UNIQUENESS OF ASYMPTOTICALLY CONICAL
TANGENT FLOWS

OTIS CHODOSH and FELIX SCHULZE

Abstract

Singularities of the mean curvature flow of an embedded surface in R are expected
to be modeled on self-shrinkers that are compact, cylindrical, or asymptotically con-
ical. In order to understand the flow before and after the singular time, it is crucial to
know the uniqueness of tangent flows at the singularity.

In all dimensions, assuming that the singularity is of multiplicity 1, uniqueness in
the compact case has been established by the second-named author, and in the cylin-
drical case by Colding and Minicozzi. We show here the uniqueness of multiplicity-1
asymptotically conical tangent flows for mean curvature flow of hypersurfaces.

In particular, this implies that when a mean curvature flow has a multiplicity-
1 conical singularity model, the evolving surface at the singular time has an (iso-
lated) regular conical singularity at the singular point. This should lead to a complete
understanding of how to “flow through” such a singularity.
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1. Introduction

1.1. Uniqueness of tangent flows

By work of Huisken [29], White [49], and Ilmanen [30], singularities of mean curva-
ture flow can be modeled by self-similar shrinking solutions to the flow. For flows of
embedded surfaces in R3, Ilmanen [30] proves that self-shrinkers arising as tangent
flows at the first singular time are smooth and embedded (possibly with higher mul-
tiplicity). Wang [47] has proved that such shrinkers, if noncompact, have ends that
are asymptotic to a cylinder or smooth cone (cf. Definition A.4; see also [45]). More-
over, Kapouleas, Kleene, and Mgller [33] and Nguyen [39]-[41] have constructed
embedded, smooth self-shrinkers in R3 with (smoothly) conical ends.

An important question is to determine whether or not these tangent flows are
unique. The second-named author [42] has proved in that this holds (in all dimen-
sions and codimension) when there is a compact multiplicity-1 (smooth) tangent flow.
Colding and Minicozzi [19] (cf. [16]) have proved that uniqueness holds (for hyper-
surfaces, in all dimensions) for multiplicity-1 cylindrical tangent flows (see also [4]).

In this work, we show that uniqueness also holds in the case of multiplicity-1
tangent flows whose self-shrinker is smoothly conical.

THEOREM 1.1 (Uniqueness of conical tangent flows)

Fix an asymptotically conical self-shrinker " C R"*1. Let M = ()se(—1,,0) be an
integral n-Brakke flow so that the self-similar shrinking multiplicity-1 Brakke flow
associated to X, My, arises as a tangent flow to M at (0,0). Then My is the unique
tangent flow to M at (0,0).

See Section 9.1 for estimates concerning the rate of convergence. We expect that
the argument will extend to higher codimension with little change.

An interesting feature of our proof of Theorem 1.1 is that it shows that the
Lojasiewicz—Simon approach to uniqueness of blowups can be applied in the case
of a noncompact singularity model. Colding and Minicozzi’s work in [19] on the
uniqueness of cylindrical tangent flows does not proceed via a reduction to the finite-
dimensional Lojasiewicz inequality a la Simon, but rather proves a Lojasiewicz-type
inequality by hand, using the explicit structure of the cylinder in a fundamental
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way. Here the situation is different: we do not use any explicit structure of the con-
ical shrinkers, so instead must rely on a Lojasiewicz—Simon inequality proved by
“abstract” methods, after introducing relevant weighted function spaces.

This approach has the drawback that it requires much stronger “closeness” of the
flow relative to the shrinker. Thus, we must develop a new “extension of closeness”
mechanism that is not present in the cylindrical case (cf. Lemma 1.3, Proposition 7.2).
We then must combine this mechanism with several crucial ideas of Colding and
Minicozzi concerning improvement and extension of curvature estimates to overcome
the noncompactness of the problem.

Our approach seems to be quite general and flexible; we expect that it will apply
to the uniqueness of noncompact singularities in other geometric problems, when the
singularity is “well behaved” at infinity.

1.2. The structure of the singular set around an asymptotically conical shrinker

We note that conjecturally (cf. [lmanen’s no cylinder conjecture [31, #12]), the cylin-
der is the only shrinker in R3 with a cylindrical end. Combing Theorem 1.1 with
[19], [42], and [47], it would follow that for the mean curvature flow of a smooth
embedded surface in R3, all multiplicity-1 tangent flows at the first singular time are
unique.

Uniqueness of tangent flows gives important information about the singular
behavior of the flow. Using their result on the uniqueness of cylindrical tangent flows,
Colding and Minicozzi [20] have proved (among other things) that a mean curvature
flow of hypersurfaces in R”*! with only multiplicity-1 cylindrical tangent flows has
a space-time singular set contained in finitely many compact embedded (n — 1)-
dimensional Lipschitz submanifolds and an (n —2)-dimensional set. Moreover, in R3
they have shown that such flows are smooth for almost all times, and any connected
component of the singular set is completely contained in a time-slice (see also [21]).

Similarly, Theorem 1.1 (and the pseudolocality arguments used in Lemma 9.1
below) implies the following.

COROLLARY 1.2

For M and ¥ as in Theorem 1.1, there is & > 0 so that for all t € (—&?,0), we have
e | Be(0) = H™ | M, for a smooth family M; of embedded surfaces flowing by mean
curvature in B¢(0). The surfaces M; are diffeomorphic to X. Moreover, ast /' 0, the
flow M; N (B:(0)\ {0}) converges in CZ2 to a smooth surface My C B:(0) \ {0} with
a conical singularity at 0 smoothly modeled on the asymptotic cone of Z.!

'In other words, rescaling M around 0 converges in C,2° (R 1\ {0}) to the asymptotic cone of X.

loc
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We note that Colding and Minicozzi [18] have proved that the plane, sphere, and
cylinders are the unique entropy stable shrinkers. They have proposed this as a mech-
anism for a possible way to construct a generic mean curvature flow. Corollary 1.2
suggests that one can flow through points with conical tangent flows, instead of try-
ing to perturb them away. Understanding the flow through these ‘“nongeneric” situa-
tions will be particularly important towards understanding families of mean curvature
flows. We will investigate this elsewhere.

1.3. Some recent results in singularity analysis of mean curvature flow

We remark that Brendle [11] has recently proved that the only smooth properly
embedded self-shrinkers in R3 with genus zero are the plane, sphere, and cylinder;
hence, a conical shrinker must have nonzero genus. Moreover Bernstein and Wang [5]
have shown that the round sphere has the least entropy among any closed hypersur-
face (up to the singular dimension; cf. [51] and see also [17], [35]); the same authors
have extended this in [6] to noncompact surfaces in R3 (see also [7]). Wang [46]
has proved that two shrinkers asymptotic to the same smooth cone must be identical.
Ketover [34] has recently constructed self-shrinking Platonic solids.

Brendle and Choi [12] have classified the bowl soliton as the unique strictly
convex ancient solution in R3 (cf. [13], [25], [26], [48]). Moreover, Angenent,
Daskalopoulos, and Sesum [1] have classified closed noncollapsed ancient solutions
that are uniformly two-convex. Finally, Choi, Haslhofer, and Hershkovits [15] have
proved the mean convex neighborhood conjecture in R3, by classifying low entropy
ancient solutions (see also [27]).

1.4. Idea of the proof of Theorem 1.1

The basic idea to prove Theorem 1.1 is to rely on a Lojasiewicz-type inequality
(see [38], [43], [44]) to show uniqueness of the tangent flow. Indeed, this strategy
was already successful in the compact (see [42]) and cylindrical (see [19]) cases. In
the cylindrical and conical cases, the noncompactness of the shrinker causes serious
issues (beyond simply those of a technical nature), due to the fact that one cannot
write the entire flow as a graph over the shrinker.

Unlike the cylindrical case in [19], we do not exploit any specific structure of
the shrinker (beyond the fact that it has conical ends). Conical ends seem to be
less degenerate with regard to the uniqueness problem, allowing us to obtain very
strong estimates in annular regions around the point where the singularity is forming.
Because we do not assume any specific structure of the shrinker, we must prove the
Lojasiewicz—Simon inequality by “abstract” methods (i.e., by a finite-dimensional
reduction to Lojasiewicz’s original inequality in [38]). In Section 3, we construct
weighted Holder and Sobolev spaces in which Simon’s argument in [43] can be used
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to prove a Lojasiewicz—Simon inequality for entire graphs over the shrinker (see The-
orem 4.3). Roughly speaking, we consider Holder spaces (inspired by [33]) €8 E’f‘ (%)
of functions u : ¥ — R so that in coordinates (r,w) € (1,00) x I" on the end of £
(where T is the link of the asymptotic cone of ¥), we have

f(r,w)=c(w)r + O(r_l),

where the error term is taken in C2“ on balls of unit size. We also require the
improved radial derivative estimate

3, f(r,w) =c(w) + 0(r™2?)

in C%%, Geometrically, we can think of ‘6’83’1“ (X) as functions whose graphs are
asymptotically conical (for a different cone) and decay to their asymptotic cone at a
rate O(r~ 1) in C%,

The linearized shrinker operator maps the space €81 (X) to €8%*(2); that
is, Lu = O(r~') in C%* (this is where the improved radial derivative estimate is
needed). We can prove Schauder estimates for the L-operator between these spaces
(see Proposition 3.5). Moreover (based on ideas communicated to us by Bernstein
[3]), one can also establish (see Section 3.4) regularity and existence for the L-
operator (the linearized shrinker operator) between L2-based Sobolev spaces L%V(E)
and HI?V(E), when weighted by the Gaussian density p = (471)_% e~xI?/4 Combin-
ing these facts, we find that the L-operator behaves between these spaces in essen-
tially the same way as in the compact cases considered by Simon [43]. This yields a
Lojasiewicz—Simon inequality for entire graphs over X (see Theorem 4.3); that is, if
lulle $20() is sufficiently small, then for M = graphu,

!F(M)—F(E)!“9§C([M |¢|2de€”)%. (1.

Here F(M) is the Gaussian area (see Definition A.1) and ¢ is the deviation from M
being a shrinker (see Definition A.3).

To apply (1.1) to prove uniqueness of conical tangent flows, the basic strategy is
to show that if a Brakke flow M has a multiplicity-1 conical tangent flow (modeled
by X) at (0, 0), then it is possible to write part of M as a graph over part of X, and that
this graphical function extends to a function that is small in ‘683’1‘1 (X). At this point
(1.1) can be applied to this extended function. Applying the resulting inequality to M
introduces errors based on the fact that M is not an entire graph over X. Controlling
the size of these errors relative to the terms in (1.1) is a serious issue, which we now
describe in some detail.

We consider the rescaled mean curvature flow around (0,0); assume that the
rescaled flow consists of surfaces M, for t € [-1,00) and M;, — X in C? along
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some sequence 7; — 00. We seek to prove by a continuity argument that for r fixed
and t sufficiently large, M, N B, is a C**! graph of a function with C**!'-norm
bounded by b. This is (roughly) the core graphical hypothesis (*p ,) (see Defini-
tion 5.7). Notice that the core graphical hypothesis will not suffice to control the
errors when applying the Lojasiewicz inequality. The reason for this is that we must
not destroy the term

_RWM)?
4

/ $P2pd Je" = e
M-

on the right-hand side of (1.1). We call R(M_) the shrinker scale (see Definition 5.4).”
On the other hand, cutting off the Lojasiewicz—Simon inequality outside of a ball of

radius R will introduce terms on the order of o(l)e_RT2 (see Theorem 6.1). Thus,
we must show that M, is graphical over ¥ N Bg for R ~ R(M;). More precisely,
we must show that there is u : ¥ — R with |lull, $2e(x) sufficiently small so that
M N Bp is contained in the graph of . We call the largest R satisfying this property
the conical scale (see Definition 5.6), denoted by r¢(M:). We would thus like to show
that the conical scale ry(M;) is comparable to the shrinker scale R(M-).

