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Abstract. This paper studies a family of generalized surface quasi-geostrophic
(SQG) equations for an active scalar θ on the whole plane whose velocities have
been mildly regularized, for instance, logarithmically. The well-posedness of
these regularized models in borderline Sobolev regularity have previously been
studied by D. Chae and J. Wu when the velocity u is of lower singularity,
i.e., u = −∇⊥Λβ−2p(Λ)θ, where p is a logarithmic smoothing operator and
β ∈ [0, 1]. We complete this study by considering the more singular regime
β ∈ (1, 2). The main tool is the identification of a suitable linearized system
that preserves the underlying commutator structure for the original equation.
We observe that this structure is ultimately crucial for obtaining continuity of
the flow map. In particular, straightforward applications of previous methods
for active transport equations fail to capture the more nuanced commutator
structure of the equation in this more singular regime. The proposed linearized
system nontrivially modifies the flux of the original system in such a way that
it coincides with the original flux when evaluated along solutions of the original
system. The requisite estimates are developed for this modified linear system
to ensure its well-posedness.

1. Introduction. In this paper, we study the initial value problem for a mildly
regularized class of inviscid generalized surface quasi-geostrophic equations over
the whole plane R2:





∂tθ + u · ∇θ = 0,

u = ∇⊥ψ := (−∂x2ψ, ∂x1ψ), ∆ψ = Λβp(Λ)θ, 0 ≤ β < 2,

θ(0, x) = θ0(x).

(1.1)
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Here, θ represents the evolving scalar and ψ its corresponding streamfunction. The
operator Λ is the fractional laplacian operator, (−∆)

1
2 and p(Λ) is any Fourier

multiplier operator that satisfies
F(p(Λ)f)(ξ) = p(|ξ|)f̂(ξ).

We will assume that p(·) is a radial function that satisfies the following conditions.

p(r)>0, p ∈ L∞(R) ∩ C∞(R\{0}), sup
r>0

r|p′(r)|√
p(r)

<∞,

∫ ∞

1

p2(r)

r
dr<∞. (1.2)

In particular, note that

p(|ξ|) = ln(e+ |ξ|2)−µ, µ >
1

2
, (1.3)

satisfies the above conditions. Consequently, (1.1) contains the logarithmically
regularized counterparts of the generalized SQG equation. In specific, the corre-
sponding generalized SQG equation is given by

{
∂tθ + u · ∇θ = 0,

u = ∇⊥ψ, ∆ψ = Λβθ, 0 ≤ β < 2.
(1.4)

For β ∈ [0, 1], (1.4) interpolates between the 2D incompressible Euler vorticity
equation (β = 0) and the SQG equation (β = 1), while for β ∈ (1, 2), it represents
a family of active scalar equations with increasingly singular velocity. The Cauchy
problem for (1.4) was first considered in [4], where a regularity criterion in terms of
the norm of θ in the Hölder space Cβ was established. Since then, well-posedness
in various functional spaces has been addressed [3, 16, 24, 17], as well as continuity
with respect to β [33], global existence of weak solutions on bounded domains [30],
the existence of invariant Gaussian measures for the flow [29], and various studies
on the corresponding point-vortex models [11, 13, 14, 26]. One important aspect
of the family (1.4) is that it allows one to rigorously identify the Euler equation,
β = 0, as a critical model. Indeed, from the point of view of the so-called ‘patch
problem’ posed in the half-space, global regularity holds at β = 0, whereas finite-
time singularity can occur when β > 0 is sufficiently small [19]; the patch problem
has also recently been studied in [8, 12, 20].

The issue of local well-posedness of the regularized models, (1.1) was initially
studied by D. Chae and J. Wu in [5]. There, existence and uniqueness of solu-
tions was established in the borderline Sobolev space, Hβ+1 when β ∈ [0, 1]. The
term ‘borderline’ refers to the threshold of regularity corresponding to solutions of
(1.4) with respect to which the gradient of the velocity in L∞ can be controlled;
specifically, ‖θ‖Hσ bounds ‖∇u‖L∞ , but only when σ > β + 1. Thus, the result
in [5] essentially showed that this obstruction to a local theory at the critical level
σ = β + 1 can be overcome by introducing a regularization of the form in (1.1),
provided that β ∈ [0, 1]. Interestingly, they identify an additional threshold in the
degree of this regularization for the local-well posedness to hold, namely µ > 1/2
in (1.3). This threshold was later shown to be sharp in the endpoint case, β = 0,
represented by the logarithmically regularized 2D incompressible Euler equation
by H. Kwon [23]; specifically, when β = 0, the corresponding system was shown
to be strongly ill-posed in the borderline space H1(R2) ∩ Ḣ−1(R2). The result
of Kwon is an extension of the seminal paper of J. Bourgain and D. Li [2], in
which a longstanding open problem of whether the initial value problem to the d-
dimensional Euler equation was well-posed or not in the scaling-critical topology
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(for the velocity) H1+d/2(Rd), for d = 2, 3, was resolved by demonstrating the ex-
istence of a norm inflation phenomenon via “large Lagrangian deformation” that
yields non-continuity of the corresponding data-to-solution map. A notable alter-
native approach to demonstrating ill-posedness was established by T. Elgindi and
I. Jeong [9] in the two-dimensional setting and by T. Elgindi and N. Masmoudi [10]
in higher dimensions. To the best of our knowledge, the issue of well-posedness of
(1.4) in the scaling-critical topology, Hβ+1(R2) remains open. On the other hand,
ill-posedness for active scalar equations with an even more singular constitutive law
[21] as well as non-uniform continuity of the data-to-solution operator [15, 27, 28]
have been studied. In this paper, the “positive” side of this issue is treated as we es-
tablish the analogous results of D. Chae and J. Wu in the borderline Sobolev spaces
for the more singular range β ∈ (1, 2), thereby providing a complete picture of
well-posedness for the full family of mildly regularized inviscid gSQG equations. In
particular, we identify a similar threshold for well-posedness through the condition
µ > 1/2 in (1.3).

As previously mentioned, we establish local well-posedness, in the Hadamard
sense, for the initial value problem (1.1) in the range β ∈ (1, 2) in the borderline
Sobolev space Hβ+1(R2). This result is stated in the following theorem.

Theorem 1.1. Let β ∈ (1, 2). For each θ0 ∈ Hβ+1(R2), there exists a positive time
T = T (‖θ0‖Hβ+1) and a unique solution, θ, of (1.1) such that

θ ∈ C([0, T ];Hβ+1(R2)).

In particular, the data-to-solution map, Φ, such that

Φ : Hβ+1(R2) →
⋃

T>0

C([0, T ];Hβ+1(R2)), θ0 7→ θ(t; θ0), (1.5)

is well-defined and continuous.

Observe that for θ ∈ Hβ+1(R2), one has
‖∇u‖L∞ ≤ C‖∇∇⊥Λβ−2p(Λ)θ‖L∞ ≤ C‖θ‖Hβ+1 . (1.6)

As a result, when β ∈ [0, 1], one can use the standard estimates for the transport
equation in the Sobolev space Hβ+1(R2) to obtain existence, uniqueness and conti-
nuity of the flow map for (1.1). This approach, however, no longer seems to directly
work when β ∈ (1, 2) as the estimates for the transport equation in Hβ+1 instead
require control of ‖∇u‖Hβ (see, for instance, [1, Theorem 3.19]). To overcome this
difficulty, we observe that one must exploit the more nuanced commutator structure
within (1.1). Such a structure was originally identified in [3], where it was exploited
to demonstrate local well-posedness in H4(R2); this result was subsequently im-
proved in [16] to the space Hβ+1+ϵ(R2), for ϵ > 0. We ultimately observe that
the main obstruction to well-posedness for the models (1.1) lies not in establish-
ing existence and uniqueness, but rather in continuity of the data-to-solution map.
Although the nuanced commutator structure in (1.1) is crucial for establishing ex-
istence, exploiting it to demonstrate continuity is more delicate. This is ultimately
done by identifying a suitable perturbation of the flux (see (4.2)) in (1.1), viewed
in divergence-form, then developing the proper apriori estimates for linearizations
of this perturbed system naturally pertaining to the argument for continuity (see
(4.1)). These linearizations are ultimately obtained by adopting a classical splitting
scheme that was introduced by Kato in [18] to establish continuity of flow maps
for quasilinear symmetric systems, but adapted for the system (1.1) (see (5.4) and
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(5.5)); we refer the reader to [1] for details. The main ingredient for the proof of
continuity is the stability estimate for equation (4.1) as stated in Lemma 4.2. The
linear equation can then be viewed as a conservation law (4.1) whose flux incor-
porates the commutator structure of the original system. We remark that similar
ideas were recently exploited by the authors in [17] to address existence, unique-
ness, and instantaneous smoothing of solutions to the “supercritically” dissipative
counterpart of (1.4), i.e., with Λκθ for 0 < κ < 1, for large initial data belonging to
the corresponding scaling-critical Sobolev spaces, Hβ+1−κ(R2).

