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We develop a framework for simulating measure-preserving, ergodic dynamical systems on a quantum com-
puter. Our approach provides an operator-theoretic representation of classical dynamics by combining ergodic
theory with quantum information science. The resulting quantum embedding of classical dynamics (QECD)
enables efficient simulation of spaces of classical observables with exponentially large dimension using a
quadratic number of quantum gates. The QECD framework is based on a quantum feature map that we introduce
for representing classical states by density operators on a reproducing kernel Hilbert space, H. Furthermore,
an embedding of classical observables into self-adjoint operators on H is established, such that quantum
mechanical expectation values are consistent with pointwise function evaluation. In this scheme, quantum states
and observables evolve unitarily under the lifted action of Koopman evolution operators of the classical system.
Moreover, by virtue of the reproducing property of H, the quantum system is pointwise-consistent with the
underlying classical dynamics. To achieve a quantum computational advantage, we project the state of the
quantum system onto a finite-rank density operator on a 2n-dimensional tensor product Hilbert space associated
with n qubits. By employing discrete Fourier-Walsh transforms of spectral functions, the evolution operator of
the finite-dimensional quantum system is factorized into tensor product form, enabling implementation through
an n-channel quantum circuit of size O(n) and no interchannel communication. Furthermore, the circuit features
a state preparation stage, also of size O(n), and a quantum Fourier transform stage of size O(n2), which makes
predictions of observables possible by measurement in the standard computational basis. We prove theoretical
convergence results for these predictions in the large-qubit limit, n → ∞. In light of these properties, QECD
provides a consistent simulator of the evolution of classical observables, realized through projective quantum
measurement, which is able to simulate spaces of classical observables of dimension 2n using circuits of size
O(n2). We demonstrate the consistency of the scheme in prototypical dynamical systems involving periodic and
quasiperiodic oscillators on tori. These examples include simulated quantum circuit experiments in Qiskit Aer,
as well as actual experiments on the IBM Quantum System One.

DOI: 10.1103/PhysRevA.105.052404

I. INTRODUCTION

Ever since a seminal paper of Feynman in 1982 [1], the
problem of identifying physical systems that can faithfully
and efficiently simulate large classes of other systems (per-
forming, in Feynman’s words, universal computation) has
received considerable attention. Under the operating princi-

ple that nature is fundamentally quantum mechanical, and
with the realization that simulating quantum systems by clas-
sical systems is exponentially hard, much effort has been
focused on the design of universal simulators of quantum
systems. Such efforts are based on the axioms of quan-
tum mechanics, with gates connected in quantum circuits
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performing unitary (and thus reversible) transformations of
quantum states [2–7].

Over the past decades, several numerically hard problems
have been identified, for which quantum algorithms are sig-
nificantly faster than their classical counterparts. A prominent
example is the Grover search algorithm, which results in a
quadratic speedup over classical search [8]. In a few cases,
such as random sampling, quantum computers have solved
problems that would be effectively unsolvable with present-
day classical supercomputing resources, thus opening the way
to quantum supremacy [9]. See also Ref. [10] for a discussion
of the result in Ref. [9].

Yet, at least at the level of effective theories, a great variety
of phenomena are well described by classical dynamical sys-
tems, generally formulated as systems of ordinary or partial
differential equations. Since simulating a quantum system by
a classical system can be exponentially hard, it is natural
to ask whether simulation of a classical system by a quan-
tum system is an exponentially “easy” problem, enabling a
substantial increase in the complexity and range of computa-
tionally amenable classical phenomena.

The possibility to simulate classical dynamical systems on
a quantum computer has attracted growing attention, on par
with research on fundamental new quantum algorithms and
their practical implementation [11]. Already 20 years ago, for
example, Benenti et al. [12] studied the sawtooth map gener-
ating rich and complex dynamics. The implementation of an
Euler method to solve systems of coupled nonlinear ordinary
differential equations (ODEs) was addressed by Leyton and
Osborne [13]. A framework for sequential data assimilation
(filtering) of partially observed classical systems based on
the Dirac–von Neumann formalism of quantum dynamics
and measurement was proposed in Ref. [14]. The simula-
tion of classical Hamiltonian systems using a Koopman–von
Neumann approach was studied by Joseph [15]. This quan-
tum computational framework was shown to be exponentially
faster than a classical simulation when the Hamiltonian is
represented by a sparse matrix. More recently, the potential
of quantum computing for fluid dynamics, in particular tur-
bulence, was explored in Refs. [16,17]. This includes, for
example, transport simulators for fluid flows in which the for-
mal analogy between the lattice Boltzmann method and Dirac
equation is used [18]. Lubasch et al. [19] took a different path
inspired by the success of quantum computing in solving op-
timization problems, modeling the one-dimensional Burgers
equation by a variational quantum computing method, made
possible by its correspondence with the nonlinear Schrödinger
equation. Quantum systems have also been employed in the
modeling of classical stochastic processes, where they have
shown a superior memory compression [20,21].

Here, we present a procedure for simulating a clas-
sical, measure-preserving, ergodic dynamical system by
means of a finite-dimensional quantum mechanical system
amenable to quantum computation. Combining operator-
theoretic techniques for classical dynamical systems with the
theory of quantum dynamics and measurement, our frame-
work leads to exponentially scalable quantum algorithms,
enabling the simulation of classical systems with other-
wise intractably high-dimensional spaces of observables. Our
work thus opens a route to the full realization of quan-

FIG. 1. Schematic of the relationship between the flow map �t

that advances the (nonlinear) dynamical system in a state space X in
time and the linear Koopman operator U t that advances observables
f on X in an infinite-dimensional Hilbert space.

tum advantage in the computation of classical dynamical
systems.

Another noteworthy aspect of our approach is that it
interfaces between classical [22–29] and quantum [30–36]
machine learning techniques based on kernel methods. Con-
nections with data-driven, operator-theoretic techniques for
classical dynamics [37–43] are also prevalent. Building
on our previous work on quantum mechanical approaches
to data assimilation [14], the framework presented here
offers a mathematically rigorous route to representing com-
plex, high-dimensional classical dynamics on a quantum
computer. The primary contributions of this work are as
follows.

(1) We present a generic pipeline that casts classical
dynamical systems in terms amenable to quantum computa-
tion. This approach consists of four steps: (1) a dynamically
consistent embedding of the classical state space X into
the state space of an infinite-dimensional quantum system
with a diagonalizable Hamiltonian; (2) eigenspace projection
of the infinite-dimensional quantum system onto a finite-
dimensional system, whose dynamics are representable by
composition of basic commuting unitary transformations,
realizable via quantum gates; (3) a preparation process, encod-
ing the classical initial state in X to a quantum computational
state; and (4) a quantum measurement process in the stan-
dard basis of the quantum computer to yield predictions for
observables. These four steps result in simulations of a 2n-
dimensional space of classical observables using n qubits and
a circuit of size (i.e., number of quantum gates) O(n2) and
depth O(n). We call this framework for encoding a classical
dynamical system in terms of a quantum computational sys-
tem quantum embedding of classical dynamics (QECD).

(2) We develop the principal mathematical tools employed
in this construction using Koopman and transfer operator tech-
niques [44,45] and the theory of reproducing kernel Hilbert
spaces (RKHSs) [46,47] and Banach function algebras on
locally compact Abelian groups [48–50]. The connection be-
tween the dynamical system and the Koopman operator is
illustrated in Fig. 1. Using RKHSs as the foundation to build
quantum mechanical models (as opposed to the L2 spaces
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employed in Ref. [25]) leads to pointwise consistency with
the underlying classical dynamical system; that is, consistency
for every classical initial condition, rather than in the sense of
expectations over initial conditions. This result should be of
independent interest in the broader context of representations
of classical dynamics in terms of quantum systems, which has
received significant attention [51–55].

(3) In the particular setting of quantum computation,
we establish theoretical convergence results for the finite-
dimensional systems generated by QECD, including asymp-
totic convergence rates in the large-qubit limit, n → ∞. The
time evolution of the quantum computational systems lever-
ages discrete Fourier-Walsh techniques [56] to efficiently
represent the Koopman operator using a circuit of size O(n)
and depth O(1). The state preparation step, which is a ma-
jor challenge in quantum computing [57,58], is also carried
with a circuit of size O(n) and depth O(1). In particular, we
take advantage of the fact that every quantum state associ-
ated with a classical initial state in X can be reached to any
desired accuracy by efficient unitary transformations applied
to a uniform-superposition state constructed using Hadamard
gates. Meanwhile, the measurement process employs the
quantum Fourier transform (QFT) to perform efficient approx-
imate diagonalization of observables with a circuit of size
O(n2) and depth O(n) [59,60].

(4) We demonstrate the QECD framework in simple, an-
alytically solvable examples of classical dynamics, so that
all steps of the procedure are fully reproducible. Specifi-
cally, we use QECD to simulate the evolution of observables
of periodic and quasiperiodic dynamical systems in a one-
and two-dimensional phase space, respectively. We employ
the gate-based, universal quantum computing toolkit Qiskit
Aer [61], using up to n = 8 qubits. Results from simulated
quantum circuit experiments (see Figs. 6 and 8) are found
to be in good agreement with the true classical dynamics. In
addition, we perform experiments for the periodic system on
an actual quantum computer, the IBM Quantum System One,
demonstrating the ability of QECD to simulate a classical
system on a noisy intermediate-scale quantum (NISQ) device.

We note that the two-dimensional quasiperiodic dynam-
ics in our examples can be straightforwardly extended to
higher dimensions, where the dynamics becomes increasingly
indistinguishable from a chaotic system. For quasiperiodic dy-
namics, no interchannel communication is necessary. Circuits
of higher complexity that create interqubit entanglement may
need to be explored for treatment of chaotic dynamics.

The outline of the paper is as follows. First, in Sec. II we
give a high-level description of the methodological frame-
work underlying the quantum embedding. In Sec. III, we
introduce the class of dynamical systems under study, along
with the corresponding RKHSs of classical observables. This
is followed in Secs. IV–VIII by a detailed description of
the construction of the QECD for this class of systems. In
Sec. IX, we discuss aspects of the computational complexity
of our approach in relation to classical simulators of quan-
tum computational systems [62–64]. In Secs. X and XI, we
present our results from simulated and actual quantum com-
putation experiments, respectively. Our primary conclusions
are summarized in Sec. XII. The paper contains Appendixes
on RKHS-based quantum mechanical representations of clas-

FIG. 2. Schematic representation of the QECD framework ap-
plied to states and observables of a classical dynamical system in
five successive levels, leading to an n-qubit quantum computational
system. These are the classical, classical statistical, quantum me-
chanical, matrix mechanical, and quantum computational levels. The
horizontal arrows from top to bottom in the left- and right-hand
columns represent the time evolution maps of states and observables,
respectively. These are the flow map �t on the classical state space
X , the transfer operator �t

∗ on the space of probability measures
P (X ), and the Koopman operator U t on the algebra of classical
observables A ⊆ C(X ). They are followed by the unitary evolution
map �t and the Heisenberg operator U t on the space of density
operators Q(H) and bounded linear operators B(H), respectively,
on the reproducing kernel Hilbert space H. The maps at the matrix
mechanical level, �t

n and U t
n, are finite-rank projections of �t and

U t , respectively, acting on operators on 2n-dimensional subspaces
Hn of H. The corresponding maps �̂t

n and Û t
n, respectively, at the

quantum computational level act on operators on the 2n-dimensional
tensor product Hilbert space Bn, which forms the basis of an n-
qubit quantum computer. The vertical arrows correspond to maps
that translate states (left-hand column) and observables (right-hand
column) to the next representation level. Under the combined action
of these maps, a classical state x ∈ X is mapped to an n-qubit density
matrix ρ̂x,n ∈ Q(Bn), and a classical observable f ∈ A is mapped
to a self-adjoint operator Ŝn ∈ B(Bn). A loop of arrows represents
a commutative diagram.

sical systems (Appendix A), Fourier-Walsh factorization
of the Koopman generator (Appendix B), and QFT-based
approximate diagonalization of observables (Appendix C). In
addition, we provide an overview of elements of Koopman
operator theory related to this work and associated numerical
techniques in Appendixes D and E, respectively.

II. A ROUTE TO QUANTUM EMBEDDING
OF CLASSICAL DYNAMICS

We begin by describing the main components of the QECD
framework for representing classical dynamics on a quantum
computer. Figure 2 schematically summarizes the succes-
sive levels used in the procedure, passing through classical,
classical statistical, infinite-dimensional quantum mechanical,
finite-dimensional quantum mechanical (referred to as matrix
mechanical), and quantum computational levels. This diagram
juxtaposes the steps for states and observables side by side
for easy comparison. In the following subsections, we discuss
the individual horizontal and vertical connections (which are
maps) on each of the five levels of this diagram.
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A. Classical and classical statistical levels

Consider a classical dynamical system on a compact metric
space X , described by a dynamical flow map

�t : X → X with t ∈ R, (1)

as indicated by a horizontal arrow in the left-hand column
of Fig. 2. The classical state space X is embedded into the
space of Borel probability measures P (X ) (i.e., the classical
statistical space) by means of the map δ sending x ∈ X to the
Dirac measure δx ∈ P (X ) supported at x. The dynamics acts
naturally on the classical statistical space by the pushforward
map on measures,

�t
∗:P (X ) → P (X ) with �t

∗(ν) = ν ◦�−t , (2)

also known as the transfer or Perron-Frobenius opera-
tor [44,45]. The map δ has the equivariance property�t

∗ ◦ δ =
δ ◦�t , represented by the top loop in the the left-hand column
in Fig. 2.

Associated with the dynamical system are spaces of
classical observables, which we take here to be spaces of
complex-valued functions on X . A natural example is the
space of continuous functions, denoted as C(X ), which also
forms an (Abelian) algebra with respect to the pointwise prod-
uct of functions. The Koopman operator [65,66], Ut , acts on
observables in C(X ) by composition with the flow map, i.e.,

Ut :C(X ) → C(X ) with Ut f = f ◦�t ; (3)

see also Fig. 1. The horizontal arrow in the first line of the
right-hand column in Fig. 2 represents the action of the Koop-
man operator on a subalgebra A ⊆ C(X ) that will be described
in Sec. II B below.

In this context, a simulator of the system can be described
as a procedure which takes as an input an observable f ∈
C(X ) and an initial condition x ∈ X , and produces as an output
a function f̂ (t )(x) approximating the evolution f (�t (x)) of the
observable under the dynamics. For instance, if �t is the flow
generated by a system of ODEs ẋ = �V (x) on X = Rm, and
X ⊂ X is an invariant subset of this flow (e.g., an attractor), a
standard simulation approach is to construct a finite-difference
approximation �̂t :X → X of the dynamical flow based on a
timestep�t (using interpolation to generate a continuous-time
trajectory), and obtain f̂ (t )(x) = f (�̂t (x)) by evaluating the
observable of interest f on the approximate trajectory. The
scheme then converges in a limit of �t → 0 by standard
results in ODE theory and numerical analysis for observables
f of sufficient regularity.

From an observable-centric standpoint, a simulator of the
system corresponds to a linear operator Û t approximating
the Koopman operator Ut , giving f̂ (t )(x) = Û t f (x). For in-
stance, the ODE-based approximation just mentioned can
be described in this way for Û t f = f ◦ �̂t , but note that
not every approximation of Ut has to be of the form of a
composition operator by a flow. Indeed, “lifting” the task of
simulation from states to (classical) observables opens the
possibility of using new approximation techniques, which in
some cases can resolve computational bottlenecks, e.g., due
to high dimensionality (m) of the ambient state space X [67].
Invariably, every practical simulator Û t is restricted to act on
a space of observables of finite dimension, N (e.g., a subspace

of C(X ) or L2). In general, the computation cost of acting
with Û t on elements of this space scales as N2, but can be
reduced to O(N ) if Û t is efficiently represented by a diagonal
matrix. The evaluation cost of observables, which corresponds
to summation of an N-term basis expansion such as a Fourier
series, is typically O(N ).

In what follows, rather than employing an approximation
Û t acting on classical observables, our goal is to simulate the
action of Ut using a quantum mechanical system. As we will
see, this can be achieved at a logarithmic cost of elementary
quantum operations (gates); specifically, QECD allows simu-
lation of spaces of classical observables of dimension N = 2n

using O(n2) gates.

B. Quantum computational representation

The QECD framework effecting the representation of the
classical system by a quantum mechanical system employs
the following key spaces:

(1) The classical state space X
(2) A Banach ∗-algebra A ⊆ C(X ) of classical observables
(3) An infinite-dimensional RKHS H ⊂ A

(4) A finite-dimensional Hilbert space Bn associated with
the quantum computer.

The Hilbert spaces H and Bn have corresponding (non-
Abelian) algebras of bounded linear operators, B(H) and
B(Bn), respectively, acting as quantum mechanical observ-
ables. Moreover, states on these algebras are represented by
density operators, i.e., trace-class, positive operators of unit
trace, acting on the respective Hilbert space. We denote the
spaces of density operators on H and Bn by Q(H) and Q(Bn),
respectively. Below, n represents the number of qubits, thus
the dimension of Bn is 2n.

The spaces of classical states and observables X and
A are mapped into the spaces of quantum states and ob-
servables Q(Bn) and B(Bn), respectively; see Fig. 2. The
following maps on states (left-hand column) and observables
(right-hand column) transform the classical system into a
quantum-mechanical one on Bn:

(1) We construct a map F̂n : X → Q(Bn) from classical
states (points) in X to quantum states on Bn. By analogy with
the RKHS-valued feature maps in machine learning [68], F̂n

will be referred to as a quantum feature map. To arrive at
F̂n, the classical statistical space P (X ) is first embedded into
the quantum mechanical state space Q(H) associated with H
through a map P:P (X ) → Q(H) [see (22) below]. The com-
posite map F := P ◦ δ thus describes a one-to-one quantum
feature map from X into Q(H). Next, the infinite-dimensional
space Q(H) is projected onto a finite-dimensional quantum
state space Q(Hn) associated with a 2n-dimensional sub-
space Hn ⊂ H by means of a map �′

n: Q(H) → Q(Hn).
We refer to this level of description as matrix mechanical
since all quantum states and observables are finite-rank op-
erators, represented by 2n × 2n matrices. To arrive at the
quantum computational state space, we finally apply a unitary
Wn: Q(Hn) → Q(Bn), so that the full quantum feature map
from X to Q(Bn) takes the form F̂n = Wn ◦ �′

n ◦ P ◦ δ.
(2) We construct a linear map T̂n : A → B(Bn) from clas-

sical observables in A to quantum mechanical observables in
B(Bn). This map takes the form T̂n = Wn ◦ �n ◦ T , where

052404-4

Remove


Watermark

Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5237&m=db


EMBEDDING CLASSICAL DYNAMICS IN A QUANTUM … PHYSICAL REVIEW A 105, 052404 (2022)

�n: B(H) → B(Hn) is a projection, so that T̂n yields a quan-
tum computational representation of classical observables
passing through intermediate quantum mechanical and matrix
mechanical representations. Here, T :A → B(H) is one-to-
one on real-valued functions in A, and T f is self-adjoint
whenever f is real.

Next, we describe the maps governing the temporal evo-
lution of states and observables, represented by horizontal
arrows in Fig. 2:

(1) At the quantum mechanical level, states in Q(H)
evolve under the operator�t (horizontal arrow in the left-hand
column) induced by a unitary Koopman operator Ut = etV on
H. This evolution is generated by a skew-adjoint generator
V : D(V ) → H, defined on a dense subspace D(V ) ⊂ H and
possessing a countable spectrum of eigenfrequencies.

(2) The generator V is mapped to a self-adjoint Hamil-
tonian Hn:Bn → Bn given by Hn = Wn�nV/i. This Hamil-
tonian is decomposable as a sum Hn = ∑

j G j of mutually
commuting operators Gj ∈ B(Bn), each of which is of
pure tensor product form, Gj = ⊗n

i=1 Gi j . The latter prop-
erty enables quantum parallelism in the unitary evolution
�̂t

n: Q(Bn) → Q(Bn) at the quantum computational level gen-
erated by Hn (see horizontal arrow at the bottom of the
left-hand column of Fig. 2). One of our main results is that
�̂t can be implemented via a quantum circuit of size O(n)
and no interchannel communication (see Figs. 6 and 8).

(3) The horizontal arrow at the quantum mechanical level
represents the action of the Heisenberg evolution operator
U t : B(H) → B(H). Under the assumption that the RKHS H
is invariant under the Koopman operator, U t acts on B(H) by
conjugation with Ut , i.e., U t A = Ut AUt∗.

(4) The corresponding Heisenberg evolution operator at
the quantum computational level, Û t

n: B(Bn) → B(Bn), acting
on quantum mechanical observables on the Hilbert space Bn,
is represented by the horizontal arrow at the bottom of the
right-hand column. This operator is obtained by projection of
U t , viz., Û t

n = Wn�nU t .
Given a classical initial condition x ∈ X , the quantum com-

putational system constructed by QECD makes probabilistic
predictions f̂ (t )

n (x) of f (�t (x)) through quantum mechanical
measurement of the projection-valued measure (PVM) [4,69]
associated with the quantum register on the quantum state
ρ̂ (t )

x,n := �̂t
n(ρ̂x,n), where ρ̂x,n = F̂n(x). The state ρ̂x,n is pre-

pared by means of a circuit of size O(n), which is applied
to the standard initial state vector of the quantum computer.
Furthermore, the measurement step is effected by performing
a rotation ρ̂ (t )

x,n �→ ρ̃ (t )
x,n by a QFT, which is implementable via

a circuit of size O(n2). An ensemble of such measurements
then approximates the quantum mechanical expectation value

〈T̂n f 〉
ρ̂

(t )
x,n

:= f (t )
n (x). (4)

The function x �→ f (t )
n (x) converges in turn uniformly to the

true classical evolution, i.e., Ut f (x), in the large-qubit limit,
n → ∞. We will return to these points in a more detailed
discussion in Secs. V–VIII.

In summary, the key distinguishing aspects of QECD are
as follows:

(1) Dynamical consistency. The predictions made by the
quantum quantum computational system via (4) converge to

the true classical evolution as the number of qubits n in-
creases. In particular, since dim Bn = 2n, the convergence is
exponentially fast in n.

(2) Quantum efficiency. The full circuit implementation
of the scheme, including state preparation, dynamical evolu-
tion, and measurement, requires a circuit of size O(n2) and
depth O(n). Since, as just mentioned, the dimension of Bn

increases exponentially with n, the quantum computational
system constructed by QECD can simulate a 2n-dimensional
subspace of classical observables at an O(n2) computational
cost. This results in an exponential quantum advantage over
classical numerical techniques for approximating Koopman
operators, where computational complexity scales linearly
with the dimension of the subspace, i.e., is O(2n). We will
make a comparison with randomized classical algorithms for
quantum circuit simulation [62–64] in Sec. IX.

(3) State preparation. The quantum computational state
ρ̂x,n corresponding to classical state x is prepared by pass-
ing the standard initial state vector of the quantum computer
through a circuit of size O(n) and depth O(1). This overcomes
the expensive (potentially exponential) state preparation prob-
lem affecting many quantum computational algorithms.

(4) Measurement process. The process of querying the
system to obtain predictions is a standard projective measure-
ment of the quantum register. Importantly, no quantum state
tomography or auxiliary classical computation is needed to
retrieve the relevant information.

In the ensuing sections, we lay out the properties of the
classical system under study (Sec. III), and describe the con-
version to the quantum computational system using QECD
(Secs. IV–VIII).

III. CLASSICAL DYNAMICS AND OBSERVABLES

A. Dynamical system

We focus on the class of continuous, measure-preserving,
ergodic flows with a pure point spectrum generated by finitely
many eigenfrequencies and continuous corresponding eigen-
functions. Every such system is topologically conjugate (for
our purposes, equivalent) to an ergodic rotation on a d-
dimensional torus, so we will set X = T d without loss of
generality. Using the notation x = (θ1, . . . , θd ) to represent
a point x ∈ T d , where θ j ∈ [0, 2π ) are canonical angle coor-
dinates, the dynamics is described by the flow map

�t (x) = (θ1 + α1t, . . . , θd + αdt ) mod 2π, (5)

where α1, . . . , αd are positive, rationally independent (incom-
mensurate) frequency parameters. This dynamical system is
also known as a linear flow on the d-torus, but note that T d is
not a linear space. In dimension d > 1, the orbits�t (x) of the
dynamics do not close by incommensurability of the α j , each
forming a dense subset of the torus (i.e., a given orbit passes
by any point in T d at an arbitrarily small distance). The case
d = 2 is shown for two choices of α j in Fig. 3, illustrating
the difference between ergodic and nonergodic dynamics. In
dimension d = 1, the flow map corresponds to a harmonic
oscillator on the circle, T 1 = S1, where each orbit is periodic
and samples the whole space.

It is important to note that if the dynamical system is
not presented in the form of a torus rotation, then standard
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FIG. 3. Ergodic (a) and nonergodic (b) linear flows on the two-
dimensional torus T 2. In (a) the ratio of the frequency parameters
α1/α2 is irrational, and the trajectory starts to fill the torus surface. In
(b) the ratio of the frequencies is rational, and the trajectory is closed.
The corresponding frequency parameters α1 and α2 are given to the
right of each figure.

constructions from ergodic theory may be used to transform
it into the form in (5). These constructions are based entirely
on spectral objects (i.e., eigenfunctions and eigenfrequencies)
associated with the Koopman operator of the system. See
Appendix D 4 further details. The same constructions allow
one to treat the case where X is a periodic or quasiperiodic
attractor of a dynamical flow �t :X → X on a higher-
dimensional space X ⊇ X . By virtue of these facts, the
quantum mechanical framework described in this paper can
readily handle simulations of observables of general measure-
preserving, ergodic flows with pure point spectrum. Relevant
examples include ODE models on X = Rm with quasiperi-
odic attractors [70], as well as PDE models where X is an
infinite-dimensional function space. The latter class includes
many pattern-forming physical systems such as thermal
convection flows [71], plasmas [72], and reaction-diffusion
systems [73] in moderate-forcing regimes.

At any dimension d , the flow in (5) is measure-preserving
and ergodic for a probability measure μ given by the nor-
malized Haar measure. The dynamics of classical observables
f : X → C is governed by the Koopman operator Ut , which
is a linear operator, acting by composition with the dynamical
flow in accordance with (3) [44,45,74]. The Koopman oper-
ator acts as an isometry on the Banach space of continuous
functions on X , i.e., ‖Ut f ‖C(X ) = ‖ f ‖C(X ), where ‖ f ‖C(X ) =
maxx∈X | f (x)| is the uniform norm. In addition, Ut lifts to a
unitary operator on the Hilbert space L2(μ) associated with
the invariant measure. That is, using 〈 f , g〉L2(μ) = ∫

X f ∗gdμ
to denote the L2(μ) inner product, we have 〈Ut f ,Ut g〉L2(μ) =
〈 f , g〉L2(μ) for all f , g ∈ L2(μ), which implies, in conjunction
with the invertibility of �t , that

Ut∗ = (Ut )−1.

Here, Ut∗ denotes the operator adjoint, which is also fre-
quently denoted as (Ut )†. The collection {Ut : L2(μ) →
L2(μ)}t∈R then forms a strongly continuous unitary group
under composition of operators [75]. See again Fig. 1.

By Stone’s theorem on one-parameter unitary evolution
groups [76], the Koopman group on L2(μ) has a skew-adjoint
infinitesimal generator, i.e., an operator V : D(V ) → L2(μ)
defined on a dense subspace D(V ) ⊂ L2(μ) satisfying

V ∗ = −V and V f = lim
t→0

Ut f − f

t
, (6)

for all f ∈ D(V ). The generator gives the Koopman operator
at any time t by exponentiation,

Ut = etV . (7)

Modulo multiplication by 1/i to render it self-adjoint, it plays
an analogous role to a quantum mechanical Hamiltonian gen-
erating the unitary Heisenberg evolution operators.

As already noted, the torus rotation in (5) is a canoni-
cal representative of a class of continuous-time continuous
dynamical systems on topological spaces with quasiperiodic
dynamics generated by finitely many basic frequencies. This
means that every such system can be transformed into an
ergodic torus rotation of a suitable dimension by a homeomor-
phism (continuous, invertible map with continuous inverse).
By specializing to this class of systems (as opposed to a
more general measure-preserving, ergodic flow), we gain two
important properties:

(1) The dynamics has no mixing (chaotic) component.
This implies that the spectrum of the Koopman operator for
this system acting on L2(μ), or a suitable RKHS as in what
follows, is of “pure point” type, obviating complications aris-
ing from the presence of continuous spectrum as would be the
case under mixing dynamics.

(2) The state space X is a smooth, closed manifold with
the structure of a connected, Abelian Lie group. The Abelian
group structure, in particular, renders this system amenable to
analysis with Fourier analytic tools.

Below, we use a d-dimensional vector j = ( j1, . . . , jd ) ∈
Zd to represent a generic multi-index, and

φ j (x) =
d∏

m=1

ϕ jm (θm) with ϕl (θ ) = eilθ , (8)

to represent the Fourier functions on T d . In Sec. XII, we
will discuss possible avenues for extending the framework
presented here to other classes of dynamical systems, such
as mixing dynamical systems with continuous spectra of the
Koopman operators.

