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Abstract
Singularities of the mean curvature flow of an embedded surface in R

3 are expected
to be modeled on self-shrinkers that are compact, cylindrical, or asymptotically con-
ical. In order to understand the flow before and after the singular time, it is crucial to
know the uniqueness of tangent flows at the singularity.

In all dimensions, assuming that the singularity is of multiplicity 1, uniqueness in
the compact case has been established by the second-named author, and in the cylin-
drical case by Colding and Minicozzi. We show here the uniqueness of multiplicity-1
asymptotically conical tangent flows for mean curvature flow of hypersurfaces.

In particular, this implies that when a mean curvature flow has a multiplicity-
1 conical singularity model, the evolving surface at the singular time has an (iso-
lated) regular conical singularity at the singular point. This should lead to a complete
understanding of how to “flow through” such a singularity.
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1. Introduction

1.1. Uniqueness of tangent flows
By work of Huisken [29], White [49], and Ilmanen [30], singularities of mean curva-
ture flow can be modeled by self-similar shrinking solutions to the flow. For flows of
embedded surfaces in R

3, Ilmanen [30] proves that self-shrinkers arising as tangent
flows at the first singular time are smooth and embedded (possibly with higher mul-
tiplicity). Wang [47] has proved that such shrinkers, if noncompact, have ends that
are asymptotic to a cylinder or smooth cone (cf. Definition A.4; see also [45]). More-
over, Kapouleas, Kleene, and Møller [33] and Nguyen [39]–[41] have constructed
embedded, smooth self-shrinkers in R

3 with (smoothly) conical ends.
An important question is to determine whether or not these tangent flows are

unique. The second-named author [42] has proved in that this holds (in all dimen-
sions and codimension) when there is a compact multiplicity-1 (smooth) tangent flow.
Colding and Minicozzi [19] (cf. [16]) have proved that uniqueness holds (for hyper-
surfaces, in all dimensions) for multiplicity-1 cylindrical tangent flows (see also [4]).

In this work, we show that uniqueness also holds in the case of multiplicity-1
tangent flows whose self-shrinker is smoothly conical.

THEOREM 1.1 (Uniqueness of conical tangent flows)
Fix an asymptotically conical self-shrinker †n � R

nC1. Let M D .�t /t2.�t1;0/ be an
integral n-Brakke flow so that the self-similar shrinking multiplicity-1 Brakke flow
associated to †, M†, arises as a tangent flow to M at .0; 0/. Then M† is the unique
tangent flow to M at .0; 0/.

See Section 9.1 for estimates concerning the rate of convergence. We expect that
the argument will extend to higher codimension with little change.

An interesting feature of our proof of Theorem 1.1 is that it shows that the
Łojasiewicz–Simon approach to uniqueness of blowups can be applied in the case
of a noncompact singularity model. Colding and Minicozzi’s work in [19] on the
uniqueness of cylindrical tangent flows does not proceed via a reduction to the finite-
dimensional Łojasiewicz inequality à la Simon, but rather proves a Łojasiewicz-type
inequality by hand, using the explicit structure of the cylinder in a fundamental
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way. Here the situation is different: we do not use any explicit structure of the con-
ical shrinkers, so instead must rely on a Łojasiewicz–Simon inequality proved by
“abstract” methods, after introducing relevant weighted function spaces.

This approach has the drawback that it requires much stronger “closeness” of the
flow relative to the shrinker. Thus, we must develop a new “extension of closeness”
mechanism that is not present in the cylindrical case (cf. Lemma 1.3, Proposition 7.2).
We then must combine this mechanism with several crucial ideas of Colding and
Minicozzi concerning improvement and extension of curvature estimates to overcome
the noncompactness of the problem.

Our approach seems to be quite general and flexible; we expect that it will apply
to the uniqueness of noncompact singularities in other geometric problems, when the
singularity is “well behaved” at infinity.

1.2. The structure of the singular set around an asymptotically conical shrinker
We note that conjecturally (cf. Ilmanen’s no cylinder conjecture [31, #12]), the cylin-
der is the only shrinker in R

3 with a cylindrical end. Combing Theorem 1.1 with
[19], [42], and [47], it would follow that for the mean curvature flow of a smooth
embedded surface in R

3, all multiplicity-1 tangent flows at the first singular time are
unique.

Uniqueness of tangent flows gives important information about the singular
behavior of the flow. Using their result on the uniqueness of cylindrical tangent flows,
Colding and Minicozzi [20] have proved (among other things) that a mean curvature
flow of hypersurfaces in R

nC1 with only multiplicity-1 cylindrical tangent flows has
a space-time singular set contained in finitely many compact embedded .n � 1/-
dimensional Lipschitz submanifolds and an .n� 2/-dimensional set. Moreover, in R

3

they have shown that such flows are smooth for almost all times, and any connected
component of the singular set is completely contained in a time-slice (see also [21]).

Similarly, Theorem 1.1 (and the pseudolocality arguments used in Lemma 9.1
below) implies the following.

COROLLARY 1.2
For M and † as in Theorem 1.1, there is " > 0 so that for all t 2 .�"2; 0/, we have
�tbB".0/D H nbMt for a smooth familyMt of embedded surfaces flowing by mean
curvature in B".0/. The surfacesMt are diffeomorphic to †. Moreover, as t % 0, the
flowMt \ .B".0/ n ¹0º/ converges in C1

loc to a smooth surfaceM0 �B".0/ n ¹0º with
a conical singularity at 0 smoothly modeled on the asymptotic cone of †.1

1In other words, rescaling M0 around 0 converges in C 1
loc .RnC1 n ¹0º/ to the asymptotic cone of †.
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We note that Colding and Minicozzi [18] have proved that the plane, sphere, and
cylinders are the unique entropy stable shrinkers. They have proposed this as a mech-
anism for a possible way to construct a generic mean curvature flow. Corollary 1.2
suggests that one can flow through points with conical tangent flows, instead of try-
ing to perturb them away. Understanding the flow through these “nongeneric” situa-
tions will be particularly important towards understanding families of mean curvature
flows. We will investigate this elsewhere.

1.3. Some recent results in singularity analysis of mean curvature flow
We remark that Brendle [11] has recently proved that the only smooth properly
embedded self-shrinkers in R

3 with genus zero are the plane, sphere, and cylinder;
hence, a conical shrinker must have nonzero genus. Moreover Bernstein and Wang [5]
have shown that the round sphere has the least entropy among any closed hypersur-
face (up to the singular dimension; cf. [51] and see also [17], [35]); the same authors
have extended this in [6] to noncompact surfaces in R

3 (see also [7]). Wang [46]
has proved that two shrinkers asymptotic to the same smooth cone must be identical.
Ketover [34] has recently constructed self-shrinking Platonic solids.

Brendle and Choi [12] have classified the bowl soliton as the unique strictly
convex ancient solution in R

3 (cf. [13], [25], [26], [48]). Moreover, Angenent,
Daskalopoulos, and Sesum [1] have classified closed noncollapsed ancient solutions
that are uniformly two-convex. Finally, Choi, Haslhofer, and Hershkovits [15] have
proved the mean convex neighborhood conjecture in R

3, by classifying low entropy
ancient solutions (see also [27]).

1.4. Idea of the proof of Theorem 1.1
The basic idea to prove Theorem 1.1 is to rely on a Łojasiewicz-type inequality
(see [38], [43], [44]) to show uniqueness of the tangent flow. Indeed, this strategy
was already successful in the compact (see [42]) and cylindrical (see [19]) cases. In
the cylindrical and conical cases, the noncompactness of the shrinker causes serious
issues (beyond simply those of a technical nature), due to the fact that one cannot
write the entire flow as a graph over the shrinker.

Unlike the cylindrical case in [19], we do not exploit any specific structure of
the shrinker (beyond the fact that it has conical ends). Conical ends seem to be
less degenerate with regard to the uniqueness problem, allowing us to obtain very
strong estimates in annular regions around the point where the singularity is forming.
Because we do not assume any specific structure of the shrinker, we must prove the
Łojasiewicz–Simon inequality by “abstract” methods (i.e., by a finite-dimensional
reduction to Łojasiewicz’s original inequality in [38]). In Section 3, we construct
weighted Hölder and Sobolev spaces in which Simon’s argument in [43] can be used
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to prove a Łojasiewicz–Simon inequality for entire graphs over the shrinker (see The-
orem 4.3). Roughly speaking, we consider Hölder spaces (inspired by [33]) CS

2;˛
�1 .†/

of functions u W † ! R so that in coordinates .r;!/ 2 .1;1/ � � on the end of †
(where � is the link of the asymptotic cone of †), we have

f .r;!/D c.!/r CO.r�1/;

where the error term is taken in C 2;˛ on balls of unit size. We also require the
improved radial derivative estimate

@rf .r;!/D c.!/CO.r�2/

in C 0;˛ . Geometrically, we can think of CS
2;˛
�1 .†/ as functions whose graphs are

asymptotically conical (for a different cone) and decay to their asymptotic cone at a
rate O.r�1/ in C 2;˛ .

The linearized shrinker operator maps the space CS
2;˛
�1 .†/ to CS

0;˛
�1 .†/; that

is, Lu D O.r�1/ in C 0;˛ (this is where the improved radial derivative estimate is
needed). We can prove Schauder estimates for the L-operator between these spaces
(see Proposition 3.5). Moreover (based on ideas communicated to us by Bernstein
[3]), one can also establish (see Section 3.4) regularity and existence for the L-
operator (the linearized shrinker operator) between L2-based Sobolev spaces L2

W .†/

and H 2
W .†/, when weighted by the Gaussian density �D .4�/�

n
2 e�jxj2=4. Combin-

ing these facts, we find that the L-operator behaves between these spaces in essen-
tially the same way as in the compact cases considered by Simon [43]. This yields a
Łojasiewicz–Simon inequality for entire graphs over † (see Theorem 4.3); that is, if
kuk

CS
2;˛
�1

.†/
is sufficiently small, then for M D graphu,

ˇ̌
F.M/�F.†/

ˇ̌1��
� C

�Z
M

j�j2�dH n
� 1

2

: (1.1)

Here F.M/ is the Gaussian area (see Definition A.1) and � is the deviation from M

being a shrinker (see Definition A.3).
To apply (1.1) to prove uniqueness of conical tangent flows, the basic strategy is

to show that if a Brakke flow M has a multiplicity-1 conical tangent flow (modeled
by†) at .0; 0/, then it is possible to write part of M as a graph over part of†, and that
this graphical function extends to a function that is small in CS

2;˛
�1 .†/. At this point

(1.1) can be applied to this extended function. Applying the resulting inequality to M

introduces errors based on the fact that M is not an entire graph over †. Controlling
the size of these errors relative to the terms in (1.1) is a serious issue, which we now
describe in some detail.

We consider the rescaled mean curvature flow around .0; 0/; assume that the
rescaled flow consists of surfaces M� for � 2 Œ�1;1/ and M�i

! † in C1
loc along
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some sequence �i ! 1. We seek to prove by a continuity argument that for r fixed
and � sufficiently large, M� \ Br is a C `C1 graph of a function with C `C1-norm
bounded by b. This is (roughly) the core graphical hypothesis .�b;r/ (see Defini-
tion 5.7). Notice that the core graphical hypothesis will not suffice to control the
errors when applying the Łojasiewicz inequality. The reason for this is that we must
not destroy the term Z

M�

j�j2�dH n WD e� R.M� /2

4

on the right-hand side of (1.1). We call R.M� / the shrinker scale (see Definition 5.4).2

On the other hand, cutting off the Łojasiewicz–Simon inequality outside of a ball of

radius R will introduce terms on the order of o.1/e� R2

4 (see Theorem 6.1). Thus,
we must show that M� is graphical over † \ BR for R � R.M� /. More precisely,
we must show that there is u W † ! R with kuk

CS
2;˛
�1

.†/
sufficiently small so that

M� \BR is contained in the graph of u. We call the largest R satisfying this property
the conical scale (see Definition 5.6), denoted by r`.M� /. We would thus like to show
that the conical scale r`.M� / is comparable to the shrinker scale R.M� /.

Observe that this is far from clear: we must show that M� decays like O.r�1/

towards a cone (which is close to the asymptotic cone of †) nearly all the way to
R.M� /. However, if R.M� / is very large, then we have to transmit the graphical
information contained in the core graphical hypothesis (only on a fixed compact set)
essentially all the way to R.M� /, while even obtaining decay!

The way we do this has some features in common with the methods used in [19],
but the argument on the whole is rather different. To obtain control on the conical
scale r`.M� / we first introduce a weaker notion, the rough conical scale Qr`.M� / (see
Definition 5.5), which is the largest radius where the curvature ofM� behaves like the
curvature along a cone. As a preliminary step, we prove that the rough conical scale
improves very rapidly, as long as the core graphical hypothesis .�b;r/ is satisfied.

