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Abstract

Many complex traits are subject to assortative mating (AM), with recent molecular genetic
findings confirming longstanding theoretical predictions that AM alters genetic architecture by
inducing long range dependence across causal variants. However, all marker-based heritability
estimators assume mating is random. We provide mathematical and simulation-based evidence
demonstrating that both method-of-moments estimators and likelihood-based estimators produce
biased estimates in the presence of AM and that common approaches to account for population
structure fail to mitigate this bias. Then, examining height and educational attainment in the UK
Biobank, we demonstrate that these biases affect real world traits. Finally, we derive corrected

heritability estimators for traits under equilibrium AM.
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Introduction

Primary phenotypic assortative mating (hereafter simply "AM"; the phenomenon whereby mate-
choice is based on phenotypic similarity) has been observed for a variety of heritable traits in
human and non-human animals [1-4]. A century ago, Fisher demonstrated that AM induces long-
range positive correlations between trait-increasing allele counts at causal loci across the genome,
thereby increasing genetic variance across successive generations until it approaches a stable
equilibrium [5]. Since Fisher’s time, it has been established that many human traits are subject to
AM, and that estimates of genetic and environmental variance from twin and family designs, which
assume random mating, can be biased in the presence of AM [6]. However, to date there has been
no study of how AM influences marker-based heritability estimators. Moreover, many traits that
have been focal in the scientific discourse regarding the so-called still-missing heritability—for
example, height and educational attainment—are precisely those traits for which both phenotypic
and genetic data is consistent with primary phenotypic assortment [4, 7-9], further motivating the

need to understand how AM influences marker-based heritability estimates.

Here, we address this gap in knowledge by characterizing the impact of AM on two major families
of marker-based heritability estimators: method of moments estimators (MoM; typified by
univariate Haseman-Elston (HE) regression [10] but also including PCGC regression and LD score
regression [LDSC] [11, 12]), and residual maximum likelihood (REML [13]; typified by GCTA
and BOLT-REML [14, 15]). We assume Fisher’s classical model of AM, which describes the
equilibrium properties of a heritable trait for which mates’ genotypes are conditionally
independent given their phenotypes, and which has formed the theoretical foundation for recent
investigations of AM using measured genetic data [4, 8]. We provide mathematical and simulation-
based arguments demonstrating that AM induces a modest but nevertheless non-negligible bias in
both classes of estimators that is not addressed by conventional methods of accounting for
population structure. In the process, we extend results in random matrix theory and classical
quantitative genetics by characterizing the higher-order moments of causal variants and the
limiting spectral distribution of the genomic relatedness matrix (GRM) under AM, thereby
providing intuition with respect to the observation that genomic principal components do not
capture the effects of AM. Additionally, we provide empirical results using data from the UK

Biobank that are congruent with our theoretical predictions regarding the influence of AM on
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marker-based heritability estimators. Finally, we provide guidelines for using and interpreting the

results of marker-based heritability estimators when applied to traits subject to AM.

Results

Our theoretical results depend on several key parameters: r denotes the phenotypic correlation
between mates on a phenotype Y; h3 denotes the panmictic heritability, what the heritability of the
phenotype would be in the absence of AM; h% denotes the true equilibrium heritability under AM;
and Z denotes the n X m matrix of n unrelated individuals’ standardized genotypes at m causal
loci with effects vector u. We initially assume that all causal variants are present in Z (i.e., that all
the narrow-sense heritability is explained by measured variants); we later relax this condition. The
rows of Z (individuals’ genotypes) are independent random vectors with m X m covariance
matrix Y, which quantifies the correlation between loci. Under random mating, Y =Y, is
approximately block diagonal such that causal variants are largely (aside from linkage
disequilibrium between nearby variants) stochastically independent. However, under equilibrium
AM, Y :=Y, is dense due to the presence of positive long-range correlations among trait-
increasing allele counts within and across chromosomes. As the elements of Y, agree in sign with
the corresponding elements of uu” (i.e., trait increasing alleles are positively correlated), the

equilibrium genetic variance under AM, ng’oo’ is considerably greater than the panmictic genetic

variance o/ . That is, 07 o = u" Yoou > 07 ~ u’u (Figure 1).
Haseman-Elston regression estimates under AM