Observe that this is far from clear: we must show that M, decays like O(r~')
towards a cone (which is close to the asymptotic cone of ¥) nearly all the way to
R(M-). However, if R(M;) is very large, then we have to transmit the graphical
information contained in the core graphical hypothesis (only on a fixed compact set)
essentially all the way to R(M<), while even obtaining decay!

The way we do this has some features in common with the methods used in [19],
but the argument on the whole is rather different. To obtain control on the conical
scale ry(M;) we first introduce a weaker notion, the rough conical scale ¥;(M) (see
Definition 5.5), which is the largest radius where the curvature of M; behaves like the
curvature along a cone. As a preliminary step, we prove that the rough conical scale
improves very rapidly, as long as the core graphical hypothesis (p,,) is satisfied.

Indeed, to control the rough conical scale ¥y (M) we first observe that pseudolo-
cality applied to the unrescaled flow gives curvature estimates on an annular region
that persist all the way up to the singular time (using the fact that the flow is close on
a large compact set to the conical shrinker). This is depicted in Figure 1 (the region
where we obtain curvature estimates is shaded). When translated to the rescaled flow,
this annular region will grow exponentially. This initially seems like a problem, since
the inner boundary is also moving away exponentially. However, as long as the core
graphical hypothesis is satisfied, we can use the pseudolocality estimates at a later
time to get curvature estimates further inside. This is shown in Figure 2. The argu-

Note that our shrinker scale differs from the definition used in [19] slightly, due to the nature of our Lojasiewicz—
Simon inequality.
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~

0,0)
t=20
t=-1
conical part of M _,
Figure 1. The conical nature of the shrinker ¥ (and thus the unrescaled flow at time r = —1)

yields—via pseudolocality—curvature estimates in the region that is shaded. Note that we can
only expect (1.1) to give useful bounds below the parabola, since this is the set where the back-
wards heat kernel p is uniformly bounded away from zero.

ment we have just described shows that as long as the core graphical hypothesis (3 ;)
applies, we have that ¥y (M) > Ce3 (see Lemma 9.1).

Finally, we must show that the core graphical hypothesis (*p ,) together with
the estimate we have just obtained on the rough conical scale ¥;(M;) imply that the
conical scale (i.e., the scale at which we can cut off (1.1)) is comparable to the shrinker
scale R(M-). Since the rough conical scale is improving exponentially, it basically
suffices to show that the conical and shrinker scales are comparable, when the shrinker
scale is much smaller than the rough conical scale, that is, R(M;) < r¢(M;) (see
(9.1) for the case where this does not hold).

At this point, we can use the argument of Colding and Minicozzi from [19, Corol-
lary 1.28] to argue that because R(M;) <« ¥¢(M;), the function ¢ps, = %(x, VM, ) —
Hypy, (which measures how close M is to a shrinker) must be very small (see the
proof of Theorem 8.1).

Finally, we show that this (along with the rough conical scale ¥¢(M;) estimates)
suffices to extend the graphicality (and decay estimates) from the core B, nearly all
the way out to the shrinker scale R(M;) (see Proposition 7.2). Because this step is
delicate and forms a key part of the argument, we explain this argument in a model
situation below.

LEMMA 1.3 (Model problem for the extension of the conical scale)
Fix Bo > 0, and suppose that u : R?> — R satisfies

1
éﬁ%u:: Au—i(rﬁru—u)zo
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0,0

conical part of M _ 1

Figure 2. Assuming that we have control over M; via (1.1) inside of the wide parabola (for
tel-1,— %)), we can then use pseudolocality out of the conical region in M_ 1 to gain curvature

estimates on a larger region (still shaded). This is our first improvement/iteration mechanism.

on R? and |V*u| = O(r'=%) for all k € N. Finally, assume that lullc3(s, .,y <bfor
r sufficiently large and b sufficiently small depending® on Bo. Then, there is ¢ : S' —
R and f :R? — R so that outside of By,

u(r.0) =c(@r+ f(r.6)
and ||cllcosty + [I7f llcow2) = Po

Before proving this lemma, we explain the relationship with the full improve-
ment/extension result (Proposition 7.2). Firstly, we have considered the simplest pos-
sible conical shrinker R? C R? instead of a general asymptotically conical shrinker
" C R*1. In the full problem, we have that ¢, is very small, so the part of M, that
is graphical over X roughly solves the graphical shrinker equation. The &£ ; -operator
is the linearization (at the flat plane) of the shrinker equation, so to simplify this sit-
uation we have simply assumed that £ ju= 0. The higher derivative estimates on u
are the analogue here of the rough conical scale estimates. Finally, the C 3-smallness
of u in By, is analogous to the core graphical hypothesis. We have simplified the
conclusion above—in Proposition 7.2 we prove full ‘683’1“(2) estimates for u (but
the result described here contains the essential ideas).

We note that a key technical difficulty present in Proposition 7.2 that does not
occur in this model problem is the fact that M; is not an entire graph over X (and a
priori is only graphical up to B;). Thus, the argument below must be coupled with a
continuity argument outwards; this necessarily complicates the argument.

3We will think of the | VX u| estimates as being given a priori, so everything here is allowed to depend on the
implied constants.
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Proof

The beginning of the proof is very similar to the proof of [33, Theorem 8.9]. As an
initial step, we treat the Laplacian in &£ 1 as an error term, since Au = O(r~!) from
the Hessian estimates on . Thus, we find that

29 (U\ _ L -1
r8r(7)—r8ru u=0F""). (1.2)

Integrating this to infinity, we find that

c(9) := lim u(r.6)
r—>oco r
is well defined (and continuous). Thus, we have obtained the asserted decomposition.
It remains to prove the asserted estimates for ¢ and f.
We begin by proving that % is small (we have already proved that it is bounded).
Integrating (1.2) from r to r, we find that

u(r,0) B u(r,0)

r

=0 2—-r7?). (1.3)

In particular,

u(r.6)

r

c(9) = +0@™2).

We can arrange that the right-hand side is less than 570 by choosing r large (to con-
trol the second term) and b small (to control the first term). This proves the desired
estimate for ¢ (6).

We now turn to the estimate for f. The key idea is to interpolate smallness in
the C%-norm of u (that we have just obtained) with scale-invariant boundedness of
higher derivatives: this implies that the Laplacian term in £ ! is controlled with a
small constant. Then, integrating the resulting ODE estimate to infinity, we obtain
decay (and, more importantly,* smallness) estimates for 1.

First of all, we note that by (1.3), we have

|u(r, 9)| <82,

for r > r, where we can take § small below (at the cost of taking r larger and b
smaller). Interpolating this (on balls of unit size) with | D¥u| = O(r'=*), for k large,
we find that

|Au| < 0@)r™,

“4Note that the initial step in the proof can be used to prove decay for £, but not smallness.
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for r > r. Now, returning to &£ ! u = 0, we have gained smallness in the constant on
the right-hand side of (1.2); that is,

ar(f) — 0@)r 3.
r
Now, integrating this on [r, c0), we find that

u(r,0)

r

c(9) = + 0(8r72).

Because u(r,0) = c(0)r + f(r,0), this gives
f(r.0)=0(@r™1).

Choosing § sufficiently small (in terms of Bo), we find that |[7.f [|cow2\ B, (0)) = %0.
This completes the proof (since we already control u, and thus f inside of
B, (0)). U

At this point, we have proved that the conical scale ry(M-) is sufficiently large,
so that when cutting off the Lojaisewicz—Simon inequality (1.1) at this scale, the error
terms do not affect the right-hand side of the equation. At this point, we can use the
now-standard uniqueness argument based on the Lojasiewicz inequality for parabolic
equations (cf. [42], [43]). This completes the sketch of the proof of Theorem 1.1.

1.5. Organization of the paper

In Section 2, we prove several estimates on the geometry of asymptotically conical
self-shrinkers. In Section 3, we establish the relevant linear PDE theory in weighted
Holder and Sobolev spaces. In Section 4, we apply these estimates to establish the
Lojasiewicz—Simon inequality for entire graphs over a conical shrinker. So as to
localize this inequality, in Section 5 we define the various scales used later. This
then allows us to localize the inequality in Section 6. In Section 7, we carry out the
central improvement/extension argument (cf. the model problem Lemma 1.3 above).
In Section 8, we establish our final Lojasiewicz—Simon inequality. Putting this all
together, we prove the uniqueness of conical tangent flows (Theorem 1.1) in Sec-
tion 9. In Appendix A, we recall several standard definitions and conventions, while
in Appendix B we recall some useful interpolation inequalities. Appendix C contains
an analysis of normal graphs and Appendix D recalls the first and second variations
of Gaussian area. Appendix E recalls an entropy-area bound estimate. Finally, we
include a list of notation.

2. Geometric preliminaries
Throughout this section we fix " C R”*! a smooth, smoothly asymptotically coni-
cal self-shrinker. We denote by
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€=Ilimv—tX

t,/0

the asymptotic cone of ¥ and assume that €” is the cone over I'"~! C S”. Note that
the induced metric on € satisfies

ge=dr ® dr +r’gr

for r = |x| the radial variable.
The following estimate is a straightforward consequence of the smooth conver-
gence of 4/—t X to € combined with scaling considerations.

LEMMA 2.1
For R > 0 sufficiently large, the induced metric, gs, on X\ Bg(0) satisfies

gz =ge+h

for h a symmetric (0,2)-tensor on £\ Bg(0) satisfying |V h| =o(r~7) as r — oo,
forall j > 0. The second fundamental form of X satisfies

|V(-j)AE| — O(r_-i_l)

asr — oo for j > 0.

In the sequel, we will improve these estimates based on the fact that ¥ is a self-
shrinker. Indeed, the shrinker equation (A.1) and second fundamental form decay in
the previous lemma combine to yield decay for (x, vy) that is faster than scaling.

COROLLARY 2.2
For R > 0 sufficiently large, we have

VO {x.vs)| = 06777
asr — oo for j > 0.

2.1. Improved conical estimates for shrinkers

LEMMA 2.3
For R > 0 sufficiently large, there is w € C*°(€ \ Bgr(0)) so that

graphw := {p +w(p)ve(p): pe €\ BR(O)} cx
parameterizes X outside of a compact set. The function w satisfies

w=0r""
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and
vy = O(r—l—j-i-n)

as r — oo for any 1> 0 and j = 1. Moreover, the radial derivatives satisfy the
sharper relation 851)w =0~ 17/).

Proof
For p € T, consider the plane 7, € with normal vector ve(p). After a rotation, we
can assume that 7,€ = {x"*! = 0} and ve(p) = Le"*!. Define

[eri= {x eT,¢: |(x,p)| > (1 —¢)|x|,|x| > R}.

For ¢ > 0 sufficiently small and R sufficiently large, there are u,u : I'e, g = R so
that

graphu = {(y.u(y)) : y € Te g} C %,
graphttes = {(.Uoo(y)) 1 y € Te g} C €.
We have that
VOu(y) = Vuse(y) + o(1y1')

as y — oo.
We recall that

(_Vu71)
vy =t —-——
V1+|Vul?

