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Abstract

The Rayleigh–Bénard system with stress-free boundary conditions is shown

to have a global attractor in each affine space where velocity has fixed spatial

average. The physical problem is shown to be equivalent to one with periodic

boundary conditions and certain symmetries. This enables a Gronwall estimate

on enstrophy. That estimate is then used to bound the L2 norm of the tempera-

ture gradient on the global attractor, which, in turn, is used to find a bounding

region for the attractor in the enstrophy–palinstrophy plane. All final bounds

are algebraic in the viscosity and thermal diffusivity, a significant improvement

over previously established estimates. The sharpness of the bounds are tested

with numerical simulations.
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1. Introduction

The long-time behavior of the Rayleigh–Bénard (RB) problem was analyzed in [11, 18] for

several types of boundary conditions. In that work the authors derived explicit estimates for

enstrophy and the (L2-norm of the) temperature gradient on the global attractor for the case of

no-slip boundary conditions in space dimension two. They also outlined the functional setting

for the case of stress-free velocity boundary conditions (see (2.2a) and (2.2b)), and mentioned

that corresponding estimates can be carried out in a similar fashion. In this paper we revisit

the 2D, stress-free boundary conditions case, and as in the case of rigorous bounds on the time

averaged heat transport [19], we find estimates on the global attractor which are dramatically

reduced from those in the no-slip boundary conditions case. We also derive estimates for the

palinstrophy and H2-norm of the temperature.

Onemarked difference between no-slip and stress-free boundary conditions is that in the lat-

ter case, the system is not dissipative for general initial velocity data. This is due to the existence

of steady states with arbitrarily large L2-norms, namely velocity of the form u(x, t) = (c, 0),

(where c is a constant) with zero temperature θ(x, t) = 0 such as the shear-dominated flow

investigated in [13]. Since, however, the spatial average is conserved for these flows, the sys-

tem is dissipative within each invariant affine space of fixed horizontal velocity average. This

wrinkle does not influence the estimates on the temperature or higher Sobolev norm estimates

on the velocity.

The a priori estimates are carried out in section 4. The key to finding sharper bounds in the

stress-free case is to extend the physical domain, as done in [9], to one that is fully periodic

and twice the height of the original. This makes the trilinear term vanish from the enstrophy

balance, giving an easy bound that is O(ν−2) in terms of the kinematic viscosity ν. Though
the trilinear term persists when estimating the temperature gradient, we are able to avoid the

exponential bound that resulted from using a uniform Gronwall lemma in [11], by using the

algebraic bound on the enstrophy. We find that on the global attractor the (L2-norm of the)

temperature gradient satisfies a bound that is O(Ra2), for Pr ∼ 1, where Ra is the Rayleigh

number and Pr is the Prandtl number.

We then follow the approach in [6] for the Navier–Stokes equations (NSE) to obtain an

estimate for the palinstrophy, with the temperature playing the role of the body force in the

NSE. This leads to curves which bound the attractor in the enstrophy–palinstrophy plane,

with an overall bound on palinstrophy that is O(Ra3) for Pr ∼ 1. Using this palinstrophy

bound, we then follow a similar procedure to find a bounding region for temperature θ in the

‖∇θ‖2
L2
–‖Δθ‖2

L2
plane.

In section 5 we recall from [9] how all of these bounds impact the practicality of data assim-

ilation by nudging with just the horizontal component of velocity of the stress-free RB system.

The sharpness of our rigorous bounds are tested with numerical simulations over a range of

Rayleigh numbers in section 6. Simulations are also presented there to demonstrate that the

nudging algorithm works for data with much lower resolution than the analysis requires. This

is actually what suggested we might improve on the exponential bounds in [11, 18]. All the

bounds here on the attractor are algebraic in the physical parameters.

2. Preliminaries

The RB problem on the domain Ω0 = (0, L)× (0, 1) can be written in dimensionless form as

(see, e.g., [11])
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∂u

∂t
− νΔu+ (u · ∇)u+∇p= θe2, (2.1a)

∂θ

∂t
− κΔθ + (u · ∇)θ = u · e2, (2.1b)

∇ · u = 0, (2.1c)

u(0; x) = u0(x), θ(0; x) = θ0(x), (2.1d)

where e2 = (0, 1) and κ is the thermal diffusivity. In this paper, we consider the following set

of boundary conditions that are stress-free on the velocity:

inthe x2−direction: u2, θ = 0 at x2 = 0 and x2 = 1, (2.2a)

∂u1
∂x2

= 0 at x2 = 0 and x2 = 1, (2.2b)

inthe x1−direction:u, θ, p are of periodL, (2.2c)

where the indices 1 and 2 refer the horizontal and vertical components, respectively.

