GLOBAL UNIQUENESS OF LARGE STABLE CMC
SPHERES IN ASYMPTOTICALLY FLAT
RIEMANNIAN 3-MANIFOLDS

OTIS CHODOSH and MICHAEL EICHMAIR

Abstract

Let (M, g) be a complete Riemannian 3-manifold that is asymptotic to Schwarzschild
with positive mass and whose scalar curvature vanishes. We unconditionally char-
acterize the large, embedded stable constant mean curvature (CMC) spheres in

(M, g).

1. Introduction
The purpose of this article is to complete the classification of large, embedded stable
constant mean curvature (CMC) spheres in initial data sets of general relativity. We
briefly review some background before stating our results.

Let (M, g) be a connected, complete Riemannian 3-manifold. We usually require
that (M, g) be Ck-asymptotic to Schwarzschild with mass m > 0. This means that
there is a nonempty compact set K C M and a diffeomorphism

M\K={xeR:|x|>1/2}

such that, in this chart at infinity, there holds

m \4
gij = (1 + m) 8ij + 0ij. (D

where
d10ij = O(|x|_2_|1|) as |x| — oo

for every multi-index I of order |I| < k. Moreover, we usually require that (M, g)
have horizon boundary. This means that dM is a possibly empty minimal surface
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and that every closed minimal surface in (M, g) is contained in dM . Together, these
assumptions imply that M is diffeomorphic to R with finitely many balls removed
(see, e.g., Section 4 in [23]).

Let ¥ C M be a closed two-sided surface. The Hawking mass of such a surface
is the quantity

1k ),

my(X) = Tor J»

where H is the mean curvature scalar of ¥ associated with a designated unit nor-
mal v. In a context where this makes sense, we choose v to be the outward pointing
unit normal. Our conventions are such that a unit sphere in R3 has mean curvature
2. We also recall that the mean curvature H is constant if and only if ¥ is a criti-
cal point for the area functional among volume-preserving deformations. Moreover,
such a CMC surface is a stable critical point for this variational problem if and only
if

/(|h|2 + Ric(v, v))u? dp
b
5/ [Vul?du  forallu € C°(%) with/ udu =0,
b b

where h is the second fundamental form of ¥ and Ric is the Ricci tensor of
(M, g). In [13], D. Christodoulou and S.-T. Yau observed that mg(X) > 0 for
every stable CMC sphere ¥ C M provided that the scalar curvature R of (M, g)
is nonnegative (cf. Theorem 1.3 below). This insight has initiated the use of
such spheres and their Hawking mass to test the strength of the gravitational
field in the case where (M, g) arises as a maximal Cauchy surface of a space-
time.

Assume now that (M, g) is asymptotic to Schwarzschild with mass m > 0.
A foundational result of G. Huisken and S.-T. Yau [24] shows that the complement of
a compact subset of M admits a foliation by distinguished stable CMC spheres. This
canonical foliation gives rise to a definition of a geometric center of mass of (M, g).
The characterization of these special spheres has been refined further in important
work by J. Qing and G. Tian [30]. We summarize these results in Appendix A. These
characterizations have been extended in works by J. Metzger and the second-named
author [17], S. Brendle and the second-named author [4], A. Carlotto and the authors
[6], in our paper [10], and the recent paper [16] by T. Koerber and the second-named
author.

Here we complete this line of inquiry by establishing the following unconditional
uniqueness result for the leaves of the canonical foliation.
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THEOREM 1.1

Let (M, g) be a connected, complete Riemannian 3-manifold whose scalar curvature
vanishes and which is C?-asymptotic to Schwarzschild of mass m > 0 with horizon
boundary. Every connected, closed, embedded stable CMC surface in (M, g) of large
enough area is a leaf of the canonical foliation.

The assumptions on (M, g) in Theorem 1.1 are optimal in a number of ways:

6)) The assumption of vanishing scalar curvature cannot be relaxed to the
assumption of nonnegative scalar curvature. A counterexample is given
in our paper [10]. The subtle role of scalar curvature in this problem was
elucidated in earlier work [4] by S. Brendle and the second-named author.

(i)  The assumption that (M, g) be asymptotic to Schwarzschild with mass m > 0
cannot be relaxed to asymptotically flat. Indeed, A. Carlotto and R. Schoen
[7] have constructed nonflat examples of asymptotically flat metrics on R3
with vanishing scalar curvature that are equal to the Euclidean metric in a
half-space. Note that all the coordinate spheres in the Euclidean half-space
are stable CMC spheres. In particular, the conclusion of Theorem 1.1 fails
dramatically in these examples. However, these asymptotically flat manifolds
do admit a canonical foliation by stable CMC spheres, as has been shown by
C. Nerz in [27]. Even in this setting, the leaves of this foliation are the unique
solutions of the isoperimetric problem for the volume they enclose, as has been
shown in our joint paper with Y. Shi and H. Yu [11].

