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ABSTRACT. We prove the circular law for a class of non-Hermitian random
block band matrices with genuinely sublinear bandwidth. Namely, we show
there exists 7 € (0,1) so that if the bandwidth of the matrix X is at least
n'~7 and the nonzero entries are iid random variables with mean zero and
slightly more than four finite moments, then the limiting empirical eigenvalue
distribution of X, when properly normalized, converges in probability to the
uniform distribution on the unit disk in the complex plane. The key technical
result is a least singular value bound for shifted random band block matrices
with genuinely sublinear bandwidth, which improves on a result of [N. Cook,
Ann. Probab., 46, 3442 (2018)] in the band matrix setting.

1. INTRODUCTION

Random band matrices play an important role in mathematics and physics. Un-
like many classical matrix ensembles, band matrices with small bandwidth are not of
mean-field type and involve short-range interactions. As such, band matrices inter-
polate between classical mean field models with delocalized eigenvectors (when the
bandwidth is large) and models with localized eigenvectors and poisson eigenvalue

statistics (when the bandwidth is small) . In addition, random band matrices
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2 CIRCULAR LAW FOR RANDOM BLOCK BAND MATRICES

have been studied in the context of nuclear physics, quantum chaos, theoretical
ecology, systems of interacting particles, and neuroscience @
Many mathematical results have been established for the eigenvalues and eigen-
vectors of random band matrices, especially Hermitian models; we refer the reader
to
and references therein.

In this paper, we focus on non-Hermitian random block band matrices. Before
we introduce the model, we define some notation and recall some previous results
for non-Hermitian random matrices with independent entries. For an n x n matrix
A, welet A1(A),..., A\, (A) € C denote the eigenvalues of A (counted with algebraic
multiplicity). pa is the empirical spectral measure of A defined as

1 n
A= Z; Oni(A)s
1=

where §, denotes a point mass at z.
The circular law describes the limiting empirical spectral measure for a class of
random matrices with independent and identically distributed (iid) entries.

Definition 1.1 (iid matrix). Let £ be a complex-valued random variable. Annxn
matrix X is called an iid random matriz with atom variable (or atom distribution)
¢ if the entries of X are iid copies of &.

The circular law asserts that if X is an n x n iid random matrix with atom
variable £ having mean zero and unit variance, then the empirical spectral measure
of X//n converges almost surely to the uniform probability measure on the unit
dibk centered at the origin in the complex plane. This was proved by Tao and Vu
in [80,81], and is the culmination of a large number of results by many authors

.,..,..... We refer the reader to the survey . 20| for more complete

bibliographic and historical details. Local versions of the circular law have also
been established . The eigenvalues of other models of non-Hermitian
random matrices have been studied in recent years; see, for instance,
and references therein.

Another model of non-Hermitian random matrices takes the form X ® A, where
the entries of the n x n matrix X are iid random variables with mean zero and
unit variance and A is a deterministic matrix. Here, A ® B denotes the Hadamard
product of the matrices A and B, with elements given by (A ® B);; = A;;Bi;.
The matrix A provides the variance profile for the model, and this model includes
band matrices when A has a band structure. The empirical eigenvalue distribution
of such matrices was studied in . For example, the following result from
describes sufficient conditions for the limiting empirical spectral distribution to be
given by the circular law.

Theorem 1.2 (Theorem 2.4 from [34]). Let & be a complez-valued random variable
with mean zero, unit variance, and E|([*T¢ < oo for some € > 0. Let X be an

n X n 4id matriz with atom variable &, and let A = (O'Z(;L)) be an n x n matriz with
non-negative entries which satisfy

(n)
sup max o, <o 1
n>I; 1<i,5<n Ei e ( )
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for some omax € (0,00) and

n

1 n 1 n
nz_; () Ez_: () (2)

for all 1 < i,j < n. Then the empirical spectral measure of ﬁX ® A converges

in probability as n — oo to the uniform probability measure on the unit disk in the
complex plane centered at the origin.

More generally, the results in [34] also apply to cases when conditions and
are relaxed and the limiting empirical spectral measure is not given by the circular
law. However, the results in [34], unlike the results in this paper, require the number
of non-zero entries to be proportional to n? for the limit to be non-trivial.

1.1. The model and result. In this paper, we focus on a model where the number
of non-zero entries is polynomially smaller than n?. We now introduce the model
of random block band matrices we will study.

Definition 1.3 (Periodic block band matrix). Let b, > 1 be an integer that divides
n, and let £ be a complex-valued random variable. We consider the n x n periodic
block-band matriz X with atom variable (or atom distribution) & and bandwidth b,
defined to be the tri-diagonal periodic block band matrix X given by

D~1 (:]2 B Tm
T1 D2 Ug
X = Ty Ds (3)
i o Un
U1 Tm— 1 Dm

where the entries not displayed are taken to be zero. Here, Dy, Uy, Th, ..., Dy, Uy, Tin
are b, X b, independent iid random matrices each having atom variable & and
m := n/b,. For convenience, we use the convention that the indices wrap around;
meaning for example that U_; = U,,.

Note that each row and column of X has 3b,, many nonzero random variables.

Using the notation [m] := {1,...,m} for the discrete interval, we define
1 -
U = ——0,, Vie[m] Ty = ——7, Vie[m]
T - \/7 1T C,n/ (2l
1 -
X = X (4)
C7l

One motivation for the periodic block band matrix introduced above comes from
theoretical ecology. Population densities and food webs, for example, can be mod-
eled by a system involving a large random matrix [6,[59]. The eigenvalues of this
random matrix play an important role in the analysis of the the stability of the
system, and the circular law and elliptic law have previously been exploited for
this purpose [6]. It has been observed that many of these systems correspond to
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sparse random matrices with block structures (known as “modules” or “compart-
ments”) [6/79]. The periodic block band matrix introduced above is one such model
with a very specific network structure.

Our main result below establishes the circular law for the periodic block band
model defined above when b,, is genuinely sublinear. To the best of our knowl-
edge, this is the first result to establish the circular law as the limiting spectral
distribution for matrices with genuinely sublinear bandwidth.

Theorem 1.4 (Circular law for random block band matrices). There exists ¢ > 0
such that the following holds. Let & be a complex-valued random variable with
mean zero, unit variance, and E|£|*T¢ < oo for some € > 0. Assume X is an
n X n periodic block-band matriz with atom variable & and bandwidth b,, where
en > b, > n32/33logn. Then the empirical spectral measure of X = f(/m
converges in probability as n — oo to the uniform probability measure on the unit
disk in the complex plane centered at the origin.

We prove Theorem [I-4] by showing that there exists constants ¢, 7 > 0 so that the
empirical spectral measure of X converges to the circular law under the assumption
that the bandwidth b,, satisfies cn > b,, > n'~"logn. In fact, the proof reveals that
7 can be taken to be 7 :=1/33, as stated in Theorem although this particular
value can likely be improved by optimizing some of the exponents in the proof.