Following [9], in the rest of this paper, we consider the equivalent formulation of problem

(2.1) subject to the fully periodic boundary conditions on the extended domain Ω = (0, L)×
(−1, 1) with the following special spatial symmetries:

u1(x1, x2) = u1(x1,−x2), u2(x1, x2) = −u2(x1,−x2),
p(x1, x2) = p(x1,−x2), θ(x1, x2) = −θ(x1,−x2),

for (x1, x2) ∈ Ω. As a result of this symmetry, we observe that smooth enough functions satisfy

u2, θ,
∂u1
∂x2

= 0, for x2 = −1, 0, 1. (2.3)

2.1. Function spaces

Wewill use the same notation indiscriminately for both scalar and vector Lebesgue andSobolev

spaces, which should not be a source of confusion. We denote

(u, v) :=

∫

Ω

u · v, for u, v ∈ L2(Ω),

((u, v)) :=

2
∑

i, j=1

∫

Ω

∂ui
∂x j

∂vi
∂x j

, for u, v ∈ H1(Ω),

and

|u| := (u, u)1/2, ‖u‖ := ((u, u))1/2.

Note that ‖ · ‖ is not a norm, but will form part of one in (2.4). We define function spaces

corresponding to the relevant physical boundary conditions as in [9], where

F1 is the set of trigonometric polynomials in (x1, x2), with period L in the x1-variable,

that are even, with period 2 in the x2-variable,

and
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F2 is the set of trigonometric polynomials in (x1, x2), with period L in the x1-variable,

that are odd, with period 2 in the x2-variable.

The space of smooth vector-valued functionswhich incorporates the divergence-freecondition

shall be denoted by

V := {u ∈ F1 × F2 :∇ · u = 0}.

We denote the closures of V and F2 in L
2(Ω) by H0 and H1, respectively, which are endowed

with the usual inner products

(u, v)H0
:= (u, v), (ψ,φ)H1

:= (ψ,φ)

and the associated norms

‖u‖H0
:= (u, u)1/2, ‖ψ‖H1

:= (ψ,ψ)1/2.

We define for k = 1, 2

Hk
per(Ω) = {φ ∈ Hk | φ has period L in x1, period 2 in x2}.

Finally, we denote the closures of V and F2 in H
1
per(Ω) by V0 and V1 respectively, endowed

with the inner products

((u, v))V0 :=
1

|Ω| (u, v)+ ((u, v)), ((ψ,φ))V1 := ((ψ,φ)),

and associated norms

‖u‖V0 :=
(

1

|Ω| |u|
2
+ ‖u‖2

)1/2

, ‖φ‖V1 := ‖φ‖, (2.4)

where |Ω| = 2L is the volume of Ω.

2.2. The linear operators Ai

Let D(A0) = V0 ∩ H2
per(Ω) and D(A1) = V1 ∩ H2

per(Ω). Let Ai :D(Ai)→ Hi (i = 0, 1) be the

unbounded linear operators defined by

(Aiφ,ψ)Hi = ((φ,ψ)), φ,ψ ∈ D(Ai).

Due to periodic boundary conditions, we have Ai = −Δ. The operator A0 is a nonnegative

operator and possesses a sequence of eigenvalues with

0 = λ0,1 � λ0,2 � · · · � λ0,m � · · · ,

associatedwith an orthonormalbasis {w0,m}m∈N ofH0. The operatorA1 is a positive self-adjoint

operator and possesses a sequence of eigenvalues with

0 < λ1,1 � λ1,2 � · · · � λ1,m � · · · ,

associated with an orthonormal basis {w1,m}m∈N of H1. Observe that we have the Poincaré

inequality for temperature:

|θ|2 � λ−1
1 ‖θ‖2, ∀ θ ∈ V1,
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|θ|2 � λ−1
1 ‖A1θ‖2, ∀ θ ∈ D(A1),

where λ1 = λ1,1 = π2min(1/4, L−2).

2.3. The bilinear maps Bi

Denote the dual space of V i by V
′
i (i = 0, 1). Define the bounded trilinear map b0 : V0 × V0 ×

V0 → R by the continuous extension (see [5, 18]) of

b0(u, v,w) := ((u · ∇)v,w) = −((u · ∇)w, v) u, v,w ∈ V .

The boundedness of the trilinear map b0 implies that there is a unique bounded bilinear map

B0 : V0 × V0 → V ′
0 such that

〈B0(u, v),w〉V ′
0
:= b0(u, v,w).

Define the scalar analogue trilinear boundedmap b1 : V0 × V1 × V1 → R by the continuous

extension of

b1(u, θ,φ) := ((u · ∇)θ,φ) = −((u · ∇)φ, θ), u ∈ V , θ,φ ∈ F2.

As before the boundedness of the trilinear map b1 in turn implies the existence of a unique

bounded bilinear B1 : V0 × V1 → V ′
1 such that

〈B1(u, θ),φ〉V ′
1
:= b1(u, θ,φ)

From the above, the trilinearmaps bi (and the bilinearmapsBi), i = 0, 1, enjoy the following

orthogonality property:

b0(u, v, v) = 0, b1(u, θ, θ) = 0, u, v ∈ V0, θ ∈ V1. (2.5)

Furthermore, due to periodicity on Ω, i.e., since A0 = −Δ, we have

b0(u, u,A0u) = 0, ∀ u ∈ D(A0), (2.6)

as well as

b0(v, v,A0w) + b0(v,w,A0v) + b0(w, v,A0v) = 0, ∀ v,w ∈ D(A0), (2.7)

(see, e.g., [18] for (2.6), [10] for (2.7)).