Thus, by Corollary 2.2, we find that

(v, Vu)—u) = o(yI™). 2.1)
Thus, the function v(s) = @ satisfies limg_, o0 v(s) = 0 (because U (sp) = 0) and

v'(s) = O(s™3) by (2.1). Integrating this, we find that
u(sp) = 0(s™h). (2.2)
Thus (taking R larger if necessary), we may find w € C*°(X \ Bg(0)) so that
graphw := {g + w(q)ve(q) :q¢ €€\ Br(0)} C =
parameterizes X outside of a compact set. From (2.2) we find that

jw| = 0.
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This yields the first asserted decay estimate. Furthermore, scaling considerations
yield

IVDw| = o(r' ™),

as r — oo for j > 1. Hence, the second assertion follows by interpolating these two
estimates (cf. Lemma B.1). Finally, by differentiating (2.1) in the radial direction, the
improved radial derivative estimate follows. O

COROLLARY 2.4
For R > O sufficiently large, we have the following improved estimates on the induced
metric:

gs=dr®dr +r’gr +h

for h a symmetric (0,2)-tensor on ¥ \ Bg(0) satisfying |h| = O(r~2) and |V Y h| =
O(r=2 /"y asr — oo, forall j > 1 and n > 0.

Proof
Write F : €\ Br(0) = X, F(p) = p + w(p)ve(p). We compute (using the fact that
A‘C(arv ') = 0)
0 F =0, + (arw(p))v‘(f(p),
r_laa,l. F = r_lawi +rt (3w,- W(p))l)‘(f (p)— w(p)Af|p(r_18wi ..

That || = O(r~2) follows from these expressions and Lemma 2.3. The higher deriva-
tive estimates follow from interpolation, as in Lemma 2.3. O

LEMMA 2.5

The unit normal to X satisfies

n—1

ve(F(p)) = 02, + Y OG>+ 9y, + (1— 0~ ")ve(p)

j=1

forn>0asr — oo.

Proof
Write

n—1
vs(F(p)) = Adr + Y _ Bjr "0y, + Cve(p). (2.3)
j=1
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where
n—1
2 2 2 _
A2+ BI+C* =1
j=1

Because (vy, 9, F) = (vg,r ™19y, F) =0, we find that
0=A4+ C(3,w(p)).

n—1
0= Bj(sij+0(r_2))+C(r_18wiw(p)).
j=1

This implies the claim. O

LEMMA 2.6
We have |V (rd, w(p) —w(p))| = O(r~'77) for any j > 0.

Proof

Revisiting the proof of Lemma 2.5, we find that the components of vy in (2.3) satisfy

A=-C (arw(p))»
n—1

0= _"Bj(ij +bj)+C(r " 0u,w(p)).

j=1

where |b;| = O(r~2) and [VWb;| = O(r~2~/+"). Thus, we find that the expres-
sions from the proof of Lemma 2.5 can be differentiated in the sense that

A=—-0,w(p) +a,
Bi:—rflaa,iw(p)—l—bi, C=1+c,
where [V a| = 0(r=>7711), [VWDp;| = |V | = O(r—*7M)). This implies that
(F(p).v=(F(p))=rA+w(p)C =w(p) —rd-w(p) + (ar —cw).
Using Corollary 2.2 and the above estimates for a, ¢, we conclude the proof. O

LEMMA 2.7
The second fundamental form of ¥ satisfies

As(0,F.9,F) = O(r™?),
Ax(@,F,r 19, F) = 0(r™3),
As(r™ 00, F.r 00, F) = Ae(r 05,11 00,) + O(r37)
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as r — 0o. Moreover, |Vék)(Az o F — Ae)| = O(r~37%kt") for any n > 0 and
k>1.

Proof
We compute

307, F = (237 ,w(p))ve(p),
r107 , F =100, + r71 (07, w)ve(p) — (3rw(p)) Ae| p(r ™ 0. ),
r00, 0, F = Aelp(r 00,77 80, )ve(p) + 17295, 0, w(p))ve (p)
— 7 (3, w(p)) Ae| p(r 0o, )
— 7 (30, w(p)) Ae|p(r " du; ")
—w(p)(V,-1g,,, A€)p(r " Bu;.).

Using Lemma 2.5, the first and third equations follow immediately. For the second,
we use the expression for r~19,,, F (which is orthogonal to vz (F(p)) to write

r 02 F =120, F +172(rd} ,, w — 8, w(p))ve(p)
+ r! (w(p) - rarw(p))A‘€|p(r_lawi ,0).
Using Lemmas 2.5 and 2.6, the first estimates follow. The higher derivatives follow

by differentiating these expressions. U

LEMMA 2.8
The vector field V := projps, F(p) — rd, F is tangent to ¥ and satisfies |V| =
o), VOV = 0@¢~17*+) for n > 0.

Proof
Because (F(p),vs(F(p))) = O(r~'), we compute

projrs, F(p) = F(p) = (F(p),v=(F(p)))v=(F(p))
= p+w(pve(p) + 0™
=rd, + w(p)ve(p) + O™
=rd,F +0(™).
The higher derivatives follow similarly. O

The function w from Lemma 2.3 gives a diffeomorphism from € \ Bg(0) ~
I' X [R, 00) to the noncompact part of ¥, where we recall that T" is the link of the
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asymptotic cone €. We will thus parameterize points of X by (r,w) € T’ x [R, 00)
below. We will write ge for the metric on the end of £ given by

ge =dr ®dr +r’gr

in this parameterization. We emphasize that the coordinate r along ¥ is not exactly
equal to dps (-, 0) (like it is along the cone). It is useful to extend r to 7 defined on all
of X sothat 7 > 1 on X and 7 = r outside of Bg for R as above.

LEMMA 2.9
The radial derivative satisfies

2-ng=r8,f+oz3-vg€f,

where |az| = O~ and |V P asz| = O~/ forn>0and j > 1, as r — oc.

Proof
This follows from Lemma 2.8. O

3. Linear estimates in weighted spaces

In this section, we consider the relevant weighted function spaces which will play
a role in our proof of the Lojasiewicz—Simon inequality for the conical shrinker
" C R*™1. Our choice of Holder spaces will be heavily influenced by the work
of Kapouleas, Kleene, and Mgller [33] except for the complication that in [33], it
was only necessary to define the spaces on a flat R? (which is, of course, a coni-
cal shrinker), whereas here we must consider general conical shrinkers. Additionally,
in various points of [33], the discrete symmetry of the problem was used in certain
places, which will not be available to us here.

3.1. Weighted Holder spaces
We now define the relevant weighted Holder spaces. We begin with the most basic
weighted space.

Definition 3.1 (Homogeneously weighted Holder spaces)
We define a norm, for y € R,

I1f 16, = su1;7(>€)”|f(x)|

and a seminorm

ST s 1 |/ (x) = fOD)I
Y ey F(X) YT+ F(y) e [x—yle
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We thus define C&g,_y(E) to be the set of functions f : ¥ — R so that

h . h h
1A 10—y = I o2y + a2y —a

is finite. Similarly, we define Chzo’g’_y(E) to be the set of functions f : ¥ — oo so
that the norm

2
1A, = D) f o,
j=0
is finite.

Loosely speaking, C}iﬁ,_y () is the space of C2**-functions whose C2**-norm
falls off like r 7 at infinity. We now define a space which will require stronger weights

in the radial direction.

Definition 3.2 (Anisotropically weighted Holder spaces)
We define C2* | () to be the space of f € C2% _ (Z) so that

n,—1 hom,
2 . h 2 h
11— = 1 12— + 1% - Ve f g -1

is finite.

Now, we fix a cutoff function y : [0, 00) — [0, 1] so that supp y C [R,0), y =1
in [2R,00), and |V’ y| < CR™/ for j > 1 and C independent of R sufficiently large.
This now allows us to define our primary Holder space.

Definition 3.3 (Cone Holder spaces)
We define €8°{ (%) := Cpr _, (%) and
€82(D) := C2*(I) x C2% ().
An element (c, f) € ‘683’1“(2) will be considered as a function on X given by
u=1ue, r(r,o)=xr)c@r+ f(ro)

for r > R, and u = f otherwise. We will frequently conflate u with (c, f). We take
the norm

”“”883,101(2) = ||C||C2,oz(1'*) + ”f gn,a;—l'

Observe that an element of ‘6’83’1“(2) is allowed to grow linearly at infinity, but
only in a particularly prescribed manner. The remaining terms then must decay like
r~1.Itis a standard exercise to observe that all of the above spaces are indeed Banach
spaces.
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3.2. Mapping properties
We observe that the cone spaces are well suited to the analysis of the &£ ! -operator

1. 1
éﬁ%u:zAgu—Ex-Vgu—i-Eu

(see also Definition A.5) in the following sense.

LEMMA 3.4
For a: X — R with ||allco.a, )y = O(x|7?) for x € T with |x| — oo, that is,
ac Ck?o’gl;_z(E), we have that the operator

Ly +a: €87 (2) > €8%4(3)

is bounded.

Proof

This follows directly from the definition of the cone spaces (after observing that the
linear term rc(w) exhibits a cancellation in the term %(u — X - VZu); note that this
fact does not hold for general £, when y # %). ([

3.3. Schauder estimates

In this section, we prove Schauder estimates for the £-operator in the cone Holder
spaces. These estimates are essentially the generalization of [33, Proposition 8.8] to
our setting, and we will closely follow their arguments, with some necessary mod-
ifications as discussed above. We note that Schauder estimates for the linearization
of the expander equation on asymptotically conical self-expanders were proved by a
related method in [8, Proposition 5.3].

PROPOSITION 3.5
Consider a : £ — R with ||a||co.ap, iy = O(|x|7?) for x € T with |x| — oo, that
is, a € Cprev._>(X). Then there is C = C(X,a) so that if u € CLX(2) N C .1 (D)

has £ yu + au € €8%%(D), then u € €8> (L) and we have the estimate
”u”t’giala(g) = C(”u”C}%m,H(E) + ||§C%u + au”*@gﬂ-]"‘(g))'

Because the £-operator is related to the linearization of the shrinker equation,
which is in turn a special case of the mean curvature flow (whose linearization is
related to the heat equation), we might expect that such an estimate can be proved
from standard parabolic Schauder estimates. This is nearly the case, except it turns
out that the appropriate time parameterization of the equations will produce functions
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which are not Holder continuous (at t = 0) in the time variables. As such, we will
require the following nonstandard parabolic Schauder estimates due to Brandt [10].
We note that these estimates were strengthened in [36] (see also [37]) but we will not
make use of these stronger estimates here.

THEOREM 3.6 (Nonstandard interior Schauder estimates; see [10])
Suppose that B, C R" and we are given coefficients a;j(x,t),b;(x,t),c : By X
[-2,0] — R and functions f,u : B, x [-2,0] — R so that u is a classical solution of

ou 5
o i Dju—b;iDiju—cu = f.

Assume that the coefficients a;j, b;, ¢ have spatial Holder norms bounded uniformly

in time, that is,

Sup (”aii("t)”co,a(zzl) + ”bi("t)”cosa(gl) + ”C("I)HCO»O‘(B])) <A,

te[—2,0]

and that the equation is uniformly parabolic in the sense that

aij(x.0)EE; > MEP?

fJor A > 0. Then, for T € (—1,0],

tE[S}ET] ||”(‘ft)||02~a(31) =C ZE[SBZFZT](””('J)||C0(32) + | f("t)“CO’a(Bﬂ)

for some C = C(n, A, A).

We now explain how to relate the &£ ! -operator considered in Proposition 3.5 to
a parabolic equation where we can apply Theorem 3.6.

