCl                                                         | 5–500 s                         | 0.15V versus Ag/AgCl                                                   | 5 s                             | 95 h                     | H <sub>2</sub> ~ 10%, CH <sub>4</sub> ~ 35%                                                               | constant HER suppression on surface oxidation and reconstruction                                                                                                                             | Engelbrecht et al. <sup>32</sup> |
| Pt (0.61 cm <sup>2</sup> )                                   | 1 M KHCO <sub>3</sub>              | -1.1 V versus RHE                                                                                       | 0.002 s ≤ t <sub>a</sub> ≤ 10 s | 0.1 V versus RHE                                                       | 0.002 s ≤ t <sub>a</sub> ≤ 16 h | HCOO <sup>-</sup> ~ 50%  | highly stable formate production                                                                          | Blom et al. <sup>50</sup>                                                                                                                                                                    |                                  |
| Pd <sub>0.4</sub> Ag <sub>0.6</sub> C (0.5 cm <sup>2</sup> ) | 0.5 M NaHCO <sub>3</sub>           | -0.8 V versus RHE                                                                                       | 590 s                           | 1.22 V versus RHE                                                      | 10 s                            | 45 h                     | HCOO <sup>-</sup> ~ 98%                                                                                   | observed stable formate production for 45 h                                                                                                                                                  | Lee et al. <sup>33</sup>         |
| Cu and Cu(100) (0.79 cm <sup>2</sup> )                       | 0.1 M KHCO <sub>3</sub>            | -1 V versus RHE                                                                                         | 0.2 s ≤ t <sub>a</sub> ≤ 1 s    | 0 V ≤ E <sub>a</sub> ≤ 0.8 V versus RHE                                | 1 s                             | 1 h                      | C <sub>2</sub> H <sub>5</sub> OH + C <sub>2</sub> H <sub>4</sub> + C <sub>2</sub> H <sub>5</sub> OH ~ 76% | enhanced C <sub>2</sub> formation with the presence of (100) terraces, Cu <sub>2</sub> O, and defects on Cu(100)                                                                             | Adar-Ais et al. <sup>34</sup>    |
| Mixed-valence OD-Cu nanocubes (0.78 cm <sup>2</sup> )        | 0.5 M KHCO <sub>3</sub> (pH = 7.2) | -1.15 V ≤ E <sub>a</sub> ≤ -0.7 V versus RHE                                                            | 10 s                            | 0.5 V versus RHE                                                       | 10 s                            | 1 h                      | C <sub>2</sub> H <sub>5</sub> OH ~ 13%                                                                    | exclusively produce ethanol as the only CO <sub>2</sub> R product, maintain ratio of half Cu <sub>0</sub> <sup>+</sup> to half Cu <sub>1</sub> <sup>+</sup> throughout the entire experiment | Lin et al. <sup>35</sup>         |
| Cu–Cu <sub>2</sub> O and Cu <sub>2</sub> O-GDE               | 1 M KOH                            | two treatments: apply -2.2 V versus Ag/AgCl for 1 h. (1) hold at 1.5 or 0.1 V versus Ag/AgCl for 5 min. |                                 | (2) scan from -1.1 V to -0.5 V versus Ag/AgCl at 50 mV/s for 20 cycles |                                 | 6 h                      | H <sub>2</sub> ~ 40%, C <sub>2</sub> H <sub>4</sub> ~ 28%                                                 | restored cell performance and surpassed original cell activity using anodic treatment                                                                                                        | Lee et al. <sup>36</sup>         |

(Continued on next page)

Table 1. Continued

| Catalyst                     | Electrolyte <sup>a</sup>                                                                               | Anodic treatment                              |                |                                              | Subs.       | Selectivity <sup>b</sup> | Effect of anodic treatment                                                                                                                                              | Ref.                          |
|------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------|----------------------------------------------|-------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                              |                                                                                                        | E <sub>0</sub> / L                            | t <sub>c</sub> | E <sub>0</sub> / L                           |             |                          |                                                                                                                                                                         |                               |
| Ag                           | 0.1 M of K <sub>2</sub> CO <sub>3</sub> + 1 M of EMSE ionic liquid (x = 0.1) versus Ag/AgCl (pH = 7.2) | -1.4 V, -1.5 V, and -1.6 V versus Ag/AgCl     | 5 s            | 0 V versus Ag/AgCl                           | 5 s         | 0.5 h                    | enhance CO <sub>2</sub> enhancement and suppress HER at the cathode                                                                                                     | Obumi and Azumi <sup>55</sup> |
| Cu (0.5 cm <sup>2</sup> )    | 0.05 M Cu <sub>2</sub> CO <sub>3</sub> RHE                                                             | -1.15 V versus RHE                            | 5, 10, 25 s    | -0.8 V versus RHE                            | 5, 10, 60 s | 0.5 h                    | rearrangement of surface coverage (specifically Cu <sub>2</sub> H <sub>2</sub> ) and enhanced CO <sub>2</sub> formation at the cathode                                  | Kim et al. <sup>56</sup>      |
| Cu-DHP (10 cm <sup>2</sup> ) | 0.1 M KHCO <sub>3</sub> Ag/AgCl                                                                        | -1.38 V versus Ag/AgCl                        | 25 s           | -1 V versus Ag/AgCl                          | 5 s         | 16 h                     | C <sub>2</sub> H <sub>4</sub> ~ 23% stable ethylene formation for over 16 h in a flow cell, recovered catalytic activity of a deactivated electrode using anodic pulses | Jansch et al. <sup>57</sup>   |
| Ag and Cu GDE                | MEA electrolyzer (0.1 M KHCO <sub>3</sub> anolyte)                                                     | -3.6 V full MEA                               | 60 s           | -2 V (full MEA cell voltage)                 | 30 s        | 236 h                    | On Cu: C <sub>2</sub> ~ 80% On Ag: CO ~ 90% no detectable cell-damaging carbonate salt formation and no degradation in performance                                      | Xu et al. <sup>58</sup>       |
| Cu                           | 0.1 M CH <sub>3</sub> CO <sub>2</sub> RHE                                                              | -1.85 V ≤ E <sub>0</sub> ≤ -1.55 V versus RHE | 5-20 s         | -1.3 V ≤ E <sub>0</sub> ≤ -0.85 V versus RHE | 5-20 s      | -                        | C <sub>2</sub> , ~ 65% enhancement of CO <sub>2</sub> FE under pulsed conditions and heightened pH near the cathode                                                     | Bui et al. <sup>59</sup>      |

(Continued on next page)

Table 8. Continued

| Catalyst                            | Anodic treatment         |                             |                |                                                               |                | Selectivity <sup>b</sup>                                                                               | Effect of anodic treatment <sup>b</sup>                                                                                                                | Hypothesis <sup>c</sup>                        | Ref.                      |
|-------------------------------------|--------------------------|-----------------------------|----------------|---------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------|
|                                     | Electrolyte <sup>a</sup> | $E_{\text{a}}/E_{\text{c}}$ | $t_{\text{a}}$ | $E_{\text{a}}/t_{\text{a}}$                                   | $t_{\text{a}}$ |                                                                                                        |                                                                                                                                                        |                                                |                           |
| $\text{Cu}_2\text{O}$ Nanocubes GDE | 1M KOH (pH = 13.7)       | -0.7 V versus RHE           | 1 s            | $0.6\text{ V} \leq E_{\text{a}} \leq 1.5\text{ V}$ versus RHE | 1 s            | $\text{C}_2\text{H}_4 \sim 48\%$ , $\text{C}_2\text{H}_5\text{OH} \sim 20\%$ , $\text{CH}_4 \sim 48\%$ | observed 10% enhancement of C <sub>2</sub> FE when $E_{\text{a}} = 0.9\text{ V}$ and high $\text{CH}_4$ selectivity when $E_{\text{a}} = 1.2\text{ V}$ | surface reconstruction and changes in local pH | Jeon et al. <sup>70</sup> |

<sup>a</sup>Electrode geometric surface area and pH of  $\text{CO}_2$ -saturated electrolyte included in tabulated information when provided in publication

<sup>b</sup>Indicates results are based on numerical calculations and not experimental observations

<sup>c</sup>Indicates that data refers to CO reduction (as opposed to  $\text{CO}_2$  reduction)

| Table 2: "Short" pulses ( $<1$ s)        |                                             |                                       |               |                                                           |               |                                              |                                                                                                                                                                   |                                                                                                                                                                                                          |                                                                                                      |
|------------------------------------------|---------------------------------------------|---------------------------------------|---------------|-----------------------------------------------------------|---------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Catalyst <sup>a</sup>                    | Electrolyte <sup>a</sup>                    | Anodic treatment                      |               | $E_a$                                                     | $t_a$         | $t_s$                                        | Selectivity <sup>b</sup>                                                                                                                                          | Effect                                                                                                                                                                                                   | Hypothesis <sup>b</sup>                                                                              |
|                                          |                                             | $E_c$                                 | $t_c$         |                                                           |               |                                              |                                                                                                                                                                   |                                                                                                                                                                                                          |                                                                                                      |
| Cu ( $5 \text{ cm}^2$ )                  | 0.1 M $\text{KHCO}_3$ ( $\text{pH} = 6.8$ ) | -1.05 V, -1 V, and -0.95 V versus RHE | 100 ms        | $-1.2 \text{ V} \leq E_c \leq -0.85 \text{ V}$ versus RHE | 50 ms         | $10 \text{ ms} \leq t_c \leq 150 \text{ ms}$ | $\text{H}_2 \sim 97\%$ , $\text{CO} \sim 64\%$ (optimizing syngas formation, so pulse $\text{H}_2\text{CO}$ is pulse shifting EDL charges interfacial energetics) | exclusively form $\text{H}_2$ and $\text{CO}$ , molar ratio of $\text{H}_2\text{CO}$ is pulse shifting EDL charges interfacial energetics                                                                | surface oxidation, and rearrangement of surface coverage (specifically $\text{CH}_{\text{ad}}$ )     |
| Cu(001) and Cu(111)                      | phosphate buffer ( $\text{pH} = 7.9$ )      | -0.8 V versus RHE                     | 50 ms, 100 ms | $-0.35 \text{ V} \leq E_c \leq -0.2 \text{ V}$ versus RHE | 50 ms, 100 ms | $10 \text{ ms} \leq t_c \leq 1 \text{ h}$    | -                                                                                                                                                                 | pulse $\text{H}_2$ overcurrents, reproducible initial conditions, formed significantly more oxygenated hydrocarbons under alternating voltage conditions                                                 | rearrangement of surface coverage (specifically $\text{CH}_{\text{ad}}$ )                            |
| Cu ( $0.1 \text{ cm}^2$ )                | 0.1 M $\text{KHCO}_3$ ( $\text{pH} = 6.8$ ) | -1.2 V, -1 V, and -0.85 V versus RHE  | 50 ms         | 0.6 V versus RHE                                          | 50 ms         | 1 s                                          | $\text{H}_2 \sim 5\%$ , $\text{CH}_4 \sim 75\%$ , $\text{CO} \sim 50\%$                                                                                           | HER suppression and enhanced CO <sub>2</sub> selectively (specifically of $\text{H}_{\text{ad}}$ )                                                                                                       | rearrangement of surface coverage (specifically of $\text{H}_{\text{ad}}$ )                          |
| OD-Cu ( $3 \text{ cm}^2$ ) <sup>13</sup> | 0.1 M KOH ( $\text{pH} = 0.35$ )            | -0.35 V versus RHE                    | 10 ms - 50 s  | 0 V versus RHE                                            | 10 ms - 50 s  | 1 h                                          | $\text{H}_2 \sim 29\%$ , $\text{CH}_4 \sim 60\%$ , $\text{HCOCO}_2 \sim 30\%$                                                                                     | favor CO <sub>2</sub> reduction over HER, increased selectivity for single-carbon products when interfacial energetics frequency $< 1$ s                                                                 | rearrangement of surface coverage (specifically $\text{H}_{\text{ad}}$ )                             |
| Cu ( $0.2 \text{ cm}^2$ )                | 0.1 M $\text{KHCO}_3$ ( $\text{pH} = 6.8$ ) | -1.15 V, -1 V, and -0.8 V versus RHE  | 50 ms         | $-0.8 \text{ V} \leq E_c \leq -0.6 \text{ V}$ versus RHE  | 50 ms         | 4 h                                          | $\text{H}_2 \sim 10\%$ , $\text{CO}_2 \sim 90\%$                                                                                                                  | pulsing suppresses HER in $\text{CO}$ and $\text{CO}_2$ reduction, Cu remains metallic over wide range of pulse profiles and only form $\text{CuO}_2$ in the bulk when $E_c > +0.5 \text{ V}$ versus RHE | rearrangement of surface coverage (specifically $\text{H}_{\text{ad}}$ and $\text{OH}_{\text{ad}}$ ) |

(Continued on next page)

used to drive the reaction are usually high. Coupled with the low solubility of  $\text{CO}_2$  in aqueous solutions, the rapid consumption of  $\text{CO}_2$  at the surface can result in  $\text{CO}_2$  diffusion being the rate limiting process.

Understanding the spatiotemporal concentration profiles within the boundary layer during p-e $\text{CO}_2$ R presents an interesting challenge and opportunity since the  $\text{CO}_2$  depleted at the electrode surface during the cathodic "on" pulse can be replenished during the anodic "off" pulse. The extent to which the  $\text{CO}_2$  levels within the boundary layer are replenished can be estimated with mathematical models as was shown by Gupta et al.<sup>43</sup> The optimal "off" pulse duration is governed by the balance of two factors: (1) long enough "off" pulse to substantially replenish  $\text{CO}_2$  levels but (2) not too long that the production time is lost within the cycle period. Kim et al. recently reported a synergistic integration of experiment and computation to show how this replenishing effect enhances p-e $\text{CO}_2$ R performance toward  $\text{C}_{2+}$  product formation.<sup>54</sup>

The boundary layer thickness is a key consideration in the analysis of mass transport effects. In the case of p-e $\text{CO}_2$ R, thicker boundary layers require longer "off" pulse durations to replenish  $\text{CO}_2$  levels. For a typical boundary layer thickness of about 100  $\mu\text{m}$ , an "off" pulse duration of 5–10 s is required,<sup>43,55</sup> indicating that in studies with longer pulse profiles, enhanced mass transport of  $\text{CO}_2$  to the surface is a relevant consideration in explaining the pulse mechanism. However, when the pulse profile is on the order of milliseconds, there is no significant change in  $[\text{CO}_2]$  at the surface, meaning that the pulse-dependent product selectivity observed in millisecond p-e $\text{CO}_2$ R experiments is therefore not due to the replenishing effect.<sup>44,46,48</sup>

To tune into the replenishing effect for millisecond pulse profiles, one can reduce the boundary layer thickness from the electrode. With thinner boundary layers due to improved mass transport (e.g., rotating disk electrodes or GDEs), the replenishing effect can be accomplished with much shorter "off" pulses. Complementary computational models (taking into account  $\text{CO}_2$  diffusion and  $\text{CO}_2$  reaction in the bicarbonate buffer equilibrium and  $\text{CO}_2$  reduction reactions, Figure 3C) provide valuable insight into the effectiveness of the replenishing effect by illustrating the relationship between boundary layer thickness and "off" pulse duration, as shown in Figures 3A and 3B (unpublished simulations based on the reaction-diffusion model developed by Gupta et al.<sup>43</sup>). In the case of a 100- $\mu\text{m}$  thick boundary layer, 50 ms is not long enough to significantly replenish the concentration of  $\text{CO}_2$  at the surface, whereas in the case of a 50- $\mu\text{m}$  thick boundary layer, 50 ms is a long enough "off" pulse to restore  $[\text{CO}_2]$  at the interface to near its initial condition.