A few remarks concerning the assumptions of Theorem are in order. First,
the restriction on the bandwidth b,, > n'~7"log(n) with 7 = 1/33 is of a technical
nature and we believe this condition can be significantly relaxed. For instance, we
give an exponential lower bound on the least singular value of X — zI for z € C in
Theorem below. If this bound could be improved to say polynomial in n, then
we could improve the value of 7 to 1/2. It is possible that other methods could also
improve this restriction even further. Second, the assumption that the entries have
finite 4+ € moments is due to the sublinear bandwidth growth rate. Our calculation
requires higher moment assumptions for slower bandwidth growth, as can be seen
from the proof of Theorem

A numerical simulation of Theorem is presented in Figure

1.2. Notation and overview. We use asymptotic notation under the assumption
that n — oo. The notations X = O(Y) and ¥ = Q(X) denote the estimate
|X| < CY for some constant C > 0 and all n > C. We write X = o(Y) if
|X| < ¢,Y for some ¢, that goes to zero as n tends to infinity.

For convenience, we do not always indicate the size of a matrix in our notation.
For example, to denote an n x n matrix A, we simply write A instead of A,, when
the size is clear. We use b,, to denote the size of each block matrix and ¢,, := 3b,, for
the number of non-zero entries per row and column. We let [n] := {1,2,3,...,n}
and eq,ea,...,e, be the standard basis elements of C". For a matrix A, a;; will
be the (i,7)-th entry, a; will be the kth column, A®) represents the matrix A
with its kth column set to zero and H; will be the span of the columns of A®).
Furthermore, A* is the complex conjugate transpose of the matrix A, and when A
is a square matrix, we let

A, =A—21
where I denotes the identity matrix and z € C.
For the spectral information of an n X n matrix A, we designate

>\1(A),)‘2(A)a e 7)\n(A) eC
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(A) X has CGaussian atom variable (B) X has Rademacher atom vari-
with n = 10,000 and b,, = 100. able with n = 10,000 and b, = 100.

(¢) X has Gaussian atom variable (D) X has Rademacher atom vari-
with n = 10,000 and b,, = 10. able with n = 10,000 and b,, = 10.

FIGURE 1. Numerical simulations for the eigenvalues of X :=
X /+/3b, when X is an n x n period block-band matrix with band-
width b,, for various atom distributions.

to be the eigenvalues of A (counted with algebraic multiplicity) and

1 n
pa=— Z Oxi(A)
=1

to be the empirical measure of the eigenvalues. Here, §, represents a point mass at
z € C. Similarly, we denote the singular values of A by

51(A4) > s3(A) > ... > s,(4) >0

and the empirical measure of the squared-singular values as

1 n
vai= 22 O
i=1

Additionally, we use ||A| to mean the standard ¢5 — ¢5 operator norm of A.
For a vector v € C™,

n 1/2

R 2 .
ol = (S fu?) and ol = mac o
k=1
Finally, we use the following standard notation from analysis and linear algebra.
The set of unit vectors in C" will be denoted by S"~1ie. S" 1 :={veC": |v| =
1} and the disk of radius r by D, := {z € C : |z] < r}. For any set S C C" and
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ueCn,
dist(u, S) := inf |lu — v].
veES

|S] denotes the cardinality of the finite set S.

The rest of the paper is devoted to the proof of Theorem|[I.4] The proof proceeds
via Girko’s Hermitization procedure (see [20]) which is now a standard technique
in the study of non-Hermitian random matrices. Following [54], we study the
empirical eigenvalue distribution of X, X} for z € C. In particular, we establish a
rate of convergence for the Stieltjes transform X, X7 to the Stieltjes transform of the
limiting measure in Section [3] The key technical tool in our proof is a lower bound
on the least singular value of X, presented in Section In Section [4] following
the method of Bai |10], these two key ingredients are combined and the proof of
Theorem is given. The appendix contains a number of auxiliary results.

2. LEAST SINGULAR VALUE

In this section, we present our key least singular value bound, Theorem 2.1} The
crucial feature of our result is that the lower bound on the least singular value is only
singly exponentially small in m. While this is most likely suboptimal, and indeed,
we conjecture that our bound can be substantially improved, it is still significantly
better than previous results in the literature. Notably, the work of Cook [32] pro-
vides lower bounds on the least singular value for more general structured sparse
random matrices; however, specialized to our setting, the lower bound there is dou-
bly exponentially small in m (see Equation 3.8 in [32]), which only translates to a
circular law for bandwidth (at best) Q(n/logn).

We consider the translated periodic block-band model X, = X — zI, where X
is as defined in and z € C is fixed. Recall that m = n/b,. Throughout this
section, we will assume that b,, > m > mg, where my is a sufficiently large constant.
Recall that for an n x n matrix A, we let s1(A) > sa(A4) > -+ > s,(A) > 0 denote
its singular values.

Theorem 2.1. Fize, K' > 0. Suppose X is an nxn periodic block band matriz (as
defined in ) with atom variable & satisfying E[¢] = 0, E[|€]?] = 1, and E[|£]*T] <
C, for some absolute constant C > 0. Then, for any z € C such that |z| < K,
e

N

where C¢ is a constant depending only on e, C and K'.

P(s,(X,) < 07:25m) <

Let us define the event
Ex = {Viem]: U, I(D:):II,IT|| < K, and sy, (Us), s, (T;) > b, } .

We begin by showing (Lemma that P(£§) = O(1/cy). This will allow us to
restrict ourselves to the event £k for the remainder of this section.

In order to bound the probability of the event £, we will need the following two
results on the smallest and largest singular values of (shifts of) complex random
matrices with iid entries.

Proposition 2.2 (Theorem 1.1 from [51]). Let A be an n x n matriz whose entries
are iid copies of a complex random variable & satisfying E[¢] = 0 and E[|£]?] = 1.
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Let F be a fized n x n complex matriz whose operator norm is at most n%5'. Then,
for any e > 0,

P(s,(F + A) < en™%/?) < Ce + Cexp(—yn'/*°)

for two constants C > 0,7 € (0,1) depending only on the distribution of the random
variable €.

The next proposition can be readily deduced from Theorem 5.9 in |9] along with
the standard Chernoff bound.

Proposition 2.3. Fize > 0. Let A be an n X n matriz whose entries are iid copies
of a complex random variable & satisfying E[¢] = 0, E[|¢?] =1 and E[|¢|*T¢] < M.
Then

P[|A] > Kv/n] < Kn™?,

where K > 0 is a sufficiently large constant depending only on £ (and hence, also
the parameter e > 0).

Applying the above two propositions (along with the triangle inequality for
(D;).]|) and using the union bound, we immediately obtain:

Lemma 2.4. There exists a constant K > 0, depending only on |z| and the random
variable & (and hence also on the parameter € > 0) such that

P(ES) < Kbt
For the remainder of this section, we will restrict ourselves to the event g . For

any v € C", we let

v
Up2]

Ym]

be the division of the coordinates into m vectors v; € Cb». We will use v; to denote
the i-th coordinate of v. For convenience, we use the convention that the indices
wrap around meaning, for example, that vy, 1] = vjy.

