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Figure 1: Demonstration of EyeSayCorrect. To correct errors in the text, the user first utilized the gaze location on the screen

to select a word, and then spoke the new content for correction. The text was corrected after the user finished speaking.

ABSTRACT

Text correction on mobile devices usually requires precise and
repetitive manual control. In this paper, we present EyeSayCorrect,
an eye gaze and voice based hands-free text correction method
for mobile devices. To correct text with EyeSayCorrect, the user
first utilizes the gaze location on the screen to select a word, then
speaks the new phrase. EyeSayCorrect would then infer the user’s
correction intention based on the inputs and the text context. We
used a Bayesian approach for determining the selected word given
an eye-gaze trajectory. Given each sampling point in an eye-gaze
trajectory, the posterior probability of selecting a word is calculated
and accumulated. The target word would be selected when its
accumulated interest is larger than a threshold. The misspelt words
have higher priors. Our user studies showed that using priors for
misspelt words reduced the task completion time up to 23.79% and
the text selection time up to 40.35%, and EyeSayCorrect is a feasible
hands-free text correction method on mobile devices.
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1 INTRODUCTION

Correcting text is a core activity we perform daily onmobile devices.
Despite that it’s essential for searching, emailing, messaging, and
social networking applications, it’s difficult to perform. The require-
ment of precise and repetitive manual control remains a hindrance.
For example, the default cursor-based text correction technique
requires precisely positioning the cursor after the erroneous text,
repeatedly clicking the backspace buttons, typing the new text, and
re-positioning the cursor back to the original position.

Besides finger touch, eye gaze and voice are alternative input
modalities we could leverage for text correction. However, eye gaze
may not be precise and stable enough for text operation where text
is usually small. It’s difficult to use eye gaze to precisely select a text
span. Voice input is prone to speech recognition errors, especially in
noisy environments. And it’s unsuitable for specifying the location
of the error.

In this paper, we designed and implemented EyeSayCorrect, an
eye gaze and voice based error-tolerant multimodal text correction
system for mobile devices. To correct errors, the user first selects a
word close to the error location by the gaze location on the screen.
Then, the user speaks the correct word or phrase. EyeSayCorrect
would correct the error based on the word selected by eye gaze,
voice input, and the text context. We utilized the advantages of each
modality and let the twomodalities supplement each other. We used
a text correction algorithm from [91] which can process ambiguous
input by considering the context of text using a language model,
editing distance, and word embedding distance. For selecting text
by eye gaze, we proposed a Bayesian based two-dimensional target
selection method which can accumulate a target word’s interest
even when the gaze location is outside of the target. Given each
sampling point in an eye-gaze trajectory, the posterior probability
of selecting a word is calculated and accumulated. The target word
would be selected when its accumulated interest is larger than a
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threshold. To facilitate selectingmisspelled words for correction, we
assigned higher priors for misspelled targets words. Our eye gaze
and voice based multimodal text correction system offers users
a hands-free approach for correcting words or phrases and can
accommodate ambiguous and noisy input signals.

Our user studies showed that using priors for misspelt words
significantly reduced the task completion time, especially the text
selection time by eye gaze, and EyeSayCorrect is a feasible hands-
free text correction method on mobile devices.

2 RELATEDWORK

As background of the current work, we review previous techniques
for text correction, multi-modal interactions, gaze tracking tech-
nologies and gaze based target selection.

2.1 Techniques for Text Correction on Mobile
Devices

Text correction is a crucial part of text entry on mobile devices [39,
60]. The cursor-based method is well explored in previous research.
The cursor can be moved by touch [2], arrow keys [83], gestures [22,
31, 88], combining taps and gestures [23]. A number of assistive
methods for text selection are also explored, such as gesture based
methods [22, 31], Gaze’N’Touch [66] which combines eye gaze and
taps to select text.

Cursor-based methods on mobile devices often have challenges
due to small screen sizes and the fat finger problem [9, 28, 82].
Intelligent auto-correction were introduced to address those prob-
lems. However, auto-correction only corrects the word currently
being entered [10, 25, 81]. It cannot correct text that has already
been entered. Grammar checking methods such as Gboard [46]
and Grammarly [32] support correcting entered text by providing
possible correction suggestions in a menu. Recent methods "Type,
then Correct" technique [87] and "JustCorrect" [14] added more
intelligence to the post hoc text correction for reducing cursor
operations.

There are also voice-based text correctionmethods [27, 55]. How-
ever, those methods were cumbersome for indicating text locations.