2.4. Functional setting

Following [11], we have the functional form of the RB problem (2.1):

du

dt
+ νA0u+ B0(u, u) = Pσ(θe2), (2.8a)

dθ

dt
+ κA1θ + B1(u, θ) = u · e2, (2.8b)

u(0; x) = u0(x), θ(0; x) = θ0(x), (2.8c)

where Pσ denotes the Leray projector.
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3. Statement of result

Theorem 3.1. The RB problem (2.1)with stress-free boundary conditions (2.3) has a global

attractorAα within the invariant affine space

Wα = {(u, θ) ∈ V0 × V1 :

∫

Ω

u1(x, t)dx = α}.

The elements in Aα satisfy

|u|2 � |Ω|
ν2λ2

1

+ α2|Ω|, (3.1)

‖u‖2 � zmax :=
|Ω|
ν2λ1

, (3.2)

‖θ‖2 � ϑmax := |Ω|zmaxRaPr+

( |Ω|
λ1

zmaxRaPr

)1/2

, (3.3)

|A0u|2 � f (‖u‖2) � qmax :=
z2max

ν2
+
z
1/2
max

ν
ϑ1/2
max, (3.4)

|A1θ|2 � g(‖θ‖2) � ηmax :=
zmaxϑmax

κ2
+
q
2/3
maxϑmax

κ4/3λ
1/3
1

+
zmax

κ2λ1

, (3.5)

where the functions f, g are defined below in (4.28) and (4.35), respectively, Pr is the Prandtl

number ν/κ, Ra = 1/(νκ) is the Rayleigh number, and Q1 � Q2 means Q1 � cQ2 for a

nondimensional universal constant c that is independent of the physical parameters.

Regions that bound the global attractor in the enstrophy–palinstrophy and ‖θ‖2–|A1θ|2
planes are depicted in figures 1 and 2, below.

4. A priori estimates

Global existence and uniqueness follows by the standard Galerkin procedure based on the

trigonometric basis functions in the definitions of F1 and F2. We thus proceed with a priori

estimates.

4.1. L2 bound on temperature

We have the following maximum principle from lemma 2.1 in [11]

|θ(t)| � |Ω|1/2 +Θ0 e−κt, (4.1)

where |Ω| is the volume of Ω,

Θ0 = |(θ(0)− 1)+|+ |(θ(0)+ 1)−|,

and

M+ = max{M, 0}, M− = max{−M, 0} ∀ M ∈ R.
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Figure 1. Qualitative sketches of the curves bounding Aα.

While the proof in [11] was done for no-slip boundary conditions, the only place the veloc-

ity u enters is the orthogonality property b1(u, θ, θ) = 0. The proof carries over verbatim to

the stress-free case by (2.5). Consequently, we have (4.1) for each strong solution (u, θ) of
(2.8).

4.2. L2 bounds on velocity

We denote the space average of the horizontal velocity over the extended domain by

α(t) =
1

|Ω|

∫

Ω

u1(x, t)dx.

From (2.1) and the periodic boundary conditions on Ω, we find that the spatial average of the

horizontal velocity is conserved, i.e., dα/dt = 0. It follows that uα = u− αe1 satisfies

duα

dt
+ νA0uα + B0(uα + αe1, uα) = θe2.

Since uα has zero average, it satisfies the Poincaré inequality

λ1|uα|2 � ‖uα‖2. (4.2)

Note that since u2 has zero mean, it satisfies a Poincaré inequality

λ1|u2|2 � ‖u2‖2, (4.3)
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Figure 2. Bounding region in the ‖θ‖2–|A1θ|2 plane.

even though u1 does not. Taking the scalar product with uα, and applying (2.5), the

Cauchy–Schwarz and Young inequalities as well as (4.2), we get

1

2

d

dt
|uα|2 + ν‖uα‖2 �

1

2νλ1

|θ|2 + νλ1

2
|uα|2 �

|θ|2
2νλ1

+
ν

2
‖uα‖2.

Applying (4.2) once again, together with (4.1) and Young’s inequality, we have

d

dt
|uα|2 + νλ1|uα|2 �

1

νλ1

(

|Ω|+ Θ
2
0 e−2κt

)

,

so that

|uα(t)|2 � e−νλ1t|uα(0)|2 +
1

νλ1

∫ t

0

(

|Ω|+ Θ
2
0 e−2κs

)

eνλ1(s−t) ds, (4.4)

and thus,

lim sup
t→∞

|u(t)|2 � |Ω|
ν2λ2

1

+ α2|Ω|. (4.5)

4.3. An enstrophy bound

We note that ∇u has zero average over Ω by the periodicity of u. As a consequence, we have

the Poincaré inequality

λ1‖u‖2 � |A0u|2. (4.6)
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Taking the scalar product of (2.8a) with A0u, we have by the orthogonality property (2.6)

1

2

d

dt
‖u‖2 + ν|A0u|2 � |(θe2,A0u)| (4.7)

� |θ||A0u| �
1

2ν
|θ|2 + ν

2
|A0u|2,

hence, by (4.1) and (4.6) we have

d

dt
‖u‖2 + νλ1‖u‖2 �

1

ν

(

|Ω|+Θ
2
0 e−2κt

)

,

and thanks to the Gronwall inequality we obtain

lim sup
t→∞

‖u(t)‖2 � zmax :=
|Ω|
ν2λ1

. (4.8)

