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ABSTRACT. This paper studies a family of generalized surface quasi-geostrophic
(SQG) equations for an active scalar 6 on the whole plane whose velocities have
been mildly regularized, for instance, logarithmically. The well-posedness of
these regularized models in borderline Sobolev regularity have previously been
studied by D. Chae and J. Wu when the velocity u is of lower singularity,
ie., u = —VLEAB=2p(A)0, where p is a logarithmic smoothing operator and
B € [0,1]. We complete this study by considering the more singular regime
B € (1,2). The main tool is the identification of a suitable linearized system
that preserves the underlying commutator structure for the original equation.
We observe that this structure is ultimately crucial for obtaining continuity of
the flow map. In particular, straightforward applications of previous methods
for active transport equations fail to capture the more nuanced commutator
structure of the equation in this more singular regime. The proposed linearized
system nontrivially modifies the flux of the original system in such a way that
it coincides with the original flux when evaluated along solutions of the original
system. The requisite estimates are developed for this modified linear system
to ensure its well-posedness.

1. Introduction. In this paper, we study the initial value problem for a mildly
regularized class of inviscid generalized surface quasi-geostrophic equations over
the whole plane R?:

6t9 + u - Vt9 = 0,
u =V = (=0u,0,0,,7), A =ApA)h, 0<B<2, (1.1)
0(0,2) = Og(x).
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Here, 6 represents the evolving scalar and v its corresponding streamfunction. The
operator A is the fractional laplacian operator, (—A)z and p(A) is any Fourier
multiplier operator that satisfies

Fp(A)f)(€) = p(IEDF(©).

We will assume that p(-) is a radial function that satisfies the following conditions.

p(r)>0, p e L*(R) N C*(R\{0}), sup rlp' ()l <00, /100 () dr<oo. (1.2)

>0 +/p(r) r

In particular, note that

pllEh) = Ine + €77, 5>, (13)

satisfies the above conditions. Consequently, (1.1) contains the logarithmically
regularized counterparts of the generalized SQG equation. In specific, the corre-
sponding generalized SQG equation is given by

uw=Vtyp, AYp=APH 0<p<2 '
For 5 € [0,1], (1.4) interpolates between the 2D incompressible Euler vorticity
equation (8 = 0) and the SQG equation (8 = 1), while for g € (1,2), it represents
a family of active scalar equations with increasingly singular velocity. The Cauchy
problem for (1.4) was first considered in [4], where a regularity criterion in terms of
the norm of @ in the Holder space C# was established. Since then, well-posedness
in various functional spaces has been addressed [3, 16, 24, 17], as well as continuity
with respect to 8 [33], global existence of weak solutions on bounded domains [30],
the existence of invariant Gaussian measures for the flow [29], and various studies
on the corresponding point-vortex models [11, 13, 14, 26]. One important aspect
of the family (1.4) is that it allows one to rigorously identify the Euler equation,
B = 0, as a critical model. Indeed, from the point of view of the so-called ‘patch
problem’ posed in the half-space, global regularity holds at § = 0, whereas finite-
time singularity can occur when 8 > 0 is sufficiently small [19]; the patch problem
has also recently been studied in [8, 12, 20].

The issue of local well-posedness of the regularized models, (1.1) was initially
studied by D. Chae and J. Wu in [5]. There, existence and uniqueness of solu-
tions was established in the borderline Sobolev space, H?*1 when 8 € [0,1]. The
term ‘borderline’ refers to the threshold of regularity corresponding to solutions of
(1.4) with respect to which the gradient of the velocity in L> can be controlled,;
specifically, ||0||g- bounds ||Vul/Ls, but only when o > § + 1. Thus, the result
in [5] essentially showed that this obstruction to a local theory at the critical level
o = B+ 1 can be overcome by introducing a regularization of the form in (1.1),
provided that 8 € [0,1]. Interestingly, they identify an additional threshold in the
degree of this regularization for the local-well posedness to hold, namely p > 1/2
n (1.3). This threshold was later shown to be sharp in the endpoint case, 5 = 0,
represented by the logarithmically regularized 2D incompressible Euler equation
by H. Kwon [23]; specifically, when 8 = 0, the corresponding system was shown
to be strongly ill-posed in the borderline space H'(R?) N H~'(R?). The result
of Kwon is an extension of the seminal paper of J. Bourgain and D. Li [2], in
which a longstanding open problem of whether the initial value problem to the d-
dimensional Euler equation was well-posed or not in the scaling-critical topology
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(for the velocity) H't4/2(R?), for d = 2,3, was resolved by demonstrating the ex-
istence of a norm inflation phenomenon via “large Lagrangian deformation” that
yields non-continuity of the corresponding data-to-solution map. A notable alter-
native approach to demonstrating ill-posedness was established by T. Elgindi and
I. Jeong [9] in the two-dimensional setting and by T. Elgindi and N. Masmoudi [10]
in higher dimensions. To the best of our knowledge, the issue of well-posedness of
(1.4) in the scaling-critical topology, H?*1(R?) remains open. On the other hand,
ill-posedness for active scalar equations with an even more singular constitutive law
[21] as well as non-uniform continuity of the data-to-solution operator [15, 27, 28]
have been studied. In this paper, the “positive” side of this issue is treated as we es-
tablish the analogous results of D. Chae and J. Wu in the borderline Sobolev spaces
for the more singular range 5 € (1,2), thereby providing a complete picture of
well-posedness for the full family of mildly regularized inviscid gSQG equations. In
particular, we identify a similar threshold for well-posedness through the condition
p>1/2in (1.3).