Indeed, to control the rough conical scale Qr`.M� / we first observe that pseudolo-
cality applied to the unrescaled flow gives curvature estimates on an annular region
that persist all the way up to the singular time (using the fact that the flow is close on
a large compact set to the conical shrinker). This is depicted in Figure 1 (the region
where we obtain curvature estimates is shaded). When translated to the rescaled flow,
this annular region will grow exponentially. This initially seems like a problem, since
the inner boundary is also moving away exponentially. However, as long as the core
graphical hypothesis is satisfied, we can use the pseudolocality estimates at a later
time to get curvature estimates further inside. This is shown in Figure 2. The argu-

2Note that our shrinker scale differs from the definition used in [19] slightly, due to the nature of our Łojasiewicz–
Simon inequality.
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Figure 1. The conical nature of the shrinker † (and thus the unrescaled flow at time t D �1)
yields—via pseudolocality—curvature estimates in the region that is shaded. Note that we can
only expect (1.1) to give useful bounds below the parabola, since this is the set where the back-
wards heat kernel � is uniformly bounded away from zero.

ment we have just described shows that as long as the core graphical hypothesis .�b;r/

applies, we have that Qr`.M� /� Ce
�
2 (see Lemma 9.1).

Finally, we must show that the core graphical hypothesis .�b;r/ together with
the estimate we have just obtained on the rough conical scale Qr`.M� / imply that the
conical scale (i.e., the scale at which we can cut off (1.1)) is comparable to the shrinker
scale R.M� /. Since the rough conical scale is improving exponentially, it basically
suffices to show that the conical and shrinker scales are comparable, when the shrinker
scale is much smaller than the rough conical scale, that is, R.M� / 	 Qr`.M� / (see
(9.1) for the case where this does not hold).

At this point, we can use the argument of Colding and Minicozzi from [19, Corol-
lary 1.28] to argue that because R.M� /	 Qr`.M� /, the function �M�

D 1
2
hx; �M�

i �

HM�
(which measures how close M� is to a shrinker) must be very small (see the

proof of Theorem 8.1).
Finally, we show that this (along with the rough conical scale Qr`.M� / estimates)

suffices to extend the graphicality (and decay estimates) from the core Br nearly all
the way out to the shrinker scale R.M� / (see Proposition 7.2). Because this step is
delicate and forms a key part of the argument, we explain this argument in a model
situation below.

LEMMA 1.3 (Model problem for the extension of the conical scale)
Fix ˇ0 > 0, and suppose that u W R2 ! R satisfies

L 1
2
u WD	u�

1

2
.r@ru� u/D 0
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Figure 2. Assuming that we have control over Mt via (1.1) inside of the wide parabola (for
t 2 Œ�1;� 1

2 /), we can then use pseudolocality out of the conical region inM
� 1

2
to gain curvature

estimates on a larger region (still shaded). This is our first improvement/iteration mechanism.

on R2 and jrkuj DO.r1�k/ for all k 2 N. Finally, assume that kukC 3.BrC2/ � b for

r sufficiently large and b sufficiently small depending3 on ˇ0. Then, there is c W S1 !

R and f W R2 ! R so that outside of B1,

u.r; 
/D c.
/r C f .r; 
/

and kckC 0.S1/ C krf kC 0.R2/ � ˇ0

Before proving this lemma, we explain the relationship with the full improve-
ment/extension result (Proposition 7.2). Firstly, we have considered the simplest pos-
sible conical shrinker R2 � R

3 instead of a general asymptotically conical shrinker
†n � R

nC1. In the full problem, we have that �M�
is very small, so the part ofM� that

is graphical over † roughly solves the graphical shrinker equation. The L 1
2

-operator
is the linearization (at the flat plane) of the shrinker equation, so to simplify this sit-
uation we have simply assumed that L 1

2
uD 0. The higher derivative estimates on u

are the analogue here of the rough conical scale estimates. Finally, the C 3-smallness
of u in BrC2 is analogous to the core graphical hypothesis. We have simplified the
conclusion above—in Proposition 7.2 we prove full CS

2;˛
�1 .†/ estimates for u (but

the result described here contains the essential ideas).
We note that a key technical difficulty present in Proposition 7.2 that does not

occur in this model problem is the fact that M� is not an entire graph over † (and a
priori is only graphical up to Br ). Thus, the argument below must be coupled with a
continuity argument outwards; this necessarily complicates the argument.

3We will think of the jrkuj estimates as being given a priori, so everything here is allowed to depend on the
implied constants.
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Proof
The beginning of the proof is very similar to the proof of [33, Theorem 8.9]. As an
initial step, we treat the Laplacian in L 1

2
as an error term, since 	uDO.r�1/ from

the Hessian estimates on u. Thus, we find that

r2@r

�u
r

�
D r@ru� uDO.r�1/: (1.2)

Integrating this to infinity, we find that

c.
/ WD lim
r!1

u.r; 
/

r

is well defined (and continuous). Thus, we have obtained the asserted decomposition.
It remains to prove the asserted estimates for c and f .

We begin by proving that u
r

is small (we have already proved that it is bounded).
Integrating (1.2) from r to r , we find that

u.r; 
/

r
�
u.r; 
/

r
DO.r�2 � r�2/: (1.3)

In particular,

c.
/D
u.r; 
/

r
CO.r�2/:

We can arrange that the right-hand side is less than ˇ0

2
by choosing r large (to con-

trol the second term) and b small (to control the first term). This proves the desired
estimate for c.
/.

We now turn to the estimate for f . The key idea is to interpolate smallness in
the C 0-norm of u (that we have just obtained) with scale-invariant boundedness of
higher derivatives: this implies that the Laplacian term in L 1

2
is controlled with a

small constant. Then, integrating the resulting ODE estimate to infinity, we obtain
decay (and, more importantly,4 smallness) estimates for f .

First of all, we note that by (1.3), we haveˇ̌
u.r; 
/

ˇ̌
� ı2r;

for r � r , where we can take ı small below (at the cost of taking r larger and b
smaller). Interpolating this (on balls of unit size) with jDkuj DO.r1�k/, for k large,
we find that

j	uj �O.ı/r�1;

4Note that the initial step in the proof can be used to prove decay for f , but not smallness.
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for r � r . Now, returning to L 1
2
uD 0, we have gained smallness in the constant on

the right-hand side of (1.2); that is,

@r

�u
r

�
DO.ı/r�3:

Now, integrating this on Œr;1/, we find that

c.
/D
u.r; 
/

r
CO.ır�2/:

Because u.r; 
/D c.
/r C f .r; 
/, this gives

f .r; 
/DO.ır�1/:

Choosing ı sufficiently small (in terms of ˇ0/, we find that krf kC 0.R2nBr .0// � ˇ0

2
.

This completes the proof (since we already control u, and thus f inside of
Br .0/).

At this point, we have proved that the conical scale r`.M� / is sufficiently large,
so that when cutting off the Łojaisewicz–Simon inequality (1.1) at this scale, the error
terms do not affect the right-hand side of the equation. At this point, we can use the
now-standard uniqueness argument based on the Łojasiewicz inequality for parabolic
equations (cf. [42], [43]). This completes the sketch of the proof of Theorem 1.1.

1.5. Organization of the paper
In Section 2, we prove several estimates on the geometry of asymptotically conical
self-shrinkers. In Section 3, we establish the relevant linear PDE theory in weighted
Hölder and Sobolev spaces. In Section 4, we apply these estimates to establish the
Łojasiewicz–Simon inequality for entire graphs over a conical shrinker. So as to
localize this inequality, in Section 5 we define the various scales used later. This
then allows us to localize the inequality in Section 6. In Section 7, we carry out the
central improvement/extension argument (cf. the model problem Lemma 1.3 above).
In Section 8, we establish our final Łojasiewicz–Simon inequality. Putting this all
together, we prove the uniqueness of conical tangent flows (Theorem 1.1) in Sec-
tion 9. In Appendix A, we recall several standard definitions and conventions, while
in Appendix B we recall some useful interpolation inequalities. Appendix C contains
an analysis of normal graphs and Appendix D recalls the first and second variations
of Gaussian area. Appendix E recalls an entropy-area bound estimate. Finally, we
include a list of notation.

2. Geometric preliminaries
Throughout this section we fix †n � R

nC1 a smooth, smoothly asymptotically coni-
cal self-shrinker. We denote by
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C D lim
t%0

p
�t†

the asymptotic cone of † and assume that Cn is the cone over �n�1 � S
n. Note that

the induced metric on C satisfies

gC D dr ˝ dr C r2g�

for r D jxj the radial variable.
The following estimate is a straightforward consequence of the smooth conver-

gence of
p

�t† to C combined with scaling considerations.

LEMMA 2.1
For R > 0 sufficiently large, the induced metric, g†, on † nBR.0/ satisfies

g† D gC C h

for h a symmetric .0; 2/-tensor on † nBR.0/ satisfying jr.j /hj D o.r�j / as r ! 1,
for all j � 0. The second fundamental form of † satisfies

jr.j /A†j DO.r�j �1/

as r ! 1 for j � 0.

In the sequel, we will improve these estimates based on the fact that † is a self-
shrinker. Indeed, the shrinker equation (A.1) and second fundamental form decay in
the previous lemma combine to yield decay for hx; �†i that is faster than scaling.

COROLLARY 2.2
For R > 0 sufficiently large, we haveˇ̌

r.j /hx; �†i
ˇ̌
DO.r�j �1/

as r ! 1 for j � 0.

2.1. Improved conical estimates for shrinkers

LEMMA 2.3
For R > 0 sufficiently large, there is w 2 C1.C nBR.0// so that

graphw WD
®
pCw.p/�C .p/ W p 2 C nBR.0/

¯
�†

parameterizes † outside of a compact set. The function w satisfies

w DO.r�1/



3612 CHODOSH and SCHULZE

and

r.j /w DO.r�1�j C�/

as r ! 1 for any � > 0 and j � 1. Moreover, the radial derivatives satisfy the
sharper relation @.j /

r w DO.r�1�j /.

Proof
For p 2 � , consider the plane TpC with normal vector �C .p/. After a rotation, we
can assume that TpC D ¹xnC1 D 0º and �C .p/D ˙enC1. Define

�";R WD
®
x 2 TpC W

ˇ̌
hx;pi

ˇ̌
> .1� "/jxj; jxj>R

¯
:

For " > 0 sufficiently small and R sufficiently large, there are u;u1 W �";R ! R so
that

graphuD
®�
y;u.y/

�
W y 2 �";R

¯
�†;

graphu1 D
®�
y;u1.y/

�
W y 2 �";R

¯
� C :

We have that

r.j /u.y/D r.j /u1.y/C o
�
jyj1�j

�
as y ! 1.

We recall that

�† D ˙
.�ru;1/p
1C jruj2

Thus, by Corollary 2.2, we find that˝
y;ru.y/

˛
� u.y/DO

�
jyj�1

�
: (2.1)

Thus, the function v.s/D u.sp/
s

satisfies lims!1 v.s/D 0 (because u1.sp/D 0) and
v0.s/DO.s�3/ by (2.1). Integrating this, we find that

u.sp/DO.s�1/: (2.2)

Thus (taking R larger if necessary), we may find w 2 C1.† nBR.0// so that

graphw WD
®
qCw.q/�C .q/ W q 2 C nBR.0/

¯
�†

parameterizes † outside of a compact set. From (2.2) we find that

jwj DO.r�1/:
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This yields the first asserted decay estimate. Furthermore, scaling considerations
yield

jr.j /wj D o.r1�j /;

as r ! 1 for j � 1. Hence, the second assertion follows by interpolating these two
estimates (cf. Lemma B.1). Finally, by differentiating (2.1) in the radial direction, the
improved radial derivative estimate follows.

COROLLARY 2.4
For R > 0 sufficiently large, we have the following improved estimates on the induced
metric:

g† D dr ˝ dr C r2g� C h

for h a symmetric .0; 2/-tensor on † nBR.0/ satisfying jhj DO.r�2/ and jr.j /hj D

O.r�2�j C�/ as r ! 1, for all j � 1 and � > 0.

Proof
Write F W C nBR.0/!†, F.p/D pCw.p/�C .p/. We compute (using the fact that
AC .@r ; 
/D 0)

@rF D @r C
�
@rw.p/

�
�C .p/;

r�1@!i
F D r�1@!i

C r�1
�
@!i
w.p/

�
�C .p/�w.p/AC jp.r

�1@!i
; 
/:

That jhj DO.r�2/ follows from these expressions and Lemma 2.3. The higher deriva-
tive estimates follow from interpolation, as in Lemma 2.3.

LEMMA 2.5
The unit normal to † satisfies

�†

�
F.p/

�
DO.r�2/@r C

n�1X
j D1

O.r�2C�/r�1@!j
C

�
1�O.r�4C�/

�
�C .p/

for � > 0 as r ! 1.

Proof
Write

�†

�
F.p/

�
DA@r C

n�1X
j D1

Bj r
�1@!j

CC�C .p/; (2.3)
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where

A2 C

n�1X
j D1

B2
j CC 2 D 1:

Because h�†; @rF i D h�†; r
�1@!i

F i D 0, we find that

0DACC
�
@rw.p/

�
;

0D

n�1X
j D1

Bj

�
ıij CO.r�2/

�
CC

�
r�1@!i

w.p/
�
:

This implies the claim.

LEMMA 2.6
We have jr.j /.r@rw.p/�w.p//j DO.r�1�j / for any j � 0.