For o, 8 € (0,1), let

Lag:={vesS" :|{ien]: vl >pBb,0"n 2} > an},

i.e. Lq, g consists of those unit vectors that have sufficiently many large coordinates.
For us, a and 8 are constants depending on K which will be specified later. Then,
as s, (X,) = inf,cgn—1 || X,v||, we can decompose the least singular value problem
into two terms:

P(Ex N {sn(X:) < tb, 100”12 (5)
<P(Ex N{ inf [|Xo]| < tb, """ n72)) + P(Ec N { inf || Xov] < 0,17 n712Y).
v€La,p vel? 4

2.1. Reduction to the Distance Problem. We begin with a lemma due to
Rudelson and Vershynin, which converts the first term in into a question about
the distance of a random vector to a random subspace.
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Lemma 2.5 (Lemma 3.5 from [73]). Let z1 — zey,...,x, — ze, be the columns of
X, and let H; be the span of all the columns except the i-th. Then,

1 n
3 < —10m 71/2 < _ 3 _ < -1 .
P(Exn{, dnf Xl < 0,07 n™ %)) < = ;P(&Km{dlst(xk e, Hi) < B't})

Proof. Let
pi = P(Ex N {dist(zp — zex, Hy) < B71t}).

By the linearity of expectation, we have
E|{k € [n] : Ex and {dist(x}, — zep, Hp) < B} = Zpk_
k=1

Therefore, if we let
E=Ex N{|{k € [n] : dist(zy — zex, Hy) < Bt} < an},

it follows from Markov’s inequality that

P(Ex NE°) < Zh=1PE
an

By definition, any vector v € L, g has at least an coordinates with absolute value
larger than 5b;10mm*1/2b;1/2. Therefore, on the event Z, for any v € L, g, there
exists some k € [n] such that |vg| > Bb;lomm_l/Qbﬁl/Q and dist(zy — zeg, Hi) >
B~t. Hence, on the event Z, for all v € L, g,

| X 0| > |vg|dist(zy, — zex, Hy) > thy 0mm =/ 2p-1/2,

Thus, we see that the probability of the event in the statement of the lemma is at
most the probability of £Ex N =€, which gives the desired conclusion. O

The distance of xy —zey, to Hjy can be bounded from below by [{(xy—zeg, )| where
7 is a unit vector orthogonal to Hjy. Our next goal is to obtain some structural
information about any vector normal to Hj. For convenience of notation, we will
henceforth assume that & = 1; the same arguments are readily seen to hold for
other values of k as well. Moreover, since the distribution of X, is invariant under
transposition, we may as well assume that z; — ze; is the first row of X, and that
‘H; is the subspace spanned by all the rows except for the first.

2.2. Structure of Normal Vectors and Approximately Null Vectors. Recall
that 7, is the subspace generated by all the rows of X, except for the first row. The
next proposition establishes that if v is normal to #q, then there are sufficiently
many vf; with large enough norm. Our approach to lower bounding the coordinates
of v is similar to the methods used in [23]; our proof is also similar in spirit to the
proof of Proposition 2.9 in [30].

Proposition 2.6. On the event Ex, for any vector v € S"~! that is orthogonal to
H1 and for all sufficiently large n (depending on K), either

logall = 0,1 m Y2 or [lugiy |l > b0 m 2,

for alli e m—1].
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Proof. By definition, v must satisfy the following collection of equations:

Tﬂ}[l] + (DQ)ZU[Q] + Ugv[g] =0
T 1vji—1) + (Di) v + Uig1v)ip1 = 0 (6)

Tm—2v[m—2] + (Dm—l)zv[m—l] + Umv[m] =0
Trn—1Vm-1] + (Dm) zV}m) + Urvp) = 0
Moreover, since v € S™~ !, there exists a smallest index jy € [m] such that [jvy;|| >
m~Y2. If jo > 3, then the following equation (which is a part of @)
Tjo—2v(jo—2 + (Djo—1)20jo—1] + Ujevpje) = 0
implies that
[ T50—20150—2) + (Djo—1) 0o 1) | = [1Ujo o) l-
On the event £k, we have from the triangle inequality that
1T —201j0—2) + (Djo—1)2Vjo—1) | < K ([[vjo—a Il + [lvjo—1)1])
and
1Tjo gl = b g | = b Pm 2.
Therefore, for n sufficiently large compared to K, either
oo —2ll = by 0m = or o,y || = by Om 2, (7)

Now, let j_; be the smaller of the two indices jo — 1 and jo — 2 that satisfies .
Recall that, for convenience, we are considering indices modulo m. If j_; > 3 then
iterating the argument with j_; and the equation

TJ'—1—2U[J?172] + (Dj—l—l)zv[j—lfl] + Ujflv[jfl] =0,
we can find j_o € {j_1 — 1,j_1 — 2} such that
log_yll > b, 20m 2,

Continuing in this manner, we will generate a sequence of indices jo, j—1,.-.,J—k,
k <m, such that j_j € {1,2} and such that for all ¢ € [k]

i = jeima] <2 and [oy_ || > b, " m T2

We may apply a similar argument to handle indices larger than jy. Indeed, if
jo < m — 3, then we have from @ that,

Tjov[jo] + (Dj0+1)zv[jo+1] + Uj0+2@[jo+2] =0.
Once again, on the event &,
1(Djo+1)2000+1) + Ujor2vio+21 | < K(vjgosnll + 0o+
and
T30l = by Pm 2,
As before, this implies that either

ooyl = 0 0m = or [Jugjya)]| = b 0m 2.
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By iterating this process as above, we obtain a sequence of indices such that
J0s 1y -+ Jkrs KN < m, such that jgr € {m — 1, m} and such that for all i € [£/]
i = Jia| <2 and [Jog || > b, m 2,
This completes the proof. O
Note that in the above proof, it is not important that v is precisely normal to

Hy. Indeed, exactly the same proof allows us to obtain a similar conclusion for
approximately null vectors as well.

Proposition 2.7. Restricted to Ex, for any vector v € S"~1 such that || X, v|| <
b 10mm =12 and for all sufficiently large n (depending on K), either
ol = 0" m =2 or [[ogsyy || = b0 m 2
for alli e m—1],
Our next goal is to show that for a, 8 sufficiently small depending on K (indeed,

the proof shows that we can take a < 7//(K?log K) and 3 < v'/K, where v' > 0
is a constant depending only on the distribution of the random variable £), we have

P(Ex N { inf [ Xevl| < 77" m™12}) < mexp(—1bn), (®)
a,B

where v € (0,1) is a constant depending only on the distribution of the random
variable £.

For this, we begin with a standard decomposition of the unit sphere, due to
Rudelson and Vershynin [73].

Definition 2.8. For k € N and a,x € (0,1), let Sparse,(a) denote the sparse
vectors {v € S¥71 : |supp(v)| < ak}. We define compressible vectors by
Compy,(a, k) := {v € S¥~1 : Ju € Sparse, (a) such that ||v — ul| < &}.
and incompressible vectors by
Incompy,(a, ) := S¥~1\ Compy (a, %).