2.2 Multimodal Interaction Technologies on
Mobile Devices

Multimodal interaction has benefits such as being natural, more
error tolerant [40, 57, 58], and flexible [16, 59]. Previous research
explored combining multiple modalities to reduce text entry am-
biguity, such as using handwriting to correct speech recognition
errors[79], combining gesture typing and speech [56, 73], using
touch to indicate speaking word boundaries for better speech recog-
nition performance [72], using unistrokes and key landings [34] to
speedup text input, combining eye gaze and keyboard to for text
editing on desktops [75]. Recent soft keyboards (e.g., Gboard [46])
supports voice and touch input, but the two modalities are often
used separately. Multimodal method were also applied to disam-
biguation interfaces [43, 49, 68].

iOS’s voice control [30] and Android Voice Access [26] supports
combining voice and touch to edit text. However, they are not error-
tolerant since they still require precise text selection and precise
text content for error correction. VT [91] is able to accommodate

ambiguous input from touch and voice, it does not require precise
text selection or precise text content for error correction. It infers
a user’s correction intention from touch input, voice input and
text context by utilizing language model, Word2Vec distance, and
Levenshtein distance.

EYEditor [24] presented a smartglass-based text-editing that al-
lows selecting text with a hand controller and inputting new words
with voice. Our proposed EyeSayCorrect used eye gaze to select a
word and it endowed users with more freedom about which word
to select and which phrase to speak. Talk-and-Gaze [70] explored
combining voice and eye gaze modalities for text correction. Gaze
dwelling was used to select a word. To correct a word, users used
voice to either speak the index number of a suggested word or spell
the the new word letter by letter. EyeSayCorrect used a Bayesian
method for eye-gaze based word selection which was more toler-
ant for noisy gaze locations. And users can directly speak the new
phrase to correct the text.

2.3 Eye Tracking Technologies

Eye tracking technology has become increasingly available and
advanced nowadays. Technologies for eye tracking include eye
attached tracking using special contact lens, skin potential mea-
surement with electrodes, and optical tracking without direct con-
tact to the eye, i.e. infrared light based or image feature based [92].
There are many commercial products such as Tobii [80], EyeGaze
Edge [19], SMI REDn [77], Eyelink 1000 plus [20] and PRC Accent
1400 [64]. Many eye-gaze related studies were conducted on top of
them [18, 33, 41, 69, 71, 74]. On the one hand, existing eye trackers
can provide high resolution, high sampling rate and high eye track-
ing quality for users. On the other hand, they come at a price and
with a learning curve.

Besides these dedicated eye tracking devices, researchers are also
devoting to enabling eye tracking for general-purpose embedded
cameras on daily devices such as Android smartphones, iPhone and
iPad. For example, Wood et al. proposed EyeTab [86], a model-based
gaze estimation on unmodified tablet computers. Papoutsaki et al.
proposed WebGazer [61], an online eye tracker that uses common
webcams in laptops and mobile devices to infer gaze position in
real-time. Huang et al. proposed an in-situ gaze estimation method
on the glint of the screen on the user’s cornea, using only the image
captured by front-facing camera on smartphones [29]. There are
also many Deep Learning techniques proposed to support gaze-
tracking [38, 85, 89]. Li et al. took advantage of Apple’s ARKit to
enable eye tracking on an iPad Pro with TrueDepth camera [44].
Our work used the same method for gaze tracking as [44].

2.4 Gaze Based Target Selection

Gaze-based target selection is a core activity for a number of ap-
plications such as gaze-based text input [65], gaming [36] or smart
device control [67]. Dwell-based method (Dwell) [35, 37, 90] is the
most widely used target selection method. However, dwelling gaze
on a target for a specific period often results in eye fatigue [62].
There were works trying to reduce the dwelling time such as let-
ting users adjust the dwell time manually [48], using Fitts’ law to
reduce the dwell time [35], adjusting the dwell time based on the
probability of each letter during text entry [53, 63].
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In addition to dwell-based methods, specific UI designs that
can facilitate gaze base target selection were explored [47, 51, 76].
Actions such as blinking [12] and gaze gesture [15] have also been
used for target selection. Multimodal input such as a keyboard
input [42], hand-held touchscreen input [78], EMG input [50] and
the head movement [71] were used to replace the dwelling action.

Bayes’ theory were well applied to accommodate uncertainty
for touch based target selection [11, 84, 93], it’s also applied for
gaze-based interactions [8, 54], gaze-to-object mapping problem [8].
BayesGaze [44] applied it for target selection. Our work improved
BayesGaze for text target selection. BayesGaze was designed for
menu button targets, it assumed that the distribution of targets
been selected follows a Zipf’ distribution [1, 13, 17, 45, 52, 93], and
updated priors after each selection. For our text correction problem,
the targets are words. Most words may never been selected again
once been corrected. So the BayesGaze’ prior model which requires
multiple updates to be effective is not suitable for our problem.
We propose to assign higher prior values for misspelt words since
they are more likely to be the targets in text correction problem.
BayesGaze only accumulates interest from gaze sampling points in-
side the target area. Since text targets are much smaller than menu
buttons, it’s much more difficult to keep gaze location inside a word
target. We extend the area for accumulating interest to a larger el-
lipse area whose semi axes are proportional to the width and height
of the targets, so that a target can continue accumulate interest
even when the gaze location sways out of the target area. This
could better accommodate noisy gaze trajectories for small targets.
In [44], BayesGaze is only applied to 1D targets. In our work, the
text targets are two-dimensional. We used a 2D Gaussian likelihood
function for computing the posterior likelihood. BayesGaze used
raw accumulated interest for target selection while we normalized
the accumulated interest to the range of 0 to 1. The advantage of
normalizing the accumulated interest is that we can visualize the
normalized accumulated interests as visual feed backs for users.
The visual feed backs are important for users to understand the
current state of selecting a target.