To investigate the effects of heightened  $\text{CO}_2$  concentration at the surface due to enhanced mass transfer during the "off" pulse under millisecond pulse profile conditions, Kimura et al. tested the resulting selectivity of static versus pulsed electrolysis in enhanced mass transport experiments. Using facilitated convection at a planar electrode where 1,000 rpm corresponded to a boundary layer of  $\sim$ 10  $\mu\text{m}$ , 50 ms pulses were long enough to replenish  $[\text{CO}_2]$  at the surface (Figure 3B).<sup>44</sup> If the pulse mechanism operates by improved mass transport alone, then the stirred static potential experiment should have the same effect as the non-stirred pulsed potential experiment. However, as seen in Figure 3D, pulsing significantly suppresses hydrogen formation, and the resulting product selectivities between the pulsed and static experiments look very different.<sup>44</sup> Further, if pulsing works solely by improved mass transport effects, then going from pulsed non-stirred to pulsed stirred should not experience any changes in selectivity, rather just a uniform

Table 2. Continued

| Catalyst <sup>a</sup><br>Cu (0.1 cm <sup>2</sup> ) | Electrolyte <sup>b</sup><br>KHCO <sub>3</sub> and KCl<br>at varying<br>concentrations | Anodic treatment                             |                |                  | t <sub>a</sub><br>0.4 V versus RHE | E <sub>a</sub><br>50 ms | Stability                                                                                                                                                                                                       | Selectivity <sup>b</sup>                                                                                                                                                   | Effect                                                                                                                                                                                                                                                                                     | Hypothesis <sup>b</sup>                    | Ref. |
|----------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------|----------------|------------------|------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------|
|                                                    |                                                                                       | E <sub>c</sub>                               | t <sub>c</sub> | t <sub>a</sub>   |                                    |                         |                                                                                                                                                                                                                 |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                            |                                            |      |
| Cu (0.3 cm <sup>2</sup> )                          | 0.1 M KHCO <sub>3</sub>                                                               | -1.15 V ≤ E <sub>c</sub> ≤ -0.9 V versus RHE | 100 ms - 1 s   | 0.6 V versus RHE | 100 ms - 1 s                       | 6 h                     | 5%: C <sub>2</sub> H <sub>5</sub> OH ~ 40%: C <sub>2</sub> H <sub>4</sub> ~ 10%: H <sub>2</sub> ~ 10%<br>25%: C <sub>2</sub> H <sub>5</sub> ~ 67%: C <sub>2</sub> H <sub>5</sub> OH ~ 10%: H <sub>2</sub> ~ 10% | 5%: C <sub>2</sub> H <sub>5</sub> OH ~ 10%: H <sub>2</sub> ~ 10%<br>25%: C <sub>2</sub> H <sub>5</sub> ~ 67%: C <sub>2</sub> H <sub>5</sub> OH ~ 10%: H <sub>2</sub> ~ 10% | higher<br>surface coverage<br>(specifically H <sub>2</sub> <sup>+</sup><br>and CO <sub>2</sub> <sup>+</sup> )<br>and lower<br>temperatures<br>favor ethanol.<br>The ratio of<br>ethanol to<br>ethylene<br>increases with<br>increasing time<br>constant (aka<br>decreasing<br>temperature) | rearrangement of Tang et al. <sup>17</sup> |      |

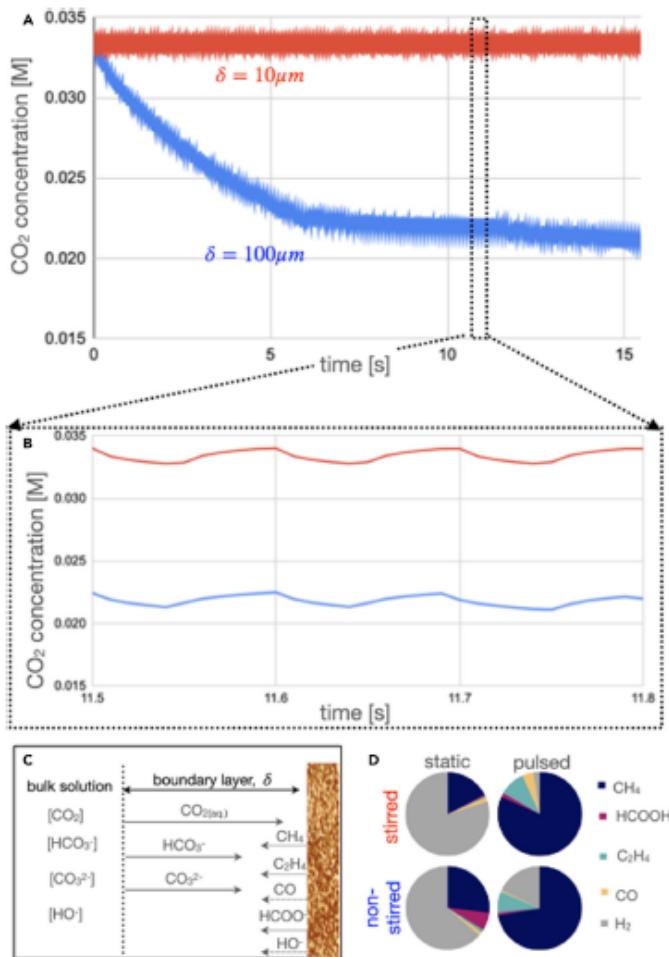
● lowest observed H<sub>2</sub> selectivity and highest observed CO<sub>2</sub>RR or CORR product selectivity reported (this means that reported values are not necessarily from the same pulse conditions)

<sup>a</sup>EMSE: 1-ethyl-3-methylimidazolium ethyl sulfide; EDL: electrochemical double layer; GDE: gas diffusion electrode; OOCu: oxide-derived copper; DHP: deoxidized high phosphorous copper

<sup>b</sup>Electrode geometric surface area and pH of CO<sub>2</sub>-saturated electrolyte included in tabulated information when provided in publication

ORCID

Indicates that data refers to CO<sub>2</sub> reduction and not experimental observations


used to drive the reaction are usually high. Coupled with the low solubility of  $\text{CO}_2$  in aqueous solutions, the rapid consumption of  $\text{CO}_2$  at the surface can result in  $\text{CO}_2$  diffusion being the rate limiting process.

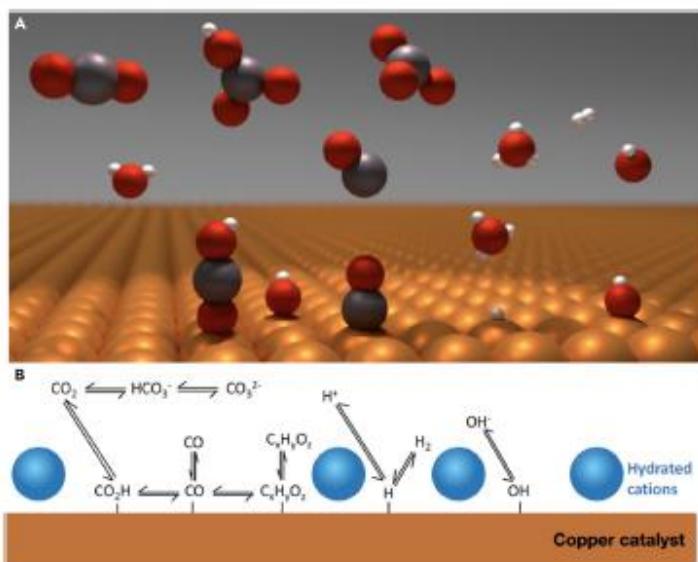
Understanding the spatiotemporal concentration profiles within the boundary layer during p-e $\text{CO}_2$ R presents an interesting challenge and opportunity since the  $\text{CO}_2$  depleted at the electrode surface during the cathodic "on" pulse can be replenished during the anodic "off" pulse. The extent to which the  $\text{CO}_2$  levels within the boundary layer are replenished can be estimated with mathematical models as was shown by Gupta et al.<sup>43</sup> The optimal "off" pulse duration is governed by the balance of two factors: (1) long enough "off" pulse to substantially replenish  $\text{CO}_2$  levels but (2) not too long that the production time is lost within the cycle period. Kim et al. recently reported a synergistic integration of experiment and computation to show how this replenishing effect enhances p-e $\text{CO}_2$ R performance toward  $\text{C}_{2+}$  product formation.<sup>54</sup>

The boundary layer thickness is a key consideration in the analysis of mass transport effects. In the case of p-e $\text{CO}_2$ R, thicker boundary layers require longer "off" pulse durations to replenish  $\text{CO}_2$  levels. For a typical boundary layer thickness of about 100  $\mu\text{m}$ , an "off" pulse duration of 5–10 s is required,<sup>43,55</sup> indicating that in studies with longer pulse profiles, enhanced mass transport of  $\text{CO}_2$  to the surface is a relevant consideration in explaining the pulse mechanism. However, when the pulse profile is on the order of milliseconds, there is no significant change in  $[\text{CO}_2]$  at the surface, meaning that the pulse-dependent product selectivity observed in millisecond p-e $\text{CO}_2$ R experiments is therefore not due to the replenishing effect.<sup>44,46,48</sup>

To tune into the replenishing effect for millisecond pulse profiles, one can reduce the boundary layer thickness from the electrode. With thinner boundary layers due to improved mass transport (e.g., rotating disk electrodes or GDEs), the replenishing effect can be accomplished with much shorter "off" pulses. Complementary computational models (taking into account  $\text{CO}_2$  diffusion and  $\text{CO}_2$  reaction in the bicarbonate buffer equilibrium and  $\text{CO}_2$  reduction reactions, Figure 3C) provide valuable insight into the effectiveness of the replenishing effect by illustrating the relationship between boundary layer thickness and "off" pulse duration, as shown in Figures 3A and 3B (unpublished simulations based on the reaction-diffusion model developed by Gupta et al.<sup>43</sup>). In the case of a 100- $\mu\text{m}$  thick boundary layer, 50 ms is not long enough to significantly replenish the concentration of  $\text{CO}_2$  at the surface, whereas in the case of a 50- $\mu\text{m}$  thick boundary layer, 50 ms is a long enough "off" pulse to restore  $[\text{CO}_2]$  at the interface to near its initial condition.

To investigate the effects of heightened  $\text{CO}_2$  concentration at the surface due to enhanced mass transfer during the "off" pulse under millisecond pulse profile conditions, Kimura et al. tested the resulting selectivity of static versus pulsed electrolysis in enhanced mass transport experiments. Using facilitated convection at a planar electrode where 1,000 rpm corresponded to a boundary layer of  $\sim$ 10  $\mu\text{m}$ , 50 ms pulses were long enough to replenish  $[\text{CO}_2]$  at the surface (Figure 3B).<sup>44</sup> If the pulse mechanism operates by improved mass transport alone, then the stirred static potential experiment should have the same effect as the non-stirred pulsed potential experiment. However, as seen in Figure 3D, pulsing significantly suppresses hydrogen formation, and the resulting product selectivities between the pulsed and static experiments look very different.<sup>44</sup> Further, if pulsing works solely by improved mass transport effects, then going from pulsed non-stirred to pulsed stirred should not experience any changes in selectivity, rather just a uniform




**Figure 3. Boundary layer effects on product selectivity in pulsed- and constant-potential electrochemical CO<sub>2</sub> reduction**

(A and B) Modeled CO<sub>2</sub> surface concentration for thin (10 μm) and thick (100 μm) boundary layer thickness [unpublished] based on equations developed in Gupta et al.<sup>43</sup> Thinner boundary layer enables faster replenishing of CO<sub>2</sub> during short (50 ms) pulse times.

(C) Illustration of coupled transport and reaction equilibria of key species within the boundary layer near the electrode surface.

(D) experimental faradic efficiency for pulsed- and constant-potential CO<sub>2</sub> reduction in thick and thin boundary layers from Kimura et al.<sup>44</sup> Pulsed:  $E_c = -1.2\text{ V}$ ,  $E_a = +0.6\text{ V}$  versus RHE,  $t_a = t_c = 50\text{ ms}$ . Static:  $E = -1.2\text{ V}$  versus RHE. Stirred at 1,000 rpm.

increase in current density (since faster mass transport of reactants to the surface results in faster reaction rates). However, as seen in Figure 3D, in pulsed experiments going from unstirred to stirred, methane selectivity increases. These discrepancies mean that changes in mass transport conditions alone are unable to explain the



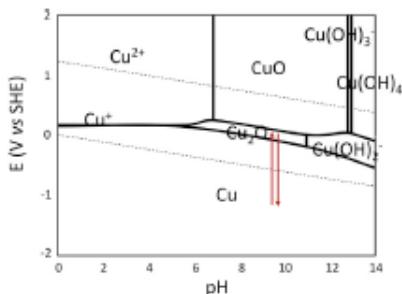
**Figure 4. Understanding surface adsorbate coverage in dynamic interfacial environment**  
(A) illustrative rendering of reaction environment including key eCO<sub>2</sub>R participants on Cu(100)  
(B) Simplified schematic of relevant species and equilibrated processes in the EDL.

observed trends in product selectivity under short pulse conditions. The interdependent effects of thermodynamics, kinetics, and mass transport make it impossible to definitively rule out any one process, but based on the discussion above, we suggest that improvements in mass transport are not a major contributor to the trends observed during millisecond pulse conditions.

Switching gears back to longer pulse profiles, another recent study investigating the effects of pulsing on CO<sub>2</sub> concentration at the surface by Bui et al., modeled the effects of pH and CO<sub>2</sub> concentration on the kinetics for forming individual products for pulse times ranging from 5 to 20 s.<sup>95</sup> Similar to previous studies, they too found that enhanced CO<sub>2</sub> concentration at the surface is not solely responsible for enhanced C<sub>2+</sub> product selectivity under pulsed conditions. Instead, they found enhanced C<sub>2+</sub> product selectivity is due to a combination of factors driven by repeatedly accessing a transient state of high pH, CO<sub>2</sub> concentration, and overpotential during p-eCO<sub>2</sub>R.