The classification of connected, closed, embedded CMC surfaces in one half of
exact spatial Schwarzschild,

m o\4
M ={xeR*:|x|>m/2} and gil':(l—f—m) 8ij,
was a long-standing problem that has been solved by S. Brendle [3]. The only such
surfaces are the centered coordinate spheres {x € R3 : |x| = r}. Brendle’s method
uses the exact warped-product structure of Schwarzschild in an essential way. In pio-
neering earlier work, H. Bray [2] has characterized these spheres as the unique solu-
tions of the isoperimetric problem in exact Schwarzschild. J. Metzger and the second-
named author have extended Bray’s approach to asymptotically Schwarzschild mani-

folds in [18] and [19].

The proof of Theorem 1.1 is given in Section 3. The main new ingredient is
Theorem 1.2, whose proof in Section 4 occupies the bulk of this paper. To state this
result, we use S, to denote the surface in M that corresponds to {x € R3 : |x| =r}
and use B, to denote the bounded open region in M that is enclosed by S,. Given a
subset A C M, we let

ro(A) =sup{r >1: AN B, =@}.
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We say that a connected, closed surface ¥ C M is outlying if it bounds a compact
region in M that is disjoint from Bj.

THEOREM 1.2

Let (M, g) be a connected, complete Riemannian 3-manifold whose scalar curvature
is nonnegative and which is C?-asymptotic to Schwarzschild with mass m > 0. There
is a constant n > 0 with the following property. For every connected, closed stable
CMC surface ¥ C M that is outlying, we have that

ro(B)H(Z) =1

provided that area(X) and ro(X) are sufficiently large.

We briefly describe the main ideas of the proof of Theorem 1.2.

Consider a large stable CMC sphere ¥ C M, where (M, g) is as in Theorem 1.2.
Assume that area(X) is large. Previously deployed strategies cannot handle the insid-
ious combination of ¥ outlying and slow divergence, that is, ro(X) H(X) small. On
the one hand, the flux integrals used in [24] and [30] all vanish simultaneously on
outlying surfaces. On the other hand, the Lyapunov—Schmidt analysis applied in [4]
cannot handle slow divergence; the background nonlinearity is too strong.

Note that in [4], [10], [24], and [30], stability is only used to obtain roundness
estimates, while centering is shown using first variation. By contrast, the centering
mechanism we discover and put to good use in the proof of Theorem 1.2 is based
on stability. It leverages a surprising tension between the sharp classical Minkowski
inequality and the following estimate for the Hawking mass derived from the stability
of X.

THEOREM 1.3 (D. Christodoulou and S.-T. Yau [13])

Let (M, g) be a Riemannian 3-manifold, and let ¥ C M be a stable CMC sphere.
Then

2 o
5/(R+|h|2)du§16n—/ H?*dpu. )
s >

Here, i; is the trace-free part of the second fundamental form h of 2.

In the context of the proof of Theorem 1.2, if we compare the quantity on the
right-hand side of (2) with its Euclidean counterpart

1671—/ Fﬂd,z:-z/ \h|?d .
z b))
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we can isolate a favorable term

i [ 2 D, .
= |x[¢

owing to the Schwarzschild background. An upper bound for (3) gives a lower bound

on ry(X).

In order to capitalize on the potential of (3), we have to keep in check the devia-
tion from constant of the Euclidean mean curvature of ¥. Control in L? of this devi-
ation is sufficient for us, so at first pass, we refer to a quantitative version of Schur’s
lemma due to C. De Lellis and S. Miiller [15]. This leads to the a priori estimate

H=HO(1)

for the Euclidean mean curvature. In conjunction with Allard’s theorem and a blow-
down argument, this estimate gives us strong analytic control on . More precisely,
we see that X is close in C 1 to a large coordinate sphere in the chart at infinity.

The trouble with the application of the De Lellis—Miiller estimate above is that it
uses up too much of the favorable terms

/|}E|2d;1 and /|ﬁ|2du )
) )

coming from the Euclidean bending energy and the Christodoulou—Yau estimate.
However, at this point, the proximity in C ** of X to a large coordinate sphere allows
us to show that the classical Minkowski inequality—with the sharp constant—almost
holds for ¥ (see Appendix E). Using this in place of the De Lellis—Miiller estimate,
we obtain improved roundness estimates for . We can then absorb all remaining
error terms into the favorable terms (4). This leads to the desired estimate.

2. Some properties of far-out stable CMC surfaces
The following main result of this section extends the uniqueness theorems for the
leaves of the canonical foliation stated in Appendix A to surfaces of arbitrary genus.

PROPOSITION 2.1

Let (M, g) be a Riemannian 3-manifold that is C?-asymptotically flat of rate q >
1/2. Every connected, closed stable CMC surface ¥ C M with both ro(X) > 1 and
area(X) > 1 sufficiently large has genus 0.