Lemma 2.9. Let M; denote the b, X ¢, block matrix given by (T;i—1  (D;),  Uix1)-
There exists a constant v € (0,1), depending only on the distribution of the random
variable &, such that

P (EK N {wEC inf o |Mw] < 'y}) < exp(—7by),

omp.,., (a,
where a =v/log K and k = /K.

Proof. This is (by now) a standard argument; we include the short proof for the
reader’s convenience. We begin with the set Sparse,, (a). For any vector v € S,
there exist positive constants v, ~’, depending only on the distribution of the entries
of M; such that
P(| Ml <) < e

(cf. Lemma 2.4 in [51]). Recall that an e-net of a set U is a subset N' C U such
that for any w € U, there exists a w’ € N satisfying ||w — w’|| < e. By a simple
volumetric argument, one can construct an e-net N of Sparse, (a) with

v (o) (3) < exp(acy log(e/a) + acy log(3/=).

Cn

acy,
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We set € = 5. Then, by a union bound,
P(inf [|Miv]| <) < > P(|[ M| < )
veN
< exp(acy log(e/a) + acy log(3/e) — v'by)
< exp(_’?bn)a

where the last inequality holds for a < 7”/log K (for an absolute constant v > 0).
Let v € Sparse. (a). Then, by definition, there exists some v" € N such that
|lv —v'|| < e. Therefore, on the event inf,cns ||M;v]| > 7, we have for any v €
Sparse, (a) that

|Mew] 2 [ Miol] = lJo = v/ [ Mil] 2 5 = 557 10K = 2.

We can then conclude that

P< inf HM@Hgl)gemx/%m.

vESparse,  (a)

To extend this to compressible vectors, we simply choose x = ;. For any y €

Comp,,_(a, ), there exists v € Sparse,, (a) such that ||y —v|| < &. Thus, if || M;v]] >
v/2 then

|Miy]l > Mol = Mo =yl > 3 = 10K o= > .

%\Q

O

We will also need the following lemma from [73].

Lemma 2.10 (Lemma 3.4 from [73]). If v € Incompy(a, k), then there exist con-
stants v1 and 2 depending only on a and k such that there are at least y1k coordi-
nates with ysk=—1/2 > lv;| > ok =2, In fact, we can take v, = K2a/2, o = k/V2,
and y3 = k12,

Now, we are ready to prove (8). Consider a vector v € S*~! such that || X v|| <
th,, 10m m~1/2, where 0 < t < 1. Then, on the event £, it follows from Proposition

- 2.7 that for any 7 € [m],
(Vg1 Vg vas1)) || > 0,0 m

Moreover, since for every i € [m],

e |

-1/2

(Ui—17 (Di)27 T’H—l)

(V115 v v ) T — =1y v o) T

it follows that

(V11> V), Vi)

(Uiz1,(Di)z, Tit1)
=g, v, Vi) T

<t.

Let £ denote the event Ex N (ﬂie[m]{infwe(;ompc (a,r) || Miw|| > 7})7 where a, K,y
are as in Lemma [2.9] On the event &, if ¢ <+, then
(V115 v Vpig)) -
||(U[if1], U[z‘],v[iﬂ])T”

Therefore, we can conclude from Lemma [2.10] that on the event &£, any vector
v € S~ such that | X,v|| < vb;1%"m~1/2 will have at least an coordinates larger

€ Incomp,, (a, k).
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than Bb710mm=1/2p, "2 where o = +//(K?log K), B = +//K, and 7/ > 0 is a
constant depending only on ~.

Hence, with this choice of «, 8,7/, the probability of the event in is bounded
by

P(ExNE®) < Z]P’ <€K N {wec inf ) (| Mw] < 'y}) < mexp(—by),
i=1

omp,, (a,k

where the last inequality follows by Lemma This proves .
The next lemma is a direct consequence of Lemma and Lemmas 2.5 and 2.7
from [32].

Lemma 2.11. Let & ,...,&; be independent copies of a complex random variable
¢ satisfying E[|€|?] = 1. Then, for any v € Incomp,,(a, k) and for all € > 0,

k
1
sup P v;& —r|<e SCHQG(E—‘,-),
T'Eg <Z E > \/Iik

i=1
where C' is a constant depending only on &.
2.3. Proof of Theorem [2.11

Proof of Theorem [2.1. By (B]) and (g), it suffices to bound
P(Ex N{ inf || X.v| < tb;0mm=1/2}),
V€L, g

for t = b, '™, By Lemma

1
P(ExN{ inf | X.v| <tb~™m~1/2}) < = max P(ExN{dist(xr—zex, Hi) < BT},
vELqy g « ken]
We will obtain a uniform (in k) bound on P(Ex N {dist(zx — zex, Hi) < B71}).
For convenience of notation, we show this bound for £ = 1. Also, recall from before
that we may assume that x1 — ze; is the first row of the matrix, and that #; is the
span of all the rows except for the first row.
Let £ denote the event that
inf M > .
wGCorilr}l)cn (a,k) || 1111” =7
Then, by Lemma P(E°NEk) < exp(—yb,). Let n denote a unit normal
vector to Hi, let v := (), N, M), and let v := v/||v||. If ¥ € Comp, (a, k),
then on the event £ N &k, we have

[{x1 — ze1,n)| = [(x1 — ze1,v)|
= [[My]|
= [[Myv]|]|v]]
> vl

> ,yb—lomm—l/Q.
On the other hand, if ¥ € Incomp,,_(a, ), then it follows from Lemma that
P(|{(z1 — ze1,n)| < §) = P(|{x1 — zeq,v)| < 6)
= P([(z1 — ze1,0)[ < 6/[lv])
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1) 1
< Ck*a ( + )
ol V/kbn
< Ck%a <5b10m\/7n+

1
V an) .
Taking § = 8~ 1b, 1™ and combining with the compressible case, we may conclude

that )
P(Ex N {dist(z; — ze1, H1) < 710,11} < Ck

s

The same argument can be used to conclude that

1
max P(Ex N {dist(zy — zex, Hy) < 8710, ™)) < Ok

ke[n] Vo,

which completes the proof. (I

3. CONVERGENCE OF vx,

In this section, we establish a rate of convergence for the Stieltjes transform of
the empirical eigenvalue distribution of X, X7} .

Theorem 3.1. Let X be ann X n periodic block band matriz as defined in Def-
inition [1.3 with atom variable £&. Take A > 1, and let z € C be a fized complex
number. Assume my, .(¢) = =30 [M(X.X7) —(]7t is the Stieltjes transform for
the empirical spectral measure of X, X}. Suppose that & is centered with variance
one and wy, = E[|£]*P] < oo for some integer p > 1. Then there exists a non
random probability measure v, on [0,00) such that for any ( € {( € C: —A <

R(C) < A0<S() <1}
Enmn,z@mz<<>|2ﬂsW%[(”>p+ ]

ISQFP [\ b2
where m(¢) R d;z_(cz) and C(p) > 0 is a constant that depends only on p.
Moreover, m,(() is the unique solution to the equation

ks

R )

satisfying S(Cm.(¢?)) > 0 and S(m-(¢)) > 0 when I(¢) > 0.