From these studies we observe that pulsing can affect the CO<sub>2</sub> concentration at the surface depending on the pulse duration and boundary layer thickness, but that CO<sub>2</sub> concentration alone is not enough to explain the trends observed under p-eCO<sub>2</sub>R.

#### Surface adsorbate coverage and dynamics


Moving from mass transport through the boundary layer to the adsorbates on the surface of the electrode, an abrupt switching of the applied potential can significantly rearrange the EDL and the interfacial adsorbate coverage. Since charged species respond to variations in electrode polarity, each pulse is expected to modulate the coverage of ions, including H<sup>+</sup>/H<sub>3</sub>O<sup>+</sup>, OH<sup>-</sup>, electrolyte ions, and also critical reaction intermediates (like \*CO-CO and \*CO-CHO) due to their large dipole moments<sup>26</sup> (Figure 4).

CO reduction (COR) experiments provide important insight into the reaction mechanism as well as specific insight into the role of surface-adsorbed species. The observed COR product enhancements and HER suppression reported by Strain et al. under pulsed conditions were attributed to dynamic interfacial chemistry. Specifically, they argued that the non-faradic current during the charging/discharging (regime I, Figure 1C) dominates short pulses in the millisecond regime, which modifies the binding energy and species adsorption, acting to inhibit HER.<sup>49</sup> Similarly, Arán-Ais et al. noted that the positive polarization of the electrode during pulsing lowers the surface hydrogen coverage, and that higher OH<sub>ads</sub> coverage is expected with increasing E<sub>a</sub>.<sup>52</sup> In one set of experiments, they observed improved ethanol selectivity when E<sub>a</sub> = 0 V versus RHE, where minimal Cu<sup>+</sup> coverage was measured and only minor surface rearrangement was observed. They attributed this selectivity observation to higher OH<sub>ads</sub> coverage as a result of the anodic pulse.<sup>52</sup>

There is an emerging consensus that the dynamic surface coverages of hydrogen (H<sub>ads</sub>) and hydroxide (OH<sub>ads</sub>) play a critical role in the p-eCO<sub>2</sub>R mechanism. Shiratsuchi et al. in 1996 pointed out the importance of local proton concentration, ascribing selectivity differences to the extent of surface coverage of adsorbed hydrogen which can be controlled by the anodic bias.<sup>38</sup> When the anodic potential was more negative than -0.4 V versus Ag/AgCl, the increase in local proton concentration at the surface resulted in the formation of CH<sub>4</sub>, C<sub>2</sub>H<sub>4</sub>, and C<sub>2</sub>H<sub>5</sub>OH, while when the potential was less negative, desorption of adsorbed hydrogen occurred resulting in preferential production of less protonated products (i.e., CO and HCOOH).<sup>38</sup> Le Duff et al. proposed that the shift toward the production of oxygenated hydrocarbons under pulsed conditions occurs as a result of decreased H<sub>2</sub> availability and increased OH<sub>ads</sub> surface coverage during p-eCO<sub>2</sub>R.<sup>47</sup> DFT calculations support this interpretation, finding that the presence of hydroxides on copper surfaces lowers the binding energy of CO while also stabilizing the OCCO intermediate through dipole interactions, thereby lowering the activation barrier for the CO dimerization step.<sup>102</sup>

Time-resolved vibrational spectroscopy provides helpful clues to better understand the dynamic surface coverage of reaction intermediates. In a surface-enhanced infrared absorption spectroscopy (SEIRAS) study tracking CO<sub>atop</sub> and CO<sub>bridge</sub> species over time as a function of potential, Chou et al. found that CO<sub>atop</sub> formation on copper is a dynamic adsorption process.<sup>103</sup> Their data suggested that CO<sub>bridge</sub> can be removed from the copper surface during the copper oxidation. Similarly, Gunathunge et al. found that CO<sub>atop</sub> converts to an irreversibly adsorbed, inactive CO<sub>bridge</sub> species during cathodic polarization in alkaline conditions when the total CO coverage is lowered below the saturation coverage, and that this species can only be removed by oxidizing the copper.<sup>104</sup> A study by Iijima et al. found that the presence of adsorbed hydroxides promotes CO adsorption and prevents the eventual deactivation by irreversibly bound CO<sub>bridge</sub> species through a near neighbor coupling effect.<sup>100</sup>

Kimura et al. postulated that the anodic pulse displaced H<sub>ads</sub><sup>44</sup> and promoted OH<sub>ads</sub> formation.<sup>46</sup> This OH<sub>ads</sub> adsorption promotes the CO<sub>atop</sub> binding while preventing the CO<sub>atop</sub> from transforming into the inactive CO<sub>bridge</sub> species.<sup>100</sup> CO adsorption competes with H adsorption,<sup>105</sup> so the enhanced presence of bound CO significantly suppresses HER.<sup>106</sup> Kim et al. also suggests that pulsing enhances the surface concentrations of adsorbed CO versus H, which results in increased C<sub>2+</sub> selectivity and HER suppression.<sup>56</sup> Variations in surface coverage are an important consideration because deviations from the thermodynamic coverage of different intermediates could drastically change product selectivity and reactivity. In the work by Lim



**Figure 5. Pourbaix diagram**  
Identification of thermodynamically stable copper species at a given pH and potential ( $V$  versus SHE) at  $25^\circ\text{C}$  and  $[\text{Cu}(\text{aq})]_{\text{tot}} = 10^{-6}$  mol/kg. Dotted lines indicate water stability window and red arrows demonstrate possible phase change. Beverskog and Puigdomenech.<sup>107</sup>

et al.,<sup>51</sup> a potential step treatment (up to  $-1.2$  V versus Ag/AgCl) applied every two hours improved CO formation at the expense of methane. They proposed that there are multiple steady states for surface coverage (enabled by competitive adsorption between H and CO) that they could switch between. Collectively, these studies add to the growing body of evidence that the product selectivity of p-eCO<sub>2</sub>R results from a mechanism based on the concerted interplay between dynamic changes in surface adsorbates, improved CO<sub>2</sub> transport (*vide supra*), and changes in catalyst composition and structure (*vide infra*).

#### Copper oxide formation

A Pourbaix diagram provides a useful description for the dynamic changes in the electrode composition (i.e., oxidation state, see Figure 5).<sup>107</sup> Depending on the combination of applied potential and pH, copper can exist in a variety of oxidation states. The Pourbaix diagram describes the phase at equilibrium. However, since the p-eCO<sub>2</sub>R involves a choreography of several non-equilibrium processes, the key question is how the kinetics of the conversion between these equilibria compares to the kinetics (i.e., pulse profile) of the applied pulse.

The first pulsing studies on copper hypothesized that pulsing created different surface conditions compared with constant-potential reduction. The proposed mechanism was that during the anodic pulse the surface is oxidized to Cu<sub>2</sub>O which favors intermediate adsorption; these findings were corroborated with *ex situ* XPS and XRD.<sup>30,36,41</sup> Insights from *in situ* studies of the time-resolved electrode composition, especially in the case of oxide-derived copper (OD-Cu) can provide important clues to understand the related mechanism in p-eCO<sub>2</sub>R considering the hypothesized copper oxide formation and subsequent reduction.

While eCO<sub>2</sub>R is carried out at strongly cathodic potentials, some researchers suggested and observed O<sub>(h)</sub> and/or Cu<sup>+</sup> species to persist at the surface/subsurface during the eCO<sub>2</sub>R on pulsed copper and OD-Cu catalysts.<sup>31,108–115</sup> However, these findings are subject to an ongoing debate with several computational and experimental studies which showed that the presence of oxygen species is highly unlikely and that copper is fully reduced prior to CO<sub>2</sub> reduction, identifying Cu<sup>0</sup> as the active species.<sup>26,54,94,102,104,116–126</sup> Several groups have suggested observations of residual oxygen are due to the copper oxidation in air during sample transfer, complicating the experimental analysis of the Cu oxidation state.<sup>118,127,128</sup> Chang et al. showed that Cu<sup>0</sup> can spontaneously reoxidize to Cu<sup>+</sup> in aqueous electrolyte (verified using *in situ* Raman spectroscopy and *in situ* XAS), and showed that this reaction occurred simultaneously with the eCO<sub>2</sub>R.<sup>128</sup> Similarly, *in situ* GIXAS and GIXRD

data from Lee et al. showed that after releasing the applied potential,  $\text{Cu}_2\text{O}$  was detected in the bulk within 5 min, demonstrating that metallic copper can easily reoxidize at the OCP even without exposure to ambient conditions.<sup>54</sup> These findings highlight the ease of copper oxidation when extracting the sample for *ex situ* characterization or when removing the applied potential. Since there is no guarantee that the copper oxidation states reported in *ex situ* characterization studies or in characterization studies that are not conducted under relevant operating conditions actually exist during reaction, we caution the reader against drawing definitive conclusions from *ex situ* findings. Nonetheless, even with the *in situ*/vacuum-transfer investigations of OD-Cu and pulsed copper, observations of  $\text{Cu}^+$  have been reported throughout electrolysis.<sup>52,128</sup> These diverging observations of the heavily debated topic of copper oxidation further emphasize the importance and need for using *operando* techniques to explore the catalyst surface during reaction for real-time insight into what the catalyst looks like under operating conditions.

Beyond the open question regarding the presence of  $\text{Cu}^+$  sites during  $\text{eCO}_2\text{R}$ ,<sup>129</sup> there are also ongoing debates concerning the mechanistic role of  $\text{Cu}^+$  to enhancing catalytic activity and reaction selectivity with proposed effects ranging from increased ECSA to stronger binding sites or increased occurrence of grain boundaries and other defects.<sup>5</sup> It has been suggested that copper oxide formation results in surfaces with a high density of grain boundaries,<sup>130</sup> where the density of grain boundaries has been directly correlated to enhanced CO reduction activity and selectivity.<sup>131</sup> Contrarily, other studies postulate that it is instead an effect of increased ECSA, which increases geometric reaction rates and creates a higher local pH environment thereby favoring  $\text{C}_{2+}$  products.<sup>132</sup> Other studies argue that beyond increased grain boundaries and roughness, OD-Cu electrodes experience stronger intrinsic CO binding. An *in situ* ATR-SEIRAS study by Lee et al. showed that CO binds more strongly on the surface of copper oxides than on pure copper.<sup>133</sup> Increased CO binding and coverage correlates to the increased  $\text{C}_2$  product formation, since the formation rates of the  $\text{C}_{2+}$  products have a second-order dependence on  $\text{CO}_{\text{ads}}$  coverage.<sup>5,56,134</sup> A DFT study by Liu et al. showed that the presence of subsurface oxygen on disordered OD-Cu increases the maximum adsorption coverage of CO,<sup>135</sup> and further, it has been suggested that copper oxides favor  $\text{C}_2$  formation by preventing the adsorbed CO from being protonated.<sup>93</sup> However, a study by Ren et al. found that they could achieve 40% methane selectivity on a  $\text{CuO}$ -film, challenging claims that the presence of copper oxide species is the most crucial factor in determining selectivity between  $\text{C}_1$  and  $\text{C}_{2+}$  products.<sup>123</sup> We note that there remain outstanding questions with regards to the presence of  $\text{Cu}^+$  in the bulk versus on the electrocatalytically active surface. Further complicating our understanding of the effects of  $\text{Cu}^+$ , is a study by Chen et al. that used *in situ* SERS to show an inverse correlation between the presence of a  $\text{Cu}_2\text{O}$  layer and CO and  $\text{C}_2$  production, suggesting that removing  $\text{Cu}_2\text{O}$  results in more active Cu sites for CO adsorption.<sup>136</sup> Other models have found that it is actually the combination of  $\text{Cu}^0$  and  $\text{Cu}^+$  sites that enhances  $\text{C}_{2+}$  production. Some models have demonstrated that C-C coupling is favorable on surfaces with a mix of  $\text{Cu}^0$  and  $\text{Cu}^+$  surface sites,<sup>137</sup> while others suggest that the interatomic bond distance between the Cu atoms on  $\text{Cu}_2\text{O}$  surfaces is too large for C-C coupling to be likely.<sup>128</sup> We do not try to establish the basis of OD-Cu activity here, rather we aim to present relevant information that supplements our understanding of how the pulse mechanism operates. Pulse studies will likely not be able to settle these debates outright. Instead, pulsing provides an opportunity to collect complementary data for the observation and effects of oxides because while the presence of copper oxides on OD-Cu and the role of  $\text{Cu}^+$  under potentiostatic  $\text{eCO}_2\text{R}$  is not agreed upon,  $\text{p-eCO}_2\text{R}$  often involves anodic potentials for which

the formation of oxide species is thermodynamically expected. How rapidly these oxides form relative to the pulsed applied potential remains an outstanding question that will hopefully be resolved by future *in situ* and *operando* experiments.

A recent p-eCO<sub>2</sub>R study by Arán-Ais et al. used vacuum-transfer Auger electron spectroscopy to examine the nature of Cu during the p-eCO<sub>2</sub>R reaction.<sup>52</sup> Their experiments focused on pulsing on single crystal Cu(100) ( $E_a = -1$  V,  $0 \leq E_c \leq 0.8$  V versus RHE,  $t_a = t_c = 1$  s), where they uncovered that Cu<sup>+</sup> sites form during the anodic pulse proportional to  $E_a$ , and that these sites persist during the cathodic pulse.<sup>52</sup> When  $E_a = 0.4$  V, they measured 14% of surface species to be Cu<sub>2</sub>O, and 4% remained during cathodic pulse at -1 V versus RHE. When testing a Cu(100) electrode with the same defect density but different Cu<sup>+</sup> content, Arán-Ais observed higher ethanol selectivity when the cathodic time was shorter, meaning there was more Cu<sup>+</sup> remaining on the surface.<sup>52</sup> They observed a clear increase in the ethanol selectivity when Cu<sup>0</sup> and Cu<sup>+</sup> coexisted. This observation supports the hypothesis that the concurrence of Cu<sup>+</sup> and Cu<sup>0</sup> species enhances the CO dimerization.<sup>103,137</sup> Like Arán-Ais, Lin et al., highlights the importance of Cu<sup>+</sup> species in the ethanol formation, demonstrating that a pulsed-potential program ( $E_a = 0.5$  V,  $-1.15 \leq E_c \leq -0.7$  V versus RHE,  $t_a = t_c = 10$  s) can maintain the existence of Cu<sup>+</sup> species throughout electrolysis using *operando* time-resolved XAS.<sup>53</sup> Their DFT studies also suggested that the co-existence of Cu<sup>+</sup> and Cu<sup>0</sup> sites encourages C<sub>2</sub> product formation through a carbonyl stabilization mechanism. *Operando* SERS data by Jeon et al. also imply that Cu<sup>+</sup> and Cu<sup>0</sup> sites coexist on the catalyst surface during pulsed electrolysis.<sup>76</sup> DFT studies by De Luna et al. suggest that Cu<sup>+</sup> plays a crucial role in shifting the product distribution toward C<sub>2</sub> products rather than C<sub>1</sub>, in line with their experimental observations using *in situ* XAS.<sup>138</sup> The co-existence of these copper sites is suggested to enhance CO dimerization because of differences in the CO binding. Chou et al. observed that CO<sub>stop</sub> forms on Cu<sup>+</sup>, while CO<sub>bridge</sub> forms on Cu<sup>0</sup>, and when both Cu<sup>+</sup> and Cu<sup>0</sup> were observed, they measured an enhancement in ethylene selectivity.<sup>103</sup> A recent study by Tang et al. offers some additional insight into discrepancies observed around the effects of Cu<sup>+</sup> and which C<sub>2</sub> product it enhances.<sup>97</sup> Conducting temperature-controlled experiments between 5°C–25°C, Tang et al. found that ethylene is favored at higher temperatures, while ethanol is favored at lower temperatures. These observations coincided with observations of a larger system RC time constant with decreased temperature, where the response time is the time in which the initial sharp current spike decays to a stable current after a potential step. Using CV scans and XRD to rule out changes in roughness and faceting, they interpret these results as lower temperatures effectively stabilizing Cu<sup>+</sup> species (by slowing the reduction kinetics of Cu<sup>+</sup> to Cu<sup>0</sup>) during the cathodic pulse which enhances ethanol selectivity.