3 EYESAYCORRECT

3.1 Workflow Design

In this paper, we propose EyeSayCorrect, in which users can se-
lect a word by eye gaze and speak a new phrase. EyeSayCorrect
would generate correction suggestions based on the selected word,
the speech input, and the text context. The top suggestion would
directly replace the original text. The second and third top sugges-
tions are shown for selection. The workflow of using EyeSayCorrect
to correct text is shown in Figure 2. In Figure 2, (1) shows the text
before a user starts to correct it. (2) shows that the location of a
user’s gaze location (the red cross). A word’s background inten-
sity represents the normalized accumulated interest for that word.
(3) shows a word was selected. If a word is selected, there would
be a red bounding box around it. The speech recognition would
start when the red bounding box appeared. (4) means that the user
speaks the new content for correction. (5) shows the default cor-
rection result after the user spoke the new content. The new word
or phrase in the text would be shown in blue color for 3 seconds.
This serves as visual feedback showing which part of the text was

changed. (6) shows the alternative suggestions for users to select.
The user can skip selecting suggestions if the default correction
result was correct.

If a word is selected, all the words stop accumulating interest
until the selection is canceled or the text is changed. The selection
will be canceled if no speech is recognized after a waiting period
of five seconds. If there is partial speech recognition results in five
seconds, the selection will remain until the speech finishes. Once
the speech finishes, the text will be changed by EyeSayCorrect
based on the speech recognition transcripts and the selected word.
We adopted this two-step design, selecting the word first and then
speaking the new content, instead of the one-step design, gazing at
the word while speaking. Because based on our observation when
the user is speaking, the gaze trajectory usually sways in a large
range. It’s difficult for users’ gaze to remain on a specific word
while speaking. Once the user stops speaking, the correction results
and suggestions would show. Users can select the suggestions if
necessary. If the default correction result and suggestions are not
users’ correction intention. Users can click the "Undo" button to
undo the last editing.

The implementation of eye gaze tracking on iPad Pro is de-
scribed in Section 3.2. For word selection, EyeSayCorrect used a
Bayesian based method that accumulates each sampled gaze loca-
tion weighted by a spatial Gaussian model. It’s described in Sec-
tion 3.3 to Section 3.6. For phrase correction, EyeSayCorrect sup-
ports correcting a phrase by voice without precisely selecting the
whole phrase. It’s described in Section 3.7.

3.2 Eye gaze tracking on iPad Pro

In this paper, we followed [44] to use an 11-inch iPad Pro for the
user study. The gaze tracking is implemented based on Apple’s
ARKit [4]. ARKit is Apple’s augmented reality software develop-
ment kit that enables face and eye-tracking on iPhone/iPad with
Apple’s TrueDepth [6] camera system. With ARFaceAnchor [3]
in ARKit, we used the leftEyeTransform and rightEyeTransform to
locate the position and orientation of the face’s left and right eye
and perform the hit testing hitTestWithSegment to compute the gaze
location on the screen. We also used an Outlier Correction Filter
with a triangle kernel [21] to smooth the detected gaze trajectory.
The sampling rate of gaze trajectory was 60Hz and sampled gaze
locations on the screen were processed in real-time. The parameters
of the filter were set as the same as in [44].

3.3 Bayesian based word selection

Selecting a word among text can be considered as a gaze-based
target selection problem, each word is a target for selection. Given
a gaze trajectory S = {s1, s2, . . . , sK } where si is a sampling point
along the gaze trajectory at time i , and a set of candidate targets
denoted by T = {t1, t2, . . . , tN }, where each tj is a word target in
the text. The goal of the problem is to decide which target in tj
is the intended target. Each target tj accumulates "interest" from
each sampling point si along the gaze trajectory until one of them
reaches a threshold (denoted by θ ) for being selected.

For each target, if the gaze sampling point si is inside an ellipse
area around the word, the word would accumulate interest from
that gaze sampling point, otherwise the total interest of that target
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Figure 2: Workflow of EyeSayCorrect. 1) shows the text to be corrected. 2) shows the user’s gaze location (the red cross). A

word’s background intensity represents the normalized accumulated interest for that word. 3) shows a word is selected. If a

word is selected, it would have a red bounding box. The speech recognition would start when the red bounding box appeared.