Note that there are no assumptions on the sign of the scalar curvature or the
boundary of M.

For the proof of Proposition 2.1 and other results below, we assume for conve-
nience and without loss of generality that M = R3 and
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gij = 8ij + ij, (5)
where
318 = O(Ix|™7 1) as x| > o0

for every multi-index I of order |/| =0, 1,2. The general case is modeled on such
ends.

Consider a sequence {3 }2> ; of connected, closed, embedded stable CMC sur-
faces with

ro(Zx)=sup{r >1:3; N B, =0} - 00 and area(Xy) — oo,

where we abbreviate B, = B, (0).

Along the way of proving Proposition 2.1, we show that the surfaces X are close
to coordinate spheres in a sense we make precise. In the case where X are a priori
known to have genus 0, we could follow [30, p. 1099] instead of the argument given
below.

PROPOSITION 2.2

Assume that ro(Xg) H(Zg) — 0. Let p, =2/H(Z) be the mean curvature radius.
After passing to a subsequence, the rescaled surfaces p;l Yk converge to a coordinate
sphere S1(£) in R3\ {0} with || = 1. More precisely, given K C R3\ {0} compact,
there are functions uy : S1(§) — R with ux — 0 in C> such that (o' Zx) N K is
contained in the radial graph of uy above Si(§).

Proof
First, note that

area(S) H(Z0)? < 647” +o(1) ©)

as k — oo, by Lemma B.3. Moreover,

area(Xy N By)
u —_—

Ix||h(x)|=0(@1)  and 5 =0(1), (7
r

r>0
by Lemma B.4 and Lemma B.5. Using also Lemma B.1, we see that these estimates
also hold if we use the Euclidean metric g instead of g. By scaling, we see that they
continue to hold if we replace X by the rescaled surface p;l Y. These estimates
imply that locally in R3 \ {0} and on the scale of the distance to the origin, each
surface is a union of an (a priori) bounded number of graphs with (a priori) bounded
C?2-norms. They enable us to extract convergent subsequences from { p;l Zripe, in
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the class of proper, pointed immersions into R3 \ {0}. (See, e.g., [14] for very general
convergence results of this type.) To ensure that the limit is nonempty, we need to
choose the basepoints with care. To that end, let

ri(Zg) :=inf{r > 1: 3y C B,},

and note that H(S,) ~ 2/r for r > 1 large. By the maximum principle, px <
O(1)r;(Xg). After passing to subsequence, we may thus choose xi € p;lEk such
that {x }y2, converges to a point not equal to 0. Passing to a further subsequence,
we extract a limiting connected, proper stable CMC immersion

(poo:zoo_)R3\{0}

with basepoint Xeo € oo S0 Poo(X00) = limg o0 Xi . Note that the mean curvature of
this immersion is equal to 2. The bounds (7) descend to this immersion. We apply a
variation of the result of J. L. Barbosa and M. do Carmo [1] as developed (to handle
the singularity at the origin; see also [12, Lemma 18]) by F. Morgan and M. Ritoré
[26] to show that @ is totally umbilic. From the assumption that ro (X ) H(2) — 0,
we see that

Poo(Too) = S1(8),

where |é| = 1. Considering different choices of basepoints xz, we see that p;lEk
converges to the union of unit radius coordinate spheres, though possibly with mul-
tiplicity. However, by (6), the area of the limit counted with multiplicity is at most
167/3 < 8. It follows that there is exactly one such limiting sphere and that the
convergence occurs with multiplicity 1." This completes the proof. O

In the case where liminfy_, o ro(2r) H(Zg) > 0, we show below that the sur-
faces Xj can be captured by standard methods.

PROPOSITION 2.3

Assume that liminfy_ oo ro(Zr)H(Zr) > 0. For every sufficiently large k, the
rescaled surface ro(Xx) ' Xk is smoothly close to a coordinate sphere in R®\ B;
with bounded, possibly small radius. In particular, X has genus 0.

Proof
Assume first that ro(Xx) H(X;) = O(1). Passing to a subsequence, the mean curva-
ture of the rescaled surfaces has a positive limit. Curvature estimates for stable CMC

! Alternatively, one could avoid (6) here and instead use that the union of two disjoint spheres in R3 is an unstable
CMC surface.
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surfaces with bounded mean curvature (see, e.g., [ 17, Proposition 2.2]) together with
[1] show that the rescaled surfaces converge to a coordinate sphere in R3 \ Bj. In the
case where ro(2) H (X ) — o0, an additional rescaling argument (see the discussion
after Proposition 2.2 in [17]) shows that ro(Zj) "'y is close to a small coordinate
sphere tangent to S7(0). O

Proof of Proposition 2.1

Consider a sequence {Xj}7., of connected, closed stable CMC surfaces ¥y C M
with 79(Xg) — oo and area(X) — oo. By Proposition 2.3, it suffices to only con-
sider the case where ro(Xx) H(Xy) — 0.