Remark 1.1. By using a similar approach for the equation in (1.4), we can establish
the local well-posedness (in the sense of Hadamard) of (1.4) for β ∈ (1, 2) in the
smaller critical space Bβ+1

2,1 (R2). It would also be interesting to establish these results
in the more general setting of Lp-based Besov spaces in the spirit of [32]. We refer
the reader to the thesis of the second author for additional details ([22]).

2. Mathematical preliminaries. For the rest of the paper, we assume that C
denotes a positive constant whose value may change from step to step. Dependence
on other parameters may be specified when relevant. Moreover, all single integrals
will occur over R2, unless otherwise specified.

Let S (R2) denote the space of Schwartz class functions defined on R2 and S ′(R2)

denote the space of tempered distributions. For f ∈ S ′(R2), we denote by f̂ or
F(f), the Fourier transform of f , defined as

f̂(ξ) :=

∫
e−2πix·ξf(x)dx.

Recall that F is an isometry on L2 and satisfies
〈
f, g

〉
=

〈
f̂, ĝ

〉
.

We denote by Λσ, σ ∈ R, the fractional laplacian operator, defined as
F(Λσf)(ξ) = |ξ|σF(f).

We recall the definition of the Fourier-based homogeneous and inhomogeneous
Sobolev spaces on R2. For σ ∈ R, we have

Ḣσ(R2) :=
{
f ∈ S

′(R2) : f̂ ∈ L2
loc, ‖f‖Ḣσ := ‖Λσf‖L2 <∞

}
, (2.1)

Hσ(R2) :=
{
f ∈ S

′(R2) : f̂ ∈ L2
loc, ‖f‖Hσ := ‖(I −∆)σ/2)f‖L2 <∞

}
. (2.2)

Hereafter, we will suppress the expression of the domain R2 when denoting the
Schwartz, Sobolev, or related spaces, except when we would like to emphasize the
dimensionality in the statement.

We now provide a brief review of the Littlewood-Paley decomposition and refer
the reader to [1, 6] for additional details. We define

Q(R2) :=

{
f ∈ S (R2) :

∫
f(x)xτ dx = 0, |τ | = 0, 1, 2, · · ·

}
.

Let Q′(R2) denote the topological dual of Q(R2). Then, Q′(R2) can be identified
with the space of tempered distributions modulo the vector space of polynomials
on R2, denoted by P, i.e.

Q
′(R2) ∼= S

′(R2)/P.
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We will denote by B(r), the open ball of radius r with center at the origin and
by A(r1, r2), the open annulus with inner and outer radii r1 and r2, and with
center at the origin. It can be shown that there exist two non-negative radial
functions χ, ϕ ∈ S (R2) with suppχ ⊂ B(1) and suppϕ ⊂ A(2−1, 2) such that for
ϕj(ξ) := ϕ(2−jξ) and χj(ξ) := χ(2−jξ), following conditions are satisfied





∑
j∈Z

ϕj(ξ) = 1,

χ+
∑

j≥0 ϕj ≡ 1, ∀ξ ∈ R2 \ {0},

suppϕi ∩ suppϕj = ∅, if |i− j| ≥ 2,

and suppϕi ∩ suppχ = ∅.

We will fix the following notation
Aj = A(2j−1, 2j+1), Aℓ,k = A(2ℓ, 2k), Bj = B(2j).

With this notation, note that
suppϕj ⊂ Aj , suppχj ⊂ Bj . (2.3)

Denote by 4j and Sj , the (homogeneous) Littlewood-Paley dyadic blocks which
are defined via Fourier transform as

F(4jf) = ϕjF(f), F(Sjf) = χjF(f).

Observe that owing to (2.3), we obtain
F(4jf)|Ac

j
= 0, F(Sjf)|Bc

j
= 0,

Also observe that for any f ∈ S ′(R2), we have

f = Sif +
∑

j≥i

4jf, i ∈ Z.

On the other hand, when f ∈ Q′(R2), we have

f =
∑

j∈Z

4jf.

Recall that the Besov seminorm‖· ‖Ḃσ
2,2

, is defined in terms of the Littlewood-Paley
dyadic blocks as

‖f‖Ḃσ
2,2

:=


∑

j∈Z

(
2jσ‖4jf‖L2

)2




1
2

.

In particular, we have the following characterization of the Sobolev seminorms
C−1‖f‖Ḃσ

2,2(R
2) ≤ ‖f‖Ḣσ(R2) ≤ C‖f‖Ḃσ

2,2(R
2),

for some constant C depending only on σ. We will frequently employ the following
well known inequality (see [1],[6]) which quantifies the relation between the dyadic
blocks and the fractional laplacian operator.

Lemma 2.1 (Bernstein inequalities). Let σ ∈ R and 1 ≤ p ≤ q ≤ ∞. Then

C−12σj‖4jf‖Lq(R2) ≤ ‖Λσ4jf‖Lq(R2) ≤ C2σj+2j( 1
p
− 1

q
)‖4jf‖Lp(R2),

where C > 0 is a constant that depends on p, q and σ.

Let us recall the following classical product estimate in homogenous Sobolev
spaces ([31]).
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Lemma 2.2. Suppose that s, t < 1 and s+ t > 0. Let f ∈ Ḣs(R2) and g ∈ Ḣt(R2).
Then

‖fg‖Ḣs+t−1 ≤ C‖f‖Ḣs‖g‖Ḣt .

We will also use a particular dualized version of the above inequality as stated in
[17].

Lemma 2.3. For σ ∈ (−1, 1) and f, g, h ∈ S (R2), define

Lσ(f, g, h) :=

∫∫
|ξ|

σ
f̂(ξ − η)ĝ(η)ĥ(ξ)dηdξ.

Suppose that supp ĥ ⊂ Aj, for some j ∈ Z. Then for each σ ∈ (−1, 1) and ϵ ∈ (0, 2)
such that σ > ϵ − 1, there exists a constant C > 0, depending only on σ, ϵ, and
{cj} ∈ ℓ2(Z) with ‖{cj}‖ℓ2 ≤ 1 such that

|Lσ(f, g, h)| ≤ Ccj2
ϵj min

{
‖f‖Ḣ1−ϵ‖g‖Ḣσ , ‖g‖Ḣ1−ϵ‖f‖Ḣσ

}
‖h‖L2 .

3. Commutator estimates. In this section, we will establish the commutator
estimates that will be required in order to prove Theorem 1.1. First, we prove
Lemma 3.1, which establishes an estimate for the localized commutator of the oper-
ator ∇⊥Λβ−2p(Λ) that defines the velocity u in terms of the scalar θ in (1.1), where
we recall p is a multiplier satisfying (1.2). To this end, we consider a multiplier
P (D) such that

sup
ξ

|P (ξ)|, sup
ξ

|ξ||∇P (ξ)| <∞. (3.1)

We will denote the commutator of two operators, S and T , by [S, T ], where
[S, T ] := ST − TS.