Remark 3.2. We state and prove the above theorem under more general condi-
tions than those of Theorem In particular, we allow random variables with
no moments above four. Although, the quantitative estimate improves with the
number of existing moments. Furthermore, we do not make use of the lower bound
on ¢, in Theorem

We follow the proof strategy from [54]. This previous work demonstrated the
convergence of the Stieltjes transform for band matrices rather than block band
matrices so we necessarily make some adaptations. More significantly, we deduce
an explicit rate of convergence, which does not appear in [54].

Our main object of study will be
P,c = (X, X)) =X —z)(X —=2I)* —(I.
Define X Z(.k) to be the matrix X, with the k-th column set to zero. We define
k *
P = (XWX ) — ¢1
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= [(X — 2I) — (zp — zep)eF (X — 2I) — (), — zep)er|* — (I
= (X —z)(X —z2I)* = (I — (x) — zeg)(xx — zeg)*
=P, — (zr — zep)(xp — zeg)”
We also denote
m)(Q) o=~ (P
Additionally, we use the shorthand

a =14 (z — zeg)” [PZ( C)] Yoy — zep) (10)

as this term appears repeatedly in our initial calculations.
For s.(¢) = my,»(¢) or m;((), let us define
|22 B

The motivation for this definition is that m.(¢) is known to be a fixed point of
this function when the spectrum obeys the circular law; see Section 11.4 in [9]. The
proof of Theorem [3.3]can be divided into several key computations. Since we expect
My, (¢) to also converge to the fixed point of f, we first relate m, .(¢) — m.(¢) to

Lemma 3.3. Under the assumptions of Theorem[3.]
M= (C) = m2(C) = [1 =702 (O] M2 (C) = F(mn,2(C))] (11)

where
|2

(14 mn 2 () (1 + m=(C))

Tn,z(C) = f(mn,z(C))f(mz(C))

Proof. We have that
M, 2(C) = M2 (C) = My 2(C) — f(Mn,2(Q)) + f(mn,2(Q)) — f(m=(C)), (13)

where we have used the fact that f(m.(¢)) = m.(¢), which is known to characterize
the circular law; see Section 11.4 and (11.4.1) in [9]. On the other hand,

¢l a2

1 1
- |2[*(m=(¢) — ma ()
= f(mn-(O)) f(m=(C)) {(Hmm( N CRG) +<(mnz(C)—mz(<))}
= [mn,2(¢) — m=(Q]f (mn,2(C)) f(m=(C)) { 1+ mp-(C |Z| N (L +m(Q)) H}

= 19,2(Q)[Mn,2(C) — m=(C)].
Therefore, by ,
Mn,2(¢) —m2(¢) = [1 - TnZ(C)}_l[mn,Z(C) — f(mn,2())]
with r,, . (¢) given in (12). O

The strategy of our proof is to control the moments of m,, ,(¢) — f(my .(¢)) and
then provide a deterministic bound for [1 —r, . ({)] 7 .
We begin with the moments of f(my .(¢)) — my, .({).
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Lemma 3.4. Under the assumptions of Theorem[3.]

Bl () = (O] < S [(") n CH T

Proof. We begin by finding a convenient expression to allow us to compute the
moments. By the resolvent identity, E|

f(mn,z(C))I - Pz_,cl
= f(mn,=(C)) [Pz,C - f(mn,Z(O)_lI} P;gl

— Fmna(O)) [(X (X — 2D

|22

—1
- ml + Cmn,z(<)1:| Pz,( .

(15)
To simplify this expression, we make the following observation. Since P, =
X. X% — (I, by Lemma[AT]
I+(P = X.XIP_}

* p—1
—Z k—zek k—zek) Pz,C

= Z T — 2:6;,C Tk — zek) [Pz(k()] L ];1, (16)

where ay, is defined in . Takmg the normalized trace of yields

1 1
L+ Cmas(Q) = = > — tr((an — zex)(wr, — zex) [P
nk:l (677
11 (k)-1
= Ekzlzk(xk_zek) [P, (zk — zex)
nk:l Q.
11
-1y
n P AL

From this, we can conclude that

I 1
(2 () = EZ*~ (17)

(673
k=1
Plugging into (15]) gives
= Jlmna(©) |0 - 20X =2 - o LS L
e 1+ M, z (95 C

k 1

IFor two invertible matrices A and B of the same dimension, the resolvent identity is the
observation that
Al —B'=A"YB-A4)B!
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Taking the normalized trace of this equation we find that

M:

P 2(Q)) = m2(Q) = = f (s (2 = zer)" P (= zen)
k:l
k& - 1
- m@{%,gek - ;kmn’z(C)]'
(18)

We will take the 2p-th moment of this expression.
Let us introduce the following notation to organize the terms on the right hand

side of . Let

Br = JJZ[P(k)] ks Vi = €£[Pz(,kg)]_1$k,
5 = el [P e, 7 1= ai [P

Recall the definition of ay given in . Since

ap =14 (x5 — zek)*[Pz(f?]_l(ﬂck — zey)
=147 — 208k — 2V + |Z|26k,
again by Lemma [A1] we can write

(xp — zek)*PZfCl(xk — zey) = aj, H(xg, — zek)*[Péi)]_l(a:k — zey)
= alzl[Tk — 20k — 2V + |Z‘2(5k}
Expanding similarly,

ek P den = el [PL) e — o el [PUY) ™ (a — zen) (e — zex) [PL] e
=0, — a; (ke — 26k)(Br, — Z0%)
= a; [(1+ 7% — 2Bk — Zvk + |2120k)0k — (v — 20%) (B — Z0k)]
= a;l[(l + )0k — Vi Bk)-

Therefore, (18)) can be more succinctly written as

£, 2(0) = 10,2(6) = 2 F () S (7 = 2B = 2+ 13f81)
k=1
|22
— m{(l + Tk)(sk - 'Ykﬁk} - mmz(C)}
L L I
- nf( n,z(C));ak [( k n,z(C)){l 1+mn7z(C)}
— 2Bk — Zy + 1+7|2|(C)5k’}/k]~ (19)

For any z1,...,2, € C and ¢ € N, by Jensen’s inequality,

n J4
;Z <Yl (20)
i=
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As we plan to invoke this inequality, it suffices for our purposes to bound the
moment of each summand in . Using Corollary

mmWh:U%w”}e%w<1%w}

9p-1 *
< WE ‘( CnTy, [Pz( C)] 16]66%1[ ] (\/(Zxk) —tr <[P(,(:)} exel [ (k )] )‘P
(P(k)] el [P(k*)] )‘
szi“
ISP
C(p)w4p
= 2P 21
~alsPr (21)

where C(p) is a constant that only depends on p and may vary from line to line.
An identical computation yields

Emwﬂggﬁﬁxw (22
IS
By Lemma [A.2] we have
1 E)e_ 1 - k)q— 1
@) = P | = L2t <P <
Therefore
E [ = ma (O]
2p 2
1 k 2P
< 2% |1, — — tr[ P! (2P
< Tk n I z,g] + n2p|3(¢)[2P
2p P
ap 1 (k) ap (k) Lo ipty-1 2%
<2 ETIC_?Z[PZC]Z’L +27E | — Z[PZC]“ _Etr[PZ’C] W
n il zGI;C ( )
23