4) represents the process of speaking new content for correction. 5) shows the default suggestion that automatically replaced

the erroneous word. 6) shows two alternative suggestions for users to select by eye gaze if necessary.

is set to 0. The ellipse area is decided by the widthw j and height
hj of the 2-dimensional target tj , the ellipse’s two semi axes are
α ∗w j , and β ∗ hj . Assuming we observe a gaze sampling point si
as (six , siy ), the accumulated interest of selecting a target is defined
as the posterior probability of selecting a target given a sampling
point based on Bayes’ theorem weighted by the sampling interval.

Ii (tj ) =

{
0, if

(six −μ jx )
2

(α∗w j )2
+

(siy −μ jy )
2

(β∗hj )2
> 1

Ii−1(tj ) + Δτ · P(tj |si ), otherwise
(1)

where P(tj |si ) is the posterior probability which can be estimated
according to Bayes’ theorem. (μ jx , μ jy ) is the center coordinate of
target tj . α and β are parameters that define the shape of the ellipse
area around a target for interest accumulation. We set α and β much
larger than 1, this means the ellipse area was significantly larger
than the target itself. This was critical for our text target selection
task. Because text targets were usually small, the gaze trajectory
may often sway around a word instead of staying inside a word.
Setting α and β larger than 1 can accumulate interest for a target
when the gaze sampling point is outside the word target.

Assuming there are N target candidates,

P(tj |si ) =
P(si |tj )P(tj )

P(si )
=

P(si |tj )P(tj )∑N
k=1 P(si |tk )P(tk )

, (2)

where P(tj ) is the prior probability of target tj being the intended
target without observing the current gaze input trajectory, and

P(si |tj ) is the probability of si if the intended target is tj (the likeli-
hood).

3.4 Dual-Gaussian Likelihood Model for gaze
target selection

A dual-Gaussian likelihood model is used to calculate P(si |tj ):

P(si |tj ) =
1

2πσjx σjy
exp

[
−

z

2(1 − ρ2j )

]
, (3)

where

z ≡
(six − μ jx )

2

σ 2
jx

−
2ρ j (six − μ jx )(siy − μ jy )

σjx σjy
+
(siy − μ jy )

2

σ 2
jy

. (4)

σjx and σjy are the standard deviations of the dual-Gaussian model
for target tj , and ρ j is the correlation coefficient between x and y.

3.5 Priors for misspelt word

In the text correction task, the misspelt words usually have higher
probabilities to be a selection target for text correction. We set the
prior value P(tj ) for misspelt words higher than that of correctly
spelt words.

P(tj ) =

{
γ , if the word target is misspelt

1, otherwise
(5)
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where γ is a constant larger than 1. In our implementation, γ was
set to be 2 for EyeSayCorrect with priors.We used theUITextChecker
in Swift to detect the misspelt words in the text.

3.6 Softmax normalization

The accumulated interests for all targets are normalized by softmax.

I ′i (tj ) =
e Ii (tj )∑N

k=1 e
Ii (tk )

(6)

If a target’s normalized accumulated interest I ′i (tj ) is larger than
a threshold θ , the target is selected. In our implementation, the
θ value was selected by experience. It’s a trade-off between the
target selection speed and the chance of incorrect selections. The
advantage of normalizing the accumulated interest is that the nor-
malized interest values are in the range of 0 to 1 which are easy
to be visualized as visual feedback. We set the intensity of words’
background color to be linear with the normalized accumulated
interest. The eye gazed based Bayesian target selection algorithm
for 2D word targets is summarized in Algorithm 1. The parameter
settings of the algorithm are described in Section 4.1.

Algorithm 1 Bayesian word selection algorithm for eye gaze

Require: Target set: T = {t1, t2, . . . , tN }, the center of a target tj
is (μ jx , μ jy ). Gaze trajectory: S = {s1, s2, . . . , sK } where a gaze
sampling point si is (six , siy ), Threshold: θ

1: for si in S do

2: for tj in T do

3: if
(six −μ jx )

2

(α∗w j )2
+

(siy −μ jy )
2

(β∗hj )2
> 1 then

4: Ii (tj ) = 0
5: else

6: Obtain prior probability P(tj ) using Equation (5) and
compute likelihood P(si |tj ) using Equation (3) and Equa-
tion (4);

7: Compute accumulated interest Ii (tj ) from Equation (1);
8: end if

9: Compute normalized accumulated interest I ′i using Equa-
tion (6);

10: if I ′i (tj ) > θ then

11: return tj
12: end if

13: end for

14: end for

3.7 Voice based text correction

Once a word is selected, the user can speak the new phrase. We used
Apple’s Speech framework [5] for speech recognition on live au-
dio. The speech recognition model will recognize the dictation into
multiple possible transcripts, each with a confidence value. With
the locations of the start and end letters of the selected word and
the list of possible transcripts and their confidence values, we used
the text correction algorithm (Algorithm 2) in [91] to generate pos-
sible correction candidates in sentence level. We implemented the
algorithm in Swift language for iOS while it’s originally proposed
for Android smartphones in [91]. This algorithm used a language

model, editing distance, and word embedding distance to decide the
location of the new phrase in the sentence and the number of neigh-
boring words in the sentence to be substituted. The top correction
candidate sentence directly substitutes the original sentence in the
text. The second and third top candidates are shown as alternative
suggestions for users to select.