Lemma 3.1. Let s ∈ (0, 1), ϵ ∈ [0, 1) be such that ϵ + s ≤ 1. Let f ∈ Ḣϵ(R2),
g ∈ Ḣ2−s−ϵ(R2) and h ∈ L2(R2). Let P be any Fourier multiplier satisfying (3.1).
Given k > 0, suppose that supp f̂ ⊂ Ai and supp ĥ ⊂ Aj, where |i− j| ≤ k. There
exists a constant C > 0, depending only on s, k, ϵ, such that

|〈[Λ−sP (D)∂ℓ, g]f, h〉| ≤ C‖g‖Ḣ2−s−ϵ‖f‖Ḣϵ‖h‖L2 , ℓ = 1, 2.

The proof of Lemma 3.1 is similar to that of Lemma 4.3 in [17]. To prove it, we
will make use of the following convexity-type inequality that is proved in Appendix .

Lemma 3.2. Let φ, ϑ ∈ Rd, where d ≥ 1, such that |ϑ| = 1. For all 0 < s < 1,
there exists a constant C > 0 depending only on s such that

∫ 1

0

1

|φ+ τϑ|s
dτ ≤ C.

Proof of Lemma 3.1. We define the functional

Ls,ℓ(f, g, h) :=

∫∫
ms,ℓ(ξ, η)f̂(ξ − η)ĝ(η)ĥ(ξ)dηdξ, (3.2)

where
ms,ℓ(ξ, η) := |ξ|−sP (ξ)ξℓ − |ξ − η|−sP (ξ − η)(ξ − η)ℓ,

and observe that
〈
[Λ−sP (D)∂ℓ, g]f, h

〉
= Ls,ℓ(f, g, h).
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Now let
A(τ, ξ, η) := τξ + (1− τ)(ξ − η) = (ξ − η) + τη = ξ − (1− τ)η. (3.3)

For convenience, we will suppress the dependence of A on ξ, η for the remainder of
the proof. Observe that

|ms,ℓ(ξ, η)|

=

∣∣∣∣∣

∫ 1

0

d

dτ

(∣∣A(τ)
∣∣−s

P (A(τ))A(τ)ℓ

)
dτ

∣∣∣∣∣

=

∣∣∣∣∣

∫ 1

0

(
−s

∣∣A(τ)
∣∣−s−2

(A(τ) · η)P (A(τ))A(τ)ℓ +
∣∣A(τ)

∣∣−s
(∇P (A(τ)) · η)A(τ)ℓ

+
∣∣A(τ)

∣∣−s
P (A(τ))ηℓ

)
dτ

∣∣∣∣∣

≤C|η|

∫ 1

0

∣∣A(τ)
∣∣−s

dτ, (3.4)

where the fact s ∈ (0, 1) is invoked to obtain the last inequality. By assumptions
on the supports of f̂ and ĥ, we can assume that supp ĝ ⊂ Bi+k+2. Using this, we
obtain

Ls,ℓ(f, g, h) = I + II,

where

I =

∫∫
ms,ℓ(ξ, η)f̂(ξ − η)1Bi−3

(η)ĝ(η)ĥ(ξ)dηdξ,

II =

∫∫
ms,ℓ(ξ, η)f̂(ξ − η)1Ai−3,i+k+2

(η)ĝ(η)ĥ(ξ)dηdξ.

Now we treat I and II.

Estimating I : For η ∈ Bi−3, we have
∣∣A(τ)

∣∣ ≥|ξ − η| − τ |η| ≥ 2i−1 − 2i−3 = 3(2i−3) ≥
3

16
|ξ − η| .

Thus

|I| ≤ C

∫∫
|ξ − η|

−s
|η|1Bi−3(η)|ĝ(η)||f̂(ξ − η)||ĥ(ξ)|dηdξ.

By the Cauchy-Schwarz inequality, Young’s convolution inequality, and Plancherel’s
theorem, we obtain

|I| ≤ C‖|η|1Bi−3 ĝ‖L
4

4−s
‖|η|−sf̂‖

L
4

2+s
‖h‖L2 . (3.5)

By Hölder’s inequality, we have
‖|η|1Bi−3(η)ĝ(η)‖L

4
4−s

≤ ‖1Bi−3 |η|
s+ϵ−1‖

L
4

2−s
‖|η|2−s−ϵĝ(η)‖L2

≤ C2i(
s
2+ϵ)‖g‖Ḣ2−s−ϵ ,

‖|η|−sf̂(η)‖
L

4
2+s

≤ ‖1Ai
|η|−s−ϵ‖

L
4
s
‖|η|ϵf̂(η)‖L2 ≤ C2i(−

s
2−ϵ)‖f‖Ḣϵ .

Upon returning to (3.5), we obtain
|I| ≤ C‖g‖Ḣ2−s−ϵ‖f‖Ḣϵ‖h‖L2 ,

for some constant C > 0, depending on s, ϵ.
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Estimating II : Let φ := ξ−η
|η| and ϑ := η

|η| . We observe that for fixed ξ and η, we
have

∫ 1

0

|η|
∣∣A(τ)

∣∣−s
dτ = |η|

1−s
∫ 1

0

1

|φ+ τϑ|
s dτ.

By Lemma 3.2, it follows that
∫ 1

0

|η|
∣∣A(τ)

∣∣−s
dτ ≤ C|η|

1−s
. (3.6)

Hence

|II| ≤ C

∫∫
|η|1−s

1Ai−3,i+k+2
(η)|ĝ(η)||f̂(ξ − η)||ĥ(ξ)|dηdξ.

Applying the Cauchy-Schwarz inequality, Young’s convolution inequality, Plancherel’s
theorem, and the Cauchy-Schwarz inequality a second time yields

|II| ≤C‖|η|1−s−ϵ
1Ai−3,i+k+2

ĝ‖L1‖|η|ϵf̂‖L2‖ĥ‖L2 (3.7)
≤Ck‖|η|

2−s−ϵ
1Ai−3,i+k+2

ĝ‖L2‖f‖Ḣϵ‖h‖L2

≤Ck‖g‖Ḣ2−s−ϵ‖f‖Ḣϵ‖h‖L2 .

By slightly modifying the proof of Lemma 3.1, we obtain the following non-localized
form of the above commutator estimate. We point out that similar estimates were
also established in [3] and [17].

Lemma 3.3. Let s, ϵ ∈ (0, 1) be such that ϵ+s ≤ 1, and P be any Fourier multiplier
satisfying (3.1). Suppose that either (f, g, h) ∈ L2(R2) ×H2−s+ϵ(R2) × L2(R2) or
(f, g, h) ∈ Hϵ(R2)×H2−s(R2)×Hϵ(R2). There exists a constant, C > 0, depending
only on s, ϵ, such that

|〈[Λ−sP (D)∂ℓ, g]f, h〉|

≤Cmin
{
‖g‖H2−s+ϵ‖f‖L2‖h‖L2 , ‖g‖H2−s

(
‖f‖Ḣϵ‖h‖L2 + ‖h‖Ḣϵ‖f‖L2

)}
,

for ℓ = 1, 2.

Proof. We proceed just as in the proof of Lemma 3.1 and apply (3.4) and (3.6) to
obtain

|〈[Λ−sP (D)∂ℓ, g]f, h〉| ≤ C

∫∫
|η|1−s|ĝ(η)||f̂(ξ − η)||ĥ(ξ)|dηdξ. (3.8)

Proceeding as in (3.7), we obtain
|〈[Λ−sP (D)∂ℓ, g]f, h〉| ≤ C‖|η|1−sĝ‖L1‖f‖L2‖h‖L2 ≤ Cϵ‖g‖H2−s+ϵ‖f‖L2‖h‖L2 .

On the other hand, upon multiplying and dividing by |η|ϵ in (3.8), applying the
triangle inequality, |η|ϵ ≤ |ξ|ϵ+|ξ−η|ϵ, then applying the Cauchy-Schwarz inequality
and Young’s convolution inequality, we obtain

|〈[Λ−sP (D)∂ℓ, g]f, h〉| ≤ C‖|η|1−s−ϵĝ‖L1

(
‖Λϵf‖L2‖h‖L2 + ‖f‖L2‖Λϵh‖L2

)

≤ Cϵ‖g‖H2−s

(
‖f‖Ḣϵ‖h‖L2 + ‖h‖Ḣϵ‖f‖L2

)
.