We first derive the influence of AM on heritability estimates from HE regression [10], which is
perhaps the simplest MoM marker-based heritability estimator. Let ¥ denote the standardized
(zero-mean unit-variance) phenotype. The HE regression estimator h%g of h? is the slope of the
subdiagonal elements of the phenotypic outer product, 77, regressed on the subdiagonal elements
of the GRM, m~*ZZ". We demonstrate that A% is upwardly biased relative to both h3 and h%
under AM. Intuitively, this is because the phenotypic outer product accurately reflects increases in
genetic variance due to positive associations across all pairs trait increasing alleles, whereas the
effect of AM on the GRM, the elements of which represent individuals’ average similarity at
homologous diploid loci but not across distinct pairs of loci, is negligible. This latter point is itself

notable as some studies have erroneously claimed that AM leads to detectable increases in average
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genomic similarity between mates [17], but the actual increase is trivial (of order O (m™1) relative
to the increase in genetic variance) and all but undetectable for highly polygenic traits [18]. With
respect to the influence of AM on HE regression estimates, and assuming that all the narrow-sense
heritability is explained by measured variants, we establish the following general result:

- m-u'Y3u
E[hfe] = (m) hZ > h3, (1)

Under AM, the bracketed quantity is greater than one, and thus h%g is biased upwards. Under the
stricter assumption of exchangeable loci (i.e., each causal variant explains equal variance in the
phenotype), we derived the following approximate expression, dependent only on the panmictic

heritability and phenotypic correlation between mates:

Ty,

~ 1
E[R%e] ~ (1_—) R, @
where 75 o, =71 hZ, is the equilibrium genetic correlation between mates (Figure 1; see Supp.
Materials S3.1 for greater details and proofs). Under exchangeable loci for known r, we define
estimators of the panmictic and equilibrium heritabilities by applying the following
transformations to A%

. . h? . - h?
h2 == E[r2|A2.] = _HE — h2 = E[h2|h%:] = —2= . (3
|16 17ite| 1+ 2rhZg + r(r — Dhy [R5 e 1+ rhig (3)

Large scale simulations using realistic genotype data across a variety of scenarios (see Online
Methods) demonstrate that the above approximations are accurate even when the exchangeable

loci assumption is violated (mean relative error across simulations = -0.009; Figure 1).

In addition, our simulations confirmed that LD score regression [12], which is mathematically
equivalent to HE regression when LD scores are exact [19], is analogously biased upwards (Figure
4a). However, the impact of this bias in real world applications depends not only on the extent of
AM, but also on the degree to which estimated LD scores reflect the true LD structure in a given

population, and therefore no straightforward correction is available.

Residual maximum likelihood estimates under AM

In contrast to HE regression, for which the upward bias is independent of sample size, we show
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that the REML estimator, h&gy, exhibits large upward biases in small samples but converges
towards hZ (which is less than the true equilibrium value, h%) from above in large samples.

Formally, under the assumption of exchangeable loci, we prove that
22 P12
hggmL — hg, asn,m — oo, (4)

where n/m - ¢ € (0,); i.e., for polygenic traits, Ay is a consistent estimator of h. In
essence, the parameter values that maximize the residual likelihood function depend only on the
eigenvalues of the GRM and the long-range dependence among causal variants induced by AM is
“weak” in the sense that the distributions of the eigenvalues (i.e. spectral distributions) of the GRM
under random mating and under AM are asymptotically equivalent. However, in finite samples,
we show via simulation that this convergence can be extremely gradual, requiring samples
approaching millions of individuals before estimates reasonably approach hZ (Figure 2a, Figure

2b). Thus, the direction (relative to h2,) and magnitude of the bias of AZgy; depend on sample size
in addition to the panmictic heritability and strength of AM. On the other hand, the number of
causal variants, the total number of measured SNPs, and the ratios of these with sample size have

no apparent influence on the bias of AZgy; (Supp. Figure S1).
Conventional means of addressing population structure do not mitigate AM-induced bias

Inclusion of ancestral principal components as covariates failed to mitigate the AM-induced bias
in both the MoM and the REML estimates (Figure 4a). Indeed, we demonstrate that the AM has a
negligible effect on the spectral distribution of the GRM in high-dimensional settings (Supp.
Materials S2.4). Similarly, these biases are not mitigated by modeling multiple genetic variance
components by partitioning SNPs according to LD score and minor allele frequency (Figure 4a)

or by partitioning SNPs by chromosome (results not shown).
AM-induced bias persists when not all causal variants are measured