Proof
Revisiting the proof of Lemma 2.5, we find that the components of �† in (2.3) satisfy

AD �C
�
@rw.p/

�
;

0D

n�1X
j D1

Bj .ıij C Qbj /CC
�
r�1@!i

w.p/
�
;

where j Qbj j D O.r�2/ and jr.j / Qbj j D O.r�2�j C�/. Thus, we find that the expres-
sions from the proof of Lemma 2.5 can be differentiated in the sense that

AD �@rw.p/C a;

Bi D �r�1@!i
w.p/C bi ; C D 1C c;

where jr.j /aj DO.r�5�j C�/, jr.j /bi j D jr.j /cj DO.r�4�j C�//. This implies that˝
F.p/; �†

�
F.p/

�˛
D rACw.p/C Dw.p/� r@rw.p/C .ar � cw/:

Using Corollary 2.2 and the above estimates for a, c, we conclude the proof.

LEMMA 2.7
The second fundamental form of † satisfies

A†.@rF;@rF /DO.r�3/;

A†.@rF; r
�1@!i

F /DO.r�3/;

A†.r
�1@!i

F; r�1@!j
F /DAC .r

�1@!i
; r�1@!j

/CO.r�3C�/
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as r ! 1. Moreover, jr
.k/

C
.A† ı F � AC /j D O.r�3�kC�/ for any � > 0 and

k � 1.

Proof
We compute

@2
r;rF D

�
@2

r;rw.p/
�
�C .p/;

r�1@2
r;!i

F D r�2@!i
C r�1.@2

r;!i
w/�C .p/�

�
@rw.p/

�
AC jp.r

�1@!i
; 
/;

r�2@2
!i ;!j

F DAC jp.r
�1@!i

; r�1@!j
/�C .p/C r�2

�
@2

!i ;!j
w.p/

�
�C .p/

� r�1
�
@!i
w.p/

�
AC jp.r

�1@!j
; 
/

� r�1
�
@!j

w.p/
�
AC jp.r

�1@!i
; 
/

�w.p/.rr�1@!j
AC /jp.r

�1@!i
; 
/:

Using Lemma 2.5, the first and third equations follow immediately. For the second,
we use the expression for r�1@wi

F (which is orthogonal to �†.F.p// to write

r�1@2
r;!i

F D r�2@!i
F C r�2

�
r@2

r;!i
w � @!i

w.p/
�
�C .p/

C r�1
�
w.p/� r@rw.p/

�
AC jp.r

�1@!i
; 
/:

Using Lemmas 2.5 and 2.6, the first estimates follow. The higher derivatives follow
by differentiating these expressions.

LEMMA 2.8
The vector field V WD projT †F.p/ � r@rF is tangent to † and satisfies jV j D

O.r�1/, jr.k/V j DO.r�1�kC�/ for � > 0.

Proof
Because hF.p/; �†.F.p//i DO.r�1/, we compute

projT †F.p/D F.p/�
˝
F.p/; �†

�
F.p/

�˛
�†

�
F.p/

�
D pCw.p/�C .p/CO.r�1/

D r@r Cw.p/�C .p/CO.r�1/

D r@rF CO.r�1/:

The higher derivatives follow similarly.

The function w from Lemma 2.3 gives a diffeomorphism from C n BR.0/ '

� � ŒR;1/ to the noncompact part of †, where we recall that � is the link of the
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asymptotic cone C . We will thus parameterize points of † by .r;!/ 2 � � ŒR;1/

below. We will write gC for the metric on the end of † given by

gC D dr ˝ dr C r2g�

in this parameterization. We emphasize that the coordinate r along † is not exactly
equal to dR3.
; 0/ (like it is along the cone). It is useful to extend r to Qr defined on all
of † so that Qr � 1 on † and Qr D r outside of BR for R as above.

LEMMA 2.9
The radial derivative satisfies

Ex 
 r†f D r@rf C ˛3 
 rgC
f;

where j˛3j DO.r�1/ and jr.j /˛3j DO.r�1�j C�/ for � > 0 and j � 1, as r ! 1.

Proof
This follows from Lemma 2.8.

3. Linear estimates in weighted spaces
In this section, we consider the relevant weighted function spaces which will play
a role in our proof of the Łojasiewicz–Simon inequality for the conical shrinker
†n � R

nC1. Our choice of Hölder spaces will be heavily influenced by the work
of Kapouleas, Kleene, and Møller [33] except for the complication that in [33], it
was only necessary to define the spaces on a flat R2 (which is, of course, a coni-
cal shrinker), whereas here we must consider general conical shrinkers. Additionally,
in various points of [33], the discrete symmetry of the problem was used in certain
places, which will not be available to us here.

3.1. Weighted Hölder spaces
We now define the relevant weighted Hölder spaces. We begin with the most basic
weighted space.

Definition 3.1 (Homogeneously weighted Hölder spaces)
We define a norm, for � 2 R,

kf khom
0I�� WD sup

x2†

Qr.x/�
ˇ̌
f .x/

ˇ̌
and a seminorm

Œf 
hom
˛I���˛ WD sup

x;y2†

1

Qr.x/���˛ C Qr.y/���˛

jf .x/� f .y/j

jx � yj˛
:
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We thus define C 0;˛
hom;�� .†/ to be the set of functions f W†! R so that

kf khom
0;˛I�� WD kf khom

0I�� C Œf 
hom
˛I���˛

is finite. Similarly, we define C 2;˛
hom;�� .†/ to be the set of functions f W † ! 1 so

that the norm

kf khom
2;˛I�� D

2X
j D0

��.r†/
.j /f

��hom
0;˛I��

is finite.

Loosely speaking, C 2;˛
hom;�� .†/ is the space of C 2;˛-functions whose C 2;˛-norm

falls off like r�� at infinity. We now define a space which will require stronger weights
in the radial direction.

Definition 3.2 (Anisotropically weighted Hölder spaces)
We define C 2;˛

an;�1.†/ to be the space of f 2 C
2;˛
hom;�1.†/ so that

kf kan
2;˛I�1 WD kf khom

2;˛I�1 C kEx 
 r†f khom
0;˛I�1

is finite.

Now, we fix a cutoff function � W Œ0;1/! Œ0; 1
 so that supp�� ŒR;1/, �� 1

in Œ2R;1/, and jrj�j � CR�j for j � 1 and C independent of R sufficiently large.
This now allows us to define our primary Hölder space.

Definition 3.3 (Cone Hölder spaces)
We define CS

0;˛
�1 .†/ WD C

0;˛
hom;�1.†/ and

CS
2;˛
�1 .†/ WD C 2;˛.�/�C

2;˛
an;�1.†/:

An element .c; f / 2 CS
2;˛
�1 .†/ will be considered as a function on † given by

uD u.c;f /.r;!/D �.r/c.!/r C f .r;!/

for r �R, and uD f otherwise. We will frequently conflate u with .c; f /. We take
the norm

kuk
CS

2;˛
�1

.†/
WD kckC 2;˛.�/ C kf kan

2;˛I�1:

Observe that an element of CS
2;˛
�1 .†/ is allowed to grow linearly at infinity, but

only in a particularly prescribed manner. The remaining terms then must decay like
r�1. It is a standard exercise to observe that all of the above spaces are indeed Banach
spaces.
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3.2. Mapping properties
We observe that the cone spaces are well suited to the analysis of the L 1

2
-operator

L 1
2
u WD	†u�

1

2
Ex 
 r†uC

1

2
u

(see also Definition A.5) in the following sense.

LEMMA 3.4
For a W † ! R with kakC 0;˛.B1.x// D O.jxj�2/ for x 2 † with jxj ! 1, that is,

a 2 C
0;˛
homI�2.†/, we have that the operator

L 1
2

C a W CS
2;˛
�1 .†/! CS

0;˛
�1 .†/

is bounded.

Proof
This follows directly from the definition of the cone spaces (after observing that the
linear term rc.!/ exhibits a cancellation in the term 1

2
.u � Ex 
 r†u/; note that this

fact does not hold for general L� when � ¤ 1
2

).

3.3. Schauder estimates
In this section, we prove Schauder estimates for the L-operator in the cone Hölder
spaces. These estimates are essentially the generalization of [33, Proposition 8.8] to
our setting, and we will closely follow their arguments, with some necessary mod-
ifications as discussed above. We note that Schauder estimates for the linearization
of the expander equation on asymptotically conical self-expanders were proved by a
related method in [8, Proposition 5.3].

PROPOSITION 3.5
Consider a W†! R with kakC 0;˛.B1.x// DO.jxj�2/ for x 2† with jxj ! 1, that

is, a 2 C
0;˛
homI�2.†/. Then there is C D C.†;a/ so that if u 2 C

2;˛
loc .†/\C 0

homIC1.†/

has L 1
2
uC au 2 CS

0;˛
�1 .†/, then u 2 CS

2;˛
�1 .†/ and we have the estimate

kuk
CS

2;˛
�1

.†/
� C

�
kukC 0

hom;C1
.†/ C kL 1

2
uC auk

CS
0;˛
�1

.†/

�
:

Because the L-operator is related to the linearization of the shrinker equation,
which is in turn a special case of the mean curvature flow (whose linearization is
related to the heat equation), we might expect that such an estimate can be proved
from standard parabolic Schauder estimates. This is nearly the case, except it turns
out that the appropriate time parameterization of the equations will produce functions
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which are not Hölder continuous (at t D 0) in the time variables. As such, we will
require the following nonstandard parabolic Schauder estimates due to Brandt [10].
We note that these estimates were strengthened in [36] (see also [37]) but we will not
make use of these stronger estimates here.

THEOREM 3.6 (Nonstandard interior Schauder estimates; see [10])
Suppose that B2 � R

n and we are given coefficients aij .x; t/; bi .x; t/; c W B2 �

Œ�2; 0
! R and functions f;u WB2 � Œ�2; 0
! R so that u is a classical solution of

@u

@t
� aijD

2
iju� biDiu� cuD f:

Assume that the coefficients aij , bi , c have spatial Hölder norms bounded uniformly
in time, that is,

sup
t2Œ�2;0�

���aij .
; t /
��

C 0;˛.B1/
C

��bi .
; t /
��

C 0;˛.B1/
C

��c.
; t /��
C 0;˛.B1/

�
<ƒ;

and that the equation is uniformly parabolic in the sense that

aij .x; t/�i�j � �j�j2

for � > 0. Then, for T 2 .�1; 0
,

sup
t2Œ�1;T �

��u.
; t /��
C 2;˛.B1/

� C sup
t2Œ�2;T �

���u.
; t /��
C 0.B2/

C
��f .
; t /��

C 0;˛.B2/

�

for some C D C.n;�;ƒ/.

We now explain how to relate the L 1
2

-operator considered in Proposition 3.5 to
a parabolic equation where we can apply Theorem 3.6.

Definition 3.7 (Intrinsic shrinker quantities)
It is useful to consider the intrinsic behavior of the shrinker † under the mean cur-
vature flow. To this end, for t 2 Œ�1; 0/, we define the (time-dependent) vector field
Xt D 1

2.�t/
xT . Here xT is the tangential component of the position vector along

†. For t 2 Œ�1; 0/, define ˆt W † ! † to be the family of diffeomorphisms gener-
ated by Xt (i.e., @

@t
ˆt D Xt ı ˆt ) with ˆ�1 D Id. Finally, define the metric Ogt WD

.�t /ˆ�
t g†.

Observe that if F W†! R
nC1 is the embedding of † in R

nC1, then

OFt WD
p

�t.F ıˆt / W†! R
nC1
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is a mean curvature flow of hypersurfaces parameterized by normal speed. Moreover,
we have that Ogt D OF �

t gRnC1 . Thus, because the (extrinsic) blowdown of † is C ,
we see that .†; Ogt ; p/ converges in the pointed C1-Cheeger–Gromov sense to (the
incomplete metric) .C ; gC ; p/ for any point p sufficiently far out in the conical part
of †. This will be useful in the sequel.

As in the proof of Corollary 2.4, we write the end of † via the map F W C n

Br .0/!†, p 7! F.p/Cw.p/�C .p/ as a normal graph over the cone C with coor-
dinates .r;!/ 2 � � ŒR;1/ for R sufficiently large. We consider the induced flow of
ˆt in these coordinates, that is,

Q̂
t WD F �1 ıˆt ıF:

For t 2 Œ�1; 0/, we consider the map

�t W .R;1/� � ! .R;1/� �; .r;!/ 7!
�
.�t /�1=2r;!

�
:

Then we have the following estimates.

LEMMA 3.8
For t 2 Œ�1; 0/, for r sufficiently large, we have

dgC

�
Q̂

t .r; 
/; �t .r; 
/
�
� 1

p
�tr

:

Moreover, in the coordinates .r;!/ we have the (nonsharp) estimate5

ˇ̌
D.j /. Q̂

t � �t /
ˇ̌
.r; 
/� 1

p
�tr1Cj ��

for j � 1 and � > 0.