Next we prove a commutator estimate for operators which are of the form of a
product of Fourier multiplier operators given by Λσ, ∂ℓ,4j , P (D), where we assume
that P satisfies (3.1). We will let D denote

D = Λ or ∂ℓ, for ℓ = 1, 2.
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For the next result, let us denote by W (R2), the space of functions whose Fourier
transform belongs to L1(R2).

Lemma 3.4. Let s ∈ [0, 1), ν ∈ (0, 1), ρ ∈ R. Suppose that supp ĥ ⊂ Aj, for some
j ∈ Z, and that either (f, g) ∈ (Ḣ1−ν(R2)× Ḣs+1(R2)) ∪ (Ḣs(R2)× Ḣ2−ν(R2)) or
(f,Λg) ∈ ((W (R2)∩ Ḣ1(R2))× Ḣs(R2))∪ Ḣs(R2)× (W (R2)∩ Ḣ1(R2)). Let P be a
Fourier multiplier symbol satisfying (3.1). Then there exists a sequence {cj} ∈ ℓ2(Z)
such that ‖{cj}‖ℓ2 ≤ 1 and

|
〈
[Λs+ρP (D)D4j , g]f, h

〉
|

≤Ccj

{
min

{
‖f‖Ḣ1−ν‖g‖Ḣs+1 , ‖f‖Ḣs‖g‖Ḣ2−ν

}
‖h‖Ḣρ+ν

min{(‖f̂‖L1 + ‖f‖Ḣ1)‖g‖Ḣs+1 , (‖Λ̂g‖L1 + ‖g‖Ḣ2)‖f‖Ḣs}‖h‖Ḣρ ,
(3.9)

for some constant C > 0, depending only on s, ρ, ν.

Proof. We will only treat the case of D = ∂ℓ to avoid redundancy in the argument.
The proof for the case D = Λ is similar. First, let us define

Ls
j(f, g, h) :=

∫∫

ξ∈Aj

ms,j(ξ, η)f̂(ξ − η)ĝ(η)ĥ(ξ) dη dξ,

where
ms,j(ξ, η) := ϕj(ξ)P (ξ)|ξ|

s
ξℓ − ϕj(ξ − η)P (ξ − η)|ξ − η|

s
(ξ − η)ℓ.

Then, using Plancherel’s theorem, we see that
Ls
j(f, g, h) =

〈
[ΛsP (D)D4j , g]f, h

〉
. (3.10)

It is therefore equivalent to obtain bounds on Ls+ρ
j .

Let A(τ) be as in (3.3). By (3.1) and the facts that suppϕj ⊂ Aj , supp∇ϕ ⊂ A0,
and ξ ∈ Aj , we have

|ms+ρ,j(ξ, η)| =

∣∣∣∣
∫ 1

0

d

dτ

(
ϕj(A(τ))

∣∣A(τ)
∣∣s+ρ

P (A(τ))A(τ)ℓ

)
dτ

∣∣∣∣

=

∣∣∣∣
∫ 1

0

{
∇ϕ(2−j

A(τ)) · (2−jη)P (A(τ))A(τ)ℓ

+ (s+ ρ)ϕj(A(τ))
∣∣A(τ)

∣∣−2 (
A(τ) · η

)
P (A(τ))A(τ)ℓ

+ ϕj(A(τ))
[
∇P (A(τ)) · ηA(τ)ℓ + P (A(τ))ηℓ

]}∣∣A(τ)
∣∣s+ρ

dτ

∣∣∣∣

≤C|η||ξ|
ρ
∫ 1

0

∣∣A(τ)
∣∣s dτ + C|η|ϕj(A(τ))

∫ 1

0

∣∣A(τ)
∣∣s+ρ

dτ

≤C|η||ξ|
ρ
∫ 1

0

|A(τ)|sdτ. (3.11)

By the triangle inequality, we have
|ms+ρ,j(ξ, η)| ≤ C(|ξ − η|

s
+|η|

s
)|η||ξ|

ρ
. (3.12)

Upon returning to (3.10), and applying (3.12), we obtain

|Ls+ρ
j (f, g, h)| ≤C

∫∫

ξ∈Aj

(
|ξ − η|s + |η|s

)
|f̂(ξ − η)|Λ̂g(η)||ξ|

ρ
|ĥ(ξ)|dηdξ
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=C

∫∫

ξ∈Aj

|f̂(ξ − η)|Λ̂s+1g(η)||ξ|
ρ
|ĥ(ξ)|dηdξ

+ C

∫∫

ξ∈Aj

|Λsf̂(ξ − η)|Λ̂g(η)||ξ|
ρ
|ĥ(ξ)|dηdξ = I + II.

Applying the Cauchy-Schwarz inequality, Young’s convolution inequality, and Bern-
stein inequality, we obtain

|I| ≤ Ccj‖f̂‖L1‖g‖Ḣs+1‖h‖Ḣρ , |II| ≤ Ccj‖f‖Ḣs‖Λ̂g‖L1‖h‖Ḣρ .

Applying Lemma 2.3 with σ = ϵ = s, we obtain
|I| ≤ Ccj‖f‖Ḣs‖g‖Ḣ2‖h‖Ḣρ , |II| ≤ Ccj‖f‖Ḣ1‖g‖Ḣs+1‖h‖Ḣρ .

Applying Lemma 2.3 with σ = s, ϵ = ν, we obtain
|I|, |II| ≤ Ccj min

{
‖f‖Ḣ1−ν‖g‖Ḣs+1 , ‖f‖Ḣs‖g‖Ḣ2−ν

}
‖h‖Ḣρ+ν .

Collecting the estimates above, we obtain the required result.

4. Estimates for an inhomogeneous linear conservation law with modi-
fied flux. The proof of our main result, Theorem 1.1, will rely on estimates for a
linear scalar conservation law whose flux accommodates the commutator structure
associated with the skew-adjoint operator ∇⊥Λβ−2p(Λ). This commutator struc-
ture is crucial to establishing continuity of the corresponding flow map. Given q
and G sufficiently smooth, the conservation law and its corresponding initial value
problem is given as follows

{
∂tθ + divFq(θ) = G,

θ(0, x) = θ0(x).
(4.1)

where the flux, Fq(θ), is defined by

Fq(θ) := (∇⊥Λβ−2p(Λ)q)θ + Λβ−2p(Λ)((∇⊥θ)q) (4.2)

Observe that, formally, we have divF−θ(θ) = −(∇⊥Λβ−2p(Λ)θ)·∇θ = u·∇θ.
Hence, we recover equation (1.1) in the particular case when q = −θ. This mod-
ification to the original flux is precisely what allows us to obtain estimates in the
space Hβ+1 that are not otherwise available for the linear transport equation with
a Lipschitz regular advecting velocity u. Ultimately, (4.1) will be exploited to es-
tablish continuity of the data-to-solution mapping Φ : Hβ+1 → C([0, T ];Hβ+1),
θ0 7→ (Φ(θ0))(t) = θ(t; θ0), where θ(t; θ0) represents the solution of (1.1) corre-
sponding to the initial value problem (1.1).

To this end, we must first develop apriori estimates for the system (4.1). These
estimates will guarantee its own well-posedness (cf. Theorem 4.1). The proof of
continuity of Φ will then rely on a continuity-with-respect-to-parameters-type of
result (cf. Lemma 4.2).

It will be convenient to introduce the following notation:
A = Λβ−2p(Λ), Λσ

j = Λσ∆j , ∂⊥ = (−∂2, ∂1).