This algorithm offers two degrees of freedom for users:

• First, it does not require users to select the exact range of
the phrase to be corrected. Users can select any word inside
the range that will be replaced by the new phrase or the
word directly outside that range. For example, to correct
the sentence "When do yoybgade too be there" to "When

do you have to be there," the user will speak "you have to."
In the erroneous sentence, the user can select "yoybgade"
or "too", which are words inside the phrase to be replaced,
or the user can select "do" or "be," which are words directly
outside the range that will be replaced by the new phrase.

• Second, the algorithm does not require users to speak the
exact phrase to be corrected. Users can include context words
before and after the phrase to be corrected. For example, to
correct the sentence "It waspada very nice" to "It was very

nice," users can select "waspada." Then, the user can speak
"was," or "was" with any context words before and after "was"
in the target sentence such as "It was", "was very" and "It
was very nice".

4 EXPERIMENT 1: COMPARING
EYESAYCORRECTWITHOUT ANDWITH
PRIORS

4.1 Parameter settings

We set the parameters in Equation (1) to Equation (5) as follows.
The prior values γ for misspelled words were set to 2 for methods
with priors and 1 for methods without priors. The σjx and σjy
were set to be proportional to the width w j and height hj of the
target tj , specifically σjx = δ ∗w j and σjy = δ ∗ hj . δ was set to
be 0.7. The correlation coefficient ρ j is set to be 0. The parameters
controlling the ellipse area for accumulating interest values were
α = 3.5, β = 3.5. The target selection threshold θ for normalized
accumulated interest I ′i (tj ) was θ = 0.999999999. θ is extremely
close to 1 because the softmax output I ′i (tj ) can easily be that large
when Ii (tj ) is outstandingly larger than other targets’ accumulated
interest. The θ value was selected by experience, it’s a trade-off
between the target selection speed and the chance of incorrect
selections.

4.2 Participants

We recruited 12 participants (2 females) from 21 to 33 years old
(Mean = 26.50, Std = 3.26). The self-reported median familiarity (1:
not familiar, 5: very familiar) with the eye gaze tracking interface
and voice input interface was 3 and 3.5.

4.3 Apparatus

An iPad Pro device (Model launched: Oct, 2018, OS: IOS 14.5, Chipset:
Apple A12X Bionic, RAM: 4GB, Internal storage: 64GB) with an 11
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inch display (IPS LCD with 1668 × 2388 pixel resolution) was used
for the experiment.

4.4 Design

The study was a within-subjects design. The independent variable
was the text font size and the priors for misspelled words. The text
font size has two levels:

• Small font size (14 points). This is close to the default footnote
font size (13 points) according to the typography guidelines
[7] for Apple developers.

• Large font size (28 points). This is the title font size according
to the typography guidelines [7] for Apple developers.

The misspelled prior has two levels:

• With priors for misspelled words. The misspelled words are
underlined with red lines, and each misspelled word has a
prior value that is 2 times of correctly spelled words, namely
γ = 2.

• Without priors for misspelled words. The misspelled words
are underlined with red lines, and each misspelled word has
the same prior value as the correctly spelled words, namely
γ = 1.

In the experiment, the conditions of the two independent vari-
ables were counterbalanced across 12 users.

4.5 Tasks

Participants corrected errors in texts using eye gaze and voice. We
used sentences with errors from Palin et al.’s mobile typing dataset
[60] which had erroneously entered text and their correct versions
by 37,370 users on mobile phones. There were 20 testing sentences
for this task, 2 with omission errors, 18 with substitution errors. The
edit distances between correct and erroneous sentence pairs range
from 1 to 6. The edit distance reflects the difficulty of correcting
an erroneous sentence. It is the minimum number of operations
required to transform one sentence into the other.

Each erroneous and correct sentence pair from Palin et al.’s
mobile typing dataset [60] are single sentences. In order to simulate
a more realistic correction environment where there are usually
sentences before and after the erroneous sentence, we randomly
pasted the correct sentences before and after the erroneous sentence
a few times. Those pasted sentences serve as distractions during
word selection. In each trial, there were at most N sentences in the
text for editing. One of them had errors. The rest were the correct
versions of that sentence. N ranged from 1 to 7. It was random for
each trial, each user and each configuration. The numbers of the
correct sentences pasted before and after the erroneous sentence
were also random for each trial, each user and each configuration
under the constraint that there were N sentences in total. For each
participant, the sentences for the 4 experiment conditions were
generated from the same set of sentence pairs. The order of the
erroneous and correct sentence pairs was randomized for different
users and configurations.