Proof
We denote the ambient radius by r.x/ WD jxj and compute along†, using Lemma 2.8,

@

@t
.r ıˆt /D .r P̂

t
r/ ıˆt

D
1

2.�t /
hxT ;rrig ıˆt

D
1

2.�t /

�
r ıˆt CO

�
.r ıˆt /

�1
��
:

5We emphasize that in this estimate we are not using the conical metric, but rather the flat cylindrical metric
dr2 C g� to estimate these derivatives. This avoids defining derivatives of diffeomorphisms as sections of an
appropriate bundle and this estimate here suffices for our purposes.
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Integrating this, we see that

1
p

�t

�
r.x/�

c

r.x/

�
� r

�
ˆt .x/

�
�

1
p

�t

�
r.x/�

c

r.x/

�
: (3.1)

Now, we have that

xT D r@rF CO.r�1/

by Lemma 2.8. This implies that

@

@t
Q̂

t D
1

2.�t /

�
r@r CO.r�1/@r CO.r�2/@!i

�
; (3.2)

where the right-hand side is evaluated at Q̂
t .
/. Note that �t satisfies

@

@t
�t D

1

2.�t /
r@r ;

where the right-hand side is evaluated at �t .
/. In combination with (3.1), this implies
that

@

@t
dgC

�
Q̂

t .
/; �t .
/
�

�
1

2.�t /

�
dgC

�
Q̂

t .
/; �t .
/
�

C
c

r.ˆt .
//

�

�
1

2.�t /

�
dgC

�
Q̂

t .
/; �t .
/
�

C
c

r.
/

p
�t

�
:

Integrating this yields

dgC

�
Q̂

t .
/; �t .
/
�

�
c

p
�tr.
/

:

The derivative estimates follow similarly.

Now, assume that L 1
2
uC auD E for some u 2 C

2;˛
loc .†/ and a W † ! R with

kakC 0;˛.B1.x// DO.jxj�2/ for x 2† with jxj ! 1. We define

Ou.x; t/ WD
p

�t.u
�
ˆt .x/

�
; OE.x; t/ WD

1
p

�t
E

�
ˆt .x/

�
;

Oa.x; t/ D
1

.�t /
a
�
ˆt .x/

�
:

Then we find that

	 Ogt
OuD

1
p

�t
.	gu/ ıˆt ;
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since the Laplacian is diffeomorphism invariant, as well as

@ Ou

@t
D

p
�t .rXt

u/ ıˆt �
1

2
p

�t
u ıˆt

D
1

2
p

�t
.Ex 
 r†u ıˆt � u ıˆt /:

We thus find that

@ Ou

@t
�	 Ogt

Ou� Oa OuD OE: (3.3)

We now use this equation in conjunction with Theorem 3.6 to prove the desired
Schauder estimates. Observe that Lemma 3.8 and the presumed decay of a shows that
Oa.
; t / is uniformly bounded in C 0;˛ on sufficiently far out balls of unit size, allowing
us to apply Theorem 3.6.

Proof of Proposition 3.5
We can choose R sufficiently large such that the normal evolution of †t WD

p
t 
†

for t 2 Œ�2; 0/ is almost orthogonal to x outside of BR=4. Applying Theorem 3.6 to
(3.3) we find that (where the implied constant is independent of R sufficiently large)

sup
t2Œ�1;0/

��D2
x Ou.
; t /

��
C 0.†t \.BRC2.0/nBRC1.0///

C sup
t2Œ�1;0/

��Dx Ou.
; t /
��

C 0.†t \.BRC2.0/nBRC1.0///

C sup
t2Œ�1;0/

�
D2

x Ou.
; t /
�

˛I†t \.BRC2.0/nBRC1.0///

� sup
t2Œ�2;0/

�� Ou.
; t /
��

C 0.†t \.BRC3.0/nBR.0///

C sup
t2Œ�2;0/

�
OE.
; t /

�
˛I†t \.BRC3.0/nBR.0///

:

On the other hand, Lemma 3.8 implies that for R sufficiently large, we can estimate
the Hölder norms of Ou in terms of weighted norms of u as follows:

sup
t2Œ�1;0/

��D2
x Ou.
; t /

��
C 0.†\.BRC2.0/nBRC1.0///

C sup
t2Œ�1;0/

��Dx Ou.
; t /
��

C 0.†\.BRC2.0/nBRC1.0///

C sup
t2Œ�1;0/

�
D2

x Ou.
; t /
�

˛I†\.BRC2.0/nBRC1.0//

� sup
x2†nBRC1.0/

r.x/
ˇ̌
D2u.x/

ˇ̌
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C sup
x;y2†nBRC1.0/

1

r.x/�1�˛ C r.y/�1�˛

jD2u.x/�D2u.y/j

jx � yj˛
:

Arguing similarly for the other terms, we thus rewrite the above parabolic Schauder
estimates as weighted elliptic estimates:

sup
x2†nBRC1.0/

r.x/
ˇ̌
D2u.x/

ˇ̌

C sup
x;y2†nBRC1.0/

1

r.x/�1�˛ C r.y/�1�˛

jD2u.x/�D2u.y/j

jx � yj˛

� sup
x2†nBR=2.0/

r.x/�1
ˇ̌
u.x/

ˇ̌
C sup

x2†nBR=2.0/

r.x/
ˇ̌
E.x/

ˇ̌

C sup
x;y2†nBR=2.0/

1

r.x/�1�˛ C r.y/�1�˛

jE.x/�E.y/j

jx � yj˛
:

This implies that

kD2uk
CS

0;˛
�1

.†nBRC1.0//

D sup
x2†nBRC1.0/

r.x/
ˇ̌
D2u.x/

ˇ̌

C sup
x;y2†nBRC1.0/

1

r.x/�1�˛ C r.y/�1�˛

jD2u.x/�D2u.y/j

jx � yj˛

� sup
x2†nBR=2.0/

r.x/�1
ˇ̌
u.x/

ˇ̌
C sup

x2†nBR=2.0/

r.x/
ˇ̌
E.x/

ˇ̌

C sup
x;y2†nBR=2.0/

1

r.x/�1�˛ C r.y/�1�˛

jE.x/�E.y/j

jx � yj˛

� kukC 0
homIC1

.†nBR=2.0// C kEk
CS

0;˛
�1

.†nBR=2.0//
:

Arguing similarly for Du and combining all of this with standard interior (ellip-
tic) Schauder theory, we thus find that

kDuk
CS

0;˛
�1

.†/
C kD2uk

CS
0;˛
�1

.†/
� kukC 0

homIC1
.†/ C kEk

CS
0;˛
�1

.†/
: (3.4)

Note that we can combine this inequality with an interpolation between u in C 0 and
C 1 to find that

kuk
C

0;˛
homIC1

.†/
� kukC 0

homIC1
.†/ C kEk

CS
0;˛
�1

.†/
:

This allows us to bound au in CS
0;˛
�1 .†/ in the sequel.
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We now argue that u can be decomposed as u.r;!/D �.r/c.!/rCf .r;!/mak-
ing u into an element of CS

2;˛
�1 .†/. We have that

w WD r@ru� uD �2E C 2	uC 2au� .Ex 
 r†u� r@ru/:

Combining (3.4) with Lemma 2.8, we see that w 2 CS
0;˛
�1 with

kwk
CS

0;˛
�1

.†/
� kukC 0

homIC1
.†/ C kEk

CS
0;˛
�1

.†/
:

Now, we define

c.!/ WD
u.R;!/

R
C

Z 1

R

w.s;!/

s2
ds; (3.5)

where R is chosen large above (we emphasize that this expression is independent of
the choice of R and that the integral is finite, thanks to the fact that w 2 CS

0;˛
�1 .†/).

We note that the functions

! 7!
u.r;!/

r

have uniformly bounded C 2;˛.�/-norm for r sufficiently large. On the one hand, they
converge in C 0;˛.�/ to c.!/ by the previous analysis. On the other hand, by Arzelà–
Ascoli, they converge in C 2;ˇ .�/ (for any ˇ < ˛) to c.!/ 2 C 2;˛.�/, and we find
that (by lower semicontinuity of the Hölder norm in this situation)

kckC 2;˛.�/ � kD2uk
CS

0;˛
�1

.†/
� kukC 0

homIC1
.†/ C kEk

CS
0;˛
�1

.†/
;

where we again used (3.4) in the second inequality. Now, defining

f .r;!/D �.r/c.!/r � u.r;!/;

we see that f 2 C
2;˛
loc .†/. Note that for r sufficiently large we have from (3.5) that

f .r;!/D r

Z 1

r

w.s;!/

s2
ds;

which implies that

kf k
CS

0;˛
�1

.†/
� kukC 0

homIC1
.†/ C kEk

CS
0;˛
�1

.†/
:

Moreover, using the estimates for D2u (and for D2.�.r/rc.!// which are easily
derived from the C 2;˛ estimate for c), along with interpolation, we find that

kf k
C

2;˛
hom;�1

.†/
� kukC 0

homIC1
.†/ C kEk

CS
0;˛
�1

.†/
:
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Finally, it remains to estimate Ex 
 r†f 2 C
0;˛
hom;�1.†/. However, this follows from

r@rf D f �w

and Lemma 2.8. This completes the proof.

3.4. Weighted Sobolev spaces
In this section, we combine the Hölder space theory developed above, with inte-
gral estimates and a Fredholm alternative to establish existence results for the L 1

2
-

operator. The way to use these weighted Sobolev spaces to prove the Fredholm alter-
native (cf. Theorem 3.14 below) was explained to us by Bernstein [3].

We denote by L2
W the space of measurable functions f W†! R with

kf k2
W WD

Z
†

f 2�dH n <1:

We then define the Sobolev norm

kf k2
W;k WD

kX
j D0

��.r†/
jf

��2

W
:

It is easy to see that the associated Sobolev space H k
W .†/ is precisely the closure of

C1
0 .†/ under this norm.

We recall the following Sobolev inequality due to Ecker [22, p. 109] (see also [6,
Lemma B.1].

PROPOSITION 3.9
For f 2H 1

W .†/, we haveZ
†

f 2jxj2�dH n � 4

Z
†

�
nf 2 C 4jr†f j2

�
�dH n:

Proof
Assume first that f 2 C1

0 .†/. Consider the vector field V WD f 2�Ex in the
(Euclidean) first variation formula along †. We obtainZ

†

�
nf 2 C 2f Ex 
 r†f �

1

2
f 2jxT j2

�
�dH n D

Z
†

f 2H hx; �†i�dH n:

Using the shrinker equation, we thus find thatZ
†

.nf 2 C 2f Ex 
 r†f /� dH n D
1

2

Z
†

f 2jxj2�dH n:

Thus, we find that
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1

2

Z
†

f 2jxj2�dH n �

Z
†

.nf 2 C 2f Ex 
 r†f /� dH n

�

Z
†

�
nf 2 C 4jr†f j2 C

1

4
jxj2f 2

�
�dH n:

Now let f 2 H 1
W .†/, and choose fi 2 C1

0 .†/ such that fi ! f in H 1
W .†/. The

above estimate yields, for any R > 0,Z
†\BR.0/

f 2
i jxj2�dH n � 4

Z
†

�
nf 2

i C 4jr†fi j
2
�
�dH n:

Letting i ! 1 and then R! 1 yields the statement.

COROLLARY 3.10
The map L� WH 2

W .†/!L2
W .†/ is bounded.

Proof
Apply Ecker’s Sobolev inequality to the gradient of f to bound Ex 
 r†f 2 L2

W .†/.

LEMMA 3.11 (cf. [9, Proposition 3.4])
For f 2H 2

W .†/,

kf k2
W;1 � kL0f kW kf kW :

Proof
It suffices to prove this for f 2 C1

0 .†/. Note that L0 is self-adjoint with respect to
the Gaussian area. Thus,

0D

Z
†

L0.f
2/� dH n D 2

Z
†

�
jrf j2 C fL0f

�
�dH n:

This proves the claim.

LEMMA 3.12 ([6, Proposition B.2])
The inclusion H 1

W �L2
W is compact.

Proof
For fj 2H 1

W with kfj kH 1
W

� C , the classical Rellich compactness theorem applied

to an exhaustion of † shows that (after passing to a subsequence) there is f 2H 1
W

so that fj ! f in L2
loc. That fj ! f follows easily from Ecker’s Sobolev inequality,

which implies that
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†nB�.0/

.fj � f /2�dH n � C

�2
:

This concludes the proof.

LEMMA 3.13 (cf. [9, Proposition 3.4])
For f 2H 2

W .†/, we have

kf k2
W;2 � C

�
kL0f k2

W C kf k2
W

�
:

Proof
It suffices to prove this for f 2 C1

0 .†/. Using the Bochner identity and the Gauss
equations, we find (using jA†j DO.1/) that

1

2
L0jr†f j2

D jr2f j2 C hr†	†f;r†f i C Ric†.r†f;r†f /�
1

4

˝
x;rjrf j2

˛
D jr2f j2 C hr†	†f;r†f i �

1

4

˝
x;rjrf j2

˛
CH† 
A†.r†f;r†f /� .A†/

2.r†f;r†f /

D jr2f j2 C hr†L0f;r†f i C
1

2

˝
r†.Ex 
 r†f /;r†f

˛
�
1

4

˝
x;rjrf j2

˛
CH† 
A†.r†f;r†f /� .A†/

2.r†f;r†f /

D jr2f j2 C hr†L0f;r†f i C
1

2
jr†f j2

CH† 
A†.r†f;r†f /� .A†/
2.r†f;r†f /

D jr2f j2 C hr†L0f;r†f i CO
�
jr†f j2

�
:

Integrating this and using that L0 is self-adjoint with respect to the Gaussian area, the
conclusion follows (after integrating by parts the second term on the right-hand side,
and using Lemma 3.11 to control the H 1

W -norm of f ).