B. Algebra of observables

According to the scheme described in Sec. II B, we perform
quantum conversion of an (Abelian) algebra A of classical
observables, i.e., a space of complex-valued functions on X
which is closed under the pointwise product of functions.
We construct A such that it is a subalgebra of C(X ) with
additional (here, C∞) regularity and RKHS structure. This
structure is induced by a smooth, positive-definite kernel

052404-6

Remove


Watermark

Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5237&m=db


EMBEDDING CLASSICAL DYNAMICS IN A QUANTUM … PHYSICAL REVIEW A 105, 052404 (2022)

function k̃: X × X → R, which has the following properties
for every point x ∈ X and function f ∈ A:

(1) The kernel section k̃x := k̃(x, ·) lies in A.
(2) Pointwise evaluation, x �→ f (x), is continuous, and

satisfies

f (x) = 〈k̃x, f 〉A, (9)

where 〈·, ·〉A is the inner product of A.
Equation (9) is known as the reproducing property, and un-

derlies the many useful properties of RKHSs for tasks such as
function approximation and learning. Note, in particular, that
L2 spaces, which are more commonly employed in Koopman
operator theory and numerical techniques (see Sec. III A),
do not have a property analogous to (9). In fact, pointwise
evaluation is not even defined for the L2(μ) Hilbert space on
T d . See Refs. [46,47,77] for detailed expositions on RKHS
theory.

Our construction of A follows Ref. [50]. We begin by
setting parameters p ∈ (0, 1) and τ > 0, and defining the map
| · |p:Zd → R+,

| j|p := | j1|p + · · · + | jd |p,

and the functions ψ j ∈ C(X ),

ψ j := e−τ | j|p/2φ j with j ∈ Zd .

We then define a kernel k̃: X × X → R+ via the series

k̃(x, x′) =
∑
j∈Zd

ψ∗
j (x)ψ j (x

′), (10)

where the sum over j converges uniformly on X × X to a
smooth function. Intuitively, τ can be thought of as a locality
parameter for the kernel, meaning that as τ decreases k̃(x, x′)
becomes increasingly concentrated near x = x′, approaching
a δ function as τ → 0.

An important property of the kernel that holds for any τ >
0 is that it is translation-invariant on the Abelian group X =
T d . That is, using additive notation to represent the binary
group operation on X , we have

k̃(x + y, x′ + y) = k̃(x, x′), ∀x, x′, y ∈ X. (11)

In particular, setting y = �t (e), where e is the identity element
of X , and noticing that the dynamical flow from (5) satis-
fies �t (x) = x +�t (e), we deduce the dynamical invariance
property

k̃(�t (x),�t (x′)) = k̃(x, x′), ∀x, x′ ∈ X, ∀t ∈ R.

In Ref. [50] it was shown that for every p > 0 and τ > 0,
the kernel k̃ in (10) is a strictly positive-definite kernel on X ,
so it induces an RKHS, A, which is a dense subspace of C(X ).
One can verify that the collection {ψ j : j ∈ Zd} forms an or-
thonormal basis of A, consisting of scaled Fourier functions,
so every observable f ∈ A admits the expansion

f =
∑
j∈Zd

f̃ jψ j =
∑
j∈Zd

f̃ je
−τ | j|p/2φ j,

where the sum over j converges in A norm. The above
manifests the fact that A contains continuous functions with

TABLE I. Properties of representative spaces of classical observ-
ables on the compact Abelian group X = T d . The space A is an
RKHA, which, in addition to being an RKHS, has a Banach ∗-algebra
structure.

L2(μ) L∞(μ) C(X ) C∞(X ) A

Completeness � � � × �
Hilbert space structure � × × × �
Pointwise evaluation × × � � �
∗-algebra structure × � � � �
C∞ regularity × × × � �

Fourier coefficients decaying faster than any polynomial, im-
plying in turn that every element of A is a smooth function in
C∞(X ).

It can also be shown that the RKHS induced by k̃ acquires
an important special property which is not shared by generic
RKHSs—namely, it becomes an Abelian, unital, Banach ∗-
algebra under pointwise multiplication of functions. We list
the defining properties for completeness in Appendix A 1.
In Ref. [50], the space A was referred to as a reproducing
kernel Hilbert algebra (RKHA) as it enjoys the properties
of both RKHSs and Banach algebras. In particular, a dis-
tinguishing aspect of A is that it simultaneously has Hilbert
space structure [as L2(μ)] and Banach ∗-algebra structure
[as C(X )], while also allowing pointwise evaluation by con-
tinuous functionals [i.e., the reproducing property in (9)].
The RKHAs associated with the family of kernels in (10)
are examples of harmonic Hilbert spaces on locally compact
Abelian groups [48], and are also closely related (by Fourier
transforms) to weighted convolution algebras [49] on the dual
group Zd of X = T d .

Table I summarizes the properties of A and other function
spaces on X employed in this work. In what follows, we shall
let Asa denote the set of self-adjoint elements of A, i.e., the
elements f ∈ A satisfying f ∗ = f . Since the ∗ operation of A
corresponds to complex conjugation of functions, it follows
that Asa contains the real-valued functions in A. Note that
if f = ∑

j∈Zd f̃ jψ j is an element of Asa, then its expansion

coefficients in the ψ j basis satisfy f̃ ∗
j = f̃− j .

Next, we state a product formula for the orthonormal basis
functionsψ j , which follows directly from their definition, viz.,

ψ jψl = c jlψ j+l with

c jl = exp

(
−τ | j|p + |l|p − | j + l|p

2

)
. (12)

In the above, we interpret the coefficients c jl as “structure
constants” of the RKHA A. Figure 4 displays representative
matrices formed by the c jl in dimension d = 1 and 2 for
p = 1/4 and τ = 1/4.

In the special case d = 1, we will let A(1) be the RKHA
on the circle S1 ≡ T 1 constructed as above. We denote the
reproducing kernel of A(1) by k̃(1), and let ψ (1)

j , j ∈ Z, be

the corresponding orthonormal basis functions withψ (1)
j (θ ) =

e−| j|pτ/2ϕ j (θ ). It then follows that A admits the tensor product
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FIG. 4. Structure constant matrices c jl for reproducing kernel
Hilbert algebras on (a) the circle with d = 1 and (b) the 2-torus
with d = 2. In both cases we use the parameter values p = 1/4
and τ = 1/4 as given in (12). In (a), we consider indices in the
range −2n−1 � j, l � 2n−1 with n = 3. In (b), the multi-indices j =
( j1, j2) and l = (l1, l2) satisfy −2n/2−1 � ji, li � 2n/2−1 with n = 8.
In both (a) and (b), we map j and l into standard matrix indices
1, 2, . . . , (2n/d + 1)d [which results in (24 + 1)2 = 289 for (b)] by
lexicographical ordering. The matrix in (b) is thus equal to the
Kronecker product of the matrix in (a) with itself.

factorization

A =
d⊗

i=1

A(1), (13)

and the reproducing kernel and orthonormal basis functions of
A similarly factorize as

k̃(x, x′) =
d∏

i=1

k̃(1)(θ i, θ i′), ψ j (x) =
d∏

i=1

ψ
(1)
ji

(θ i),

where j = ( j1, . . . , jd ), and θ i, θ i′ are canonical angle co-
ordinates of the points x = (θ1, . . . , θd ), x′ = (θ1′, . . . , θd ′),
respectively [see also (8)].

C. Evolution of RKHA observables

From an operator-theoretic perspective, simulating the dy-
namical evolution of a continuous classical observable f ∈
C(X ) can be understood as approximating the Koopman op-
erator Ut on C(X ); for, if Ut were known one could use
it to compute Ut f (x) = f (�t (x)) for every observable f ∈
C(X ), time t ∈ R, and initial condition x ∈ X (cf. Sec. II).
Yet, despite its theoretical appeal, consistently approximating
the Koopman operator on C(X ) is challenging in practice,
as this space lacks the Hilbert space structure underpinning
commonly employed operations used in numerical tech-
niques, such as orthogonal projections (see Table I). For a
measure-preserving, ergodic dynamical system such as the
torus rotation in (5), a natural alternative is to consider the
unitary Koopman operator on the L2(μ) Hilbert space associ-
ated with the invariant measure μ. While this choice addresses
the absence of orthogonal projections on C(X ), L2(μ) lacks
the notion of pointwise evaluation of functions, so one must
correspondingly abandon the notion of pointwise forecasting
in this space.

In light of the above considerations, RKHSs emerge as at-
tractive candidates of spaces of classical observables in which
to perform simulation, as they allow pointwise evaluation
through the reproducing property in (9) while having a Hilbert
space structure. Unfortunately, an obstruction to using RKHSs
in dynamical systems forecasting is that a general RKHS H
on X need not be preserved under the dynamics, even if the
reproducing kernel k is continuous. That is, in general, if
f : X → C lies in an RKHS, the composition f ◦�t need not
lie in the same space, and thus the Koopman operator is not
well defined as an operator mapping the RKHS into itself [27].
Intuitively, this is because membership of a function f in an
RKHS generally imposes stringent requirements in its regu-
larity, as we discussed for example in Sec. IV A with the rapid
decay of Fourier coefficients, which need not be preserved by
the dynamical flow.

An exception to this obstruction occurs when the repro-
ducing kernel is translation-invariant, which holds true for the
class of kernels introduced in Sec. III B [see (11)]. In fact,
it can be shown [55] that the RKHA A associated with the
kernel k̃ in (10), is invariant under the Koopman operator Ut

for all t ∈ R, and Ut :A → A is unitary and strongly con-
tinuous. Analogously to the L2(μ) case, the evolution group
{Ut :A → A}t∈R is uniquely characterized through its skew-
adjoint generator V : D(V ) → A, defined on a dense subspace
D(V ) ⊂ A, and acting on observables as displayed in (6).

For the torus rotation in (5), V is diagonalizable in the {ψ j}
basis of A. That is, for j = ( j1, . . . , jd ) ∈ Zd , we have

Vψ j = iω jψ j,

where ω j is a real eigenfrequency given by

ω j = j1α1 + · · · + jdαd . (14)

Moreover, V admits a decomposition into mutually commut-
ing, skew-adjoint generators V1, . . . ,Vd satisfying

Vlψ j = i jlαlψ j with l = 1, . . . , d. (15)
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In particular, since {ψ j} is an orthonormal basis, (15) com-
pletely characterizes Vl , and we have

V = V1 + · · · + Vd , [Vj,Vl ] = 0, [Vj,V ] = 0. (16)

It should be noted that the Koopman generator on L2(μ)
admits a similar decomposition to (16); see e.g., Ref. [25] for
further details. Analogously to the L2(μ) case, the Koopman
operator on A can be recovered at any t ∈ R from the genera-
tor by exponentiation as given in (7).

IV. EMBEDDING INTO AN INFINITE-DIMENSIONAL
QUANTUM SYSTEM

The initial stages of the QECD procedure outlined in
Sec. II involve embedding classical states and observables
into states and observables of quantum system associated
with an infinite-dimensional RKHS H, arriving at the quan-
tum mechanical level depicted in Fig. 2. In this section, we
describe the construction of this quantum system and asso-
ciated embeddings of classical states and observables. First,
in Sec. IV A we build H as a subspace of the RKHA A

from Sec. III B. Then, in Secs. IV B and IV C we estab-
lish representation maps Q: X → Q(H) and T :A → B(H)
from classical states and observables into quantum mechan-
ical states and observables, respectively, on H. Note that the
quantum mechanical embedding of states Q passes through
an intermediate classical statistical level associated with prob-
ability measures on the classical state space (second row in
the left-hand column of Fig. 2). In Secs. IV D and IV E,
we establish the classical-quantum consistency and associated
dynamical properties of our embeddings.

A. Reproducing kernel Hilbert space

We choose H as an infinite-dimensional subspace of the
RKHA A containing zero-mean functions. For that, we intro-
duce the (infinite) index set

J = {( j1, . . . , jd ) ∈ Zd : ji �= 0}, (17)

and define H as the corresponding infinite-dimensional closed
subspace

H = span{ψ j : j ∈ J}.
The space H is then an RKHS with the reproducing kernel

k(x, x′) =
∑
j∈J

ψ∗
j (x)ψ j (x

′). (18)

In particular, for every f ∈ H, which is necessarily an element
of A, the reproducing property in (9) reads

f (x) = 〈kx, f 〉H = 〈k̃x, f 〉A,
where kx := k(x, ·) is the section of the kernel k at x ∈ X , and
〈·, ·〉H denotes the inner product of H.

By excluding zero indices from the index set J , every ele-
ment f of H has zero mean,

∫
X f dμ = 0, as noted above. The

reason for adopting this particular definition for H, instead of,
e.g., working with the entire space A, is that later on it will
facilitate construction of 2n-dimensional subspaces Hn ⊂ H
suitable for quantum computation (see Sec. V). In what fol-
lows, �:A → A will denote the orthogonal projection with

ran� = H. Moreover, we set

κ = k(x, x) =
∑
j∈J

e−τ | j|p, κ̃ = k̃(x, x) =
∑
j∈Zd

e−τ | j|p,

where these definitions are independent of the point x ∈ X
by (11). We also note that, by construction, H is a Koopman-
invariant subspace of A, so we may define unitary Koopman
operators Ut :H → H by restriction of Ut : A → A from
Sec. III C.

B. Representation of states with a quantum feature map

For our purposes, a key property that the RKHS structure
of H endows is the feature map, which is the continuous
map F : X → H mapping classical state x ∈ X to the RKHS
function

F (x) = kx. (19)

It can be shown that for the choice of kernel in (18), F is an
injective map, and the functions {F (x) ∈ H: x ∈ X } are lin-
early independent. It is then natural to think of the normalized
feature vectors

ξx := kx

‖kx‖H = kx√
κ

(20)

as “wave functions” corresponding to classical states x ∈ X .
We can generalize this idea by associating every such wave

function ξx with the pure quantum state ρx = 〈ξx, ·〉Hξx. The
mapping F : X → Q(H) with

F (x) = ρx (21)

then describes an embedding of the classical state space X into
quantum mechanical states in Q(H), which we refer to as a
quantum feature map. Note that there is no loss of information
in representing x ∈ X by ρx ∈ Q(H). Moreover, F can be
understood as a composition F = P ◦ δ, where δ: X → P (X )
maps classical state x ∈ X to the Dirac probability measure
δx ∈ P (X ), and P:P (X ) → Q(H) is a map from classical
probability measures on X to quantum states on H, such that

P(p) =
∫

X
ρx d p(x). (22)

The map P describes an embedding of the state space X into
the space of probability measures P (X ), i.e., the classical
statistical level in the left-hand column of Fig. 2. See Ref. [50]
for further details on the properties of this map.

By virtue of it being an RKHS, we can also define classical
and quantum feature maps for the RKHA A. Specifically, we
set F̃ : X → A and F̃ : X → Q(A), where

F̃ (x) = 〈k̃x, ·〉A, F̃ (x) = 〈ξ̃x, ·〉Aξ̃x, (23)

and ξ̃x = k̃x/‖k̃x‖A. The feature maps F̃ and F̃ have analo-
gous properties to F and F , respectively, which we do not
discuss here in the interest of brevity.

C. Representation of observables

The quantum mechanical representation of classical ob-
servables in A is considerably facilitated by the Banach
algebra structure of that space. In Sec. IV C 1, we leverage
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that structure to build representation maps from functions in
A to bounded linear operators in B(A). Then, in Sec. IV C 2,
we consider associated representations mapping into bounded
linear operators on the RKHS H (which is a strict subspace
of A), arriving at the map T :A → B(H) depicted in the right-
hand column of Fig. 2. Additional details on the construction
are provided in Appendix A.

1. Representation on the RKHA A

We begin by noting that the joint continuity of the mul-
tiplication operation of Banach algebras [see (A1)] implies
that for every f ∈ A the multiplication operator A f : g �→ f g is
well defined as a bounded operator in B(A). This leads to the
regular representation π :A → B(A), which is the algebra ho-
momorphism of A into B(A), mapping classical observables
in A to their corresponding multiplication operator,

π f := A f . (24)

This mapping is a homomorphism since

π ( f g) = A f g = A f Ag, ∀ f , g ∈ A,

and it is injective (i.e., faithful as a representation) since
[π ( f − f ′)]1X = f − f ′ �= 0 whenever f �= f ′. However, π
is not a ∗-representation; i.e., π ( f ∗) is not necessarily equal
to A∗

f . In particular, A f need not be a self-adjoint operator
in B(A) if f is a self-adjoint element in Asa. To construct a
map from A into the self-adjoint operators in B(A), we define
T̃ :A → B(A) with

T̃ f = π f + (π f )∗

2
. (25)

By construction, T̃ f is self-adjoint for all f ∈ A, and it can
also be shown (see Appendix A 2) that T̃ is injective on Asa.
That is, T̃ provides a one-to-one mapping between real-valued
functions in A and self-adjoint operators in B(A).

It follows from the product formula in (12) that if f ∈ A

has the expansion f = ∑
j∈Zd f̃ jψ j , where f̃ j = 〈ψ j, f 〉A,

then the corresponding multiplication operator A f = π f has
the matrix elements

(A f )i j := 〈ψi,A fψ j〉A = 〈ψi, fψ j〉A,
and thus

(A f )i j = c j,i− j f̃i− j . (26)

Correspondingly, the matrix elements of the self-adjoint oper-
ator S f := T̃ f are given by

(S f )i j := 〈ψi, S fψ j〉A = (A f )i j + (A f )∗ji
2

.

If, in addition, f lies in Asa, then we have f̃ ∗
j−i = f̃i− j and the

formula above reduces to

(S f )i j = c j,i− j + ci, j−i

2
f̃i− j . (27)

Here, of particular interest are the multiplication and self-
adjoint operators representing the basis elements of A, i.e.,
Aψl and Sψl , respectively, for l ∈ Zd . Since f̃i− j = δl,i− j for
f = ψl , it follows from (26) that after a suitable lexicograph-
ical ordering of multi-indices (as in Fig. 4), (A f )i j forms a
banded matrix with nonzero elements only in the diagonal

FIG. 5. Matrix elements (Aψ1 )i j (a) and (Sψ1 )i j (b) of the mul-
tiplication operator Aψ1 [Eq. (26)] and the self-adjoint operator Sψ1

[Eq. (27)] representing the basis functionψ1 for dimension d = 1. As
in Fig. 4(a), we consider the reproducing kernel Hilbert algebra A on
the circle from with p = 1/4 and τ = 1/4, and map the indices i and
j into standard matrix indices 1, 2, . . . , 2n with n = 3. The matrix in
(a) has nonzero elements only in the first lower diagonal, i − j = 1.
The matrix in (b) is a symmetric bidiagonal matrix with elements in
the first upper and lower diagonals, i − j = ±1.

corresponding to multi-index k. Figure 5(a) illustrates the
nonzero matrix elements of Aψ1 in the one-dimensional case,
d = 1. Similarly, the self-adjoint operator Sψ1 is a bidiagonal
matrix with nonzero entries in the diagonals corresponding to
±1, as shown in Fig. 5(b).

We deduce from these observations that if f is a bandlim-
ited observable (i.e., expressible as a finite linear combination
of Fourier functions φ j), A f is represented by a banded ma-
trix, whose lth diagonal comprises the structure constants cl j

multiplied by f̃l . The matrix representing S f is also banded
whenever f is bandlimited. If, in addition, f is real, the lth
diagonal of (S f )i j is given by the multiple of (cl j + cli )/2
with f̃l .
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2. Representation on the RKHS H
We now take up the task of defining analogs of the maps

π :A → B(A) and T : A → B(A) from Sec. IV C 2, mapping
elements of A to bounded operators on the RKHS H ⊂ A (i.e.,
the Hilbert space underlying the infinite-dimensional system
at the quantum mechanical level). To that end, let � be the
projection map from B(A) to B(H), defined as

�A := �A�, (28)

where� is the orthogonal projection from A to H introduced
in Sec. IV A. One can explicitly verify that the map � ◦
π :A → B(H) is injective, so there is no loss of information
in representing f ∈ A by �(π f ) ∈ B(H) as opposed to π f ∈
B(A). For our purposes, however, in addition to injectivity
we require that our representation maps provide value-level
consistency between classical and quantum measurements (in
a sense made precise in Sec. IV D below). For that, it becomes
necessary to modify the map � ◦ π , as well as its self-adjoint
counterpart � ◦ T̃ , to take into account the contractive effect
of the projection �.

In Appendix A 3, we construct a self-adjoint, invertible
operator L:A → A, which is diagonal in the {ψ j} basis, and
whose role is to counterbalance that contraction. Specifically,
we define � :A → B(H) and T :A → B(H) with

� = � ◦ π ◦ L−1, T = � ◦ T̃ ◦ L−1. (29)

Here, L−1 inflates the expansion coefficients of functions in
the {ψ j} basis of A, absorbing the contractive action of �.
Analogously to π and T̃ , respectively, � is one-to-one, and
T is one-to-one on the real functions in Asa. Moreover, every
operator in the range of T is self-adjoint. The map T provides
the representation of classical observables in A by self-adjoint
operators in B(H) at the quantum mechanical level, depicted
by vertical arrows in the right-hand column of Fig. 2.

D. Classical-quantum consistency

We now come to a key property of the regular represen-
tation π and the associated map T̃ , which is a consequence
of the reproducing property and Banach algebra structure of
A. Namely, π and T̃ provide a consistent correspondence
between evaluation of classical observables and quantum me-
chanical expectation values. To see this, for any quantum state
� ∈ Q(A) and quantum mechanical observable A ∈ B(A), let

〈A〉� := tr(�A) (30)

be the standard quantum mechanical expectation functional.
Then, it follows from the reproducing property in (9), the
definition of the quantum feature map F̃ in (23), and the
definition of the regular representation in (24) that for any
observable f ∈ A and classical state x ∈ X ,

f (x) = 〈π f 〉�x = 〈T̃ f 〉�x , (31)

where �x = F̃ (x). The last equality in (31) requires that f is a
self-adjoint element in Asa; see Ref. [50] for further details.
Equation (31) shows, in particular, that by passing to the
quantum mechanical representation we maintain pointwise
consistency with the classical measurement processes for spe-
cial sets of quantum mechanical observables and states. These
are the self-adjoint operators S f and the pure states �x.

To express these relationships in terms of matrix elements,
note first that the quantum state �x satisfies

(�x )i j := 〈ψi, �xψ j〉A

= 〈ψi, k̃x〉A〈k̃x, ψ j〉A
κ̃

= ψ∗
i (x)ψ j (x)

κ̃
. (32)

Combining this result with (26), we obtain

f (x) = tr(�x(π f ))

=
∑

i, j∈Zd

(�x )i j (A f ) ji =
∑

i, j∈Zd

ψ∗
i (x)ψ j (x)ci, j−i f̃ j−i

κ̃
,

and this relationship holds irrespective of whether f is self-
adjoint or not. If f is a self-adjoint element in Asa, then we
can use the matrix elements of the self-adjoint operator S f

from (27), in conjunction with the fact that �x is also self-
adjoint, to arrive at the expression

f (x) = tr(�x(T̃ f ))

=
∑

i, j∈Zd

(�x )i j (S f ) ji

=
∑

i, j∈Zd

ψ∗
i (x)ψ j (x)(ci, j−i + c j,i− j ) f̃ j−i

2κ̃
.

Even though H is a strict subspace of the RKHA A, it is
still possible to consistently recover all predictions made for
classical observables, as we describe in Appendix A 3. There,
we show that the modified versions � :A → B(H) and T :
A → B(H) of π :A → B(A) and T̃ :A → B(A), respectively
[defined in (29)], satisfy the analogous consistency relation
to (31), i.e.,

f (x) = 〈� f 〉ρx = 〈T f 〉ρx , (33)

where ρx = F (x) is the quantum state on H obtained from
the feature map in (21). As with (31), the first equality in (33)
holds for any f ∈ A and the second holds for real-valued
elements f ∈ Asa.

E. Dynamical evolution

In this section, we describe the dynamics of quantum states
and observables associated with the RKHA A and RKHS H ⊂
A, and establish consistency relations between the classical
and quantum evolution.

First, recall that the Koopman operators Ut act on A as
a unitary evolution group. As a result, there is an induced
action U t : B(A) → B(A) on quantum mechanical observables
in B(A), given by

U t A = Ut AUt∗. (34)

This action has the important property of being compatible
with the action of the Koopman operator on functions in A

under the regular representation. Specifically, for every f ∈ A

and t ∈ R, we have

U t (π f ) = π (Ut f ). (35)
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The unitary evolution in (34) has a corresponding dual
action �t : Q(A) → Q(A) on quantum states, given by

�t (�) = Ut∗�Ut ≡ U−t�. (36)

One can verify that this action is compatible with the classical
dynamical flow under the feature map F̃ : X → Q(A), viz.,

�t (F̃ (x)) = F̃ (�t (x)). (37)

Using (31), (34), and (36), we arrive at the consistency rela-
tionships

Ut f (x) = 〈U t (π f )〉�x = 〈π f 〉�t (�x ), (38)

with �x = F̃ (x). This holds for every classical observable
f ∈ A, initial condition x ∈ X , and evolution time t ∈ R. If, in
addition, f is a self-adjoint element in Asa, we may compute
the evolution Ut f using the self-adjoint operator T̃ f , which is
accessible via physical measurements. That is, for f ∈ Asa we
have

Ut f (x) = 〈U t (T̃ f )〉�x = 〈T̃f 〉�t (�x ). (39)

In summary, we have constructed a dynamically consistent
embedding of the torus rotation from (5) into a quantum
mechanical system on the RKHA A. For completeness, we
note that the matrix elements of the state �t (ρx ) are given by

〈ψi, �
t (�x )ψ j〉A = 〈Utψi,U

t�xψ j〉A
= ei(ω j−ωi )t (�x )i j .

Using this formula together with the expressions for the ma-
trix elements of T̃ f in (27), respectively, we arrive at the
expression

Ut f =
∑

i, j∈Zd

ei(ω j−ωi )t
ψ∗

i (x)ψ j (x)(ci, j−i + c j,i− j ) f̃ j−i

2κ̃
,

which holds for all self-adjoint elements f = ∑
j∈Zd f̃ jψ j ∈

Asa.
Our discussion was thus far based on the RKHA A, as

opposed to the RKHS H. In Appendix A 4, we establish
that the dynamics of classical states and observables can be
represented consistently through their representatives on H
using the maps � and T in (29). Specifically, we show that
for any f ∈ A,

Ut f (x) = 〈U t (� f )〉ρx = 〈� f 〉�t (ρx ),

while for any real-valued f ∈ Asa,

Ut f (x) = 〈U t (T f )〉ρx = 〈T f 〉�t (ρx ),

where ρx = F (x). In the above, U t : B(H) → B(H) and
�t : Q(H) → Q(H) are evolution operators on quantum ob-
servables and states on H, respectively, defined analogously to
their counterparts on A using the Koopman operator Ut :H →
H (see Sec. IV A).

V. PROJECTION TO FINITE DIMENSIONS

While being dynamically consistent with the underlying
classical evolution, the quantum system constructed in Sec. IV
is infinite-dimensional, and thus not directly accessible to sim-
ulation by a quantum computer. We now describe an approach

for projecting the infinite-dimensional quantum system to a
finite-dimensional system. In Fig. 2 we refer to this level of
representation as matrix mechanical, since all linear operators
involved have finite rank and are representable by matrices.
Our objectives are to construct this projection such that (1)
it is refinable, i.e., the original quantum system is recovered
in a limit of infinite dimension (number of qubits) and (2) it
facilitates the eventual passage to the quantum computational
level (to be described in Sec. VI).

We begin by fixing a positive integer parameter n (the
number of qubits), chosen such that it is a multiple of the
dimension d of the classical state space X , and defining the
index sets

Jn,d = {−2n/d−1, . . . ,−1, 1, . . . , 2n/d−1},
Jn = {( j1, . . . , jd ) ∈ Zd : ji ∈ Jn,d}. (40)

Note that Jn is a subset of J from (17) with N ≡ 2n elements.
Next, consider the N-dimensional subspace of H given by

Hn = span{ψ j : j ∈ Jn},
and let �n:H → H be the orthogonal projection mapping
into Hn. When appropriate, we will interpret�n as a map into
its range, i.e., �n:H → Hn, without change of notation. The
subspace Hn has the structure of an RKHS of dimension 2n,
associated with the spectrally truncated reproducing kernel

kn(x, x′) =
∑
j∈Jn

ψ∗
j (x)ψ j (x

′). (41)

Moreover, Hd ,H2d ,H3d , . . . is a nested family of subspaces,
increasing towards H.

By virtue of being spanned by eigenfunctions of the gen-
erator V , Hn is invariant under the Koopman operator, i.e.,
UtHn = Hn for all t ∈ R. Moreover, the projection �n com-
mutes with both V and Ut ,

[V,�n] = 0, [Ut ,�n] = 0.

These invariance properties allow us to define a projected
generator

Vn ≡ �nV�n, (42)

and an associated Koopman operator

Ut
n := etVn ≡ �nU

t�n,

such that the following diagram commutes for all t ∈ R:

H H

Hn Hn

Ut

Πn Πn

Ut
n

. (43)

Similarly, we define a finite-rank Heisenberg operator

U t
n := U t�n,

where �n: B(H) → B(H) is the projection on B(H) defined
as �nA = �nA�n. This leads to an analogous commutative
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diagram to that in (43), viz.,

B(H) B(H)

B(Hn) B(Hn)

Ut

Πn Πn

Ut
n

. (44)

Next, we introduce a spectrally truncated feature map
Fn: X → Hn, defined analogously to (19) as

Fn(x) = kx,n := kn(x, ·),
as well as a corresponding quantum feature map Fn: X →
Q(Hn), such that Fn(x) = ρx,n is given by

ρx,n = 〈ξx,n, ·〉Hnξx,n with ξx,n = kx,n√
κn
,

κn = kn(x, x) =
∑
j∈Jn

e−τ | j|p . (45)

In the sequel, we will use the states ρx,n as approximations of
the states ρx = F (x). These approximations have the follow-
ing properties:

(1) The dynamical evolution of ρx,n is governed by a
finite-rank operator �t

n: Q(Hn) → Q(Hn), where

�t
n(ρx,n) = Ut∗

n ρx,nU
t
n .