We can thus apply Proposition 2.2 to the surfaces X . Because the convergence
of ,o,:l 3 to S1(€) in Proposition 2.2 may not be smooth across the origin, we cannot
yet conclude that ¥ has genus 0. Instead we argue as follows.

Define f; : ¥y — R by

1
fiew) =3[P
Suppose that x; € Xy is a sequence of critical points of f; with
det D%, fi(xx) <0.
We now consider a different rescaling
Sk = x| Sk

The same argument as in Proposition 2.2 shows that, after passing to a subsequence,
we can pass the immersions X; with respective basepoints X; = xj /| x| to a limit to
obtain a limiting connected, proper stable CMC immersion

¢w3200_>R3\{0}

with basepoint Xo0, Where Qoo (Xoo) = limg o0 X

When ¢ has nonzero mean curvature, we can argue as in Proposition 2.2 to
show that it is a round sphere. We may then assume that this sphere passes through
the origin (otherwise, the 3% would be smoothly converging to a sphere). When the
mean curvature of ¢, vanishes, we can argue as in [17, Lemma 3.2] (along with a
log-cutoff argument near the origin) to conclude that it is a flat plane. Either way,
it follows that X is a critical point of foo : oo —> R, where foo(x) = %|g000 (x)]2.
From this, we see that the immersion ¢, is tangent to the sphere S;(0) at the point
Xoo-

Putting these facts together, we thus see that df:tD%oo Jfoo(Xs0) > 0. Indeed, the
planar case will be a strict local minimum while the spherical case will be a strict local
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maximum thanks to the observation that the sphere passes through the origin. This
contradicts the assumption that detD%k Jr(xg) < 0. It follows that for sufficiently
large k, fr is a Morse function on X; with no saddle points. Standard Morse theory
shows that Xy is a sphere. O

3. Proof of Theorem 1.1
Let (M, g) be a Riemannian 3-manifold as in the statement of Theorem 1.1. Let
{Ek}zo=1 be a sequence of connected, closed, embedded stable CMC surfaces in
(M, g) with area(Xy) — oco. Our goal is to prove that X is a leaf of the canoni-
cal foliation of (M, g) provided that k is large enough.
Note that r9(Xx) — oo by Theorem 1.10 in [6] of A. Carlotto and the authors.
We may assume that each Xy is a sphere by Proposition 2.1. If ¥ encloses By and k
is sufficiently large, then it is a leaf of the canonical foliation. This follows from the
works of G. Huisken and S.-T. Yau and of J. Qing and G. Tian stated in Appendix A.
We may thus assume that the surfaces in the sequence are outlying spheres.
Theorem 1.2 implies that

liminfro(Sx) H(Sk) > O.
k—o00

Thus, by Proposition 2.3 and provided that k is sufficiently large, ¥4 is smoothly
close to a large coordinate sphere, separated from the origin, in the asymptotically
flat end. In particular, the spheres X are captured by the Lyapunov—Schmidt analysis
developed by S. Brendle and the authors in [4] and [10] as surveyed in the introduction
to our companion article [10]. The questions of whether such spheres exist in (M, g)
or indeed can be ruled out to exist are reduced by this analysis to the study of fine
properties of the scalar curvature of (M, g) in the asymptotically flat end. In particular,
since we have assumed that the scalar curvature vanishes outside of a compact set, no
such spheres exist (cf. [10, Section 1]). Note that decay of the metric in C 6 is assumed
in [10]. This has been weakened to decay in C 5 in [16]. This completes the proof of
Theorem 1.1.

4. Proof of Theorem 1.2
Let (M, g) be as in the statement of Theorem 1.2. We denote by

3
_:dei(g)dxi and gs=( 2l I) de ®dx
i=1

the exact Euclidean and the exact Schwarzschild metric, and by

sziai
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the position vector field in the chart at infinity. We will compare geometric quanti-
ties with respect to g, the Euclidean metric g, and the Schwarzschild metric gs. To
set them apart, we use a bar to denote Euclidean quantities and a subscript S for
Schwarzschild quantities.

Let ¥ C M be a connected, closed stable CMC surface that is outlying. We iden-
tify X with a surface in M \ By = R3\ B;(0) using the chart at infinity. Note that X
bounds a compact region in R? that is disjoint from B;(0). We use du, h, and H to
denote the area measure, the second fundamental form, and the mean curvature (with
respect to the outward pointing unit normal) of .