We will also make use of the convention that we sum over repeated indices, unless
they correspond to Littlewood-Paley operators. Given q, let v denote

v := −∇⊥Aq. (4.3)
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Then we have ∇· v = 0; in particular, this implies that
〈
v·∇h, h

〉
= 0, (4.4)

for any sufficiently smooth function h. We will first establish L2 space estimates.
Then we will proceed to establishing estimates in Sobolev spaces Ḣσ for σ∈ [1, β+1].

4.1. L2 estimates. Taking the inner product in L2 of (4.1) with θ, we obtain
1

2

d

dt
‖θ‖2L2 +

〈
divFq(θ), θ

〉
=

〈
G, θ

〉
. (4.5)

Note that A∂ℓ is a skew-adjoint operator. As a consequence of this and (4.4), we
see that

〈divFq(θ), θ〉 = −
〈
A∇· ((∇⊥q)θ), θ

〉
=

〈
∇⊥q·∇(Aθ), θ

〉

= −
1

2

〈
[A,∇⊥q·∇]θ, θ

〉
= −

1

2

〈
[A∂ℓ, (∇

⊥q)ℓ]θ, θ
〉
. (4.6)

Upon applying Lemma 3.3 with s = 2− β and ϵ > 0 sufficiently small, we obtain
|〈divFq(θ), θ〉| ≤ C‖q‖Hβ+1‖θ‖Ḣϵ‖θ‖L2 . (4.7)

Returning now to (4.5), applying the Cauchy-Schwarz inequality to the term on the
right-hand side, then invoking (4.7), we arrive at

d

dt
‖θ‖2L2 ≤ C‖q‖Hβ+1‖θ‖Ḣϵ‖θ‖L2 + C‖G‖L2‖θ‖L2 . (4.8)

4.2. Homogeneous Sobolev space estimates. Upon applying the operator Λσ
j

to (4.1), then taking the L2-inner product of the resulting equation with Λσ
j θ, we

obtain
1

2

d

dt
‖Λσ

j θ‖
2
L2 = −

〈
Λσ
j∇·Fq(θ),Λ

σ
j θ

〉
+
〈
Λσ
jG,Λ

σ
j θ

〉
= I + II (4.9)

We will first treat I. For this, we will distinguish between the two cases, σ ∈ [1, 2)
and σ ∈ [2, β + 1].

Case: σ ∈ [1, 2). In this case, we make use of the fact that ∇⊥q is divergence-free
and the skew self-adjointness of A∂ℓ in order to decompose I as

〈
Λσ
j divFq(θ),Λ

σ
j θ

〉
=

〈
Λσ
j (∇

⊥Aq · ∇θ),Λσ
j θ

〉
︸ ︷︷ ︸

Ia

−
〈
Λσ
jA(∇

⊥q · ∇θ),Λσ
j θ

〉
︸ ︷︷ ︸

Ib

= I1 + I2 + I3 + I4,

where
I1 = Ia − I2 =

〈
Λσ
j (∇

⊥Aq · ∇θ),Λσ
j θ

〉
−
〈
∇⊥Aq · ∇Λσ

j θ,Λ
σ
j θ

〉

=
〈
[Λσ

j , ∂
⊥
ℓ Aq]∂ℓθ,Λ

σ
j θ

〉
,

I2 =
〈
∇⊥Aq · ∇Λσ

j θ,Λ
σ
j θ

〉
= 0,

I3 = −Ib + I4 = −
〈
Λσ
jA(∇

⊥q · ∇θ),Λσ
j θ

〉
+
〈
∇⊥q · ∇A

1
2Λσ

j θ,A
1
2Λσ

j θ
〉

= −
〈
[Λσ

jA
1
2 , ∂⊥ℓ q]∂ℓθ,Λ

σ
jA

1
2 θ

〉
,

I4 =
〈
∇⊥q · ∇A

1
2Λσ

j θ,A
1
2Λσ

j θ
〉
= 0.

Applying Lemma 3.4 with s = σ − 1, ρ = 0 and P = I, D = Λ, we obtain
|I1| ≤ Ccj(‖F(∂⊥ℓ ΛAq)‖L1 + ‖∂⊥ℓ Aq‖Ḣ2)‖∂ℓθ‖Ḣσ−1‖Λ

σ
j θ‖L2 .



112 M. S. JOLLY, A. KUMAR AND V. R. MARTINEZ

Using the Cauchy-Schwarz inequality, (1.2), and Plancherel’s theorem we have
‖F(∂⊥ℓ ΛAq)‖L1 ≤‖1B0

(η)|η|‖L2‖η⊥ℓ |η|
β−2p(|η|)q̂(η)‖L2

+ ‖1Bc
0
(η)|η|−1p(|η|)‖L2‖η⊥ℓ |η|

β q̂(η)‖L2

≤C‖q‖Hβ+1 . (4.10)
Thus

|I1| ≤ Ccj‖q‖Hβ+1‖θ‖Ḣσ‖Λ
σ
j θ‖L2 .

Applying Lemma 3.4 with s = σ − 1, ρ = β−2
2 , ν = 2− β and P = p

1
2 , D = Λ, we

obtain
|I3| ≤ Ccj‖∂

⊥
ℓ q‖Ḣβ‖∂ℓθ‖Ḣσ−1‖A

1
2Λσ

j θ‖
Ḣ

2−β
2

≤ Ccj‖q‖Ḣβ+1‖θ‖Ḣσ‖Λ
σ
j θ‖L2 .

Case: σ ∈ [2, β + 1]. In this case, we decompose I as
〈
Λσ
j divFq(θ),Λ

σ
j θ

〉
=

〈
Λσ
j (∇

⊥Aq · ∇θ),Λσ
j θ

〉
︸ ︷︷ ︸

Ja

−
〈
Λσ
jA(∇

⊥q · ∇θ),Λσ
j θ

〉
︸ ︷︷ ︸

Jb

= J1 + J2 + J3 + J4 + J5,

where
J1 =

〈
(∇⊥AΛσ

j q · ∇)θ,Λσ
j θ

〉
︸ ︷︷ ︸

Ja
1

−
〈
∇⊥A · (Λσ

j q∇θ),Λ
σ
j θ

〉
︸ ︷︷ ︸

Jb
1

=
〈
[∂⊥ℓ A, ∂ℓθ]Λ

σ
j q,Λ

σ
j θ

〉

J2 =
〈
∇⊥Aq · ∇Λσ

j θ,Λ
σ
j θ

〉
= 0

J3 =Ja − Ja
1 − J2

=
{〈

Λσ
j (∇

⊥Aq · ∇θ),Λσ
j θ

〉
−
〈
(∇⊥AΛσ

j q · ∇)θ,Λσ
j θ

〉
−
〈
∇⊥Aq · ∇Λσ

j θ,Λ
σ
j θ

〉}

J4 =
〈
(∇⊥q · ∇A

1
2Λσ

j θ), A
1
2Λσ

j θ
〉
= 0

J5 =− Jb + Jb
1 + J4

=−
{〈

Λσ
jA(∇

⊥q · ∇θ),Λσ
j θ

〉
−
〈
∇⊥A · (Λσ

j q∇θ),Λ
σ
j θ

〉

−
〈
(∇⊥q · ∇A

1
2Λσ

j θ), A
1
2Λσ

j θ
〉}

Applying Lemma 3.1 with s = 2− β and ϵ = β + 1− σ, we obtain
|J1| ≤ C‖∂ℓθ‖Ḣσ−1‖Λ

σ
j q‖Ḣβ+1−σ‖Λ

σ
j θ‖L2 ≤ Ccj‖q‖Ḣβ+1‖θ‖Ḣσ‖Λ

σ
j θ‖L2 ,

where
cj =

‖Λσ
j q‖Ḣβ+1−σ

‖q‖Ḣβ+1

∈ ℓ2(Z).