In real-world applications, measured genotypes will often include some fraction of the total
number of causal variants. To assess the impact of AM when not all variants are measured, we
compared HE regression and REML heritability estimates in synthetic data including 100%, 50%,
or 25% of both causal and non-causal SNPs by discarding variants at random (Figure 3b). As

expected, this resulted in attenuated estimates commensurate with the fraction of missing data. On
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average, heritability estimates were 8.4% (se=0.009%) and 17.6% (se=0.009%) lower after
randomly discarding 50% and 75% of SNPs, respectively (the degree of attenuation was smaller
than the proportion of SNPs dropped due to linkage disequilibrium between retained and discarded
SNPs). Nevertheless, while estimates were lower, the pattern of bias due to AM when some of the
heritability was missing appeared roughly the same as when no heritability was missing. To test if
h? attenuation varied across methods, we fixed sample size at n=128,000 and regressed A% on the
interaction between the fraction of SNPs discarded (0%, 50%, or 75%) and method (HE=1 vs.
REML=0). Similarly, to test if % attenuation varied with sample size, we regressed 72 on the
interaction between the fraction of SNPs discarded and logio sample size. We found that the linear
relationship between h? and the fraction of SNPs discarded did not depend on method (3=0.036,
95% CI: [-0.011, 0.083]) nor on log1o sample size (8=0.031, 95% CI: [-0.059, 0.120]).

AM in the UK Biobank

In addition to the experiments using synthetic data described above, we sought to verify our
theoretical predictions by examining the relationship between sample size and heritability
estimates in a sample 335,551 unrelated European-ancestry individuals in the UK Biobank [20].
We a priori selected four phenotypes based on evidence (height, years of education) or lack of
evidence (body mass index [BMI], bone mineral density [BMD]) for primary phenotypic AM in a
previous study [8]. We then computed HE regression and REML heritability estimates in pairs of
small (n=16,000) versus large (n= N-16,000) non-overlapping subsamples, where N depended on
the available sample size for each phenotype (Table 1). Congruent with theoretical expectations
and simulation results, REML and HE estimates diverged with increasing sample size for height
and years of education such that the differences between REML estimates in smaller versus larger
subsamples were larger than those of HE estimates (mean difference of differences
5 :=mean gy -Onp=0.024, p=5.24e-4; 6=0.015, p=3.94e-4; respectively), but not for BMI or
BMD (§=5.84e-3, p=9.42e-2; §=-3.41e-3, p=0.302; respectively; Figure 3). This was consistent
with a previous report that quantified the degree of AM for various traits by correlating polygenic
scores between odd- versus even-numbered chromosomes also found that height and educational
attainment, but not BMI or BMD, showed signatures of AM [8]. Unlike this previous approach,
however, our approach is agnostic to variant direction and effect size. Thus, applying the REML

estimator across subsamples of varying sizes provides an alternative and independent way to detect
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genomic signatures of AM.

We used previously reported estimates of spousal correlations [2, 4] for height and educational
attainment in order to correct HE regression heritability estimates (Table 1) via the estimators in
Equation (3). Relative to the corrected equilibrium SINP-heritability estimates, HE regression

estimates were inflated by 14% and 7% for height and years of education, respectively.

Discussion

Summary of findings

Despite the long-standing understanding that AM alters the genetic architecture of heritable traits,
abundant evidence that many phenotypes are subject to AM, and concentrated research activity in
marker-based variance component estimation, the effects AM has on these estimators has remained
unknown. In the present investigation, we demonstrated that AM biases heritability estimates and
that these biases behave differently for MoM estimators versus REML estimators as a function of
sample size. In the process, we extended previous results in quantitative genetics and random
matrix theory by characterizing the full equilibrium joint distribution of causal variants,
demonstrating that the empirical spectral distribution of the resulting relatedness matrix converges
to the Marcenko-Pastur law, and thereby proving that REML produces a consistent estimator of
the panmictic heritability of polygenic traits in very large samples (see Supp. Materials S2, S3).
However, REML estimates of heritability of traits subject to AM behave peculiarly in finite
samples, decreasing with larger samples and yielding estimates greater than the true equilibrium
heritability in sample sizes typical of those published in the literature (Figure 2b). On the other
hand, MoM estimators yield upwardly biased estimates that are higher than REML estimates and
remain stable across sample sizes (Figure 2a, Figure 4a). Using UK Biobank data, we observed
this differential behavior of estimates for two traits that with previous evidence for AM but not for

two negative control traits.

Implications

Researchers have previously argued that the impact of AM on the heritability of common traits is
likely to be “at most modest” [21]. Our results speak to a related but distinct phenomenon: the
impact of AM on heritability estimators that use molecular genetic data. Notably, this impact is

likely to be most salient for “benchmark” traits like height, which has served as a focal point for
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the discourse surrounding the missing and still-missing heritability phenomena [9, 22]. Our results
suggest that the still-missing heritability may be somewhat larger than currently thought for traits
subject to AM. For instance, for a trait subject to AM, the REML estimator will produce higher
heritability estimates when applied whole-genome sequence data collected from a smaller number
of individuals relative to estimates derived from larger samples for whom only sparse array data
are available. On the other hand, twin studies are expected to underestimate the total heritability
of an additive trait subject to AM [23], implying that the true discrepancy between the total
heritability and that which is currently discernible from dense marker data may be greater than
previously believed. Our simulations demonstrate that differences in REML heritability estimates
derived in samples of 32,000 versus 128,000 individuals are on the order of those induced by
randomly omitting 75% of measured SNPs (Figure 2a , Figure 4a). As such, caution is warranted
when comparing heritability estimates across methods or across sample sizes for traits subject to

AM.