(2) As n → ∞ (i.e., in the infinite qubit limit), �t
n(ρx,n)

converges to �t (ρx ), in the sense that for any quantum me-
chanical observable A ∈ B(H),

〈An〉ρx,n

n→∞−−−→ 〈A〉ρx , (46)

where An = �nA, and the convergence is uniform with respect
to x ∈ X .

See Appendix A 5 for further details.
In light of the above, we employ the following approx-

imations to the quantum mechanical representation of the
evolution of classical observables from Sec. IV E (see also
Appendix A 4),

f̌ (t )
n (x) := 〈�n(� f )〉�t

n(ρx,n ),

f (t )
n (x) := 〈�n(T f )〉�t

n(ρx,n ).
(47)

By (46), for every function f ∈ A, f̌ (t )
n (x) converges as n →

∞ to Ut f (x), uniformly with respect to the initial condition
x ∈ X and evolution time t ∈ R, whereas f (t )

n (x) converges to
Ut f (x) if f is self-adjoint (real-valued).

VI. REPRESENTATION ON A QUANTUM COMPUTER

We are now ready to perform the final step in the QECD
pipeline, namely passage from the matrix mechanical level to
the quantum computational level associated with the n-qubit
Hilbert space Bn = B⊗n (see bottom row in Fig. 2). We will do
so by applying a unitary map, so that the systems in the matrix
mechanical and quantum computational levels are isomor-
phic as quantum systems. However, the key aspects that the
quantum computational system provides are that (1) it can be
efficiently implemented as a quantum circuit with a quadratic
number of gates in n and (2) information about the evolution
of classical observables can be extracted by measurement

of the standard projection-valued measure associated with
the computational basis. We describe the construction of the
unitary map from the matrix mechanical to quantum com-
putational levels and the properties of the resulting quantum
system in Secs. VI A and VI B, respectively.

A. Quantum computational system on the tensor product
Hilbert space

Being expressible in terms of finite-rank quantum states,
observables, and evolution operators, the approximation
framework described in Sec. V can be encoded in a quan-
tum computing system operating on a finite-dimensional
Hilbert space. In particular, letting B � C2 denote the two-
dimensional Hilbert space associated with a single qubit, it
follows immediately from the fact that Hn is a 2n-dimensional
Hilbert space that there exists a unitary map Wn:Hn → Bn,
where

Bn := B⊗n � C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
n

(48)

is the tensor product Hilbert space associated with n qubits.
Under such a unitary, the projected generator Vn from (42)
maps to a skew-adjoint operator V̂n := WnVnW ∗

n , inducing a
self-adjoint Hamiltonian

Hn := 1

i
V̂n, (49)

and a corresponding unitary evolution operator Û t
n := eiHnt on

Bn. This leads to the commutative diagram

Hn Hn

Bn Bn

Ut
n

Wn Wn

Ût
n

,

expressing the fact that elements of Hn and Bn evolve consis-
tently under Ut

n and Û t
n , respectively. Note that we work here

with the self-adjoint Hamiltonian Hn as opposed to the skew-
adjoint generator V̂n for consistency with the usual convention
in quantum mechanics.

In addition, Wn induces a unitary Wn: B(Hn) → B(Bn),
with WnA = WnAW ∗

n , mapping quantum mechanical observ-
ables on Hn to quantum mechanical observables on Bn. The
restriction of Wn on Q(Hn) ⊂ B(Hn) then induces a con-
tinuous, invertible map Wn: Q(Hn) → Q(Bn) from quantum
states on Hn to quantum states on Bn (which we continue to
denote using the symbol Wn). Moreover, we have the evolu-
tion maps

�̂t
n: Q(Bn) → Q(Bn): ρ̂n �→ �̂t

n(ρ̂n) = Û t∗
n ρ̂nÛ

t
n,

Û t
n: B(Bn) → B(Bn): Ân �→ Û t

nÂn = Û t
n ÂnÛ

t∗
n , (50)

such that the maps for states and observables between and
within the matrix mechanical and quantum computational
level in Fig. 2 constitute commutative diagrams. In particu-
lar, following the vertical arrows in the left- and right-hand
columns from the classical level to the quantum computational
level gives the maps F̂n: X → Q(Bn) and T̂n:A → B(Bn),
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where

F̂n = Wn ◦ �′
n ◦ P ◦ δ, T̂n = Wn ◦ �n ◦ T . (51)

The maps F̂n and T̂n provide the quantum computational rep-
resentation of classical states and observables, respectively,
which are two of the main ingredients of QECD (see Sec. II).
By unitary equivalence, they have analogous convergence
properties in the n → ∞ limit as those of their matrix me-
chanical counterparts Fn and Tn, respectively, described in
Sec. V. We also note that the evolution operator Û t

n at the
quantum computational level can be equivalently obtained as
a projection of the Koopman operator Ut on A, i.e.,

Û t
n = (Wn ◦ �n ◦ �)Ut . (52)

B. Factorizing the Hamiltonian in tensor product form

In order for the representation of the dynamics on Bn to
exhibit robust quantum parallelism, i.e., implementation on a
quantum circuit of small depth, it is highly beneficial that the
Hamiltonian Hn can be decomposed as a sum of commuting
operators in pure tensor product form, i.e.,

Hn =
∑
j∈Jn

G j =
∑
j∈Jn

G1 j ⊗ · · · ⊗ Gn j, (53)

where [Gi,Gj] = 0 and Gl j :B → B are mutually commuting,
single-qubit Hamiltonians. With such a decomposition, the
unitary operator Û t

n = eiHnt generated by Hn factorizes as

Û t
n = exp

(
i
∑
j∈Jn

G jt

)
=

∏
j∈Jn

exp

(
n⊗

l=1

iGl jt

)
. (54)

Thus, Û t
n can be split into a composition of up to 2n unitaries

exp(iG jt ) [depending on the number of nonzero terms Gj in
the right-hand side of (53)], which can be applied in any order
by commutativity of the Gj . Moreover, each unitary exp(iG jt )
has a generator of pure tensor product form, and thus can be
represented as a quantum circuit with at most n quantum gates
for rotations of the individual qubits.

In fact, as we will now show, using a Walsh operator
representation [56], for a dynamical system with pure point
spectrum the decomposition in (53) has only n nonzero terms
Gj , and for each nonzero term, the tensor product factoriza-
tion Gj = ⊗n

l=1 Gl j has all but one factors Gl j equal to the
identity. As a result,

exp

(
n⊗

l=1

iGl jt

)
=

n⊗
l=1

exp(iGl jt ),

and the decomposition in (54) reduces to a tensor product of
n unitaries,

Û t
n =

n⊗
l=1

�t
l with �t

l = exp

(
i
∑
j∈Jn

Gl jt

)
. (55)

The key point about (55) is that Û t
n can be implemented via

a quantum circuit of n qubit channels with no cross-channel
communication. We will return to this point in Sec. VII.

1. Walsh-Fourier transform and Walsh operators

Classical states and observables of the dynamical system
have been transformed into pure state density operators and
self-adjoint operators on the 2n-dimensional Hilbert space Bn

which is a tensor product of the single qubit quantum state
spaces as given in (48). We will employ the commonly used
Dirac bra-ket notation [5] to denote vectors in Bn. We let
{|0〉, |1〉} be the standard orthonormal basis of the single-qubit
Hilbert space B � C2 comprising of eigenvectors of the Pauli
Z operator,

Z|0〉 = |0〉, Z|1〉 = −|1〉,
with

Z =
(

1 0
0 −1

)
, |0〉 =

(
1
0

)
, and |1〉 =

(
0
1

)
.

Thus, each vector |ψ〉 ∈ B can be expanded in this basis as

|ψ〉 = α|0〉 + β|1〉 with α, β ∈ C.

In order to arrive at the decomposition in (55), we em-
ploy the approach developed in Ref. [56], which is based on
discrete Walsh-Fourier transforms, and the associated Walsh
operators, as follows. First, for any nonnegative integer j ∈
N0, we let β( j) = (β1( j), . . . , βl ( j)) ∈ {0, 1}l be its binary
expansion; that is,

j =
l∑

i=1

βi( j)2i−1 = β1( j)20 + β2( j)21 + · · · + βl ( j)2l ,

where l ∈ N is the smallest positive integer such that j �
2l − 1. For example, we have β(0) = 0, β(1) = 1, β(2) =
(0, 1), β(3) = (1, 1), and β(4) = (0, 0, 1). Moreover, for ev-
ery real number u ∈ [0, 1) we let γ (u) = (γ1(u), γ2(u), . . .) ∈
{0, 1}N be its dyadic expansion, i.e.,

u =
∞∑

i=1

γi(u)2−i = γ1(u)

2
+ γ2(u)

4
+ γ3(u)

8
+ · · · .

Note that the most significant digit in β( j) is the last one,
βl ( j), whereas the most significant digit in γ (u) is the first
one, γ1(u).

With this notation, for every j ∈ N0 we define the Walsh
function w j : [0, 1) → {0, 1} as

w j (u) = (−1)
∑l

i=1 βi ( j)γi (u).

Furthermore, for any n ∈ N0 and j ∈ {0, . . . , 2n − 1}, we de-
fine the discrete Walsh function of order n, w

(n)
j : {0, . . . , 2n −

1} → {0, 1} as

w
(n)
j (m) = w j (m/2

n), with m = 0, . . . , 2n − 1.

It then follows that

w
(n)
j (m) = (−1)

∑l
i=1 βi ( j)γi (m/2n ) = (−1)

∑n
i=1 β

(n)
i ( j)β̃ (n)

i (m).

Here, β (n)( j) = (β1, . . . , βl , 0, . . . , 0) ∈ {0, 1}n is the n-digit
binary expansion of j obtained by padding β( j) to the right
with zeros, as needed. Moreover,

β̃ (n)( j) = (
β̃

(n)
1 ( j), . . . , β̃ (n)

n ( j)
) = (γ1( j/2m), . . . , γn( j/2m))

is the n-digit reversed binary representation of m. Thus, the
exponent in the expression for w

(n)
j (m) is given by the inner
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product between the n-digit binary expansion of j with the
bit-reversed binary expansion of m. For example, with n = 2
and m = 0, 1, 2, 3, we have w

(2)
0 (m) = {1, 1, 1, 1}, w(2)

1 (m) =
{1, 1,−1,−1}, w

(2)
2 (m) = {1,−1, 1,−1}, and w

(2)
3 (m) =

{1,−1,−1, 1}.
Among the Walsh functions w j , those with j =

1, 2, 4, . . . , 2l for l ∈ N0 are called Rademacher functions,
Rl , and satisfy

w2l (u) ≡ Rl (u) = (−1)γl (u). (56)

That is, Rl (u) depends only on the (l + 1)-th bit in the dyadic
expansion of u. Using (56), it follows that for any integer m ∈
{0, . . . , 2n − 1}, we have

m

2n
=

n−1∑
i=0

1 − Ri+1(m/2n)

2i+2
,

meaning that we can express the ith bit in the dyadic decompo-
sition of m/2n in terms of the (i − 1)-th Rademacher function,

γi(m/2
n) = 1 − Ri−1(m/2n)

2
. (57)

It is known that the set {w j} j∈N0 forms an orthonor-
mal basis of the Hilbert space L2([0, 1]) with respect to
Lebesgue measure. In the discrete case, we let L2

n ([0, 1])
be the N-dimensional Hilbert space, N ≡ 2n, with re-
spect to the normalized counting measure supported on
{0, 1/N, 2/N, . . . , (N − 1)/N}. Then, the set of discrete
Walsh functions of order n, {w(n)

j }N−1
j=0 , is an orthonormal basis

of L2
n ([0, 1]). One obtains

f =
N−1∑
j=0

f̂ jw
(n)
j ∈ L2

n ([0, 1]) with

f̂ j = 1

N

N−1∑
m=0

w
(n)
j (m) f (m/N ).

The map Fn: L2
n ([0, 1]) → CN : f �→ ( f̂0, . . . , f̂N−1) is called

the discrete Walsh-Fourier transform of the function f ∈
L2

n ([0, 1]).
Next, consider the tensor product basis {|b〉 = |b1〉 ⊗ · · · ⊗

|bn〉} of Bn with |bi〉 ∈ {|0〉, |1〉}, where the multi-index b =
(b1, . . . , bn) ∈ {0, 1}n runs over all binary strings of length
n. Whenever convenient, we will employ the notation |b〉 ≡
|b〉, where b = β̃ (n)(b). That is, b is an integer in the range
0, . . . , 2n − 1, whose reversed binary representation is equal
to b,

b =
n∑

i=1

β̃
(n)
i (b)2n−i =

n∑
i=1

bi2
n−i.

For example, in a system with n = 3 qubits |b〉 = |6〉 corre-
sponds to |b〉 = |110〉, where the least significant bit is the
one to the right. Note that {|b〉}2n−1

b=0 is also the standard quan-
tum computational basis for an n-qubit problem in the Qiskit
framework [61] that we will employ in Sec. X [78].

For every b ∈ {0, 1}n, we define the associated Walsh oper-
ator Zb:Bn → Bn as

Zb = Zb1 ⊗ Zb2 ⊗ · · · ⊗ Zbn .

By construction, the Zb form a collection of mutually com-
muting, self-adjoint operators, which have pure tensor product
form and are diagonal in the {|b〉} basis of Bn, i.e.,

Zb|c〉 =
(

n∏
i=1

(1 − 2ci )
bi

)
|c〉,

where |c〉 is again a quantum computational basis vector. For
example, for n = 2 qubits, the Walsh operator Zb with b =
|01〉, and the basis vector |c〉 = |b〉, one obtains

Zb|c〉 = (I ⊗ Z )(|0〉 ⊗ |1〉) = −|c〉.
It follows from a counting argument that the collection

{Zb}b∈{0,1}n forms a basis of the vector space of operators in
B(Bn) which are diagonal in the {|b〉} basis. In Ref. [56], it
was shown that if A ∈ B(Bn) is such a diagonal operator,

A|b〉 = ab|b〉 with ab ∈ C,

then it admits the expansion

A =
N−1∑
j=0

f̂ jZβ (n) ( j), f̂ j ∈ C, (58)

where the expansion coefficients f̂ j are the complex Walsh-
Fourier coefficients ( f̂0, . . . , f̂N−1) = Fn f of the function f =
( f0, . . . , fN−1) ∈ L2

n ([0, 1]) with f j = aβ (n) ( j). That is, f j is
equal to the eigenvalue ab, where b is the n-digit binary repre-
sentation of the integer j.

2. Walsh representation of the Hamiltonian

In order to effect the decomposition in (53) for the
generator-induced Hamiltonian from (49), let o : Jn,d →
{0, . . . , 2n/d − 1} be the enumeration on the index set
Jn,d from (40) based on the standard order of integers,
i.e., o(−2n/d−1) = 0, 1, . . . , 2n/d − 1 = o(2n/d−1). For exam-
ple, n = 2, d = 1 gives j ∈ J2,1 = {−2,−1, 1, 2}, which is
mapped to o( j) = {0, 1, 2, 3}. The mapping of J2,2 (for n = 2,
d = 2) is displayed in first and third columns of Table II. We
define Wn:Hn → Bn as the unique (unitary) linear map such
that for j = ( j1, . . . , jd ),

Wnψ j = |b〉 with b = η( j) := (η( j1), . . . , η( jd )),

η( ji ) = β̃ (n/d )(o( ji )). (59)

That is, Wn maps the basis element ψ j of Hn with multi-index
j = ( j1, . . . , jd ) ∈ Jn to the tensor product basis element |b〉,
with b given by an invertible binary string encoding of j.
Here, b is obtained as a concatenation (η( j1), . . . , η( jd )) of
d binary strings of length n/d , corresponding to the dyadic
decompositions of o( j1), . . . , o( jd ), respectively. See again
Table II, where we list the mapping for a two-dimensional
torus with 2 = n/d qubits for each torus dimension.

Since V̂nψ j = iω jψ j with ω j given by (14), we have

Hn|b〉 = ωη−1(b)|b〉, (60)

Thus, in order to decompose Hn into Walsh operators as
in (58), we need to compute the discrete Walsh transform of
the function h ∈ L2

n ([0, 1]) with

h(m/N ) = ω j, j = η−1(β̃ (n)(m)). (61)
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TABLE II. Binary encodings η( j) = (η( j1), η( j2)) and enumer-
ation b = (β̃ (n) )−1(η( j)) = 0, . . . , 2n − 1 of the eigenfrequencies ω j

with multi-index j = ( j1, j2) of a quasiperiodic system on a two-
dimensional torus (d = 2) with basis frequencies α1 and α2. The total
number of qubits is n = 4 with two qubits for each torus dimension.

( j1, j2) (η( j1), η( j2)) b ω j

(−2,−2) ((0, 0), (0, 0)) 0 −2α1 − 2α2

(−2,−1) ((0, 0), (0, 1)) 1 −2α1 − 1α2

(−2,+1) ((0, 0), (1, 0)) 2 −2α1 + 1α2

(−2,+2) ((0, 0), (1, 1)) 3 −2α1 + 2α2

(−1,−2) ((0, 1), (0, 0)) 4 −1α1 − 2α2

(−1,−1) ((0, 1), (0, 1)) 5 −1α1 − 1α2

(−1,+1) ((0, 1), (1, 0)) 6 −1α1 + 1α2

(−1,+2) ((0, 1), (1, 1)) 7 −1α1 + 2α2

(+1,−2) ((1, 0), (0, 0)) 8 +1α1 − 2α2

(+1,−1) ((1, 0), (0, 1)) 9 +1α1 − 1α2

(+1,+1) ((1, 0), (1, 0)) 10 +1α1 + 1α2

(+1,+2) ((1, 0), (1, 1)) 11 +1α1 + 2α2

(+2,−2) ((1, 1), (0, 0)) 12 +2α1 − 2α2

(+2,−1) ((1, 1), (0, 1)) 13 +2α1 − 1α2

(+2,+1) ((1, 1), (1, 0)) 14 +2α1 + 1α2

(+2,+2) ((1, 1), (1, 1)) 15 +2α1 + 2α2

This calculation is detailed in Appendix B. The eigenvalues
ω j for the example of a two-dimensional torus with n = 2
qubits are listed in the fourth column of Table II.

By virtue of the decomposition in (B1), the only
nonzero coefficients in the Walsh-Fourier transform ĥ =
(ĥ0, . . . , ĥN−1) = Fnh are the coefficients ĥ j with j =
2l+(i−1)d and 1 � l � n/d , 1 � i � d . Correspondingly, the
only nonzero terms ĥ jZβ (n) ( j) in the Walsh operator expansion
from (58) for the Hamiltonian in (60) are those for which
the binary string η( j) has exactly one bit equal to 1 and the
remaining n − 1 bits equal to 0. In particular, we have

Hn =
d∑

i=1

n
d −1∑
l=0

ĥ2l+(i−1)n/d Zβ(2l+(i−1)n/d )

= ĥ1Z ⊗ I ⊗ I ⊗ I ⊗ · · · ⊗ I

+ ĥ2I ⊗ Z ⊗ I ⊗ I ⊗ · · · ⊗ I

+ ĥ4I ⊗ I ⊗ Z ⊗ I ⊗ · · · ⊗ I + · · ·
+ ĥ2n−1 I ⊗ · · · ⊗ I ⊗ Z, (62)

where the coefficients ĥ1, ĥ2, ĥ4, . . . , ĥ2n−1 have closed-form
expressions; see (B7).

Equation (62) verifies the assertion made earlier that the
decomposition of Hn in (53) can be arranged to have n nonzero
terms, each of which factorizes as a tensor product of n oper-
ators, with all but one factors equal to the identity. Since

eitI⊗···⊗I⊗Z⊗I···⊗I = I ⊗ · · · ⊗ I ⊗ eitZ ⊗ I ⊗ · · · ⊗ I,

we conclude that

Û t
n = eiHnt =

n−1⊗
l=0

exp(it ĥ2l Z ), (63)

which is consistent with the decomposition in (55).

3. Cost of circuit construction

Before closing this section, we briefly assess the computa-
tional cost of constructing a quantum circuit that implements
the unitary Koopman evolution Û t

n . Note that this is a one-off
cost that does not affect the running time of our algorithm.

According to (55), Û t
n is decomposed as a tensor product

of n single-qubit unitaries exp(it ĥ2l Z ) with l = 0, . . . , n − 1.
Each such unitary can be implemented by an Rz gate that
rotates by the angle ϑl (t ) = 2αt ĥ2l . That is, we have

exp(−it ĥl Z ) = Rz(ϑl (t )), (64)

where

Rz(ϑ ) = e−iϑZ/2 =
(

e−iϑ/2 0
0 eiϑ/2

)
(65)

is the matrix representation of the Rz rotation gate by angle ϑ
in the {|0〉, |1〉} basis of B. Using the closed-form expressions
for ĥ2l in (B7), we can evaluate each rotation angle ϑl (t ) at
O(1) cost, so the computational cost of building our n-qubit
Koopman evolution circuit for time t is O(n).

VII. PROJECTIVE MEASUREMENT OF OBSERVABLES

In the classical setting, the process of obtaining the results
of a computation is a straightforward readout of the state
of the computer. In contrast, in quantum computing, extract-
ing information from the system is a nontrivial process, as
it must invariably confront with the intricacies of quantum
measurement. In this section, we describe how the QECD
performs probabilistic predictions of the evolution of classi-
cal observables through projective measurement of quantum
computational observables. First, in Sec. VII A, we consider
an idealized measurement scenario, where one has access to
the spectral measure of the observable of interest. Then, in
Sec. VII B we develop an approximate measurement proce-
dure based on the QFT, which yields asymptotically consistent
results with the idealized measurement, while maintaining an
exponential quantum advantage. Additional technical results
are provided in Appendix C.

A. Idealized quantum measurement

Our goal is to approximate the classical evolution Ut f (x)
through projective measurement of the quantum mechanical
observable Ŝn := T̂n f on the quantum state

ρ̂ (t )
x,n := �̂t

n(ρ̂x,n), ρ̂x,n = F̂n(x), (66)

where the representation maps T̂n and F̂n are defined in (51),
and the evolution map �̂t

n is defined in (50) (see also Fig. 2).
Since Ŝn is a finite-rank, self-adjoint operator, it has a spectral
resolution

Ŝn =
∑

s∈σ (Ŝn )

sPs, (67)

where σ (Ŝn) is the spectrum of Ŝn, i.e., the set of its eigenval-
ues, and Ps ∈ B(Bn) are the orthogonal projections onto the
corresponding eigenspaces. For example, if s ∈ σ (Ŝn) is an
eigenvalue of multiplicity 1 with a corresponding normalized
eigenvector |s〉, then Ps is the rank-1 projection given by
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Ps = |s〉〈s|. The collection {Ps} defines a projection-valued
measure (PVM) on σ (Ŝn), i.e., a map Sn:�(Ŝn) → B(Bn)
given by

Sn(ϒ) =
∑
s∈ϒ

Ps, (68)

where �(Ŝn) is the collection (σ -algebra) of all subsets of
σ (Ŝn), and ϒ a set in �(Ŝn). A projective measurement of
Ŝn on the quantum state ρ̂ (t )

x,n then corresponds to a randomly
drawn eigenvalue ŝ from the spectrum σ (Ŝn) with probability

P
ρ̂

(t )
x,n

(ŝ) = tr
(
ρ̂ (t )

x,nPs
)
.

The random draws ŝ have expectation∑
s∈σ (Ŝn )

sP
ρ̂

(t )
x,n

(s) =
∑

s∈σ (Ŝn )

tr
(
ρ̂ (t )

x,nPs
) =: f (t )

n (x),

which is equivalent to (47) by unitarity of the transformations
from the matrix mechanical to quantum computational level.

One can compute a Monte Carlo (ensemble) estimate of
f (t )
n (x) by performing a collection {ŝ1, . . . , ŝK} of measure-

ments of Ŝn on K independently and identically prepared
quantum systems. The number K is oftentimes referred to as
the number of shots. The ensemble mean,

f̂ (t )
n (x) := 1

K

K∑
k=1

ŝk (69)

converges as K → ∞ to the expectation f (t )
n (x). The latter,

converges in turn to the true value Ut f (x) in the infinite-qubit
limit, n → ∞; that is, we have

lim
n→∞ lim

K→∞
f̂ (t )
n (x) = Ut f (x). (70)

B. Approximate quantum measurement using quantum
Fourier transforms

Despite its theoretical consistency, the quantum measure-
ment process described in Sec. VII A is not well suited for
practical quantum computation. The reason is that, in general,
a quantum computing platform does not support the measure-
ment of arbitrary PVMs such as Sn in (68), and instead allows
only measurement of the PVM associated with the quantum
register. For an n-qubit system, the latter is defined as the
PVM En:�({0, 1}n) → B(Bn),

En(ϒ) =
∑
b∈ϒ

Eb with Eb = |b〉〈b|,

where Eb is the orthogonal projection along the computational
basis vector |b〉.

In order to transform a measurement of Sn to an equivalent
measurement of En, one must apply a unitary transformation
ρ̂ (t )

x,n �→ �nρ̂
(t )
x,n�

∗
n to the quantum state ρ̂ (t )

x,n, where �n:Bn →
Bn is a unitary map that diagonalizes Ŝn, i.e., �∗

nŜn�n is a di-
agonal operator in the {|b〉} basis of Bn. Two issues arise with
this approach. First,�n is generally not known in closed form,
and must be determined by solving an (exponentially large)
eigenvalue problem for Ŝn. Second, even if �n were known
explicitly, it would likely be difficult to implement efficiently
in a quantum circuit as it would generally be represented by a
fully occupied matrix.

To overcome these challenges, instead of working with
�n directly, we will employ a different unitary map on Bn

associated with the QFT. As is well known, the QFT on the
n-qubit space Bn has a circuit implementation of size O(n2)
and depth O(n) [5,59,60]. Thus, including it in the QECD
pipeline does not result in loss of an exponential advantage in
n over deterministic classical computation. Crucially for our
purposes, moreover, the class of operators Ŝn induced from
multiplication operators π f by classical observables on X
turns out to be approximately diagonalized by the QFT, with
an error that vanishes in a suitable asymptotic limit.

In more detail, for any n ∈ N, let Fn:Bn → Bn be the
Fourier operator on Bn, defined as

Fn|m〉 = 1√
2n

2n−1∑
p=0

e−2π ipm/2n |p〉, (71)

where |m〉 and |p〉 are again two basis vectors of Bn, parame-
terized by integers m and p, respectively, by conversion of the
corresponding binary sequences. Moreover, for n divisible by
the state space dimension d , let Fn,d :Bn → Bn be the tensor
product operator defined as

Fn,d = Fn/d ⊗ · · · ⊗ Fn/d︸ ︷︷ ︸
d

, (72)

and Fn,d : B(Bn) → B(Bn) the induced operator on quantum
computational observables, given by

Fn,d A = Fn,d AF∗
n,d . (73)

In Appendix C, we show that S̃n := Fn,d ŜnF
∗
n,d is an approx-

imately diagonal operator in the computational basis {|b〉}.
In particular, decomposing b = (b(1), . . . , b(d ) ), where b(i) =
(b(i)

1 , . . . , b
(i)
n/d ) are binary strings of length n/d , and defining

the points

xb = (θb(1) , . . . , θb(d ) ) ∈ T d (74)

with the canonical angle coordinates

θb(i) = 2π (β̃ (n/d ) )−1(b(i) )

2n/d
,

we have

S̃n|b〉 = s̃b|b〉 + |rnb〉, s̃b = f (xb). (75)

Here, |rnb〉 is a residual that vanishes as n → ∞. Effectively,
the points xb define a uniform grid on the d-torus T d , indexed
by the n-digit binary strings b. The quantities s̃b can thus be
interpreted as approximate eigenvalues of S̃n, which can be
obtained from classical measurement of f at the points xb,
avoiding the need to solve an exponentially large eigenvalue
problem for Ŝn.

By virtue of these facts, and since

tr
(
ρ̂ (t )

x,nŜn
) = tr

(
ρ̃ (t )

x,nS̃n
)
,

with

ρ̃ (t )
x,n = Fn,d ρ̂

(t )
x,n, (76)
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we can approximate a measurement of Ŝn on the state ρ̂ (t )
x,n

by a measurement of the PVM En on the state ρ̃ (t )
x,n. The

latter measurement returns a random string b ∈ {0, 1}n with
probability

P
ρ̃

(t )
x,n

(b) = tr
(
ρ̃ (t )

x,nEb
) = 〈b|ρ̃ (t )

x,n|b〉,
inducing a sample s̃b = f (xb). Analogously to (69), we es-
timate Ut f (x) by forming an ensemble of K independent
measurements b1, . . . , bK of En, and computing the ensemble
mean by

f̂ (t )
n (x) := 1

K

K∑
k=1

s̃bk . (77)

Further details on this approximation, such as the proof of
asymptotic consistency, can be found in Appendix C. Here,
we note that due to errors associated with the QFT-based
measurement process, the convergence of f̂ (t )

n to Ut f is not
unconditional, but requires taking a sequence of decreasing
RKHA parameters τ [unlike the limit in (70) which holds
for any τ > 0]. It should also be noted that it is possible to
simulate multiple classical observables using the same circuit
and ensemble of quantum measurements {b1, . . . , bK}. That is,
to simulate the evolution of a different observable g: X → C,
we use the bk to generate samples ˜̃sbk = g(xbk ), and estimate
Ut g(x) by ĝ(t )

n (x) := ∑K
k=1

˜̃sbk/K , analogously to (77).