Assume, for a contradiction, that there is a sequence {3 }2, of such surfaces
in (M, g) with

area(Xy) — 00, ro(Zg) — oo, and ro(Zr)H(Zg) — 0.
By Proposition 2.1, we may assume that each Xy is a sphere. We collect estimates
for these surfaces from Appendix B. All the error terms o(1) and O(1) below are with

respect to k — oo.
For every y > 2,

ro(Se) 2 [ x| dp = O(1) ®)

Sk

by Lemma B.2. We have that
|x|[a(x)| = O(1) ©)

by Lemma B.4. By Lemma B.5,
area(Xy N By)
up ——

5 = 0(1). (10)
r>1 r
Trivially,
1
3 areag (X N By) <area(Xx N B,) < 2areag(Xx N By). (11)
Finally, by Lemma B.6,
area(Zx) H(Zx)? = 167 + o(1), (12)
/ 112 du = o(1). (13)
Sk

LEMMA 4.1 (Area element comparison)
We have that

du = (1 + %)4(1 +0(1x|72)) d .
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LEMMA 4.2 (Mean curvature comparison)
We have that

H=H+0(x? (14)
and
2 A m o\~ 12m 3
(14 5q) # == (1+ ) EED+o?). a9
Proof

A standard computation as in [23, p. 418] gives that
H=H + 0(|da|) + O(|h||o]).

The first estimate now follows from (9) and Lemma B.1. For the second estimate,
consider the metric

. . m 4,
g=g+07, whereaz(l—i——)
2|x|

that is conformally related to g. Note that

Q+£ﬁH:H Q+£ﬂlgg<>

by the formula (see, e.g., [24, Lemma 1.4]) for the change of mean curvature under
conformal changes of the metric. The same computation as above gives

H = H + 0(|36]) + 0(|h]16]).
The asserted estimate now follows in conjunction with (9) and Lemma B.1. O

LEMMA 4.3
Let § € (0,1). We have that

-8 [ |hRdn< / B2 di+ 0(ro(Z0)). (16)
pA Zk

Proof
First, note that

/ b2 dji= / Vhs 3 dps
hoye poys

by conformal invariance. Moreover,
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[ hans = (+o) [ 1P
Zk

Tk

The curvature bound (9) and a standard computation as in [23, p. 418] gives
|h| = lhs|s + O(|x[73).
Using Young’s inequality, we obtain
o o § o _
Ihs|s < 12 + Jlhsls + O(IxI7°),

where 7! has been absorbed into the error term. Using these estimates together with
(8), we obtain

[ izan= [ VisPdus
Tk Tk
o 8 Q _ _
< (1 + 0(1))/ |h|* du + —[ |h|§; din+ O(ro(Zk) 4).
o 2 Js,
This proves the assertion. O
By a result of C. De Lellis and S. Miiller [15], there is a constant I" > 1 such that
f |ﬁ—2/xk|2dﬂfzrf |h|}dj (17)
ot Sk
holds for the appropriate choice of Ax > 0.

LEMMA 4.4
We have that

AH(ER) =2+ 0(1).

Proof

Consider the rescaled surfaces p;l 3k as in Proposition 2.2. After passing to a sub-
sequence, these surfaces converge to a coordinate sphere S;(§) with |§| = 1, locally
smoothly in R3 \ {0}. In particular, their Euclidean mean curvature converges to 2
away from the origin. Now, the right-hand side of (17) is o(1), both sides of (17) are
scaling invariant, and the integrand on the left is nonnegative. The asserted estimate
follows from these facts. O

We use (17) to derive an estimate (19) for the Hawking mass of X that is posi-
tioned against the Christodoulou—Yau estimate in Theorem 1.3.
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We have that

(”ﬁ) = (A= (14 5) 1|i”|“3g(x D)+ O(HIxI™) + 0(1x"°)

by (15). Hence,

[ ran= [ (=15 5) pEm) (14 5y e

+ 0/E (HI|x|7 + |x[7°) du
L ) s ouy

+ O/ (H|x|7? +1x|7%) dup
Xk

_ /Ek(ﬁ (1+%)_ |2n|13g(X u)) dii

+ o[ (H21x[7 + H x| + [x[) dps
Sk

Note that we have precisely isolated the Schwarzschild contribution.
We now expand the Schwarzschild term:

/zk(H (1+30) faecn) di

= H*dp
Zk

_/zkH(”ﬁ) 1|4|3g(X D

m \~24m?
+ 1+ X, v)"d i
/zk( o) et

= 16n+2/ h|%dj
Sk

4
- | |3g(X v)dp

+/Ek al-(1+ %)_1)%§(X,D)dﬂ

m \—24m?
+ (1+-— X, v)"d
/zk( ) et R
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Observe that

x|

/ §X.v) dip=0 (18)
Xk

since X does not enclose the origin. We choose 7 with 2 < v < 8/3 and continue to
estimate:

=16m +2/ h|%dp
Zk

- 2\ 4m
— H—-—)—z(X.v)di
fzk( Ak)|x|3g( )AL
2

_ 4dm
+/ A s(X.0)dj
v [xXP@Ix[+m)
-24 2
+f (1+i) (X0 dji
b 2|x| | x|

> 167 +2/ h|%dji
g

+/ g 2(X, ) d i
—g ’v
5. XP@x[ +m) #

m \—24m?
+ 1+ —) —a(X,9)*dj.
/zk( ) et dn

We use the De Lellis—Miiller estimate (17) on the second line. We also combine the
third and last lines:

> 16w+ 2—<0) | |hl}di
Zk

+f g_4m (X, 0)d]i
(X, D) d i
5 1XIPQ2lx[ 4 m)

2 g(X,v)? _
2 —_—— —_—
+ 4m (1 T)/zk el

+ 0/ x| dji.
Xk
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We estimate the second line using (14):

=167 + (2—fr)/ |h|% d
g

2 g(X.,v)*
4m?(1-= e d
+4m ( T)/zk Ix[6 2
+0/ (H|x|7? +[x|7°) d .

Zk

In conclusion, we obtain

H?dpu> 167+ (2— rr)/ |h|% d
Tk

+4m?(1 —%)/E FXD) 4o
k

Xk

T |x16
+ 0/ (H?|x|7> + H|x|7? + |x|7°) dp. (19)
Zk

Combining Theorem 1.3 with (16) and (19) and then estimating the resulting
error terms using (8) and (9), we obtain

2 22 nam2(1-2) [ EXD?
(5(1—5)+2—rr)/2k \hIZ d i + 4m (1——)/&67@ (20)

T |x|®

<O0(ro(Zk) ™) + 0/ (H?|x|7> + H|x| 7 + |x| %) dp

Sk

<O0(ro(Zp) %) + H(Zp) O(ro(Zp)71).

We emphasize that the second term in (20) is owed to the Schwarzschild back-
ground. We now study this term more closely.

LEMMA 4.5
We have that

liminf(ro(Ek)z / §X. 0 dﬂ) > 0.

k—o00 Sk |X|6

Proof

The rescaled surfaces ro(Zy) ! Iy are contained in {x € R3 : |x| > 1} and tangent to
S1(0). By (9), Lemma B.1, (10), and (11), area and as well as extrinsic curvature of
these surfaces with respect to the Euclidean background metric are locally uniformly
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bounded. Their mean curvature tends to zero. Using also (13), we see that a sub-
sequence (with appropriate choice of basepoints) converges in the sense of pointed
immersions to an affine plane IT tangent to S;(0). Observe that

_X’_z
II

|x|°

is independent of the particular limiting plane IT. To conclude the argument, note that
the quantity in the statement of the lemma is scaling-invariant and the integrand in the
statement of the lemma is nonnegative. This completes the proof. O

We can now prove a preliminary version of Theorem 1.2. The proof uses the
crucial bound

[ Vi dp < area(z 7 2001) = HEDO() @
Zk
proved in Proposition D.1.

LEMMA 4.6
We have that

ro(Zx) 72 < H(Zp) 0(1).

Proof
We choose 7 = 3 in (20). Rearranging (20) and using Lemma 4.5, we obtain’

(072 = 0(r0(E0)) + O(H(Zoro(E0) ™) + o) | h2 d .

Combined with (16) and (21), this proves the assertion. Ul
Note that Lemma 4.6 implies that
|x|7? < O(H).
Using also (14), we obtain the estimate
H=0(H)
2We will show below that X satisfies the De Lellis—Miiller estimate (17) with constant T' = 1+ 0(1). We may

then choose 7 sufficiently close to 2 so as to arrange for the coefficient of jzk |l;|§ d i in (20) to be positive.
At this point of the argument, however, we have to treat this as an error term.
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for the Euclidean mean curvature. From this and (12), we see that the rescaled surfaces
p;l 3 have bounded Euclidean mean curvature, where pp = 2/H(Xy). Together
with the bounds on the area growth from (10) and (11), this estimate enables us to use
Allard’s theorem to show that the geometric convergence proved in Proposition 2.2
also holds across the origin.

COROLLARY 4.7
Let a € (0, 1). Possibly after passing to a subsequence, the rescaled surfaces ,o,:l pI7S
converge in C'* to a coordinate sphere S1(£) in R3, where £ € R? with || = 1.

Proof
Proposition 2.2 and the assumption that ro(Xx) H(Xy) — 0 imply subsequential con-
vergence (smooth with multiplicity 1) away from the origin. The C** convergence

across the origin is now a straightforward consequence of Allard’s theorem (as stated
in [31, Theorem 24.2]). U

LEMMA 4.8
We have that

inf/ |H—2/A|2d/1§2(1+0(1))/ |h|%dji.
Zk

A>0 Sk

Proof
It follows from (8), (9), and (14) that

H?*dji= | H*dp+ O(ro(Zx)~") = O(1).
Zk Zk

Moreover, by (13) and (16),
/ ||} d = o(1).
Sk

Combining the Minkowski inequality proved in Proposition E.4 with Corol-
lary 4.7, we obtain

167‘[5(2/)Lk)2areag(2k)—|—0(l)/ |}E|§ dji.
Zk

Here, A > O satisfies

2 1

—=————| Hdp>o.
Ak areag(Xg) Jx, #

From this, the Gauss equation, and the Gauss—Bonnet formula, we find that
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/ |H —2/Ax?dji= / H?d i — (2/Ar)? areag (S)
Xk Zk
=167 + 2/ k% d i — (2/ M) areag (k)
Xk

<2(1+ 0(1))/Z |ﬁ|§ dji.