Now, as in [16], we observe that we may write J3 as a double commutator. Indeed,
for any σ̃ > 2, we have

Λσ̃f = Λσ̃−2(−∆)f = −(Λσ̃−2∂l)∂lf. (4.11)
Then by applying (4.11), the product rule, and (4.4), we have

J3 =−
〈
Λσ−2
j ∂l(∇

⊥A∂lq · ∇θ),Λ
σ
j θ,

〉
+
〈
(∇⊥AΛσ−2

j ∂l∂lq · ∇)θ,Λσ
j θ

〉

−
〈
Λσ−2
j ∂l(∇

⊥Aq · ∇∂lθ),Λ
σ
j θ,

〉
+
〈
(∇⊥Aq · ∇Λσ−2

j ∂l∂lθ),Λ
σ
j θ

〉

=−
〈
[Λσ−2

j ∂l, ∂ℓθ]∂
⊥
ℓ ∂lAq,Λ

σ
j θ

〉
︸ ︷︷ ︸

Ja
3

−
〈
[Λσ−2

j ∂l, ∂
⊥
ℓ Aq]∂ℓ∂lθ,Λ

σ
j θ

〉
︸ ︷︷ ︸

Jb
3
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Similarly, we can express J5 as
J5 =

〈
[Λσ−2

j ∂l, ∂ℓθ]∂
⊥
ℓ ∂lq, AΛ

σ
j θ

〉
︸ ︷︷ ︸

Ja
5

+
〈
[Λσ−2

j A
1
2 ∂l, ∂

⊥
ℓ q]∂ℓ∂lθ,A

1
2Λσ

j θ
〉

︸ ︷︷ ︸
Jb
5

Applying Lemma 3.4 with s = σ − 2, ρ = 0 and P = I, D = ∂l, then proceeding
just like in (4.10), we obtain

|Ja
3 | ≤ Ccj(‖F(∂⊥ℓ ∂lAq)‖L1 + ‖∂⊥ℓ ∂lAq‖Ḣ1)‖∂ℓθ‖Ḣσ−1‖Λ

σ
j θ‖L2

≤ Ccj‖q‖Hβ+1‖θ‖Ḣσ‖Λ
σ
j θ‖L2 .

Applying Lemma 3.4 with s = σ − 2, ρ = 0 and P = I, D = ∂l, we obtain
|Jb

3 | ≤ Ccj(‖F(Λ∂⊥ℓ Aq)‖L1 + ‖∂⊥ℓ Aq‖Ḣ2)‖∂ℓ∂lθ‖Ḣσ−2‖Λ
σ
j θ‖L2

≤ Ccj‖q‖Hβ+1‖θ‖Ḣσ‖Λ
σ
j θ‖L2 .

Applying Lemma 3.4 with s=σ−2, ρ=0, ν=2−β and P =I, D=∂l, we obtain
|Ja

5 | ≤ Ccj‖∂
⊥
ℓ ∂lq‖Ḣβ−1‖∂ℓθ‖Ḣσ−1‖AΛ

σ
j θ‖Ḣ2−β ≤ Ccj‖q‖Ḣβ+1‖θ‖Ḣσ‖Λ

σ
j θ‖L2 .

Applying Lemma 3.4 with s=σ−2, ρ= β−2
2 , ν=2−β and P = p

1
2 , D=∂l, we obtain

|Jb
5 | ≤ Ccj‖∂

⊥
ℓ q‖Ḣβ‖∂ℓ∂lθ‖Ḣσ−2‖A

1
2Λσ

j θ‖
Ḣ

2−β
2

≤ Ccj‖q‖Ḣβ+1‖θ‖Ḣσ‖Λ
σ
j θ‖L2 .

Summary of estimates. Upon returning to (4.9), collecting the above estimates for
I1, I3 and J1, J3, J5, then applying the Cauchy-Schwarz inequality, we obtain

d

dt
‖Λσ

j θ‖
2
L2 ≤ Ccj‖q‖Hβ+1‖θ‖Ḣσ‖Λ

σ
j θ‖L2 + C‖Λσ

jG‖L2‖Λσ
j θ‖L2 .

Finally summing over j and using the Cauchy-Schwarz inequality, we have
d

dt
‖θ‖2

Ḣσ ≤ C‖q‖Hβ+1‖θ‖2
Ḣσ + C‖G‖Ḣσ‖θ‖Ḣσ . (4.12)

Combining with the estimates (4.8) and (4.12), we deduce
d

dt
‖θ‖2Hσ ≤ C‖q‖Hβ+1‖θ‖2Hσ + C‖G‖Hσ‖θ‖Hσ . (4.13)

An application of Gronwall’s inequality then yields

‖θ(t)‖Hσ ≤ e
C∥q∥

L1
t
Hβ+1 (‖θ0‖Hσ + ‖G‖L1

tH
σ ). (4.14)

From the estimates developed above, one may carry out an artificial viscosity argu-
ment to establish the corresponding well-posedness result for (4.1). We state this
below as Theorem 4.1. Details of the artificial viscosity argument are provided in
Appendix .

Theorem 4.1. Let β ∈ (1, 2). Given T > 0, suppose q ∈ L1(0, T ;Hβ+1) ∩
Lp(0, T ;H−m) for some m > 0 and p > 1, and G ∈ L1(0, T ;Hσ) for some
σ ∈ [1, β+1]. For each θ0 ∈ Hσ, there exists a unique solution θ ∈ C([0, T ];Hσ) of
(4.1) satisfying (4.14).

We now establish a “stability in parameters” type result for (4.1). To prove this,
we will require an estimate in Hβ for the divergence-term in (4.1); this estimate
will also be invoked to establish the well-posedness of (1.1).

Lemma 4.1. Let β ∈ (1, 2). Let q ∈ Hβ and θ ∈ Hβ+1. Let Fq(θ) be defined as in
(4.2). Then

‖divFq(θ)‖Hβ ≤ C‖q‖Hβ‖θ‖Hβ+1 .
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Proof. Let H := divFq(θ). Observe that by Lemma 3.3 with s = 2− β and ϵ > 0,
we have

‖H‖2L2 =
〈
∇ · ((∇⊥Aq)θ),H

〉
+
〈
A∇ · ((∇⊥θ)q),H

〉

= −
〈
[∂⊥ℓ A, ∂ℓθ]q,H

〉
≤ C‖θ‖Hβ+1(‖q‖Ḣϵ‖H‖L2 + ‖q‖L2‖H‖Ḣϵ). (4.15)

On the other hand, one can verify that
‖Λβ

jH‖2L2 =
〈
Λβ
j (∇

⊥Aq · ∇θ),Λβ
jH

〉
−
〈
Λβ
jA(∇

⊥q · ∇θ),Λβ
jH

〉

= −
〈
[∂⊥ℓ A, ∂ℓθ]Λ

β
j q,Λ

β
jH

〉
︸ ︷︷ ︸

I

+
〈
[Λβ

j , ∂ℓθ]∂
⊥
ℓ Aq,Λ

β
jH

〉
︸ ︷︷ ︸

II

−
〈
[Λβ

j , ∂ℓθ]∂
⊥
ℓ q, AΛ

β
jH

〉
︸ ︷︷ ︸

III

.

Applying Lemma 3.1 with s = 2− β and ϵ = 0, we obtain
|I| ≤ C‖∂ℓθ‖Ḣβ‖Λ

β
j q‖L2‖Λβ

jH‖L2 ≤ Ccj‖q‖Ḣβ‖θ‖Ḣβ+1‖Λ
β
jH‖L2 ,

where

cj =
‖Λβ

j q‖L2

‖q‖Ḣβ

∈ ℓ2(Z).

Applying Lemma 3.4 with s = β− 1, ρ = 0 and P = I, D = Λ, and proceeding just
like in (4.10), we obtain

|II| ≤ Ccj‖∂ℓθ‖Ḣβ (‖F(∂⊥ℓ Aq)‖L1 + ‖∂⊥ℓ Aq‖Ḣ1)‖Λ
β
jH‖L2

≤ Ccj‖q‖Hβ‖θ‖Ḣβ+1‖Λ
β
jH‖L2 ,

Applying Lemma 3.4 with s = β−1, ρ = 0, ν = 2−β and P = I, D = Λ, we obtain
|III| ≤ Ccj‖∂ℓθ‖Ḣβ‖∂

⊥
ℓ q‖Ḣβ−1‖AΛ

β
jH‖Ḣ2−β ≤ Ccj‖q‖Hβ‖θ‖Ḣβ+1‖Λ

β
jH‖L2 ,

From estimates of I–III, we deduce
‖H‖Ḣβ ≤ C‖q‖Hβ‖θ‖Ḣβ+1 . (4.16)

Finally, upon combining (4.16) and (4.15), we conclude
‖H‖Hβ ≤ C‖q‖Hβ‖θ‖Hβ+1 (4.17)

as claimed.