This suffices to establish an existence theory for the L-operator (cf. [9, Proposi-
tion 3.4]), where

L WD L 1
2

C jA†j2 D	† �
1

2
.Ex 
 r† � 1/C jA†j2:

Define
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B� .u; v/ WD

Z
†

�
hr†u;r†vi C

�
� � jA†j2 �

1

2

�
uv

�
�dH n;

the bilinear form naturally associated to LC � . For � sufficiently large so that � �

max† jA†j2 C 3
2

, we see that

kuk2
W;1 �B� .u; v/;

so B� is coercive on H 1
W .†/. It is clearly bounded, so applying the Lax–Milgram

theorem, and applying the standard Fredholm alternative to this setting (combining
Lemma 3.13 with Lemma 3.12), we have the following result.

THEOREM 3.14
The space kerL �H 1

W of weak solutions to LuD 0 is finite-dimensional. For f 2

L2
W .†/, LuD f has a weak solution in H 1

W .†/ if and only if f is L2
W -orthogonal

to kerL. Moreover, if u is orthogonal to kerL and satisfies LuD f , then we have
the estimate kukH 2

W
.†/ � Ckf kL2

W
.†/.

To complete this section, we now show that for f 2 CS˛
�1.†/ perpendicular to

kerL, we can solve Lu D f . It remains to check that a solution of Lu D f with
f 2 CS

0;˛
�1 .†/ satisfies u 2 C 0

homIC1.†/ a priori.

LEMMA 3.15
For f 2L2

W .†/\C 0.†/, if LuD f for u 2H 1
W .†/, then u 2 C 0

homIC1.†/ and for
R sufficiently large,

kukC 0
homIC1

.†/ � kf kC 0.†/ C kukC 0.†\BR.0//:

Proof
For ' W RnC1 ! R, we compute

L' D	†' �
1

2
.Ex 
 r†' � '/C jA†j2'

D	RnC1' �D2'.�†; �†/�H†h�†;rRnC1'i �
1

2
.Ex 
 r†' � '/C jA†j2'

D	RnC1' �D2'.�†; �†/�
1

2
hEx;rRnC1'i C

1

2
' C jA†j2':

We consider '.x/D ˛jxj � ˇ. Then,

L' D ˛
�n� 1

jxj
�

hEx; �†i2

jxj3

�
�
1

2
ˇCO

�
jxj�2

��
˛jxj � ˇ

�

� �
1

2

�
1CO

�
jxj�2

��
ˇCO

�
jxj�1

�
˛:
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Thus, v D u� ' satisfies

Lv � f C
1

2

�
1CO

�
jxj�2

��
ˇ �O

�
jxj�1

�
˛:

We fix R �R.†/ and set

˛ D 2 sup
†

jf j C 2R�1 sup
†\@BR.0/

juj;

ˇ D 4 sup
†

jf j CR�1 sup
†\@BR.0/

juj:

This yields

Lv �
�
1�O.R�1/

�
sup

†

jf j C
1

2
R�1

�
1CO.R�1/

�
sup

†\@BR.0/

juj> 0;

for R sufficiently large. Moreover, we find that

sup
†\@BR

v � �.1�R�1/ sup
†\@BR

juj � 2.R� 2/ sup
†

jf j< 0

as long asR is sufficiently large. Thus, we have arranged that v � 0 in a neighborhood
of †\ @BR.0/. We now argue that v � 0 on † nBR.0/. Because vC 2H 1

W , we find
that

�

Z
†nBR.0/

jA†j2.vC/2�dH n �

Z
†nBR.0/

vCL 1
2
v�dH n

D

Z
†nBR.0/

�
�jrvCj2 C

1

2
.vC/2

�
�dH n:

Thus, using Ecker’s Sobolev inequality, Proposition 3.9, we find that

R2

Z
†nBR.0/

.vC/2�dH n �
�
8C 4nCO.R�2/

�Z
†nBR.0/

.vC/2�dH n:

For R sufficiently large, we thus see that vC � 0. Thus, u� ' on † nBR.0/. Apply-
ing the same reasoning to �u completes the proof.

Combining this estimate with Proposition 3.5 we arrive at the following.

COROLLARY 3.16
For f 2 CS

0;˛
�1 .†/, if u 2H 1

W .†/ satisfies LuD f weakly, then u 2 CS
2;˛
�1 .†/ and

for R > 0 fixed sufficiently large,

kuk
CS

2;˛
�1

.†/
� kukC 0.†\BR.0// C kf kCS0;˛.†/:
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Combined with Theorem 3.14, we thus see that the following standard solvability
condition continues to hold in our setting.

COROLLARY 3.17
If f 2 CS

0;˛
�1 .†/, then we can find u 2 CS

2;˛
�1 .†/ solving LuD f if and only if f is

L2
W -orthogonal to kerL�H 1

W .†/.

4. The Łojasiewicz–Simon inequality for entire graphs
We now show that the weighted Hölder and Sobolev spaces considered in the previ-
ous section (along with the solvability criteria proved for L) provides a framework to
prove the Łojasiewicz–Simon inequality following the arguments in the compact case
(cf. [42]–[44], [50]). By the Fredholm alternative, Theorem 3.14, kerL�H 1

W .†/ is
finite-dimensional and we can define … W L2

W .†/ ! L2
W .†/ \ CS

2;˛
�1 .†/, the pro-

jection onto kerL.
Recall (see Appendix D) that the Euler–Lagrange equation (with respect to the

L2
W -inner product) is

M.v/D…T ?†

�
EHM C

x?

2

�ˇ̌̌
xDyCv.y/�†.y/

J.y; v;r†v/

� �
�
y C v.y/�†

�
�.y/�1; (4.1)

where …T ?† is the projection onto the normal bundle to † and

J.y; v;r†v/D Jac
�
D expy

�
v.y/�†.y/

��
is the area element.

We now observe that M is a well-behaved map between the weighted Hölder
spaces considered in the previous section.

LEMMA 4.1
For ˇ sufficiently small depending on †, we have a continuous map

M W CS
2;˛
�1 .†/\

®
kuk

CS
2;˛
�1

.†/
< ˇ

¯
! CS

0;˛
�1 .†/:

Moreover, M is Fréchet differentiable with derivative at 0 given by L.

Proof
Fix v 2 CS

2;˛
�1 .†/\ ¹kuk

CS
2;˛
�1

.†/
< ˇº. Note that

J.y; v;r†v/�
�
y C v.y/�†

�
�.y/�1

D J.y; v;r†v/ exp
�
�
2v.y/hy; �†i C .v.y//2

4

�
(4.2)
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and this is easily seen to be uniformly bounded in C 0;˛.†\B1.y// as y 2†! 1.
Thus, it remains to check the first term. Observe that the mean curvature term is
uniformly bounded in C 0;˛.†\B1.y// by c=r as y 2†! 1. Recall that differen-
tiating the shrinker equation yields (or see Lemmas 2.7 and 2.8)

A.xT ; 
/DO.r�2/:

Combining this with (C.1) and the shrinker equation for † we get for the other term
that

hx; �i D
�
1C

ˇ̌
.Id � vS/�1.rMv/

ˇ̌2�� 1
2
�
v � hy;r†vi

�
CO

�
jyj�1

�
in C 0;˛.† \ B1.y// as y ! 1. Observing that v 7! v � hy;r†vi is a bounded
map CS

2;˛
�1 .†/ ! CS

0;˛
�1 .†/) we obtain the first assertion. The second follows

similarly.

We define

N WD M C…

which has the same mapping properties as M. Moreover, N is Fréchet differentiable
with derivative at 0 given by LC… (which is bijective as a linear map CS

2;˛
�1 .†/!

CS
0;˛
�1 .†/). Thus, the implicit function theorem allows us to find open neighborhoods

of 0,

W1 � CS
2;˛
�1 .†/\

®
kuk

CS
2;˛
�1

.†/
< ˇ

¯
;

W2 � CS
0;˛
�1 .†/

so that N W W1 ! W2 is bijective with inverse ‰ W W2 ! W1. Moreover (cf. [44,
Section 3.13] and [42, p. 168]), N and ‰ are holomorphic, after tensoring with C

(and possibly shrinking W1, W2).
We now prove that M is continuous as a map H 2

W \W1 ! L2
W and that ‰ is

continuous as a map L2
W \W2 !H 2

W .

LEMMA 4.2
Shrinking W1, W2 if necessary, there is C > 0 so that��M.u1/� M.u2/

��
L2

W
.†/

� Cku1 � u2kH 2
W

.†/

for u1; u2 2W1, and, moreover,��‰.f1/�‰.f2/
��

H 2
W

.†/
� Ckf1 � f2kL2

W
.†/

for f1; f2 2W2.
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Proof
We claim that

M.u1/� M.u2/D L.u1 � u2/CA 
 r2.u1 � u2/

CB 
 r.u1 � u2/CC.u1 � u2/; (4.3)

where

sup
†

�
jAj C jBj C jC j

�
� ku1k

CS
2;˛
�1

.†/
C ku2k

CS
2;˛
�1

.†/
: (4.4)

This follows from using (4.1), (C.2), (C.3), and (C.4) together with the shrinker equa-
tion along † to write

M.u/DLuCQ.p;u;ru;r2u/

and interpolating Q.p;u;ru;r2u/ in the standard way between u1 and u2. Com-
bined with Corollary 3.10, this proves the first assertion. The second claim now fol-
lows from standard arguments (cf. [44, Section 3.12]) given (4.3), (4.4), and Theo-
rem 3.14.

At this point, we can follow the arguments in [44, Sections 3.11–3.13] essentially
verbatim (except we use Corollary 3.17, Theorem 3.14, Lemma 4.1, and Lemma 4.2
in place of their standard counterparts in the compact case) to prove the following.

THEOREM 4.3 (Łojasiewicz–Simon inequality for entire graphs)
There is ˇ0 > 0 sufficiently small, 
 2 .0; 1

2
/, and C > 0, all depending on †, so that

ifM is the graph over † of a function in u 2 CS
2;˛
�1 .†/ with kuk

CS
2;˛
�1

.†/
< ˇ0, then

ˇ̌
F.M/� F.†/

ˇ̌1��
� C

��M.u/
��

L2
W

.†/
� C

�Z
M

j�j2�dH n
� 1

2

:

We note that the second inequality here follows a similar reasoning to (4.2) (so
as to control the change in � when evaluated along M and as opposed to †).

5. Defining the relevant scales
In order to apply the inequality obtained in Theorem 4.3, we must understand the
various geometric scales involved.

5.1. Pseudolocality and the scale of the core of the shrinker
These definitions are relevant to the pseudolocality-based improvement argument in
Lemma 9.1.
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PROPOSITION 5.1 (Pseudolocality [32, Theorem 1.5])
Given ı > 0, there exists � > 0 and a constant � D �.n; ı/ 2 .0;1/ such that if a
mean curvature flow ¹Mtºt2Œ�1;0� satisfies that M�1 \ B	.0/ is a Lipschitz graph
over the plane ¹xnC1 D 0º with Lipschitz constant less than � and 0 2 M�1, then
Mt \B	.0/ intersectsBı.0/ andMt \Bı.0/ remains a Lipschitz graph over ¹xnC1 D

0º with Lipschitz constant less than ı for all t 2 Œ�1; 0
.

Definition 5.2 (Fixing the pseudolocality constants)
We will fix ı D 10�2 in the preceding pseudolocality result. We denote the corre-
sponding � by �� and �D ��. For consistency, we also write ı� D ı. We will always
assume that �� � 1.

Definition 5.3 (Scale of the core of the conical shrinker)
For an asymptotically conical self-shrinker †n � R

nC1, we choose R.†/ so that for
x 2 † n BR.†/.0/, we have that † \ B2	�

.x/ is a Lipschitz graph over Tx† with
Lipchitz constant less than ��=2. Furthermore, we require that the map from the end
of C described in Lemma 2.3 be defined outside of BR.†/�1.

It is clear that for an asymptotically conical shrinker, we may take R.†/ <1.

5.2. Scales of hypersurfaces near the shrinker
The definitions here are relevant to the radius at which one can apply a cutoff version
of Theorem 4.3.

Definition 5.4 (Shrinker scale)
For M n � R

nC1, we define the shrinker scale R.M/ by

e� R.M /2

4 WD jrMF j2 D

Z
M

j�j2�dH n: (5.1)

Definition 5.5 (Rough conical scale)
For M n � R

nC1, ` 2 N, and C` > 0, we define the rough conical scale Qr`.M/ to be
the largest radius so that M n \BQr`.M /.0/ is smooth and

jr.k/AM j � C`.1C r/�1�k

for k 2 ¹0; : : : ; `C 1º.