Whether the Cu electrode oxidizes during the p-eCO<sub>2</sub>R at faster (i.e., sub-second) pulses was until recently unknown. An *in situ* XAS study by Kimura et al., found that with 50 ms pulses on polycrystalline copper, the oxidation limit can be momentarily surpassed. Even though the electrode exists above the oxidation potential where Cu<sub>2</sub>O can thermodynamically form, oxidation is kinetically limited such that only Cu<sup>0</sup> exists throughout the 100 ms period ( $E_a = 0.6$  V,  $E_c = -1.0$  V versus RHE).<sup>46</sup> In addition to avoiding copper oxidation by using millisecond pulses, copper oxidation can also be avoided during longer pulses by choosing a less anodic upper potential. In experiments with longer pulse durations (5–60 s) where the anodic pulse potential is far below the equilibrium oxidation limit ( $E_a = -0.8$  V versus RHE), enhanced selectivity toward CO<sub>2</sub>R is still observed even though no oxides form.<sup>56</sup> Taken together, these results imply that while Cu<sup>+</sup> sites play a role in longer

pulse programs with sufficiently anodic upper potentials, it does not explain the p-eCO<sub>2</sub>R behavior at shorter pulses or when the upper potential is below the oxidation potential.

#### Restructuring (faceting, defects) and roughening of catalyst surface

In addition to the question of the catalyst oxidation state, dynamic changes that can cause the electrode to restructure are also possible during p-eCO<sub>2</sub>R. The question is again how fast the electrode structure may change in response to the applied potential and changing surface adsorbates. Our discussion of the electrode structure below focuses on both microscopic roughening as well as specific crystallographic faceting (and reconstruction). A voltammetric analysis carried out on a single crystal Cu(111) surface by scanning between 0 and -0.6, -0.8, and -1.2 V versus SHE clearly showed that the surface state of the catalyst can be modulated by tuning the applied potential limits.<sup>139</sup> A recent *in situ* electrochemical atomic force microscopy study by Simon et al. tracked nanoscale morphological changes of the Cu(100) surface under relevant cathodic potentials, observing the surface changing from granular (OCV) into smooth curved mound-pit features (-0.5 V versus RHE) or structures with rectangular terraces (-1V versus RHE).<sup>140</sup> Based on the results by Simon et al., morphological restructuring is clearly significant when the pulse time is greater than 1 s.

Anodic treatments can cause surface roughening.<sup>31,48,94,96</sup> In CO reduction experiments, Wang et al. correlated an increase in copper catalyst roughness factor to an increase in the production of C<sub>2+</sub> oxygenates.<sup>132</sup> They demonstrated selectivity improvements were due to the high roughness factor electrodes suppressing the intrinsic activity for HER, rather than promoting CO reduction. In CO<sub>2</sub> reduction experiments, roughening is suggested to increase local current density (because of an increase in ECSA), which consequentially increases the local pH, thereby favoring C<sub>2</sub> formation.<sup>141</sup> However, in the work by Jiang et al., the observed enhancements during potentiostatic reduction after potential cycling their polycrystalline Cu foil could not be attributed to an increase in interfacial pH alone.<sup>94</sup> Instead, the intrinsic C<sub>2+</sub> activity of the catalyst was changing, pointing to possible differences in faceting in addition to increased roughness. On the contrary, recent pulsing studies using short pulses (< 1 s<sup>46,49,52</sup>) or less anodic upper potentials (-0.8 V versus RHE)<sup>56</sup> have found no noticeable change in ECSA (a roughness indicator). This suggests that changes in roughness depend on the condition of cycling and that under milder pulse conditions, roughness cannot explain the selectivity differences observed.

The restructuring mechanism of polycrystalline copper during potentiostatic eCO<sub>2</sub>R was proposed by Kim et al., suggesting first the transformation to Cu(111), which takes 30–60 min, followed by a subsequent conversion to Cu(100).<sup>142–144</sup> This process is independent of pH or electrolyte composition and is driven by the cathodic potential.<sup>143</sup> Work by Lee et al. also observed polycrystalline copper transforming to Cu(100), and they noted that this transformation became more pronounced with increasingly negative potential, suggesting that CO<sub>ads</sub> is a key factor in promoting this reconstruction.<sup>54</sup> Interestingly, single crystal Cu(111) and Cu(100) catalysts do not undergo this reconstruction under relevant reduction potentials and the reason for non-reconstruction is not understood.<sup>144</sup> Cu(111) and Cu(100) are suggested to favor methane and ethylene, respectively,<sup>26,145</sup> and a recent study combining cyclic voltammetry and laser-induced temperature jump methods found that Cu(111) and Cu(100) exhibit different pzc values as well as different shifts in OH<sub>ads</sub> voltammetric features.<sup>146</sup> Because faceting influences product selectivity and charge distribution at the interface, it is an important mechanism to consider when evaluating pulse

methods. However, multi-hour pulsing experiments on polycrystalline copper and deoxidized high phosphorous copper did not show a shift in product selectivity that is consistent with the proposed transformation mechanism, i.e., from methane (Cu(111)) to ethylene (Cu(100)).<sup>32,45</sup> Thus, the simple (111)-to-(100) reconstruction mechanism cannot yet explain the observed selectivity trends in p-eCO<sub>2</sub>R.

Potential-dependent changes in surface faceting are an important consideration as the formation of ethylene is favored on Cu(100) and methane on Cu(111) in both aqueous H-cell and gas-fed flow cells.<sup>147,148</sup> A recent study using ICP-MS to track the copper dissolution as a function of potential and pH during reductive/oxidative CV scans found that copper dissolution led to crystal facet modifications, and that dissolution can be avoided by staying within pH 9–10 and not exceeding the Cu<sup>0</sup>/Cu<sup>+</sup> potential.<sup>116</sup> Arán-Ais et al. observed that pulsing creates (100) cubic islands, and that these islands are still observed after an hour of constant-potential reduction. Only when E<sub>a</sub> is > 0.8 V versus RHE do the well-ordered domains deteriorate.<sup>52</sup> If changes in surface faceting were the dominant factor governing selectivity differences in p-eCO<sub>2</sub>R, then electrodes with identical facets should exhibit the same selectivity whether or not a pulsed potential is applied. However, the experiments described by Arán-Ais et al. showed that testing a single crystal Cu(100) electrode led to 32% ethanol selectivity under pulsed conditions (E<sub>c</sub> = -1 V, E<sub>a</sub> = 0.8 V versus RHE, t<sub>c</sub> = t<sub>a</sub> = 1 s) and only 8% ethanol selectivity under potentiostatic (-1 V versus RHE) conditions; these results thus indicate that faceting is not a dominant factor for ethanol selectivity under pulsed conditions.<sup>52</sup>

Aside from crystallographic faceting, the grain size and grain boundary density on the electrode surface play an important role in electrocatalytic processes. It has been suggested that instead of crystal faceting, it is the crystal fragmentation caused by reduction/oxidation cycles that creates grain boundaries and an increased number of steps/edges that changes product selectivity.<sup>120,122,149</sup> The resulting complex grain boundary network facilitates the CO binding and increases the chances for the adjacent CO<sub>ad</sub> intermediates to couple while simultaneously suppressing HER.<sup>122</sup> The extent of the fragmentation depends on the negative potential applied and the time spent at that potential.<sup>122</sup> A long-term study by Engelbrecht et al., observed differences in surface morphology after pulsing and found that grain reorganization becomes more significant as the anodic potential becomes more positive.<sup>32</sup> A recent study by Jeon et al. testing the application of highly oxidative pulse potentials (0.6 to 1.2 V versus RHE) on a Cu NC catalyst found that product selectivity during p-eCO<sub>2</sub>R when E<sub>a</sub> < 0.9 V versus RHE was maintained even after switching to potentiostatic conditions.<sup>98</sup> Therefore, they suggested that pulsing resulted in irreversible changes in the catalyst morphology, and that the enhanced C<sub>2</sub> selectivity can be attributed to the creation of a defective surface with large grain boundaries.

Defects can be quantified using CV scans to monitor changes in defect charge.<sup>52,150</sup> Arán-Ais et al. applied this approach and found that defects created during pulsing do not disappear during constant-potential reduction.<sup>52</sup> Additionally, they observed no change in ECSA between electropolished and pulsed electrodes. Testing their Cu(100) electrode, the defect density was confirmed to be the same after pulsed (E<sub>c</sub> = -1 V, E<sub>a</sub> = 0.6 V versus RHE, t<sub>c</sub> = t<sub>a</sub> = 1 s) and constant (-1 V versus RHE) reduction. Despite no difference in defect density, they observed significant changes in the HER and ethanol selectivity. In a similar experiment tracking changes in product selectivity on a predominately (100)-textured Cu foil during pulsing over a 6 hour experiment by Tang et al., they observed increased C<sub>2</sub> product formation during p-eCO<sub>2</sub>R despite no changes in roughness or faceting.<sup>97</sup> Rather they

hypothesized that the continuous oxidation and reduction of the electrode under pulsed conditions created an active surface promoting CO<sub>ads</sub> and enhancing C-C coupling. This hypothesis is supported by their calculations of a lower activation energy (using Arrhenius temperature dependence studies) for ethylene formation under pulsed conditions than under static conditions.

In summary, the studies described in this section illustrate that the electrode composition and structure can change during the applied pulse depending on the pulse duration and applied vertex potential. While more positive anodic potentials lead to more significant restructuring, these transformations may be kinetically avoided with short (millisecond) pulses. Moreover, further studies are required to delineate the interplay between and relative contributions of dynamic changes in adsorbate coverage and catalyst structure and composition.

#### Mechanism summary and emerging guidelines for future advances in p-eCO<sub>2</sub>R

The mechanistic basis for product selectivity in p-eCO<sub>2</sub>R involves a complex and dynamic interplay between several processes on both sides of the solid/electrolyte interface. Whereas this review and analysis cannot point toward a singular mechanism, we provide a general scheme for using pulsing as a "knob" to tune selectivity toward a given product.

For example, based on the information above, we outline a general scheme for C<sub>2+</sub> product formation. Taking everything we have learned about pulse duration, pulse potential, mass transfer, copper oxidation, surface adsorption/desorption, and surface reconstruction, we can point to specific reaction conditions that enhance C<sub>2+</sub> product formation during p-eCO<sub>2</sub>R. For one, we would need to optimize the pulse duration so that it is long enough to enter into Regime II to avoid non-faradic current domination, which leads to increased hydrogen evolution,<sup>48</sup> but not too long so that we can take advantage of the transient high pH and high CO<sub>2</sub> concentration following a potential step.<sup>95</sup> We would also want to pulse on a copper catalyst with (100) facets to an anodic potential that is positive enough to regenerate Cu<sup>+</sup> (noting that we can affect whether ethylene or ethanol is formed by varying temperature),<sup>52,97</sup> but not so anodic that we lose significant amounts of the catalyst to corrosion<sup>32</sup> or form OH-poor environments that favor methane over C<sub>2</sub> products.<sup>96</sup> And from preliminary p-eCO<sub>2</sub>R experiments in different electrolytes, we would want to pulse in electrolytes that have a small cation hydration radius such as Cs<sup>+</sup>,<sup>56</sup> as well as in an electrolyte environment with a low availability of proton donors and increased presence of hydroxides.<sup>45</sup> In this way, we can begin to take advantage of all of the different mechanisms and insights outlined above to optimize for a given C<sub>2+</sub> product. More generally, there are several emerging trends that are summarized below.

As one of the key experimental parameters, temporal adjustment of the pulse profile can provide control over distinct kinetic processes. Very short pulse times (milliseconds) provide control over the capacitive charging and electro-adsorption/desorption. This dynamic interfacial environment contributes significantly to the p-eCO<sub>2</sub>R. The anodic pulse, for example, could desorb hydrogen species and adsorb hydroxides, effectively varying the ratio of adsorbed CO to H on the electrode surface to impact the reaction selectivity. At longer pulse times, on the order of seconds, surface roughening and morphological changes emerge, as well as the possible formation of persistent oxides on the surface. Additionally, CO<sub>2</sub> can be replenished at the surface during the "off" period. As the anodic treatment is extended to periods of

every few hours, the benefit includes restoring the electrode to its original catalytic activity by disposing the surface of contaminations.

The applied potential is the second key experimental parameter in p-eCO<sub>2</sub>R. The upper pulse potential determines whether or not the catalyst oxidizes. This knob provides access to the Cu<sup>+</sup> formation that can potentially be used to control selectivity. For upper pulse potentials below the Cu<sup>+</sup> formation, the selectivity impact is due to changes in the species in the EDL. For upper pulse potentials above the copper oxide formation, surface restructuring and changes in surface morphology can occur over repetitive potential cycling. However, these transformations can be kinetically avoided through judicious choice of a fast (i.e., millisecond) pulse profile. One thus cannot treat thermodynamic and kinetic aspects as distinct parameters at the pulsed solid/electrolyte interface. While this highlights the numerous outstanding questions and challenges that remain to be resolved to bring the prospect of pulse-controlled product selectivity to full fruition, in our opinion, it also provides an opportunity to fine-tune the interfacial conditions to enable selective formation of high-value products.