In total, the experiment included 12 users × 2 font sizes × 2 prior
conditions × 20 trials = 960 trials.

Figure 3: A user is correcting text on an iPad Pro using Eye-

SayCorrect.

4.6 Procedure

Figure 4 shows the procedure of the experiment. In each trial, a task
presentation page was first displayed to show the correction task
to participants as shown in Figure 4 (a). The text for editing and
correction was shown on the page. The differences between the two
pieces of texts were highlighted in yellow. The task was to edit the
highlighted text in the text to edit to the same as the highlighted
text in the target text. In the text to edit, the misspelled words
detected by the spell checker would have red underlines. Those
words would have higher priors during eye gaze word selection
when prior was used. A user needed to clicking the "Start" button
to start editing.

On the editing page as shown in Figure 4 (b), the eye gaze location
of participants on the screen was shown with a red cross in real
time. Participants would use their eye gaze location to select a word
or button. Once the accumulated information for a word was higher
than the threshold, the word would be selected. A red bounding
box would show around the word to indicate it was selected. Once
a word was selected, the speech recognition started. Participants
could speak the new phrase when the red box around the word
appeared. Once a word was selected, all the words would stop
accumulate information for 5 seconds. If the participant started to
speak in the 5 seconds, the words would keep not accumulating
information until the participant stopped speaking and the new
phrase is replaced or inserted into the text. The words would restart
to accumulate information when the new phrase changed the text.
There would be two other correction suggestions shown below the
text. Users could select one of them by staring at the tick button
at the end of that suggestion. If a word was selected, but the user
did not speak in 5 seconds, the red box would disappear and all the
words would restart to accumulate information.

Users can click the "Undo" button to undo the last editing. If the
user forgot the editing task, he/she can choose the "Back" button
to go back to the task presentation page to restart the trial. If the
user successfully corrected the text for editing to the target text, a
"Succeed!" label would appear, the text editing would get locked
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Erroneous sentences Correct sentences
1. What so you thinl 1. What do you think
2. Itu waspada very nice 2. It was very nice

3. The jets will rry to cintrol the ball and the clock
against the Rams

3. The Jets will try to control the ball and the clock
against the Rams

4. The enforcement has responsibility for the safety
of the public

4. The law enforcement has responsibility for the
safety of the public

Table 1: Examples of erroneous and correct sentences used in the experiment. The first 3 sentences contain substitution errors.

The fourth sentence contains an omission error. The different words between the erroneous sentences and correct sentences

are underlined.

Figure 4: Procedure of experiment. (a) The page to present the correction task. The difference between Text to edit and Target

text was highlighted in yellow. In this example, the user needed to insert the word ‘law’ into the text. (b) A user was selecting

a word by eye gaze. The word’s background intensity was promotional to the normalized accumulated interest for that word.

(c) A word was selected. If a word was selected, it would have a red bounding box. The speech recognition started when the

red bounding box appeared. (d) The default corrected text and two alternative suggestions after user finished speaking. If the

default suggestion was not correct, the user could look at the tick buttons to select from alternative suggestions. (e) The page

when a user successfully corrected the text, with a “Succeed” label shown. The user could select “Next” to start the next trial.

and the "Next" would appear. The user needs to choose the "Next"
button to go to the next trial.

Before the experiment, participants completed a warm up session
to get familiar with the interface and the procedure. They completed
at least 5 trials for each of the 4 conditions. In the experiment, the
participants were instructed to complete the editing of each trial
(from the "Start" button was clicked to the "Succeed!" label was
shown) as fast as possible. A demonstration of a participant using
EyeSayCorrect on an iPad is shown in Figure 3.

4.7 Failing rate

The failing rate is the percentage of trials that were not successfully
finished among all the trials. If a user cannot successfully correct
an error after trying 5 times, that trial was failed. The user can skip
that trial. For the large font size, the failing rate without priors and
with priors were 0.83% and 0.42%. For the small font size, the failing
rate without priors and with priors were both 0.00%. The failures
are caused by incorrect speech recognition results or incorrect

correction results and suggestions. Users have no problem to select
words by eye gaze.

4.8 Task-completion time

For each trial, the task-completion time is defined as the time from
the moment the "Start" button in the task presentation page was
clicked to the moment the "Succeed!" label on the editing page was
shown. This metric measures users’ operation time to correct the
errors.

The average task-completion time for all the trials in each config-
uration was shown in Figure 5. For large font size, the mean ± 95%
CI of the task-completion time without priors and with priors were
12.82 ± 1.23 and 11.63 ± 1.07. Using priors for misspelled words
reduced the task-completion time for large font size by 9.26%. A
paired-samples t-test indicated that the difference was not statis-
tically significant (t11 = 1.42,p = 0.18). For small font size, the
mean ± 95% CI of the task-completion time without priors and
with priors were 15.18 ± 1.96 and 11.57 ± 1.14. Using priors for
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Figure 5: Themean (95% CI) of task-completion time for two

font sizes and two methods.

misspelled words reduced the task-completion time for small font
size by 23.79%. A paired-samples t-test indicated that the difference
was statistically significant (t11 = 4.07,p = 0.001).