Definition 5.6 (Conical scale)
Fix an asymptotically conical self-shrinker †n � R

nC1, and choose ˇ0 D ˇ0.†/ >

0 as in Theorem 4.3. For a hypersurface M n � RnC1, we define the conical scale
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r`.M/ to be the largest radius in ŒR.†/; Qr`.M/
 so that there is u W†! R with

graphuj†\Br`.M /
�M and M \Br`.M /�1 � graphu;

where u 2 CS
2;˛
�1 .†/ with kuk

CS
2;˛
�1

.†/
< ˇ0.

Definition 5.7 (Core graphical hypothesis)
We say that M satisfies the core graphical hypothesis, denoted by .�b;r/, if Qr`.M/�

r and there is u W†\Br.0/! R so that

graphu�M and M \Br�1 � graphu

with kukC `C1.Br .0// � b.

We will always assume that r >
p
2n (so that @Br.0/ expands under the rescaled

mean curvature flow).

We fix b > 0 to be very small (e.g., b 	 ˇ0) in Proposition 7.2.

6. Localizing the Łojasiewicz–Simon inequality
We now localize Theorem 4.3 to hypersurfaces that are not entire graphs over †. For
the definition of �.M/ see Definition A.1.

THEOREM 6.1 (The local Łojasiewicz–Simon inequality)
ForM n � R

nC1 with �.M/� �0, � 2 .1; 2/, and R 2 Œ1; r`.M/� 1
, we have that

ˇ̌
F.M/�F.†/

ˇ̌
� C

��Z
M\BR.0/

j�j2�dH n
� 1

2.1��/
CR

n�4
2.1��/ e� R2

8.1��/ C e� R2

4�

�

for C D C.†;�0; ˛; �/. Here 
 2 .0; 1
2
/ depends on † and the Hölder coefficient ˛;


 is fixed in Theorem 4.3.

Proof
By the definition of r`.†/ (Definition 5.6), there is u W†! R with

graphuj†\BR.0/ �M and M \BR.0/� graphu

with kuk
CS

2;˛
�1

.†/
< ˇ0. We may thus apply Theorem 4.3 to graphu to obtain (allow-

ing the constant C to change from line to line as usual)

ˇ̌
F.M/�F.†/

ˇ̌
D

ˇ̌̌Z
M

�dH n � F.†/
ˇ̌̌

�
ˇ̌̌Z

M\BR.0/

�dH n �F.†/
ˇ̌̌
CCe� R2

4�
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�
ˇ̌̌Z

graph u

�dH n �F.†/
ˇ̌̌
CCe� R2

4�

� C
�Z

graph u

j�j2�dH n
� 1

2.1��/
CCe� R2

4� :

It remains to argue that we can restrict the first integral to †\BR.0/. It is easy to see
that r j�graph uj � Cˇ0 by the definition of CS

2;˛
�1 .†/. UsingZ 1

R

rn�3e� r2

4 dr �Rn�4e� R2

4 ;

we thus obtain

ˇ̌
F.M/�F.†/

ˇ̌
� C

�Z
.graph u/\BR.0/

j�j2�dH n
� 1

2.1��/

CCR
n�4

2.1��/ e� R2

8.1��/ CCe� R2

4� :

This completes the proof.

7. Approximate shrinkers up to the rough conical scale
For 
 fixed in Theorem 4.3, define

‚D
�1� �

2

1� 


� 1
4

2
�
1;

�3
2

� 1
4
i
:

Definition 7.1
For R � r , we say that M n � R

nC1 is a roughly conical approximate shrinker up to
scale R if
(1) we have ‚R � Qr`.M/,
(2) M satisfies the core graphical hypothesis .�b;r/, and
(3) j�j C .1C jxj/jr�j � s.1C jxj/�1 on M \B‚R.0/.

We will fix s, b sufficiently small in the following proposition giving a lower
bound on the conical scale.

PROPOSITION 7.2
Taking ` sufficiently large, there are constants b; s > 0 sufficiently small, depending
on the shrinker†, the conical scale constant ˇ0, the rough conical scale constant C`,
and the entropy bound �0 with the following property. IfM n � R

nC1 has �.M/� �0

and is a roughly conical approximate shrinker up to scale R in the sense of Defini-
tion 7.1, then there is a function u W†! R with
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graphuj†\BR.0/ �M and M \BR�1.0/� graphu

and kuk
CS

2;˛
�1

.†/
� ˇ0. Equivalently, the conical scale satisfies r`.M/�R.

Certain aspects of the following proof are inspired by the proof of [33, Theo-
rem 8.9].

Proof
We claim that for b, s sufficiently small, the conclusion eventually holds for any
R � r . As such, we will take b; s ! 0 and prove that for any given (sequence of)
R � r , the conclusion eventually holds for R. We may assume that R ! 1 (the
subsequent argument is easily modified to the case where R is bounded). It is clear
that M converges to † in C ` in Br�1 with multiplicity 1. Moreover, M converges in
C `

loc.R
nC1/ to6 M 0, which satisfies � � 0, and is thus a properly7 embedded shrinker.

Unique continuation implies that8 M 0 D†. Finally, it is clear that M converges to †
in C ` with multiplicity 1 everywhere by connectedness of † and the multiplicity-1
convergence on Br�1.

Hence, if we let OR 2 Œr;R
 denote the largest radius (depending on b, s) so that
the conclusion holds with OR (in the place of R), then it is clear that OR ! 1. We
will prove that the proposition holds up to QR WD 1

2
.1C‚/ OR (note that this is a fixed

factor less than‚ OR). This will then imply the claim by a straightforward contradiction
argument.

First of all, we can assume that R= OR! � 2 Œ1;1
. Observe that . OR/�1M con-
verges in C `

loc.B‚
.0/ n ¹0º/ to a cone OC which is a C `-graph over the original cone
C . Moreover, because we have assumed that the proposition holds up to OR, we see
that the cones are close in the sense that dH .C ; OC/ D O.ˇ0/.9 Thus, we can find a
C `-function u W†\B QR.0/! R with

graphu�M and M \B QR�1 � graphu:

Moreover, r�1juj � O.ˇ0/ on † \ .B QR.0/ n Br.0// by the above observation that
the blowdown cones are O.ˇ0/-close. Furthermore, the second fundamental form
estimates coming from the rough conical scale estimate Qr`.M/�‚ QR yield

jD2Ckuj DO.r�1�k/ (7.1)

6By Lemma E.1, M 0 is a properly embedded hypersurface.
7Properness of M 0 follows from the entropy bounds, which imply local area bounds by Lemma E.1.
8Note that there cannot be more than one component of M 0 . One way to see this is that it would have to lie
outside of Br .0/ and we chose r >

p
2n; this would contradict the maximum principle. Alternatively, this

follows from the Frankel property for shrinkers (i.e., two properly embedded shrinkers must intersect); see [14,
Corollary C.4] for Ilmanen’s proof of this fact.
9We have written dH for the Hausdorff distance in S

n�1 between the two links of the cones.
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on † \ .B‚ QR.0/ n Br.0//, for k 2 ¹0; : : : ; ` � 1º. Finally, because M converges in
C `

loc.R
nC1/ to † (as b; s ! 0), for ı 2 .0; r�1/ fixed sufficiently small depending

only on ˇ0 (this will be made explicit in the last line of the proof), we can assume
that kukC 3.†\B

2ı�1 .0// � ı3.
We now relate the smallness condition on � to decay properties of u. These com-

putations are similar to those considered in Section 2.1 for an exact shrinker (except
we are now parameterizing M over the shrinker †, rather than parameterizing the
end of † over the cone C ; this complicates certain aspects of the subsequent compu-
tation).

We write F.p/ D p C u.p/�†.p/ for the function parameterizing (part of) M
over †\B QR.0/. The computations below will hold for p 2† with jpj 2 ŒR.†/; QR
,
with error terms uniform with respect to b; s ! 0. Recall that we have fixed coordi-
nates .r;!/ on † nBR.†/ in Section 2. In particular, the vector fields @r and @!j

are
tangent to †.10

We write

�M

�
F.p/

�
DA@r C

n�1X
j D1

Bj r
�1@!j

CC�†.p/;

where

A2 C

n�1X
j D1

B2
j CC 2 D 1CO.r�2/ (7.2)

by Corollary 2.4 (we emphasize that .r;!/ are the coordinates induced on the end of
† by the parameterization over C constructed in Lemma 2.3).

Moreover, for p 2 † with jpj sufficiently large (assuming that !j are normal
coordinates at ! for p D .r;!/), we find that

0DA
�
1CO.r�2/� u.p/A†jp.@r ; @r/

�
C

n�1X
j D1

Bj

�
O.r�2/� u.p/A†jp.@r ; r

�1@!j
/
�

CC
�
@ru.p/

�
;

0DA
�
O.r�2/� u.p/A†jp.@r ; r

�1@!i
/
�

C

n�1X
j D1

Bj

�
ıij CO.r�2/� u.p/A†jp.r

�1@!i
; r�1@!j

/
�

CC
�
r�1@!i

u.p/
�
:

Now, using Lemma 2.7, we find that

10In particular, we reiterate that the vector field @r is not the Euclidean radial vector field!
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0DA
�
1CO.r�2/

�
C

n�1X
j D1

Bj

�
O.r�2/

�
CC

�
@ru.p/

�
(7.3)

and

0D A
�
O.r�2/

�
C

n�1X
j D1

Bj

�
ıij � u.p/AC jp.r

�1@!i
; r�1@!j

/CO.r�2C�/
�

CC
�
r�1@!i

u.p/
�
: (7.4)

Observe that (7.3) yields (since A;B;C DO.1/)

ACC.@ru/DO.r�2/:

Moreover, as long as ˇ0 is sufficiently small so that r�1ju.p/j sup� jA� j � 1
2

, we see
that C�1 DO.1/, that is, C is not tending to zero.11

We now compute˝
F.p/; �M

�
F.p/

�˛
D

D
pC u.p/�†.p/;A@r C

n�1X
j D1

Bj r
�1@!j

CC�†.p/
E

DAhp;@ri C

n�1X
j D1

Bj hp; r�1@!j
i CCu.p/CC

˝
p;�†.p/

˛

DA
�
r CO.r�1/

�
CCu.p/C 2CH†.p/CO.r�1/

D C
�
u.p/�

�
r CO.r�1/

�
@ru.p/

�
CO.r�1/

D C
�
u.p/� r@ru.p/

�
CO.r�1/@ru.p/CO.r�1/: (7.5)

We begin by analyzing this expression (below, we will repeat the above derivation
to yield more precise estimates). We have that˝

F.p/; �M

�
F.p/

�˛
D 2�

�
F.p/

�
C 2HM

�
F.p/

�
DO.r�1/:

Thus, (7.5) (and C�1 DO.1/) gives

r@ru.p/� u.p/DO.r�1/@ru.p/CO.r�1/:

Thus,

11Indeed, if C ! 0, then this condition on ˇ0 combined with (7.4) yields Bi ! 0 as well; returning to (7.3)
yields A ! 0, which contradicts (7.2).
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@r

u.p/

r
D r�2

�
r@ru.p/� u.p/

�
DO.r�3/@ru.p/CO.r�3/

DO.r�2/@r

u.p/

r
�O.r�4/u.p/CO.r�3/:

Thus, using r�1uDO.1/, we conclude that

@r

u.p/

r
DO.r�3/:

We integrate this from ı�1 to r 2 .ı�1; QR
 to find that

u.r;!/

r
D ıu.ı�1;!/CO.ı2/CO.r�2/DO.ı2/CO.r�2/;

using the fact that kukC 3.†\B
ı�1 .0// � ı3. Thus,

uDO.ı2/r CO.r�1/: (7.6)

Note that we immediately get

@ru.p/D r�1u.p/CO.r�2/DO.ı2/CO.r�2/:

We now interpolate (7.6) (on balls of radius 1) with the higher derivative esti-
mates from (7.1), using Lemma B.1. This yields

jD2uj �
�
O.ı2/r CO.r�1/

�1� 2
` r .1�`/ 2

`

DO.ı2� 4
` /r�1 CO.r

4
`

�3/:

Similarly, we can obtain an estimate for the full gradient

jDuj �
�
O.ı2/r CO.r�1/

�1� 1
` r .1�`/ 1

`

DO.ı2� 2
` /CO.r

2
`

�2/:

Now we return to (7.5) and use this improved decay for the derivatives to derive
a sharper equation. Firstly, we note that as long as ˇ0 is small, as above, using the
gradient estimate for u, (7.4), together with (7.6), implies that

Bi DO.ı2� 2
` /;

for r � ı�1. Finally, using this, ACC.@ru/DO.r�2/, and (7.2), we find that

C D 1CO.ı2� 2
` /;

for r � ı�1.
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Now, repeating the derivation used in (7.5), with this additional information on
Bj and C , we find that˝
F.p/; �M

�
F.p/

�˛
D

D
pC u.p/�†.p/;A@r C

n�1X
j D1

Bj r
�1@!j

CC�†.p/
E

DAhp;@ri C

n�1X
j D1

Bj hp; r�1@!j
i CCu.p/CC

˝
p;�†.p/

˛

DA
�
r CO.r�1/

�
CCu.p/C 2H†.p/CO.ı2� 2

` r�1/

D C
�
u.p/�

�
r CO.r�1/

�
@ru.p/

�
C 2H†.p/CO.ı2� 2

` r�1/

D C
�
u.p/� r@ru.p/

�
CO.r�1/@ru.p/C 2H†.p/CO.ı2� 2

` r�1/: (7.7)

We thus have

2�
�
F.p/

�
C 2HM

�
F.p/

�
D C

�
u.p/� r@ru.p/

�
CO.r�1/@ru.p/C 2H†.p/CO.ı2� 2

` r�1/:

Moreover, we have that (for ` sufficiently large)

HM

�
F.p/

�
�H† D

�
1CO

�
jruj2

��
O

�
jD2uj

�
DO.ı/r�1 CO.r�2/DO.ı/r�1;

since r � ı�1. Thus, we find that

@r

u.p/

r
DO.ı/r�3

(assuming that s 	 ı, which can be arranged since we have fixed ı independently of
the value of s).