We recall that 7, = xZ[PZ(k)]_la:k, where zy is a band vector already scaled by
1//¢n. So, from Corollary we can conclude that

2p

1 k)

Tk — o Z[Pz(,c)]m‘l
" el

E

where I, denotes the indices in the support of .
To estimate the second term of , we use Lemma to write

2p 2p

1 0) (k) 1 a1 4 2%
E EZ[PZ,Q]H **tr[P 7 <E EZ[PZ’ lii *ﬁtr[Pz,C] +W.
i€l i€ly
(24)

The first expectation on the right hand side can be further decomposed as

2p

1 1

— D [Peclit = P
n

C
" eIy,
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2
2% 1 -1 oo -1 —1)2p

< 5 E Z[Pz,c]u‘ - Z ElP. ¢ | + @E |tr{P.c} "] —Etr[P. ] 1™
nier, i€k

(25)

In the above estimate, we have used the fact that we have a periodic block band
matrix with iid entries, therefore E[{Pzﬁg}gl] = E[{Pzﬁg}ﬁl] for all 1 < i < n,
which is the conclusion of Lemma Now, we estimate the first term of via
a simple martingale decomposition.

Let F, = o ({z;:1<i<k}) be the sigma algebra generated by the first k
columns of X. Let us define

h(x) =Y [P (26)

Then we have the telescoping sum

h(X) = E[A(X)] = D [E[L(X)|Fi] — E[(X)| ],
k=1

where Fy is the trivial sigma algebra. Using Lemma we have
[E[2(X)|Fk] = E[A(X)| Fr-1]] < 2/[S()].

Now by Corollary [A7]

Clp)n?

SO’

E[[h(X) = E[h(X)][*"] <

where C(p) is a constant that depends only on p.
As above, using Lemma and Result we estimate the second term of
by

_ _11?2» _ C(p)nP
(k)y—17 _ (k)1—1 p

E ‘E[tr{Pz’C} ] —tr[P, /] ‘ < SO
Using the above estimates in (23)), we obtain

E [in — monOF] < o0 (£ 2

HEGER]

To complete the estimates of (19)), we need to lower bound (f(m, ,(¢)))~* and
ay, (recall that «y is defined in (10])

Since ¥(¢) > 0, it follows that

*° 1
0= —=d «(A .
f, g sy >0

As a result, for any ¢ € C with $(¢) > 0,

R

S (€)= [ 5 i () = 3(06 > 0

dpx.x:(A) 20

Using the above estimates, we have
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x -1\ _ | |Z|2
(a0 = [3 | T = (1m0
2(\
ﬁ+g“é$%@%wmgoﬂ
> 30
Therefore
(= ()7 2 IS(f(ma,= ()7 2 1S(C)]- (28)
Following the similar computation as , we can also conclude that
o] > 61S(Q)- (29)
Finally, plugging , , , , into gives the desired bound
). O

Next, we provide a deterministic upper bound on |1 — 7, .({)|.

Lemma 3.5. Under the assumptions of Theorem[3.]

B 139
1= O] 2 L2 (30)
Proof. Let us denote
Ap 2 (Q) =14 my:(C) A(Q) =14+ m.(C)
Bn,z(C) = ‘Z|2 - CAn,z(C)2 BZ(C) = |Z|2 - CAZ(C)Z

en,z(g) = mn,z(() - f(mn7z(<))

Let m(¢) be the solution of the equation m,(¢) = A.(¢)/B.(¢) satisfying I(v/{m.(¢)) >
0 when 3(v/¢) > 0, where we have used the negative real axis for the branch cut
of the square root function. The existence of such a solution is well-known in the
circular law literature (see Section 11.4 in [9]).

Observe that as per the above notations, we may write

Fmn o (O) = 51,
mWK>‘%f8+%AQ

Using the fact that |ab| < 1(|a|> + [b]?) for a,b € C, and employing a similar
calculation as in [47], we write
|2 + (A () An,:(¢) ‘
B.(¢)Bn.=(¢)
212 + CA- () An,2(€) ‘
B2(¢)Bn.z(¢)
R HCA A
B |B=(€)Br.=(C)]

(e + VEALQP
22(1 B.(O )*

u—mxmzb—

>1-

—_

(1- EEEMEAOY

1
2 | Bn,(C)|?
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Now, we estimate lower bounds for each expression of . We proceed as follows:

S/ 0) = S(/Cmn o (€) + 5/
= [ RO g0 + 310)

5.0
Sl R VGGG
_ S[VCA Q1P EBW%( EVCA O] | g e )+ 3(/D)
= (/&) [EEE O] (e, 0 + 90100

Consequently, we have

L P IVCAOF _ S(VCen,: () +S(VO) | S(VCen2(Q) +S(VO)

B, (C)I? S(VCAL.:(Q)) S(VO + C»V‘(\/@nn,z(())('gm
Similarly,
R VEAQF S0 (0 -

B(OF S(VCA:(C
Recall that we have chosen the solution m,(
have the same sign. Therefore,

) SO +S(/Em. Q)
¢) such that &

WOy BEENIAQR ,FE g,
S TS T B L TBagp Ve
As a result,
‘fmz | <L

Using the the above estimate in and the fact that S(v/{m.(¢)) and (/)
have the same sign, we obtain
PP+ IVEAQP  S(/)

|B=(Q)? I(VQ) + S(vm=(Q))
IS(VOI

SOOI+ IS(VEm(0))l

ISV
S(VOI+1

1

L+ (VO
1

>
T 3VAIS(O]!
o
131 "
4V/A
where the second to last inequality follows from the fact that |3(v/C)| > |3(¢)|/3VA
which is implied by the assumption ¢ € {{ € C: —A < R({) < 4,0 < ¥(¢) < 1}
and A > 1.

1-—
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Similarly,

L PP A IVEA QP | 1S9

. 35
Bo-OF = 44 (35)
Using the estimates (35)), (34) in (31f), we have
S(Q)]
1—r,. > .
1O 2
U

Theorem [3.1] follows easily from the above calculations.

Proof of Theorem[3.1. By Lemma [3.3]
El[m,2(¢) = ma(Q)*] = El[L = 75,2 (O] min,2 (O) = f(ma (O (36)
Therefore, by Lemmas [3.4] and [3:5]

Eumn,z«)—mxoﬁp}sww[(")”+ ! ]

SOF [\2) " &2
Since m, is the Stieltjes transform of v,, it is a well-known property (see, for
example, Section 11.4 and (11.4.1) in [9]) that m. is the unique solution of (9)
satisfying S(¢m.(¢?)) > 0 and I(m.(¢)) > 0 when $(¢) > 0. O
4. PROOF OF THEOREM [[4]

4.1. Spectral norm bound. Before proving Theorem we note the following
spectral norm bound on X.

Proposition 4.1 (Spectral norm bound). There exists a constant K > 0 such that
| X|| < K with probability 1 — o(1).