VIII. STATE PREPARATION

Besides measurement of observables, the preparation, or
loading, of the quantum state representing the input (initial
conditions) to a quantum computer is challenging. In a typical
scenario involving an n-qubit computation, the register of a
quantum computer is initialized with a state vector associated
with an unentangled tensor product state,

|0〉 ≡ |0〉⊗n. (78)

The desired initial state must be prepared by applying a uni-
tary transformation (encoder) to |0〉, which may in general
require a circuit of exponential depth in n when the algorithm
is broken down to elementary gate operations [57,58]. This
poses a potentially significant obstruction to the scalability of
quantum computational algorithms.

In QECD, our task is to prepare the quantum state ρ̂x,n =
F̂n(x) from (66) associated with the classical initial condition
x ∈ X . This state is a pure state,

ρ̂x,n = |ξ̂x,n〉〈ξ̂x,n|,
where the state vector |ξ̂x,n〉 = Wnξx,n is obtained by applica-
tion of the unitary Wn:Hn → Bn from (59) on the normalized
RKHS feature vector ξx,n from (45). Specifically, we have

ξx,n = kx,n√
κn

= 1√
κn

∑
j∈Jn

ψ∗
j (x)ψ j,

and thus

|ξ̂x,n〉 = Wnξx,n =
∑
j∈Jn

ψ∗
j (x)

√
κn

Wnψ j =
∑

b∈{0,1}n

ψ∗
η−1(b)(x)
√
κn

|b〉.

(79)

We now describe how, in the limit of small RKHA parameter
τ , this state can be prepared to any degree of accuracy using a
circuit of size O(n) and depth O(1).

Let |�〉 ∈ Bn be the state vector associated with a uniform
superposition of the quantum computational basis vectors,

|�〉 = 1√
N

∑
b∈{0,1}n

|b〉.

The state vector |�〉 can be prepared from |0〉 using a circuit of
depth 1, associated with an n-fold tensor product of Hadamard
gates, i.e.,

|�〉 =
(

n⊗
i=1

H

)
|0〉, (80)

where H:B → B is the Hadamard gate, represented by the
matrix

H = 1√
2

(
1 1
1 −1

)
.

We will come back to this point in Sec. XI when the algorithm
is implemented on an actual quantum computer.

Next, recall that the basis functions ψ j of Hn have the
form ψ j = e−τ | j|p/2φ j , where the φ j are Fourier functions on
the Abelian group X = T d (see Sec. III B). Since the Fourier
functions are characters of the group, they take the value
φ j (e) = 1 on the identity element e ∈ X (the point with angle
coordinates θ = 0), and thus

|ξ̂e,n〉 =
∑

b∈{0,1}n

e−τ |η−1(b)|p/2

√
κn

|b〉.

It follows that

‖|ξ̂e,n〉 − |�〉‖2
Bn

=
∑

b∈{0,1}n

∣∣∣∣ 1√
N

− e−τ |η−1(b)|p/2

√
κn

∣∣∣∣
2

, (81)

and noting that limτ→0 κn = N [see (45)], we conclude that,
for fixed n, |ξ̂e,n〉 converges to |�〉 as τ → 0. In particular,
since |�〉 can be efficiently prepared via (80), we can effi-
ciently approximate |ξ̂e,n〉 by |�〉 to arbitrarily high precision.

We now claim that every state vector |ξ̂x,n〉 from (79) can be
reached efficiently from |ξ̂e,n〉 by applying a suitable unitary
Koopman operator. Indeed, letting Sx:A → A be the shift
operator by x = (θ1, . . . , θd ) ∈ T d , i.e.,

(Sx f )(y) = f (x + y),

we have that Sx = Ut , where Ut is the Koopman operator for
any time t and rotation frequencies α1, . . . , αd such that x =
(α1t, . . . , αdt ). Thus, if Ŝx

n:Bn → Bn is the unitary operator
induced at the quantum computational Hilbert space Bn by Sx

[cf. (52)],

Ŝx
n = (Wn ◦ �n ◦ �)Sx,

we can implement Ŝx
n with a circuit of size O(n) and depth

O(1) using an analogous approach to that used for the Koop-
man operator. In particular, by translation invariance of the
kernel k [see (11)], we have ξx = S−xξe, and thus |ξ̂x,n〉 =
Ŝ−x

n |ξ̂e,n〉. Therefore, the state vector |ξ̂x,n〉 can be obtained
efficiently by application of that circuit to |ξ̂e,n〉.
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Consider now the state vector

|ξ̌x,n〉 := Ŝ−x
n |�〉. (82)

We have

‖|ξ̌x,n〉 − |ξ̂x,n〉‖Bn = ∥∥Ŝ−x
n |�〉 − Ŝ−x

n |ξ̂e,n〉
∥∥
Bn

= ‖|�〉 − |ξ̂e,n〉‖Bn ,

where we have used the unitarity of Ŝ−x
n to obtain the last

equality. By (81), it follows that as τ → 0 at fixed n, |ξ̌x,n〉
converges to |ξ̂x,n〉. We therefore conclude that for any error
tolerance ε there exists τ > 0 such that the desired initial state
vector, |ξ̂x,n〉, is approximated by |ξ̌x,n〉 with an error of at most
ε in the norm of Bn. Moreover, the state vector |ξ̌x,n〉 can be
prepared by passing the initial quantum computational state
vector |0〉 through a circuit of size O(n) and depth O(1). As
with the QFT-based measurement scheme (see Sec. VII B and
Appendix C), as n → ∞, errors due to approximation of |ξ̂x,n〉
by |ξ̌x,n〉 can be controlled by taking a decreasing sequence of
RKHA parameters τ .

IX. COMPARISON WITH CLASSICAL SIMULATORS
OF QUANTUM CIRCUITS

The reader may have noticed that with the state preparation
scheme described in Sec. VIII, QECD results in a quantum
computational system where entanglement is produced only
by a terminating QFT. That is, we start with the state vector
|0〉 from (78) (which is a tensor product of single-qubit state
vectors |0〉, and thus unentangled), and then

(1) Apply to |0〉 a tensor product
⊗n

i=1 H of Hadamard
gates to obtain the state vector |�〉 in (80).

(2) Apply to |�〉 the shift operator Ŝ−x
n to obtain the state

vector |ξ̌x,n〉 in (82) encoding the classical initial condition x.
(3) Apply to |ξ̌x,n〉 the Koopman operator Û −t

n in (63)
to obtain the state vector |ξ̌ (t )

x,n〉 := Û −t
n |ξ̌x,n〉 representing the

quantum state ρ̂ (t )
x,n ≈ |ξ̌ (t )

x,n〉〈ξ̌ (t )
x,n| in (66).

(4) Apply to |ξ̌ (t )
x,n〉 the QFT to arrive at the state vec-

tor |ξ̆ (t )
x,n〉 := Fn,d |ξ̌ (t )

x,n〉 representing the state ρ̃ (t )
x,n ≈ |ξ̆ (t )

x,n〉〈ξ̆ (t )
x,n|

in (76).
Note that the relations ρ̂ (t )

x,n ≈ |ξ̌x,n〉〈ξ̌x,n| and ρ̃ (t )
x,n ≈

|ξ̆ (t )
x,n〉〈ξ̆ (t )

x,n| in Steps 3 and 4 are approximate since in Steps
1 and 2 we use the approximate state preparation scheme
of Sec. VIII, but the approximation errors vanish as n → ∞
along a decreasing sequence of τ . In this procedure, the only
operation that produces entanglement is the QFT in Step 4.
All operations in Steps 1–3 operate on individual qubits, and
result in no entanglement.

It is known [62,63] that under certain conditions, quantum
computational algorithms exhibiting no entanglement can be
simulated efficiently using randomized classical algorithms.
In Ref. [62], Josza and Linden (JL) consider a quantum al-
gorithm that runs in T (n) steps, where T is a polynomial
function of the number of qubits n. They show that if the
input state is sufficiently unentangled, it is possible to clas-
sically sample the measurement distribution in the quantum
computational basis at an error tolerance η using a randomized
classical algorithm with running time

T (n, η) = poly(T (n), log(1/η)). (83)

Here, poly(u) represents a polynomial function of u that
asymptotically bounds the quantity of interest (in this case,
running time) as u → ∞. Using this result, Browne [64]
shows that certain classes of quantum circuits where entan-
glement is produced only by a terminating QFT can also be
efficiently simulated classically (i.e., in a polynomial running
time T ) using appropriate classical simulators of the QFT. The
QFT simulators they propose include the semiclassical QFT
algorithm of Griffiths and Niu [79], as well as approximate
QFT algorithms [80,81].

We will now compare the computational complexity of our
QECD scheme against randomized classical algorithms which
rely on the theory of JL (including Ref. [64]).

We begin by noting that the tolerance parameter η in (83)
represents errors due to rational approximation of quantum
gates, which is necessary for efficient classical simulability.
More specifically, η represents the error in the trace norm
between the exact quantum state employed in a given quantum
computational algorithm and the state obtained by running
the algorithm with rational approximations of its quantum
gates. In certain classes of problems (e.g., discrete decision
problems), a finite tolerance is sufficient and it is not neces-
sary to consider arbitrarily small η. Yet, in the setting of our
work, i.e., continuous-time dynamical systems, taking η → 0
limits is necessary to attain convergence. In this context, an
essential requirement for a consistent and robust simulator of
a continuous-time system is that its prediction errors converge
to 0 uniformly over time intervals and sets of initial conditions
(cf. the convergence results for QECD in Proposition 3 and
Corollary 8).

Consider that the evolution time t varies in an interval
[0, tmax]. As t varies in that interval, the Rz(ϑl (t )) gates im-
plementing the Koopman evolution Û −t

n of our circuit swipe
through continuous intervals of phase angles ϑl (t ) [see (64)].
As a result, the collection of the matrix elements (Rz(ϑl (t )))i j ,
as the ϑl (t ) vary in these intervals, is an uncountable set that
does not lie in any finite algebraic extension of the rationals.
This means that rational approximations of (Rz(ϑl (t )))i j of
the form ai jl (t )/bi jl (t ) for complex numbers ai jl (t ) and bi jl (t )
with integer real and imaginary parts, satisfying∣∣∣∣(Rz(ϑl (t )))i j − ai jl (t )

bi jl (t )

∣∣∣∣ < η
uniformly over t ∈ [0, tmax] and with respect to i, j, l , require
numbers bi jl (t ) of modulus  (η−1/2) [82]. The reason for
this requirement stems from the fact that there exist badly
approximable real numbers, i.e., real numbers u satisfying
|u − a/b| > c/b2 for some c > 0 and every rational a/b.
Thus, in order to uniformly attain a tolerance η, a classical
simulator based on the theory of JL utilizes integers of m
digits, where

m =  (log η). (84)

In Appendix A 5 [see, in particular, (A18)], we show that
for fixed RKHA parameters p ∈ (0, 1) and τ > 0, the n-
qubit quantum computational state ρ̂ (t )

x,n employed by QECD
approximates the infinite-dimensional quantum state ρx (see
Sec. IV) at an error of O(e−τ̃np/2) for any τ̃ ∈ (0, τ ), uniformly
with respect to the evolution time t ∈ R and initial condition
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FIG. 6. Quantum circuit implementation of the three- and seven-qubit approximation of a circle rotation with frequency α1 = 2π in the
ideal Qiskit Aer environment. (a) Circuit diagram with n = 3 qubits, comprising (from left to right) of state vector load, Koopman evolution
over time t using Rz gates, quantum Fourier transform (QFT), and measurement. (b) Empirical distribution of an ensemble of K = 106

projective measurements (shots) of the projection-valued measure (PVM) associated with the computational basis vectors |b〉 ≡ |b〉 for n = 3
and t = 0.94. (c) Temporal evolution of the empirical probability distributions for n = 3 and 7. (d) Reconstruction of the classical observable
f (t )(x) = sin(x(t )) = sin(θ1 + α1t ) from the ensemble means, f̂ (t )

n (x). The analytical result f (t )(x) is plotted as a solid line. In panels (b)–(d),
the initial condition is x = θ1 = 2.5 and the reproducing kernel Hilbert algebra (RKHA) parameters are p = τ = 1/4. Measurements are
performed at a fixed time step �t = 0.02. In panels (b) and (c), the computational basis vectors |b〉 are indexed by an integer b in the range
0, . . . , 2n−1.

x ∈ X . Setting

η = e−τ̃np/2 (85)

in (84), it follows that in order to achieve a comparable error to
an n-qubit implementation of QECD, the classical simulator
employs integer arithmetic with m =  (np) digits.

In order to derive the estimate in (83), JL assume a poly-
nomial complexity of integer arithmetic operations, such as
addition and multiplication, with respect to m. For our pur-
poses, it is appropriate to assume that the dominant cost is
due to integer multiplication associated with application of
(rational approximations of) quantum gates to qubits. The
complexity of this operation is O(m2) using the standard al-
gorithm (long multiplication). Very recently, Harvey and van
der Hoeven [83] developed an O(m log m) algorithm, which
is conjectured to be an optimal bound consistent with the true
complexity of integer multiplication.

Letting mult(m) denote the complexity of the multipli-
cation algorithm employed, the running time T (n, η) of a
classical simulator of our QECD circuit with the tolerance
from (85) satisfies

T (n, η) = O(n2mult(m)) = O(n2mult(np)). (86)

In QECD, the running time T (n) is dominated by the QFT, and
is thus T (n) = O(n2). Therefore, if standard multiplication
with mult(np) = O(n2p) is used, QECD offers an improved

upper bound by a factor of n2p over (86), which is approx-
imately quadratic for p ≈ 1. Using the Harvey and van der
Hoeven algorithm, this factor drops to np log n. However, it
should be kept in mind that due to various overhead costs, the
efficiency of fast multiplication algorithms such as in Ref. [83]
is typically not realized since impractically large integers have
to be used [84]. Thus, the bound of T (n, η) = O(n2(1+p) )
associated with standard multiplication is the relevant one
for classical simulation of our quantum circuit in practical
applications. We should also point out that the analysis above
does not take into account any additional costs incurred by the
classical simulator in the approximation of the QFT.

X. SIMULATED QUANTUM CIRCUIT EXPERIMENTS

In this section, we demonstrate the performance of the
QECD framework with simulated quantum circuit experi-
ments implemented in the ideal Qiskit Aer simulator [61]. We
consider a periodic example on the circle (Sec. X A), as well
as a quasiperiodic system on the 2-torus (Sec. X B). In both
cases, we compare the mean from an ensemble of quantum
measurements with the true dynamical evolution of represen-
tative classical observables. The numerical results, displayed
in Figs. 6 and 8 for the one- and two-dimensional examples,
respectively, are in good agreement with the theory developed
in Secs. IV–VII.
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A. Circle rotation

According to (5), in dimension d = 1 the orbits of the
dynamics are given by

x(t ) = �t (x) = (θ1 + α1t ) mod 2π,

where α1 is the frequency parameter and x = θ1 the initial
condition. We set α1 = 2π , so the orbits have period 2π/α1 =
1. We seek to approximate the evolution of a real-valued
observable f : S1 → R on the orbit starting at x, which is
represented using the Koopman operator as

f (t )(x) = Ut f (x) = f (�t (x)) = f (θ1 + α1t ).

In this experiment, we consider the bandlimited observable
f (x) = sin x.

The quantum circuit output by QECD, displayed graph-
ically in Fig. 6(a), consists of the following four logical
stages:

(1) A load stage, where the initial quantum state ρ̂x,n =
F̂n(x) is prepared using the quantum feature map F̂n in (51)

(2) A dynamical evolution stage, which evolves ρ̂x,n to the
state ρ̂ (t )

x,n = �̂t
n(ρx,n) using the evolution operator �̂t

n in (50)
(3) A QFT stage, rotating ρ̂ (t )

x,n to the state ρ̃ (t )
x,n = Fn,d ρ̂

(t )
x,n

using the Fourier operator in (72)
(4) A measurement stage, measuring the quantum-

computational PVM En on the state ρ̂ (t )
x,n. The quantum

mechanical approximation f̂ (t )
n (x) of f (t )(x) is then obtained

as an ensemble mean of K independent shots using (77).
The circuit is parameterized by three parameters, namely,

the RKHA parameters p and τ and the number of qubits n.
We set p = τ = 1/4, and consider experiments with n = 3
and n = 7 qubits, corresponding to the quantum computa-
tional Hilbert spaces B3 and B7 of dimension N = 23 = 8 and
N = 27 = 128, respectively. Another input parameter is the
evolution time t , which we set to integer multiples of a fixed
timestep �t = 0.02 for purposes of visualization.

Since all quantum states in the pipeline are pure, in practice
we implement the circuit as a sequence of operators on the
corresponding state vectors. First, the initial state is given by

ρ̂x,n = |ξ̂x,n〉〈ξ̂x,n|,
where the state vector |ξ̂x,n〉 = Wnξx,n is obtained by applica-
tion of the unitary Wn:Hn → Bn from (59) on the normalized
RKHS feature vector ξx,n from (45). See also (79). We note
that in these experiments the state vector |ξ̂x,n〉 is loaded into
the quantum register “exactly,” using an amplitude encoding
scheme applied to the initial state vector |0〉 [see Fig. 6(a)],
as opposed to the efficient approximate scheme described
in Sec. VIII. In particular, we loaded |ξ̂x,n〉 using the Qiskit
function QuantumCircuit.initialize. We will discuss
experiments utilizing the preparation approach of Sec. VIII
in Sec. XI.

The next step is the unitary Koopman evolution, given by

ρ̂ (t )
x,n = �̂t

n(ρ̂x,n) = Û t∗
n |ξ̂x,n〉〈ξ̂x,n|Û t

n .

Here, Û t
n = eitHn is the unitary operator in (55), which is

generated by the Hamiltonian Hn with the Walsh factorization

in (62). We have ρ̂ (t )
x,n = |ξ̂ (t )

x,n〉〈ξ̂ (t )
x,n| with∣∣ξ̂ (t )

x,n

〉 = Û t∗
n |ξ̂x,n〉 = e−iHnt |ξ̂x,n〉.

Therefore, our circuit implements the transformation |ξ̂x,n〉 �→
|ξ̂ (t )

x,n〉, i.e.,

∣∣ξ̂ (t )
x,n

〉 =
2n−1∑
b=0

ψ∗
o−1(b)(x)
√
κn

e−itHn |b〉

=
2n−1∑
b=0

ψ∗
o−1(b)(x)
√
κn

[
n−1⊗
l=0

exp(−itα1h̃2l Z )

]
|b〉,

where h̃2l = ĥ2l /α1, and ĥ2l are the Walsh-Fourier coeffi-
cients in (62). In more detail, using (B6) with d = 1 and
n = 3, we obtain that all coefficients h̃2l are zero except from
h̃1 = −5/2, h̃2 = −1, and h̃4 = −1/2. For n = 7, the seven
nonvanishing coefficients are h̃1 = −65/2, h̃2 = −16, h̃4 =
−8, h̃8 = −4, h̃16 = −2, h̃32 = −1, and h̃64 = −1/2. The
implementation of this second step on the quantum computer
is done for each qubit channel separately, as seen in Fig. 6(a),
by a Rz rotation gate from (65). Specifically, we have

exp(−itαh̃2l Z ) = Rz(2α1t h̃2l ).

The third step is the application of the QFT, which results
to

ρ̃ (t )
x,n = Fn,1ρ̂

(t )
x,n = ∣∣ξ̃ (t )

x,n

〉〈
ξ̃ (t )

x,n

∣∣,
where |ξ̃ (t )

x,n〉 = Fn,1|ξ̂ (t )
x,n〉. We again operate at the level of state

vectors, effecting the transformation |ξ̂ (t )
x,n〉 �→ |ξ̃ (t )

x,n〉 using a
standard QFT circuit. The subsequent measurement of the
PVM En on the state represented by |ξ̃ (t )

x,n〉 for K shots leads
to an empirical probability distribution over the binary strings
b ∈ {0, 1}n (which index the basis vectors |b〉 ≡ |b〉), depicted
in Fig. 6(b) for a representative evolution time t . In Fig. 6(c),
we display the time evolution of this probability distribution
for K = 106 shots and n = 3 and n = 7 qubits. Notice that
as n increases, the probability distribution becomes increas-
ingly concentrated around straight lines that periodically wrap
around the set b = 0, . . . , 2n indexing the |b〉 vectors. This is
a manifestation of the fact that the time-dependent quantum
state ρ̃ (t )

x,n “tracks” the underlying classical state x(t ).
Figure 6(d) displays the true evolution, f (t )(x), and sim-

ulated evolution, f̂ (t )
n (x), of the observable f (x) = sin x over

the time interval t ∈ [0, 1] starting from the initial condition
x = θ1 = 2.5. The simulated evolution f̂ (t )

n (x), which is again
obtained using K = 106 shots, is seen to be in good agree-
ment with the true signal for n = 7 qubits. The simulation
fidelity for n = 3 qubits is clearly degraded, exhibiting higher
variance near the extrema f (t )(x) = ±1 of the true signal, but
nevertheless captures an approximately sinusoidal waveform
with the correct frequency.

To gain intuition on the expected fidelity of the quantum
computational model as a function of the number of qubits,
in Fig. 7 we show the spectra of eigenvalues s j and repre-
sentative corresponding eigenfunctions uj of the self-adjoint
operator Sn := �n(T f ) from (47) for n = 3 and 7 qubits.
Recall, in particular, that Sn is an approximation of the multi-
plication operator by f , with its spectrum of eigenvalues σ (Sn)
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FIG. 7. Eigenvalues s j (left-hand column) and representative eigenfunctions uj : S1 → R (right-hand column) of the self-adjoint operators
Sn = Tn f representing the classical observable f (x) = sin x on the circle for the qubit numbers n = 3 (top row) and 7 (bottom row). The RKHA
parameters are p = τ = 1/4 as in Fig. 6. The index j runs from 1 to 2n. Notice that as n increases the spectra of Sn provide an increasingly
dense sampling of the range of values of f (i.e., the interval [−1, 1]), and the eigenfunctions uj (x) become increasingly localized around values
of x for which f (x) ≈ s j .

providing a discretization of the (continuous) range of values
of f , i.e., in this case the interval [−1, 1]. Moreover, Sn is
unitarily equivalent to the quantum computational observable
Ŝn = WnSn, which is in turn approximately unitarily equiva-
lent to the Fourier-transformed observable S̃n = Fn,1Ŝn that
our circuit approximately measures. In Fig. 7 it is evident
that as n increases, σ (Sn) samples the interval [−1, 1] with
increasingly high density, exhibiting a clustering of eigen-
values near the boundary points ±1. This concentration of
density is consistent with the distribution of f (x) = sin x in-
duced by a fixed-frequency rotation on the circle. Meanwhile,
as n increases, the eigenfunctions exhibit increasingly high
localization, with eigenfunction uj (x) concentrated on points
x ∈ S1 such that f (x) is close to the corresponding eigenvalue
s j . This is seen in the right-hand column of the figure for rep-
resentative eigenfunctions u j . Thus, intuitively, as the number
of qubits increases, the PVM associated with S̃n (which we ap-
proximate by the quantum computational PVM En) provides
a representation of the classical observable f of increasingly
high resolution.

B. Quasiperiodic dynamics on the 2-torus

The two-dimensional case proceeds along similar lines as
the one-dimensional example in Sec. X A, so we mainly fo-
cus on the points that are different from the one-dimensional
example. The classical dynamical orbit on the 2-torus is now

given by

x(t ) = �t (x) = (θ1 + α1t, θ2 + α2t ) mod 2π,

where α1 and α2 are the frequency parameters and x =
(θ1, θ2) is the initial condition. We choose the (rationally
independent) values α1 = 3

√
2π and α2 = 2π , leading to an

ergodic flow on T 2. We again seek to approximate the evo-
lution of a bandlimited classical observable f , in this case
f (x) = sin(θ1) cos(θ2). The evolution of this observable is
given by

f (t )(x) = Ut f (x) = sin(θ1 + α1t ) cos(θ2 + α2t ).

To perform quantum simulation, we set the RKHA param-
eters p = τ = 1/4 as in Sec. X A, and use a total of n = 8
qubits, which corresponds to 4 qubits allocated to each torus
dimension. The quantum computational Hilbert space, B8, is
thus 256-dimensional, and admits the tensor product factor-
ization

B8 = B4 ⊗ B4. (87)

For convenience in the notation, we will label the basis vec-
tors for each of the B4 factors in (87) as |k〉 and |l〉, where
k = (k1, k2, k3, k4) and l = (l1, l2, l3, l4) are four-digit binary
strings. Note that the factorization in (87) is compatible with
the tensor product structure of the infinite-dimensional RKHA
A in (13), in the sense that each B4 factor corresponds to the
image space under a projection of the A(1) spaces in (13).
See also Appendix B, and in particular (B6). A similar tensor
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FIG. 8. As in Fig. 6, but for an eight-qubit approximation of a quasiperiodic rotation on the 2-torus with frequency parameters α1 = 3
√

2π
and α2 = 2π . (a) Quantum circuit for the quasiperiodic system, composed as two parallel copies of the circuit in Fig. 6(a) for the one-
dimensional case, with 4 qubits allocated to each dimension of the 2-torus. An empirical probability distribution obtained from K = 106 shots
is shown to the right of the circuit diagram, where the integers b = 0, . . . , 28 − 1 = 255 index the computational basis vectors |b〉 of the
256-dimensional Hilbert space Bn with n = 8. The RKHA parameters are again p = τ = 1/4. (b) Snapshots of the probability distribution
at three representative evolution times, combined in a single surface plot. The horizontal axes labeled |k〉 and |l〉 correspond to the basis
vector indices for each of the four-qubit spaces associated with each torus dimension through the factorization B8 = B4 ⊗ B4. Note that the
indices k and l range from 0 to 24 − 1 = 15. (c, d) Evolution of the marginal distributions obtained by measurement of the PVMs of each
of the two four-qubit spaces, i.e., one of the two torus dimensions only. The initial condition is x = (θ1, θ2) = (1.0, 2.5), and measurements
are performed at a fixed time step �t = 0.02. The slopes of the probability contours in panels (c) and (d) are proportional to the frequency
parameters α2 and α1, respectively. Notice that the slopes in panel (c) are shallower than those in panel (d) since α2 < α1, and are equal to
the corresponding slopes in Fig. 6(c) since α2 is equal to the frequency parameter of the one-dimensional example. (e) Reconstruction of the
classical observable f (t )(x) = f (t )(x1, x2) = cos(θ2 + α2t ) sin(θ1 + α1t ) from the ensemble means f̂ (t )

n (x) output from the quantum computer.
The true evolution f (t )(x) is plotted as a solid line.

product structure applies for the quantum feature map, dynam-
ical evolution, and QFT operators,

F̂n = F̂ (1)
n/2 ⊗ F̂ (1)

n/2, Û t
n = (

Ut
n/2

)(1) ⊗ (
Ut

n/2

)(1)
,

Fn,2 = Fn/2,1 ⊗ Fn/2,1, (88)

so we can form the entire circuit by composing two four-qubit
circuits from the one-dimensional case; see Fig. 8(a) for an
illustration. In (88), (1)-superscripts and 1-subscripts denote
maps inherited from the one-dimensional case.

As in the one-dimensional example of Sec. X A, all quan-
tum states occurring in our scheme are pure, so we implement
the circuit in Fig. 8(a) at the level of the vectors ξx,n (nor-
malized RKHS feature vectors), |ξ̂x,n〉 = Wnξx,n (initial state
vectors), |ξ̂ (t )

x,n〉 = Û t∗
n |ξ̂x,n〉 (Koopman-evolved state vectors),

and |ξ̃ (t )
x,n〉 = Fn,2|ξ̂ (t )

x,n〉 (state vectors after application of the
QFT). Note that the normalized feature vector associated with

classical state x ∈ T 2 takes the form

ξx,n =
∑
j∈Jn,2

ψ∗
j (x)

√
κn
ψ j,

with n = 8 and

ψ∗
j (x) = exp

[
−τ

2
(| j1|p + | j2|p)

]
exp[−i( j1x1 + j2x2)].

See again Table II for an example of the ordering of the multi-
index j and its mapping to the computational basis in the case
n = 4 (the table would have 256 rows in the current exam-
ple). We also note that our n = 8 example has 2 × 4 nonzero
Walsh-Fourier expansion coefficients: h̃1 = −9/2, h̃2 = −2,
h̃4 = −1, and h̃8 = −1/2 for each torus dimension.