Interpreting heritability estimates in the presence of AM

As we have demonstrated, existing methods do not produce unbiased heritability estimates for
traits subject to primary phenotypic assortment in real world use cases. Although we provide
unbiased estimators of both the equilibrium and panmictic heritabilities (by correcting A% to
obtain h2, and h2 as per Equation [3]), these rely on the strong assumption of equilibrium.
Likewise, though REML provides an asymptotically unbiased estimator of the panmictic
heritability, the sample sizes required to approach unbiasedness are currently unavailable and
computationally impractical. Still, it is possible to derive theoretically-sound bounds on the true
values of the present day and panmictic heritabilities using existing methods applied to realistic
sample sizes in disequilibrium. Specifically, as a population approaches equilibrium over
successive generations of assortative mating, the current heritability at generation t, h?, is bounded
in expectation from above by A%, with equality at t = 0 (panmixis), and from below by hZ =
E[h% |hfg; t = o], with equality as t — o (equilibrium). Likewise, the panmictic heritability h3
is bounded in expectation from below by A2 = [h§|f112{5 ;= 00], with equality as t — oo, and
from above by hZgy;. (with equality at all generations as n — o). Thus, as long as the strength of
AM isn’t decreasing across generations, [h2, h4g] provide probabilistic bounds encompassing the

true present day heritability, and [h2, h&gy.] provide probabilistic bounds encompassing the true
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panmictic heritability under disequilibrium with A% and h% providing conservative point estimates

of hZ, and h3, respectively (Figure 1).
Limitations and future directions

There are several limitations of the current approach. First among these are assumptions inherent
to the primary phenotypic AM model. Some of these assumptions, including equilibrium and
constancy of the phenotypic mating correlations across generations, provide mathematical
tractability and are to some extent inessential to the resulting phenomena. For example, while the
problem of characterizing the joint distribution of causal variants becomes substantially more
difficult in a population subject to AM that has not reached equilibrium, we observed (results not
shown) that estimators behave in a similar, albeit less extreme, fashion relative to their behavior
in an equilibrium population. Other assumptions, such as the absence of gene-environment
correlation and the conditional independence of mates’ genotypes given their phenotypes (which
may be violated in structured populations), are more difficult to evaluate and deserve consideration
in future investigations. Additional limitations pertain to our theoretical analysis of the REML
estimator, which is rooted in a high-dimensional asymptotics framework. The exact causes of the
peculiar behavior of the REML estimator in finite samples, particularly regarding the slow rate of
convergence to the panmictic heritability, remain unclear to us. Whether this problem is
addressable from an asymptotic perspective or instead requires an alternative, non-asymptotic
framework, is an open question and is a target for future theoretical work. Finally, when the
phenotypic correlation between mates is known, our results provide a prescription for rectifying
AM-induced biases (by adjusting h%g per Equation [3]) under the assumption of equilibrium,
which is difficult to verify, and only provide broad bounds on the extent of said biases for
populations at disequilibrium. As such, these results should provide motivation and a starting place
for the development of new methods that can provide unbiased estimates of genomic variance in

the presence of AM.

Online Methods

Theoretical framework

The primary phenotypic assortment model

Here we introduce the model of AM as proposed by Fisher [5] and further developed by Nagylaki
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and others [16, 24] (see Supp. Materials S1 for a detailed exposition). Briefly, we consider a

phenotype as a random vector composed of independent heritable and non-heritable components:
iid. 2

Y=Zu+E, E =" N(0,0%), (5)

where the rows of Z, representing individuals’ standardized genotypes, are independent m -

dimensional random vectors following a multivariate discrete distribution with finite moments and

finite and which we assume are independent under panmixis. The vector of allele substitution

effects u, which we treat as fixed, is such that uTu = U;O. Further, we assume that 1) parent-

parent-offspring trios’ phenotypes are jointly Gaussian; 2) the phenotypic correlation between

mates, 7 is constant across generations; and 3) there exists ¢, € (0,0) such that max lugl <c, -
=1,..m

m~Y/2; that is, as traits become increasingly polygenic, the maximal variance attributable to

individual variants decreases commensurately.