Definition 3.7 (Intrinsic shrinker quantities)

It is useful to consider the intrinsic behavior of the shrinker ¥ under the mean cur-
vature flow. To this end, for ¢ € [—1,0), we define the (time-dependent) vector field
X = %_t)xT. Here x7 is the tangential component of the position vector along
3. For t € [—-1,0), define ®; : ¥ — X to be the family of diffeomorphisms gener-
ated by X; (i.e., %(D, = X; o ®;) with ®_; = Id. Finally, define the metric &, :=
(—1)®}gs.

Observe that if F : ¥ — R"*1 is the embedding of ¥ in R"*!, then

Fy:=V=1{(Fo®,): T —R""!
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is a mean curvature flow of hypersurfaces parameterized by normal speed. Moreover,

A

we have that §; = F," grn+1. Thus, because the (extrinsic) blowdown of ¥ is €,
we see that (X, g7, p) converges in the pointed C°°-Cheeger—Gromov sense to (the
incomplete metric) (€, ge, p) for any point p sufficiently far out in the conical part
of 3. This will be useful in the sequel.

As in the proof of Corollary 2.4, we write the end of ¥ via the map F : € \
B, (0) > X, p—~ F(p) + w(p)ve(p) as a normal graph over the cone € with coor-
dinates (r,w) € I' x [R, 00) for R sufficiently large. We consider the induced flow of
@, in these coordinates, that is,

ét :=F_10®tOF,
For t € [-1,0), we consider the map
¢r:(R,00) xI' > (R,00) x T, (Vﬂa))l—>((—t)_l/2r,a))_

Then we have the following estimates.

LEMMA 3.8
Fort € [—1,0), for r sufficiently large, we have

= 1
o (B1(r.0).6:.0) S ——.

Moreover, in the coordinates (r,w) we have the (nonsharp) estimate’

o 1
’D(J)(q)t —¢)|(r.0) < —triti-n

for j > 1andn>0.

Proof
We denote the ambient radius by r(x) := |x| and compute along X, using Lemma 2.8,

d
E(IO &) = (Vcbt[) o ®;

1
©2(—1)

(xT,Vr)g o @,

1 -
=30 re e +0(Co@)™).

SWe emphasize that in this estimate we are not using the conical metric, but rather the flat cylindrical metric
dr? + gr to estimate these derivatives. This avoids defining derivatives of diffeomorphisms as sections of an
appropriate bundle and this estimate here suffices for our purposes.
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Integrating this, we see that

J_(( 0= ) SH(@0) < J_(( =) (3.1
Now, we have that
T=rd, F+0(0™
by Lemma 2.8. This implies that
J -~ 1 1
5 0 = - t)(ra + 03, + 0 2)dy,), (3.2)

where the right-hand side is evaluated at ®, (-). Note that ¢, satisfies

0 1

=2

where the right-hand side is evaluated at ¢ (-). In combination with (3.1), this implies

that

~ 1 ~
e (B0().91()) = 53— (die (B ().9:0)) +

1
(—t

Cc
r(®; (-)))

ar

~—

IA

[\

(dge (800, 04()) +

~—

Integrating this yields
c
Vi)

The derivative estimates follow similarly. ([

dge (D:(), 1 () <

Now, assume that £ 1u + au = E for some u € C] *(X) and a : ¥ — R with

lallcoe(s, iy = Ox]~ 2) for x € ¥ with |x| — co. We define

ocC

a(x,0) = V—tu(®(x)), E(x,1):= E(®(x)),

1
NE
a(x,t) = (_—lt)a(d%(x)).
Then we find that
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since the Laplacian is diffeomorphism invariant, as well as

ol 1
- = vV—=t(Vx,u)o &, — W

ot
(X-Vsuo® —uod).

uo ®d;

1
24/—t

We thus find that
ou
T Ag’t
We now use this equation in conjunction with Theorem 3.6 to prove the desired
Schauder estimates. Observe that Lemma 3.8 and the presumed decay of a shows that
a(-,t) is uniformly bounded in C %% on sufficiently far out balls of unit size, allowing
us to apply Theorem 3.6.

i—an=E. (3.3)

Proof of Proposition 3.5

We can choose R sufficiently large such that the normal evolution of ; := /7 - 2
for t € [-2,0) is almost orthogonal to x outside of Bg/4. Applying Theorem 3.6 to
(3.3) we find that (where the implied constant is independent of R sufficiently large)

2 A
tE?HRO) “ byat.0 “ CO(Z¢N(BRr+2(0)\Br+1(0))
T [Dx8¢.0 cogs,nsr 200811 0

2 A
+ tef}ﬁo)[Dx”( Dass, 0B 1200\Br 11 0)

S sup
te[—2,0)

+ sup [E(.0)]
te[—2,0)

Jac, 0 ||c0(z,n(BR+3(o)\BR(o»>

;3 N(Br+3(0)\BRr(0)))

On the other hand, Lemma 3.8 implies that for R sufficiently large, we can estimate
the Holder norms of # in terms of weighted norms of u as follows:

2 A
,E?]_JRO) ” Dyut.1) “CO(EH(BR+2(0)\BR+1 0)))
+ e [ D2 D) cown(Brsa©\Brsr )

2 A
T teffﬁo)[Dx”( Da50BR 1 20\Br 11 0)

pe sup r(x)|D2u(x)|
x€Z\BR+1(0)
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1 |D?u(x) — D*u(y)|
+ Sup —1—a —1—a a '
x,yEX\BRr11(0) r(x) + r(y) |X - y|

Arguing similarly for the other terms, we thus rewrite the above parabolic Schauder
estimates as weighted elliptic estimates:

sup r(x)\Dzu(x)|
x€X\Br+1(0)

1 |D?u(x) — D?u(y)|
+ Sup —1—a —1—« o
x,yEX\BRr4+1(0) r(x) + r(y) |'x - y|

N

sup r(x)_1|u(x)| + sup r(x)|E(x)|
x€X\BR/2(0) x€X\BR/2(0)

1 |E(x)— E(y)|
+ Sup —1—«a —1—«a o
x.yeS\Bg,2(0) '(X) +r(y) lx — I

This implies that

2
D ”||€89'1‘"(>3\BR+1(°))

= sup r(x)|D2u(x)|
x€Z\BRr+1(0)

1 |D?u(x) — D>u(y)|
+ Sup —1l-a —1-a o4
x,y€X\BR41(0) r(x) =+ V(y) |X - y|

< sup r(x)_l{u(x)| + sup r(x)|E(x){
x€X\BRr,2(0) x€Z\BR,2(0)

1 |E(x) — E(y)
+ Sup —1—«a —1l—« o
yeR\BR a0 TX) T () =]

N ”ul|clg)m:+1(2\BR/2(0)) + “E”‘eﬁfg’f‘(E\Bk/z(O))'

Arguing similarly for Du and combining all of this with standard interior (ellip-
tic) Schauder theory, we thus find that

2
||DM||~689,104(2) + 1D u”g{ggvla(g) S ||u||crg;m;+1(z) + ”E”'eggsla():)- (34

Note that we can combine this inequality with an interpolation between u in C° and
C! to find that

<
||u||cl%m°‘:+l(2) ~ ”u”qgm;_i_l(z) + ”E”gggla(g)-

This allows us to bound au in ‘683’{1 (X) in the sequel.
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We now argue that u can be decomposed as u(r, w) = y(r)c(w)r + f(r, w) mak-
ing ¥ into an element of ‘6’83’1“(2). We have that

w:i=ro;u —u=-2FE+2Au +2au — (X-Vsu —ro,u).
Combining (3.4) with Lemma 2.8, we see that w € ‘683’1‘1 with
”w”*gggrla(g) SJ ||“||C]%m;+l(2) =+ ”E”zfgg»la(g)-

Now, we define

c(w):

_ UR.) +/ wis:o) 4o (3.5)

R R 52

where R is chosen large above (we emphasize that this expression is independent of
the choice of R and that the integral is finite, thanks to the fact that w € 1?82’1“ (2)).
We note that the functions

u(r,w)
>

r

have uniformly bounded C2**(T")-norm for r sufficiently large. On the one hand, they
converge in C%%(T") to ¢(w) by the previous analysis. On the other hand, by Arzela—
Ascoli, they converge in C2#(I") (for any B < ) to c(w) € C>%(T"), and we find
that (by lower semicontinuity of the Holder norm in this situation)

”c”Cz-“(F) = ”Dzu”'cgg’]“(g) S ||u||clg)m:+l(2) + ”E”*egg{x(z)v
where we again used (3.4) in the second inequality. Now, defining
frw) = x(r)c(@)r —u(r,w),
we see that [ € Cliga(E). Note that for 7 sufficiently large we have from (3.5) that

*® w(s,w)

firay=r [ 25D a5

which implies that

”f”fgﬂ»la(g) S ”u”Ch(lm;+1(Z) + ”E”‘egglﬂf(g)-

Moreover, using the estimates for D?u (and for D?(y(r)rc(w)) which are easily
derived from the C2*¢ estimate for c), along with interpolation, we find that

||f||ch20’m°f!_l(z;) N ”u”CIg)mH—l(E) + ”E”*cgggff(g)-
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Finally, it remains to estimate X - Vy f € C&I‘i _1(X2). However, this follows from

rorf=f—-w

and Lemma 2.8. This completes the proof. ([

3.4. Weighted Sobolev spaces
In this section, we combine the Holder space theory developed above, with inte-
gral estimates and a Fredholm alternative to establish existence results for the &£ 1-
operator. The way to use these weighted Sobolev spaces to prove the Fredholm alter-
native (cf. Theorem 3.14 below) was explained to us by Bernstein [3].

We denote by L%,V the space of measurable functions f : ¥ — R with

11y = [ £2pdser <cc.

We then define the Sobolev norm

k
1 1k = D[ (V2) f |-

Jj=0

It is easy to see that the associated Sobolev space H I{‘V(E) is precisely the closure of
Cy° (%) under this norm.

We recall the following Sobolev inequality due to Ecker [22, p. 109] (see also [6,
Lemma B.1].

PROPOSITION 3.9
For f € HI}V(E), we have

[ fAx|Ppd X" 54/ (nf*+4|Vs f1*)pd H".
) )
Proof

Assume first that f € C{°(X). Consider the vector field V := f2pX in the
(Euclidean) first variation formula along . We obtain

- 1
/(nf2+2fx-sz—§f2|xT|2)de€"=/ f2H (x,vs)pd H".
= by
Using the shrinker equation, we thus find that
- 1
/(nf2+2fx-sz)PdJ€”=§/ fPxPod H".
= =

Thus, we find that
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1 -
5 [ rxoaser < [ s>+ 215 Vs opd
z z
2 2 1 2 r2 n
S/(nf +4IVs fI°+ =|x|°f )de(’ .
) 4

Now let f € H},(X), and choose f; € C{°(X) such that f; — f in Hy, (). The
above estimate yields, for any R > 0,

/ /;.2|x|2pd36"54/(nﬁ2+4|v2ﬁ|2)pd36".
£NBR(0) =
Letting i — oo and then R — oo yields the statement. O

COROLLARY 3.10
The map £, : HVZV(E) — L%V(E) is bounded.

Proof
Apply Ecker’s Sobolev inequality to the gradient of f to bound X - Vx f € L3, (X).
O

LEMMA 3.11 (cf. [9, Proposition 3.4])
For f € HI?V(E),

1 15,0 < 1o flw Il f llw-

Proof
It suffices to prove this for f € C§°(X). Note that £ is self-adjoint with respect to
the Gaussian area. Thus,

0= [ zo(rHpaser =2 [ (VS1+ fLaf)pd e
b)) b))
This proves the claim. O

LEMMA 3.12 ([6, Proposition B.2])
The inclusion H I,IV - L%V is compact.