Similar to the no-slip case analyzed in [11, 18], if ‖u(0)‖ � M1, ‖θ(0)‖ � M2, and ε > 0

we have from (4.1), (4.5) and (4.8) that there exists t0 = t0(M1,M2, ε) such that

|θ(t)|2 � |Ω|+ ε, ∀ t � t0, (4.9)

|u(t)|2 � |Ω|
ν2λ2

1

+ α2|Ω|+ ε, ∀ t � t0 (4.10)

‖u(t)‖2 � |Ω|
ν2λ1

+ ε, ∀ t � t0. (4.11)

4.4. Bound on the temperature gradient

We start by taking the scalar product of (2.8b) with A1θ = −Δθ, integrating by parts and

applying the Cauchy–Schwarz and Young inequalities

1

2

d

dt
‖θ‖2 + κ|A1θ|2 � |(B1(u, θ),A1θ)|+

|u2|2
κ

+
κ

4
|A1θ|2. (4.12)

We apply integration by parts to rewrite the trilinear term as

(B1(u, θ),A1θ) = −
2

∑

i, j=1

∫

Ω

ui∂iθ∂
2
j θ dx

=

2
∑

i, j=1

∫

Ω

ui∂i jθ∂ jθ dx +

2
∑

i, j=1

∫

Ω

∂ jui∂iθ∂ jθ dx.

We then use the chain rule to rewrite the first sum, again apply integration by parts, and then

incompressibility to find

2
∑

i, j=1

∫

Ω

ui∂i jθ∂ jθ dx =
1

2

2
∑

i, j=1

∫

Ω

ui∂i(∂ jθ)
2 dx

= −1

2

∫

Ω

(∂1u1 + ∂2u2)
[

(∂1θ)
2
+ (∂2θ)

2
]

dx = 0. (4.13)
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Applying the Hölder, Ladyzhenskaya and Young inequalities to each of the remaining four

terms, we obtain

|(B1(u, θ),A1θ)| � 4‖u‖‖∇θ‖2
L4

� c1‖u‖‖θ‖|A1θ|

�
c21
κ
(‖u‖‖θ‖)2 + κ

4
|A1θ|2. (4.14)

Now combine (4.12) and (4.14) and the Poincaré inequality (4.3) so that

d

dt
‖θ‖2 + κ|A1θ|2 �

2c21
κ

‖u‖2‖θ‖2 + 2|u2|2
κ

�
2c21
κ

‖u‖2‖θ‖2 + 2‖u‖2
κλ1

.

We note that by the Cauchy–Schwarz inequality and (4.1),

‖θ‖2 � |θ||A1θ| � (|Ω|1/2 +Θ0 eκt)|A1θ|,

so that

d

dt
‖θ‖2 � − κ

(|Ω|1/2 + ε)2
‖θ‖4 + 2c21

κ
‖u‖2‖θ‖2 + 2‖u‖2

κλ1

. (4.15)

Let R1 = (|Ω|1/2 + ε)2, R2 = zmax + ε, for ε as in (4.9)–(4.11). From (4.9), (4.11) and (4.15)

and Young’s inequality, we have for all t � t0

d

dt
‖θ‖2 � − κ

R1

‖θ‖4 + 2c21
κ

‖θ‖2R2 +
2R2

κλ1

� − κ

2R1

‖θ‖4 + 2c41
κ3

R1R
2
2 +

2R2

κλ1

� − κ

2R1

(

‖θ‖4 − K4
)

,

where

K4
=

2R1

κ

[

2c41
κ3

R1R
2
2 +

2R2

κλ1

]

.

We claim that

lim sup
t→∞

‖θ(t)‖2 � 2

[

c41
κ4

|Ω|2z2max +
|Ω|
κ2λ1

zmax

]1/2

. (4.16)

To prove this we take ε > 0, as above, and consider two possibilities.

Case I: If ‖θ(t)‖2 � (1+ 4ε)1/2K2, for all t � t0, then clearly

lim sup
t→∞

‖θ(t)‖2 � (1+ 4ε)1/2K2, ∀ ε > 0. (4.17)

Case II: Suppose there exists t∗ � t0 such that ‖θ(t∗)‖2 � (1+ 4ε)1/2K2. We would then

have that

d

dt
‖θ‖2 � −κε

R1

K4, ∀ t � t∗ such that ‖θ(t)‖2 � (1+ 2ε)1/2K2.
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We conclude that ‖θ(t)‖2 is strictly decreasing at a rate faster than −κεK4/(2R1) for all t � t∗
such that ‖θ(t)‖2 � (1+ 2ε)1/2K2. In particular, there exists t∗∗, with t∗ < t∗∗ < ∞ such that

‖θ(t∗∗)‖2 = (1+ 2ε)1/2K2. Moreover, for all t > t∗∗ we have ‖θ(t)‖2 < (1+ 2ε)1/2K2. As a

result, we again obtain (4.17).

In either case we may now take ε→ 0+ to conclude (4.16). Introducing the Rayleigh and

Prandtl numbers in (4.16) and using the concavity of the square root function, we arrive at the

bounding expression

lim sup
t→∞

‖θ(t)‖2 � ϑmax := |Ω|zmaxRaPr+

( |Ω|
λ1

zmaxRaPr

)1/2

.