As previously mentioned, we establish local well-posedness, in the Hadamard
sense, for the initial value problem (1.1) in the range 8 € (1,2) in the borderline
Sobolev space HP*+1(R?). This result is stated in the following theorem.

Theorem 1.1. Let 3 € (1,2). For each 6y € HPHY(R2), there exists a positive time
T =T(||0o]| grs+1) and a unique solution, 6, of (1.1) such that

0 € C(0,T); H*T1(R?)).
In particular, the data-to-solution map, ®, such that

®: HP(R?) - | C(0,T): HPFH(R?), 0y — 6(t:6o), (1.5)
T>0

is well-defined and continuous.
Observe that for § € HPT1(R?), one has
[Vullp= < CIIVVEAT2p(A)8] Lo < O8] o1 (1.6)

As a result, when 8 € [0, 1], one can use the standard estimates for the transport
equation in the Sobolev space HA*!(R?) to obtain existence, uniqueness and conti-
nuity of the flow map for (1.1). This approach, however, no longer seems to directly
work when 3 € (1,2) as the estimates for the transport equation in H#*+! instead
require control of | Vul||gs (see, for instance, [1, Theorem 3.19]). To overcome this
difficulty, we observe that one must exploit the more nuanced commutator structure
within (1.1). Such a structure was originally identified in [3], where it was exploited
to demonstrate local well-posedness in H*(R?); this result was subsequently im-
proved in [16] to the space HP+t1T¢(R2), for ¢ > 0. We ultimately observe that
the main obstruction to well-posedness for the models (1.1) lies not in establish-
ing existence and uniqueness, but rather in continuity of the data-to-solution map.
Although the nuanced commutator structure in (1.1) is crucial for establishing ex-
istence, exploiting it to demonstrate continuity is more delicate. This is ultimately
done by identifying a suitable perturbation of the flux (see (4.2)) in (1.1), viewed
in divergence-form, then developing the proper apriori estimates for linearizations
of this perturbed system naturally pertaining to the argument for continuity (see
(4.1)). These linearizations are ultimately obtained by adopting a classical splitting
scheme that was introduced by Kato in [18] to establish continuity of flow maps
for quasilinear symmetric systems, but adapted for the system (1.1) (see (5.4) and
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(5.5)); we refer the reader to [1] for details. The main ingredient for the proof of
continuity is the stability estimate for equation (4.1) as stated in Lemma 4.2. The
linear equation can then be viewed as a conservation law (4.1) whose flux incor-
porates the commutator structure of the original system. We remark that similar
ideas were recently exploited by the authors in [17] to address existence, unique-
ness, and instantaneous smoothing of solutions to the “supercritically” dissipative
counterpart of (1.4), i.e., with A*®8 for 0 < k < 1, for large initial data belonging to
the corresponding scaling-critical Sobolev spaces, H#+17%(RR2).

Remark 1.1. By using a similar approach for the equation in (1.4), we can establish
the local well-posedness (in the sense of Hadamard) of (1.4) for 8 € (1,2) in the
smaller critical space Bg’J{l(RQ). It would also be interesting to establish these results
in the more general setting of LP-based Besov spaces in the spirit of [32]. We refer
the reader to the thesis of the second author for additional details (]22]).

2. Mathematical preliminaries. For the rest of the paper, we assume that C
denotes a positive constant whose value may change from step to step. Dependence
on other parameters may be specified when relevant. Moreover, all single integrals
will occur over R?, unless otherwise specified.

Let .#(R?) denote the space of Schwartz class functions defined on R? and .#”(R?)
denote the space of tempered distributions. For f € .#”(R2), we denote by f or
F(f), the Fourier transform of f, defined as

f) = [ e fyaa.

Recall that F is an isometry on L? and satisfies
(f:9)=(1.9)-
We denote by A%, o € R, the fractional laplacian operator, defined as
F (A7) (&) = 1817 F (f)-

We recall the definition of the Fourier-based homogeneous and inhomogeneous
Sobolev spaces on R2. For ¢ € R, we have

17 R2) = {f € " (R?) : | € Lo, |l o 1= A7 fllz2 < o0}, (2.1)
HO(R?) = {f € ' (%) : f € Lo, Ifllo i= (T = A)/*) gz < o0} . (22)

Hereafter, we will suppress the expression of the domain R? when denoting the
Schwartz, Sobolev, or related spaces, except when we would like to emphasize the
dimensionality in the statement.

We now provide a brief review of the Littlewood-Paley decomposition and refer
the reader to [1, 6] for additional details. We define

2(R?) := {feyi(R?):/f(x)mx_o, |T_o,1,2,-.-}.

Let 2'(R?) denote the topological dual of 2(R?). Then, 2'(R?) can be identified
with the space of tempered distributions modulo the vector space of polynomials
on R?, denoted by 2, i.e.

2'(R?) = 7' (R?)/ 2.
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We will denote by B(r), the open ball of radius r with center at the origin and
by A(r1,72), the open annulus with inner and outer radii 1y and re, and with
center at the origin. It can be shown that there exist two non-negative radial
functions y, ¢ € . (R?) with supp x C B(1) and supp ¢ C A(27%,2) such that for
$;(€) == ¢(279¢) and x; (&) = x(277¢), following conditions are satisfied

EjEZ d)J(f) =1,

X+ ngo ¢; =1, V¢ € R*\ {0},

supp ¢; Nsupp ¢; = &, if|i — j| > 2,

and supp ¢; Nsupp x = 9.
We will fix the following notation

Aj =A@ 2 Ay = AR5 29), By = B(29).
With this notation, note that
supp¢; C A;j, suppx; C B;. (2.3)