We now define

c.!/ WD
u. QR;!/

QR

and observe that by interpolation of (7.6) with (7.1), we have kckC 2;˛.�/ D O.ı/.
Then we set

f .r;!/D u.r;!/� c.!/r:

We have that f . QR; 
/D 0 and
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@r

f .r;!/

r
DO.ı/r�3:

Thus,

rf .r;!/DO.ı/.1� r2 QR�2/DO.ı/:

These two expressions imply that @rf DO.ı/r�2.
Moreover, we easily see that jDkf j D O.r1�k/ for k 2 ¹2; : : : ; `º. Interpolat-

ing this (and discarding some unnecessary decay with respect to r ), we find that

kf kC 2;˛ DO.ı1� 2C˛
` /r�1, where the Hölder norm is taken on balls of unit size.

These estimates provide C 2;˛
an;�1 estimates on f , so it remains to extend f to all of

† while only increasing these norms by a fixed factor (we can trivially extend c.!/r ).
Before we do this, we must obtain improved estimates for @2

rf . Using C 1 \ C ` �

C 2 interpolation applied to the 1-dimensional function r 7! f .r;!/ (for ! fixed but
arbitrary), on a unit interval, we see that

ˇ̌
@2

rf .
QR;!/

ˇ̌
�

�
O.ı/ QR�2

�1� 1
`�1 QR.1�`/ 1

`�1 DO.ı1� 1
`�1 / QR

2
`�1

�3:

Thus, taking ` sufficiently large, we see that

QR
ˇ̌
f . QR;!/

ˇ̌
C QR2

ˇ̌
@rf . QR;!/

ˇ̌
C QR2

ˇ̌
@2

rf .
QR;!/

ˇ̌
DO.ı�/ (7.8)

for some absolute constant � > 0. In particular, we emphasize that the third term in
(7.8) is better than the C 2;˛

an;�1-norm requires (we need this improved estimate when
we extend f to all of †).

We now define

Qf .r;!/ WD

´
f .r;!/ r � QR;

@rf . QR;!/.r � QR/C 1
6
@2

rf .
QR;!/. QRC 3� r/.r � QR/2 r > QR:

(Recall that f . QR; 
/D 0.) We then fix a cutoff function � with � � 1 on .�1; 0/ and
� � 0 on .1;1/. Then we set Of .r;!/D Qf .r;!/�.r � QR/. Using (7.8), we easily see
that

k Qf k
C

2;˛
an;�1

.†/
DO.ı�/:

Thus, ��.c; Qf /
��

CS
2;˛
�1

.†/
DO.ı�/:

Taking ı sufficiently small depending on ˇ0, this concludes the proof.
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8. The final localized Łojasiewicz–Simon inequality and the rough conical scale
We now show that the error terms in the localized Łojasiewicz–Simon inequality
(Theorem 6.1) are small, under the assumption that the rough conical scale is larger
than the shrinker scale.

THEOREM 8.1 (The final localized Łojasiewicz–Simon inequality)
Assume that M n � R

nC1 has �.M/ � �0 and R.M/ sufficiently large depending
on †. Assume thatM additionally satisfies the core graphical hypothesis .�b;r/ and
that R.M/� Qr`.M/� 1. Then,

ˇ̌
F.M/�F.†/

ˇ̌
� C

�Z
M

j�j2�dH n
� 1

2.1��=3/

for C D C.†;�0; ˛/. Note that 
 is fixed in Theorem 4.3.

Proof
We first claim that M is a roughly conical approximate shrinker up to scale R D

‚�2R.M/ in the sense of Definition 7.1. We have already assumed that the first two
conditions hold, so it remains to check that

j�j C
�
1C jxj

�
jr�j � s

�
1C jxj

��1

on M \B‚R.0/. We will do this by modifying the proof of [19, Corollary 1.28].
Pick z 2M \ B‚R.0/. Set rz D .1C jzj/�1, so that the Gaussian weight � has

uniformly bounded oscillation in Brz
.z/. Set

 .z/ WD
�Z

M\Brz .z/

j�M j2�dH n
� 1

2

� e� R.M /2

8 :

Hölder’s inequality yieldsZ
Brz .z/

j�jdH n � r
n
2

z e
jzj2

8

�Z
Brz .z/

j�j2�dH n
�2

D r
n
2

z e
jzj2

8  :

Because 1C‚R � Qr`.M/, we have that (see Definition 5.5)

jrk�j � C`

�
1C jzj

�1�k

on M \Brz
.z/, for k 2 ¹1; : : : ; `º and z 2M \B‚R.0/. Now, by the L1 \C ` � C 0

interpolation inequality described in Lemma B.2, we have that�
1C jzj

�
sup

Brz .z/

j�j

� C
�
r

�1� n
2

z e
jzj2

8  C .r
n
2

z e
jzj2

8  /a`;n
�
1C jzj

�.1�`/.1�a`;n/�1�
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� C
��
1C jzj

� n
2 C1

e
jzj2

8  

C
�
1C jzj

��a`;n
n
2 .e

jzj2

8  /a`;n
�
1C jzj

�.1�`/.1�a`;n/�
� C

�
R.M/

n
2 C1e� .1�‚�2/R.M /2

8 C e�
a`;n.1�‚�2/R.M /2

8

�
:

The negative powers in the exponentials allow us to arrange that this is smaller than
s, as long as R.M/ is sufficiently large. A similar argument can be used to bound
jr�j.

Thus, we see that M is a roughly conical approximate shrinker up to scale R.
Proposition 7.2 implies that the strong conical scale satisfies r`.M/ � R. Thus, we
can apply the localized Łojasiewicz–Simon inequality from Theorem 6.1 to find
that ˇ̌

F.M/�F.†/
ˇ̌

� C
��Z

M\BR.0/

j�j2�dH n
� 1

2.1��/
CR

n�4
2.1��/ e� R2

8.1��/ C e� R2

4�

�

� C
��Z

M

j�j2�dH n
� 1

2.1��/
CR

n�4
2.1��/ e� R2

8.1��/ C e� R2

4�

�
:

Note that

R
n�4

2.1��/ e� R2

8.1��/ D
�
‚�2R.M/

� n�4
2.1��/ e

� R.M /2

8‚4.1��/

D
�
‚�2R.M/

� n�4
2.1��/ e� R.M /2

8.1��=2/

� C.e� R.M /2

4 /
1

2.1��=3/

D C
�Z

M

j�j2�dH n
� 1

2.1��=3/

and

e� R2

4� D
�Z

M

j�j2�dH n
� 1

‚4�
;

so choosing � D 2‚�4.1� 
=3/ 2 .1; 2/, we conclude the proof.

9. The uniqueness of conical tangent flows: Proof of Theorem 1.1
Fix r sufficiently large in terms of the scale of the core of the conical shrinker R.†/,
and the pseudolocality radius �� (this choice will be made explicit in Lemma 9.1
below).
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Now, consider "D ".†; r/ > 0 , which will be chosen sufficiently small below.
Suppose that ¹M�º�2Œ�1;1/ is a rescaled mean curvature flow (Brakke flow) on
Œ�1;1/�R

nC1 so that there is

u W
�
†\B"�1.0/

�
� Œ�1; "�2/! R

with
(1) graphu.
; �/�M� ,
(2) M� \B"�1�1 � graphu.
; �/.
(3) kukC `C1.†\B

"�1 .0// � ", and
(4) F.M/�F.†/� ".
Here, ` 2 N controls the number of derivatives in the definition of Qr`. It has been
fixed in Proposition 7.2. We additionally fix �0 so that �.M0/ � �0 (which implies
that �.M� / � �0). Finally, we assume that there is a sequence of times sk ! 1

so that Msk
converges smoothly on compact subsets of RnC1 to † (with multiplic-

ity 1).
Recall that the core graphical hypothesis .�b;r/ has been defined in Definition 5.7.

Define the graphical time N� by

N� WD sup
®

O� 2 Œ�1;1/ WM� satisfies .�b;r/ for all � 2 Œ�1; O�

¯
:

Our first goal is to show that N� D 1. Note that by taking " sufficiently small (depend-
ing on b, r , †), we can assume that N� is arbitrarily large.

LEMMA 9.1 (The rough conical scale improves rapidly)
There is r0.†;R.†/; ��/ sufficiently large so that taking r � r0, "0 D "0.†; r/ suffi-
ciently small, and fixing C` D C`.†; r/ sufficiently large in the definition of the rough
shrinker scale, we have that Qr`.M� /� 1

2
e

�
2 r for all � 2 Œ0; N�/.

Moreover, we can find u W†\B4r.0/� Œ0; �/! R with u.
; �/ uniformly bounded
in C `C2 and with

graphu.
; �/�M� and M� \B4r�1 � graphu.
; �/:

Proof
Consider �0 2 Œ0; N�/. Note that t 7!

p
�tM.�0�log.�t// WD OM

.�0/
t is a mean curvature

flow for t 2 Œ�e�0 ; 0/ and OM
.�0/
�1 DM�0

. Take b sufficiently small in the core graphical
hypothesis. Then, by the definition of the pseudolocality scale ��, the scale R.†/ of
the core of the shrinker and the core graphical scale r , we can ensure that for

x 2 OM
.�0/
�1 \

�
Br�2	�

.0/ nBR.†/.0/
�
;
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there is some plane …x through x so that OM
.�0/
�1 \ B	�

.x/ is a Lipschitz graph
over …x with Lipschitz constant at most ��. Thus, by pseudolocality (Proposi-
tion 5.1), OM

.�0/
t \ Bı�

.x/ is nonempty, and a ı�-Lipchitz graph over …x for all
t 2 Œ�1; 0/.

We can patch these graphs together to find a family of domains O�
.�0/
t � †

with �
†\

�
Br�3	�

.0/ nBR.†/C1.0/
��

� O�
.�0/
t

and a function Ov
.�0/
t W �t ! R so that graph Ov

.�0/
t � OM

�0
t . Using a shrinking

sphere as a barrier, we can see that for t 2 Œ�1; 0/, this graph describes all of
OM

.�0/
�1 \ .Br�4	�

.0/ n BR.†/C2.0//. The shrinking sphere of radius r � 4�� at
t D �1 still contains Br�3	�

.0/ as long as we choose r sufficiently large so
that

.r � 4��/
2 � .r � 3��/

2 � 1,
1

2��

.5�2
� C 1/� r:

Now, for ! 2 .0; 1/, by applying interior estimates in [23] (cf. [2, Corollary 8.4]) for
graphical mean curvature flow, we find that

jr.k/A OM
.�0/

t

j.x/� C D C.†;�0;!/

for x 2 OM
.�0/
�t \ .Br�5	�

.0/ nBR.†/C3.0//, t 2 Œ�1C!;0/, and k 2 ¹0; : : : ; `º.
By the definition of the core graphical scale, Qr`.M� / � r , so the desired curva-

ture estimates hold on M� \Br.0/. Moreover, by taking the parameter " sufficiently
small, we can ensure that the desired estimates hold for � 2 Œ�1; 1
. On the other
hand, for � 2 Œ1; N�/ and

x 2M� \
�
B

e
�
2 .r�5	�/

.0/ nBr.0/
�
;

we choose

�0 D � C 2 log
�
jxj�1.r � 5��/

�
2 Œ0; �/:

Then,

t D �e�0�� D �jxj�2.r � 5��/
2 2 Œ�1C!;0/

for ! D !.n; r/ 2 .0; 1/ fixed by

! WD 1� .1� 5r�1��/
2 2 .0; 1/:

Now, we find that the point x is rescaled to
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Ox WD
p

�tx 2 OM
.�0/
�t \ @Br�5	�

.0/;

so the curvature estimates established above yield

j Oxj�1�kj Oxj1Ckjr.k/A OM
.�0/

t

j. Ox/D jr.k/A OM
.�0/

t

j. Ox/� C D C.†;�0; r/:

Unwinding this, we find that

jxj1Ckjr.k/AM�
j.x/� C.r � 5��/

1Ck;

for k 2 ¹0; : : : ; `º. Thus, by choosing C` D C`.†;�0; r/ sufficiently large, we find
that Qr`.M� / � e

�
2 .r � 5��/, as claimed. As such, the asserted curvature estimates

follow by requiring that r � 10��.
The above proof also shows that there is a function u W .† \ B4r/ � Œ0; �/! R

with

graphu.
; �/�M� and M� \B4r�1 � graphu.
; �/;

and so that u.
; �/ is uniformly bounded in C `C2. Note that this u agrees with the
function in the definition of the core graphical hypothesis, on their common domain
of definition.