Thus, the ball Bα(ε) ⊂ V0 × V1, defined by

Bα(ε) :=

{

(u, θ) : ‖u‖2
H1 �

1+ λ1

ν2λ2
1

|Ω|+ α2|Ω|+ 2ε, ‖θ‖2 � ϑmax

}

,

is absorbing. This gives for each α the existence of a global attractor Aα, within the invariant

subspace of solutions (u, θ) where the spatial average of velocity is fixed at α. The global

attractor is contained in Bα(0).

4.5. Palinstrophy bound

To estimate palinstrophy on Aα we follow [6] almost verbatim except that the effect of

time independent forcing of the NSE is played by the bound ‖θ‖2 � ϑmax. The other

difference is that our velocity is not normalized as in [6]. For completeness, and in

order to arrive at an overall bound in terms of ν,κ, we distill the essential argument

here.

Returning to (4.7), we integrate by parts, and then apply the Cauchy–Schwarz inequality to

get

−‖u‖
√

ϑmax �
1

2

d

dt
‖u‖2 + ν|A0u|2 � ‖u‖

√

ϑmax, ∀ (u, θ) ∈ Aα.

We denote

z = ‖u‖2, q = |A0u|2, ζ = |A3/2
0 u|2, ϑ = ‖θ‖2. (4.18)

Then whenever

‖u‖
√

ϑmax �
ν

2
|A0u|2, equivalently q �

2

ν

√

zϑmax, (4.19)

we have

−3νq �
dz

dt
� −νq. (4.20)

Setting w = A0u in (2.7) and applying Agmon’s inequality, we have

|(B0(u, u),A
2
0u)| = |(B0(A0u, u),A0u)| � c2|A0u|2‖u‖1/2|A3/2

0 u|1/2.

We next take the scalar product of (2.8a) with A2
0u, and integrate by parts to obtain

1

2

d

dt
|A0u|2 + ν|A3/2

0 u|2 � |(θ,A2
0u)|+ |(B0(u, u),A

2
0u)| (4.21)

� ‖θ‖|A3/2
0 u|+ c2|A0u|2‖u‖1/2|A3/2

0 u|1/2.
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Note that by the Cauchy–Schwarz inequality

ζ := |A3/2
0 u|2 � |A0u|4

‖u‖2 =
q2

z
�

4

ν2
ϑmax (4.22)

in the region

R :=

{

(z, q) | q � 2

ν

√

zϑmax

}

. (4.23)

It follows that

‖θ‖|A3/2
0 u| = ϑ1/2ζ1/2 �

ν

2
ζ ∀ (z, q) ∈ R,

and hence, as in [6],

dq

dt
� ψ(ζ) := − νζ + 2c2qz

1/4ζ1/4. (4.24)

To close the system (eliminate ζ) we find that the maximum of ψ is achieved at

ζmax :=
( c2

2ν
qz1/4

)4/3

with a value ψmax = 3νζmax.

We note that

q2

z
� ζmax if and only if q �

( c2

2ν
z
)2

so that by (4.22)

dq

dt
� ψmax =

3

ν1/3

(c2

2
qz1/4

)4/3

if q �
( c2

2ν
z
)2

(4.25)

and
dq

dt
� ψ(q2/z) = −ν

q2

z
+ 2c2q

3/2 if q �
( c2

2ν
z
)2

. (4.26)

We see that

dq

dt
� 0 if q �

(

2c2

ν
z

)2

and q �
2

ν

√

zϑmax. (4.27)

By considering the steepest descent possible below

q =

(

2c2

ν
z

)2

and the most shallow ascent possible above this parabola, we find three bounding curves

q = fj(z), j = 1, 2, 3, after solving, in order, three final value problems. The first combines the

(positive) bound in (4.25) with the upper bound in (4.20)

dq

dz
= −3

( c2

2ν

)4/3

(qz)1/3, for z1 � z � z0 = zmax =
|Ω|
ν2λ1

q(z0) = q0 :=
2

ν2
z1/2maxϑ

1/2
max.
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The second picks up where the first leaves off and combines the (positive) bound in (4.26) with

the upper bound in (4.20)

dq

dz
=
q

z
− 2c2

ν
q1/2, for z2 � z � z1

q(z1) = q1,

while the third combines the (negative) bound in (4.26) with the lower bound in (4.20)

dq

dz
=

q

3z
− 2c2

3ν
q1/2, for 0 � z � z2

q(z2) = q2,

where q1, q2 are determined by the intersections of f1 and f2 (defined below) with the parabolas

q =

( c2

2ν
z
)2

and q =

(

2c2

ν
z

)2

respectively. This results in a convex function in z

f1(z) :=

[

3

2

( c2

2ν

)4/3 (

z
4/3
0 − z4/3

)

+ q
2/3
0

]3/2

and concave functions in z

f2(z) :=
1

ν2

[

−2c2z+
(

νq
1/2
1 + 2c2z1

)

(

z

z1

)1/2
]2

,

f3(z) :=
1

25ν2

[

−6c2z+
(

5νq
1/2
2 + 6c2z2

)

(

z

z2

)1/6
]2

.