Denote by A; and S, the (homogeneous) Littlewood-Paley dyadic blocks which
are defined via Fourier transform as

F(D; 1) =0;F(f),  F(S;if) =x;F(f)
Observe that owing to (2.3), we obtain
F(Djf)las =0, F(S;f)lss =0,
Also observe that for any f € .%/(R?), we have
f=Sif+> Af i€l

Jjzi

On the other hand, when f € 2'(R?), we have
F=2_ 041

JEZL
Recall that the Besov seminorm || || pg ,» is defined in terms of the Littlewood-Paley
dyadic blocks as Y

1

3
_ 2
1Flag, = | D2 (270125 712)
JEL
In particular, we have the following characterization of the Sobolev seminorms
071Hf||32{2(11§2) < ||f||Ha(R2) < C”fHBg,z(n@);

for some constant C' depending only on o. We will frequently employ the following
well known inequality (see [1],[6]) which quantifies the relation between the dyadic
blocks and the fractional laplacian operator.

Lemma 2.1 (Bernstein inequalities). Let 0 € R and 1 < p < ¢ < oo. Then
C71279|| A fllare) < A7 A fllaey < C277H G0 |4 f ooy,
where C' > 0 is a constant that depends on p,q and o.

Let us recall the following classical product estimate in homogenous Sobolev
spaces ([31]).
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Lemma 2.2. Suppose that s,t <1 and s+t > 0. Let f € H*(R?) and g € H'(R?).
Then

1f 9l gose—r < CllSf Mg

We will also use a particular dualized version of the above inequality as stated in
[17].

Lemma 2.3. For o € (—1,1) and f,g,h € /(R?), define

(Frg.h) = [ 16176 = math(©ande.

Suppose that suppfl C Aj, for some j € Z. Then for each o € (—1,1) and € € (0, 2)
such that o > € — 1, there exists a constant C > 0, depending only on o,€, and
{e;} € C3(Z) with ||[{c;}|ez <1 such that

Lo (f:9,h)] < Ce; 2 min {|f]| -

9llge-

Fllgz} IRl z2-

3. Commutator estimates. In this section, we will establish the commutator
estimates that will be required in order to prove Theorem 1.1. First, we prove
Lemma 3.1, which establishes an estimate for the localized commutator of the oper-
ator VEAP=2p(A) that defines the velocity u in terms of the scalar 6 in (1.1), where
we recall p is a multiplier satisfying (1.2). To this end, we consider a multiplier
P(D) such that

9l gros N9l g1

Sup|PE)], s €l[VP(E)] < e (3.1)

We will denote the commutator of two operators, S and T, by [S, T], where
[S,T):=ST -TS.

Lemma 3.1. Let s € (0,1), € € [0,1) be such that e +s < 1. Let f € H(R?),

g € H>57¢(R?) and h € L*(R?). Let P be any Fourier multiplier satisfying (3.1).

Given k > 0, suppose that supp f C A; and supph C A;, where|i — j| < k. There

exists a constant C > 0, depending only on s, k, €, such that

(AT P(D)0e, gl f, )] < Cligll gz | fll e IRl 25 €= 1,2.

The proof of Lemma 3.1 is similar to that of Lemma 4.3 in [17]. To prove it, we
will make use of the following convexity-type inequality that is proved in Appendix .

Lemma 3.2. Let 0,9 € R?, where d > 1, such that |9] = 1. For all0 < s < 1,
there exists a constant C > 0 depending only on s such that

! 1
— - _dr<cC.
/0 lo +79[*

Proof of Lemma 3.1. We define the functional

Los(frgh) - / e g (€,1) F(E — m)a(n)R(€)dndé, (3.2)

where

mse(§,m) = [E]7P(€)& — [ —n| T P(§ —n)(§ —n)e,

and observe that

<[A_SP(D)a€ag]fa h> = Es,@(.ﬂg?h)'
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Now let
A(r,&n) =16+ -7)E—n)=E-n)+m=-(1-71)n. (3.3)

For convenience, we will suppress the dependence of A on £, n for the remainder of
the proof. Observe that

|ms7l<§7 77)'

/1 % <|A(T)\7S P(A(T))A(T)e) dr

0

1
| (A A - PA) A, +AR)] ™ (TPAE) - A,

+| AW PAE)) dr

<Cln| / A(r)| " dr, (3.4)

where the fact s € (0,1) is invoked to obtain the last inequality. By assumptions

on the supports of f and iL, we can assume that supp g C B;;r+2. Using this, we
obtain

‘Cs,f(fagah) = I+II7
where

I— / e (6,1) F(€ — ) Ls,_, ()3 (n)h(€)dnde,

17 = / M (6 FE LA,y 110 (IR dE.
Now we treat I and I1.

Estimating I : For n € B;_3, we have

| co

[A(M)| 2[¢ = = 7ln| > 27" =272 = 3(27%) 2 e .

(=

Thus
1] < C//\«S =07 InlLs._, g1 £ (€ = n)|A(&)]dndé.

By the Cauchy-Schwarz inequality, Young’s convolution inequality, and Plancherel’s
theorem, we obtain

1| < Cllinlls,; 59ll,

4—s

=l e

2+s

Bl . (3.5)

By Holder’s inequality, we have

Il 3 s, < eyl

2—s—e
I, Il g(n)ll >

4
2—s

< 029 gl| o
ln = F@Il . < L4, < F)lze < C2CEI £ ..

L2+s

nl=*

4
Ls
Upon returning to (3.5), we obtain

1] < Cllgh oo

for some constant C' > 0, depending on s, .