#### OUTSTANDING QUESTIONS AND FUTURE OF PULSING

Pulsing is a versatile and powerful tool in e-CO<sub>2</sub>R, even though the underlying dynamic physicochemical processes at the solid/electrolyte interfaces are not yet fully understood. Recent years have borne witness to rapid advances in our initial understanding and various hypothesized mechanisms and future integration of *in situ* time-resolved studies hold significant potential to answer outstanding mechanistic questions. The revival of pulsed electrochemistry can leverage concurrent advances in catalyst and electrolyte system design to improve our fundamental understanding. Moreover, p-eCO<sub>2</sub>R provides a promising technology platform for scalable deployment by virtue of its robust performance and facile adaptation to existing electrolyzer systems.

While traditional methods of product detection (GC, NMR, and LCMS) are useful to observe system performance, they lack the ability to give instantaneous information about the direct result of different pulse profiles. Techniques like DEMS<sup>40,56</sup> and OLEMS<sup>35,47</sup> are useful for characterizing the product profile within seconds, which can provide insight into reaction kinetics and eCO<sub>2</sub>R intermediates, as well as enabling faster exploration of the pulse parameter space. Many *ex situ* surface characterization techniques have also been employed to study the catalyst surface before and after pulsing including XPS, XRD, AFM, TEM, and SEM<sup>30,32,41,42,48,49,51,94,97</sup>; however, as we previously mentioned, these *ex situ* methods do not necessarily represent the true surface conditions during reaction. Advances in *operando* characterization tools have and will continue to play a critical enabling role in exploring the scientific questions discussed above.<sup>151,152</sup> *In situ/operando* techniques are paramount to understanding the catalyst surface at each point in time under relevant reaction conditions.<sup>153</sup> As we look back on the pulsing studies included here, just recently have *operando* techniques been employed to characterize the interface (to observe catalyst chemical state and surface-adsorbed species) during reaction including *in situ/operando* XAS,<sup>46,53,54,96</sup> *quasi in situ* XPS,<sup>52</sup> *in situ/operando* Raman spectroscopy,<sup>50,98</sup> and *in situ* EQCM.<sup>41</sup> These characterization methods require highly specialized cell configurations, which makes the use of them nontrivial. As we have explained in previous sections, the CO<sub>ads</sub> intermediate is suggested to be a key piece of the pulsing mechanism based on hypotheses and simplified theoretical calculations and studying the CO<sub>ads</sub> species using an *operando* technique like *in situ* SEIRAS would provide valuable insight for understanding the role of

adsorbed CO and its dynamics during p-eCO<sub>2</sub>R. There is a large need for using time-resolved operando studies to provide direct "real-time" insight into the dynamic processes taking place during pulsing.

We also motivate future theoretical works to model trends under pulsed potential conditions. While conventional tools focus on species thermodynamics, tools that include kinetic information will become increasingly important to understand the pulse mechanism in order to identify the "first-responders" to changes in potential. Further, it would be useful to have microkinetic models looking at how the energy landscape changes with the rapidly changing conditions used in p-eCO<sub>2</sub>R.

Comprehensive and detailed documentation of all experimental details is critical for the community to reach consensus and build understanding, as well as for enabling emerging approaches with machine learning analysis of experimental systems. As we advance our knowledge of the pulsing mechanism, it has become clear that certain parameters, such as system response time, which may have been overlooked in the past, are becoming increasingly important when optimizing the pulse duration.

Another challenge is the definition of success: what is the optimal way to represent selectivity, activity, and energy efficiency? Conventionally, one would analyze the current response to determine the number of electrons input into the system, and then quantify the products to determine the number of electrons directed toward each product to determine the faradic efficiency. In this way, it is possible that the total faradic efficiency does not sum to 100% if some of the products are unaccounted for (for example, if one only quantified gaseous products) or if there was a leak in the system and products were lost before they could be measured. However, in pulse studies, it is also common for product selectivity to be reported as a normalized efficiency where instead of analyzing the charge input into the system using the measured current, one would assume that all of the products are completely accounted for, and so the total number of electrons put into the system is the number of electrons needed to make all of the products detected. In this way, the calculated product efficiencies will always sum to 100%. While the faradic efficiency is a truer selectivity calculation than a normalized efficiency because it confirms that all products are being detected, it is not trivial to extract the faradic current from short pulse profiles with large charging current contributions. The total current profile is the sum of the non-faradic current, faradic currents from CO<sub>2</sub>R and HER, and currents from copper oxidation and reduction, all of which depend on the applied potential. Since the underlying faradic current is not likely to be constant over time, it is difficult to accurately quantify. In terms of activity, current density is an important metric because it enables a comparison between different catalysts.<sup>154</sup> However, this activity data can only be understood if the ECSA of the electrode is reported so that it can be determined whether the improved activity is from higher turnover or rather just from an increased number of active sites/interfacial areas.<sup>5,154</sup> Additionally, activity at high overpotentials is strongly influenced by concentration polarization meaning it is not an indicator of its true intrinsic activity under bulk conditions.<sup>155</sup> Therefore, it has been strongly recommended that intrinsic activity and selectivity conclusions be drawn from experiments carried out under conditions where the system is not mass transport limited.<sup>5</sup> With this in mind, it is paramount moving forward that experimental conditions are fully documented so that data can be interpreted as accurately as possible.

Beyond fundamental understandings, p-eCO<sub>2</sub>R is a simple way to increase the experimental degrees of freedom. This additional control creates opportunities to modulate selectivity and improve catalyst lifetime in the eCO<sub>2</sub>R. In our opinion,

there are plenty of opportunities to further explore and optimize the pulsing method. Some of these opportunities include pulsing on different metals. Initial tests on Ag, Pd, and Pb indicate that pulsing could be applied to catalysts beyond Cu, as well as on bimetallic catalyst materials. Through pulsing on different crystal facets, we can understand the morphological effects of pulsing, and through pulsing in different chemical environments, we can better understand how pulsing affects local adsorbates. There is also room for modeling and machine learning, for example, to run through a series of different pulse profiles to determine the optimum performance conditions. Finally, there is also a widely unexplored space for applying pulsing to GDE-based flow cell systems to gain additional performance by taking advantage of the faster reactant diffusion. To our knowledge, there are only three published studies evaluating pulsed electrolysis on GDEs under high current density conditions.<sup>34,54,96</sup> Whether the current knowledge and pulsing trends in aqueous environments can transfer directly to GDE configurations has just begun to be explored and is relatively unknown, and this is because quite a few things are different in these high-surface area high-current density devices: (1) the electrolyte flows through the cell which could possibly flush away dissolved copper ions before they are precipitated onto the surface as has been observed under some pulse conditions,<sup>41</sup> (2) there is now a three-phase heterogeneous reaction interface with high currents creating a very different reaction environment than when planar electrodes are used (specifically changing pH conditions, which can introduce new complexities at the surface such as CO<sub>2</sub> depletion, salt formation,<sup>34</sup> OH-poor environments,<sup>96</sup> etc.),<sup>156</sup> and (3) the larger electrode areas and higher ohmic losses can drastically change the system response time to an applied potential. We believe that addressing these challenges can increase eCO<sub>2</sub>R's commercial viability in addition to advancing our understanding of the interplay of kinetics and transport in electrochemical systems to contribute to our understanding of electrochemical devices in general.

## CONCLUSIONS

In conclusion, we provide a summary of recent advances in p-eCO<sub>2</sub>R with a focus on the complex interplay of dynamic processes at the solid/electrolyte interface. Our review/perspective highlights the current knowledge gaps, inconsistencies, opportunities, and inspirations for future studies. We believe that addressing some of the highlighted questions can bring the broad potential of this promising approach to full fruition. We analyzed a wide variety of examples to underscore p-eCO<sub>2</sub>R as a useful, versatile, and robust method to modify the performance of eCO<sub>2</sub>R since it creates microenvironments that are unachievable under potentiostatic conditions. Because of the varying timescales of the dynamic processes (diffusion, adsorption/desorption, reaction) happening at the electrode interface, modulating the potential at regular intervals will have significant disruptive effects, thereby influencing the reaction environment and reaction kinetics.

The interest in p-eCO<sub>2</sub>R is driven by its ability to improve reaction selectivity. However, as we have discussed, the pulsing mechanism is quite complex as there are multiple processes occurring at the same time: (1) changing local concentrations of reactants, products, intermediates, and spectators in the EDL, (2) restructuring of facets including oxide formation, and (3) dynamic changes in interfacial chemistry, in particular, the surface adsorbates. The extent to which these processes dominate is based on the specific applied pulse program—an opportunity for future works to identify. As CO<sub>2</sub> utilization becomes more critical to address the rising CO<sub>2</sub> levels, significant efforts will need to be put in place to continue pushing forward our

knowledge of pulse methods so that we can apply them optimally to achieve high-efficiency CO<sub>2</sub> valorization systems.

#### SUPPLEMENTAL INFORMATION

Supplemental information can be found online at <https://doi.org/10.1016/j.joule.2021.05.014>.

#### ACKNOWLEDGMENTS

**Q8** This work was supported in part by the National Science Foundation (NSF; CBET1805400). R.C. was supported by the CeSI-Corning Graduate Fellowship and Cornell University Robert F. Smith School of Chemical and Biomolecular Engineering. K.L. acknowledges support from the Cornell Engineering Learning Initiative. The authors would like to thank Prof. H. Abruña for helpful discussions and review.

#### REFERENCES

1. Guth, U., Vonau, W., and Zosel, J. (2009). Recent developments in electrochemical sensor application and technology—a review. *Meas. Sci. Technol.* 20, 042002. <https://doi.org/10.1088/0957-0233/20/4/042002>.
2. Petro, R., and Schlesinger, M. (2013). Applications of Electrochemistry in Medicine. In *Modern Aspects of Electrochemistry*, R.E. White and C.G. Vayenas, eds. (Springer), pp. 1–33.
3. Fletcher, D., and Walsh, F.C. (2012). *Industrial Electrochemistry* (Springer Science & Business Media).
4. Bushuyev, O.S., De Luna, P., Dinh, C.T., Tao, L., Saur, G., van de Lagemaat, J., Kelley, S.O., and Sargent, E.H. (2018). What should we make with CO<sub>2</sub> and how can we make it? *Joule* 2, 825–832. <https://doi.org/10.1016/j.joule.2017.09.003>.
5. Nitopi, S., Bertheussen, E., Scott, S.B., Liu, X., Engelfeld, A.K., Horch, S., Seger, B., Stephens, I.E.L., Chan, K., Hahn, C., et al. (2019). Progress and perspectives of electrochemical CO<sub>2</sub> reduction on copper in aqueous electrolyte. *Chem. Rev.* 119, 7610–7672. <https://doi.org/10.1021/acs.chemrvw.8b00705>.
6. Hori, Y. (2008). Electrochemical CO<sub>2</sub> reduction on metal electrodes. In *Modern Aspects of Electrochemistry*, C.G. Vayenas, R.E. White, and M.E. Gamboa-Aldeco, eds. (Springer), pp. 89–109.
7. Verma, S., Kim, B., Jhong, H., Ma, S., and Kenis, P.J.A. (2016). A gross-margin model for defining techno-economic benchmarks in the electroreduction of CO<sub>2</sub>. *ChemSusChem* 9, 1972–1979. <https://doi.org/10.1002/cssc.201600394>.
8. Kumar, B., Brian, J.P., Atla, V., Kumari, S., Bertram, K.A., White, R.T., and Spurgeon, J.M. (2016). New trends in the development of heterogeneous catalysts for electrochemical CO<sub>2</sub> reduction. *Catal. Today* 270, 19–30. <https://doi.org/10.1016/j.cattod.2016.02.006>.
9. Liu, A., Gao, M., Ren, X., Meng, F., Yang, Y., Gao, L., Yang, Q., and Ma, T. (2020). Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts. *J. Mater. Chem. A* 8, 3541–3562. <https://doi.org/10.1039/C9TA11966C>.
10. Long, C., Li, X., Guo, J., Shi, Y., Liu, S., and Tang, Z. (2019). Electrochemical reduction of CO<sub>2</sub> over heterogeneous catalysts in aqueous solution: recent progress and perspectives. *Small Methods* 3, 1800369. <https://doi.org/10.1002/smtd.201800369>.
11. Qiao, J., Liu, Y., Hong, F., and Zhang, J. (2014). A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. *Chem. Soc. Rev.* 43, 631–675. <https://doi.org/10.1039/C3CS60323G>.
12. Fan, L., Xia, C., Yang, F., Wang, J., Wang, H., and Lu, Y. (2020). Strategies in catalysts and electrolyte design for electrochemical CO<sub>2</sub> reduction toward C2+ products. *Sci. Adv.* 6, eavy3111. <https://doi.org/10.1126/sciadv.eavy3111>.
13. Liang, S., Altaf, N., Huang, L., Gao, Y., and Wang, Q. (2020). Electrolytic design for electrochemical CO<sub>2</sub> reduction. *J. CO<sub>2</sub> Util.* 35, 90–105. <https://doi.org/10.1016/j.jcou.2019.09.007>.
14. Vennekötter, J.-B., Sengpiel, R., and Wessling, M. (2019). Beyond the catalyst: how electrode and reactor design determine the products spectrum during electrochemical CO<sub>2</sub> reduction. *Chem. Eng. J.* 364, 89–101. <https://doi.org/10.1016/j.cej.2019.01.045>.
15. Tufa, R.A., Chanda, D., Ma, M., Alii, D., Demisse, T.B., Vaez, J., Li, Q., Liu, S., and Pant, D. (2020). Towards highly efficient electrochemical CO<sub>2</sub> reduction: cell designs, membranes and electrocatalysts. *Appl. Energy* 277, 115557. <https://doi.org/10.1016/j.apenergy.2020.115557>.
16. Higgins, D., Hahn, C., Xiang, C., Jaramillo, T.F., and Weber, A.Z. (2019). Gas-diffusion electrodes for carbon dioxide reduction: a new paradigm. *ACS Energy Lett.* 4, 317–324. <https://doi.org/10.1021/acsenergylett.8b02035>.
17. Moura de Salles Pupo, M., and Kortlever, R. (2019). Electrolyte effects on the electrochemical reduction of CO<sub>2</sub>. *ChemPhysChem* 20, 2926–2935. <https://doi.org/10.1002/cphc.201900680>.
18. Lu, Q., and Jiao, F. (2016). Electrochemical CO<sub>2</sub> reduction: electrocatalyst, reaction mechanism, and process engineering. *Nano Energy* 29, 439–456. <https://doi.org/10.1016/j.nanoen.2016.04.009>.
19. Gao, D., Arán-Ais, R.M., Jeon, H.S., and Roldan Cuanya, B.R. (2019). Rational catalyst and electrolyte design for CO<sub>2</sub> electroreduction towards multcarbon products. *Nat. Catal.* 2, 198–210. <https://doi.org/10.1038/s41929-019-0235-5>.
20. Greenblatt, J.B., Miller, D.J., Ager, J.W., Houle, F.A., and Sharp, I.D. (2018). The technical and energetic challenges of separating (photo)electrochemical carbon dioxide reduction products. *Joule* 2, 381–420. <https://doi.org/10.1016/j.joule.2018.01.014>.
21. National Research Council (2005). *Sustainability in the Chemical Industry: Grand Challenges and Research Needs* (National Academies Press).
22. Sholl, D.S., and Lively, R.P. (2016). Seven chemical separations to change the world. *Nature* 532, 435–437.
23. Kuhl, K.P., Hatsuake, T., Cave, E.R., Abram, D.N., Kibsgaard, J., and Jaramillo, T.F. (2014). Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. *J. Am. Chem. Soc.* 136, 14107–14113. <https://doi.org/10.1021/ja505791r>.
24. Bagger, A., Ju, W., Varela, A.S., Strasser, P., and Rossmeisl, J. (2017). Electrochemical CO<sub>2</sub> reduction: a classification problem. *ChemPhysChem* 18, 3266–3273. <https://doi.org/10.1002/cphc.201700736>.
25. Wuttig, A., Liu, C., Peng, Q., Yaguchi, M., Hendon, C.H., Motobayashi, K., Ye, S., Osawa, M., and Surendranath, Y. (2016). Trading a common surface-bound intermediate during CO<sub>2</sub>-to-fuels catalysis. *ACS Cent. Sci.* 2, 522–528. <https://doi.org/10.1021/acscentsci.6b00155>.
26. Clark, E.L., and Bell, A.T. (2021). Heterogeneous electrochemical CO<sub>2</sub> reduction. In *Carbon Dioxide Electrochemistry: Homogeneous and Heterogeneous Catalysis*, C.C. Marc Robert and K. Daasbjerg, eds. (The Royal Society of Chemistry), pp. 98–150.