We are now ready to prove the stability-type result for (4.1) alluded to earlier,
which constitutes the main ingredient for establishing the continuity of the data-
to-solution map Φ of (1.1).

Lemma 4.2. Let β ∈ (1, 2). Let {qn} be a sequence of functions satisfying
sup
n>0

‖qn‖L∞

T
Hβ+1 ≤ C and lim

n→∞
‖qn − q∞‖L1

T
Hβ = 0,

for some constant C > 0, depending on β, T . Given θ0 ∈ Hβ and G ∈ L1(0, T ;Hβ),
let θn denote the solution of

{
∂tθ

n + divFqn(θ
n) = G,

θn(0, x) = θ0(x).
(4.18)

for each n ∈ N ∪ {∞}. Then
lim
n→∞

‖θn − θ∞‖L∞

T
Hβ = 0.
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Proof. First, let us consider the case when θ0 ∈ Hβ+1 and G ∈ L1(0, T ;Hβ+1). By
Theorem 4.1, the sequence of solutions to (4.18), denoted by {θn}, is bounded in
L∞(0, T ;Hβ+1), uniformly in n. Observe that θn − θ∞ satisfies

∂t(θ
n − θ∞) + divFqn(θ

n − θ∞) = divF(q∞−qn)(θ
∞). (4.19)

By Lemma 4.1, we have
‖divF(q∞−qn)(θ

∞)‖Hβ ≤ C‖q∞ − qn‖Hβ‖θ∞‖Hβ+1 .

Upon returning to (4.19) and using (4.14), we obtain

‖θn(t)− θ∞(t)‖Hβ ≤ e
C∥qn∥

L1
T

Hβ+1
‖θ∞‖L∞

T
Hβ+1‖qn − q∞‖L1

T
Hβ .

This implies
lim

n→∞
‖θn − θ∞‖L∞(0,T ;Hβ) = 0.

Now, let us assume that θ0 ∈ Hβ . For all n ∈ N ∪ {∞} and k ∈ N, denote by θnk ,
the solution to

∂tθ
n
k + divFqn(θ

n
k ) = PkG, θnk (0, x) = Pkθ0(x), (4.20)

where Pk denotes projection to frequencies |ξ| ≤ 2k, i.e., F(Pkf)(ξ) = 1Bk
(ξ)f̂(ξ).

From (4.18) and (4.20), it follows that
∂t(θ

n − θnk ) + divFqn(θ
n − θnk ) = (I − Pk)G.

Then by Theorem 4.1, we obtain

‖θn − θnk‖L∞

T
Hβ ≤ e

C∥qn∥
L1
T

Hβ+1
(
‖(I − Pk)θ0‖Hβ + ‖(I − PkG)‖L1

T
Hβ

)
, (4.21)

for all n ∈ N ∪ {∞}. Let δ > 0. By (4.21), we can select k large enough, say
k0, such that ‖θn − θnk0

‖L∞

T
Hβ ≤ δ/3 for all n. Since Pk0θ0 ∈ Hβ+1 and Pk0G ∈

L1(0, T ;Hβ+1), we can find an integer N such that for all n ≥ N

‖θnk0
− θ∞k0

‖L∞

T
Hβ ≤ δ/3.

By the triangle inequality, we obtain
‖θn − θ∞‖L∞

T
Hβ ≤ δ.

Since δ was arbitrary, the proof is complete.

5. Existence, uniqueness and continuity of solutions to (1.1). We will now
prove the main theorem of the paper, Theorem 1.1. We will do this in three steps,
starting by establishing existence, proving uniqueness, and concluding with conti-
nuity with respect to initial data, that is, continuity of the data-to-solution map.

5.1. Existence. Observe that since ∇⊥θ · ∇θ=0, we can express equation (1.4) as
∂tθ + divF−θ(θ) = 0, θ(0, x) = θ0(x), (5.1)

where F is as defined in (4.2). By invoking (4.13) for σ = β + 1, we obtain
d

dt
‖θ‖2Hβ+1 ≤ C‖θ‖3Hβ+1 .

We conclude that there exists a time T = T (‖θ0‖Hβ+1) such that θ(t, x) satisfies
‖θ‖L∞

T
Hβ+1 ≤ 2‖θ0‖Hβ+1 . (5.2)

The existence of a solution θ(t, x) can now be established from a standard argument
via artificial viscosity similar to the proof of Theorem 4.1.
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5.2. Uniqueness. Let θ0 ∈ Hβ+1 and suppose θ(1), θ(2) ∈ C([0, T ];Hβ+1) are two
solutions of (1.1) corresponding to θ0. Let θ̄ :=θ(1)−θ(2) and observe that θ̄ satisfies

{
∂tθ̄ + divF−θ(1)(θ̄) = divFθ̄(θ

(2)),

θ̄(0, x) = 0.

By Lemma 4.1, we have
‖divFθ̄(θ

(2))‖Hβ ≤ C‖θ̄‖Hβ‖θ(2)‖Hβ+1 .

Using (4.13), we obtain
d

dt
‖θ̄‖2Hβ ≤ C

(
‖θ(1)‖Hβ+1 + ‖θ(2)‖Hβ+1

)
‖θ̄‖2Hβ . (5.3)

An application of the Gronwall inequality then establishes uniqueness.

5.3. Continuity of the flow map. Let Φ : Hβ+1 →
⋃

T>0 C([0, T ];H
β+1) denote

the flow map of (1.1). By the previous considerations, we have shown that Φ is
well-defined. We will now show that Φ is continuous.

Proposition 5.1. Let θ0 ∈ Hβ+1. There exists a neighborhood U0 ⊂ Hβ+1 of θ0
and time T > 0 such that for any sequence of initial data {θn0 } ⊂ U0, we have

lim
n→∞

‖θn0 − θ0‖Hβ+1 = 0 implies lim
n→∞

‖Φ(θn0 )− Φ(θ0)‖L∞

T
Hβ+1 = 0.

Proof. Let θ = Φ(θ0) and T0 > 0 denote the local existence time of θ. Define U0 by
U0 := {θ′0 : ‖θ′0 − θ0‖Hβ+1 < ‖θ0‖Hβ+1}.

Let K := 4‖θ0‖Hβ+1 . Denote by θn the solution to (5.1) with the initial data θn0 .
By (5.2), we have

sup
n>0

‖θn‖L∞

T
Hβ+1 ≤ K,

for some 0 < T ≤ T0, depending on ‖θ0‖Hβ+1 . Then by the stability estimate in
(5.3), we have

lim
n→∞

‖θn − θ‖L∞

T
Hβ = 0.

In particular, we may set θ∞ = θ. Observe that to complete the proof, it thus
suffices to show that ∇θn → ∇θ in L∞

T H
β .

We decompose ∂ℓθn = ωn
ℓ + ζnℓ , where (ωn

ℓ , ζ
n
ℓ ) satisfy the following equations

{
∂tω

n
ℓ + divF−θn(ωn

ℓ ) = Gℓ

ωn
ℓ (0, x) = ∂ℓθ0(x),

(5.4)

and {
∂tζ

n
ℓ + divF−θn(ζnℓ ) = Gn

ℓ −Gℓ

ζnℓ (0, x) = ∂ℓθ
n
0 (x)− ∂ℓθ0(x),

(5.5)

for n ∈ N ∪ {∞} and ℓ = 1, 2, where
Gℓ = divF∂ℓθ(θ), Gn

ℓ = divF∂ℓθn(θn).