A qualitative sketch of these three curves is shown in figure 1. It is shown in [6] that the curve

q = f3(z) does not intersect the curve q = 2
√
zϑmax/ν. Let

f (z) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f1(z) if z1 � z � zmax

f2(z) if z2 � z < z1

f3(z) if 0 � z � z2.

(4.28)

To prove (3.4), suppose there is an element in Aα such that q(0) > f(z(0)). The solution

through any element in Aα exists for all negative time. If q(t) > f(z(t)) for all t < 0, since

q(t) increases with negative time, as long as z(t) < z2, we have q(t) > min{q(0), q0}. By the

upper bound in (4.20), z(t) would then exceed z2 in finite negative time. Thus, we must have

q(t) � f(z(t)) at some t < 0. But forward in time, the region q � f(z) is invariant, contradicting

the assumption that the initial condition satisfied q(0) > f(z(0)).

We now find an overall bound on palinstrophy in Aα. A straightforward calculation shows

that substituting

q1 =
(c2z1

2ν

)2

into q2 = f2(z2) =

(

2c2z2

ν

)2
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reduces to

z2 =
25

64
z1.

Similarly, using

q0 =
2

ν

√

z0ϑmax in q1 = f1(z1) =
(c2z1

2ν

)2

,

leads to

z1 �

[

3

2
z
4/3
0 +

4ν2/3

c
4/3
2

z
1/3
0 ϑ1/3

max

]3/4

� zmax + ν1/2z1/4maxϑ
1/4
max

so that

|A0u|2 � q2 � qmax :=
z2max

ν2
+
z
1/2
max

ν
ϑ1/2
max. (4.29)

4.6. A bound on |A1θ|

From (4.12) and (4.14) we have

−c3

κ
‖u‖2‖θ‖2 − 2‖u‖2

κλ1

�
d

dt
‖θ‖2 + κ|A1θ|2 �

c3

κ
‖u‖2‖θ‖2 + 2‖u‖2

κλ1

.

Thus, if

|A1θ|2 �
2

κ2

(

c3‖u‖2‖θ‖2 +
2‖u‖2
λ1

)

,

it follows that

−3

2
κ|A1θ|2 �

d

dt
‖θ‖2 � −1

2
κ|A1θ|2. (4.30)

We next take the scalar product of the temperature equation with A2
1θ = Δ

2θ and using the
fact that A0u = −Δu, write

1

2

d

dt
|A1θ|2 + κ|A3/2

1 θ|2 � |A0u||A1θ|+ |(B1(u, θ),A
2
1θ)|. (4.31)

We need to move two derivatives in the trilinear term in order to ultimately obtain a bound for

it in which the highest order norm is |A3/2
1 θ|. We integrate by parts to write

(B1(u, θ),A
2
1θ) =

2
∑

i, j,k=1

∫

Ω

ui∂iθ∂
2
j∂

2
k θ dx

= −
2

∑

i, j,k=1

∫

Ω

ui∂i jθ∂ j∂
2
k θ dx −

2
∑

i, j,k=1

∫

Ω

∂ jui∂iθ∂ j∂
2
kθ dx = I + II.

We then integrate the first summation by parts

I =

2
∑

i, j,k=1

∫

Ω

ui∂i∂
2
j θ∂

2
k θ dx +

2
∑

i, j,k=1

∫

Ω

∂ jui∂i, jθ∂
2
kθ dx = Ia + Ib
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and split the resulting first summation as

Ia =

2
∑

i, j=1

∫

Ω

ui∂i∂
2
j θ∂

2
j θ dx +

2
∑

i, j�=k=1

∫

Ω

ui∂i∂
2
j θ∂

2
k θ dx = Ia1 + Ia2

Proceeding as in (4.13), we find that Ia1 = 0. Integrating by parts again, we have

Ia2 = −
2

∑

i, j�=k=1

∫

Ω

∂iui∂
2
j θ∂

2
kθ dx −

2
∑

i, j�=k=1

∫

Ω

ui∂
2
j θ∂i∂

2
k θ dx.

Since the first sum is zero by incompressibility, we have by symmetry that Ia2 = −Ia2 , and thus
Ia2 = 0. Integrating by parts one more time, we have

II =

2
∑

i, j,k=1

∫

Ω

∂2
j ui∂iθ∂

2
k θ dx + Ib.

After gathering what remains, we use Agmon’s and Ladyzhenskaya’s inequalities to estimate

the trilinear term as

|(B1(u, θ),A
2
1θ)| = |

2
∑

i, j,k=1

∫

Ω

∂2
jui∂iθ∂

2
k θ dx + 2

2
∑

i, j,k=1

∫

Ω

∂ jui∂i, jθ∂
2
k θ dx|

� c|A0u|‖θ‖1/2|A3/2
1 θ|1/2|A1θ|

+ c‖u‖1/2|A0u|1/2‖θ‖H2 |A1θ|1/2|A3/2
1 θ|1/2

� c4|A0u|
|A1θ|3/2

λ
1/4
1

|A3/2
1 θ|1/2 = c4

λ
1/4
1

q1/2η3/4ξ1/4,

where η = |A1θ|2, ξ = |A3/2
1 θ|2 and for convenience in what follows,we take c4 = 2max(c, c3).