The equilibrium distribution of causal variants
Over successive generations, the correlation between mates’ phenotypes induces positive
correlations across trait increasing allele counts independent of physical position on the genome
and thereby increases the total genetic variance of the trait. The genetic variance rapidly
approaches a stable equilibrium after several generations (typically within ten generations), at
which point the within-individual and cross-mate correlations among causal variants are equal to
one another. Using the results of Nagylaki [16], we can express the equilibrium covariance matrix
between causal variants as a low rank perturbation of a diagonal matrix of the form: Y, = D +
2¢p¢pT, where ¢ is a known vector-valued function of the substitution effects and mating

correlation (Supp. Materials S1.2) with elements ¢, = 0(m~*/?) uniformly.

Higher order moments and the limiting spectral distribution of GRM
Employing tools from the study of thermodynamic equilibria, we extend these classical results to
bound moments of higher orders (Supp. Materials S2.1, Supp. Materials S2.4). Using these results,
we extend the widely-known Marcenko-Pastur theorem, which describes the limiting distribution
of the spectrum of sample covariance matrices corresponding to random matrices with independent
sub-Gaussian elements [25], to the case of random matrices with independent rows meeting
particular moment conditions (Supp. Materials S2.3). Together, these results establish the limiting

spectral distribution of the sample GRM (i.e., the distribution of the eigenvalues of the sample
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GRM as both sample size and the number of variants examined become large) under AM (Supp.
Materials S2.4), providing the necessary theoretical foundation to characterize the asymptotic
behavior of the REML estimator. Further, these results explain why controlling for principal
components fails to remove AM-induced biases: the impact of AM on the spectrum of the GRM

is asymptotically negligible.

Haseman-Elston regression under AM
The HE regression heritability estimator [26] is obtained by regressing the subdiagonal elements
of the standardized phenotypic outer product $¥7 on the subdiagonal elements of the GRM
m~1ZZT. Whereas elements of the outcome (the phenotypic outer product) reflect the dependences

among all pairs of causal loci:

E[{557}i <1 ]| ¢ 2oy D% wew B[ zie 21| + ezej, (6)
elements of the GRM only capture the dependences among haploid loci that at the same diploid

site:
E[{ZZ™}; j<1] o Ziti Eziezp] - 7

As aresult, the variance of the outcome increases whereas the variance of predictor remains largely
unaffected, leading to overestimation of the true equilibrium heritability, potentially producing
estimates greater than one for strong assortment (Figure 1; see Supp. Materials S3.1 for formal
further details and proof). In contrast to the REML estimator, the HE regression estimator is

upwardly biased irrespective of sample size (Figure 2a).

REML and the spectrum of the GRM under AM

The REML estimator [13] models the phenotype as a random vector with marginal distribution,
y ~ MVN(XB,m 1ZZTc? + I67), (8)

where X is an n X ¢ matrix of covariates with fixed effects f and the covariance structure is

comprised of a heritable component (ng times the GRM) and a non-heritable component (¢ times
the identity). The heritability estimator h3gy, = 62/(62 + 62) is derived by finding the values of

the variance components that satisfy the equation,

ve(62,621ATy) =0, (9)

where £ denotes the marginal log likelihood of the transformed random variable ATy for AT: R —


https://doi.org/10.1101/2021.03.18.436091
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.436091; this version posted March 20, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

12

(col X)* € R" ¢, ATA = I. The conditional expectation of V¢ given the genotypes is a function
of the eigenvalues of the GRM and, as a result, the asymptotic behavior of A%y is governed by
the asymptotic distribution of the eigenvalues of m~1ZZ”. A foundational result in random matrix
theory states that for zero-mean unit-variance sub-Gaussian random matrices W € C™™ with
independent elements, the empirical spectral distribution function of m~*WW?T converges almost
surely to the Marcenko-Pastur distribution [25]. Employing this result, Jiang and colleagues [27]
demonstrated that, in the case of independent causal variants, REML consistently estimates the
true heritability in high dimensional settings and is robust to certain forms of model
misspecification. In Supp. Materials S2.3, Supp. Materials S2.4, we demonstrate that even though
AM induces dependence among causal variants, this dependence is “weak” in the sense that it
doesn’t change the limiting spectral distribution of the GRM, thereby allowing us to apply
arguments in line with those of Jiang and colleagues’ (Supp. Materials S3.2). Intuitively our result
can be summarized as follows: as the sample size and the number of causal variants become large,
the eigenvalues of the GRM under AM behave as if the causal variants were independent (as is
largely the case under random mating). The behavior of the REML estimator is determined by the
behavior of the eigenvalues of the GRM, and thus k3, converges to what the heritability would

be if the causal variants were independent, i.e., the panmictic heritability.

Simulation studies

We employed a realistic forward-time simulation framework to generate genotypic and phenotypic
data. We then used these data to motivate and verify theoretical results. Below, we describe the

general framework and specific simulations we performed.