Proof

For f; € HI}V with || f; | "), = C, the classical Rellich compactness theorem applied
to an exhaustion of ¥ shows that (after passing to a subsequence) there is f € H I}V
sothat f; — f in L . That f; — f follows easily from Ecker’s Sobolev inequality,

which implies that
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C
| e s 5
Z\B,(0)

This concludes the proof. O

LEMMA 3.13 (cf. [9, Proposition 3.4])
For f € H3 (%), we have

113 < C (1L f I3 + 11 13)-

Proof
It suffices to prove this for f € Cg°(X). Using the Bochner identity and the Gauss
equations, we find (using |Ax| = O(1)) that

S ol Vs /P
= V2 /P + (Vs s/, V5 /) + Riex (Vs £ Vs /) — (v VIV /1)
1
— 2 VIVP)
+ Hy - Ax(Vs £.V5 f) = (45)* (V= £, Vs f)

=|V2f* + (VsAs £, Vs f)

= V2 £ + (V50 . V5 /) + 3{Vs(F-Va /). Vs /)~ (. VIV /1)
+ Hy - Ax(Vs £,.V5 f) = (45)* (V= . Vs f)
= V2P + (V5o Vs ) 4 5 Vs fP

+ Hy-Ax(Vz f.Vsf) = (45)*(Vz f. Vs f)
= V2P + (Vs&o f, Vs f) + O(IV= f?).

Integrating this and using that £ is self-adjoint with respect to the Gaussian area, the
conclusion follows (after integrating by parts the second term on the right-hand side,
and using Lemma 3.11 to control the HVIV-norm of f). U

This suffices to establish an existence theory for the L-operator (cf. [9, Proposi-
tion 3.4]), where

1 _
Li=%+ Az = Ay — SG- Vs =1+ |Ax|?.

Define



3628 CHODOSH and SCHULZE

B, (u,v):= L((Vgu,ng) + (y —|As? - %)uv)pde%”,

the bilinear form naturally associated to L + y. For y sufficiently large so that y >
maxy [Ax|? + 2, we see that

”u”%/V,l < By(u,v),

so B, is coercive on HVIV(E). It is clearly bounded, so applying the Lax—Milgram
theorem, and applying the standard Fredholm alternative to this setting (combining
Lemma 3.13 with Lemma 3.12), we have the following result.

THEOREM 3.14

The space ker L C HVIV of weak solutions to Lu = 0 is finite-dimensional. For f €
L}, (%), Lu = f has a weak solution in H}},(X) if and only if f is L3},-orthogonal
to ker L. Moreover, if u is orthogonal to ker L and satisfies Lu = f, then we have
the estimate ”””H%,(E) < C”f”L%,V(E)'

To complete this section, we now show that for f € €8%,(X) perpendicular to
ker L, we can solve Lu = f. It remains to check that a solution of Lu = f with
f e €8%¥ (%) satisfies u € C2 m:11(2) a priori.

(o)

LEMMA 3.15
For f € L3,(Z)NCYX), if Lu = f foru € H}, (), then u € ChOom;—i-l(Z) and for
R sufficiently large,

lulico = S I llcom) + lullcoznaron-

Proof
For ¢ : R**! — R, we compute

1 .
Lp=Azp—(3-Vsp—9)+ |45 |
|
= Agn+19 — D?@(vg,vs) — Hs(vs, Vpnt19) — 3G Vsp—9)+ |Ax >

1. 1
= Agn+19 — D?p(vg,vx) — 3% Ventip) + 59 + |Ax*e.

We consider ¢(x) = «|x| — . Then,

x| |x|?

— 5B+ O0(Ix7) (@lx| - B)

n—1 (55,1@)) 1
2

L(pza(

=< —%(1 + 0(Ix|7?))B + O(|x|™")a.
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Thus, v = u — @ satisfies
1 _ -
Lv> f+ 5(1 + 0(1x|7?))B - O(|x| ")e.
We fix R > R(X) and set

a=2sup|f|+2R"' sup |ul,
b £N3BR(0)

B=4sup|f|+ R7! sup  |ul.
z YNOBR(0)

This yields

1
Lv>(1—-0®R "Y)sup|fl+ =R (1+OR™)) sup [|ul>0,
) 2 ENIBR(0)

for R sufficiently large. Moreover, we find that

sup v<—(1—R7Y) sup |u|—2(R—2)sup|f|<0
YNJBR YNIBR )

as long as R is sufficiently large. Thus, we have arranged that v < 0 in a neighborhood
of ¥ N dBg(0). We now argue that v <0 on =\ Bg(0). Because vt € Hj),, we find
that

—[ Az ?(vT)%pd H" 5/ vtEivpd H"
I\BR(0) Z\Br(0) 2

1
= f (—|Vv+|2 + —(v+)2)pd3€”.
S\Bg(0) 2

Thus, using Ecker’s Sobolev inequality, Proposition 3.9, we find that

R2/ W) pd H" < (8+4n+ O(R_z))/ (wH)2pd H".
Z\Br(0) Z\BR(0)

For R sufficiently large, we thus see that v = 0. Thus, u < ¢ on X \ Bg(0). Apply-
ing the same reasoning to —u completes the proof. O

Combining this estimate with Proposition 3.5 we arrive at the following.

COROLLARY 3.16
For f € ‘682’1“ (%), ifu € H}}, () satisfies Lu = f weakly, then u € ‘(?/SE’I‘X(Z) and
for R > 0 fixed sufficiently large,

||“||>333,1a(>;) S ||“||cO(>:mBR(o)) + ||f||r350,a(2)-
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Combined with Theorem 3.14, we thus see that the following standard solvability
condition continues to hold in our setting.

COROLLARY 3.17
If f € €8%%(D), then we can find u € €81 () solving Lu = f ifand only if f is
L%, -orthogonal to ker L C Hy, (%).

4. The Lojasiewicz—-Simon inequality for entire graphs
We now show that the weighted Holder and Sobolev spaces considered in the previ-
ous section (along with the solvability criteria proved for L) provides a framework to
prove the L.ojasiewicz—Simon inequality following the arguments in the compact case
(cf. [42]-[44], [50]). By the Fredholm alternative, Theorem 3.14, ker L C H I,11,(23) is
finite-dimensional and we can define 1 : L2,(X) — L2,(2) N €82 (), the pro-
jection onto ker L.

Recall (see Appendix D) that the Euler-Lagrange equation (with respect to the
L%, -inner product) is

1

M) = HTLE(ITIM + %)

< p(y +v(y)ve)p(» ", (4.1)

J(y,v,Vsv
x=y+v(»)vs=(y) o zv)

where I17 1y is the projection onto the normal bundle to X and
J(y.,v,Vsv) =Jac(D exp, (v()vs())

is the area element.
We now observe that M is a well-behaved map between the weighted Holder
spaces considered in the previous section.

LEMMA 4.1
For B sufficiently small depending on X, we have a continuous map

M 82 (2) N {lulle g2 (s, < B} — €SI (D).

Moreover, M is Fréchet differentiable with derivative at 0 given by L.

Proof
Fix v € €827 (2) N {J|ull, 520z < B). Note that
J(y.v.Ve)p(y +v(»)vz)e(y) ™!

2v(y)(y.vz) + (v(y))z)
4

=J(y,v,V>;v)exp(— 4.2)
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and this is easily seen to be uniformly bounded in C%%(Z N By(y)) as y € & — oo.
Thus, it remains to check the first term. Observe that the mean curvature term is
uniformly bounded in C%%(X N B;(y)) by ¢/r as y € ¥ — o0o. Recall that differen-
tiating the shrinker equation yields (or see Lemmas 2.7 and 2.8)

AT, )y =0(07?).

Combining this with (C.1) and the shrinker equation for ¥ we get for the other term
that

1
(x,v)=(1+|1d- vS)—l(va)|2) (o=, Vzv)) +O(IyI™)
in C%*(Z N By(y)) as y — oo. Observing that v > v — (y, Vxv) is a bounded
map ‘(?83’1“(2) — ‘(?82’1“ (X)) we obtain the first assertion. The second follows
similarly. U
We define
Ni=M+T1

which has the same mapping properties as M. Moreover, N is Fréchet differentiable
with derivative at O given by L + IT (which is bijective as a linear map ‘6’83’1"‘ (2)—
[of] El"‘ (X)). Thus, the implicit function theorem allows us to find open neighborhoods
of 0,

Wi C €82 (D) N {ullg g2y < B}
W, c €8%%(D)

so that N : W, — W, is bijective with inverse W : W, — Wj. Moreover (cf. [44,
Section 3.13] and [42, p. 168]), N and W are holomorphic, after tensoring with C
(and possibly shrinking Wy, W,).

We now prove that M is continuous as a map HVZV nw — L%,V and that W is
continuous as a map L2, N W, — HZ,.

LEMMA 4.2
Shrinking Wy, W, if necessary, there is C > 0 so that

HM(ul)—M(uz)HL%V(Z) < Clur —uzll g2 (s)
foruy,uy € Wy, and, moreover,
H‘I’(fl) —W(f2) HH%/(E) <C|fi— f2||L%V(z;)

for f1, f» € Wa.
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Proof
We claim that

M(ur) — M(uz) = L(uy —uz) + A- V(uy —us)
+ B-V(uy —uz) + C(uy —uy), 4.3)

where

S‘;P(|A| + B[+ |C|) S ”7"1”3531‘1(2) + ”1"2”'6,3%10‘(2)- (4.4)

This follows from using (4.1), (C.2), (C.3), and (C.4) together with the shrinker equa-
tion along X to write

M) = Lu + Q(p,u,Vu,Vu)

and interpolating Q(p,u, Vu, V2u) in the standard way between u; and u,. Com-
bined with Corollary 3.10, this proves the first assertion. The second claim now fol-
lows from standard arguments (cf. [44, Section 3.12]) given (4.3), (4.4), and Theo-
rem 3.14. ([

At this point, we can follow the arguments in [44, Sections 3.11-3.13] essentially
verbatim (except we use Corollary 3.17, Theorem 3.14, Lemma 4.1, and Lemma 4.2
in place of their standard counterparts in the compact case) to prove the following.

THEOREM 4.3 (Lojasiewicz—Simon inequality for entire graphs)
There is By > 0 sufficiently small, 6 € (0, %), and C > 0, all depending on ¥, so that
if M is the graph over X of a function in u € 883’1‘”(2) with ||u ||€82,1a(2) < Bo, then

[FO) = F2)|"™ < €M) 2 ) = €( /M 920 5" )",

We note that the second inequality here follows a similar reasoning to (4.2) (so
as to control the change in p when evaluated along M and as opposed to X).

5. Defining the relevant scales
In order to apply the inequality obtained in Theorem 4.3, we must understand the
various geometric scales involved.

5.1. Pseudolocality and the scale of the core of the shrinker
These definitions are relevant to the pseudolocality-based improvement argument in
Lemma 9.1.
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PROPOSITION 5.1 (Pseudolocality [32, Theorem 1.5])

Given § > 0, there exists y > 0 and a constant p = p(n,§) € (0,00) such that if a
mean curvature flow {M;};e(—1,0) satisfies that M_y N B,(0) is a Lipschitz graph
over the plane {x,4+1 = 0} with Lipschitz constant less than y and 0 € M_y, then
M; N B,(0) intersects Bs(0) and M; N Bs(0) remains a Lipschitz graph over {x, 41 =
0} with Lipschitz constant less than § for all t € [-1,0].