27. Kuhl, K.P., Cave, E.R., Abram, D.N., and Jarillo, T.F. (2012). New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. *Energy Environ. Sci.* 5, 7050–7059. <https://doi.org/10.1039/C2EE21234J>.

28. DeWulf, D.W., Jin, T., and Bard, A.J. (1989). Electrochemical and surface studies of carbon dioxide reduction to methane and ethylene at copper electrodes in aqueous solutions. *J. Electrochem. Soc.* 136, 1686–1691. <https://doi.org/10.1149/1.2096993>.

29. Hori, Y., Konishi, H., Futamura, T., Murata, A., Koga, O., Sakurai, H., and Oguma, K. (2005). Deactivation of copper electrode<sup>+</sup> in electrochemical reduction of CO<sub>2</sub>. *Electrochim. Acta* 50, 5354–5369. <https://doi.org/10.1016/j.electacta.2005.03.015>.

30. Shiratsuchi, R., Aikoh, Y., and Nogami, G. (1993). Pulsed electroreduction of CO<sub>2</sub> on Copper electrodes. *J. Electrochem. Soc.* 140, 3479–3482. <https://doi.org/10.1149/1.221113>.

31. Jermann, B., and Augustynski, J. (1994). Long-term activation of the copper cathode in the course of CO<sub>2</sub> reduction. *Electrochim. Acta* 39, 1891–1896. [https://doi.org/10.1016/0013-4686\(94\)85181-6](https://doi.org/10.1016/0013-4686(94)85181-6).

32. Engelbrecht, A., Uhlig, C., Stark, O., Hämmerle, M., Schmid, G., Magori, E., Wiesner-Fleischer, K., Fleischer, M., and Moos, R. (2018). On the electrochemical CO<sub>2</sub> reduction at copper sheet electrodes with enhanced long-term stability by pulsed electrolysis. *J. Electrochem. Soc.* 165, J3059–J3068. <https://doi.org/10.1149/2.0091815jes>.

33. Lee, C.W., Cho, N.H., Nam, K.T., Hwang, Y.J., and Min, B.K. (2019). Cyclic two-step electrolysis for stable electrochemical conversion of carbon dioxide to formate. *Nat. Commun.* 10, 3919. <https://doi.org/10.1038/s41467-019-11903-5>.

34. Xu, Y., Edwards, J.P., Liu, S., Miao, R.K., Huang, J.E., Gabardo, C.M., O'Brien, C.P., Li, J., Sargent, E.H., and Sinton, D. (2021). Self-cleaning CO<sub>2</sub> reduction systems: unsteady electrochemical forcing enables stability. *ACS Energy Lett.* 6, 809–815. <https://doi.org/10.1021/acsenergylett.0c02401>.

35. Wasmus, S., Cattaneo, E., and Vielstich, W. (1990). Reduction of carbon dioxide to methane and ethene—an on-line MS study with rotating electrodes. *Electrochim. Acta* 35, 771–775. [https://doi.org/10.1016/0013-4686\(90\)90014-Q](https://doi.org/10.1016/0013-4686(90)90014-Q).

36. Nogami, G., Itagaki, H., and Shiratsuchi, R. (1994). Pulsed electroreduction of CO<sub>2</sub> on Copper electrodes-II. *J. Electrochem. Soc.* 141, 1138–1142. <https://doi.org/10.1149/1.2054886>.

37. Ishimaru, S., Shimotsuji, R., and Nogami, G. (2000). Pulsed electroreduction of CO<sub>2</sub> on Cu-Ag alloy electrodes. *J. Electrochem. Soc.* 147, 1864. <https://doi.org/10.1149/1.1393448>.

38. Shiratsuchi, R., and Nogami, G. (1996). Pulsed electroreduction of CO<sub>2</sub> on Silver electrodes. *J. Electrochem. Soc.* 143, 582–586. <https://doi.org/10.1149/1.1836484>.

39. Kedzierszawski, P., and Augustynski, J. (1994). Poisoning and activation of the gold cathode during electroreduction of CO<sub>2</sub>. *J. Electrochem. Soc.* 141, L58–L60. <https://doi.org/10.1149/1.2054936>.

40. Friebe, P., Bogdanoff, P., Alonso-Vante, N., and Tributsch, H. (1997). A real-time mass spectroscopy study of the (electro)chemical factors affecting CO<sub>2</sub> reduction at copper. *J. Catal.* 168, 374–385. <https://doi.org/10.1006/jcat.1997.1606>.

41. Lee, J., and Tak, Y. (2001). Electrocatalytic activity of Cu electrode in electroreduction of CO<sub>2</sub>. *Electrochim. Acta* 46, 3015–3022. [https://doi.org/10.1016/S0013-4686\(01\)00527-8](https://doi.org/10.1016/S0013-4686(01)00527-8).

42. Yano, J., and Yamasaki, S. (2008). Pulse-mode electrochemical reduction of carbon dioxide using copper and copper oxide electrodes for selective ethylene formation. *J. Appl. Electrochem.* 38, 1721–1726. <https://doi.org/10.1007/s10800-008-9622-3>.

43. Gupta, N., Gattrell, M., and MacDougall, B. (2006). Calculation for the cathode surface concentrations in the electrochemical reduction of CO<sub>2</sub> in KHCO<sub>3</sub> solutions. *J. Appl. Electrochem.* 36, 161–172. <https://doi.org/10.1007/s10800-005-9058-y>.

44. Kimura, K.W., Fritz, K.E., Kim, J., Suntivich, J., Abinur, H.D., and Hanath, T. (2018). Controlled selectivity of CO<sub>2</sub> reduction on copper by pulsing the electrochemical potential. *ChemSusChem* 11, 1781–1786. <https://doi.org/10.1002/cssc.201800318>.

45. Casebolt, R., Kimura, K.W., Levine, K., Cimada Dasilva, J.A., Kim, J., Dunbar, T.A., Suntivich, J., and Hanath, T. (2021). Effect of electrolyte composition and concentration on pulsed potential electrochemical CO<sub>2</sub> reduction. *ChemElectroChem*, 6, 681–688. <https://doi.org/10.1002/celec.202001445>.

46. Kimura, K.W., Casebolt, R., Cimada Dasilva, J., Kauffman, E., Kim, J., Dunbar, T.A., Pollock, C.J., Suntivich, J., and Hanath, T. (2020). Selective electrochemical CO<sub>2</sub> reduction during pulsed potential steps from dynamic interface. *ACS Catal.* 10, 8632–8639. <https://doi.org/10.1021/acscatal.0c02630>.

47. Le Duff, C.S., Lawrence, M.J., and Rodriguez, P. (2017). Role of the adsorbed oxygen species in the selective electrochemical reduction of CO<sub>2</sub> to alcohols and carbonyls on copper electrodes. *Angew. Chem. Int. Ed. Engl.* 56, 12919–12924. <https://doi.org/10.1002/anie.201706443>.

48. Kumar, B., Brian, J.P., Atla, V., Kumari, S., Betram, K.A., White, R.T., and Spurgeon, J.M. (2016). Controlling the product syngas H<sub>2</sub>:CO Ratio through pulsed-bias electrochemical reduction of CO<sub>2</sub> on copper. *ACS Catal.* 6, 4739–4745. <https://doi.org/10.1021/acscatal.6b00857>.

49. Strain, J.M., Gulati, S., Pishgar, S., and Spurgeon, J.M. (2020). Pulsed electrochemical carbon monoxide reduction on oxide-derived copper catalyst. *ChemSusChem* 13, 3028–3033. <https://doi.org/10.1002/cssc.202000464>.

50. Blom, M.J.W., Smulders, V., van Swaaij, W.P.M., Kersten, S.R.A., and Mul, G. (2020). Pulsed electrochemical synthesis of formate using Pb electrodes. *Appl. Catal. B* 268, 118420. <https://doi.org/10.1016/j.apcatb.2019.118420>.

51. Lim, C.F.C., Harrington, D.A., and Marshall, A.T. (2016). Altering the selectivity of galvanostatic CO<sub>2</sub> reduction on Cu cathodes by periodic cyclic voltammetry and potentiostatic steps. *Electrochim. Acta* 222, 133–140. <https://doi.org/10.1016/j.electacta.2016.10.185>.

52. Arntz-Ais, R.M., Scholten, F., Kunze, S., Rizo, R., and Roldan Cuanya, B.R. (2020). The role of in situ generated morphological motifs and Cu(II) species in C<sub>2</sub>-product selectivity during CO<sub>2</sub> pulsed electroreduction. *Nat. Energy* 5, 317–325. <https://doi.org/10.1038/s41560-020-0594-9>.

53. Lin, S.C., Chang, C.C., Chiu, S.Y., Pai, H.T., Liao, T.Y., Hsu, C.S., Chiang, W.H., Tsai, M.K., and Chen, H.M. (2020). Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO<sub>2</sub> reduction. *Nat. Commun.* 11, 3525. <https://doi.org/10.1038/s41467-020-17231-3>.

54. Lee, S.H., Sullivan, I., Larson, D.M., Liu, G., Toma, F.M., Xiang, C., and Drisdell, W.S. (2020). Correlating oxidation state and surface area to activity from operando studies of Copper CO<sub>2</sub> electroreduction catalysts in a gas-fed device. *ACS Catal.* 10, 8000–8011. <https://doi.org/10.1021/acscatal.0c01670>.

55. Oguma, T., and Azumi, K. (2020). Improvement of electrochemical reduction of CO<sub>2</sub> using the potential-pulse polarization method. *Electrochemistry* 88, 451–456. <https://doi.org/10.5796/electrochemistry.20-00037>.

56. Kim, C., Wang, L.-C., and Bell, A.T. (2020). The impact of pulsed electrochemical reduction of CO<sub>2</sub> on the formation of C<sub>2</sub>-products over Cu. *ACS Catal.* 10, 12403–12413. <https://doi.org/10.1021/acscatal.0c02915>.

57. Jänsch, Y., Leung, J.J., Hämmerle, M., Magori, E., Wiesner-Fleischer, K., Simon, E., Fleischer, M., and Moos, R. (2020). Pulsed potential electrochemical CO<sub>2</sub> reduction for enhanced stability and catalyst reactivation of copper electrodes. *Electrochim. Commun.* 121, 106861. <https://doi.org/10.1016/j.elecom.2020.106861>.

58. Popović, S., Smiljanić, M., Jovanović, P., Vavra, J., Buonsanti, R., and Hodnik, N. (2020). Stability and degradation mechanisms of copper-based catalysts for electrochemical CO<sub>2</sub> reduction. *Angew. Chem. Int. Ed. Engl.* 59, 14736–14746. <https://doi.org/10.1002/anie.202000617>.

59. Karaikakis, A.N., Golru, S.S., and Biddinger, E.J. (2019). Effect of electrode geometry on selectivity and activity in CO<sub>2</sub> electroreduction. *Ind. Eng. Chem. Res.* 58, 22506–22515. <https://doi.org/10.1021/acs.iecr.9b03762>.

60. Klingan, K., Kottakkat, T., Jovanov, Z.P., Jiang, S., Pasquini, C., Scholten, F., Kubella, P., Bergmann, A., Roldan Cuanya, B.R., Roth, C., and Dau, H. (2018). Reactivity determinants in electrodeposited Cu foams for electrochemical CO<sub>2</sub> reduction. *ChemSusChem* 11, 3449–3459. <https://doi.org/10.1002/cssc.201801582>.