Fllgellpll 22,
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Estimating 11 : Let ¢ := fl:]—ln and 9 = ‘% We observe that for fixed £ and 7, we

have

1 1
s . 1
n||A(r dT:nl /73d7.
/Ol\\()\ In| S

By Lemma 3.2, it follows that

1
/ nl| ()| dr < Ol (3.6)
0
Hence

I <c / / 015 Ly e DIGOIFCE = m)1(E) e,

Applying the Cauchy-Schwarz inequality, Young’s convolution inequality, Plancherel’s
theorem, and the Cauchy-Schwarz inequality a second time yields

(1| <CllInl' "~ Ty i@l 0l Fll 2 N 2]l 22 (3.7)
<CrlllnPP™* VA, irsadll2 | Fll e | 22
SCrllgllgro—s—clfll gellll 22 O

By slightly modifying the proof of Lemma 3.1, we obtain the following non-localized
form of the above commutator estimate. We point out that similar estimates were
also established in [3] and [17].

Lemma 3.3. Let s, e € (0,1) be such that e+s < 1, and P be any Fourier multiplier
satisfying (3.1). Suppose that either (f,g,h) € L?(R?) x H?>~5t¢(R?) x L?(R?) or
(f,g,h) € HE(R?) x H?~%(R?) x H*(R?). There erists a constant, C' > 0, depending
only on s, €, such that

(AT P(D)ds, gl f, 1)

<Cmin {HQHH?*HE||fHL2||h||L27 gl erz=< (I1/1l e
fort=1,2.

iz + [l e

fllez)}

Proof. We proceed just as in the proof of Lemma 3.1 and apply (3.4) and (3.6) to
obtain

(A= P(D)dy, g)f. )| < C / / = a1 F (€ — mIlh(E)dnde.  (3.8)

Proceeding as in (3.7), we obtain

(AT P(D)de, g1 f, )| < CllInl"=*gllallfll2llhllzz < Cellgllpzz—ose | Iz 1Pl 2

On the other hand, upon multiplying and dividing by |n|¢ in (3.8), applying the
triangle inequality, |n|¢ < [€|¢+|€—n]|¢, then applying the Cauchy-Schwarz inequality
and Young’s convolution inequality, we obtain

[{[AT*P(D)de, g1 f, )| < Cllln" =Gl (1A fllp2llBllze + 1 £l 2 l|Ahl|z2)
< Cellgllzzz—= (If e IRllz + 12l el fllz2) - H

Next we prove a commutator estimate for operators which are of the form of a
product of Fourier multiplier operators given by A, 0;, A;, P(D), where we assume
that P satisfies (3.1). We will let & denote

2 =AMANor 9y, forl=12.
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For the next result, let us denote by W (R?), the space of functions whose Fourier
transform belongs to L*(R?).

Lemma 3.4. Let s € [0,1), v € (0,1), p € R. Suppose that supp h C Aj, for some
j € Z, and that either (f,g) € (H'=*(R2?) x H*t1(R?)) U (H*(R?) x H>¥(R?)) or
(f,Ag) € (W(R?) N HY(R?)) x H*(R?))U H*(R?) x (W(R?) N H(R?)). Let P be a
Fourier multiplier symbol satisfying (3.1). Then there exists a sequence {c;} € {*(Z)
such that ||[{c;j}ex <1 and

(AT P(D)2 1, 9], 1)l

<Ce; mln{HfHHl v”gHH s+1s Hf||Hs||g||H2 v} Hh||Hp+v (3.9)
min{ (|| fll s + 11 g)lgll e (Aglze + gl ) 1 iz Ml o

for some constant C > 0, depending only on s, p,v

Proof. We will only treat the case of 2 = 0y to avoid redundancy in the argument.
The proof for the case 2 = A is similar. First, let us define

3(f.g.h) / i (6,1) F(€ — M) h(€) dn de,

cEA;

where

msj(&n) = ¢ (E)P(E)IE]” & — (€ —m)P(E — )| —nl” (€ —n)e.

Then, using Plancherel’s theorem, we see that
L5(f,9,h) = ([A°P(D)2L, 9 f, ). (3.10)

It is therefore equivalent to obtain bounds on E;'H’ )

Let A(7) be as in (3.3). By (3.1) and the facts that supp ¢; C A;, supp V¢ C Ay,
and £ € A;, we have

[Mesip,5(&m) ’/ e ¢g {A ’S-i‘pP(A(T))A(T)g) dr

/O {w( A(r) - (29n) P(A(r)A(r);
+ (s 4 p)oj (A(D)|A()| 7 (A(7) - n) P(A(r)A(r)e

T 05 (A(T) WP<A<T>> IA(T)e + P(A()ne] }|A<T>|”f’ dT’
<C|77H§|”/ |A(7)|" dr + Cln| ¢5(A /‘A )7 dr

<claller [ 1A@pa .11
0
By the triangle inequality, we have

[Mstp,5 (&) < CE =0l +nl*)|nl €] (3.12)
Upon returning to (3.10), and applying (3.12), we obtain

1£37(f,g,h)| <C / (1€ = nl* + nl*) 1£(€ — )| Kg(n)l€]° 1(€) dnde

EEA;
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:c[/mQ—w»EJQWMMPM@WM@

€EA,
¢ [[ 1876 = Rl 1h(©)hdnde = 1+ 11
£eA;