Proof. For any vector v € C", it follows from the block structure of X that
ol < ] (jmas, 1750+ mo 1031+ ma 104]).
1<i<m 1<i<m 1<i<m
where C' > 0 is an absolute constant. The claim then follows from Lemmal[2.4] O

4.2. Proof of Theorem In order to complete the proof of Theorem [1.4] we
will use the following replacement principle from [81]. Let ||A|2 denote the Hilbert—
Schmidt norm of the matrix A defined by the formula

A2 := /tr(AA*) = /tr(A* A).

Theorem 4.2 (Replacement principle; Theorem 2.1 from [81]). Suppose for each
n that G and X are n X n ensembles of random matrices. Assume that:

(i) the expression
1 1
—IGl5+ =11X I3
Yjez + Lixs

is bounded in probability (resp. almost surely);
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(i) for almost all complex numbers z,
1 1
— log |det (G,)| — — log |det (X,
L log Jdet (6] — ~ log]det. (X.)

converges in probability (resp. almost surely) to zero and, in particular, for
fized z, these determinants are nonzero with probability 1 —o(1) (resp. almost
surely nonzero for all but finitely many n).

Then
HG — BX

converges in probability (resp. almost surely) to zero.

We will apply the replacement principle to the normalized band matrix X, while

the other matrix is taken to be G := ﬁG, where the entries of the n x n matrix

G are iid standard Gaussian random variables, i.e., G is a Ginibre matrix. As the
limiting behavior of ¢ is known to be almost surely the circular law [81], it will
suffice, in order to complete the proof of Theorem to check the two conditions
of Theorem 4.2

Condition from Theorem follows by the law of large numbers. Thus,
it suffices to verify the second condition. To do so, we introduce the following
notation inspired by Chapter 11 of [9]. For z € C, we define the following empirical
distributions constructed from the squared singular values of X, and G.:

1 n
vx. () = n Z 55,%()(;)(‘)
i=1
and
1 n
ve. ()=~ > 626 ()-
i=1

It follows that

oo

1 1 1 [ 1
L 1og [det (X.)] = L Tog [det (G.)| = f/ log z . (dz) — 7/ log = v (dz).
n n 2 Jo 2 Jo

By Theorem as well as Proposition there exists a constant K > 0 (de-
pending on z) such that

00 oo K K
/ logz vy, (dz)f/ logz vg, (dx) = / logz vx, (dx)f/ log z ve, (dx)
0 0 C—ZSm c;25‘m,

(37)
with probability 1 — o(1). Here, the largest and smallest singular values of G, can
be controlled by the results in [80,82]. We will apply the following lemma.

Lemma 4.3. For any probability measure i and v on R and any 0 < a < b,

Aﬁmmww—/ﬁmmww

a

< 2[|logd| + [log all[|x — [[{a,z),

where

rela

= Vlap = sup |u(la, 2]) = v([a, 2])].
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Proof. We rewrite

/ log(z)du(x) = log(B)u([a b)) — / / dtdp(a)

Applying Fubini’s theorem, we deduce that

/ab/xbidtdﬂ(x) :/ab “([‘;’t])dt.

Similarly, the same equalities apply to v. Thus, we obtain that

/ log(x)dul) - / log(@)dv()

< [1og(b)||p([a, b]) = v([a, b])] + ;

[ plet) = o),

b1
[a,b] [l — V”[a,b]/ ;dt,

from which the conclusion follows. O

< [logbl[|lu — v/

Returning to and applying the above lemma, we find that

1 1
—log|det (X,)| — — log |det (G
~log [det (X.)| — - log det (G.)

n
< Cp-log(n)vx. () = ve. Ollpee)  (38)
for a constant C' > 0, where

[ = vlljo,00) = Sup (=00, z]) — v((—o0, z])|

for any probability measures p and v on R. Let v,(-) be the probability measure
on [0,00) from Theorem (or equivalently, the probability measure defined in
Section 11.4 of [9]). By the triangle inequality, it suffices to show that

nlogn 1/31
||uxz<~>—uz<->||[o,oo>:o(( ) ) (39)

nloon 1/31
||ucz<->—uz<->||[o,m>=o<( ) ) (10)

with probability 1 — o(1). The convergence in follows from Lemma 11.16
from [9]; in fact, the results in [9] provide a much better error bound which holds
almost surely. Thus, it remains to establish , which is a consequence of the
following lemma.

and

Lemma 4.4. Let X and X be as in Theorem with b, > n32/331ogn. Then, for

any fized z € C,
nlogn 1/31
v, () = 1Ol = O << =

with probability 1 — o(1).




24 CIRCULAR LAW FOR RANDOM BLOCK BAND MATRICES

Proof. Fix z € C. For notational simplicity define
nlogn
n = ———.
Let m,, . be the Stieltjes transform of vx_(-) and m, be the Stieltjes transform of

v.(-). We consider both Stieltjes transforms only on the upper-half plane C*. On
the upper-half plane, both Stieltjes transforms are Lipschitz:

¢ —¢ I¢ ¢
— < — < .
mas(Q) = man(© < Gogpe 1m0 —ma(O)] < S5
Fix A > 0 sufficiently large to be chosen later. Define the line segment in the
complex plane:

(41)

L;:{gzeﬂ‘qi/?’le@:—AgegA}. (42)

Applying Theorem and Markov’s inequality, for any ¢ € L, we have

C n
P (Jma.=(¢) = ma(O)] 2 6™ ) < <77
an n

for a constant C' > 0 which depends only on the moments of the atom variable &
and A. Let A be a qi/ 1 _net of L. By a simple covering argument, A/ can be chosen

so that |N| = O(q;5/31). Thus, by the union bound,

CeN T gn by logn

Using the Lipschitz continuity , this bound can be extended to all of L, and we
obtain

P <sup 1 (C) — ma(Q)] > qi/31> <En_ 9 )

sup [mn, . (¢) — m.(C)] = O(gl/3"). (43)
¢eL

with probability 1 — o(1).

To complete the proof, we will use Corollary B.15 from [9] and to bound
lvx. () = v2(-)lljo,00)- Indeed, take K > 0 sufficiently large so that vx_([0, K]) =1
with probability 1 — o(1) and v, ([0, K]) = 1. Such a choice is always possible by
Proposition and since v, has compact support (a fact which can also be deduced
from Proposition . Recall the parameter A > 0 used to define the line segment
L (see ) Taking A,a > 0 sufficiently large, setting n := qi/:ﬂ, and letting
¢ := 6 + in, Corollary B.15 from [9] implies that

lvx. (-) = v2()lljo.00)

A 1
/_A M, (C) —mz(C)d9+nsup/ygmlvz((—oo,xwLy]) —vy((—o0,z])|dy | ,

x

<C

where C' > 0 depends only on the choice of A, K,a. The second term is bounded
by Lemma 11.9 from [9]:

L sup / v ((—00, + ) — v (00, a])ldy < C'/i
ly|<2na

for a constant C' > 0 depending only on a. For the first term we apply to
obtain

/Z Imy 2 (C) —m.(¢)|dd = O (q,l/31>
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with probability 1 —o(1). Combining the two bounds above, we conclude that, with
probability 1 — o(1),