Let
ωn := (ωn

1 , ω
n
2 ), ω := (ω1, ω2), ζn := (ζn1 , ζ

n
2 ), ζ := (ζ1, ζ2).

By Lemma 4.2, it follows that
lim

n→∞
‖ωn − ω‖L∞

T
Hβ = 0.
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We write
Gn

ℓ −Gℓ = divF∂ℓθn(θn − θ) + divF(∂ℓθn−∂ℓθ)(θ).

By Lemma 4.1, we obtain
‖Gn

ℓ −Gℓ‖Hβ ≤ C
(
‖∂ℓθ

n‖Hβ‖θn − θ‖Hβ+1 + ‖∂ℓθ
n − ∂ℓθ‖Hβ‖θ‖Hβ+1

)

≤ CK
(
‖ζn‖Hβ + ‖ωn − ω‖Hβ

)
.

Using the above estimate along with (4.14), we obtain

‖ζn(t)‖Hβ ≤ CeCKt

{
‖θn0 − θ0‖Hβ+1

+K

∫ t

0

(
‖ζn(s)‖Hβ + ‖ωn(s)− ω(s)‖Hβ

)
ds

}
.

Applying Gronwall’s inequality, then passing to the limit as n→ ∞, we obtain

lim sup
n→∞

‖ζn(t)‖L∞

T
Hβ ≤ lim

n→∞
eCKT

(
‖θn0 − θ0‖Hβ+1 + CKT‖ωn − ω‖L∞

T
Hβ

)
= 0.

Finally, by the triangle inequality
lim sup
n→∞

‖∇θn −∇θ‖L∞

T
Hβ ≤ lim sup

n→∞
‖ωn − ω‖L∞

T
Hβ + lim sup

n→∞
‖ζn − ζ‖L∞

T
Hβ = 0,

as claimed.

Appendix .

Proof of Lemma 3.2. First observe that by the Cauchy-Schwarz inequality

|φ+ τϑ|
2
= |φ|

2
+ τ2 + 2τφ · ϑ ≥|φ|

2
+ τ2 − 2τ |φ| =

∣∣|φ| − τ
∣∣2 .

Since s > 0, it follows that
∫ 1

0

1

|φ+ τϑ|
s dτ ≤

∫ 1

0

1∣∣|φ| − τ
∣∣s dτ.

If |φ| ≤ 1, then
∫ 1

0

1∣∣|φ|−τ
∣∣s dτ=

∫ |φ|

0

1

(|φ|−τ)s
dτ+

∫ 1

|φ|

1

(τ−|φ|)s
dτ≤C(|φ|

1−s
+(1−|φ|)1−s)≤2C.

If |φ| > 1, then since 0 < s < 1, we have
∫ 1

0

1∣∣|φ| − τ
∣∣s dτ = C(−(|φ| − 1)1−s +|φ|

1−s
),

which is clearly bounded when 1 < |φ| ≤ 2, and also when |φ| > 2 by the mean
value theorem.

We supply the details of the artificial viscosity argument used for proving Theo-
rem 4.1.

Proof of Theorem 4.1. First, we mollify q and G with respect to time by setting
qn = ρn ⋆ q, Gn = ρn ⋆ G,

where {ρn(t)} is a sequence of standard mollifiers. Observe that we have
qn ∈ C([0, T ];Hβ+1), Gn ∈ C([0, T ];Hσ).
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Moreover, {qn} is uniformly bounded in L1([0, T ];Hβ+1) and {Gn} is uniformly
bounded in L1([0, T ];Hσ). Now, let us consider the following artificial viscosity
regularization of (4.1):

{
∂tθ

n − 1
n∆θ

n + divFqn(θ
n) = Gn.

θn(0, x) = θ0(x).
(A.1)

For 0 ≤ t ≤ T , define

F1(G
n) :=

∫ t

0

e
1
n
∆(t−s)Gn(s) ds, F2(θ

n; qn) :=

∫ t

0

e
1
n
∆(t−s) divFqn(θ

n) ds.

We have

‖F1(G
n)(t)‖Hσ ≤ T‖Gn‖L∞

T
Hσ .

To estimate ‖F2(θ
n; qn)‖Hσ , we consider the two cases σ ∈ [1, 2) and σ ∈ [2, β+1]

separately.

Case: σ ∈ [1, 2). Using Plancherel’s theorem and applying Lemma 2.2, we have

‖F2(θ
n; qn)(t)‖Hσ

≤

∫ t

0

(
‖(I −∆)σ/2e

1
n
∆(t−s)(Λβ−2p(Λ)∂⊥ℓ q

n∂ℓθ
n)‖L2

+‖(I −∆)σ/2e
1
n
∆(t−s)Λβ−2p(Λ)(∂⊥ℓ q

n∂ℓθ
n)‖L2

)
ds

≤

∫ t

0

C

{
1 +

n
σ
2

(t− s)
σ
2

}(
‖Λβ−2p(Λ)∂⊥ℓ q

n∂ℓθ
n‖L2 + ‖∂⊥ℓ q

n∂ℓθ
n‖Ḣβ−2

)
ds

≤C
{
T + n

σ
2 T

2−σ
2

}(
‖Λβ−2p(Λ)∂⊥ℓ q

n‖L∞

T
L∞‖∂ℓθ

n‖L∞

T
L2

+‖∂⊥ℓ q
n‖L∞

T
Ḣβ−σ‖∂ℓθ

n‖L∞

T
Ḣσ−1

)

≤C
{
T + n

σ
2 T

2−σ
2

}
‖qn‖L∞

T
Hβ‖θn‖L∞

T
Hσ .

Case: σ ∈ [2, β + 1]. We proceed just like above and apply Lemma 2.2 to obtain

‖F2(θ
n; qn)(t)‖Ḣσ

≤Cn
σ+1
4

∫ t

0

1

(t− s)
σ+1
4

(
‖Λβ−2p(Λ)∂⊥ℓ q

n∂ℓθ
n‖

Ḣ
σ−1
2

+ ‖∂⊥ℓ q
n∂ℓθ

n‖
Ḣβ−2+σ−1

2

)
ds

≤Cn
σ+1
4 T

3−σ
4

(
‖Λβ−2p(Λ)∂⊥ℓ q

n‖
L∞

T
Ḣ

σ+1
4

‖∂ℓθ
n‖

L∞

T
Ḣ

σ+1
4

+‖∂⊥ℓ q
n‖

L∞

T
Ḣβ−2+σ+1

4
‖∂ℓθ

n‖
L∞

T
Ḣ

σ+1
4

)

≤Cn
σ+1
4 T

3−σ
4 ‖qn‖L∞

T
Hβ‖θn‖L∞

T
Hσ .

Similarly, we have

‖F2(θ
n; qn)(t)‖L2 ≤ CT‖qn‖L∞

T
Hβ‖θn‖L∞

T
Hσ .

Using Picard’s theorem [25], there exists a unique solution θn to (A.1) such that
θn ∈ L∞

TnHσ for some time Tn > 0. Owing to the uniform estimate in (4.14), we
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can conclude that
Tn = T, for all n.

Let us denote by

θ̄n(t) = θn(t)−

∫ t

0

Gn(s)ds.

Then, by (4.14), ‖θ̄n‖L∞

T
Hσ is bounded uniformly in n. Using similar methods as

above, it is easy to see that ‖∂tθ̄
n‖Lp

T
H−m is bounded uniformly in n, for some

sufficiently large m > 0. By an application of the Aubin-Lions lemma [7], there
exists θ̄ ∈ L∞([0, T ];Hσ) such that for any given φ ∈ C∞

c ([0, T ]×R2), there exists
a subsequence of {θ̄n}, denoted by {θ̄nk} satisfying

θ̄nk
w*
−−⇀ θ̄ in L∞([0, T ];Hσ),

φθ̄nk −→ φθ̄ in C([0, T ];Hσ−ϵ),

for any ϵ > 0. It is then straightforward to show that θ(t) = θ̄(t) +
∫ t

0
G(s)ds is a

weak solution of (4.1). This completes the proof.
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