Applying the Cauchy-Schwarz inequality, Young’s convolution inequality, and Bern-
stein inequality, we obtain

| < Cesllfllzllglgraen 1pll o HIT < Ccjlifll o MGl L2 1P g7
Applying Lemma 2.3 with 0 = € = s, we obtain

| < Cejllfll e lgll g2l g [TI1< CesllFllgallgllgroea 121 -

Applying Lemma 2.3 with ¢ = s,e = v, we obtain

11,1211 < Cejmin {| f | g gl goens 11 e N9l o= } 1P o -

Collecting the estimates above, we obtain the required result. O

4. Estimates for an inhomogeneous linear conservation law with modi-
fied flux. The proof of our main result, Theorem 1.1, will rely on estimates for a
linear scalar conservation law whose flux accommodates the commutator structure
associated with the skew-adjoint operator VLAB_Qp(A). This commutator struc-
ture is crucial to establishing continuity of the corresponding flow map. Given ¢
and G sufficiently smooth, the conservation law and its corresponding initial value
problem is given as follows

v _
0,0 + div F, () = G, (4.1)
0(0,z) = Og(x).
where the flux, F,(6), is defined by
Fy(0) == (VA "2p(A)q)0 + AP ~2p(A)((V*6)q) (4.2)
Observe that, formally, we have divF_g(8) = —(VAP=2p(A)0)-VO = u- V6.
Hence, we recover equation (1.1) in the particular case when ¢ = —6. This mod-

ification to the original flux is precisely what allows us to obtain estimates in the
space HAT1 that are not otherwise available for the linear transport equation with
a Lipschitz regular advecting velocity u. Ultimately, (4.1) will be exploited to es-
tablish continuity of the data-to-solution mapping ® : H+' — C([0, T]; H#1),
Oo — (2(60))(t) = 0(t;6p), where 0(t;6p) represents the solution of (1.1) corre-
sponding to the initial value problem (1.1).

To this end, we must first develop apriori estimates for the system (4.1). These
estimates will guarantee its own well-posedness (cf. Theorem 4.1). The proof of
continuity of ® will then rely on a continuity-with-respect-to-parameters-type of
result (cf. Lemma 4.2).

It will be convenient to introduce the following notation:

A=AP72p(A), AF=ATA; 9 = (=0,01).

We will also make use of the convention that we sum over repeated indices, unless
they correspond to Littlewood-Paley operators. Given g, let v denote

v:i=—V+Aq. (4.3)
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Then we have V-v = 0; in particular, this implies that
<v- Vh, h> =0, (4.4)

for any sufficiently smooth function h. We will first establish L.2 space estimates.
Then we will proceed to establishing estimates in Sobolev spaces H? for o €[1, 5+1].

4.1. L? estimates. Taking the inner product in L? of (4.1) with 6, we obtain
1d
2dt

Note that A9, is a skew-adjoint operator. As a consequence of this and (4.4), we

see that

01172 + { div F,(6),0) = (G, 6). (4.5)

(div Fy(0),0) = —(AV-((V*q)0),0) = (Vg V(A9),0)

1 1
= —5([A, Vg VI0.0) = - (40, (V' 9)10.0).  (4.6)
Upon applying Lemma 3.3 with s =2 — § and € > 0 sufficiently small, we obtain
[(div F4(0), 0)| < Cllgll o+ 0]l 7 10]] 22 (4.7)

Returning now to (4.5), applying the Cauchy-Schwarz inequality to the term on the
right-hand side, then invoking (4.7), we arrive at

d
10172 < Cllgllzo 101 5

Oll 2 + ClIGI| = [16]] 2 (4.8)

4.2. Homogeneous Sobolev space estimates. Upon applying the operator A}’
o (4.1), then taking the L2-inner product of the resulting equation with A0, we
obtain
1d
2.dt
We will first treat I. For this, we will distinguish between the two cases, o € [1,2)
and o € [2,5 + 1].

[AS0]72 = —(AJV-Fy(0),A70) + (AJG,AT0) =T+ IT (4.9)

Case: o € [1,2). In this case, we make use of the fact that V1g¢ is divergence-free
and the skew self-adjointness of Ad, in order to decompose I as

(A9 div Fy(0), A50) = (AT (V' Aq- V), A50) — (AT A(V*q- V), A50)
Ie b
=L+ L+1s+ 14,

where
L =1°—1I, = (A (V' Aq- V0),A70) — (V=Aq- VATH,A76)
= ([A7, 07 Aq)0,0,A706),
I, = (V*+Aq-VAT0,A70) =0,
Iy= 1"+ I = —(AJA(Viq-V6),A%0) + (Vg VATATO, AZAT0)
= —([AJA%,0}q)0,0, AT A26),
Iy = (V*q-VAZATO, AZAT0) = 0.
Applying Lemma 3.4 with s=0—1, p=0and P =1, 2 = A, we obtain
L] < Cej (| F (07 AAg) | Lr + 1107 Agll 12) 1060 o [|AF 0] -
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Using the Cauchy-Schwarz inequality, (1.2), and Plancherel’s theorem we have

IF0FAAG) || 2 <[ Lsy ()1l z2 10 [01P~2p(n))d(n) | 22
+ [1Lss ()l = w22 ng-[n1Pd(n) | 22

<Cllgll o (4.10)
Thus
|| < C’cj||q||HB+1||9HHUHA?9||L2.
Applying Lemma 3.4 with s =0 —1, p = %, v=2—pfand P = p%, 2 = A, we
obtain

5] < Ce;107 dll 1o | 060 o2 [ A2 ATO 20 < Cejllal o 0]l AT O] 2.
Case: o € [2,8 + 1]. In this case, we decompose I as
(AF div Fy(0), A6) = (A](V=Aq- V8),A76) — (AT A(V*q-V),A76)