Iv3.() = 1.2l = O (4

which completes the proof of the lemma. O

Lemma establish . Combining ([39)), with and taking b, >
n32/33 Jog n completes the proof of Theorem

APPENDIX A. AUXILIARY TOOLS

Lemma A.1 (Sherman-Morrison formula; see Section 0.7.4 in [48]). Let A and

A+ vv* be two invertible matrices, where v € C™. Then

’U*A71
(A Nl ——

vi( A+ o) 1+0v*A-1v

Lemma A.2. Let ( € C\Ry, and A be an n X n non-negative definite matriz.
Then for any v € C",

1
SO
Proof. The proof is similar to Lemma 2.6 in [77]. Using the resolvent identity and

Lemma [A7]

[tr{(A+vo* — D)t — (A-¢D)7] <

(A + oo — (D)7 — (A= (D)7
= —tr(A +ovv* — ) ot (A ¢!
— (A= (D) A+t — (D)

* _ —1 _ —1
:_U(A ¢H)~H (A=) v (A1)
1+ov(A—¢I)~ v
Let A =", N\i(A)u;ul be the spectral decomposition of A, where \;(4) > 0
for all 1 <7 <n. Then

* -1 -1 - |ujv]?
i=1 7"

n |* |2 2
1+v(A—cD) W? =11+ )
L+ 0" (A= ¢D) D N4 ¢

-¢
2N - (2

& ) - il Pl [ S uzol?

g P vy Z;A (2
o Jupel2 [

z 2 @) ¢ (42)

Plugging in the above estimates in (A1), we obtain the result. [
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Lemma A.3 (Lemma 2.7 from [11] and Equation (2.5) in |71]). Let & = (&1,&2,...,&xn)
be a random wvector such that & are iid complex valued random wvariables with
E[¢1] =0 and E[|&1]?] = 1. Then for any deterministic n x n matriz A,
E[|¢" A — tr A]P] < Cu(p)((Elér|* tr A" A% + E[|& 7] tr(A" A)P/?),
E[|€"AgJ] < Co(p)E[|&a]*)((tr A" A2 + [ tr AP),
where C1(p), Ca(p) are constants that depend only on p.

Corollary A.4. Let I C {1,2,...,n} be a fized index set and &1,&,...,&, be a
set of iid complex valued random variables with E[¢;] = 0 and E[|&1]?] = 1. Define
v = (V1,V2,...,0,) where v; = §i1ery. Then for any fized n x n deterministic
matriz A we have

() PPEfI PP AllP.

v Av — Zam

i€l

Proof. Let us define an n X n matrix A as (fl)ij = a;jlien1yjery, where a;; =
(A)i;j. Then, v*Av = v*Av. In addition, tr A = > icr ii- Therefore, using Lemma

and the fact that tr(A*A) < |I]|A||?> < |I|||A||?, the claim of the corollary
follows. .

Lemma A.5. Let P and Q be two n X n mon-negative definite matrices, then for
any ¢ € C\R; and I C {1,2,...,n},
_ _ 2
(P = CDit = 0@ = ¢t | < gy rank(P = Q).

kel i€l

Proof. The above lemma is similar to Lemma C.3 from [21]. For the readers’
convenience, we include the proof here. Using the resolvent identity, we have

(P=¢D)'=(@Q—¢) ' =P ~¢HHQ-PIQ - D!

Therefore, 7 := rank[(P — (I)™! — (Q — ¢I)7!] < rank(P — Q). Let us write the
singular value decomposition as

(P—¢D)t—(Q—¢I)™ Zsum

where 1, 89,...,5, are at most r non zero singular values of (P — (I)~! — (Q —
¢ and {uy,uz,...,u.}, {vi,ve,...,v,} are two sets of orthonormal vectors.
Consequently, we may write

T

(P =Dy = (Q =D = Y sileui)(vfer).

i=1

Using Cauchy-Schwarz inequality,

D P (D) =Y (Q—CD)yy

kel kel

< Zslzhi w;||v} ek

i=1 kel

:
<30 [S il [ el

i=1 kel kel
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.
< sillullfloll
i=1

2r 2
< Zsi < < S0 rank(P — Q),

where the second last inequality follows from the fact that s; < ||(P—¢I)™! —(Q —
CH7H < 2/IS(Q)] for all 1 < i < 7. 0

Result A.6 (Azuma-Hoeffding inequality; see [60]). Let {&}i be a martingale with
respect to the filtration {Fi}r such that for all k, |Ek+1 — &k| < ¢k almost surely.
Then for any t > 0

t2
P —E >t) <2expl ——7—— ¢ -
(60— Ele) > ) < 2000 |~ |
A simple consequence of the previous concentration inequality is a bound on the
moments.

Corollary A.7. Under the conditions of Result[A.6, for | € N, we have

" 1/2
E[lén — E&al'] < C(D) (Z ci)

k=1

where C(l) is a constant only depending on [.

Proof. This result can be deducued from the straightforward calculation using Re-

sult
Elle, —Beal') =1 [ T Bl — B > t) dt
0

o] 1 t2
ca [t (et

0 23 k=16

n vz

=1 (220%) / u/? e du

k=1 0

n 1/2

=IT(1/2)2"? <2Zci> ,

k=1

where I' is the gamma function. O

Our final lemma is a technical observation which is of use in Section [

Lemma A.8. We let X be the random matriz from Theorem (without the
restriction on the bandwidth). We recall the notation from Section @ For fixed
z € C and ¢ in the upper half of the complex plane,

P.o=(X,X)e=X—20)(X —z2I)" - (I
Then for all 1 < i <n,
E{P:¢};i'l = E[{P.cti)
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Proof. We divide [n] into sets I, ..., I, where I, = [(i — 1)b, +1,ib,] "N. Let P,
denote the n x n permutation matrix that permutes the i-th and j-th column when
acting from the left on a matrix. Observe that when i,j € I) for some k € [m)],
PZ-J-XZPi;1 has the same distribution as X, due to the iid assumption and block
structure. Therefore, X, X7 has the same distribution as PinZPgPin;PZ? =
PinZX;‘Pg;. Thus,

(X2 XZ—CD);t ~ (Py(XoXE=CDPE) G = (P (X X2 —CI) ™ Py)is ~ (X X2 —CI) 5

where we use ~ to denote equality in distribution. This establishes that the ex-
pectation for any two indices in the same index block are identical. It remains to
show that the expectations for the various blocks are the same. Here, we define a
permutation that exploits the block-band structure. Let P be the permutation that
cyclically shifts Ij, to Iy maintaining the order within each block and using the
convention that I,,11 = I;. By the structure of the matrix and the iid assumption,

X. X ~PX. X:P "
Thus,
(XX = ¢! ~ (P(X.XE —¢)PTY)
= (PYX.X; —¢I) ' P)u
~ (XX =D i

Continuing inductively establishes the equivalence of all the expectations along the
diagonal of (X, X7 — ¢I)~ % O
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