This completes the proof. O

Note that Lemma 4.8 just says that (20) holds with I' = 1 4+ o(1). Thus,

(%(1—5)—#2—14-0(1))/Z |;§|§_’dﬂ+4m2(l_g)/z'g(X,D)2 i

T |x|®
< O0(ro(Z1)7%) + O(H(Z)ro(Z) ™).
We choose 7 > 2 and § > 0 so that’
2
5(1 —§)+2—1>0.

It follows that

B
/z % dit < O(ro(Zx) %) + O(H(Zp)ro(Tp) ™).

Together with Lemma 4.5, this gives
ro(Zi) 2 < O(ro(Z) %) + O(H(ZW)rg ).

This estimate is not compatible with the assumption ro(2z) H(Z%) — 0. This con-
tradiction completes the proof of Theorem 1.2.

Appendix A. The canonical foliation

Here we review foundational results by G. Huisken and S.-T. Yau [24] and by J. Qing
and G. Tian [30] on the canonical foliation. We apply these results in the proof of
Theorem 1.1.

THEOREM A.1 (G. Huisken and S.-T. Yau [24, Theorems 3.1, 4.1, and 5.1])

Let (M,g) be a complete Riemannian 3-manifold that is C*-asymptotic to
Schwarzschild with mass m > 0. There is a family of distinguished embedded sta-
ble CMC spheres {Zp}o<H<H, that foliate the complement of a compact subset

3Here it is crucial that we have kept the term on the left-hand side of the Christodoulou—Yau estimate (2)!



UNIQUENESS OF STABLE CMC SURFACES 19

C C M. Foreverys € (1/2,1], there is 0 < Hy(s) < Hy with the following property.
Let 0 < H < Hy(s). Then X g is the unique stable CMC sphere of mean curvature
H in (M, g) that encloses the centered coordinate ball Bg—s.

In fact, the surface X g is constructed as a perturbation of the centered coordinate
sphere S5,7. We mention that R. Ye [33] has given an alternative construction of the
foliation. It has been shown by J. Metzger [25] that Theorem A.1 holds when (M, g)
is C2-asymptotic to Schwarzschild with positive mass.

We refer to {X g }o<H <H, as the canonical foliation of the end of (M, g).

The uniqueness result for the leaves of the canonical foliation has been strength-
ened by J. Qing and G. Tian [30].

THEOREM A.2 (J. Qing and G. Tian [30, Theorem 1.1])
The assumptions are as in Theorem A.l. Upon shrinking Hy > 0 and enlarging C
accordingly, if necessary, the following uniqueness result holds. Let H € (0, Hy).

Then X g is the unique stable CMC sphere of mean curvature H that is embedded in
(M, g) and which encloses C.

Remark A.3
In Appendix C, we provide an alternative proof of Theorem A.2 if (M, g) is assumed
to have nonnegative scalar curvature. This proof is based on the method we developed
in Section 4.

Remark A.4

We prove in Proposition 2.1 that connected, closed, embedded stable CMC surfaces
in (M, g) are necessarily spheres, provided that ro(X) > 1 is sufficiently large. This
extends the scope of the uniqueness statement in Theorems A.1 and A.2 from spheres
to closed surfaces of any genus.

Appendix B. Curvature and area growth estimates for stable CMC surfaces

Let g be a metric on R3 that is C2-asymptotically flat of rate ¢ > 1/2 as in (5). In
this section, we recall several estimates for sequences {Z }7—, of connected, closed,
embedded stable CMC surfaces in (R3, g) with ro(Zx) — oco. Some of these esti-
mates were stated and proved in the literature under stronger asymptotic conditions—
either ¢ = 1 in (5) or g as in (1) with k = 2. The proofs carry over to the present
setting, sometimes with minor modifications which we indicate below. We use a bar
or sometimes a subscript when quantities are computed with respect to the Euclidean
background metric g. The error terms o(1) and O(1) below all hold uniformly as
k — oo.



20 CHODOSH and EICHMAIR

LEMMA B.1 (cf. [23, p. 418])
We have that

x| = ) ()| = O (x| [(x)]) + O (x| 79).

LEMMA B.2 ([24, Lemma 5.2])
Let y > 2. We have that

m@wﬂﬂ/‘Mﬁﬂﬂzom-

Xk

LEMMA B.3 ([17, Lemma 2.5])
We have that

4
area(Sg) H(Sg)? < 67” +o(l).