Ja Jb
=i+ o+ J3+ s+ Js5,

where
J1={((V*AANIq-V)0,A50) — (VA (ATqV0),A70) = ([0 A, 9,0]ATq, AT0)
Jp Jf
Jy =(V+Aq-VAJ0,A760) =0
Jy=J" — Jf — I
= {(Ag(viAq -V0),A70) — ((VFAANSq- V)0, A50) — (V*-Ag- VATH, Aga>}

Ji =((Vtq-VAZAI0), AZAT0) = 0
Js=—J0+ I+,
- {(A;A(wq .V6),A%60) — (VA (AZqV0), A76)
~((V*q-VAIAT), 43176) }
Applying Lemma 3.1 with s =2 — f and e = §+ 1 — o, we obtain
|1l < CllOb|| o1 AT all grosa—o AT Ol L2 < Cesllall o 0]l g [[AF Ol 2,
where

. ||A37(J||H5+17a

Cj = c 82(2)

g/l gro+1
Now, as in [16], we observe that we may write J3 as a double commutator. Indeed,

for any o > 2, we have
AT f=A""2(=A)f = —(A°720))d, f. (4.11)
Then by applying (4.11), the product rule, and (4.4), we have
Js =— (A720,(VTAdiq- VO),A760,) + (VAN 29,019 - V)8, A70)
— (A7 20V Aq - VOi0),A760,) + (V' Aq- VAT 20,0,6),A76)
= — ([A 7201, 00010701 Aq, A70) — ([A]~20;, 05 Aq)0,0,6, A 0)

Jg J\,’;
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Similarly, we can express J5 as

J5 = ([A7 720y, 0,010} 0uq, ANO) + ([AT "2 A% 0y, 0} q)0e010, A2 AT0)

Ja J?
Applying Lemma 3.4 with s =0 — 2, p =0 and P = I, ¥ = 0, then proceeding
just like in (4.10), we obtain

T3] < Cej (|| F (07 i Ag)l|r + 1100 Adll 1) 1068 sy 1A 0]l 2
< C¢jllqll a2 10]] g [|AT O] 22
Applying Lemma 3.4 with s =0 —2, p=0and P =1, 9 = 0;, we obtain
T3] < Cc; (| F (A9 Ag)l| 1 + 1107 Adll172)110010| 7o 2| AT 0] 2
< C¢jllgll o+ [10]] - [1AF Ol 2
Applying Lemma 3.4 with s=0—2, p=0, v=2— and P=1, 2=0;, we obtain
|J31 < Cc;l|07- 01l o1 1060 gro—1 [1ANT O]l o < Ccsllallygoa 10 - AT 6| 2
Applying Lemma 3.4 with s=0-2, p= %, v=2—fand P = p%, 2 =0y, we obtain
1 [eg g
5] < Cc;ll07 all o 106010 ro—2 | AZATON| 228 < Ccllall o 0] o 1A Ol 2
Summary of estimates. Upon returning to (4.9), collecting the above estimates for
Iy, I3 and Jy, J3, J5, then applying the Cauchy-Schwarz inequality, we obtain
d (o8 [eg (o8 g
ZIAF0I1E: < Cejllall o |01 o [AF01l L2 + CIAT Gl 2 AF O 2
Finally summing over j and using the Cauchy-Schwarz inequality, we have
d
$||9H2- - < Cllall s+ 11015, + ClIG o 19l 70 (4.12)
Combining with the estimates (4.8) and (4.12), we deduce
d
1017 < Cllalmost 1011 + ClGllae 6]l (4.13)
An application of Gronwall’s inequality then yields
c 1
168) 1= < e (60l 112 + Gl )- (4.14)

From the estimates developed above, one may carry out an artificial viscosity argu-
ment to establish the corresponding well-posedness result for (4.1). We state this
below as Theorem 4.1. Details of the artificial viscosity argument are provided in
Appendix .

Theorem 4.1. Let B € (1,2). Given T > 0, suppose ¢ € L'(0,T; H*+1) N
LP(0,T; H=™) for some m > 0 and p > 1, and G € LY(0,T;H®) for some
o €[1,841]. For each 6y € H?, there exists a unique solution 6 € C([0,T]; H?) of
(4.1) satisfying (4.14).

We now establish a “stability in parameters” type result for (4.1). To prove this,
we will require an estimate in H? for the divergence-term in (4.1); this estimate
will also be invoked to establish the well-posedness of (1.1).

Lemma 4.1. Let 3 € (1,2). Let ¢ € H? and 0 € H?*L. Let F,(0) be defined as in
(4.2). Then

[div Fy(0) || zrs < Cllql| g6 10]] o1
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Proof. Let H := div F,;(#). Observe that by Lemma 3.3 with s =2 — 3 and € > 0,
we have

1H |72 = (V- (V" Ag)0), H) + (AV - (V*0)q), H)
= —([07 A, 0:01q, H) < C|0]| o2 (llgll gre | Hl 2 + Nlall 2| H [l ge).  (4.15)
On the other hand, one can verify that
IAPH|3, = (M) (V- Aq- Vo), AVH) — (N A(V*q - V0), A H)
= — ([0} A, 0:0]A g, AT H) + ([A], 0,010} Aq, A H)
I IrI
— ([A], 0u0)07 q, ANTH) .

111

Applying Lemma 3.1 with s =2 — 8 and € = 0, we obtain
1] < CllOb]| s | A all 2| AT Hl| 2 < Csllal roll6l] o | AT H 2,

where
A%l

C: =

g ||Q||Hﬁ
Applying Lemma 3.4 with s =8 —1, p=0and P =1, 2 = A, and proceeding just
like in (4.10), we obtain

11| < Ce;1046]| s (I F (0 Aq) | L1 + 1|03 Aq o )| AT H | 2
< Oc;llgll s 161 o 1A H 2,
Applying Lemma 3.4 with s =—1,p=0,v=2—Fand P =1, 2 = A, we obtain
|IT1| < Ce; 1068 s 10 all o1 | AN H | 25 < Ccsllal s 10 o | A] H]l 2,

From estimates of I-111, we deduce

€ 2(2).