Definition 5.2 (Fixing the pseudolocality constants)

We will fix § = 1072 in the preceding pseudolocality result. We denote the corre-
sponding y by yx and p = p.. For consistency, we also write 8, = 6. We will always
assume that p,. > 1.

Definition 5.3 (Scale of the core of the conical shrinker)

For an asymptotically conical self-shrinker =" C R”*!, we choose R(X) so that for
x € X'\ Bg(x)(0), we have that X N By, (x) is a Lipschitz graph over T, X with
Lipchitz constant less than y. /2. Furthermore, we require that the map from the end
of € described in Lemma 2.3 be defined outside of Br(x)—1.

It is clear that for an asymptotically conical shrinker, we may take R(X) < oo.

5.2. Scales of hypersurfaces near the shrinker
The definitions here are relevant to the radius at which one can apply a cutoff version
of Theorem 4.3.

Definition 5.4 (Shrinker scale)
For M" C R"*1, we define the shrinker scale R(M) by
_RM)?

P :=|VMF|2=/M|¢|2de€". (5.1

Definition 5.5 (Rough conical scale)
For M* C R"*!, ¢ € N, and C; > 0, we define the rough conical scale t¢(M) to be
the largest radius so that M" N Bg,(ar)(0) is smooth and

VO Ay | < Co(1 + 1)K

fork €{0,..., ¢+ 1}.
Definition 5.6 (Conical scale)

Fix an asymptotically conical self-shrinker " C R"*!, and choose By = Bo(Z) >
0 as in Theorem 4.3. For a hypersurface M" C R"*!, we define the conical scale
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r¢(M) to be the largest radius in [R(X), ¢ (M )] so that there is u : ¥ — R with

graphu|gmBrZ(M) cM and M 0 By, my—1 C graphu,
2, .
where u € €8~ (X) with ||u||€83,fx(z) < Bo.

Definition 5.7 (Core graphical hypothesis)
We say that M satisfies the core graphical hypothesis, denoted by (*p,,), if F¢(M) >
r and there is u : £ N B, (0) — R so that

graphu C M and M N B,_; C graphu

with ||M ||C£+l (B (0)) < b.
We will always assume that r > +/2n (so that 9B, (0) expands under the rescaled
mean curvature flow).

We fix b > 0 to be very small (e.g., b < Bo) in Proposition 7.2.

6. Localizing the Lojasiewicz—Simon inequality
We now localize Theorem 4.3 to hypersurfaces that are not entire graphs over . For
the definition of A(M) see Definition A.1.

THEOREM 6.1 (The local Lojasiewicz—Simon inequality)
For M" C R* ™ with A\(M) < Ao, y € (1,2), and R € [1,x¢(M) — 1], we have that

1
|[F(M) - F(S)| §C(([ pPpdgen) > L RIS o on +e—§%)

MNBR(0)

for C = C(Z, Mg, a,y). Here 6 € (0, %) depends on ¥ and the Holder coefficient o;
0 is fixed in Theorem 4.3.

Proof
By the definition of ry(X) (Definition 5.0), there is u : ¥ — R with

graphu|snpr) C M and M N Bgr(0) C graphu

with [Ju|o s2e(x) < Bo. We may thus apply Theorem 4.3 to graph u to obtain (allow-
—1
ing the constant C to change from line to line as usual)

|F(M) - F(Z)| = ‘/Mpdje" _ F(E)‘

2
=< V def"—F(z))Jrce—f—y
MNBR(0)
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2
< ‘/ pd J" — F(E)‘ tCe
graphu

2

1
SC(/ |¢|2pd3€")2”_” +Ce .
graphu

It remains to argue that we can restrict the first integral to X N Bg(0). It is easy to see
that 7| @eraphu| < CBo by the definition of €82 (). Using

o0 2 2
_3 _rz _q4 _RZ
/ " 3e Tdr<R" 4o,
R

we thus obtain

|F(M)—F(2)}§c(/ |¢|zpd%n)ﬁ

(graphu)NB R (0)
n—4 R _R2
+ CR2Z(I=6) ¢~ 80-0) + Ce v .
This completes the proof. U

7. Approximate shrinkers up to the rough conical scale
For 0 fixed in Theorem 4.3, define

Definition 7.1

For R > r, we say that M" C R"*! is a roughly conical approximate shrinker up to
scale R if

€)) we have OR <ty (M),

2) M satisfies the core graphical hypothesis (*p, ), and

3) ¢l + (1 +IxDIVe| <s(1+|x)~" on M N Bor(0).

We will fix s, b sufficiently small in the following proposition giving a lower
bound on the conical scale.

PROPOSITION 7.2

Taking € sufficiently large, there are constants b,s > 0 sufficiently small, depending
on the shrinker X, the conical scale constant By, the rough conical scale constant Cy,
and the entropy bound Ao with the following property. If M™ C R"*! has A(M) < Ao
and is a roughly conical approximate shrinker up to scale R in the sense of Defini-
tion 7.1, then there is a function u : ¥ — R with
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graphu|snpr) C M and M N Br—1(0) C graphu

and ||u||€82,a(2) < Bo. Equivalently, the conical scale satisfies vg(M) > R.
—1

Certain aspects of the following proof are inspired by the proof of [33, Theo-
rem 8.9].

Proof

We claim that for b, s sufficiently small, the conclusion eventually holds for any
R > r. As such, we will take b,s — 0 and prove that for any given (sequence of)
R > r, the conclusion eventually holds for R. We may assume that R — oo (the
subsequent argument is easily modified to the case where R is bounded). It is clear
that M converges to X in C* in B,_; with multiplicity 1. Moreover, M converges in
Cl.(R"1) to® M, which satisfies ¢ = 0, and is thus a properly’ embedded shrinker.
Unique continuation implies that® M’ = . Finally, it is clear that M converges to X
in C* with multiplicity 1 everywhere by connectedness of ¥ and the multiplicity-1
convergence on B,_;.

Hence, if we let R € [r, R] denote the largest radius (depending on b, s) so that
the conclusion holds with R (in the place of R), then it is clear that R — 0o. We
will prove that theAproposition holds up to R:= %(l + @)Ié (note that this is a fixed
factor less than ® R). This will then imply the claim by a straightforward contradiction
argument.

First of all, we can assume that R/R — A € [1, oo]. Observe that (R)~!M con-
verges in Clﬁc(B@ 2(0)\ {0}) to a cone € whichisa C ¢_graph over the original cone
€. Moreover, because we have assumed that the proposition holds up to R, we see
that the cones are close in the sense that dg (€, ‘é) = O(Bo).” Thus, we can find a
C*function u : £ N Bz(0) — R with

graphu C M and M N Bp_, C graphu.

Moreover, r~!u| < O(Bo) on = N (Bz(0) \ B,(0)) by the above observation that
the blowdown cones are O(fy)-close. Furthermore, the second fundamental form
estimates coming from the rough conical scale estimate ¥¢(M) > OR yield

|D> Ry = o(r~17F) (7.1)

%By Lemma E.1, M is a properly embedded hypersurface.

"Properness of M’ follows from the entropy bounds, which imply local area bounds by Lemma E.1.

8Note that there cannot be more than one component of M. One way to see this is that it would have to lie
outside of B, (0) and we chose r > /21 this would contradict the maximum principle. Alternatively, this
follows from the Frankel property for shrinkers (i.e., two properly embedded shrinkers must intersect); see [14,
Corollary C.4] for Ilmanen’s proof of this fact.

9We have written d gy for the Hausdorff distance in S” ! between the two links of the cones.
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on X N (Bgz(0)\ B,(0)), for k € {0,...,£ — 1}. Finally, because M converges in
Cl.(R™ 1) to 3 (as b,s — 0), for § € (0,r~") fixed sufficiently small depending
only on By (this will be made explicit in the last line of the proof), we can assume
that [[ullc3(zng,, ) <6

We now relate the smallness condition on ¢ to decay properties of u. These com-
putations are similar to those considered in Section 2.1 for an exact shrinker (except
we are now parameterizing M over the shrinker X, rather than parameterizing the
end of X over the cone €; this complicates certain aspects of the subsequent compu-
tation).

We write F(p) = p + u(p)vs(p) for the function parameterizing (part of) M
over X N B(0). The computations below will hold for p € ¥ with |p| € [R(Z), ﬁ],
with error terms uniform with respect to b, s — 0. Recall that we have fixed coordi-
nates (r,w) on X\ Bg(s) in Section 2. In particular, the vector fields d, and 9, are
tangent to X.'"

We write
n—1
v (F(p)) = A8, + ) Bjr~"3u,; + Cvs(p),
ji=1
where
n—1
A2+ B+ CP=14007?) (7.2)
j=1

by Corollary 2.4 (we emphasize that (r, ) are the coordinates induced on the end of
3 by the parameterization over € constructed in Lemma 2.3).

Moreover, for p € ¥ with |p| sufficiently large (assuming that @; are normal
coordinates at w for p = (r,w)), we find that

0=A(1+ 00 ™?) —u(p)Ax|,(3,,0,))
n—1

+ Y B (007 —u(p)As|p(@r,r " 00;)) + C (3,u(p)),

Jj=1

0=A4(00?) —u(p)As|p @, r " du;))
n—1

+ 3" B (81 + 0072 —u(p) Azl p(r "y 771 00,)) + C (1w u(p)).

j=1
Now, using Lemma 2.7, we find that

10 particular, we reiterate that the vector field 9, is not the Euclidean radial vector field!
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0=A(1+0(07?)+ ni B;(0(r™2)) + C(d-u(p)) (7.3)
j=1
and
0=A(007?)+ i Bj(8ij —u(p)Aelp(r™ 0w, 171 0w,) + O(r>F))
j=1
+ C(r~"0u,u(p)). (7.4)

Observe that (7.3) yields (since 4, B,C = O(1))
A+ C@u)=00"2).

Moreover, as long as fy is sufficiently small so that 7~ |u(p)|supy |Ar| < %, we see
that C~! = O(1), that is, C is not tending to zero.''
We now compute

(F(p).vm (F(p)))

n—1
=(p+u(pvs(p). A0, + " Bjr 0o, + Cvs(p))

j=1
n—1

= A(p.3;)+ D Bj{p.r '9u,) + Cu(p) + C(p.vs(p))
Jj=1

A(r + 0(r™") + Cu(p) + 2CHs(p) + O(r™")
C(u(p)—(r+ 0@ h)du(p))+ 0™
C(u(p) —rdyu(p)) + O~ Hd,u(p) + O0¢™). (1.5)

We begin by analyzing this expression (below, we will repeat the above derivation
to yield more precise estimates). We have that

(F(p),vm (F(p))) = 26(F(p)) + 2Hm (F(p)) = O ").
Thus, (7.5) (and C~! = O(1)) gives
rd;u(p) —u(p) = 0r~")du(p) + 0¢r™).
Thus,

ndeed, if C — 0, then this condition on By combined with (7.4) yields B; — 0 as well; returning to (7.3)
yields A — 0, which contradicts (7.2).
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3,2 = =2, up) —u(p)

= 0(r)d,u(p) + 0(r™?)

u

— 0(r )9, rp ) 0—Hu(p) + 06—,

Thus, using 7 ~'u = O(1), we conclude that

3, u(p)
r

=003

We integrate this from § ' to r € (§~', R] to find that

u(r,w)

=5u(d o)+ 006*H) + 02 =0(0%+ 0372,

r

using the fact that [|ulc3(sns,_, (o) < 83. Thus,
u=0B*Hr+030™. (7.6)
Note that we immediately get
du(p)=r~"u(p)+ 0(r™2) = 0(8%) + 0(r™?).