Figure 8(b) displays snapshots of the empirical joint prob-
ability distribution of the (k, l ) indices at representative
evolution times t , obtained from ensembles of K = 106 mea-
surements of the quantum computational PVM En on the state
represented by |ξ̃ (t )

x,n〉 for the initial condition x = (1.0, 2.5).
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FIG. 9. Comparison of three-qubit approximations of a circle rotation with frequency α1 = 2π from simulated circuit experiments in
the ideal Qiskit Aer environment (ideal) and actual quantum computing experiments on the IBM Quantum System One (ibmq). (a) Tem-
poral evolution of the empirical probability similar to Fig. 6(c) in the ideal Qiskit circuit simulation, using amplitude encoding with
QuantumCircuit.initialize for the state preparation and the RKHA parameters p = τ = 1/4. (b) Temporal evolution of the empirical
probability distributions for n = 3 on the quantum computer starting with a uniform superposition state |�〉 at t = 0. (c) Reconstruction of
the classical observable f (t )(x) = sin(x(t )) = sin(θ1 + α1t ) from the ensemble means, f̂ (t )

n (x). The analytical result f (t )(x) is plotted as a solid
line. In all panels, the initial condition is x = θ1 = 0. Measurements are performed at a fixed time step �t = 0.02. The number of shots is
K = 218 = 262 144 in both cases.

The locality of the distributions is indicative of the fact that the
quantum computing model successfully tracks the orbit of the
underlying classical dynamical system. Figures 8(d) and 8(d)
show marginals of these distributions over the k and l index
spaces as a function of time t , where periodic evolution at the
generating frequencies α1 and α2, respectively, is apparent.

In Fig. 8(e) we compare the approximate evolution f̂ (t )
n (x)

of the observable f computed from the same ensembles of
quantum measurements against the true evolution f (t )(x). De-
spite the modest number of qubits allocated to each torus
dimension, f̂ (t )

n (x) reproduces the quasiperiodic behavior of
f (t )(x) to an adequate degree of accuracy, with more pro-
nounced errors occurring near the extrema of the true signal.
As in the one-dimensional example of Fig. 6(d), we expect
such discrepancies to rapidly diminish as the number of qubits
increases. Similarly, from this example it becomes clear how
one can generalize the dynamics to a torus of dimension
d > 2.

XI. EXPERIMENTS ON THE IBM QUANTUM
SYSTEM ONE

The circle rotation algorithm for n = 3 qubits was also im-
plemented on the IBM Quantum System One to demonstrate
the readiness of QECD on a real NISQ device. This system
has a quantum volume (an empirical metric that quantifies the
capability and error rates of a quantum device) of 32. The cor-
responding program was again written in Qiskit (see Sec. X),
and then transpiled (translated) into a sequence of appropriate
elementary gate operations acting on the physical supercon-
ducting qubits via microwave channels at the hardware level.
No error correction was used in our simulation. As mentioned
in Sec. VIII, the encoding of 2n (complex) amplitudes that
represent the feature vector |ξ̂x,n〉 associated with classical
state x ∈ X in an n-qubit quantum register can lead to an ex-
ponential growth of gates. To give a concrete example for n =
3: amplitude encoding using QuantumCircuit.initialize
with no circuit optimization is transpiled into a sequence of

84 elementary quantum gates. This conversion results to 52
elementary gates for a higher transpiler optimization level
of 2.

To circumvent this expensive amplitude encoding of clas-
sical data, it was shown in Sec. VIII that the initial state
vector |ξ̂x,n〉 can also be obtained to any degree of accuracy
with a circuit of size O(n) and depth O(1). In the particular
case x = e (i.e., the point with canonical angle coordinates
θ1, . . . , θd = 0), the encoding reduces to a uniform superposi-
tion state for n-qubits, |�〉, which is obtained via n Hadamard
gates H applied to the standard basis quantum state |0〉⊗n

[see (80)]. This step reduces the number of gates, and thus
the circuit depth, significantly to 33 and 30 for the transpiler
optimization levels 0 and 2, respectively. This depth is close
to the quantum volume of the computer.

Figure 9 directly compares the results of an ideal Qiskit
Aer simulator for n = 3 and τ = p = 1/4 with an experiment
on the IBM Quantum System One for the observable f (x) =
sin x and an initial uniform superposition state |�〉 (approxi-
mating |ξ̂e,n〉). Despite the noise caused by decoherence, the
evolution of probability densities [Fig. 9(b)] and expectation
values [Fig. 9(c)] obtained from the NISQ device remain
consistent with the Qiskit simulation [Figs. 9(a) and 9(c)]. The
number of shots, which is limited to 8192 on the Quantum
System One, was enhanced to 218 by aggregating results from
multiple jobs.

Unfortunately, increasing the number of qubits beyond n =
3 led to noticeable degradation of the results on the quantum
computer relative to the Qiskit simulations, despite our best
efforts to manage noise and decoherence with the tools avail-
able to us. Still, to our knowledge, the n = 3 results reported
in this section constitute the first successful simulation of an
observable of a classical dynamical system on a manifold
by an actual NISQ device. We expect that as the coherence
characteristics, error mitigation and/or circuit optimization
schemes for quantum computation improve, the QECD frame-
work presented in this paper will successfully scale to higher
qubit numbers.

052404-24

Remove


Watermark

Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5237&m=db


EMBEDDING CLASSICAL DYNAMICS IN A QUANTUM … PHYSICAL REVIEW A 105, 052404 (2022)

XII. SUMMARY AND OUTLOOK

We have developed a framework for approximating the
evolution of observables of a classical dynamical system by
a finite-dimensional quantum system implementable on an
actual quantum computer. The procedure, which we refer
to as quantum embedding of classical dynamics (QECD),
takes the classical system as an input, and passes through
intermediate classical statistical, infinite-dimensional quan-
tum mechanical, and finite-dimensional quantum mechanical
(matrix-mechanical), representations, ultimately arriving at an
n-qubit quantum computational representation of the system.
We have thus addressed the full pipeline starting from the
classical dynamical system all the way to its experimental
verification on a real quantum computer, the IBM Quantum
System One.

For the class of dynamical systems under study (i.e.,
measure-preserving, ergodic dynamical systems with pure
point spectra), QECD is able to simulate a 2n-dimensional
Hilbert space of classical observables using circuits of size
O(n2) and depth O(n). This constitutes an exponential ad-
vantage over deterministic classical algorithms for Koopman
operator approximation, where the cost scales linearly with
the subspace dimension, i.e., is O(2n). In addition, the quan-
tum state encoding of the initial classical state is efficiently
prepared, and predictions from the quantum computational
system are extracted through projective measurement in the
standard computational basis without requiring postprocess-
ing techniques such as quantum state tomography. QECD
also has a near-quadratic computational advantage over
randomized classical algorithms for quantum circuit simula-
tion [62,64] (see Sec. IX).

One of the mathematical underpinnings of our approach
is the theory of reproducing kernel Hilbert spaces (RKHSs).
RKHS theory is widely used in kernel methods for machine
learning, but was employed here to construct quantum me-
chanical analogs of feature maps that behave consistently
under classical function evaluation and quantum mechanical
expectation. A further foundational ingredient is the operator-
theoretic description of dynamical systems, which utilizes
linear Koopman operators to characterize the action of a (non-
linear) dynamical system on observables.

We described how QECD proceeds along two composite
mappings, one taking state variables x �→ ρ̂x,n to density op-
erators ρ̂x,n on an n-qubit Hilbert space, Bn, and another one
taking classical observables f �→ Ŝn to self-adjoint operators
Ŝn on Bn. A key aspect of the resulting quantum system is
a tensor product factorization of its Hamiltonian in terms of
Walsh operators, yielding quantum circuits of low size and
depth. In particular, it was shown that for an ergodic dy-
namical system with finitely generated pure point spectrum,
this factorization results in a circuit of size O(n) and no
cross-channel communication, implementing unitary Koop-
man evolution. The QECD framework also includes a state
preparation stage of size O(n), as well as a quantum Fourier
transform (QFT) stage of size O(n2) to enable information
retrieval through measurement in the computational basis.

The scheme exhibits three types of approximation error, all
of which can be controlled, as we have shown, in appropriate
asymptotic limits:

(1) Finite-dimensional approximation errors due to pro-
jection of the infinite-dimensional quantum system on the
RKHS H to the finite-dimensional quantum computational
system on Bn. These errors vanish as n → ∞, and the uniform
convergence is unconditional on the defining parameters of H
if idealized state preparation and measurement is employed
(see Sec. V).

(2) Bias errors due to preparation of an approximate initial
quantum state and measurement of an approximate observ-
able using efficient circuits. These errors vanish in a joint
limit of decreasing RKHS parameter τ and increasing n (see
Secs. VII, VIII, and Appendix C).

(3) Monte Carlo errors associated with approximation of
quantum mechanical expectations with a finite number of
measurement shots (see Sec. VII B). These errors vanish as
the number of shots, K , increases at fixed n and τ .

We illustrated our approach with periodic and quasiperi-
odic dynamical systems on the circle and 2-torus, respectively,
where many aspects of the quantum embedding of classical
dynamics can be directly validated against closed-form so-
lutions. Our numerical experiments were based on simulated
quantum circuits of up to n = 8 qubits, implemented using
the Qiskit framework. In addition we demonstrated the ability
of our framework to deal with a classical dynamical system
on a real noisy quantum computer. The results demonstrated
high-fidelity simulation of the evolution of classical observ-
ables through ensemble averages of independent quantum
measurements. Our approach is straightforwardly generaliz-
able to quasiperiodic dynamics of arbitrarily large intrinsic
dimension through parallel composition of quantum circuits.

The work presented in this paper should be considered
a first step, particularly given its focus on systems with
pure point spectra. Applications of the procedure to mix-
ing (chaotic) dynamical systems will invariably have to deal
with the continuous spectrum of the Koopman operator, po-
tentially generating quantum circuits of higher connectivity
than for quasiperiodic dynamics. Studies in this direction are
currently underway using RKHS-based spectral discretization
approaches for Koopman operators [29] (see Appendix E 3 b),
which are able to consistently approximate, in a spectral
sense, measure-preserving, ergodic dynamical flows of arbi-
trary spectral character (pure point spectrum, mixed spectrum,
and continuous spectrum) by unitary evolution groups with
pure point spectra. A possible route to generalize QECD to
this class of systems is to employ the scheme of Ref. [29] to
first approximate the Koopman group on L2(μ) by a unitary
evolution group on an RKHS with a discrete spectrum, and
then apply the quantum computational techniques developed
in this paper to simulate the discrete-spectrum system.

Another avenue of future research is to develop data-driven
formulations of the present quantum embedding framework,
using kernel methods to build orthonormal bases from dy-
namical trajectory data, and employ these bases to represent
quantum mechanical states and observables [25] (see Ap-
pendix E). This line of research would address the important
problem of how errors in data-driven approximation of
Koopman operators propagate into errors in the dynamical
predictions made by the quantum computer. In addition, in-
sights from classical data-driven approximation techniques for
Koopman operators should lead to a systematic development
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of quantum machine learning algorithms that can describe
classical dynamical systems on NISQ devices. This comprises
not only classification and regression tasks [36], but also the
development of data-driven quantum algorithms for model-
ing nonlinear dynamics in high-dimensional phase spaces. A
longer-term goal would be to explore applications of quantum
mechanical methodologies to perform simulation and fore-
casting of real-world systems such as climate dynamics [85]
and turbulent fluid flows [86].
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APPENDIX A: QUANTUM MECHANICAL
REPRESENTATION OF CLASSICAL OBSERVABLES

In this Appendix, we state various properties and results
on the representation of classical observables by quantum
mechanical operators employed in the main text.

1. Banach ∗-algebra structure of A

The fact that the RKHA A from Sec. III B is an Abelian,
unital, Banach ∗-algebra under pointwise multiplication of
functions means that it has the following defining properties:

(1) A is closed under pointwise multiplication of func-
tions, i.e., the function h: X → C with h(x) = f (x)g(x) lies
in A whenever f and g lie in A. Thus, A is an algebra, and is
clearly Abelian since f g = gf .

(2) A is equipped with an antilinear involution operation
∗:A → A given by complex conjugation of functions, i.e.,
( f ∗)(x) = f (x)∗. Thus, A is also a ∗-algebra.

(3) There exists a constant C > 0 such that for every
f , g ∈ A the relationships

‖ f g‖A � C‖ f ‖A‖g‖A, ‖ f ∗‖A = ‖ f ‖A (A1)

hold. Thus, A is a Banach ∗-algebra.
(4) The function 1X : X → C equal everywhere to 1 lies in

A and satisfies 1X f = f for all f ∈ A. Thus, finally A is also
unital.

More generally, the topic of Banach function algebras on
locally compact Abelian groups (with respect to either point-
wise multiplication or convolution) has a long history of study,
e.g., [49,87–90].

2. Injectivity of the map T̃

We verify the assertion made in Sec. IV C that the map
T̃ :A → B(A) is injective on Asa. For that, it is enough to show
that if T̃ f = 0 for f ∈ Asa, then f = 0. By definition of T̃ ,
T̃ f = 0 implies that π f = −(π f )∗, or, equivalently

〈ψi, fψ j〉A = −〈 fψi, ψ j〉A, ∀i, j ∈ Zd . (A2)

Expanding f = ∑
l∈Zd f̃lψl , and setting i = 0 in (A2), we get

f̃ ∗
j = −c j,− j f̃− j .

However, because f is real, we have f̃ ∗
j = f̃− j , and since c j,− j

is nonzero we conclude that f̃ j = 0, and thus f = 0.

3. Consistency of representations based on the reproducing
kernel Hilbert space H

Recall the construction of the RKHS H in Sec. IV A. Even
though H is a strict subspace of the RKHA A, the quantum
feature map F : X → Q(H) from (21) allows us to consis-
tently recover all predictions made for classical observables
obtained via the feature map F̃ : X → Q(A) of A in (23), as
we now describe.

First, observe that by definition of �x = F̃ (x) and ρx =
F (x), we have

ρx = κ̃

κ
��x, (A3)

where � is the projector onto B(H), defined in (28). As a
result, if A ∈ B(A) is a quantum mechanical observable whose
range is included in H (so that A is well defined as an operator
on H), and whose nullspace includes the orthogonal comple-
ment H⊥ in A, we have

〈A〉�x = κ

κ̃
〈A〉ρx . (A4)

Indeed, since every observable A in this class satisfies �A =
A, using (A3) and the cyclic property of the trace, we get

〈A〉�x = tr(�xA) = tr(�x(�A))

= tr(�x�A�) = tr(��x�A)

= κ

κ̃
tr(ρxA) = κ

κ̃
〈A〉ρx ,

which verifies (A4). Thus, for all observables A ∈ B(A) satis-
fying

ranA ⊆ H, ker A ⊇ H⊥, (A5)

expectation values with respect to �x can be recovered from
expectation values with respect to ρx up to a constant scal-
ing factor. For our purposes, this means that the quantum
mechanical observables �(π f ) and �(T̃ f ) obtained through
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the projections �π and �T̃ of π and T̃ from (24) and (25),
respectively, satisfy (A4).

As noted in Sec. IV C 2, in order to obtain consistency be-
tween classical function evaluation and quantum mechanical
expectation, analogously to (31), we introduce the modified
representation maps� :A → B(H) and T :A → B(H) in (29)
to account for scaling errors. We reproduce the definitions
here for convenience:

� = �πL−1, T = �T̃ L−1.

We define L:A → A as the self-adjoint, diagonal operator
satisfying the eigenvalue equation

Lψl = ηl

κ
ψl with ηl =

∑
j∈J ′

l

e−τ | j|p
, (A6)

where J ′
l is the index set defined as

J ′
l = { j ∈ J: j + l ∈ J}.

Note that by construction of J ′
l , the numbers ηl are strictly

positive, and have the maximum value η0 = κ . Moreover,
the ηl attain their smallest value, κ − e−τ , when |l| = 1, i.e.,
the multi-index l = (l1, . . . , ld ) ∈ Zd has exactly one entry li
equal to ±1 and all other entries equal to 0. As a result, L is
an invertible operator with bounded inverse, satisfying

L−1ψl = κ

ηl
ψl .

Since κ/ηl � 1, we deduce that L−1 acts by inflating the
expansion coefficients of elements of A in the {ψ j} basis.

We then have the following proposition.
Proposition 1. The following classical–quantum consis-

tency relation holds for every f ∈ A and x ∈ X :

f (x) = 〈� f 〉ρx .

Moreover, if f is a real-valued observable in Asa, we have

f (x) = 〈T f 〉ρx .

Proof. Suppose that g = ψl for some l ∈ Zd , and let A =
�Ag, where Ag = πψl ∈ B(A) is the multiplication operator
by ψl . Then, A satisfies (A5), and using (A4), we get

〈A〉ρx = κ̃

κ
〈A〉�x = κ̃

κ
tr(�x�Ag�)

= κ̃

κ

∑
j∈Zd

〈ψ j, �x�Ag�ψ j〉A

= κ̃

κ

∑
j∈J

〈ψ j, �x�Agψ j〉A

= κ̃

κ

∑
j∈J

〈ψ j, �x�(ψlψ j )〉A

= 1

κ

∑
j∈J

〈k̃x,�(ψlψ j )〉A〈ψ j, k̃x〉A

= 1

κ

∑
j∈J ′

l

〈kx, ψlψ j〉A〈kx, ψ j〉∗A

= 1

κ

∑
j∈J ′

l

ψ∗
j (x)ψ j (x)ψl (x)

= 1

κ

∑
j∈J ′

l

e−τ | j|p |φ j (x)|2ψl (x)

= 1

κ

∑
j∈J ′

l

e−τ | j|p
ψl (x)

= ηl

κ
ψl (x) = Lψl (x). (A7)

Meanwhile, an application of (31) for f = Lψl gives

Lψl (x) = 〈π (Lψl )〉�x , (A8)

and combining (A7) and (A8) we arrive at

〈�(πg)〉ρx = 〈π (Lg)〉�x , (A9)

where g = ψl . Since the basis vector ψl was arbitrary, it fol-
lows by linearity that (A9) holds for every g ∈ A. Setting, in
particular, g = L−1 f yields

〈�(π (L−1 f ))〉ρx = 〈π f 〉�x ⇐⇒ 〈� f 〉ρx = f (x),

which confirms the first claim of the proposition. The second
claim, f (x) = 〈T f 〉ρx , follows similarly under the additional
assumption that f ∗ = f . �

4. Dynamics on the reproducing kernel Hilbert space H
By construction, the RKHS H is a Koopman-invariant

subspace of A, i.e., UtH = H for all t ∈ R. As a result,
we can define a generator V : D(V ) → H with D(V ) ⊂ H,
a corresponding Koopman operator Ut :H → H, and corre-
sponding evolution maps on observables, U t : B(H) → B(H),
and states,�t : Q(H) → Q(H) analogously to the correspond-
ing operators associated with A. These operators satisfy the
compatibility relations [cf. (35) and (37)]

U t (� f ) = � (Ut f ), �t (F (x)) = F (�t (x))

for every f ∈ A, x ∈ X , and t ∈ R, where � :A → B(H) is
the map on observables in (29) and F : X → Q(H) the quan-
tum feature map in (21). In addition, using the consistency
relations in Proposition 1 and (39), we get

Ut f (x) = 〈U t (� f )〉ρx = 〈� f 〉�t (ρx ),

Ut f (x) = 〈U t (T f )〉ρx = 〈T f 〉�t (ρx ), (A10)

where T :H → B(H) was defined in (29), and the equalities in
the second line hold for real-valued functions in H. It follows
from (A10) that we can consistently represent the evolution
of classical observables in A [which is a dense subspace of
C(X )] by quantum mechanical evolution of observables in
B(H), even though H is a nondense subspace of A.

5. Uniform convergence

In what follows, ‖ · ‖ will denote the operator norm of
bounded operators on H, and ‖ · ‖1 will denote the trace norm
of trace-class operators on H, i.e.,

‖A‖ = sup
f ∈H\{0}

‖A f ‖H
‖ f ‖H , ‖A‖1 = tr(

√
A∗A).
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Here,
√

A∗A ≡ R is the positive square root of A∗A, i.e., the
unique positive operator R ∈ B(H) such that R2 = A∗A. We
recall that the trace norm of a rank-1 operator of the form
A = 〈 f , ·〉Hg with f , g ∈ H is given by

‖A‖1 = ‖ f ‖H‖g‖H. (A11)

Moreover, for any trace-class operator A:H → H and
bounded operator B ∈ B(H) we have

|tr(AB)| � ‖A‖1‖B‖. (A12)

The following lemma establishes that as n → ∞ the den-
sity operators ρx,n from Sec. V converge to ρx in the trace
norm, uniformly with respect to the initial condition x.

Lemma 2. With the notation of Sec. V, we have
limn→∞ ‖ρx,n − ρx‖1 = 0, where the convergence is uniform
with respect to x ∈ X .

Proof. Let

ρ̆x,n = �nρx = κn

κ
ρx,n.

We have

‖ρx,n − ρx‖1 = ‖ρx,n − ρ̆x,n + ρ̆x,n − ρx‖1

� ‖ρx,n − ρ̆x,n‖1 + ‖ρ̆x,n − ρx‖1

=
∣∣∣1 − κn

κ

∣∣∣‖ρx,n‖1 + ‖ρ̆x,n − ρx‖1

= 1 − κn

κ
+ ‖ρ̆x,n − ρx‖1. (A13)

Moreover,

‖ρ̆x,n − ρx‖1

= 1

κ
‖〈kx,n, ·〉Hkx,n − 〈kx, ·〉Hkx‖1

= 1

κ
‖〈kx,n, ·〉Hkx,n−〈kx, ·〉Hkx,n+〈kx, ·〉Hkx,n−〈kx, ·〉Hkx‖1

� 1

κ
(‖〈kx,n − kx, ·〉Hkx,n‖1 + ‖〈kx, ·〉H(kx,n − kx )‖1)

= 1

κ
(‖kx,n − kx‖H‖kx,n‖H + ‖kx‖H‖kx,n − kx‖H)

� 2

κ
‖kx‖H‖kx,n − kx‖H

= 2√
κ

‖kx,n − kx‖H,

where we used (A11) to obtain the equality in the third to
last line and the fact that ‖kx,n‖H < ‖kx‖H [which follows
from (41)] to arrive at the second to last line. Using again (41),
we get

‖kx,n − kx‖H =
∥∥∥∥∥ ∑

j∈J\Jn

ψ∗
j (x)ψ j

∥∥∥∥∥
H

=
√ ∑

j∈J\Jn

|ψ j (x)|2 =
√ ∑

j∈J\Jn

e−τ | j|p,

and inserting this result in (A13) it follows that

‖ρx,n − ρx‖1 � 1 − κn

κ
+ 2√

κ

√ ∑
j∈J\Jn

e−τ | j|p . (A14)

Taking the n → ∞ limit, we obtain

lim
n→∞ ‖ρx,n − ρx‖1 = 0,

as claimed, and since the right-hand side of (A14) does not
depend on x it follows that the convergence to the limit
uniform. �

Using Lemma 2, we show that the predictions made by
the finite-dimensional quantum systems on Hn constructed in
Sec. V converge, as n → ∞, to those made by the infinite-
dimensional system on H, uniformly with respect to the initial
condition x and evolution time t .

Proposition 3. With the notation of Sec. V, for any quan-
tum mechanical observable A ∈ B(H) we have

lim
n→∞〈An〉�t

n(ρx,n ) = 〈A〉�t (ρx ),

where the convergence is uniform with respect to x ∈ X and
t ∈ R.

Proof. As in Sec. V, we identify An ∈ B(Hn) with the
unique observable Ãn ∈ B(H) such that Ãn f = An f if f lies
in Hn, and Ãn f = 0 if f lies in the orthogonal complement of
Hn in H. With this identification, we have

〈An〉�t
n (ρx,n ) = tr

(
�t

n(ρx,n)An
)

= tr
(
ρx,nU t

nAn
)

= tr(ρx,nU t�nA)

= tr(ρx,n�nU t A)

= tr((�nρx,n)U t A)

= tr(ρx,nU t A),

where we used the commutative relations in (44) to obtain the
equality in the fourth line and the fact that ρx,n is invariant
under �n to obtain the final equality. Therefore, using (A12)
and the fact that U t is an isometry of B(H), i.e., ‖U t A‖ = ‖A‖,
we obtain

|〈An〉�t
x (ρx,n ) − 〈A〉�t (ρx )| = |tr((ρx,n − ρx )U t A)|

� ‖ρx,n − ρx‖1‖U t A‖
� ‖ρx,n − ρx‖1‖A‖. (A15)

It therefore follows by Lemma 2 that

lim
n→∞ |〈An〉�t

x (ρx,n ) − 〈A〉�t (ρx )| = 0,

as claimed. The convergence is uniform with respect to x ∈ X
by Lemma 2, and it is uniform with respect to t ∈ R since the
right-hand side of (A15) does not depend on t . �

Before closing this Appendix, we manipulate the bound
in (A14) to bring it in a simplified form for use in the com-
plexity analysis in Sec. IX. First, we have

1 − κn

κ
= 1

κ

∑
j∈J\Jn

e−τ | j|p
,
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and inserting this expression in (A14) leads to

‖ρx,n − ρx‖1 � 1

κ
Sn + 2√

κ

√
Sn, (A16)

where

Sn =
∑

j∈J\Jn

e−τ | j|p
.

Next, for any τ̃ ∈ (0, τ ), we have

Sn = e−τ̃d pnp
∑

j∈J\Jn

eτ̃d pnp−τ | j|p
.

Observe that since τ̃ < τ and | j|p > d pnp for every j ∈
J \ Jn, the exponents d̃ pnp − τ | j|p are all negative. Using
concavity arguments for the function f (u) = up (as done in
Appendix C 4 ahead), it can be shown that the sums S̃n =∑

j∈J\Jn
eτ̃d pnp−τ | j|p

are uniformly bounded with respect to n.
Using this result in (A16), we get

‖ρx,n − ρx‖1 � C̃

κ
e−τ̃d pnp +

√
C̃

2
e−τ̃d pnp/2,

where C̃ is an upper bound for S̃n. It therefore follows that
there exists a constant C such that

‖ρx,n − ρx‖1 � Ce−τ̃d pnp/2. (A17)

Since the state ρx,n is unitarily equivalent to the quantum
computational state ρ̂x,n from (66), we can use (A17) as
an upper bound of the approximation error of the infinite-
dimensional state ρx by the n-qubit state employed by QECD.
Moreover, since the right-hand side of (A17) is independent
of the initial condition x and we have �t (ρx ) = ρ�t (x) and
�t (ρx,n) = ρ�t (x),n we can conclude that the bound applies for
any evolution time t ∈ R, i.e.,∥∥ρ (t )

x,n − ρ (t )
x

∥∥
1 � Ce−τ̃d pnp/2. (A18)

APPENDIX B: WALSH OPERATOR REPRESENTATION
OF THE KOOPMAN GENERATOR

In this Appendix, we lay out the calculation of the discrete
Walsh transform of the spectral function h ∈ L2

n ([0, 1]) of
the Hamiltonian Hn induced by the Koopman generator of a
quasiperiodic dynamical system, defined in (61). In particular,
we show that h is expressible as a linear combination of
Rademacher functions Rl = w2l (without contributions from
more general Walsh functions), leading to the factorization of
Hn in (62).

First, by (14) and (61), for any m ∈ {0, . . . , 2n − 1} we
have

h
( m

2n

)
= ω j = α1 j1 + α2 j2 + . . .+ ad jd , (B1)

where j1, . . . , jd are integers in the set J1, defined
uniquely by the property that the concatenated binary strings
η( j1), . . . , η( jd ) give the dyadic decomposition of m/2n,

γ
( m

2n

)
= (η( j1), . . . , η( jd )). (B2)

We can express the left-hand side of (B2) in terms of
Rademacher functions using (57), viz.,

γ
( m

2n

)
=

(
γ1

( m

2n

)
, . . . , γn

( m

2n

))
= 1

2
− 1

2

(
R0

( m

2n

)
, . . . ,Rn−1

( m

2n

))
. (B3)

Meanwhile, setting mi = o( ji) and using again (57), the right-
hand side of (B2) becomes

(η( j1), η( j2), . . . , η( jd ))

=
(
γ
( m1

2n/d

)
, . . . , γ

( md

2n/d

))
= 1

2
− 1

2

(
R0

( m1

2n/d

)
, . . . ,Rn/d−1

( m1

2n/d

)
,

R0

( m2

2n/d

)
, . . . ,Rn/d−1

( m2

2n/d

)
,

. . . . . . ,

R0

( md

2n/d

)
, . . . ,Rn/d−1

( md

2n/d

))
. (B4)

Substituting for γ (m/2n) and (η( j1), . . . , η( jd )) in (B2) us-
ing (B3) and (B4), respectively, we deduce that for each
i ∈ {1, . . . , d} and l ∈ {0, . . . , n − 1}

Rl

( m

2n

)
= Rl−(i−1)n/d

( mi

2n/d

)
, (B5)

for all m ∈ {0, . . . , 2n − 1}.
Observe now that for ji ∈ J1,

ji =
{

mi − 2n/d−1 : 0 � mi � 2n/d−1 − 1
mi − 2n/d−1 + 1 : 2n/d−1 � mi � 2n/d − 1

=
n/d−1∑

l=0

1 − Rl

( mi

2n/d

)
2l+2−n/d

+
1 − R0

( mi

2n/d

)
2

− 2n/d−1

= −
n/d−1∑

l=0

Rl

( mi

2n/d

)
2l+2−n/d

−
R0

( mi

2n/d

)
2

= −
n/d−1∑

l=0

Rl+(i−1)n/d

( m

2n

)
2l+2−n/d

−
R(i−1)n/d

( m

2n

)
2

,

where we used (57) and (B5) to obtain the second and last
lines, respectively. Substituting the above in (B1), we obtain

h
( m

2n

)
= −

d∑
i=1

αi

[
n/d−1∑

l=0

Rl+(i−1)n/d

( m

2n

)
2−l−2+n/d

]

−
d∑

i=1

αi

2
R(i−1)n/d

( m

2n

)

= −
d∑

i=1

αi

2

n/d−1∑
l=0

(
2−l−1+n/d + δl0

)
× Rl+(i−1)n/d

( m

2n

)
.