[H|l 7o < Cllgll 101 go+1- (4.16)
Finally, upon combining (4.16) and (4.15), we conclude

[Hll s < Cllgllzzs 0]l o (4.17)
as claimed. O

We are now ready to prove the stability-type result for (4.1) alluded to earlier,
which constitutes the main ingredient for establishing the continuity of the data-
to-solution map ® of (1.1).

Lemma 4.2. Let 8 € (1,2). Let {¢"} be a sequence of functions satisfying
supllq”||psems+r < C and  lim |[¢" = ¢%|[pygs =0,
n>0 n—r oo
for some constant C > 0, depending on 3,T. Given 0y € H? and G € L'*(0,T; H?),
let 8™ denote the solution of
00" + div Fin (™) = G,
0™(0,z) = bp(x).
for each n € NU{oo}. Then

hm ||0n — QOOHLOOHB = O
n— 00 T

(4.18)
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Proof. First, let us consider the case when 0y € H%T! and G € L'(0,T; H*+'). By
Theorem 4.1, the sequence of solutions to (4.18), denoted by {6"}, is bounded in
L>=(0,T; H?*1), uniformly in n. Observe that 6™ — 0> satisfies

(0™ — 60°°) + div Fyn (0™ — 6°°) = div Fgoo_qn)(6>). (4.19)
By Lemma 4.1, we have
[div Fgoe —qny (0°) |ze < Cll™ — " | s |07 || o+1.
Upon returning to (4.19) and using (4.14), we obtain
n oo C " oo n oo
] P e N T
This implies
hm ||9n — HOOHLoc(O’T;HB) = 0
n—o0
Now, let us assume that 6y € HP. For all n € NU {oc} and k € N, denote by 67,
the solution to

00y + div Fyn (07) = PG, 6;(0,z) = Pibo(x), (4.20)
where P, denotes projection to frequencies |€] < 2%, i.e., F(Ppf)(€) = 15, (€)f(€).
From (4.18) and (4.20), it follows that

0 (0" —0) + div Fyn (0™ — 03) = (I — Py)G.
Then by Theorem 4.1, we obtain
10" = 2l mro < e (I = POGols + 1 = Pe@llngrs ) 5 (4:21)

for all n € NU {oo}. Let 6 > 0. By (4.21), we can select k large enough, say
ko, such that [[0" — 67 ||pecps < 0/3 for all n. Since Pyt € H*! and PG €

LY(0,T; HP*Y), we can find an integer N such that for all n > N
”9]7;0 - 913§||L;9Hﬂ <4/3.
By the triangle inequality, we obtain
R
Since § was arbitrary, the proof is complete. O
5. Existence, uniqueness and continuity of solutions to (1.1). We will now
prove the main theorem of the paper, Theorem 1.1. We will do this in three steps,

starting by establishing existence, proving uniqueness, and concluding with conti-
nuity with respect to initial data, that is, continuity of the data-to-solution map.

5.1. Existence. Observe that since V46 -V6=0, we can express equation (1.4) as
0 +divF_yg(0) =0, 6(0,2) = 0p(x), (5.1)
where F is as defined in (4.2). By invoking (4.13) for o = § 4 1, we obtain
d
L0101 < COIs11
We conclude that there exists a time T = T'(]|0g|| gs+1) such that 0(t, ) satisfies

00l Lo rro+s < 2[|B0]| o1 (5.2)

The existence of a solution 6(t, z) can now be established from a standard argument
via artificial viscosity similar to the proof of Theorem 4.1.
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5.2. Uniqueness. Let 6, € H?*! and suppose 61, 62 < C([o,T; HﬁH) are two
solutions of (1.1) corresponding to 6. Let §:=0)—0(2) and observe that 0 satisfies

0:0 + div F_ya) (0) = div F3(0?),
0(0,2) = 0.
By Lemma 4.1, we have

[div F(0@)[[ s < Cl[0]| 51510 g1

Using (4.13), we obtain

d, - _
210132 < C (10D s + 101 gz51) 1013 (5.3)
An application of the Gronwall inequality then establishes uniqueness.

5.3. Continuity of the flow map. Let ® : H*! — (. C([0,T]; H?T') denote
the flow map of (1.1). By the previous considerations, we have shown that ® is
well-defined. We will now show that ® is continuous.

Proposition 5.1. Let 6y € HP*!. There exists a neighborhood Uy C HP*! of 6,
and time T > 0 such that for any sequence of initial data {6} C Uy, we have

Wi (65— 6l e =0 implies  lim [ B(6) — B(00)]| 3 srass = 0.

Proof. Let 6 = ®(0y) and Tp > 0 denote the local existence time of 6. Define Uy by
Uo == {0 105 — Oollzrs+s < |60l zs+r}-
Let K := 4||6p||gs+1. Denote by 8™ the solution to (5.1) with the initial data 6.