First, suppose that � is such that R.M� /� Qr`.M� /� 1. By Theorem 8.1, we have
that for 
 0 D 
=3,

F.M� /�F.†/� C
�Z

M�

j�j2�dH n
� 1

2.1��0/
;

so

�
d

d�

�
F.M� /�F.†/

�� 0

D 
 0
�
F.M� /�F.†/

�� 0�1
Z

M�

j�j2�dH n

� C
�Z

M�

j�j2�dH n
� 1

2

:

On the other hand, suppose that � is such that R.M� / > Qr`.M� /� 1� 1
2
e

�
2 r � 1 (by

Lemma 9.1). The following coarse estimate will suffice in this case:

�Z
M�

j�j2�dH n
� 1

2

D e� R.M� /2

8 � Ce�� : (9.1)

Thus, we can conclude that for all � 2 Œ0; �/,

C
�Z

M�

j�j2�dH n
� 1

2

� �
d

d�

�
F.M� /�F.†/

�� 0

C e�� :
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Integrating this, we find that for �0 2 Œ0; �/,

Z �

�0

�Z
M�

j�j2�dH n
� 1

2

d� �
�
F.M�0

/�F.†/
�� 0

C e��0

� "� 0

C e��0 : (9.2)

For the function u W .† \ B2r/ � Œ0; �/ ! R described in Lemma 9.1, we have
that Z

M�

j�j2�dH n � C
���@u
@�

���2

L2.†\B4r .0//
;

so we see that

sup
�2Œ�0;�/

��u.
; �/� u.
; �0/
��

L2.†\B4r .0//
� "� 0

C e��0 :

Because u.
; �/ is uniformly bounded in C `C2 by Lemma 9.1, by taking " sufficiently
small and �0 D 1

2
"�2, we have that

��u.
; �0/
��

C `C1.†\B2r .0//
�
b

4

and

sup
�2Œ�0;�/

��u.
; �/� u.
; �0/
��

C `C1.†\B2r .0//
�
b

4
:

Thus, we see that ku.
; �/kC `C1.†\B2r .0// � b
2

for � 2 Œ0; �/. This (combined with
pseudolocality and interior estimates) implies that we can extend the graphical
hypothesis slightly beyond � , a contradiction.

Thus, � D 1. Now, returning to (9.2), we have that (recall that sk ! 1 are so
that Msk

!†)

sup
�2Œsk ;1/

��u.
; �/� u.
; sk/
��

L2.†\B4r .0//
�

Z 1

sk

���@u
@�

���
L2.†\B4r .0//

d�

�
�
F.Msk

/�F.†/
�� 0

C e�sk :

Since u.
; sk/! 0 inL2.†\B4r.0//, we thus see that u.
; �/! 0 inL2.†\B4r.0//

as � ! 1, and thus in C `C1.†\B2r.0//.
From this, it is clear that M� converges on compact sets to † as � ! 1. This

completes the proof of Theorem 1.1.
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9.1. Rate of convergence
Here, we observe that similar arguments can yield a rate of convergence of M�

towards †. Arguing as above, we have that

d

d�

�
F.M� /�F.†/

�
D �

Z
M�

j�j2�dH n

� �C
�
F.M� /�F.†/

�2.1�� 0/
CCe�2�

for all � 2 Œ0;1/. We claim that

F.M� /�F.†/�D.1C �/�
1

1�2�0

for D sufficiently large in terms of M0 and †. Indeed, letting Q� denote the first time
this fails, since e�2x � .1C x/�˛ for all x > 0, we have that

�
F.MQ� /�F.†/

�2.1�� 0/
DD2.1�� 0/.1C Q�/�

2.1��0/

1�2�0 � cD2.1�� 0/e�2Q� :

Thus, as long as D is sufficiently large, we find that

�
D

1� 2
 0
.1C Q�/�

2.1��0/

1�2�0 �
d

d�

�
F.M� /�F.†/

�
j�DQ�

� �C
�
F.MQ� /�F.†/

�2.1�� 0/

� �CD2.1�� 0/.1C Q�/�
2.1��0/

1�2�0 :

Taking D larger if necessary, this yields a contradiction. Thus, we have that for any
R fixed,

��u.
; �/��
L2.†\B2R/

�
Z 1

�

�Z
M�

j�j2�dH n
� 1

2

d�

�
�
F.M� /�F.†/

�� 0

C e��

� .1C �/�
�0

1�2�0 :

Interpolating yields ��u.
; �/��
C k.†\BR/

� .1C �/�
�0

1�2�0 C�

for any k, R, and � > 0, as � ! 1.

9.2. Proof of Corollary 1.2
Note that the proof of Theorem 1.1 implies that there exists " > 0 such that the sur-
facesMt \B".0/ for t 2 .�"2; 0/ are smooth graphs over

p
t 
†. Even more, one also
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sees that .M0 \B".0// n ¹0º is a smooth normal graph over the asymptotic cone C of
† with curvature bounded by c=r (plus all corresponding higher order derivative esti-
mates). Note that the tangent flow M† has as the time zero slice the cone C . Thus by
taking rescaling limits of the flow, including time zero, we see that the uniqueness of
the tangent flow implies that rescalings ofM0 converge smoothly on compact subsets
of Rn n ¹0º to C .

Appendix A. Standard definitions
We recall the following definitions and conventions.

Definition A.1
For M n � R

nC1 with polynomial area growth, the Gaussian area of M is

F.M/D

Z
M

�dH n;

where �D .4�/�
n
2 e�jxj2=4. Recall that the entropy �.M/ is defined as the supremum

of the Gaussian area over all centers and scales (see [18]).

Definition A.2
A hypersurface †n � R

nC1 is a self-shrinker if
p

�t 
† is a solution to mean curva-
ture flow for t 2 .�1; 0/. This is equivalent to

H† D
1

2
hx; �†i: (A.1)

Definition A.3
For a general hypersurface M n � R

nC1, we define the function

� D �M WD
1

2
hx; �M i �HM :

Note that † is a self-shrinker if and only if �† � 0.

Definition A.4
A smooth self-shrinker †n � R

nC1 is (smoothly) asymptotically conical if

lim
t%0

p
�t 
†D C

inC1
loc .R

nC1n
¹0º/with multiplicity 1, where C is a cone over a smooth closed hyper-
surface �n�1 � S

n � R
nC1.
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Definition A.5
We define the following operators along †:

L�u WD	†u�
1

2
Ex 
 r†uC �u;

Lu WD L 1
2
uC jA†j2u

D	†u�
1

2
.Ex 
 r†u� u/C jA†j2u:

Note that L is the full second variation of Gaussian area along †. Moreover, L0 and
L 1

2
will be particularly relevant in the sequel.

Appendix B. Interpolation inequalities
We recall the following standard interpolation inequalities in multiplicative form.

LEMMA B.1
Suppose that u 2 C k.B2/. Then, for j < k,

kDjukC 0.B1/ � Ckuk
1� j

k

C 0.B2/
kDkuk

j
k

C 0.B2/

for C D C.n;k/. Similarly, if u 2 C k;˛.B2/, then for j C ˇ < kC ˛,

ŒDju
ˇ IB1
� Ckuk

1� j Cˇ
kC˛

C 0.B2/
ŒDku


j Cˇ
kC˛

˛IB2

for C D C.n;k;˛;ˇ/.

These follow in a similar manner to the linear inequalities given in [24,
Lemma 6.32], except that in the proof one should optimize with respect to the
parameter � rather than just choosing � sufficiently small. Alternatively, see [28,
Lemma A.2].

We will also need the following interpolation inequality.

LEMMA B.2 (cf. [19, Lemma B.1])
If u is a C k function on B2r � R

n, then

kukL1.Br / � C
�
r�nkukL1.B2r / C kuk

ak;n

L1.B2r /
krkuk

1�ak;n

L1.B2r /

�
;

rkrukL1.Br / � C
�
r�nkukL1.B2r / C kuk

bk;n

L1.B2r /
krkuk

1�bk;n

L1.B2r /

�
for C D C.k;n/, ak;n D k

kCn
, and bk;n D k�1

kCn
.
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Appendix C. Geometry of normal graphs
We consider hypersurfaces M , N in R

nC1 such that N can be locally written as a
normal graph over M with height function v, where we assume that the C 1-norm of
u is sufficiently small (depending on the geometry of M ). Let p 2M , and choose a
local parameterization F , parameterizing an open neighborhood U of p in M such
that F.0/D p. We can assume that gij D h@iF;@jF i satisfies

gij jxD0 D ıij and @kgij jxD0 D 0:

For simplicity we can furthermore assume that the second fundamental form .hij / is
diagonalized at p with eigenvalues �1; : : : ; �n. A direct calculation (see [46, (2.27)])
yields that the normal vector �N .q/, where q D p C u.p/�M .q/, is colinear to the
vector

N D �

nX
iD1

@iu

1� �iu
@iF jxD0 C �M .p/:

Denoting the shape operator by S D .hi
j / we see that thus in coordinate-free notation

�N .q/D v�1
�
�.Id � uS/�1rMuC �M

�
.p/; (C.1)

where v WD .1C j.Id � uS/�1.rMu/j2/
1
2 . This implies that˝

q; �N .q/
˛
D v�1

�
uC

˝
p;�M .p/

˛
�

˝
p; .Id � uS/�1rMu

˛�
: (C.2)

For the induced metric Qg one obtains in the above coordinates at p (again see [46,
(2.32)]),

Qgij D .1� �iu/.1� �ju/ıij C @iu@ju;

which implies that

Qgij D
ıij

.1� �iu/.1� �ju/
� v�2 @iu

.1� �iu/2
@ju

.1� �ju/2
: (C.3)

Furthermore, from [46, (2.30)] we have

Qhij D h@2
ij

QF ;�N i

D v�1
� �i

1� �iu
@iu@juC

�j

1� �ju
@iu@ju

C
X

k

u

1� �ku
@ku@ihjk C hij � �i�juıij C @2

iju
�
; (C.4)

which yields a closed expression for the mean curvature QH of N , since QH.p/ D

Qgij .p/ Qhij .p/.
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Appendix D. Variations of Gaussian area and the Euler–Lagrange equation
Suppose that M n � R

nC1 is a normal graph of v W †! R for a fixed shrinker †n.
Recall that the Gaussian area is defined as

F.M/ WD

Z
M

�dH n:

For Qv a variation of v (i.e., a variation in the normal direction to †), the first variation
of F in the direction of Qv satisfies (see [42])

ıQvF.M/D �

Z
†

…T ?†

�
EHM C

x?

2

�ˇ̌̌
xDyCv.y/�†.y/

Qv.y/J.y; v;r†v/

� �.y C �†/�.y/
�1�.y/dH n;

where …T ?† is the projection onto the normal bundle to † and

J.y; v;r†v/D Jac
�
D expy

�
v.y/�†.y/

��
is the area element.

Hence, the Euler–Lagrange operator M (with respect to the weighted space L2
W )

satisfies

M.v/D…T ?†

�
EHM C

x?

2

�ˇ̌̌
xDyCv.y/�†.y/

J.y; v;r†v/

� �
�
y C v.y/�†

�
�.y/�1:

It is well known that the linearization of M at v D 0 is the L-operator (cf. [19,
Lemma 4.3]).

Appendix E. Area growth bounds from Gaussian area estimates
The following is a well-known fact.

LEMMA E.1
ForM n � R

nC1 with �.M/� �0, there is C D C.�0; n/ so that

H n
�
M \BR.x/

�
� CRn

for all R > 0 and x 2 R
nC1.
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Index of notation

.�b;r/, 3634
C

0;˛
hom;�� .†/, 3617

C
2;˛
an;�1.†/, 3617

C
2;˛
hom;�� .†/, 3617
C`, 3633
F.
/, 3649
H k

W .†/, 3625
J , 3630, 3652
L, 3650
L2

W .†/, 3625
M� , 3644
…T ?†, 3630, 3652
†, 3602
‚, 3635
N� , 3644
ˇ, 3630
ˇ0, 3632
ı�, 3633
`, 3633
��, 3633
�.M/, 3649
R.M/, 3633
r`.M/, 3634
CS

0;˛
�1 , 3617

CS
2;˛
�1 , 3617

L0, 3650
L 1

2
, 3650

L� , 3650
M, 3652
�, 3649
�, 3649
��, 3633

 , 3632

 0, 3646
Qr`.M/, 3633
R.†/, 3633
", 3644
b, 3634
s, 3635
r, 3634

conical scale, 3633
core graphical hypothesis, 3634

graphical time, 3644

rough conical scale, 3633
roughly conical approximate shrinker,

3635

shrinker scale, 3633
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