61. Lee, C.W., Yang, K.D., Nam, D.H., Jang, J.H., Cho, N.H., Im, S.W., and Nam, K.T. (2018). Defining a materials database for the design of copper binary alloy catalysts for electrochemical CO<sub>2</sub> conversion. *Adv. Mater.* 30, e1704717. <https://doi.org/10.1002/adma.201704717>.
62. Blanco, D.E., Lee, B., and Modestino, M.A. (2019). Optimizing organic electrosynthesis through controlled voltage dosing and artificial intelligence. *Proc. Natl. Acad. Sci. USA* 116, 17683–17689. <https://doi.org/10.1073/pnas.1909851116>.
63. Sattler, L.E., Otten, C.J., and Hilt, G. (2020). Alternating current electrolysis for the electrocatalytic synthesis of mixed disulfide via sulfur–sulfur bond metathesis towards dynamic disulfide libraries. *Chem. Eur. J.* 26, 3129–3136. <https://doi.org/10.1002/chem.201904948>.
64. Savett, S.C., Lee, S.M., Bradley, A.Z., Kneizys, S.P., LoBue, J.M., and Middleton, W.J. (1993). Microscale electrolytic fluorinations of 4-nitrotoluene - cell construction, computer monitor and control, and chemistry. *Microchem. J.* 48, 192–199. <https://doi.org/10.1006/mchj.1993.1090>.
65. Lee, S.M., Roseman, J.M., Blair Zartman, C.B., Morrison, E.P., Harrison, S.J., Stankiewicz, C.A., and Middleton, W.J. (1996). Selective electrolytic fluorinations in 70% HF/30% Pyridine. *J. Fluor. Chem.* 77, 65–70. [https://doi.org/10.1016/0022-1139\(95\)03379-3](https://doi.org/10.1016/0022-1139(95)03379-3).
66. Lee, B., Naito, H., Nagao, M., and Hibino, T. (2012). Alternating-current electrolysis for the production of phenol from benzene. *Angew. Chem. Int. Ed. Engl.* 51, 6961–6965. <https://doi.org/10.1002/anie.201202159>.
67. Schotten, C., Taylor, C.J., Bourne, R.A., Chamberlain, T.W., Nguyen, B.N., Kapur, N., and Willans, C.E. (2020). Alternating polarity for enhanced electrochemical synthesis. *React. Chem. Eng.* 6, 147–151. <https://doi.org/10.1039/DREC00399A>.
68. Rodriguez, S., Um, C., Mixdorf, J.C., Gunasekara, D., Nguyen, H.M., and Luo, L. (2020). Alternating current electrolysis for organic electrosynthesis: trifluoromethylation of (hetero)amines. *Org. Lett.* 22, 6719–6723. <https://doi.org/10.1021/acs.orglett.0c01906>.
69. Román, A.M., Spivey, T.D., Medlin, J.W., and Holewinski, A. (2020). Accelerating electro-oxidation turnover rates via potential-modulated stimulation of electrocatalytic activity. *Ind. Eng. Chem. Res.* 59, 19999–20010. <https://doi.org/10.1021/acs.iecr.0c04414>.
70. Vehnberg, J., Vepsäläinen, M., Maado, D.S., Rubio-Martinez, M., Webster, N.A.S., and Wessling, M. (2020). Steady-state electrochemical synthesis of HKUST-1 with polarity reversal myndite. *Micropor. Mesopor. Mater.* 303, 110218. <https://doi.org/10.1016/j.micromeso.2020.110218>.
71. Xu, J., Liu, C., Hsu, P.C., Zhao, J., Wu, T., Tang, J., Liu, K., and Cui, Y. (2019). Remediation of heavy metal contaminated soil by asymmetric alternating current electrochemistry. *Nat. Commun.* 10, 2440. <https://doi.org/10.1038/s41467-019-10472-x>.
72. Karamati-Niaragh, E., Alavi Moghaddam, M.R.A., Emamjomeh, M.M., and Nasabadi, E. (2019). Evaluation of direct and alternating current on nitrate removal using a continuous electrocoagulation process: economical and environmental approaches through RSM. *J. Environ. Manage.* 230, 245–254. <https://doi.org/10.1016/j.jenvman.2018.09.091>.
73. Liu, C., Hsu, P.-C., Xie, J., Zhao, J., Wu, T., Wang, H., Liu, W., Zhang, J., Chu, S., and Cui, Y. (2017). A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. *Nat. Energy* 2, 17007. <https://doi.org/10.1038/energy.2017.7>.
74. Zhou, L., Liu, D., Li, S., Yin, X., Zhang, C., Li, X., Zhang, C., Zhang, W., Cao, X., Wang, J., and Wang, Z.L. (2019). Effective removing of hexavalent chromium from wasted water by triboelectric nanogenerator driven self-powered electrochemical system - Why pulsed DC is better than continuous DC? *Nano Energy* 64, 103915. <https://doi.org/10.1016/j.nanoen.2019.103915>.
75. Raut, A.S., Parker, C.B., Klem, E.J.D., Stoner, B.R., Deshusses, M.A., and Glass, J.T. (2019). Reduction in energy for electrochemical disinfection of *E. coli* in urine simulant. *J. Appl. Electrochem.* 49, 443–453. <https://doi.org/10.1007/s10800-019-01292-4>.
76. Carpanedo de Moraes Nepel, T., Landers, R., Gurgel Adeodato Vieira, M., and Flórcio de Almeida Neto, A. (2020). Metallic copper removal optimization from real wastewater using pulsed electrodeposition. *J. Hazard. Mater.* 384, 121416. <https://doi.org/10.1016/j.jhazmat.2019.121416>.
77. Stamenkovic, V.R., Strmcnik, D., Lopes, P.P., and Marikovic, N.M. (2016). Energy and fuels from electrochemical interfaces. *Nat. Mater.* 16, 57–69. <https://doi.org/10.1038/nmat4738>.
78. Bard, A.J., and Faulkner, L.R. (2001). *Electrochemical Methods Fundamentals and Applications* (John Wiley & Sons).
79. Wang, J. (2008). *Analytical Electrochemistry* (John Wiley & Sons).
80. Ringe, S., Clark, E.L., Resasco, J., Walton, A., Seger, B., Bell, A.T., and Chan, K. (2019). Understanding cation effects in electrochemical CO<sub>2</sub> reduction. *Energy Environ. Sci.* 12, 3001–3014. <https://doi.org/10.1039/C9EE01341E>.
81. Resasco, J., Chen, L.D., Clark, E., Tsai, C., Hahn, C., Jaramillo, T.F., Chan, K., and Bell, A.T. (2017). Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. *J. Am. Chem. Soc.* 139, 11271–11287. <https://doi.org/10.1021/jacs.6b0765>.
82. Singh, M.R., Kwon, Y., Lum, Y., Ager, J.W., III, and Bell, A.T. (2016). Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO<sub>2</sub> over Ag and Cu. *J. Am. Chem. Soc.* 138, 13006–13012. <https://doi.org/10.1021/jacs.6b0762>.
83. Varela, A.S., Kroschel, M., Reier, T., and Strasser, P. (2016). Controlling the selectivity of CO<sub>2</sub> electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. *Catal. Today* 260, 8–13. <https://doi.org/10.1016/j.cattod.2015.06.009>.
84. Resasco, J., Lum, Y., Clark, E., Zaledon, J.Z., and Bell, A.T. (2018). Effects of anion identity and concentration on electrochemical reduction of CO<sub>2</sub>. *ChemElectroChem* 5, 1064–1072. <https://doi.org/10.1002/celec.201701316>.
85. Zhao, M., Tang, H., Yang, Q., Gu, Y., Zhu, H., Yan, S., and Zou, Z. (2020). Inhibiting hydrogen evolution using a chloride a layer for efficient electrochemical CO<sub>2</sub> reduction on Zn electrodes. *ACS Appl. Mater. Interfaces* 12, 4565–4571. <https://doi.org/10.1021/acsami.9b22811>.
86. Huang, Y., Ong, C.W., and Yeo, B.S. (2018). Effects of electrolyte anions on the reduction of carbon dioxide to ethylene and ethanol on copper (100) and (111) surfaces. *ChemSusChem* 11, 3299–3306. <https://doi.org/10.1002/cssc.201801078>.
87. Bartholomew, C.H. (2001). Mechanisms of catalyst deactivation. *Appl. Catal. A* 212, 17–60. [https://doi.org/10.1016/S0926-860X\(00\)00843-7](https://doi.org/10.1016/S0926-860X(00)00843-7).
88. Wuttig, A., and Sudarshanath, Y. (2015). Impurity ion complexation enhances carbon dioxide reduction catalysis. *ACS Catal.* 5, 4479–4484. <https://doi.org/10.1021/acscatal.5b00800>.
89. Leung, K.Y., and McCrory, C.C.L. (2019). Effect and prevention of trace Ag<sup>+</sup> contamination from Ag/AgCl reference electrodes on CO<sub>2</sub> reduction product distributions at polycrystalline copper electrodes. *ACS Appl. Energy Mater.* 2, 8283–8293. <https://doi.org/10.1021/acs.aaem.9b01759>.
90. Jovanov, Z.P., Ferreira de Amujo, J., Li, S., and Strasser, P. (2019). Catalyst preoxidation and EDTA electrolyte additive remedy activity and selectivity declines during electrochemical CO<sub>2</sub> reduction. *J. Phys. Chem. C* 123, 2165–2174. <https://doi.org/10.1021/acs.jpcc.8b08794>.
91. Tiwari, A., Maagaard, T., Chorkendorff, I., and Horch, S. (2019). Effect of dissolved glassware on the structure-sensitive part of the Cu (111) voltammogram in KOH. *ACS Energy Lett.* 4, 1645–1649. <https://doi.org/10.1021/acs.energylett.9b01064>.
92. Teeter, T.E., and Van Rysselberghe, P. (1954). Reduction of carbon dioxide on mercury cathodes. *J. Chem. Phys.* 22, 759–760. <https://doi.org/10.1063/1.1740178>.
93. Yano, J., Morita, T., Shimano, K., Nagami, Y., and Yamasaki, S. (2007). Selective ethylene formation by pulse-mode electrochemical reduction of carbon dioxide using copper and copper-oxide electrodes. *J. Solid State Electrochem.* 11, 554–557. <https://doi.org/10.1007/s10080-006-0181-4>.
94. Jiang, K., Sandberg, R.B., Akey, A.J., Liu, X., Bell, D.C., Narasimhan, J.K., Chan, K., and Wang, H. (2018). Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO<sub>2</sub> reduction. *Nat. Catal.* 1, 111–119. <https://doi.org/10.1038/s41929-017-0009-x>.
95. Bui, J.C., Kim, C., Weber, A.Z., and Bell, A.T. (2021). Dynamic boundary layer simulation of pulsed CO<sub>2</sub> electrolysis on a copper catalyst.

ACS Energy Lett 6, 1181–1188. <https://doi.org/10.1021/acsenergylett.1c00364>.

96. Jeon, H.S., Timoshenko, J., Rettenmaier, C., Herzog, A., Yoon, A., Chee, S.W., Oener, S., Hejral, U., Haase, F.T., and Roldan Cuenya, B. (2021). Selectivity control of Cu nanocrystals in a gas-fed flow cell through CO<sub>2</sub> pulsed electroreduction. *J. Am. Chem. Soc.* 143, 7578–7587. <https://doi.org/10.1021/jacs.1c03443>.

97. Tang, Z., Nishikawa, E., Fritz, K.E., Hannath, T., and Suntivich, J. (2021). Cu(I) reducibility controls ethylene vs ethanol selectivity on (100)-textured copper during pulsed CO<sub>2</sub> reduction. *ACS Appl. Mater. Interfaces* 13, 14050–14055. <https://doi.org/10.1021/acsami.0c17668>.

98. Chemysheva, I.V., Somasundaran, P., and Ponnurangam, S. (2018). On the origin of the elusive first/intermediate of CO<sub>2</sub> electroreduction. *Proc. Natl. Acad. Sci. USA* 115, E9261–E9270. <https://doi.org/10.1073/pnas.1802256115>.

99. Fan, Q., Zhang, M., Jia, M., Liu, S., Qiu, J., and Sun, Z. (2018). Electrochemical CO<sub>2</sub> reduction to C<sub>2</sub>+ species: heterogeneous electrocatalysts, reaction pathways, and optimization strategies. *Mater. Today Energy* 10, 280–301. <https://doi.org/10.1016/j.mtener.2018.10.003>.

100. Iijima, G., Inomata, T., Yamaguchi, H., Ito, M., and Masuda, H. (2019). Role of a hydroxide layer on Cu electrodes in electrochemical CO<sub>2</sub> reduction. *ACS Catal.* 9, 6305–6319. <https://doi.org/10.1021/acscatal.9b00896>.

101. Kuai, C., Xu, Z., Xi, C., Hu, A., Yang, Z., Zhang, Y., Sun, C.-J., Li, L., Sokaras, D., Dong, C., et al. (2020). Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts. *Nat. Catal.* 3, 743–753. <https://doi.org/10.1038/s41929-020-0496-z>.

102. Dinh, C.T., Burdyny, T., Kibria, M.G., Seifertkaldani, A., Gabardo, C.M., García de Arquer, F.P.G., Kiani, A., Edwards, J.P., De Luna, P., Bushuyev, O.S., et al. (2018). CO<sub>2</sub> electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. *Science* 360, 783–787. <https://doi.org/10.1126/science.aas9100>.

103. Chou, T.C., Chang, C.C., Yu, H.L., Yu, W.Y., Dong, C.L., Velasco-Vélez, J.J., Chuang, C.H., Chen, L.C., Lee, J.F., Chen, J.-M., et al. (2020). Controlling the oxidation state of the Cu electrode and reaction intermediates for electrochemical CO<sub>2</sub> reduction to ethylene. *J. Am. Chem. Soc.* 142, 2857–2867. <https://doi.org/10.1021/jacs.9b11126>.

104. Gunathunge, C.M., Ovallé, V.J., Li, Y., Janik, M.J., and Waegele, M.M. (2018). Existence of an electrochemically inert CO population on Cu electrodes in alkaline pH. *ACS Catal.* 8, 7507–7516. <https://doi.org/10.1021/acscatal.8b01552>.

105. Schreier, M., Yoon, Y., Jackson, M.N., and Surendranath, Y. (2018). Competition between H and CO for active sites governs copper-mediated electrosynthesis of hydrocarbon fuels. *Angew. Chem. Int. Ed. Engl.* 57, 10221–10225. <https://doi.org/10.1002/anie.201804051>.

106. Hori, Y., Koga, O., Watanabe, Y., and Matsuo, T. (1998). FTIR measurements of charge displacement adsorption of CO on poly- and single crystal (100) of Cu electrodes. *Electrochim. Acta* 44, 1389–1395. [https://doi.org/10.1016/S0013-4686\(98\)00261-8](https://doi.org/10.1016/S0013-4686(98)00261-8).

107. Beverskog, B., and Puigdomènech, I. (1997). Revised Pourbaix diagrams for copper at 25 to 300°C. *J. Electrochim. Soc.* 144, 3476–3483. <https://doi.org/10.1149/1.1838036>.

108. Eileit, A., Cavalcá, F., Roberts, F.S., Osterwalder, J., Liu, C., Favaro, M., Crumlin, E.J., Ogasawara, H., Friebel, D., Pettersson, L.G., and Nilsson, A. (2017). Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. *J. Phys. Chem. Lett.* 8, 285–290. <https://doi.org/10.1021/acs.jpclett.6b02273>.

109. Gao, D., Zegkinoglou, I., Divins, N.J., Schotter, F., Sinev, I., Gross, P., and Roldan Cuenya, B. (2017). Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. *ACS Nano* 11, 4825–4831. <https://doi.org/10.1021/acsnano.6b01257>.

110. Favaro, M., Xiao, H., Cheng, T., Goddard, W.A., Yano, J., and Caumil, E.J. (2017). Subsurface oxide plays a critical role in CO<sub>2</sub> activation by Cu (111) surfaces to form chemisorbed CO<sub>2</sub>, the first step in reduction of CO<sub>2</sub>. *Proc. Natl. Acad. Sci. USA* 114, 6706–6711. <https://doi.org/10.1073/pnas.1701405114>.

111. Mistry, H., Varela, A.S., Bonifacio, C.S., Zegkinoglou, I., Sinev, I., Choi, Y.W., Kisslinger, K., Stach, E.A., Yang, J.C., Strasser, P., and Cuenya, B.R. (2016). Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. *Nat. Commun.* 7, 12123. <https://doi.org/10.1038/ncomms12123>.