Simulation framework
Given a recombination map and 7y, individuals’ phased biallelic genotypes at p diploid loci as
input, we divided the genome into k « p contiguous-within-chromosome, non-overlapping 50kB
intervals to obtain a block representation. Recombination events, which occurred with probabilities
dictated by the recombination map, were restricted to interval boundaries, thus dramatically
reducing the number of haplotypes that had to be tracked while maintaining high genomic
resolution. To achieve a target population size Ny > Ninpye, Nsim pairs of the ny, . individuals
were non-monogamously ‘mated’ (i.e., matched and subject to meiosis), resulting in a new

generation of Ng;,, individuals whose genomes were could be represented in terms of the which of
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the n;,p,, haplotype blocks they inherited at each of the k intervals. We then repeated this random
mating procedure for an additional five generations, resulting in Ng;,, chimeric combinations of
the original n, . genotypes while maintaining the linkage disequilibrium structure of the original

data. These discretized genotypes comprised the input for the principal AM simulations.

At the beginning of each particular AM simulation with prespecified panmictic heritability h3 =
092‘0 / (092‘0 + 02), phenotypic correlation between mates r, p SNPs, and m diploid causal loci
Z1, ey Zm, M L p, the standardized allele substitution effects u,, ..., u,,, were independently
drawn from a Gaussian distribution with expectation zero and variance a;,o /m. Unless otherwise
stated, all simulations used p = 10° SNPs. At each generation, phenotypes were constructed via
y = Zu + e where e was i.i.d. Gaussian with zero expectation and variance ¢2. Next, mates were

matched according to their respective phenotypes y;, y; such that corr(y;, y;) = r. This was

achieved by drawing Nj;,, independent doubles {(W*,W**)T}gi“{‘ ~N <0, (i D) from which

N pairs of indices {(i, j)}l,:i‘f were constructed such that (i, j), were the positions of wy, and

wy" after concatenating and sorting each element of {(W*,W**)T}gi“f. Similarly, Ng;,, indices
[=14,..,1y. were constructed such that [/, indexed the kth largest of the N, simulated
sim

phenotypes. Finally, each kth mating pair was determined by taking the [|;, /,jth and llij J2|th

replicates. Having chosen mates, meiosis occurred as previously detailed to construct the next

generations’ genotypes.

Simulations using UK Biobank data
For each simulation, the input data were derived from phased, imputed genotypes at p = 10°
randomly selected imputed SNP loci in a sub-sample of n,,,. = 435,301 European UK Biobank
participants [20]. All SNPs were chosen to meet the following criteria: minor allele frequency
greater than 0.01, Hardy-Weinberg p-value greater than 10, INFO score of at least 0.95, and
presence on the 1,000 Genomes Phase 3 (1KG3) reference panel [28]. Genotype data were then
phased to the 1KG3 reference panel in batches of 40,000 individuals using Eagle v2.4 [29]. This
input data was then grown to a population of Ng;,, = 10° chimeric genotypes and subjected to an

additional five generations of random mating as described in the preceding section.

We conducted AM simulations for varying mating correlations, r € {0,.25,.5,.75} and numbers
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of causal variants, m € {10%, 10°}, with panmictic heritability fixed at h3 = .5. Each simulation
consisted of fifteen generations of AM and produced results congruent with classical theory. Prior
to heritability estimation, close relatives T > .05, were removed using GCTA v1.93.1 [14],
resulting in an average sample size of 141,667 across simulated datasets. Additionally, we ran a
limited number of larger, more computationally intensive simulations (N, = 3%10°) with mating
correlations fixed at r = .5 to investigate the large sample behavior of the REML estimator,
resulting in at least 648,000 unrelated individuals across simulated datasets. There were no
apparent differences across simulations as a function of the number of causal variants or the

simulated population size.

Heritability estimation in simulated data
We split each simulated genotype-phenotype dataset into collections of random subsamples
mutually exclusive within collection but not across collections, yielding 16 samples of 16,000
individuals, 8 samples of 16,000, 4 samples of 32,000 individuals, 2 samples of 64,000 individuals,
and 1 sample of 128,000 individuals. We then performed HE regression and single-component
REML for each subsample (Figure 2a). We used GCTA v1.91.3b [14] to construct genomic related
matrices and perform HE regression. We obtained REML heritability estimates using BOLT-
LMM v2.3.4 [30] for computational efficiency; though BOLT-LMM uses a randomized algorithm,

its numerical accuracy is comparable to that of the exact algorithm implemented GCTA [31].