By (5.2), we have
supl|0”|| e o1 < K,
n>0

for some 0 < T < Ty, depending on ||6g||ge+1. Then by the stability estimate in
(5.3), we have

hm HG" — 9||L°°H5 = 0

n— o0 T
In particular, we may set 8> = 6. Observe that to complete the proof, it thus

suffices to show that V8" — V@ in L HP.
We decompose 0,0" = wj + (7, where (W}, (}') satisfy the following equations

5“.0? + div F_gn (w?) = Gg (5 4)
w(0,2) = 0ebo(x),
and
oG +div F_gn (') = G — Ge (5.5)
C?(O,l’) = 8408@) — 3@90(%),

for n € NU{oo} and ¢ = 1,2, where
G@ =div Faw(@), ZL = div Fazgn (9”)
Let

n

W= (w?,wg), W= (W1,W2), Cn = (C?agg)a C = (ClaCQ)-
By Lemma 4.2, it follows that

i n_ oo = .
Jim [|o™ = wl[pgems =0
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We write
G} — Gp = div Fp,on (0™ — 0) + div Fg,0n—,6)(0)-
By Lemma 4.1, we obtain
IGE = Gellzra < C (100" |z 1™ — Oll zroer + [1060™ — el 2|0 rro+1)
< CK (¢ lms + o™ — wllgs) -

Using the above estimate along with (4.14), we obtain

IC" )l as < Cec}“{ll%‘ — Ooll s+

t
K [ as + 107 (5) - w5 lrs) ds}.
0
Applying Gronwall’s inequality, then passing to the limit as n — co, we obtain
limsup|[¢"(#)[| Lo e < lim eCKT <||9Z} —0ol|ge+1 + CKT||w" — wHLocHB) =0.
n—00 n—0o0 T
Finally, by the triangle inequality
limsup||V0™ — V0| Lo s < limsup||lw™ — wl| e s + limsup||¢"™ — (|| s rs = 0,
n—oo n— 00 n— oo
as claimed. O

Appendix .

Proof of Lemma 3.2. First observe that by the Cauchy-Schwarz inequality
o+ 7O =l + 72+ 2 9 2l + 7 = 27l =l — 7"

Since s > 0, it follows that

1 1
1 1
/ 7sd7—§/ ——=dr.
o |+ 7 o Jlel =]
If || <1, then

[ o - lol' ™"+ (1 o))
7sd7:/ 7d7+/ o dr< (| T (1)) %) <20
o Ty T T

If || > 1, then since 0 < s < 1, we have

1
1 . .
/ ———dr = C(—(p| — 1)1 +g|' "),
o |l =]

which is clearly bounded when 1 < |p| < 2, and also when |¢| > 2 by the mean
value theorem. O

We supply the details of the artificial viscosity argument used for proving Theo-
rem 4.1.

Proof of Theorem 4.1. First, we mollify ¢ and G with respect to time by setting
qn:pn*Q7 Gn:pn*Ga
where {p,,(t)} is a sequence of standard mollifiers. Observe that we have

¢" € C([0,T]; H**Y), G™ e C([0,T); HO).
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Moreover, {g"} is uniformly bounded in L'([0,T]; H?*') and {G™} is uniformly
bounded in L!([0,7]; H°). Now, let us consider the following artificial viscosity
regularization of (4.1):

n__ 1 n : 2 (07) = G™.
{ate LA™ + div Fyn (67) = G A

0"(0,2) = Oy ().
For 0 <t < T, define

t t
F(G") ::/ e%A(t_s)G”(s) ds, F»(0";q") ::/ ew (=9 iy Fn (0™) ds.
0 0

‘We have
|FL(G™) ()|l < TNG™ s e

To estimate || F5(0™;¢"™)| m-, we consider the two cases o € [1,2) and o € [2, 5+1]
separately.

Case: o € [1,2). Using Plancherel’s theorem and applying Lemma 2.2, we have
1F2(0"5 q™) ()| -
t
< [ (1= Ay eEs ey )ot a8
0

I = A)7 /2R A AP2p(A) (0 4" 946" 12 ) ds

[N

t—s)
<C{T+n87%5 } (1A% 2p(0)0F 4" L 1= 960" |15 2

t n% 3
</ c{1+(} (1A%~ 2p(A) 0 4000”22 + 107 " 00" 5 ) s
0

TN A P Y P
g, 2=0
gc{T+n5T 2 }IIq"IIL;OHB||9"||L%°H“~

Case: o € [2,8+ 1]. We proceed just like above and apply Lemma 2.2 to obtain
720" ¢") () 17+

o+1 t 1
<Cn =+

o+1

0o (t—s)

o+l _3-o _
<on T (Aﬂ Pp(NOF G e 0667 i
T T

(187 2p(A)OF 4" 000" | o+ |10F 4" 000" o ) dis

1
IO 4N s eps llaﬂ"llmw)
o+l 3—0 , . n
<Cn T 7 |lg"|Lge e 107 | 3o -
Similarly, we have
1F2(07;4") (1)l 22 < CT g™ | e pas 10" | e e -

Using Picard’s theorem [25], there exists a unique solution 6™ to (A.1) such that
0" € Ly, H? for some time T > 0. Owing to the uniform estimate in (4.14), we
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can conclude that
T =T, forall n.
Let us denote by

G () = 0™ (1) — /0 G (s)ds.

Then, by (4.14), ||6"|| e o is bounded uniformly in n. Using similar methods as
above, it is easy to see that |0;0"|| rz.g-m 18 bounded uniformly in n, for some
sufficiently large m > 0. By an application of the Aubin-Lions lemma [7], there
exists § € L°([0,T]; H?) such that for any given ¢ € C2°([0,T] x R?), there exists
a subsequence of {#"}, denoted by {#"*} satisfying

g 2§ in L]0, T); HY),
W™ — f in C([0,T); H°™°),

for any e > 0. It is then straightforward to show that (t) = 0(t) + fg G(s)ds is a
weak solution of (4.1). This completes the proof. O
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