4.9 Text-selecting time

To investigate the effectiveness of priors for reducing the word
selecting time by eye gaze, we extracted the text-selecting time
from task-completion time. For each trial, the text-selecting time
is the total time for selecting text by eye gaze. The text-selecting
time was shown in Figure 6.

Figure 6: The mean (95% CI) of text-selecting time for two

font sizes and two methods.

For large font size, the mean ± 95% CI of text-selecting time
without priors and with priors were 7.04 ± 1.34 and 5.39 ± 0.95.
Using priors for misspelled words reduced the text-selecting time
for large font size by 23.49%. A paired-samples t-test indicated that
the difference was statistically significant (t11 = 2.35,p = 0.03). For
small font size, the mean ± 95% CI of text-selecting time without
priors and with priors were 10.07±2.08 and 6.01±1.06. Using priors

for misspelled words reduced the text-selecting time for small font
size by 40.35%. A paired-samples t-test indicated that the difference
was statistically significant (t11 = 3.93,p = 0.002).

4.10 Subjective feedback

Figure 7: Medians of subjective ratings for EyeSayCorrect

without and with priors. For overall preference (1: least pre-

ferred, 5: most preferred), a higher score means the method

is more preferred. For mental demand and physical de-

mand (1:least demanding, 10:most demanding), a lower rat-

ing means lower demand. EyeSayCorrect with priors re-

ceived favorable ratings in all categories.

At the end of the experiment, we asked users to rate each method
on a scale of 1 to 5 (1: least preferred, 5: most preferred) for con-
ditions without and with priors for misspelled words as shown
in Figure 7. The median ratings for the conditions without and
with misspelled words were 2 and 4. A Wilcoxon Signed-Ranks
Test indicated that the subjective ratings of condition with priors
were significantly higher than that of conditions without priors
(Z = 3.06,p = 0.002).

The participants were also asked to provide a numerical rating (1:
least demanding, 10: most demanding) on mental and physical de-
mand for conditions without and with priors for misspelled words.
Mental demand describes howmuch mental effort is required. Phys-
ical demand describes how much physical effort is required. As
shown in Figure 7, the medians of the mental demand for methods
without priors and with priors were 7 and 3.5. Wilcoxon Signed-
Ranks Tests indicated that the subjective mental demand of the
method with priors was significantly lower than that of the method
without priors (Z = 2.80,p = 0.005). The medians of the physical
demand for methods without priors and with priors were 7.5 and 3.
Wilcoxon Signed-Ranks Tests indicated that the subjective physical
demand of the method with priors was significantly lower than
that of the method without priors (Z = 2.80,p = 0.005).
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5 EXPERIMENT 2: COMPARING
EYESAYCORRECTWITH THE
TOUCH-ONLY METHOD

Without using hands or touch, text correction on mobile devices
is an extremely difficult task if not impossible. To better under-
stand the performance of the EyeSayCorrect method comparing
to the touch based method. We carried out an experiment with
the touch-only method which is the common practice for text
correction on mobile devices. Although the touch-only method
is a unimodal method and is vastly different from the proposed
multi-modal hands-free EyeSayCorrect method, it would serve as a
benchmark for understanding the performance of EyeSayCorrect.

5.1 Experiment Design

The study was a within-subjects design. The independent variable
was the correction method and the text font size. The correction
method has two levels:

• Touch-only method. To select text, users can use following
touch operations. 1. Tapping a word to move the cursor
to the end of that word. 2. Dragging the cursor to move it
at letter level. 2. Double clicking on a word to select the
word. 3. First double click a word, then drag the handle at
the beginning and end of the selected word to expand the
selection range. To change the text, users type on the default
iOS soft keyboard with QWERTY layout.

• EyeSayCorrect with priors for misspelled words. The work-
flow of EyeSayCorrect method is described in Section 3.1.
The parameters of EyeSayCorrect method in this study are
the same as the one with priors (γ = 2) in Section 4.

The text font size has two levels small (14 points) and large (28
points) which are the same as Section 4. In the experiment, the
conditions of the two independent variables were counterbalanced
across users.

5.2 Participants, apparatus, tasks and
procedure

We recruited 12 participants (4 females, 8 males) from 23 to 33 years
old (Mean = 26.00, Std = 2.86). The self-reported median familiarity
(1: not familiar, 5: very familiar) with the eye gaze tracking interface,
voice input interface, touch based interface was 2, 3, and 5. Four par-
ticipants used single-hand typing for the touch-only method. Eight
participants used two-hands typing for the touch-only method.