We now interpolate (7.6) (on balls of radius 1) with the higher derivative esti-
mates from (7.1), using Lemma B.1. This yields

D] < (06 + 0(r)) T r0-0
= 0@yt + 00 i),
Similarly, we can obtain an estimate for the full gradient
1Dl < (0(6%)r + 01 "t 401
— 06> 1) + 0(ri2),

Now we return to (7.5) and use this improved decay for the derivatives to derive
a sharper equation. Firstly, we note that as long as B¢ is small, as above, using the
gradient estimate for u, (7.4), together with (7.6), implies that

Bi = 0(8%77),
for r > 81, Finally, using this, 4 + C(d,u) = O(r~2), and (7.2), we find that
C=1+00>1),

forr > 871,
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Now, repeating the derivation used in (7.5), with this additional information on
Bj and C, we find that

(F(p),vm (F(p)))
n—1

=(p+u(P)vs(p). 40, + Y B;r ™0, + Cvs(p)
j=1

n—1

= A(p.9;) + Y Bj{p.r ' 9u,) + Cu(p) + C(p.vs(p))
j=1

(r+00™") + Cu(p) +2Hs(p) + 0> 1r71)

A
C(u(p) — (r + OG™H))o,u(p)) + 2Hz(p) + 0> Tr™Y)
c

(u(p) = rd,u(p)) + O(~")d,u(p) + 2Hs(p) + 0> 1rY). (1.7)

We thus have
2¢(F(p)) +2Hum (F(p))
= C(u(p) = rdu(p) + O ~),u(p) + 2Hz(p) + 0> r 7).
Moreover, we have that (for £ sufficiently large)
Hu (F(p)) — Hz = (14 O(IVul?))O(|D?ul)
=0@)r~' + 00 ) =0@)r,
since r > §~1. Thus, we find that

u(p)

0, =00)r3

(assuming that s < §, which can be arranged since we have fixed § independently of
the value of s).
We now define
u(R, »)

c(w) = 7

and observe that by interpolation of (7.6) with (7.1), we have ||c|[¢2.e(ry = O(5).
Then we set

f(r,w) =u(r,w) —c(w)r.

We have that f(Ié, ) =0 and
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f(r.o)

r

9, =0@8)r 3.

Thus,
rf(r,o) = 0@B)(1—r2R72) = 0(6).

These two expressions imply that d, f = O(8)r 2.

Moreover, we easily see that |D¥ f| = O(r' %) for k € {2,...,£}. Interpolat-
ing this (and discarding some unnecessary decay with respect to r), we find that
Ifllcze = O(SI_HTa)r_l, where the Holder norm is taken on balls of unit size.

These estimates provide Cazn’fil
3 while only increasing these norms by a fixed factor (we can trivially extend ¢ (w)r).
Before we do this, we must obtain improved estimates for 9% /. Using C! N C tc
C? interpolation applied to the 1-dimensional function r > f(r,w) (for w fixed but
arbitrary), on a unit interval, we see that

estimates on f, so it remains to extend f to all of

- - I -
07/ (R.0)| £ (0@R?) 7T RO = 0! E R,
Thus, taking £ sufficiently large, we see that
R f(R,w)| + R?[3, f(R.0)| + R?|} (R, w)| = O(") (7.8)

for some absolute constant © > 0. In particular, we emphasize that the third term in
(7.8) is better than the Ci‘”"il—norm requires (we need this improved estimate when
we extend f to all of X).

We now define

f(r,w) r
I f(R.w)(r—R)+ L2 f(R,0)(R+3—r)(r—R)? r>R.

IA
=

El

f(r,a)):z{

(Recall that f(R,-) = 0.) We then fix a cutoff function ¢ with = 1 on (—o0,0) and
¢ =0on (1,00). Then we set f (r,w) = f(r,w)(r — R). Using (7.8), we easily see
that

1/ llc2a ()= OG").
Thus,
I (c. f) ”‘6’83’1‘)‘(2) =0(8").

Taking ¢ sufficiently small depending on S, this concludes the proof. O
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8. The final localized ¥.ojasiewicz—Simon inequality and the rough conical scale
We now show that the error terms in the localized Lojasiewicz—Simon inequality
(Theorem 6.1) are small, under the assumption that the rough conical scale is larger
than the shrinker scale.

THEOREM 8.1 (The final localized L.ojasiewicz—Simon inequality)

Assume that M™ C R"*! has A(M) < Ao and R(M) sufficiently large depending
on X. Assume that M additionally satisfies the core graphical hypothesis (*p ;) and
that R(M)) <ty(M) — 1. Then,

1
}F(M) — F(E)| < C(/ |¢|2pd]€”) 3(0=673)
M
for C = C(Z, Ao, ). Note that 0 is fixed in Theorem 4.3.

Proof

We first claim that M is a roughly conical approximate shrinker up to scale R =
©~2R(M) in the sense of Definition 7.1. We have already assumed that the first two
conditions hold, so it remains to check that

6] + (1 + <)) V| <s(1+|x])”"

on M N Begr(0). We will do this by modifying the proof of [19, Corollary 1.28].
Pick z € M N Begr(0). Set r, = (1 + |z|)™!, so that the Gaussian weight p has
uniformly bounded oscillation in B,_(z). Set

1 _R(M)?
v()= pm2od ") < e "F
MNB,, (z)

Holder’s inequality yields

4 1zP 2 n\? g Lz2
pldser srze™ (| 1gPodH") =rie ¥y,
B, (2) Br;(2)

Because 1 + ®R < r1;(M), we have that (see Definition 5.5)
1-k
VK@l < Co(1 + 21

on M N B,_(z),fork €{l1,....£} and z € M N Begr(0). Now, by the L' N C¢ c C°
interpolation inequality described in Lemma B.2, we have that

(1+1z) Sup)|¢|

By, (z

n
-1-4

< C(r lTw + (an lTw)ae n (1 + | |)(l_e)(1_a€,n)_1)
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2|2

<c((1+1z)) e Fy

|22

+(1+|Z|)—a£,n%(e 2 .(//)agvn (1+|Z|)(1_Z)(l_ae’”))

1=0~"2)rR(M)2 ap ,(1—©~2)R(M)?
8 + e 8

<C(R(M)2*1e”

The negative powers in the exponentials allow us to arrange that this is smaller than
s, as long as R(M) is sufficiently large. A similar argument can be used to bound
Vl.

Thus, we see that M is a roughly conical approximate shrinker up to scale R.
Proposition 7.2 implies that the strong conical scale satisfies ry(M) > R. Thus, we
can apply the localized fL.ojasiewicz—Simon inequality from Theorem 6.1 to find
that

|F(M)— F(2)|

=¢ (</MnBR(0) #Fpd X"

1 e 2 2
< c((/ |¢>|2pd3€")2“‘9’ 4 RA=B e wd—B +e—§—y).
M

1
2(1—0 n—4_ __R% _R2
) a-=o + R 8U-0) 4 ¢ 41/)

Note that
B 2
= o~ sl — (92 2= 5ot (15
R e (67°R(M)) e
n_ 2
= (072R(M)) =7 o ~s1 207
_R(M)2 1
<C(e 4 )2a-73
=c([ 1gPpasr)
M
and
B2 oy
5 ([ pPpdx")
M
so choosing y =2074(1 —60/3) € (1,2), we conclude the proof. O

9. The uniqueness of conical tangent flows: Proof of Theorem 1.1

Fix r sufficiently large in terms of the scale of the core of the conical shrinker R(X),
and the pseudolocality radius ps (this choice will be made explicit in Lemma 9.1
below).
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Now, consider ¢ = ¢(X,r) > 0, which will be chosen sufficiently small below.
Suppose that {M;}re[—1,00) 1S a rescaled mean curvature flow (Brakke flow) on
[—1,00) x R**1 50 that there is

u: (SN B-1(0) x[-1,67%) >R

with
(1) graphu(-,7) C My,
2) M. N B.—1_; C graphu(-, 7).
B3 lullce+iznp,_, o) =& and
4 FM)-FZ)<e
Here, £ € N controls the number of derivatives in the definition of r;. It has been
fixed in Proposition 7.2. We additionally fix A¢ so that A(Mp) < Ao (which implies
that A(M;) < Ag). Finally, we assume that there is a sequence of times sz — 00
so that Mj, converges smoothly on compact subsets of R"*! to ¥ (with multiplic-
ity 1).

Recall that the core graphical hypothesis (#p ;) has been defined in Definition 5.7.
Define the graphical time T by

7= sup{% € [—1,00) : M, satisfies (*p ,) forall 7 € [—1, %]}.

Our first goal is to show that T = co. Note that by taking ¢ sufficiently small (depend-
ing on b, r, ¥), we can assume that T is arbitrarily large.

LEMMA 9.1 (The rough conical scale improves rapidly)
There is ry(Z, R(X), p«) sufficiently large so that taking r > r, g0 = €o(X, 1) suffi-
ciently small, and fixing Cy = Cy(X, 1) sufficiently large in the definition of the rough
shrinker scale, we have that ¥¢(M) > %e%Lfor all t €0, 7).

Moreover, we can find u : £ N B4, (0) X [0,7) — Rwith u(-, v) uniformly bounded
in C**2 and with

graphu(-,t) C M, and M N Byy—1 C graphu(-, 7).

Proof

Consider 7o € [0, 7). Note that 7 > /= Mz, 1051y := M is a mean curvature
flow fort € [—e™,0) and MSO) = M,,. Take b sufficiently small in the core graphical
hypothesis. Then, by the definition of the pseudolocality scale p«, the scale R(X) of
the core of the shrinker and the core graphical scale r, we can ensure that for

x € M 0 (By=2p, (0) \ Brz)(0)).
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there is some plane II, through x so that Mfrl") N By, (x) is a Lipschitz graph
over [T, with Lipschitz constant at most y.. Thus, by pseudolocality (Proposi-
tion 5.1), A;I,(m) N Bs,(x) is nonempty, and a 8,-Lipchitz graph over I, for all
t €[-1,0).

We can patch these graphs together to find a family of domains er‘)) (@)
with

(2N (Br=3p. 0) \ Brsy+1(0))) € 2™

and a function 9™ : Q, — R so that graph®™ C M. Using a shrinking
sphere as a barrier, we can see that for ¢ € [—1,0), this graph describes all of
Mfrl") N (Br—4p,(0) \ Br(z)+2(0)). The shrinking sphere of radius r — 4p, at
t = —1 still contains B,_3,,(0) as long as we choose r sufficiently large so
that

1

(Gp2+1)<r.
20+

(r—4p:)> < —3ps)° -1 &

Now, for w € (0, 1), by applying interior estimates in [23] (cf. [2, Corollary 8.4]) for
graphical mean curvature flow, we find that

VO A4 e |(x) <€ = C(, 20,0)

for x € M N (B,s5,.(0) \ Br(z)+3(0)), 1 € [-1 + ®,0), and k €0, ..., ¢}

By the definition of the core graphical scale, r¢(M;) > r, so the desired curva-
ture estimates hold on M; N B, (0). Moreover, by taking the parameter ¢ sufficiently
small, we can ensure that the desired estimates hold for 7 € [—1, 1]. On the other
hand, for T € [1,T) and

xeM:N(Bz . (0)\B(0),
we choose
70 =1 + 2log(|x| ' (r — 5p4)) €[0, 7).
Then,

t=—e""" = —|x|2(r = 5px)? €[-1 + ®,0)
forw = w(n,r) € (0,1) fixed by
w:=1—(1-=5r"1p)%€(0,1).