112. Gao, D., Sinev, I., Schotter, F., Arán-Ais, R.M., Divins, N.J., Kavashina, K., Timoshenko, J., and Roldan Cuenya, B. (2019). Selective CO<sub>2</sub> electroreduction to ethylene and multcarbon alcohols via electrolyte-driven nanstructuring. *Angew. Chem. Int. Ed. Engl.* 58, 17047–17053. <https://doi.org/10.1002/anie.201910155>.

113. Lee, S., Kim, D., and Lee, J. (2015). Electrocatalytic production of C<sub>3</sub>-C<sub>4</sub> compounds by conversion of CO<sub>2</sub> on a chloride-induced bi-phasic Cu<sub>2</sub>O/Cu catalyst. *Angew. Chem. Int. Ed. Engl.* 54, 14701–14705. <https://doi.org/10.1002/anie.201505730>.

114. Lee, S.Y., Jung, H., Kim, N.K., Oh, H.S., Min, B.K., and Hwang, Y.J. (2018). Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO<sub>2</sub> reduction. *J. Am. Chem. Soc.* 140, 8681–8689. <https://doi.org/10.1021/jacs.8b02173>.

115. Cavalcá, F., Ferragut, R., Aghion, S., Eileit, A., Diaz-Morales, O., Liu, C., Koh, A.L., Hansen, T.W., Pettersson, L.G.M., and Nilsson, A. (2017). Nature and distribution of stable subsurface oxygen in copper electrodes during electrochemical CO<sub>2</sub> reduction. *J. Phys. Chem. C* 121, 25003–25009. <https://doi.org/10.1021/acs.jpcc.7b08278>.

116. Spedt, F.D., and Cherevko, S. (2020). Electrochemical copper dissolution: A benchmark for stable CO<sub>2</sub> reduction on copper electrocatalysts. *Electrochim. Commun.* 115. <https://doi.org/10.1016/j.elecom.2020.106739>.

117. Garza, A.J., Bell, A.T., and Head-Gordon, M. (2018). Is subsurface oxygen necessary for the electrochemical reduction of CO<sub>2</sub> on copper? *J. Phys. Chem. Lett.* 9, 601–606. <https://doi.org/10.1021/acs.jpclett.7b03180>.

118. Lum, Y., and Ager, J.W. (2018). Stability of residual oxides in oxide-derived copper catalysts for electrochemical CO<sub>2</sub> reduction investigated with 18O labeling. *Angew. Chem. Int. Ed. Engl.* 57, 551–554. <https://doi.org/10.1002/anie.20170590>.

119. Scott, S.B., Hogg, T.V., Landers, A.T., Maagaard, T., Bertheussen, E., Lin, J.C., Davis, R.C., Beaman, J.W., Higgins, D., Drisdell, W.S., et al. (2019). Absence of oxidized phases in Cu under CO reduction conditions. *ACS Energy Lett.* 4, 803–804. <https://doi.org/10.1021/acsenergylett.9b00172>.

120. Zhu, P., and Wang, H. (2020). Structural evolution of oxide/hydroxide-derived copper electrodes accounts for the enhanced C<sub>2</sub>+ product selectivity during electrochemical CO<sub>2</sub> reduction. *Science Bulletin* 65, 977–979. <https://doi.org/10.1016/j.jscib.2020.03.030>.

121. Kim, Y.-G., and Soriaga, M.P. (2014). Cathodic regeneration of a clean and ordered Cu (1 0 0)-(1 x 1) surface from an air-oxidized and disordered electrode: an operando STM study. *J. Electroanal. Chem.* 734, 7–9. <https://doi.org/10.1016/j.jelechem.2014.09.010>.

122. Lei, Q., Zhu, H., Song, K., Wei, N., Liu, L., Zhang, D., Yin, J., Dong, X., Yao, K., Wang, N., et al. (2020). Investigating the origin of enhanced C<sub>2</sub>+ selectivity in oxide/hydroxide-derived copper electrodes during CO<sub>2</sub> electroreduction. *J. Am. Chem. Soc.* 142, 4213–4222. <https://doi.org/10.1021/jacs.9b11790>.

123. Ren, D., Fong, J., and Yeo, B.S. (2018). The effects of currents and potentials on the selectivities of copper toward carbon dioxide electroreduction. *Nat. Commun.* 9, 925. <https://doi.org/10.1038/s41467-018-03286-w>.

124. Mandl, L., Yang, K.R., Motapothula, M.R., Ren, D., Lobaccaro, P., Patra, A., Sherburne, M., Batista, V.S., Yeo, B.S., Ager, J.W., et al. (2018). Investigating the role of copper oxide in electrochemical CO<sub>2</sub> reduction in real time. *ACS Appl. Mater. Interfaces* 10, 8574–8584. <https://doi.org/10.1021/acsami.7b15418>.

125. Ren, D., Deng, Y., Handoko, A.D., Chen, C.S., Makhanda, S., and Yeo, B.S. (2015). Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper (I) oxide catalysts. *ACS Catal.* 5, 2814–2821. <https://doi.org/10.1021/c502128q>.

126. Löffler, M., Mayrhofer, K.J.-L., and Katsounaros, I. (2021). Oxide reduction precedes carbon dioxide reduction on oxide-derived copper electrodes. *J. Phys. Chem. C* 125, 1833–1838. <https://doi.org/10.1021/acs.jpcc.0c01978>.

127. Zhao, Y., Chang, X., Mallani, A.S., Yang, X., Thompson, L., Jiao, F., and Xu, B. (2020). Speciation of Cu surfaces during the



electrochemical CO reduction reaction. *J. Am. Chem. Soc.* 142, 9735–9743. <https://doi.org/10.1021/jacs.0c02354>.

128. Chang, C.-J., Hung, S.-F., Hsu, C.-S., Chen, H.-C., Lin, S.-C., Liao, Y.-F., and Chen, H.M. (2019). Quantitatively unraveling the redox shuttle of spontaneous oxidation/reduction of CuOx on silver nanowires using *in situ* X-ray absorption spectroscopy. *ACS Cent. Sci.* 5, 1998–2009. <https://doi.org/10.1021/acscentsci.9b01142>.

129. Todorova, T.K., Schreiber, M.W., and Fontecave, M. (2020). Mechanistic understanding of CO 2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. *ACS Catal.* 10, 1754–1768. <https://doi.org/10.1021/acscatal.9b04744>.

130. Li, C.W., Ciston, J., and Kanan, M.W. (2014). Electrodissolution of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. *Nature* 508, 504–507. <https://doi.org/10.1038/nature13249>.

131. Feng, X., Jiang, K., Fan, S., and Kanan, M.W. (2016). A direct grain-boundary–activity correlation for CO electroreduction on Cu nanoparticles. *ACS Cent. Sci.* 2, 169–174. <https://doi.org/10.1021/acscentsci.6b00022>.

132. Wang, L., Nitopi, S., Wong, A.B., Snider, J.L., Nielander, A.C., Morales-Guio, C.G., Orazco, M., Higgins, D.C., Hahn, C., and Jaramillo, T.F. (2019). Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. *Nat. Catal.* 2, 702–708. <https://doi.org/10.1038/s41929-019-0301-z>.

133. Lee, S., and Lee, J. (2018). Ethylene selectivity in CO electroreduction when using Cu oxides: an *in situ* ATR-SEIRAS study. *ChemElectroChem* 5, 558–564. <https://doi.org/10.1002/celec.201700892>.

134. Liu, X., Schlexer, P., Xiao, J., Ji, Y., Wang, L., Sandberg, R.B., Tang, M., Brown, K.S., Peng, H., Ringe, S., et al. (2019). pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. *Nat. Commun.* 10, 32. <https://doi.org/10.1038/s41467-018-07970-9>.

135. Liu, C., Hedström, S., Stanlid, J.H., and Pettersson, L.G.M. (2019). Amorphous, periodic model of a copper electrocatalyst with subsurface oxygen for enhanced CO coverage and dimerization. *J. Phys. Chem. C* 123, 4961–4968. <https://doi.org/10.1021/acs.jpcc.8b12214>.

136. Chen, X., Hendek, D.A., Nwabara, U.O., Li, Y., Frenkel, A.I., Fister, T.T., Kenis, P.J.A., and Gewirth, A.A. (2020). Controlling speciation during CO<sub>2</sub> reduction on Cu-alloy electrodes. *ACS Catal.* 10, 672–682. <https://doi.org/10.1021/acscatal.9b04368>.

137. Xiao, H., Goddard, W.A., Cheng, T., and Liu, Y. (2017). Cu metal embedded in oxidized matrix catalyst to promote CO<sub>2</sub> activation and CO dimerization for electrochemical reduction of CO<sub>2</sub>. *Proc. Natl. Acad. Sci. USA* 114, 6685–6688. <https://doi.org/10.1073/pnas.1702405114>.

138. De Luna, P., Quintero-Bermudez, R., Dinh, C.-T., Ross, M.B., Bushuyev, O.S., Todorova, T., Regier, T., Kelley, S.O., Yang, P., and Sargent, E.H. (2018). Catalyst electro-redistribution controls morphology and oxidation state for selective carbon dioxide reduction. *Nat. Catal.* 1, 103–110. <https://doi.org/10.1038/s41929-017-0018-9>.

139. Sebastián-Pascual, P., and Escudero-Escrivano, M. (2020). Addressing the interfacial properties for CO electroreduction on Cu with cyclic voltammetry. *ACS Energy Lett.* 5, 130–135. <https://doi.org/10.1021/acsenergylett.9b02456>.

140. Simon, G.H., Kley, C.S., and Roldan Cuenya, B. (2021). Potential-dependent morphology of Copper catalysts during CO<sub>2</sub> electroreduction revealed by *in situ* atomic force microscopy. *Angew. Chem. Int. Ed. Engl.* 60, 2561–2568. <https://doi.org/10.1002/anie.202010449>.

141. Kas, R., Kortbever, R., Yilmaz, H., Koper, M.T.M., and Mul, G. (2015). Manipulating the hydrocarbon selectivity of copper nanoparticles in CO<sub>2</sub> electroreduction by process conditions. *ChemElectroChem* 2, 354–358. <https://doi.org/10.1002/celec.201402373>.

142. Kim, Y.-G., Baricuatro, J.H., Javier, A., Gregorio, J.M., and Sonaga, M.P. (2014). The evolution of the polycrystalline copper surface, first to Cu(111) and then to Cu(100), at a fixed CO<sub>2</sub>RR potential: a study by operando EC-STM. *Langmuir* 30, 15053–15056. <https://doi.org/10.1021/la504445g>.

143. Kim, Y.-G., Baricuatro, J.H., and Sonaga, M.P. (2018). Surface reconstruction of polycrystalline Cu electrodes in aqueous KHCO<sub>3</sub> electrolyte at potentials in the early stages of CO<sub>2</sub> reduction. *Electrocatalysis* 9, 526–530. <https://doi.org/10.1007/s12678-018-0469-z>.

144. Kim, Y.-G., Javier, A., Baricuatro, J.H., Torelli, D., Cummins, K.D., Tsang, C.F., Hemminger, J.C., and Sonaga, M.P. (2016). Surface reconstruction of pure-Cu single-crystal electrodes under CO<sub>2</sub>-reduction potentials in alkaline solutions: A study by operando ECSTM-DEMS. *J. Electroanal. Chem.* 780, 290–295. <https://doi.org/10.1016/j.jelechem.2016.09.029>.

145. Schouten, K.J.P., Pérez-Gallent, E., and Koper, M.T.M. (2013). Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals. *ACS Catal.* 3, 1292–1295. <https://doi.org/10.1021/cs4002404>.

146. Sebastián-Pascual, P., Sarabia, F.J., Climent, V., Felu, J.M., and Escudero-Escrivano, M. (2020). Elucidating the structure of the Cu–alkaline electrochemical interface with the laser-induced temperature jump method. *J. Phys. Chem. C* 124, 23253–23259. <https://doi.org/10.1021/acs.jpcc.0c07821>.

147. Hori, Y., Takahashi, I., Koga, O., and Hoshi, N. (2003). Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. *Journal of Molecular Catalysis A: Chemical* 199, 39–47. [https://doi.org/10.1016/S1381-1169\(03\)00016-5](https://doi.org/10.1016/S1381-1169(03)00016-5).

148. De Gregorio, G.L., Burdyny, T., Loudias, A., Iyengar, P., Smith, W.A., and Buonsanti, R. (2020). Facet-dependent selectivity of Cu catalysts in electrochemical CO<sub>2</sub> reduction at commercially viable current densities. *ACS Catal.* 10, 4854–4862. <https://doi.org/10.1021/acscatal.0c00297>.

149. Jung, H., Lee, S.Y., Lee, C.W., Cho, M.K., Won, D.H., Kim, C., Oh, H.S., Min, B.K., and Hwang, Y.J. (2019). Electrochemical fragmentation of Cu<sub>2</sub>O nanoparticles enhancing selective C–C coupling from CO<sub>2</sub> reduction reaction. *J. Am. Chem. Soc.* 141, 4624–4633. <https://doi.org/10.1021/jacs.8b11237>.

150. Schouten, P., P., K.J.P., Gallent, E.P., and Koper, M.T.M. (2013). The electrochemical characterization of copper single-crystal electrodes in alkaline media. *J. Electroanal. Chem.* 699, 6–9. <https://doi.org/10.1016/j.jelechem.2013.03.018>.

151. Bunea, S., and Urakawa, A. (2021). *In situ* spectroscopic methods to study electrochemical CO<sub>2</sub> reduction. In *Carbon Dioxide Electrochemistry: Homogeneous and Heterogeneous Catalysis*, C.C. Marc Robert and K. Daasbjerg, eds. (The Royal Society of Chemistry), pp. 347–407.

152. Malkani, A.S., Anibal, J., Chang, X., and Xu, B. (2020). Bridging the gap in the mechanistic understanding of electrocatalysis via *in situ* characterizations. *iScience* 23, 101776. <https://doi.org/10.1016/j.isc.2020.101776>.

153. Handoko, A.D., Wei, F., Jenndy, Yeo, B.S., and Seh, Z.W. (2018). Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. *Nat. Catal.* 1, 922–934. <https://doi.org/10.1038/s41929-018-0182-6>.

154. Clark, E.L., Resasco, J., Landers, A., Lin, J., Chung, L.-T., Walton, A., Hahn, C., Jaramillo, T.F., and Bell, A.T. (2018). Standards and protocols for data acquisition and reporting for studies of the electrochemical reduction of carbon dioxide. *ACS Catal.* 8, 6560–6570. <https://doi.org/10.1021/acscatal.8b01340>.

155. Singh, M.R., Clark, E.L., and Bell, A.T. (2015). Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. *Phys. Chem. Chem. Phys.* 17, 18924–18936. <https://doi.org/10.1039/C5CP03283K>.

156. Rabiee, H., Ge, L., Zhang, X., Hu, S., Li, M., and Yuan, Z. (2021). Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. *Energy Environ. Sci.* 14, 1959–2008. <https://doi.org/10.1039/D0EE03756G>.