We also performed a variety of supplementary analyses for a limited set of simulation parameters
(r=.5, hi=.5, and m € {10%,10°}, N = 10°). To demonstrate that including genomic
principal components (PCs) as covariates does not mitigate the impact of AM, we included 10 PCs
as covariates in the HE regression and REML analyses. For the former, HE regression was
conducted in LDAK v5.0 [32], as the HE regression implementation in GCTA cannot
accommodate covariates. To demonstrate that the behavior of LD score regression under AM is
equivalent to that of HE regression (assuming that the LD scores accurately reflect the LD structure
of the sample), we used PLINK v1.9 [33] to obtain GWAS summary statistics and LDSC v1.0.1
[12] to estimate within-sample LD scores using a one centiMorgan sliding window and to perform
LD score regression (Figure 4a). To demonstrate that multiple variance component (also known
as partitioned approaches [34, 35]) do not mitigate the impact of AM, we fit multicomponent HE

regression and REML after partitioning SNPs by minor allele frequency and LD score (Figure 4a).
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Finally, to assess the scenario wherein a non-trivial fraction of causal variants aren’t included in
the model, we estimated HE regression and REML models after removing 50% or 75% of

simulated SNPs at random (Figure 4b).

Empirical results

Sampling procedures
We analyzed 1,211,273 biallelic 1IKG3 SNPs with in-sample minor allele frequency greater than
0.01, Hardy-Weinberg p-value greater than 10, and INFO scores of at least 0.95, in a sample of
335,551 unrelated European UK Biobank participants [20]. We selected phenotypes a priori on
the basis of previous evidence for AM; we chose height (n = 335,551) and years of education
(n = 331,480) as traits with previous evidence of AM, whereas we chose BMI (n = 335,551) and
BMD (n = 191,330) as negative control traits [8]. We measured years of education following the

procedures detailed in [36].

Analysis/resampling
We tested for evidence of AM by comparing HE and REML heritability estimates in small and
large samples. In the presence of AM, our theoretical results imply that HE regression estimates
are consistent across all small and large subsamples, whereas REML estimates should decrease
with increasing sample size. On the other hand, in the absence of AM, neither HE nor REML
estimates should systematically vary with sample size. To this end, we randomly selected ten
mutually exclusive subsamples of 16,000 individuals for each trait and compared HE and REML
estimates in each subsample to the non-overlapping complementary subsample comprised of the
remaining n — 16,000 individuals, controlling for sex, age, genotyping batch, testing center, and
the first 10 genomic ancestry principal components. To eliminate variance in heritability estimates
due to chance differences in covariate effect estimates across subsamples, we adjusted genotypes
and phenotypes in the full sample prior to all following analyses. To our knowledge, existing
software is incapable of efficient REML analysis using adjusted genotypes (analogous to dosages)
in large samples; e.g., BOLT-REML requires hard-calls as input, whereas GCTA and LDAK have
cubic complexity in the number of individuals and markers and would require multiple weeks to
run on a high thread-count server. We therefore utilized a modified Python implementation of the
REML algorithm presented in [31] (code available by request). We used LDAK 5.0 to obtain
adjusted HE regression estimates [32]. In order to quantify the divergence of the REML and HE
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estimators in large versus small samples we performed the following test, analogous to a t test of

the interaction effect in a 2x2 within-subjects experimental design:
Ho: & = (EPZ{EML(S) - fllzzEML(SC)) - (EIZ{E(S) - EIZ{E(SC)) =0,
Hi:5 #0,
where S denotes a given subsample and S° its complementary subsample. Though this procedure

accounts for the dependence among estimates derived in the same subsamples, the individual
observations were derived from various partitionings of the same data and do not constitute
independent observations. This limitation is not easily avoidable, and the results of this procedure

(Figure 3) should be interpreted as descriptive despite our application of inferential procedures.
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Phenotype T n h2 [sel hZ [se] hZemy [sel h2 [se] hfig/h3, [se]
Height 0.240 | 334,798 | 0.567 [4.68e-3] | 0.499 [4.23e-3] | 0.525[2.22e-3] | 0.467 [3.37e-3] | 1.14 [8.70e-4]
Years of Education | 0.412 332,198 | 0.174 [2.64e-3] | 0.163 [2.46e-3] | 0.155 [2.01e-3] | 0.153 [2.06e-3] | 1.07 [9.46e-4]

Table 1. Inflation of heritability estimates for select UK Biobank traits

Spousal correlations (as previously reported in British cohorts [2, 4]) and heritability estimates for height and years of education in the
UK Biobank, selected a priori on the basis of previous evidence for primary phenotypic AM. Assuming equilibrium, A% and h% (defined
in Equation 3) provide unbiased estimates of the present day and panmictic heritabilites, respectively. Under disequilibrium, they
respectively provide probabilistic lower bounds, with h%g and AZgy, providing complementary upper bounds. The ratio hg/h%
reflects the extent to which HE regression overestimates the true heritability under the assumption of equilibrium.
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Figure 1. Theoretical and empirical behavior of existing and corrected estimators