We therefore conclude that for a quasiperiodic system, the
spectral function of the generator h is expressible as a linear
combination of Rademacher functions. Explicitly, we have

h =
d∑

i=1

n/d−1∑
l=0

ĥ2l+(i−1)n/d Rl+(i−1)n/d , (B6)

with

ĥ2l+(i−1)n/d = −αi(2
−l−1+n/d + δl0)/2, (B7)
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which is consistent with the factorization of the Hamiltonian
Hn in (62).

APPENDIX C: APPROXIMATE DIAGONALIZATION OF
OBSERVABLES USING THE QUANTUM FOURIER

TRANSFORM

In this Appendix, we perform an analysis of approximate
diagonalization of quantum mechanical observables induced
at the quantum computational level from classical observables
through the use of the QFT. In Appendixes C 1 and C 2, we
describe how such quantum mechanical observables become
increasingly diagonal as the number of qubits n increases, and
provide explicit bounds verifying the approximate eigenvalue
equation (75). In Appendix C 3, we show that quantum me-
chanical expectation values of the approximately diagonalized
observables converge to the true expectation values in a limit
of infinite qubit number n and vanishing RKHA parameter
τ . Appendixes C 4 and C 5 contain proofs of two auxiliary
lemmas, Lemma 4 and 6, which are stated in Appendixes C 1
and C 3, respectively.

1. Approximate diagonalization in dimension d = 1

We begin with the one-dimensional case, d = 1, where
X = S1. In this case, the index set Jn in (17) becomes
Jn = Jn,1 = {−N/2, . . . ,−1, 1, . . . ,N/2} with N = 2n, and
the map Fn,d in (72) reduces to the standard n-qubit QFT,
Fn,d ≡ Fn. We also recall that p ∈ (0, 1) and τ > 0 are the
parameters associated with the RKHA A.

a. Diagonalization using the regular representation π

Fixing m ∈ Z, consider the regular representer (multipli-
cation map) πψm ∈ B(A) of basis vector ψm, the associated
quantum computational observable

Âm,n := (Wn ◦ �n ◦ � ◦ π )ψm ∈ B(Bn),

and the Fourier-transformed observable

Ãm,n = FnÂm,n ≡ F∗
nÂm,nFn. (C1)

First, note that by definition of the projection �n, Âm,n is the
zero operator (and thus trivially diagonal) whenever |m| >
N/2. This is a manifestation of an effective “Nyquist limit”
on the wave number m of classical observables that can be
resolved by the finite-dimensional system on Bn. Here, we are
interested in characterizing the behavior of Âm,n in the “well-
resolved” regime, |m| � N/2. The following lemma provides
a bound showing that (1) such well-resolved observables Âm,n

are approximately diagonal in the quantum computational ba-
sis {|0〉, . . . , |N − 1〉} and (2) the diagonal part approximately
recovers the values of ψm at particular points on the circle S1.

Lemma 4. With the notation of (C1), the observable Ãm,n

satisfies

(Ãm,n)kl := 〈k|Ãm,n|l〉 = ψm(θl )δkl + εmnkl ,

where θl = 2π l/N , and εmnkl is a residual obeying the bound

|εmnkl | � Cτ |m|
N1−p

+ (2|m| + 1)e−τ |m|p

N
,

for a constant C independent of k, l , m, n, p, and τ .

A proof of Lemma 4 will be given in Appendix C 4. Using
this basic result, we can derive error estimates for more gen-
eral quantum mechanical observables than those induced by
the individual basis functions ψm.

First, note that the terms (2|m| + 1)e−τ |m|p
, m ∈ Z, are

bounded by a constant that depends on p and τ (and diverges
as either of these parameters tends to 0). Moreover, since
p > 0, 1/N is bounded by a constant times 1/N1−p. Thus, for
every p ∈ (0, 1) and τ > 0 there exists a constant Cp,τ such
that for all m ∈ Z,

(2|m| + 1)e−τ |m|p

N
� Cp,τ

N1−p
.

This means that we can simplify the estimate for |εmnkl | in
Lemma 4 to (the less precise) bound

|εmnkl | � Cp,τ + Cτ |m|
N1−p

. (C2)

Using (C2), we estimate the square norm of the residual

|rmnl〉 := Ãm,n|l〉 − ψm(θl )|l〉
as

‖rmnl‖2
Bn

= ‖(Ãm,n − ψm(θl )|l〉)‖2
Bn

=
N−1∑
k=0

|〈k|Ãm,n − ψm(θl )I|l〉|2

=
N−1∑
k=0

|εmnkl |2 �
N−1∑
k=0

(Cp,τ + Cτ |m|)2

N2(1−p)

= (Cp,τ + Cτ |m|)2

N1−2p
,

giving

‖rmnl‖Bn � Cp,τ + Cτ |m|
N1/2−p

. (C3)

Thus, so long as p < 1/2, the norm of the residual converges
to zero as n → ∞, uniformly with respect to l ∈ N0.

We next generalize to bandlimited observables, i.e., ob-
servables f (M ): X → C for which there exists M ∈ N such
that f (M ) = ∑M

m=−M f̂mφm, where the φm are the Fourier func-
tions on X , and the f̂m are complex expansion coefficients.
We denote the vector space of such bandlimited observables
on X by B. Note that B is a dense subalgebra of C(X ), and
is also a dense subalgebra of A for any τ > 0 and p ∈ (0, 1)
(in the respective norms). In particular, viewed as an element
of A, f (M ) = ∑m

m=−M f̂mφm can be equivalently expressed as
f = ∑M

m=−M f̃mψm, where f̃m = eτ |m|p/2 f̂m.
By linearity, every such observable f (M ) ∈ B is repre-

sented at the quantum computational level by

Â(M )
n := (Wn ◦ �n ◦ � ◦ π ) f (M ) =

M∑
m=−M

f̃mÂm,n,

and after application of the QFT by

Ã(M )
n = FnÂ(M )

n =
M∑

m=−M

f̃mÃm,n. (C4)
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Thus, using Lemma 4 and (C3), we obtain

〈k|Ã(M )
n |l〉 =

M∑
m=−M

f̃m〈k|Ãm,n|l〉

=
M∑

m=−M

f̃mψm(θl )δkl +
M∑

m=−M

f̃mεmnkl

= f (M )(θl )δkl + ε(M )
nkl ,

where the residual ε(M )
nkl := ∑M

m=−M f̃mεmnkl can be estimated
as

∣∣ε(M )
nkl

∣∣ =
∣∣∣∣∣

M∑
m=−M

f̃mεmnkl

∣∣∣∣∣
�

(
M∑

m=−M

| f̃m|2
)1/2( M∑

m=−M

|εmnkl |2
)1/2

� ‖ f (M )‖A 1

N1−p

(
M∑

m=−M

(Cp,τ + Cτ |m|)2

)1/2

.

We thus conclude that for bandlimited observables the off-
diagonal residual ε(M )

nkl vanishes as n → ∞ at fixed p and τ ,
uniformly with respect to k, l ∈ N0. For later convenience, we
set

C2
p,τ,M =

M∑
m=−M

(Cp,τ + Cτ |m|)2,

so that ∣∣ε(M )
nkl | � Cp,τ,M

N1−p
‖ f ‖A. (C5)

Analogously to (C3) we can bound the norm of the residual
|r (M )

nl 〉 := Ã(M )
n |l〉 − f (M )(θl )|l〉 as

∥∥r (M )
nl

∥∥
Bn

=
(

N−1∑
k=0

∣∣ε(M )
nkl

∣∣2

)1/2

� ‖ f (M )‖A Cp,τ,M

N1/2−p
, (C6)

and we deduce that the residual vanishes as n → ∞ if p <
1/2.

Suppose now that f = ∑∞
m=−∞ f̃mψm ∈ A is not bandlim-

ited. Then, for any ε > 0 there exists M ∈ N0 such that the
bandlimited observable f (M ) := ∑M

m=−M f̃mψm ∈ B satisfies

‖ f − f (M )‖A < ε. (C7)

Defining

Ãn := (Fn ◦ Wn ◦ �n ◦ � ◦ π ) f (C8)

and Ã(M )
n by (C4), we get

|〈k|Ãn|l〉 − f (θl )δkl | = |〈k|(Ãn − Ã(M )
n )|l〉 − ( f (θl )

− f (M )(θl ))δkl

+ 〈k|Ã(M )
n |l〉 − f (M )(θl )δkl |

� |〈k|(Ãn − Ã(M )
n )|l〉|

+ | f (θl ) − f (M )(θl )|
+ |〈k|Ã(M )

n |l〉 − f (M )(θl )δkl |.

To bound the terms in the right-hand side of the last inequality,
note first that the operators π :A → B(A), �: B(A) →
B(H), �n: B(H) → B(Hn), Wn: B(Hn) → B(Bn), and
Fn: B(Bn) → B(Bn) all have unit norm. Using this fact, it
follows that

|〈k|Ãn − Ã(M )
n |l〉| = |〈k|(Wn ◦ �n ◦ � ◦ π )( f − f (M ) )|l〉|

� ‖(Wn ◦ �n ◦ � ◦ π )( f − f (M ) )‖Bn

� ‖Wn‖‖�n‖‖�‖‖π‖‖ f − f (M )‖A
< ε.

Moreover, it follows from the reproducing property of A that

| f (θl ) − f (M )(θl )| = |〈kθl , f − f (M )〉A|
� ‖kθl ‖A‖ f − f (M )‖A
< κε.

Using these bounds and (C5), we obtain

|〈k|Ãn|l〉 − f (θl )δkl | < ε(1 + κ ) + Cp,τ,M

N1−p
‖ f (M )‖A.

In particular, for large-enough N we have

Cp,τ,M

N1−p
‖ f (M )‖A < ε,

and thus

|〈k|Ãn|l〉 − f (θl )δkl | < (2 + κ )ε. (C9)

Since ε was arbitrary, we conclude that as n → ∞, |〈k|Ãn|l〉 −
f (θl )δkl | converges to 0, i.e., the matrix elements of the quan-
tum mechanical observable Ãn are consistently approximated
by the matrix elements of the diagonal observable associated
with the values f (θl ). Note that unlike the bandlimited case
we do not have an explicit rate for this convergence.

Consider now the residual

|rnl〉 = Ãn|l〉 − f (θl )|l〉. (C10)

In order to examine the asymptotic behavior of |rnl〉 as n →
∞, it is useful to view the spaces Bn as a nested family of
subspaces of the sequence space "2, i.e., B1 ⊂ B2 ⊂ · · · ⊂ "2.
With this identification, {|0〉, |1〉, . . .} is an orthonormal basis
of "2, and |r1l〉, |r2l〉, . . . is a bounded sequence in "2. Accord-
ing to (C9), for any k ∈ N0, this sequence satisfies

lim
n→∞〈k|rnl〉Bn = 0.

It then follows from standard Hilbert space results that as n →
∞, |rnl〉 converges to zero in the weak topology of "2. That is,
for any u ∈ "2, we have

lim
n→∞〈un|rnl〉Bn = 0, (C11)

where un is the orthogonal projection of u onto Bn.
In summary, in dimension d = 1, the residual |rnl〉

from (C10) converges weakly to zero as n → ∞ for any f ∈
A. Moreover, if f is bandlimited, the convergence is strong
(i.e., the residual norm vanishes) with a rate of convergence
estimated by (C6).
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b. Diagonalization using the self-adjoint representation T̃

Using the estimates obtained in Appendix C 1 a, we now
derive approximate diagonalization results for the self-adjoint
observables induced by the map T̃ :A → B(A) in (25). For
any f ∈ A, consider the self-adjoint observable S̃n ∈ B(Bn)
with

S̃n = (Fn ◦ Wn ◦ �n ◦ � ◦ T̃ ) f ≡ Ãn + Ã∗
n

2
, (C12)

where Ãn is defined in (C8). Then, we have

|〈k|S̃n|l〉 − Re f (θl )|
= 1

2 |〈k|Ãn|l〉 − f (θl )δkl + 〈k|Ã∗
n|l〉 − f ∗(θl )δkl |

� 1
2 |〈k|Ãn|l〉 − f (θl )δkl | + |〈k|Ã∗

n|l〉 − f ∗(θl )δkl |
= 1

2 |〈k|Ãn|l〉 − f (θl )δkl | + |(〈l|Ãn|k〉 − f (θl )δkl )
∗|

= 1
2 |〈k|Ãn|l〉 − f (θl )δkl | + |〈l|Ãn|k〉 − f (θk )δlk|,

and we can use the results of Appendix C 1 a to bound the two
terms in the last line. In particular, if f = ∑M

m=−M f̃mψm is
bandlimited, then it follows from (C5) that

|〈k|S̃n|l〉 − Re f (θl )| �
∣∣ε(M )

nkl

∣∣ + ∣∣ε(M )
nlk

∣∣
2

� Cp,τ,M

N1−p
‖ f ‖A,

and for general f ∈ A and large-enough N ,

|〈k|Ãn|l〉 − Re f (θl )δkl | < (2 + κ )ε,

with the same notation as (C9). Moreover, convergence results
for the residual S̃n|l〉 − Re f (θl )|l〉 can be derived analogously
to those for |rnl〉 in Appendix C 1 a.

2. Approximate diagonalization in dimension d > 1

We can extend the results in Appendix C 1 to dimension
d > 1 by taking advantage of the tensor product structure
of the RKHA A on T d and the maps effecting the trans-
formations from the classical to the quantum computational
level. Following the notation of Sec. III B, we will use (1)-
superscripts to distinguish vector spaces, vectors, and linear
maps associated with the circle S1; see, e.g., (13). With this
notation, the representation map π :A → B(A) for dimen-
sion d decomposes as π = ⊗d

i=1 π
(1), and similarly we have

�: B(A) → B(H), �n: B(H) → B(Hn), and Wn: B(Hn) →
B(Bn) with � = ⊗d

i=1 �(1), �n = ⊗d
i=1 �

(1)
n/d , and Wn =⊗d

i=1 W
(1)
n/d , where we have assumed that the number of qubits

n is an integer multiple of d . We also recall the definition of the
tensor product QFT operator Fn,d : B(Bn) → B(Bn) in (73),
i.e.,

Fn,d A := Fn,d AF∗
n,d ≡

(
d⊗

i=1

Fn/d

)
A.

Given any tensor product element f = ⊗d
i=1 f (i) ∈ A, we

have

Ãn := (Fn,d ◦ Wn ◦ �n ◦ � ◦ π ) f =
d⊗

i=1

Ã(i)
n ,

where

Ã(i)
n = (

Fn/d ◦ W (1)
n/d ◦ �

(1)
n/d ◦ �(1) ◦ π (1)

)
f (i).

Meanwhile, for any binary string b = (b(1), . . . , b(d ) ) ∈
{0, 1}n with associated evaluation point xb ∈ T d from (74) we
have

f (xb) =
d∏

i=1

f (i)(θb(i) ).

Thus, for any two computational basis vectors |a〉 and |b〉 of
Bn with a = (a(1), . . . , a(d ) ) and b = (b(1), . . . , b(d ) ) we have

|〈a|Ãn|b〉 − f (xb)δab| =
d∏

i=1

|〈a(i)|Ãn|b(i)〉 − f (i)(θb(i) )δa(i)b(i) |,

and we can use the results of Appendix C 1 to bound the right-
hand side. In particular, it follows from (C9) that |〈a|Ãn|b〉 −
f (xb)δab| converges to 0 as n → ∞, so that Ãn is consistently
approximated by a diagonal observable with eigenvalues
equal to the values of f at the points xb. Moreover, the resid-
ual is O(N1−p) analogously to (C6) if f is bandlimited, and
converges weakly to zero as n increases in the sense of (C11).

The extension to elements of A which are not of tensor
product form follows by linearity. We omit the details of these
calculations in the interest of brevity.

Note now that for every f ∈ A, the spectrum of the corre-
sponding multiplication operator π f consists precisely of the
range of values of f , i.e., σ (π f ) = ran f [50]. In particular
since the elements of A are all continuous functions, π f has
nonempty continuous spectrum, unless f is constant. Define
Dn:Bn → Bn and En:Bn → Bn as the diagonal operators sat-
isfying

Dn|b〉 = f (xb)|b〉, En|b〉 = Re f (xb)|b〉, (C13)

where En is self-adjoint. The following theorem summarizes
the properties of the quantum computational observables ap-
proximating π f and T̃ f obtained in Appendixes C 1 and C 2.

Theorem 5. Let f ∈ A be arbitrary, and consider the oper-
ators Ãn and S̃n defined as in (C8) and (C12) for dimension
d � 1. Consider also the diagonal operators in (C13). Then,
the following hold as n → ∞.

(1) The matrix elements 〈k|Ãn|l〉 of Ãn converge to the
matrix elements 〈k|Dn|l〉 = f (xl )δkl of Dn.

(2) The matrix elements 〈k|S̃n|l〉 of S̃n converge to the
matrix elements 〈k|En|l〉 = Re f (xl )δkl of En.

(3) For each basis vector |l〉, the residuals (Ãn − Ẽn)|l〉
and (S̃n − Ẽn)|l〉 converge to zero weakly. Moreover, if f is
bandlimited, the convergence is strong and the norms of the
residuals are O(N1−p).

(4) For every element z ∈ ran f there exists a sequence of
eigenvalues zn of Dn and a sequence of eigenvalues un of En

such that z = limn→∞ zn and Rez = limn→∞ un.
The approximate diagonalization result in (75) is a conse-

quence of Theorem 5.

3. Convergence of quantum mechanical expectations

Thus far, we have established that every element f of A can
be consistently approximated in a spectral sense by operators
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Dn ∈ B(Bn) which are diagonal in the computational basis. By
construction (see Theorem 5) the spectra of Dn are subsets of
the range of values of f . As a result, quantum measurement
of Dn (which can be equivalently realized by measurement of
the PVM associated with the computational basis as described
in Sec. VII B) yields outcomes consistent with values that f
takes on classical states in X . While this is a desirable prop-
erty to have, it does not in itself guarantee that the quantum
mechanical measurements are consistent with the value of
f on the particular classical state that the system happen to
have. Establishing this type of consistency is the goal of this
Appendix.

The convergence results that we derive will turn out to hold
for a decreasing sequence of RKHA parameters τ , as opposed
to fixed τ values in Appendixes C 1 and C 2. Thus, in what
follows, we will use the notation Aτ ≡ A to make the depen-
dence of the RKHAs on τ > 0 explicit. By construction, the
spaces Aτ form an increasing nested family as τ decreases to
0; that is, for every 0 < τ < τ ′ and f ∈ A we have Aτ ⊂ Aτ ′

and ‖ f ‖Aτ � ‖ f ‖Aτ ′ . We also introduce explicit τ subscripts
in our notation for the RKHSs Hτ ⊂ Aτ and Hτ,n ⊂ Hτ and
the operators Lτ :Aτ → Aτ , πτ :Aτ → B(Aτ ), �τ : B(Aτ ) →
B(Hτ ), and �τ,n: B(Hτ ) → B(Hτ,n). τ subscripts will also be
introduced in our notation for elements of Aτ , Hτ , and the
associated operator spaces as appropriate.

As in Appendixes C 1 and C 2, we consider first the one-
dimensional case, d = 1, and an observable f = ψm,τ equal to
a basis vector of Aτ . We define the diagonal operator Dm,τ,n :
Bn → Bn with

Dm,τ,n|l〉 = ψm,τ (θl )|l〉
analogously to (C13), and also set D̃m,τ,n ∈ B(Hτ,n) with

D̃m,τ,n = (W∗
n ◦ F∗

n )Dm,τ,n = W ∗
n FnDm,τ,nF

∗
nWn.

We also define

Ãm,τ,n = (Fn ◦ Wn ◦ �τ,n ◦ �τ ◦ πτ )ψm,τ ∈ B(Bn) (C14)

as in (C1). For any x ∈ X = S1, we consider the quantum
computational state ρ̂x,τ,n = F̂τ,n(x) ∈ Q(Bn) and the state
ρ̃x,τ,n ∈ Q(Bn) after application of the QFT,

ρ̃x,τ,n = Fnρ̂x,τ,n = (Fn ◦ Wn)ρx,τ,n. (C15)

We then have the following lemma.
Lemma 6. With notation as above, the n → ∞ limit of

the expected difference 〈Ãm,τ,n − Dm,τ,n〉ρ̃x,τ,n between mea-
surements of Ãm,τ,n and Dm,τ,n on the state ρ̃x,τ,n exists, and
satisfies

lim
n→∞ |〈Ãm,τ,n − Dm,τ,n〉ρ̃x,τ,n | � 1 − e−τ |m|p/2.

A proof of Lemma 6 can be found in Appendix C 5. For
our purposes, a key implication of the result is that while the
bias in measuring Dm,τ,n (instead of Ãm,τ,n) need not vanish as
n → ∞, it can be made arbitrarily small for a suitable choice
of τ . In particular, for any ε > 0 there exists τm > 0 such that
for all τ ∈ (0, τm) we have 1 − e−τ |m|p/2 < ε, and thus

lim
n→∞ |〈Ãm,τ,n − Dm,τ,n〉ρ̃x,τ,n | < ε. (C16)

Since 1 − e−τ |m|p/2 � τ |m|p/2, the choice τm = 2ε|m|−p will
suffice for (C16) to hold.

Next, we consider bandlimited observables f (M ) ∈ B of
the form f (M ) = ∑M

m=−M f̃m,τψm,τ . Let

Ã(M )
τ,n = (Fn ◦ Wn ◦ �τ,n ◦ �τ ◦ πτ ) f

=
M∑

m=−M

f̃m,τ Ãm,τ,n ∈ B(Bn) (C17)

be the corresponding quantum computational observable, and
let Dτ,n ∈ B(Bn) be the diagonal observable approximating
Ãτ,n,

Dτ,n|l〉 = f (θl )|l〉, Dτ,n =
M∑

m=−M

f̃m,τDm,τ,n. (C18)

Using Lemma 6 and following a similar approach as in Ap-
pendix C 1, we find

lim
n→∞ |〈Ãτ,n − Dτ,n〉ρ̃x,τ,n | � Cp,τ,M‖ f ‖Aτ , (C19)

where

C2
p,τ,M =

M∑
m=−M

(
1 − e−τ |m|p/2

)2
.

Again, for any ε > 0, there exists τM > 0 such that

lim
n→∞ |〈Ãτ,n − Dτ,n〉ρ̃x,τ,n | < ε, ∀τ ∈ (0, τM ). (C20)

In this case, the choice τM = 2ε|M|−(p+ 1
2 ) is sufficient for the

bound to hold.
To generalize to nonbandlimited observables, we must

take into account the fact that the error bounds in (C16)
and (C20) imply convergence on a decreasing sequence of
RKHA parameters τ , as opposed to the diagonalization results
in Appendix C 1 which hold for fixed τ . With that in mind,
we consider a space of classical observables that contains
the RKHAs Aτ for all admissible values of the parameters τ
and p. In particular, we consider observables in the Wiener
algebra of X , i.e., the space of functions f : X → C with
absolutely convergent Fourier series, which we denote here
by W. The Wiener algebra W is a dense subalgebra of C(X ).
Moreover, the RKHAs Aτ employed in this work are all dense
subalgebras of W. Thus, we have the following relationships
between algebras of classical observables (which also hold in
dimension d > 1):

B ⊂ Aτ ⊂ W ⊂ C(X ).

Suppose then that f = ∑∞
m=−∞ f̂mφm is an arbitrary ele-

ment of W, where the sum over m converges uniformly on X .
Then, for any ε > 0 there exists M∗ ∈ N such that for every
M > M∗ the bandlimited observable f (M ) = ∑M

m=−M f̂mφm ∈
B satisfies

‖ f − f (M )‖C(X ) < ε/3. (C21)

The bandlimited observable f (M ) is an element of Aτ for any
τ > 0, with RKHA norm satisfying

‖ f (M )‖Aτ =
(

M∑
m=−M

eτ |m|p | f̂m|2
)1/2

� eτM p/2

(
M∑

m=−M

| f̂m|2
)1/2
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� eτM p/2
M∑

m=−M

| f̂m|

= eτM p/2
M∑

m=−M

∣∣∣∣ 1

2π

∫ 2π

0
e−imθ f (θ ) dθ

∣∣∣∣
� eτM p/2

M∑
m=−M

‖ f ‖C(X )

= (2M + 1)eτM p/2‖ f ‖C(X ). (C22)

We will also need the observable

f (M )
τ = Lτ f (M ) = κτ

M∑
m=−M

f̂m

ηm,τ
φ̂m

as an intermediate approximation associated with the bias
correction introduced in Sec. IV D and Appendix A 3 to take
into account the projection from Aτ to Hτ . Here, Lτ is the
operator defined in (A6) and ηm,τ are its eigenvalues, where
we have again used τ subscripts to make dependencies on that
parameter explicit. We have

‖ f (M ) − f (M )
τ ‖C(X ) =

∥∥∥∥∥
M∑

m=−M

(
ητ,m

κτ
− 1

)
f̂mφm

∥∥∥∥∥
C(X )

� Cτ

M∑
m=−M

| f̂m|,

where

Cτ = max
m∈[−M,M]

∣∣∣∣ητ,mκτ − 1

∣∣∣∣ = e−τ

κτ
.

Note that to obtain the last result we used the fact that ητ,m lies
in the interval [κτ − e−τ , κτ ]; see Appendix A 3. In particular,
as τ → 0, Cτ converges to 0 since e−τ converges to 1 and κτ
tends to infinity. Proceeding as in the derivation of (C22) to
bound the sum

∑M
m=−M | f̂m|, we arrive at

‖ f (M ) − f (M )
τ ‖C(X ) � Cτ (2M + 1)‖ f ‖C(X ). (C23)

Next, define the quantum computational observable Ã(M )
τ,n ∈

B(Bn) as

Ã(M )
τ,n = (Fn ◦ Wτ,n ◦ �τ,n ◦ �τ ◦ πτ ) f (M )

= κτ
M∑

m=−M

f̃m,τ

ηm,τ
Ãm,τ,n, (C24)

where f̃m,τ = eτ |m|p/2 f̂m, and Ãm,τ,n are operators defined as
in (C14). Define also the diagonal observable

D(M )
τ,n |l〉 = f (M )(θl )|l〉 =

M∑
m=−M

f̃m,τψm,τ (θl )|l〉. (C25)

Letting x be an arbitrary point in X , defining the quantum state
ρ̃x,τ,n ∈ Q(Bn) as in (C15), and using (C21) and (C23), we get

∣∣ f (x) − 〈
D(M )
τ,n

〉
ρ̃x,τ,n

∣∣ = ∣∣ f (x) − f (M )(x) + f (M )(x) − f (M )
τ (x) + f (M )

τ (x) − 〈
Ã(M )
τ,n

〉
ρ̃x,τ,n

+ 〈
Ã(M )
τ,n

〉
ρ̃x,τ,n

− 〈
D(M )
τ,n

〉
ρ̃x,τ,n

∣∣
� | f (x) − f (M )(x)| + ∣∣ f (M )(x) − f (M )

τ (x)
∣∣ + ∣∣ f (M )

τ (x) − 〈
A(M )
τ,n

〉
ρ̃x,τ,n

∣∣ + ∣∣〈Ã(M )
τ,n − D(M )

τ,n

〉
ρ̃x,τ,n

∣∣
� ‖ f − f (M )‖C(X )+ �

∥∥ f (M ) − f (M )
τ

∥∥
C(X ) + ∣∣ f (M )(x) − 〈

Ã(M )
τ,n

〉
ρ̃x,τ,n

∣∣ + ∣∣〈Ã(M )
τ,n − D(M )

τ,n

〉
ρ̃x,τ,n

∣∣
<
ε

3
+ Cτ (2M + 1)‖ f ‖C(X ) + ∣∣ f (M )(x) − 〈

Ã(M )
τ,n

〉
ρ̃x,τ,n

∣∣ + ∣∣〈Ã(M )
τ,n − D(M )

τ,n

〉
ρ̃x,τ,n

∣∣.

We can now bound the second, third, and fourth terms
in the right-hand side of the last inequality. In particular, it
follows by applying Proposition 1 to the observable f (M )

τ that

lim
n→∞

∣∣ f (M )
τ (x) − 〈

Ã(M )
τ,n

〉
ρ̃x,τ,n

∣∣ = 0,

and from (C19) and (C22) that

lim
n→∞

∣∣〈Ã(M )
τ,n − D(M )

τ,n

〉
ρ̃x,τ,n

∣∣ � Cp,τ,M‖ f (M )‖Aτ
� Cp,τ,M (2M + 1)eτM p/2‖ f ‖C(X ).

Then, using the above in conjunction with the fact that
limτ→0 Cτ = 0, it follows that for any M ∈ N there exists
τM > 0 such that for all τ ∈ (0, τM ) we have, simultaneously,

Cτ (2M + 1)‖ f ‖C(X ) < ε/3,

Cp,τ,M (2M + 1)eτM p/2‖ f ‖C(X ) < ε/3, (C26)

and thus

lim
n→∞

∣∣ f (x) − 〈
D(M )
τ,n

〉
ρ̃x,τ,n

∣∣ < ε
3

+ ε

3
+ 0 + ε

3
= ε.