The same iPad Pro device as in Section 4 and the same set of
tasks as in Section 4 was used for this experiment. The procedure
of the experiment is the same as Section 4, the only difference is
that the condition of EyeSayCorrect without priors is replaced by
the touch-only method.

In total, the experiment included 12 users × 2 font sizes × 2
methods × 20 trials = 960 trials.

5.3 Failing rate

For the large font size and the small font size, the failing rates for
both methods were 0% in this study.

5.4 Task-completion time

Figure 8: Themean (95% CI) of task-completion time for two

font sizes and two methods.

The average task-completion time for all the trials in each con-
figuration was shown in Figure 8. For large font size, the mean
± 95% CI of the task-completion times of touch-only method and
EyeSayCorrect with priors were 6.85 ± 0.56 and 11.19 ± 1.74. The
touch-only method’s task-completion time is 61.23% of EyeSay-
Correct method’s task-completion time. A paired-samples t-test
indicated that the difference was statistically significant (t11 =
−5.02,p = 0.00039). For small font size, the mean ± 95% CI of
the task-completion times of touch-only method and EyeSayCor-
rect with priors were 7.29 ± 0.66 and 11.30 ± 1.42. The touch-
only method’s task-completion time is 64.49% of EyeSayCorrect
method’s task-completion time. A paired-samples t-test indicated
that the difference was statistically significant (t11 = −4.13,p =
0.0016).

5.5 Subjective feedback

At the end of the experiment, the participants rated their overall
preference for each method on a scale of 1 to 5 (1: least preferred,
5: most preferred) as shown in Figure 9. The median ratings for the
touch-only method and EyeSayCorrect were 4 and 3.5. A Wilcoxon
Signed-Ranks Test indicated that the difference was not significant
(Z = −0.1019,p = 0.9203).

The mental and physical demands for the two methods were
also rated by participants (1: least demanding, 10: most demanding).
The medians of the mental demand for the touch-only method
and EyeSayCorrect were 5 and 5. Wilcoxon Signed-Ranks Tests
indicated that the difference was not significant (Z = −0.2353,p =
0.8103). The medians of the physical demand for the touch-only
method and EyeSayCorrect were 5.5 and 6.5 . Wilcoxon Signed-
Ranks Tests indicated that the difference was not significant (Z =
−0.7113,p = 0.4777).

6 GENERAL DISCUSSION

Our first experiment showed that the priors for misspelledwordwas
effective for reducing the task-completion time and text-selecting
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Figure 9: Medians of subjective ratings for the touch-only

method and EyeSayCorrect with priors. For overall prefer-

ence (1: least preferred, 5: most preferred), a higher score

means the method is more preferred. For mental demand

and physical demand (1:least demanding, 10:most demand-

ing), a lower rating means lower demand.

time for text correction tasks. Using higher priors for misspelled
words reduced the task-completion time by 9.26% for large font
size and 23.79% for small font size, and it reduced the text-selecting
time by 23.49% for large font size and 40.35% for small font size.
However, this does not prove that the γ = 2 is the best value for
the prior. In future work, the optimal γ value could be searched by
simulation or user studies.

EyeSayCorrect cannot correct everything. In our first experiment,
the failure rate was very low but not zero. The possible reasons are
as follows. First, the speech recognition model may not be able to
correctly transcribe users’ speaking due to various reasons such as
environmental noise, user’s accent and model’s bias. Second, the
correction candidates generated by the algorithm may not be able
to correct all the errors. However, users have no problem selecting
their intended words by eye gaze, none of the failures were caused
by inability of selecting the intended word.

The second experiment comparing EyeSayCorrect with the touch-
only method showed that although hands-free text correction is
extremely difficult if not impossible, EyeSayCorrect can still reach
around 65% performance of the touch-only method, which makes
the difficult task feasible. EyeSayCorrect does not require acquain-
tance with QWERTY layout which needs long time of practice to
memorize. Anyone who can gaze and speak can use EyeSayCor-
rect. In addition, a user can correct text without knowing the exact
spelling of a word such as "Wednesday".

EyeSayCorrect offers a hands-free approach for text correction.
This is potentially useful for situations where users are not able to
use hands, especially for people who have motor impairment such
as quadriplegic patients and amyotrophic lateral sclerosis (ALS)
patients.

EyeSayCorrect has the common limitation of voice based inter-
face. Users may not be willing to speak out the correcting content
when they are in public due to privacy concerns. In this situation,

users could choose other appropriate input modalities, such as a
touch based soft keyboard.

7 CONCLUSION

We proposed EyeSayCorrect, an eye gaze and voice based hands-
free text correction system for mobile devices. To correct text, the
user first select a word using eye gaze by a Baysian based target
selection model. Then the user speaks the new phrase. EyeSayCor-
rect would infer the user’s correction intention based on the voice
inputs and the text context. Our user studies showed that using
priors for misspelt words significantly reduced the task completion
time and text selection time. And EyeSayCorrect made hands-free
text correction feasible on mobile devices using gaze and voice.
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