Using this in (4.31), we find

1

2

d

dt
|A1θ|2 + κ|A3/2

1 θ|2 � |A0u||A1θ|+
c4

λ
1/4
1

|A0u||A1θ|3/2|A3/2
1 θ|1/2

�
2c4

λ
1/4
1

|A0u||A1θ|3/2|A3/2
1 θ|1/2.

Thus, invoking our palinstrophy bound qmax, we have
d

dt
η � Φ(ξ) := − 2κξ +

4c4

λ
1/4
1

q1/2maxη
3/4ξ1/4.

We find that

Φ(ξ) � Φmax =
2

κ1/3

(

c4

2λ
1/4
1

)4/3

q2/3maxη

and that

Φ(ξ) � 0 ∀ ξ � ξ∗ := γη, where γ :=

(

2c4

κλ
1/4
1

)4/3

q2/3max.
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In terms of z0, our enstrophy bound on the attractor, (4.30) holds for

η � g3(ϑ) :=
zmax

κ2

(

c4ϑ+
4

λ1

)

. (4.32)

Once again, by the Cauchy–Schwarz inequality, we have

|A3/2
1 θ| � |A1θ|2

‖θ‖ , i.e., ξ �
η2

ϑ
.

Thus for

η2

ϑ
� ξ∗, equivalently η � γϑ,

we combine

d

dt
η � Φmax with

d

dt
ϑ � −κ

2
η (4.33)

and solve

dη

dϑ
= −γ0, η(ϑmax) = η0 :=

zmax

κ2

(

c4ϑmax +
4

λ1

)

, where γ0 = 4−1/3γ

to find a straight-line solution

η = g1(ϑ) := η0 − γ0(ϑ− ϑmax).

We then find the intersection of this line with η = γϑ to be at (ϑ1, η1), where

ϑ1 =
c4zmax/κ

2 + γ0
γ + γ0

ϑmax +
4zmax

κ2λ1(γ + γ0)
, and η1 = γϑ1. (4.34)

For η � γϑ we combine

d

dt
η � Φ(η2/ϑ) = −2κ

η2

ϑ
+

4c4

λ
1/4
1

q1/2max

η5/4

ϑ1/4
with

d

dt
ϑ � −3

2
κη

and solve

dη

dϑ
=

4

3ϑ
η − 8c4

3λ
1/4
1 κ

q1/2max

η1/4

ϑ1/4

to find

η = g2(ϑ) :=

[(

ϑ

ϑ1

)

η
1/4
1 + γ̃

(

ϑ3/4 − ϑϑ
−1/4
1

)

]4/3

,

where

γ̃ =
8c4

λ
1/4
1 κ

q1/2max.

As we argued in section 4.5, if an element in the global attractor were to project in the ϑ–η
plane above

η = max {g1(ϑ), g2(ϑ), g3(ϑ)} , (4.35)
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then by (4.33) the solution through it would, in finite negative time, have to enter the region

below the curves in (4.35). Yet, this region is invariant. We conclude from (4.34) and (4.29)

that we have an overall bound on the global attractor of

|A1θ|2 � η1 � ηmax :=
zmax

κ2
ϑmax + γϑmax +

zmax

κ2λ1

.

Aqualitative sketch of the region bounding the global attractor in this plane is shown in figure 2.

5. Implications for data assimilation

Suppose reality is represented by a particular solution to an evolution equation

dv

dt
= F(v),

where the initial data v(0) is not known. Instead continuous data of the form Ihv(t) is known
over an interval, t ∈ [t1, t2], for a certain type of interpolating operator Ih with spatial resolution

h. The nudging approach to data assimilation amounts to solving the auxiliary system

dṽ

dt
= F(ṽ)− μIh(ṽ − v), (5.1)

using any initial condition, e.g., ṽ0 = 0. It was shown in [2, 3] that if μ > 0 is sufficiently large,

and correspondingly,h sufficiently small, then v(t)− ṽ(t)→ 0, in some norm, at an exponential

rate, as t→∞. In fact, computations indicate that this approach works with data that is much

more coarse than suggested by rigorous estimates (see [1, 7, 8, 12]). Flexibility in the choice

of interpolant is one of the main advantages of injecting the observed data through a feedback

nudging term, rather than into terms involving spatial derivatives [2, 15]. Numerical errors are

shown to be bounded uniformly in time for semi-discrete [16] and fully discrete schemes [14]

for (5.1).

Now consider this approach for the stress-free RB system (2.8) using data from only the

horizontal component of velocity. This means solving the auxiliary system

dũ

dt
+ νA0ũ+ B0(ũ, ũ) = Pσ(θ̃e2)− μPσIh(ũ1 − u1)e1,

dθ̃

dt
+ κA1θ̃ + B1(ũ, θ̃) = ũ · e2,

ũ(0; x) = 0, θ̃(0; x) = 0.