Since ε was arbitrary, we conclude that there exists a decreas-
ing sequence of RKHA parameters τM such that the quantum
mechanical expectation 〈D(M )

τM ,n〉ρ̃x,τM ,n
converges to the classical

value f (x) in the iterated limit of M → ∞ (infinite band-
width) after n → ∞ (infinite qubits), and the convergence is
uniform with respect to x ∈ X .

Having established this convergence result in dimension
d = 1, we can extend it to higher dimensions using tensor
product arguments analogous to those in Appendix C 2. It
is also straightforward to derive analogous results using the
symmetrized map T̃τ :Aτ → B(Hτ ), inducing the self-adjoint
quantum computational observable [cf. (C24)]

S̃(M )
τ,n = (Fn ◦ Wτ,n ◦ �τ,n ◦ �τ ◦ T̃τ ) f (M )

and the diagonal observable

E (M )
τ,n |xl〉 = Re f (M )(xl )|xl〉. (C27)

We do not reproduce the details of these analyses in the
interest of brevity. The following theorem summarizes the
asymptotic convergence of our approach in these settings.
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Theorem 7. Let f = ∑
m∈Zd f̂mφm be a classical observ-

able in the Wiener algebra W of X = T d . For M ∈ N,
τ > 0, and n ∈ N, define the bandlimited observable f (M ) =∑

|m|�M f̂mφm and the corresponding diagonal quantum me-
chanical observables D(M )

τ,n and E (M )
τ,n from (C25) and (C27),

respectively. Then, there exists a sequence τ1, τ2, . . ., decreas-
ing to 0, such that for any x ∈ X ,

lim
M→∞

lim
n→∞

〈
D(M )
τM ,n

〉
ρ̃x,τ,n

= f (x),

lim
M→∞

lim
n→∞

〈
E (M )
τM ,n

〉
ρ̃x,τ,n

= Re f (x),

uniformly with respect to x ∈ X .
The fact that quantum states at the quantum computational

level evolve compatibly with the underlying classical dynam-
ics (i.e., �̂t

n(ρ̂x,τ,n) = ρ̂�t (x),n) leads, in conjunction with the
uniform convergence result in Proposition 3, to the following
corollary of Theorem 7, which establishes the asymptotic
consistency of QECD in simulating the evolution of classical
observables.

Corollary 8. With the notation of Theorem 7 and for any
t � 0, let f̃ (t )

M,n ∈ C(X ) with

f̃ (t )
M,n(x) = 〈

D(M )
τM ,n

〉
ρ̃�t (x),τ,n

,

be the function representing the expected value of the time-t
simulation of f by the quantum computer, given initial condi-
tions x. Then,

lim
M→∞

lim
n→∞ f̃ (t )

M,n(x) = Ut f (x).

where the convergence is uniform with respect to x ∈ X and
t ∈ R. Moreover, if f is real-valued, the analogous result
holds for

f̃ (t )
M,n(x) = 〈

E (M )
τM ,n

〉
ρ̃�t (x),τ,n

.

Before closing this section, we note that while the con-
vergence results in Theorem 7 and Corollary 8 hold for
observables in the Wiener algebra W with absolutely conver-
gent Fourier series, the fact that W is a dense subspace of
C(X ) means that any observable f ∈ C(X ) can be approx-
imated to arbitrarily high precision in uniform norm by an
observable g ∈ W, whose dynamical evolution can in turn
be simulated to arbitrarily high precision using QECD as
established in Corollary 8. The function g may be constructed
by several means available from signal processing, e.g., by
convolution of f by an appropriate smoothing kernel. A de-
tailed study of this topic is beyond the scope of the present
work.

4. Proof of Lemma 4

Using the definition of the map Wn in (59) and the QFT
in (71), we get

W ∗
n Fn|l〉 = W ∗

n

(
1√
N

N−1∑
q=0

e−2π ilq/N |q〉
)

= 1√
N

N−1∑
q=0

e−2π ilq/Nψo−1(q) =
1√
N

∑
j∈Jn

e−2π ilo( j)/Nψ j,

leading to

(πψm)W ∗
n Fn|l〉 = 1√

N

∑
j∈Jn

e−2π ilo( j)/N (πψm)ψ j

= 1√
N

∑
j∈Jn

e−2π ilo( j)/Nψmψ j

= 1√
N

∑
j∈Jn

e−2π ilo( j)/N cm jψm+ j .

Therefore, the operator Ãm,n has the matrix elements

(Ãm,n)kl = 〈k|Ãm,n|l〉
= 〈k|F∗

nWn�n(πψm)�∗
nW ∗

n Fn|l〉
= 〈�∗

nW ∗
n Fnk, (πψm)�∗

nW ∗
n Fnl〉

A

=
〈

1√
N

∑
j′∈Jn

e−2π iko( j′ )/Nψ j′ ,

1√
N

∑
j∈Jn

e−2π ilo( j)/N cm jψm+ j

〉
A

= 1

N

∑
j′, j∈Jn

e2π i[ko( j′ )−lo( j)]/N cm jδ j′,m+ j

= 1

N

∑
j∈Jn

e2π i[ko(m+ j)−lo( j)]c(n)
m j ,

where

c(n)
m j =

{
cm j, m + j ∈ Jn,

0, otherwise.

Observe now that if m + j ∈ Jn, then o(m + j) = m +
o( j). Therefore, since c(n)

m j = 0 whenever m + j /∈ Jn, we get

(Ãm,n)kl = 1

N

∑
j∈Jn

e2π i[(k−l )o( j)+km]/N c(n)
m j .

Thus, defining

c̃(n)
m j = c(n)

m j − e−τ |m|p/2

=
{

eτ (|m|p+| j|p−|m+ j|p)/2 − e−τ |m|p/2, m + j ∈ Jn,

−e−τ |m|p/2, otherwise

and

εmnkl = 1

N

∑
j∈Jn

e2π i[(k−l )o( j)+km]/N c̃(n)
m j ,

we get

(Ãm,n)kl = 1

N

∑
j∈Jn

e2π i[(k−l )o( j)+km]/N e−τ |m|p/2 + εmnkl

= 1

N

N−1∑
q=0

e2π i[(k−l )q+km]/N e−τ |m|p/2 + εmnkl

= e2π ikm/N e−τ |m|p/2δkl + εmnkl .
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Note that we used standard properties of discrete Fourier
transforms to arrive at the last line. It then follows by defi-
nition of the ψm basis vectors and θl grid points that

(Ãm,n)kl = ψm(θl )δkl + εmnkl ,

as claimed in the statement of the lemma.
We now proceed to bound the remainder εmnkl , assuming,

for now, that m � 0. Letting Ñ = N/2, we have

|εmnkl | =
∣∣∣∣∣ 1

N

∑
j∈Jn

e2π i[(k−l )o( j)+km]/N c̃(n)
m j

∣∣∣∣∣
� 1

N

∑
j∈Jn

c̃(n)
m j

= 1

N

−m∑
j=−Ñ

c(n)
m j + 1

N

−1∑
j=−m+1

e−τ |m|p

+ 1

N

Ñ−m∑
j=1

c(n)
m j + 1

N

Ñ∑
Ñ−m+1

e−τ |m|p

= (2|m| + 1)e−τ |m|p

N
+ ε− + ε+, (C28)

where

ε− = 1

N

−m∑
j=−Ñ

c(n)
m j , ε+ = 1

N

Ñ−m∑
j=1

c(n)
m j .

Next, to bound the ε+ term, consider the function f (u) = up.
Since p ∈ (0, 1), f is strictly concave on the positive real line.
Thus, for m � 0 and j � 1, we have

|m + j|p − | j|p = | f (m + j) − f ( j)|
� | f ′( j)||m| = p j p−1|m|. (C29)

Consider also the function g(u) = eτu/2 − 1 on the interval
u ∈ [0, umax] with umax = pm. The function g is strictly con-
vex, so

g(u) � g′(umax)u = τ

2
eτumax/2u = τ

2
eτ pm/2u.

Therefore, for m � 0 and j � 1, we obtain

c̃(n)
m j = e−τ |m|p/2g( f (m + j) − f ( j)) � τ p|m| j p−1/2. (C30)

Note that we have used (C29) and the fact that f (m + j) −
f ( j) � pm (which follows from the same equation).

Next, let aÑ be the series

aÑ =
Ñ∑

j=1

( j

Ñ

)p−1 1

Ñ
.

As Ñ → ∞, aÑ converges to the integral
∫ 1

0 up−1 du = 1/p.
Therefore, aÑ is bounded by a constant, C̃, leading to the
bound

1

Ñ

Ñ∑
j=1

j p−1 = Ñ p−1ãN � C̃Ñ p−1. (C31)

Using (C30) and (C31), we thus obtain

ε+ � 1

2Ñ

Ñ∑
j=1

c̃(n)
m j � C̃τ p|m|Ñ p−1. (C32)

Moreover, analogous arguments for j � −1 lead to the esti-
mate

ε− � Ĉτ p|m|Ñ p−1/2 (C33)

for a constant Ĉ.
Substituting (C32) and (C33) into (C28), it follows that

|εmnkl | � (2|m| + 1)e−τ |m|p

N
+ ε+ + ε−

� (2|m| + 1)e−τ |m|p

N
+ Cτ p|m|

N1−p

with C = min{C̃, Ĉ}/2p, which verifies the claim of the
lemma for m � 0. However, since ψ−m = ψ∗

m, repeating the
calculation described above for m < 0 leads to the same
bound, so we conclude that the claim holds for any m ∈ Z. �

5. Proof of Lemma 6

We have

〈Ãm,τ,n − Dm,τ,n〉ρ̃x,τ,n = tr(ρ̃x,τ,n(Ãm,τ,n − Dm,τ,n))

= tr(ρx,τ,n(�τ,n(�(πψm,τ )) − D̃m,τ,n)).

By the results in Sec. V and Appendix A, it follows that

lim
n→∞ tr(ρx,τ,n�τ,n(�τ (πτψm,τ )))

= tr(ρx,τ�τ (πτψm,τ ))

= ηm,τ

κτ
ψm,τ (x)

=
∑

j∈J ′
m

e−τ | j|p

κτ
ψm,τ (x), (C34)

where we recall the definition of the index set J ′
m,

J ′
m = { j ∈ J: j + m ∈ J}.

Moreover, we have

tr(ρx,τ,nD̃m,τ,n) = 〈ξx,τ,n, D̃m,τ,nξx,τ,n〉Hτ

= 〈kx,τ,n, D̃m,τ,n)kx,τ,n〉Hτ

κτ,n

= (D̃m,τ,nkx,τ,n)(x)

κτ,n
.
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In the above, the function D̃m,τ,nkx,τ,n ∈ Hτ,n can be expressed
as

D̃m,τ,nkx,τ,n

= W ∗
n FnDm,τ,nF

∗
nWn

(∑
j∈Jn

ψ∗
j,τ (x)ψ j,τ

)

= W ∗
n FnDm,τ,nF

∗
n

(∑
j∈Jn

ψ∗
j,τ (x)|o( j)〉

)

= W ∗
n FnDm,τ,n

(
1√
N

N−1∑
l=0

∑
j∈Jn

ψ∗
j,τ (x)e2π io( j)l/N |l〉

)

= W ∗
n Fn

(
1√
N

N−1∑
l=0

∑
j∈Jn

ψ∗
j,τ (x)e2π io( j)l/Nψm,τ (θl )|l〉

)

= W ∗
n

(
1

N

N−1∑
k,l=0

∑
j∈Jn

ψ∗
j,τ (x)e2π i[o( j)−k]l/Nψm,τ (θl )|k〉

)

= 1

N

N−1∑
k,l=0

∑
j∈Jn

ψ∗
j,τ (x)e2π i[o( j)−k]l/Nψm,τ (θl )ψo−1(k)

=
∑

j, j′∈Jn

ψ∗
j,τ (x)ψ j′,τ

×
(

1

N

N−1∑
l=0

ei[o( j)−o( j′ )](2π l/N )ψm,τ (2π l/N )

)
.

As n → ∞, the summation in the parentheses in the last line
converges to a continuous Fourier transform,

lim
n→∞

1

N

N−1∑
l=0

ei[o( j)−o( j′ )](2π l/N )ψm,τ (2π l/N )

=
∫

S1
e−i( j− j′ )θψm,τ (θ ) dθ

= e−τ |m|p/2
∫

S1
ei( j− j′+m)θ dθ = e−τ |m|p/2δ j′, j+m.

As a result, we have

lim
n→∞

D̃m,τ,nkx,τ,n

κτ,n

= 1

κτ

∑
j, j′∈J

ψ∗
j,τ (x)ψ j′e

−τ |m|p/2δ j′, j+m

= 1

κτ

∑
j∈J ′

m

ψ∗
j,τ (x)ψ j+me−τ |m|p/2

= 1

κτ

∑
j∈J ′

m

ψ∗
j,τ (x)e−τ | j+m|p/2φ j+me−τ |m|p/2

= 1

κτ

∑
j∈J ′

m

ψ∗
j,τ (x)ψ j,τ e

−τ (| j+m|p−| j|p)/2ψm,τ ,

and upon evaluation at x,

lim
n→∞

(D̃m,τ,nkx,τ,n)(x)

κτ,n

= 1

κτ

∑
j∈J ′

m

e−τ | j|p
e−τ (| j+m|p−| j|p)/2ψm,τ (x). (C35)

Therefore, combining (C34) and (C35), we obtain

lim
n→∞〈Ãm,τ,n − Dm,τ,n〉ρ̃x,τ,n

= 1

κτ

∑
j∈J ′

m

e−τ | j|p(
1 − e−τ (| j+m|p−| j|p)/2

)
ψm,τ (x),

and thus

lim
n→∞ |〈Ãm,τ,n − Dm,τ,n〉ρ̃x,τ,n |

= e−τ |m|p/2

κτ

∣∣∣∣∣∣
∑
j∈J ′

m

e−τ | j|p(
1 − e−τ (| j+m|p−| j|p)/2

)∣∣∣∣∣∣
� 1

κτ

∑
j∈J ′

m

e−τ | j|p∣∣1 − e−τ (| j+m|p−| j|p)/2
∣∣.

Note now that for fixed m ∈ Z, the largest value of
e−τ |m|p/2|1 − e−τ (| j+m|p−| j|p)/2| over j ∈ Z occurs for | j| =
|m|. That is, we have

e−τ |m|p/2
∣∣1 − e−τ (| j+m|p−| j|p)/2

∣∣
� e−τ |m|p/2 max

{∣∣1 − eτ |m|p/2
∣∣, ∣∣1 − e−τ |m|p/2

∣∣}
= max

{∣∣e−τ |m|p/2 − 1
∣∣, e−τ |m|p/2

∣∣1 − e−τ |m|p/2
∣∣}

� max
{∣∣e−τ |m|p/2 − 1

∣∣, ∣∣1 − e−τ |m|p/2
∣∣}

= 1 − e−τ |m|p/2,

so that

lim
n→∞ |〈Ãm,τ,n − Dm,τ,n〉ρ̃x,τ,n | � 1

κτ

∑
j∈J ′

m

e−τ | j|p(
1 − e−τ |m|p/2

)
= ηm,τ

κτ

(
1 − e−τ |m|p/2

)
� 1 − e−τ |m|p/2,

proving the lemma. �

APPENDIX D: RESULTS FROM KOOPMAN
OPERATOR THEORY

In this Appendix, we collect results and constructions from
Koopman operator theory which are relevant to the discussion
in the main text. We refer the reader to one of the many ref-
erences in the literature, e.g., [44,45,91,92], for more detailed
expositions of these topics.

1. Koopman operators on classical function spaces

As in the main text, we consider a continuous-time, contin-
uous flow �t : X → X , t ∈ R, on a compact, metrizable space
X . We denote the Borel σ -algebra and set of Borel probability
measures on X by B(X ) and P (X ), respectively. We recall
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that �t has an induced action �t
∗:P (X ) → P (X ) through the

pushforward map on measures, �t
∗(ν) = ν ◦�−t [cf. (2)].

Let A be the vector space over the complex numbers con-
sisting of all complex-valued functions on X . For every time
t ∈ R, the Koopman operator Ut :A → A acts by composition
with the dynamical flow map, Ut f := f ◦�t . It follows from
its definition that Ut is a linear operator, i.e., Ut ( f + cg) =
Ut f + cUt g for any f , g ∈ A, c ∈ C. Moreover, Ut is invert-
ible by invertibility of �t , with (Ut )−1 = U −t . The Koopman
operator Ut is also compatible with the structure of A as an
Abelian ∗-algebra under pointwise function multiplication and
complex conjugation. That is, for any f , g ∈ A, we have

Ut ( f g) = (Ut f )(Ut g), (Ut f )∗ = Ut ( f ∗). (D1)

In other words, Ut acts as a ∗-isomorphism of A.
In the setting of continuous flows, it is natural to restrict

attention to the Banach space of continuous, complex-valued
functions on X , C(X ) ⊂ A, on which Ut acts as an isome-
try, ‖Ut f ‖C(X ) = ‖ f ‖C(X ) with ‖ f ‖C(X ) = maxx∈X | f (x)|. The
space C(X ) is a C∗-algebra under pointwise function multipli-
cation and conjugation, satisfying

‖ f g‖C(X ) � ‖ f ‖C(X )‖g‖C(X ), ‖ f ∗ f ‖C(X ) = ‖ f ‖2
C(X ).

The Koopman operator is again compatible with this algebraic
structure, satisfying (D1) for any f , g ∈ C(X ). In other words,
Ut acts as an isometric ∗-isomorphism of the Abelian C∗-
algebra C(X ).

Next, let μ ∈ P (X ) be a Borel probability measure. The
flow �t is said to be

(1) μ-preserving if �t
∗(μ) = μ for any time t ∈ R

(2) μ-ergodic if for any set A ∈ B(X ) that satisfies
�−t (A) ⊆ A we have that μ(A) is equal to either 0 or 1

(3) μ-weak-mixing if for any two sets A,B ∈ B(X ) we
have

lim
T →∞

1

T

∫ T

0
|μ(A ∩�−t (A)) − μ(A)μ(B)| dt = 0. (D2)

It should be kept in mind that μ-preservation and
μ-ergodicity are independent notions. Intuitively, measure
preservation means that the flow preserves the “size” or “vol-
ume” of sets assigned by μ. On the other hand, ergodicity
is a form of indecomposability that asserts that a dynami-
cal system has no nontrivial invariant sets with respect to a
probability measure (here, μ), irrespective of whether that
measure is invariant or not. It is also worthwhile noting that
ergodicity, in itself, does not imply that the orbits of the
dynamics are dense, i.e., that given an initial condition x ∈ X
the orbit Ox := {�t (x)}t∈R samples the state space densely
in a topological sense. However, what can be said is that
for μ-almost every x ∈ X , the orbit Ox is a dense subset of
the support of μ. Intuitively, this means that if x ∈ X is an
initial condition drawn randomly with distribution μ, then
with probability 1, the orbit Ox will well sample any subset
in X which has nonzero probability of occurring (again with
respect to μ) under the dynamics. Meanwhile, weak mixing
encompasses the notion that, under dynamical evolution, sets
become statistically independent in a time-averaged sense.
This behavior is consistent with chaotic dynamics, but one
should keep in mind that mathematically weak mixing is

an independent notion from topological definitions of chaos,
e.g., [93].

Associated with any Borel probability measure μ are
the standard Lp(μ) spaces of (equivalence classes of)
complex-valued functions on X , equipped with the norms
‖ f ‖Lp(μ) = (

∫
X | f |p dμ)1/p for 1 � p <∞ and ‖ f ‖L∞(μ) =

limp→∞ ‖ f ‖Lp(μ). As in the main text, we use the notation
〈 f , g〉L2(μ) = ∫

X f ∗gdμ to represent the L2(μ) inner product.
Note that because μ is a finite measure, we have Lq(μ) ⊆
Lp(μ) for all 1 � p � q � ∞.

For the rest of this Appendix, we will assume that �t is
μ-preserving. Then, the Koopman operator is well defined as
an isometry Ut : Lp(μ) → Lp(μ) for all 1 � p � ∞. In the
Hilbert space case, p = 2, Ut is an unitary operator satisfying
Ut∗ = U −t . In what follows, we will let F stand for any of the
C(X ) or Lp(μ) spaces with 1 � p � ∞, and we will let F0

stand for any of C(X ) or Lp(μ) with 1 � p <∞. Note that
all the F0 spaces are separable Banach spaces (by the assumed
compactness and metrizability of X ), but unless X is a finite
set, L∞(μ) is not separable.

A cornerstone result in measure-preserving, ergodic dy-
namical systems is the Birkhoff pointwise ergodic theorem.
It states that if �t is μ-preserving and μ-ergodic, then for
every observable f ∈ L1(μ) and μ-almost every (a.e.) initial
condition x ∈ X , the equality

lim
T →∞

1

T

∫ T

0
f (�t (x)) dt =

∫
X

f dμ (D3)

holds. The pointwise ergodic theorem thus asserts that ex-
pectation values (spatial averages) of observables are equal
to time averages along typical orbits of the system. In fact,
an analog of (D3) also holds for discrete-time subsamplings
of the continuous-time flow �t . For any sampling interval
�t > 0, we let �̂: X → X be the discrete-time map with �̂ =
��t . The map �̂ is μ-preserving by definition. Moreover, it is
μ-ergodic for Lebesgue a.e. sampling interval �t , satisfying

lim
N→∞

1

N

N−1∑
i=0

f (�̂i(x)) dt =
∫

X
f dμ. (D4)

Besides its theoretical significance, (D4) provides a founda-
tion for many data-driven techniques (as will be discussed in
more detail in Appendix E), for it enables approximation of
expectation values by finite trajectories sampled in discrete
time.

2. Eigenvalues of Koopman operators

Consider the eigenvalue equation for the Koopman opera-
tor,

Utφ = �tφ,

where φ: X → C is a nonzero function, and�t ∈ C an eigen-
value. Without imposing any restrictions on the membership
of φ in a particular function space, we can deduce from
its definition that Ut admits as an eigenfunction the con-
stant function φ(x) = 1 and the corresponding eigenvalue is
�t = 1. Since constant functions lie in all of the C(X ) and
Lp(μ) spaces, it follows that the number 1 is an eigenvalue
of Ut on F . A fundamental result is that the multiplicity
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of that eigenvalue provides an equivalent characterization of
ergodicity. In particular, a μ-preserving flow �t : X → X is
μ-ergodic, if and only if the only functions φ ∈ L1(μ) which
are simultaneously eigenfunctions of Ut for all t ∈ R corre-
sponding to eigenvalue �t = 1 are constants.

Besides providing a spectral characterization of ergodicity,
Koopman eigenvalues and eigenfunctions have useful alge-
braic properties which we have exploited in several instances
in the main text:

(1) It follows by definition of Ut that if φ, φ̃ ∈ A are
eigenfunctions corresponding to the eigenvalues �t , �̃t ∈ C,
respectively, then φφ̃ is also an eigenfunction, corresponding
to eigenvalue �t�̃t . Applying this result for φ̃ = φ, we de-
duce that φ2 is an eigenfunction corresponding to�2

t , whereas
the choice φ̃ = φ∗ yields that |φ|2 is an eigenfunction corre-
sponding to |�t |2.

(2) Since (Utφ)∗ = Ut (φ∗), it follows that φ∗ is an eigen-
function of Ut corresponding to the eigenvalue �∗

t .
(3) Since ‖Ut f ‖F = ‖ f ‖F for any f ∈ F , we can also

deduce that all eigenvalues �t lie in the unit circle in the
complex plane, T 1 ⊂ C, and thus if �t is an eigenvalue, then
so is �−1

t = �∗
t . Therefore, we conclude that the eigenvalues

of Ut form a multiplicative subgroup of T 1.
Let σe(Ut ;F ) denote the set of eigenvalues of Ut on

a Banach space F . In the case of the Koopman opera-
tor on L2(μ), the spectral theorem for unitary operators
implies that all eigenfunctions corresponding to distinct
eigenvalues are orthogonal. Thus, by separability of L2(μ),
it follows that σe(Ut ; L2(μ)) is a countable set. Moreover,
it can be shown [45, Proposition 7.18] that σe(Ut ; Lp(μ)) =
σe(Ut ; Lq(μ)) for all p, q ∈ [0,∞]. One also readily verifies
that σe(Ut ;C(X )) ⊆ σe(Ut ; Lp(μ)), so we conclude that Ut

has countably many eigenvalues on any of the F spaces.
Next, suppose that φ ∈ L2(μ) is an eigenfunction of Ut

corresponding to the eigenvalue �t . Then, |φ|2 lies in L1(μ),
and using (D1) we get

Ut (|φ|2) = Ut (φ∗φ) = (Utφ∗)(Utφ) = (Utφ)∗(Utφ)

= (�tφ)∗(�tφ) = |�t |2|φ|2 = |φ|2.
It therefore follows that |φ|2 ∈ L1(μ) is an eigenfunction of
Ut corresponding to the eigenvalue �t = 1. In particular, if
the system is μ-ergodic, this implies in turn that φ can be
chosen such that it takes values on the unit circle, i.e., |φ| = 1.
This choice implies in turn that φ is a unit vector in L2(μ), i.e.,
‖φ‖L2(μ) = 1.

Further useful properties follow by continuity of the flow
�t with respect to time t . The latter, implies that for any
f ∈ F0 the map t �→ Ut f is continuous in the norm of F0

[but not in the norm of L∞(μ)]. This in turn implies that
the operator group {Ut }t∈R on F0 has a generator, i.e., a
(generally, unbounded) operator V : D(V ) → F0 defined on a
dense subspace D(V ) ⊆ F0, satisfying

d

dt
Ut f = VUt f = UtV f (D5)

for every observable f ∈ D(V ). The generator V can be ex-
plicitly obtained by taking the limit

V f = lim
t→0

Ut f − f

t
(D6)

in the norm of F0, as done in (6) for F0 = L2(μ). Note
that (D6) is the defining equation for the domain of the genera-
tor, i.e., the domain D(V ) consists of all f ∈ F0 for which the
limit in (D6) exists. The generator completely characterizes
the Koopman group on F0, in the sense that given V , the
Koopman operator Ut at any time t can be reconstructed by
solving the differential equation (D5); symbolically we write
Ut = etV [cf. (7)].

3. Spectral properties of Koopman operators on L2(μ)

In this subsection, we focus on Koopman operators on
L2(μ), whose spectra can be characterized using Hilbert space
techniques. By Stone’s theorem on strongly continuous uni-
tary evolution groups [76], the generator V : D(V ) → L2(μ)
of the Koopman group on L2(μ) is skew adjoint, V ∗ = −V ,
which implies that its spectrum is a subset of the imaginary
line, iR. By the spectral mapping theorem, for every element
z ∈ iR of the spectrum of V , ezt ∈ T 1 is an element of the
spectrum of Ut lying in the unit circle. That is, if z = iω is an
eigenvalue of V (associated with the eigenfrequency ω ∈ R)
and φ ∈ L2(μ) is a corresponding eigenfunction, then φ is
also an eigenfunction of Ut corresponding to the eigenvalue
�t = eiωt . We will denote the set of eigenvalues of V by
σe(V ) ≡ σe(V ; L2(μ)). We also let He be the Hilbert subspace
of L2(μ) spanned by the corresponding eigenfunctions. That
is, He has an orthonormal basis {φ j} satisfying

Vφ j = iω jφ j, iω j ∈ σe(V ).

Since every basis vector φ j is an eigenvector of Ut corre-
sponding to eigenvalue eiω j t , it follows that every element
f = ∑

j f̂ jφ j of He, with f̂ j ∈ C, satisfies

Ut f =
∑

j

eiω j t f̂ jφ j . (D7)

The μ-preserving flow �t : X → X is said to have pure
point spectrum if the generator V on L2(μ) is diagonalizable,
i.e., He = L2(μ). Two important characteristics of pure point
spectrum systems are as follows:

(1) The generator equation (D5) governing the evolution
of observables in L2(μ) is integrable and has (D7) as its
solution.

(2) The evolution of observables does not exhibit long-
term decay of correlations. In particular, for f , g ∈ L2(μ)
with f = ∑

j f̂ jφ j and g = ∑
j ĝ jφ j , we can define the cross-

correlation function Cf g:R → C by

Cf g(t ) = 〈 f ,Ut g〉L2(μ) =
∫

X
f ∗(x)g(�t (x)) dμ(x), (D8)

and it follows from (D7) that for a pure point spectrum system
Cf g(t ) has an oscillatory behavior,

Cf g(t ) =
∑

j

eiω j t f̂ ∗
j ĝ j, (D9)

which does not decay to zero as t → ∞.
Next, by definition of V [see (6) and (D6)], 0 is always

an eigenvalue with a constant corresponding eigenfunction,
φ(x) = 1. It is a fundamental result that the simplicity of this
eigenvalue provides a characterization of ergodicity, stated
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in stated in terms of the generator: A μ-preserving flow is
μ-ergodic if and only if the 0 eigenvalue of the generator
on L2(μ) is simple (i.e., the nullspace of the generator is
one-dimensional and consists of constant functions). In addi-
tion, we have an equivalent, spectral characterization of weak
mixing: A μ-preserving flow is μ-weak mixing if and only
if 0 is the only eigenvalue of the generator. Therefore, for
weak-mixing systems, the generator on L2 (and thus the asso-
ciated Koopman operators) are manifestly nondiagonalizable,
and have nontrivial continuous spectrum. Moreover, it can
be shown that observables of weak-mixing systems exhibit a
long-term loss of correlation in the following time-averaged
sense:

lim
T →∞

1

T

∫ T

0
|Cf g(t ) − f̄ ∗ḡ| dt = 0, (D10)

where f̄ = ∫
X f dμ and ḡ = ∫

X gdμ. As with (D2), the above
is consistent with what one would expect for the statistical
behavior of chaotic systems.