Theoretical and empirical behavior of HE regression REML at equilibrium for varying phenotypic correlations
among mates (r) and fixed panmictic heritability (h3 = .5) across simulated datasets with sample size fixed at
n =64,000. HE regression ( ’HHE ) produces upwardly bi;/i\szed estimates consistent with our c/l\ozsed-fo/r\rzn
approximation under the assumption of exchangeable loci, E[hyg]. Further, our corrected estimators, h,, and h,
recover the true equilibrium and panmictic heritabilities for a trait at equilibrium. For a trait at disequilibrium, the
present day heritability h? is bounded in expectation between /}ZEE and ﬁi (represented bzy the teal shaded region),
whereas the panmictic heritability h3 is bounded in expectation between EREML and /ﬁo (represented by the red
shaded region).
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Figure 2. REML and HE estimates across varying sample sizes in simulated data

(a) Comparison of HE regression and REML heritability estimates as functions of sample size for varying
phenotypic mating correlation (r) and fixed panmictic heritability (h3 = .5) in simulated data. We computed
multiple estimates per sample size for each estimator and parameter combination by applying estimators to
independent sub-samples. Whereas HE regression estimates are upwardly biased independent of sample size,
REML estimates slowly converge to the panmictic heritability as sample sizes increase.

(b) Extended simulations demonstrating high-dimensional behavior of the REML estimator as a function of
sample size for fixed phenotypic mating correlation (r = .5) and panmictic heritability (h3 = .5). Forward time
simulations required a larger population size (Ng;,, = 3e6) to obtain samples of up to n = 648,000 unrelated
individuals. Obtaining REML estimates for samples larger than this was not computationally feasible, but the
dashed red line shows predicted values for larger sample sizes extrapolated from a regression model including
first and second order log-linear components. Results are consistent with theoretical predictions that the REML
estimator converges to the panmictic heritability in very large samples (e.g., >1e6).


https://doi.org/10.1101/2021.03.18.436091
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.436091; this version posted March 20, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

22
Body mass index Bone mineral density
0.35 0.35 A
0.30 4 0.30 4
f. ________ e ar my
g_— I
0.25 - e 0.25 4
0.20 0.20 - Method
o A2
< Height Years of education hye
A2
0.65 - 0.25 - ‘+' Prem
0.60 0.20 -
\‘ 1
+~ - - o F e = —-—
— —— " —
0.55 - e X 0.154 nd
— y )
- — - =
0-501 0.10+
2 It &, % < 2 Q. 1) “ %
ey < 7 % I [} 2 7 % S
() ) +0, 5% 2 o) o) f7) 5 5
% % % 000 000 ) % % 000 000
Sample size

Figure 3. REML and HE estimates across varying sample sizes in UK Biobank data

Comparison of HE regression and REML estimators as a function of sample size for real traits in a sample of
unrelated European ancestry UK Biobank participants. Points connected by thin lines represent estimates derived
from pairs of complementary disjoint subsamples of size 16,000 and N — 16,000, whereas thick lines reflect
average log-linear trends. Two negative control traits (body mass index and bone mineral density) and two traits
with previous evidence for AM (height and years of education) were selected for analysis a priori. Consistent
with theoretical predictions, height and years of education demonstrated significant estimator divergence with
increasing sample size (p=5.24e-4, p=3.94e-4, respectively), whereas body mass index and bone mineral density
did not (p=9.42e-2, p=0.302, respectively).
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Figure 4. Naive approaches to addressing AM induced bias and the impact of missing data

(a) Simulations demonstrate that neither partitioned heritability nor principal component adjusted methods
mitigate the impact of assortative mating on HE regression and REML estimates. Additionally, simulations
confirm that LD score regression (LDSC), which is mathematically equivalent to HE regression, is subject to
equivalent biases. “Single component” refers to standard infinitesimal single genomic variance component
models, “Single comp. + 10 PCs” included the first ten within-sample principal components as covariates, and
“Partitioned” included four annotation-based variance components generated by median splits of within-sample
minor allele frequencies and linkage disequilibrium scores. Phenotypic mating correlation and panmictic
heritability were fixed (r =.5, h3 = .5, respectively) across simulations. (b) Simulations demonstrate that
conclusions regarding estimator bias do not change when only a portion of the genetic variance is explained by
measured SNPs. Shown are HE regression and REML estimators when 100%, 50%, or 25% of randomly selected
SNPs (both causal and non-causal) were included in the model under the same simulation conditions described
in (a). As expected, estimates were attenuated when SNPs were missing but overall patterns remained consistent.
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