It was proved in [9] that if μh2 � ν and

μ � K1 ∼
1

κλ1

+
1

νκ2
+

1

κ
+

|A0u|2
ν

, (5.2)

then

‖u(t)− ũ(t)‖+ |θ(t)− θ̃(t)| → 0 as t→∞

at an exponential rate. Also shown there was that if

μ � K2 ∼ K1 +
1

κ
‖θ‖2|A1θ|2, (5.3)
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Figure 3. Projections after a transient period.

then the stronger convergence

‖u(t)− ũ(t)‖+ ‖θ(t)− θ̃(t)‖→ 0, as t→∞,

holds at an exponential rate. The bounds in this paper on ‖θ‖, |A0u| and |A1θ| are all algebraic,
suggesting that data assimilation by nudgingwith just the horizontal velocity could be effective

for the stress-free RB system. We present computational evidence to this effect in the next

section.

6. Computational results

The computations presented belowwere done using Dedalus, an open-source package for solv-

ing partial differential equations using pseudo-spectral methods (see [4]). The time stepping is

done by a four-stage third order Runge–Kutta method.

We solve (2.1) with L = 2 in the physical domainΩ0 = (0, L)× (0, 1). The physical param-

eters of viscosity and thermal diffusivity are related to the Rayleigh and Prandtl numbers
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Figure 4. Ratios in (6.1).

through

ν =

√

Pr

Ra
, κ =

1√
Ra · Pr

.

We take Pr = 1 so that in our dimensionless variables Ra := (νκ)−1 = ν−2 and use nF Fourier

modes in the x1-direction and nC Chebyshev modes in the x2-direction. The numbers of modes

used are nF × nC = 256× 128, 1024× 512, and 2048× 1024 for runs at Ra = 106, 107, 108

respectively.

6.1. Sharpness

Each plot in figure 3 shows the projection of a solution after a transient phase in a plane spanned

by the norms bounded by our analysis. The solutions are plotted over the time period 200 � t �

1000 for Ra = 106, 107 and over 200 � t � 1485 for Ra = 108 (time units in the RB system

(2.1)). The initial condition in each case is (u0, θ0) = (0, 0) so the average α of the horizontal

velocity is zero.

It is not surprising that our rigorous overall bounds as well as the curves in figures 1 and

2 are orders of magnitude greater than the norms of these solutions. Plotting the bounds and

curves together with the solutions is not revealing. Instead, to see a trend in sharpness, we plot

in figure 4 the ratios

zmax

maxAz
,

ϑmax

maxAϑ
,

qmax

maxAq
,

ηmax

maxAη
. (6.1)

Using the numerical values for the z ratio, we gauge the (highest) power in (3.2) to be inflated

(at least over this range of the Rayleigh number), by an addition of β, where

100β =
3.14× 106

7.05× 104
, i.e., β = 0.824.
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Figure 5. Data assimilation at Ra = 106 and Pr = 1 with h ≈ 0.196.

A similar calculation for the ϑ ratio gives β = 1.68. We note that the curves are bending

favorably for the ratios for q = palinstrophy and η = |A1θ|.

6.2. Data assimilation

Nudging is carried out at Ra = 106 using the interpolant operator Ih at every mth nodal value

in each direction, i.e.,

h(m) = max{hF(m), hC(m)}, hF(m) =
mL

nF

where m is a positive integer, and

hC(m) = max{|xim2 − x
(i+1)m
2 | : i = 0, 1, . . . , �nC/m� − 1}

=
mπ

2nC
sin(ξ), for some ξ ∈

(

2mi− 1

2nC
π,

2m(i+ 1)− 1

2nC
π

)

≈ mπ

2nC
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Figure 6. Data assimilation at Ra = 106 and Pr = 1 with h ≈ 0.393.

where (x
j
2) are the Chebyshev grid points in the x2-direction of the physical space. For

nF × nC = 256× 128, this means h(16) ≈ 0.196 and h(32) ≈ .0.393. The nudging parameter

is fixed at μ = 1.

Figure 5 shows that at h = 0.196 the solution to the data assimilation system converges to

the reference solution at an exponential rate. At h = 0.393 the error appears to saturate around
10−3 during rapid oscillations (see figure 6). We found that at h = h(64) = 0.785 the nudged
solution does not converge to the reference at all (not shown). This demonstrates a critical value

of h.

Data assimilation by nudging works much more effectively than the rigorous analysis can

guarantee. The value of μ and corresponding resolution h of the data suggested by the condi-

tions (5.2) and (5.3) are based on compounded, conservative estimates derived using general

inequalities which are not saturated by 2D convective flows. In addition, as demonstrated in

(6.1), our algebraic rigorous estimates for ‖θ‖, |A0u|, and |A1θ| in this case of stress-free bound-
ary conditions, thoughmuch better than the exponential boundspreviously found for the no-slip

case in [11], are still somewhat artificially inflated. Numerical nudging tests in [8] for the RB

system with no-slip boundary conditions suggest that better bounds on the attractor might hold

in that case as well. The key here in the stress-free case was extending the physical domain

to be fully periodic, hence there is effectively no boundary. Since, in the no-slip case one is
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unable to remove the physical boundary, one should have to resolve the boundary layer scales

in order to determine the behavior of the solutions. This is even more pronounced in the esti-

mates of the dimension of the global attractor of the 2D NSE with no-slip boundary conditions

in comparison to the case with periodic boundary conditions. Thus, improving the bounds in

the no-slip case would require entirely different techniques.
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