As a third type of ergodic behavior, we mention the so-
called mixed-spectrum systems. These systems sit between
pure-point-spectrum systems and weak-mixing systems in the
sense that the generator has nonconstant eigenfunctions, but
the point spectrum subspace He is a strict subspace of L2(μ).
Defining Hc = H⊥

e as the orthogonal complement of He in
L2(μ) associated with the continuous spectrum of V , we have
the Koopman-invariant orthogonal decomposition

L2(μ) = He ⊕ Hc.

Thus, for a mixed-spectrum system, every observable f ∈
L2(μ) has the orthogonal decomposition f = fe + fc, where
fe ∈ He has the integrable evolution from (D7) and oscillatory
cross-correlation from (D9) with any g ∈ He, whereas fc ∈ Hc

exhibits the loss of correlation in (D10) for any g ∈ L2(μ).
We close this subsection by describing how V behaves

analogously to a first-order differential operator (even though
the state space X need not have differentiable structure), and
examining the group structure of the point spectrum σe(V )
that can be deduced from this property. In particular, it can
be shown that V := D(V ) ∩ L∞(μ) is an algebra with respect
to pointwise multiplication of functions, and V acts on this
algebra as a derivation, i.e., a linear map obeying the Leibniz
rule,

V ( f g) = (V f )g + f (V g), ∀ f , g ∈ V. (D11)

Recently, it has been shown [94] that (D11) is a necessary and
sufficient condition for a skew-adjoint operator V to be the
generator of a group of unitary Koopman operators on L2(μ).
That is, we have Ut = f ◦�t for a dynamical flow�t :X → X
if and only if (D11) holds. Since vector fields on manifolds
can be identified with first-order differentiation operators on
functions, we can intuitively think of V as a generalization
of a vector field field generating a dynamical system on a
differentiable manifold. This intuition can be made precise
in the case that X is a differentiable manifold (with tangent
bundle T X ), and �t :X → X is generated by a vector field
�V :X → T X , i.e., the orbit x(t ) = �t (x) is the solution of the
initial-value problem

ẋ(t ) = �V (x(t )), x(0) = x.

In this setting, we can identify �V with the directional
derivative operator V:C1(X ) → C(X ) acting on continuously
differentiable functions on X as V f = �V · ∇ f . Then, the gen-
erator V is an extension of the vector field, in the sense that
C1(X ) is a subspace of the domain of V , and V f = V f for
C1(X ) functions.

Using (D11), we can deduce that the eigenvalues of V
form an additive group (in contrast to the eigenvalues of Ut ,
which form a multiplicative group). That is, if iω and iω̃ are
eigenvalues of V corresponding to eigenfunctions φ and φ̃, re-
spectively, then i(ω + ω̃) is also an eigenvalue, corresponding
to the eigenfunction φφ̃. An implication of this fact is that if
the set of eigenvalues σe(V ) contains two rationally indepen-
dent elements (i.e., two incommensurate eigenfrequencies),
then it is a dense subset of the imaginary line. In that case
(since the spectrum of an operator on a Banach space includes
the closure of the set of its eigenvalues), the spectrum of V on
L2(μ) is the entire imaginary line.

An important consequence of the group structure of the
point spectrum of V is that it admits generating sets. Specif-
ically, a set iA ⊆ σe(V ) is a generating set if for every
iω ∈ σe(V ) there exists a finite collection of eigenfrequen-
cies {α1, . . . , αq} ⊆ A and integers j1, . . . , jq such that ω =∑q

k=1 jkαk . The rank of σe(V ), denoted by rankσe(V ), is de-
fined as the minimal number of elements of its generating sets.

Characterizing the rank of the point spectra of measure-
preserving ergodic flows is a challenging problem which has
not been completely solved. It is known that if the state
space X is a differentiable closed manifold, then the rank
of the point spectrum of any smooth measure-preserving
ergodic flow �t : X → X with differentiable Koopman eigen-
functions is bounded by the dimension of X [95]. Meanwhile,
smooth, measure-preserving, ergodic flows on manifolds
with discontinuous Koopman eigenfunctions and point spec-
tra of arbitrarily large rank, including infinity, can been
constructed (as suspension flows generated by suitable diffeo-
morphisms [96]). The form of these systems is, however, not
typical of dynamical systems encountered in physical applica-
tions.

4. Conjugacy with torus rotations

We now come to an important property of Koopman eigen-
functions of measure-preserving, ergodic dynamical systems
with pure point spectrum, namely, that they provide measure-
theoretic, and if continuous, topological isomorphisms with
ergodic rotations on tori.

First, let φ ∈ L2(μ) be an eigenfunction of the genera-
tor corresponding to a nonzero eigenfrequency α ∈ R. As in
Sec. D 2, we normalize φ such that |φ| = 1, so that we can
view φ: X → T 1 as a map from X into the unit circle in
the complex plane, T 1 ⊂ C. Let Rt

α:T 1 → T 1 be the circle
rotation with frequency α, i.e.,

Rt
α (θ ) = θ + αt mod 2π,

where θ is the argument (phase angle) of the complex number
eiθ . Note that eiRt

α (θ ) = eiαt eiθ , so Rt
α can be identified with

the multiplicative action z �→ eiαt z of the complex number eiαt

on C. Then, since Utφ = φ ◦�t = eiαtφ, it follows that for
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μ-a.e. x ∈ X ,

φ(�t (x)) = Rt
α (φ(x)). (D12)

Thus, the following diagram commutes in a measure-theoretic
sense (μ-a.e.):

X X

T
1

T
1

Φt

φ φ

Rt
α

.

If, in addition, φ is continuous, then φ : X → C is a sur-
jective (onto) map, and (D12) holds for every x ∈ X . Such
a continuous map φ which intertwines the flows �t and Rt

α

is called a topological semiconjugacy. In particular, for each
point x ∈ X , φ provides a corresponding angle coordinate
through its argument,

θ (x) = arg(φ(x)) ∈ [0, 2π ). (D13)

We can extend this construction to higher dimensions
by considering multiple eigenfunctions and their corre-
sponding eigenfrequencies. Specifically, each collection �α =
(α1, . . . , αd ) of distinct nonzero eigenfrequencies α j ∈ σe(V )
induces a map φ�α: X → T d with

φ�α (x) = (φ1(x), . . . , φd (x)),

where φ j ∈ L2(μ) is an eigenfunction corresponding to
φ j (normalized such that |φ j | = 1). This map provides a
measure-theoretic semiconjugacy between �t and the torus
rotation Rt

�α:T d → T d with rotation frequencies �α, i.e.,

φ�α (�t (x)) = Rt
�α (φ�α (x)) (D14)

for μ-a.e. x ∈ X , where

Rt
�α (θ1, . . . , θd ) = (θ1 + α1t, . . . , θd + αdt ) mod 2π.

Moreover, φ�α becomes a topological semiconjugacy if
φ1, . . . φd are continuous, and it is an onto map if, in addition,
the α1, . . . , αd are rationally independent. In the latter case,
the φ j induce d canonical angle coordinates θ j on X analo-
gously to (D13).

By a classical result of von Neumann [97], for a pure
point spectrum system with d generating frequencies �α =
(α1, . . . , αd ) [i.e., rankσe(V ) = d], the map φ�α:X → T d is
a measure-theoretic isomorphism, i.e., it is an invertible,
measure-preserving transformation, compatible with the dy-
namics in the sense of (D14). If, in addition, the associated
eigenfunctions φ j are continuous, then φ�α is a topological
isomorphism (conjugacy), i.e., it is a continuous map with
continuous inverse, satisfying the dynamical compatibility
condition in (D14) for every x ∈ X .

Since the construction of the QECD scheme described in
the main text is based on spaces of continuous functions on
X , for our purposes a pure point spectrum system with finitely
generated spectrum and continuous corresponding eigenfunc-
tions can be identified with an ergodic rotation on a torus. It
is important to note that the transformation φ�α: X → T d is
based entirely on intrinsic spectral objects (i.e., eigenfunc-
tions and eigenvalues of V ), and and does not require a
priori knowledge of coordinates on X . In particular, the Koop-
man eigenfunctions φ j define canonical angle coordinates θ j

via (D13), which one can then use for other purposes (e.g., to
define kernels as in Sec. III B).

It should be kept in mind that by assuming that (1) the
eigenvalue spectrum has finite rank and (2) the Koopman
eigenfunctions are continuous we are not treating the most
general class of systems with pure point spectrum (see Ap-
pendix D 2). These assumptions could be potentially relaxed
at the expense of increasing the technical complexity of the
analysis [if σe(V ) has infinite rank] and/or weakening the
form of convergence in the infinite qubit limit (e.g., from uni-
form convergence with respect to x ∈ X to μ-a.e convergence
if the eigenfunctions are discontinuous). Arguably, however,
typical systems encountered in applications have finite-rank
eigenvalue spectra and continuous eigenfunctions, so our as-
sumptions are not too restrictive.

APPENDIX E: NUMERICAL APPROXIMATION SCHEMES

There are several mature algorithms for data-driven
approximation of the eigenvalues and eigenfunctions of
the Koopman operator. Examples include Fourier-based
techniques [27,39], dynamic mode decomposition
(DMD) [40,98], extended DMD [41], and RKHS-based
techniques [24,99]. There is also extensive literature on
spectral approximation of the transfer operator [38,42], which
is dual to the Koopman operator and acts on Banach spaces of
measures (see Sec. II A). Note that if H is a Hilbert space of
observables on which the Koopman operator acts as a unitary
map Ut :H → H, then the transfer operator can be identified
with the adjoint of Ut , i.e., Ut∗ = U −t . In such cases, which
include the spaces H = L2(μ) and H = A employed in the
main text, working with the Koopman vs. transfer operator is
merely a matter of convention.

In this Appendix, we provide a brief outline of
a class of methods for spectral approximation of
Koopman/transfer operators for measure-preserving, ergodic
systems [23,25,29,100,101] which are based on kernel
techniques and should thus be well-suited for integration
with the quantum computational techniques described in this
paper.

We consider that available to us is a time series
y0, y1, . . . , yN−1 of observations taken along an orbit of the
dynamical system under a map Y : X → Rm. That is, we have
yi = Y (xi ), where xi = �i�t (x0) ∈ X are (unobserved) states,
x0 ∈ X is an arbitrary initial condition, and �t > 0 is a fixed
sampling interval. We assume throughout that�t : X → X is a
measure-preserving, ergodic flow on a compact, differentiable
manifold X for a Borel probability measure μ (with compact
support by compactness of X ). Given the data {yi}N−1

i=0 , we
compute a collection of eigenvectors φ0,φ1, . . . ,φL−1 ∈ CN

with L � N and associated eigenfrequencies ω̂0, . . . , ω̂L−1

which are approximations of the eigenvalues and eigenfre-
quencies of the Koopman generator V on L2(μ).

In particular, the eigenvectors φ j = (φ0 j, . . . , φN−1, j )�
and eigenfrequencies ω̂ j have the properties that

φi j ≈ φ j (xi ), ω̂ j ≈ ω j, (E1)

where φ j and ω j are eigenfunctions of the generator, i.e.,
Vφ j = iω jφ j . Under the assumption that the eigenfunctions
φ j are continuous, the convergence of this approximation
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holds in the limit of large data, �t → 0 after N → ∞, in
the C(X ) (uniform) norm. Importantly, the computation of the
φ j and ω̂ j is entirely based on the time series data yi, and
does not require a priori knowledge of coordinates for X . It
should also be noted that the methods described below for
a single training time series y0, y1, . . . , yN−1 can be readily
generalized to ensembles of time series with equidistributed
initial conditions with respect to μ.

1. Data-driven basis

To compute the eigenvectors φ j , we first compute a set
of basis vectors u0,u1, . . . ,uL−1 ∈ CN by solving the eigen-
value problem for an N × N kernel matrix K with positive
spectrum, constructed from the data yi. That is, we solve the
eigenvalue problem

Kul = �̂l ul ,

where the eigenvalues �̂l are positive, and the entries
Ki j = k(Y )(yi, y j ) of K are obtained from a kernel function
k(Y ):Rm × Rm → R on data space. The basic requirements on
the kernel k(Y ) are that as N → ∞ the eigenvectors u j should
converge to an orthonormal basis {u0, u1, . . .} of L2(μ), such
that each basis vector uj lies in the domain of the generator V
and the corresponding eigenvalues �̂ j have a strictly positive
limit � j . In addition, we will normalize K such that it is
a row-stochastic matrix with strictly positive elements (i.e.,
Ki j > 0 and

∑N−1
j=0 Ki j = 1). This ensures that �̂l ∈ [0, 1]

and there is a simple eigenvalue �̂0 = 1 corresponding to the
constant eigenvector u0 = (1, 1, . . . , 1)� ∈ CN . By conven-
tion, we order the eigenvalues �̂l in decreasing order, i.e.,
0 = �̂0 > �̂1 � �̂2 � · · · � �̂N−1.

There are several commonly used kernels in the machine
learning literature that meet the requirements stated above (see
Refs. [25,29]), but as a concrete example we mention here
the class of Markov-normalized radial basis function kernels
proposed in the diffusion maps algorithm [102]:

k(Y )(y, y′) = k̃(Y )(y, y′)
w2(y)w1(y′)

. (E2)

Here,

k̃(Y )(y, y′) = exp

(
−‖y − y′‖2

2

ε2

)

is the radial basis function kernel with bandwidth parameter
ε > 0, and w1,w2: X → R are “right” and “left” normaliza-
tion functions, respectively, defined by

w1(y′) =
N−1∑
j=0

k(Y )(y′, y j ), w2(y) =
N−1∑
j=0

k(Y )(y, y j )

w1(y j )
.

As in the case of the generator eigenvectors φ j , we think
of ul = (u0l , . . . , uN−1,l )� as representing the values ûl (xi )
of a function ûl : X → R sampled along the trajectory
x0, . . . , xN−1. If desired, the function ûl can be constructed by
means of a suitable out-of-sample extension technique, such
as the Nyström method (e.g., [103]).

The asymptotic behavior of the eigenvalues and eigenvec-
tors of K as the dataset size N increases can be characterized
through a diverse range of approaches available in the lit-
erature [104–110]. At a general level, if the kernel k(Y ) is
continuous, there is an associated compact integral operator
K:C(X ) → C(X ) defined by

K f =
∫

X
k(Y )(Y (·),Y (x)) f (x) dμ(x). (E3)

Then, using the results of Ref. [106] in conjunction with er-
godicity, it can be shown that for every nonzero eigenvalue�l

of K there is a sequence of eigenvalues �̂l of K that converges
to it as N → ∞ (including multiplicities), and there is an
associated notion of convergence of the eigenvectors ul to
eigenfunctions ul ∈ C(X ). The eigenfunctions ul correspond-
ing to nonzero eigenvalues are continuously differentiable if
k(Y ) is a C1 kernel (and thus ul lies in the domain of the
generator), and can be chosen to be orthonormal in L2(μ).
Moreover, if all eigenvalues �l are strictly positive, the ul

form an orthonormal basis of L2(μ). The strict positivity of�l

holds, e.g., if Y is an injective map and k(Y ) is the normalized
Gaussian kernel from (E2). If Y is not injective, then Takens
embedding theory [111] can be employed to construct an in-
jective map Ỹ : X → Rqm (q here being the number of delays),
which can in turn be used to build kernels with strictly positive
corresponding eigenvalues, e.g., [100].

Under the additional assumption that the support M ⊆
X of μ is a Riemannian manifold, more specialized re-
sults [104,105,107–110] connect the asymptotic spectral
behavior of K in the limit of vanishing bandwidth parameter,
ε → 0, with the spectrum of the Laplace-Beltrami operator,
�, on M. In such cases, the eigenfunctions ul converge as
ε → 0 to eigenfunctions of �, which are extremizers of the
Rayleigh quotient E ( f )/‖ f ‖L2(μ) associated with the Dirichlet
energy functional

E ( f ) =
∫

M
‖∇ f ‖2 dμ. (E4)

Here, ∇ and ‖ · ‖ are the Riemannian gradient and norm on
tangent vectors, respectively. Intuitively, we think of E ( f ) as a
measure of roughness of functions induced by the Riemannian
metric of M. Correspondingly, the basis {u0, u1, . . .} can be
thought of as having optimal regularity, in the sense that for
any l ∈ N, ul has the smallest possible energy E (ul ) while
having unit norm and being orthogonal to u0, . . . , ul−1.

In summary, given the observed data yi, we can construct
by means of several kernel algorithms basis vectors ul with
the appropriate regularity and asymptotic behavior for repre-
senting the Koopman generator V . In the ensuing subsections,
we outline the structure of the resulting data-driven approxi-
mations of V and their spectral convergence.

2. Finite-difference approximation

Recall from (D6) and (D11) that the generator V behaves
as a directional derivative operator on observables associated
with the flow on L2(μ) induced by the Koopman operator.
Based on that, we can approximate the action of V on an
observable f : X → C in its domain by a finite-difference
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approximation,

V f (xi ) = lim
t→∞

Ut f (xi ) − f (xi )

t

= lim
t→∞

f (�t (xi )) − f (xi )

t

≈ f (xi+1) − f (xi )

�t
, (E5)

where xi is a state underlying our training dataset with i <
N − 1. Note that the last expression in the right-hand side can
be evaluated given only the values of f on the trajectory xi,
without requiring knowledge of the states xi (which we con-
sider to be unknown). If f is continuously differentiable, the
approximation converges as �t → 0, uniformly with respect
to xi ∈ X . Moreover, other variants of this approximation such
as backward, central, and/or higher-order finite-difference
schemes can be employed.

We can represent the finite-difference approximation
in (E5) by means of a linear operator V:CN → CN defined
as V f = g, where

f = ( f0, . . . , fN−1)�, g = (g0, . . . , gN−1)�,

gi =
{

( fi+1 − fi )/�t, 0 � i � N − 2,
0, i = N − 1.

Note that if f is the vector storing the values of f on the trajec-
tory, fi = f (xi ), then the elements gi of g with i � N − 2 are
equal to the terms of the right-hand side of (E5). Moreover,
the definition gN−1 = 0 was arbitrary; one could set gN−1 to
any constant without affecting the asymptotic behavior of the
scheme as N → ∞.

Next, fixing a parameter L � N − 1, we form the L × L
antisymmetric matrix V̂ = [V̂i j]L−1

i, j=0 with elements

V̂i j = 1

2N
(
u�

i Vu j − u�
j Vui

)
. (E6)

Using the pointwise ergodic result in (D4) in conjunction
with the convergence of the eigenvectors u j to the eigen-
functions u j ∈ C1(X ) (see Appendix E 1) it can be shown
(e.g., [29,100]) that V̂i j converges to matrix element Vi j =
〈ui,Vuj〉L2(μ) of the generator with respect to the {ul}∞l=0 ba-
sis of L2(μ) in the iterated limit of N → ∞ followed by
�t → 0. Thus, for any fixed L ∈ N, the L × L data-driven
matrix V̂ converges (in any matrix norm) to the matrix rep-
resentation V = [Vi j]L−1

i, j=0 of the projected generator on the
L-dimensional subspace of L2(μ) spanned by u0, . . . , uL−1.
Note that the approximation error V̂i j − Vi j of the matrix ele-
ments is not uniform with respect to i, j ∈ N, so we fix L to
an N -independent value in order to control the error of the
operator approximation of V̂ by V as N → ∞. Moreover, by
employing an antisymmetric approximation from (E6), V̂i j =
−V̂ji, our approximation scheme is structurally compatible
with the antisymmetry of the generator, Vi j = −Vji.

3. Regularization

Despite the fact that V̂ converges to V at fixed L, this
matrix is not suitable by itself for spectral approximation
of the generator V . First, V may be a nondiagonalizable

operator with nontrivial continuous spectrum. Since every
skew-adjoint finite-rank approximation of V , including V̂ and
V , is diagonalizable and has discrete spectrum, there are no
a priori guarantees that the eigenvalues of the approximate
operators converge in some sense to the spectrum of V , nor is
it clear that the corresponding eigenvectors have a meaningful
relation with properties of V . Even in the case of systems with
pure point spectrum, if V has a dense set of eigenfrequencies
(as is typically the case; see Appendix D 3) the eigenvalues of
V̂ and V will not behave stably as L increases (see, e.g., Fig. 5
in Ref. [29]). Essentially, the only case (up to conjugacies)
where stable numerical approximation of the spectrum of V is
possible by the “raw” generator matrices V̂ and V is that of
a circle rotation, X = T 1, where the spectrum σ (V ; L2(μ)) is
a discrete set containing all integer multiples of the rotation
frequency. When dealing with systems of higher complexity
than this basic case, numerical approximation schemes require
some type of regularization in order to ensure spectral conver-
gence.

a. Diffusion regularization for systems with pure-point
or mixed spectrum

Arguably, the simplest class of systems to analyze be-
yond circle rotations is that of finitely generated pure point
spectrum systems with smooth Koopman eigenfunctions and
smooth manifold structure of the support M ⊆ X of the in-
variant measure. In such cases, it is possible to equip M with
a smooth Riemannian metric whose corresponding Laplace-
Beltrami operator � commutes with V [25], i.e.,

[V,�] f := V� f −�V f = 0, ∀ f ∈ C∞(M ). (E7)

Moreover, the eigenvalues and eigenfunctions of � can
be consistently approximated by a kernel integral operator
K from (E3), where the kernel k(Y ) is constructed us-
ing delay-coordinate maps. In more detail, in a limit of
infinitely many delays and vanishing kernel bandwidth pa-
rameter (ε → 0) the eigenfunctions ul of K converge to
eigenfunctions of a Laplace-Beltrami operator � satisfy-
ing (E7), and the quantities ηl = (�−1

l − 1)/ε converge to
corresponding eigenvalues. Equivalently, we have that the
operator D = (K−1 − I )/ε [which is self-adjoint on a dense
subspace of L2(μ)] is an unbounded operator that spectrally
approximates �. The restriction of D to the L-dimensional
subspace of L2(μ) spanned by u0, . . . , uL−1 is represented
by an L × L diagonal matrix, D, with diagonal entries Dii =
〈ui,Dui〉L2(μ) = ηi. In the data-driven setting, we approxi-
mate D by the L × L diagonal matrix D̂ with D̂ii = η̂i :=
(�−1

l − 1)/ε. Note that the eigenvalues of D are ordered in
increasing order, 0 = η0 < η1 � η2 � · · · ηL−1, and we em-
ploy a similar ordering for the eigenvalues of D̂. Moreover,
D̂ converges to D in the large-data limit, N → ∞ for any
fixed L.

Next, for a parameter τ > 0, we introduce the regularized
generator, W :C∞(M ) → C∞(M ), defined as

Wτ = V − τ�. (E8)

Let Ej = E (φ j ) be the Dirichlet energy of Koopman eigen-
function φ j from (E4). One readily verifies that for any τ >
0, Wτ has the same eigenfunctions φ j as V , and a discrete

052404-43

Remove


Watermark

Wondershare
PDFelement

http://cbs.wondershare.com/go.php?pid=5237&m=db


DIMITRIOS GIANNAKIS et al. PHYSICAL REVIEW A 105, 052404 (2022)

spectrum of corresponding eigenvalues γ j , where

γ j = −τEj + iω j .

Observe, in particular, that the effect of adding a commut-
ing diffusion operator to V is to shift the eigenvalues along
the negative real line by an amount proportional to the
Dirichlet energy of the corresponding eigenfunctions. This
results in a spectrum of isolated eigenvalues for Wτ , even
if the set of eigenfrequencies ω j is dense in the imaginary
line iR. In particular, Wτ has a compact resolvent, and its
eigenvalues and eigenfunctions can be approximated using
Galerkin methods. Moreover, the operators Wτ converge to
V in a spectral sense, since each γ j clearly converges to ω j

as τ → 0.
In applications, we approximate the eigenvalues and eigen-

functions of Wτ through the following steps:
(1) Approximation of the Laplacian: Approximate Wτ by

Wτ := V − τD.
(2) Finite-rank projection (Galerkin approximation): Ap-

proximate Wτ by W = V − τD.
(3) Data-driven approximation: Approximate W by Ŵ =

V̂ − τ D̂.
Having made these approximations, we solve the eigen-

value problem for the L × L matrix W ,

Ŵ c j = γ̂ jc j,

normalizing the eigenvectors c j = (c0 j, . . . , cL−1, j )� to unit
2-norm, ‖c j‖2 = 1. The eigenvalues γ̂ j ∈ C approximate γ j

from (E9). In particular, the imaginary part ω̂ j := Imγ j ap-
proximates the generator eigenfrequency ω j , whereas the
real part approximates the corresponding Dirichlet energy via
Ê j := −Reγ̂ j/τ . Moreover, the elements of the eigenvectors
c j are expansion coefficients of vectors φ j ∈ CN ,

φ j =
L−1∑
i=0

ci ju j,

which represent discretely sampled functions approximating
the eigenfunctions φ j in accordance with (E1). By conven-
tion, we order the eigenpairs (ω j,φ j ) in order of increasing
corresponding Dirichlet energy Ê j . Effectively, this means
that we order numerical eigenfunctions in order of decreas-
ing regularity (see Appendix E 1). This is a natural choice
since the eigenfunctions φ j with high regularity (low Dirichlet
energy) are expected to be less sensitive to sampling and/or
finite-difference errors.

The scheme described above converges in an iterated limit
which parallels the sequence of approximations leading to
Ŵ from W ; that is, N → ∞, �t → 0, L → ∞, and τ → 0,
taken in that order. We refer the reader to Refs. [25,100] for
additional details. It should be noted that the C∞ assump-
tion on the eigenfunctions can be relaxed to mere continuity,
φ j ∈ C(M ), as long as the eigenvalue spectrum σe(V ) has
finite rank and the observation map Y is continuously dif-
ferentiable [100]. Moreover, the same class of techniques
can be employed to approximate the point spectrum of
mixed-spectrum systems [100], though in this case the eigen-
functions φ j provide an orthonormal basis of He only, which

is a strict subspace of L2(μ) (see Appendix D 3). It is also
worthwhile noting that relaxing the continuity assumption on
the φ j is nontrivial. Indeed, there are known examples [112] of
advection-diffusion flows, generated by operators of the form
Wτ = V − τ�, where the advection operator V has discontin-
uous eigenfunctions, and the small-viscosity (τ → 0) spectral
behavior of Wτ as a function of τ is highly singular.

b. Spectral approximation by generator compactification

When the generator V on L2(μ) has nontrivial continu-
ous spectrum, the behavior of regularization schemes based
on addition of diffusion is significantly more challenging to
characterize. First, in many applications of interest the support
of the invariant measure μ is not a differentiable manifold,
even if the flow �t on X is smooth. A classical example is
the Lorenz 63 system [113], which is generated by a smooth
vector field on X = R3, but due to dissipative dynamics the
invariant measure μ is concentrated on a fractal attractor (the
famous “butterfly” attractor) of zero Lebesgue measure. To
our knowledge, in such systems with fractal attractors the
construction of a diffusion operator � with compatible do-
main to that of the generator V on L2(μ) is an open problem.
As mentioned in Appendix E 3 a, even if μ is supported on a
manifold, the τ → 0 limit of Wτ can be challenging to char-
acterize when V has no eigenfunctions of sufficient regularity
(which includes the case of mixing systems, where V has no
nonconstant eigenfunctions).

As an effort to address these issues, Ref. [29] proposed an
alternative approach, where instead of addition of diffusion,
V is regularized by composition with appropriate smoothing
operators. In brief, for each τ > 0, we construct a family
of kernel integral operators Gτ : L2(μ) → L2(μ) with τ > 0
such that (1) the associated kernel is C1, (2) Gτ is an ergodic
Markov operator, and (3) as τ → 0, Gτ converges strongly
to the identity. We then have that for any τ > 0, the operator
Wτ : L2(μ) → L2(μ) define as

W̃τ = GτV Gτ (E9)

is skew-adjoint and compact. As a result, W̃τ has a discrete,
bounded spectrum of eigenfrequencies iω j,τ , and an associ-
ated orthonormal basis of eigenfunctions, φ j,τ , i.e.,

W̃τ φ j,τ = iω j,τ φ j,τ .

Moreover, as τ → 0, there is a notion of spectral convergence
of W̃τ to V , even if V has nontrivial continuous spectrum.
More specifically, for every element iω of the spectrum of
V , there is a sequence of eigenvalues iω jτ ,τ converging to
iω as τ → 0, and the spectral measures of W̃τ (which are
purely atomic by compactness) converge to the spectral mea-
sure of V in a suitable sense. While quantum simulation
of systems with continuous spectrum is beyond the scope
of this work, it is possible that the approach of Ref. [29]
could be employed as an initial step to approximate the
Koopman group generated by V by the unitary evolution
group generated by W̃τ , and then employ the quantum com-
putational framework described in the paper to simulate that
system.
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