Now, we find that the point x is rescaled to
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f:=+v=1ix e M N 3B, _s,,(0),
so the curvature estimates established above yield
T ERTEIVE A L 6o | (0) = VO A g o () = € = C(2, 40, 1),
Unwinding this, we find that
[ HRIVE A, | () < € = 5p) T

for k € {0,...,£}. Thus, by choosing C; = C¢(XZ, Ao, r) sufficiently large, we find
that #¢(M;) > e2(r — 5px), as claimed. As such, the asserted curvature estimates
follow by requiring that r > 10p4.

The above proof also shows that there is a function v : (X N By,) x [0,7) = R
with

graphu(-,v) C M, and My N Byyr—y C graphu(-, 1),

and so that u(-, 7) is uniformly bounded in C**2. Note that this u agrees with the
function in the definition of the core graphical hypothesis, on their common domain
of definition. O

First, suppose that 7 is such that R(M;) <r1y(M;) — 1. By Theorem 8.1, we have
that for 68’ = 6/3,

F(Mr)—F(Z)SC(/ |¢|2pd¢}€”)ﬁy

M

SO

d , ,
(P My - F(2)® =6/ (FMy) - F()° ™ /M $2pd e

dt
zC(/M |¢|2pd«7€”)%-

On the other hand, suppose that t is such that R(M;) > r;(M;) — 1 > %e%L — 1 (by
Lemma 9.1). The following coarse estimate will suffice in this case:

1 2
(/ 9Ppd )" =e 5T < ce ©.1)
M.

Thus, we can conclude that for all T € [0, T),

c( /Mr |¢|2pd=%")% < —%(F(Mf) ~F(®)” +e.
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Integrating this, we find that for 7o € [0,7),

T 1 )
/ ([ |¢|2Pde7€">2dr,§(F(Mro)—F(E))g +e™
7o M-
89’ +e—‘ro' (92)

For the function u : (X N By,) x [0,7) — R described in Lemma 9.1, we have
that

/ #Podsn = c| |

L2(2NB4;,(0)

so we see that

sup ||u( ) —u(, TO)HL2(EDB4,(0))~ PR
t€[19,7)

Because u(-, 7) is uniformly bounded in C *2 by Lemma 9.1, by taking ¢ sufficiently

small and 79 = %8‘2, we have that

I A

b
Hu(‘,fo)||cz+1(zr132£(0) 4

and

@‘

sup H”( ©) —u(, TO)”cHl(szz,(o)) 1
1€[10,7)

Thus, we see that [[u(-, 7)[ce+1(snBs, 0) = % for v € [0,7). This (combined with
pseudolocality and interior estimates) implies that we can extend the graphical
hypothesis slightly beyond 7, a contradiction.

Thus, T = oco. Now, returning to (9.2), we have that (recall that s — oo are so
that M, — X)

su u,t) —ul-,sg < H ‘
celsero )H( V7t |anm, 0 S / L2(2NBay (0))

< (F(My) — (D)) + e

Since u(-, sg) — 0in L?(X N B4, (0)), we thus see that u(-, ) — 0in L2(X N B4, (0))
as T — 00, and thus in C**1(Z N B,,(0)).

From this, it is clear that M, converges on compact sets to ¥ as t — oco. This
completes the proof of Theorem 1.1.
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9.1. Rate of convergence
Here, we observe that similar arguments can yield a rate of convergence of M,
towards X. Arguing as above, we have that

d

_ 2 n
(P~ ) == [ 9P

< —C (F(M-L-) _ F(E))Z(I—G/) + C€—2-[
for all € [0, 00). We claim that
F(M;)— F(S) < D(1 + 1) 1=27

for D sufficiently large in terms of M, and X. Indeed, letting T denote the first time
this fails, since e=2* < (1 4 x)~“ for all x > 0, we have that

(F(M3) — F(E))Z(l—o’) — p20-6)( 4 ;)——21“_;2) > ¢ D2(1-6) 2%

Thus, as long as D is sufficiently large, we find that

__20=6) d
(D) < S (F(Mo) — F(3) et

<—C(F(Mz) — F(2))"™"

2(1—-6")

< _CDZ(I—Q/)(I _;’_.E)_ 1-2607 .

Taking D larger if necessary, this yields a contradiction. Thus, we have that for any
R fixed,

0o 1
2
el mnm < [ (f, 1970d5) ax

S (F(Mo) = F())" 47
<412
Interpolating yields
Jut.7) Hck(szR) S+ T)_l_g—z/wn
for any k, R, and n > 0, as t — oo.
9.2. Proof of Corollary 1.2

Note that the proof of Theorem 1.1 implies that there exists € > 0 such that the sur-
faces M, N B, (0) for t € (—&?,0) are smooth graphs over /7 - £. Even more, one also
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sees that (Mo N B¢(0)) \ {0} is a smooth normal graph over the asymptotic cone C of
3 with curvature bounded by ¢/ r (plus all corresponding higher order derivative esti-
mates). Note that the tangent flow My has as the time zero slice the cone C. Thus by
taking rescaling limits of the flow, including time zero, we see that the uniqueness of
the tangent flow implies that rescalings of M{ converge smoothly on compact subsets
of R* \ {0} to C.

Appendix A. Standard definitions
We recall the following definitions and conventions.

Definition A.1
For M"™ C R**1 with polynomial area growth, the Gaussian area of M is

F(M)=/Mpd%",

where p = (47)~ 3 e~1xI?/4 Recall that the entropy A(M) is defined as the supremum
of the Gaussian area over all centers and scales (see [18]).

Definition A.2
A hypersurface =" C R**1 is a self-shrinker if /—t - ¥ is a solution to mean curva-
ture flow for ¢ € (—oo, 0). This is equivalent to

1
H2=§(X,U)3). (A.l)

Definition A.3
For a general hypersurface M C R"*!, we define the function

1

¢=¢M :ZE(X7UM)_HM-

Note that X is a self-shrinker if and only if ¢ = 0.

Definition A.4
A smooth self-shrinker £” C R"*! is (smoothly) asymptotically conical if

lima/—t-2=¢€

t/0

in C%° (R**1\]{0}) with multiplicity 1, where € is a cone over a smooth closed hyper-
surface '~ ¢ " Cc R**1,
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Definition A.5
We define the following operators along X:

1,
Lyu:=Asu— Ex-VEu + yu,
Lu :=$%u+ |As|*u
| 2
= AEM—E(X~V2M—M)+ |As|“u.

Note that L is the full second variation of Gaussian area along X. Moreover, £ and
£ ! will be particularly relevant in the sequel.

Appendix B. Interpolation inequalities
We recall the following standard interpolation inequalities in multiplicative form.

LEMMA B.1
Suppose that u € C*¥(B,). Then, for j <k,

, 1—4 i
1D ullcogs,) = € lull cogg, I D% ull gop,

for C = C(n,k). Similarly, ifu € C**(B,), thenfor j + p <k + «,

1— L8
k+a

[D7u)p:, < Cllull ol g [D*ul e

;B>

for C =C(n,k,a,p).

These follow in a similar manner to the linear inequalities given in [24,
Lemma 6.32], except that in the proof one should optimize with respect to the
parameter p rather than just choosing w sufficiently small. Alternatively, see [28,
Lemma A.2].

We will also need the following interpolation inequality.

LEMMA B.2 (cf. [19, Lemma B.1])
Ifu is a C* function on By, C R", then
— N/ k 1— N
lull ooy < C (L ayyy + Il Fity, IV¥ullfoots ).

_ bi.n k. 1=bk.n
PVl oo,y < C(r utllaas,y + Nl IVF I )

k k—1
for C =C(k,n), agn = = and by, = n
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Appendix C. Geometry of normal graphs

We consider hypersurfaces M, N in R**! such that N can be locally written as a
normal graph over M with height function v, where we assume that the C!-norm of
u is sufficiently small (depending on the geometry of M). Let p € M, and choose a
local parameterization F, parameterizing an open neighborhood U of p in M such
that F(0) = p. We can assume that g;; = (9; F, 9, F) satisfies

Sijlx=0 = &i; and  0Jrgijlx=0=0.

For simplicity we can furthermore assume that the second fundamental form (%;;) is
diagonalized at p with eigenvalues A1,...,A,. A direct calculation (see [46, (2.27)])
yields that the normal vector vy (q), where ¢ = p + u(p)var(q), is colinear to the
vector

n
diu
N:—Zl_A 3 Flx=o0 + var (p)-

i=1

Denoting the shape operator by S = (h;) we see that thus in coordinate-free notation
vy (q) = v (=Ad —uS)"'VMu + vy ) (p), (C.1)

where v := (1 + |(Id — uS)~! (VM u)|2)2. This implies that
(g, v (@)= v (u + (P, vm(p) = (p, Ad —uS) ™' VMu)). (C2)

For the induced metric g one obtains in the above coordinates at p (again see [46,
(2.32))),

gij = (1= o) (1 = X ju)8ij + d;udju,

which implies that
8 ij ) 8 iu 8 j u

— - . C3
S T U -2 A= au)? (1 —Au)? €3
Furthermore, from [46, (2.30)] we have
h,j = (8 F ,UN)
Ai Aj
_.—1
=v (1—A 0iud; u+1—l diudju
+ Z T Dl hij = 2 usy + 0u). (C4)

which yields a closed expression for the mean curvature H of N, since H( p) =
§Y(p)hij(p).
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Appendix D. Variations of Gaussian area and the Euler-Lagrange equation
Suppose that M™ C R"**1 is a normal graph of v : ¥ — R for a fixed shrinker %",
Recall that the Gaussian area is defined as

F(M) = /Mpd%".

For v a variation of v (i.e., a variation in the normal direction to X), the first variation
of F' in the direction of v satisfies (see [42])

S5 F(M) = —LHTLE(P?M + ﬁ)

v(y)J(y,v,Vxv)

2 Jlx=y+v(y)vs(»)

xp(y +ve)p(y) ' p(y)d K",

where I17 1 5 is the projection onto the normal bundle to ¥ and

J(y.v,Vzv) =Jac(D exp, (v(y)vs()))

is the area element.
Hence, the Euler-Lagrange operator M (with respect to the weighted space L%V)
satisfies

1

M) =7y (Fu + )

5 J(y,v,Vxv)

x=y+v(y)vs(y)

< p(y +v(y)vz)e(y) .

It is well known that the linearization of M at v = 0 is the L-operator (cf. [19,
Lemma 4.3]).

Appendix E. Area growth bounds from Gaussian area estimates
The following is a well-known fact.

LEMMA E.1
For M™ C R" ™1 with A(M) < Ao, there is C = C(Ag,n) so that

Je" (M 0 Br(x)) < CR"

forall R > 0and x e R* 1,
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L, 3650

L2,(%), 3625
M., 3644

My 1y, 3630, 3652
¥, 3602

®, 3635

7, 3644

B, 3630

Bo, 3632

8+, 3633

£, 3633

Y, 3633

A(M), 3649
R(M), 3633
re(M), 3634
€827, 3617
€82, 3617

Lo, 3650
éﬁ% , 3650
£,.,3650
M, 3652
¢, 3649

0, 3649

0, 3633

0, 3632

0’, 3646
r¢(M), 3633
R(X), 3633
g, 3644

b, 3634

s, 3635

1, 3634

conical scale, 3633

core graphical hypothesis, 3634
graphical time, 3644

rough conical scale, 3633

3653

roughly conical approximate shrinker,

3635

shrinker scale, 3633
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