LEMMA B.4 (cf. [17, Proposition 2.3])
Assume that ro(Zr) H(Z) = O(1). We have that

x| | ()| = O(1).
Proof
The assumption ro (X ) H(X) = O(1) can be used to rule out spherical limits occur-
ring in the “latter alternative” in the proof of [17, Proposition 2.3]. O

LEMMA B.5 (cf. [17, Corollary 2.6])
Assume that ro(Zx) H(Zx) = O(1). We have that

area(Xx N By)
sup ———

=0().
r>1 r? W
Proof
Estimate [32, (1.3)] implies that
;(Zr N B -
upw =0(1) H2d .
r>1 r Tk

Using the previous estimates in this appendix exactly as in the proof of [17, Lemma
B.3], we obtain

H?dji=0()area(Zp)H(Zr)? = 0(1).
Sk

The assertion follows since area(Xx N B,) is comparable to areaz(X; N B,) for
large k. O
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LEMMA B.6 (cf. [24])
Assume that the surfaces Xy have genus 0. We have that

area(Sp) H(Zk)? = 167 +o(1)  and / 12 dp = o(1).
Sk

Proof
This is contained in the proof of [24, Proposition 5.3]. O

Appendix C. On stable CMC surfaces separating the compact part from infinity
Here we explain how to modify the proof of Theorem 1.2 to obtain an alternative
argument for the key technical step (due to J. Qing and G. Tian) in the proof of The-
orem A.2, though under the additional assumption that the scalar curvature of (M, g)
is nonnegative. Let (M, g) be as in the statement of Theorem 1.2.

Proof

Let {3x}72, be a sequence of stable CMC spheres Xy C M each enclosing B;
and such that area(Xy) — oo and ro(Xy) — oo. Assume, for a contradiction, that
ro(Zx)H(Xr) — 0. We follow the proof of Theorem 1.2 in Section 4 up until the
flux integral (18), which needs to be replaced by

since X encloses Bj. Following along, instead of estimate (20) we obtain

2 °o ) §(X,9)2 _ 8«
(3(1—5)+2—rr)/2k A% d i+ 4m (1——)[&751#

T |x[6 A
< 0(ro(Z) %) + H(Zp) O(ro(Te) ™).
Using Lemma 4.5 as before, we arrive at

_ _ _ 8 2 _
ro(Zx) 72 < 0(ro(Z0) ) + HE) O(ro(Z0) ™) + T +0() i |h|% d fa.
k
The proofs of Lemma 4.6 and Corollary 4.7 go through without change since 2/Aj ~
H(Zx) = 2/pr. We may thus assume that 3 = ,o,:l Yy is a C1* graph of size o(1)
over a sphere S (§) with |§] = 1. We may argue as in [24, (5.13)] or [30, Lemma 5.1]

that
[ 2. v) d;z+[ EXDSED) o 1), (22)
z

|x| H x|

As in [24, (5.13)], the first integral satisfies*

“Note we have chosen to use £ rather than —§ here, which is why the resulting integral is negative.



22 CHODOSH and EICHMAIR

[ g@,a)dﬂ:/ EED) ooy = Loy,
5 518 3

x| |x|

To study the second integral in (22), we perturb £ slightly to & € R3 so that >k and
S1(&;) meet tangentially at the point py € Sk closest to the origin. (The transversality
argument in the proof of Proposition 2.1 shows that these closest points are unique.)
It follows that

b — (X —&)| <o(D)]x — prl®.

We estimate that

[ axnEen ,,

SRR
=/i 2(x, a)glr)(jéx miippn /ik g‘(x,a)g(si;a— X —t0)
B /}: %dﬂ—g‘(m)/ﬁk gﬁf{;?) di
'ﬁékﬂXJEGSE{X_&»dﬂ
B /Sl@) % dip+o(D) +(1+o(1) /ik §(|if|,3a) dpi
'ﬂékﬂij@iﬁ{X_&»dﬂ
- 4?” —4m+o(l) + /ik g(X, D)g@i;; K=t

In the second to last step, we use the uniform integrability of the first integrand. The
last step follows from explicit computation of the first term and an application of the
divergence theorem for the second term. Note that

[[ EEDEET U6 gy [t

> |x|? £ IxP

dii=o0(1).

Putting everything together, we have that

[ g(.v) dﬂ—i—[ g(X.v)g(.v)
=

|x| > |x|?

dip=—4r +0(1).

This estimate contradicts (22). The proof is now finished exactly as in [24, Section 5].
O
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Appendix D. Estimates for the Willmore deficit

An estimate of the form (23) has been proved in [9] and [ 1] for isoperimetric regions.
As noted in Appendix C of [8], the proofs carry over to the case where ¥ is not
necessarily outward minimizing. We adapt these ideas below.

PROPOSITION D.1

Let (M, g) be a connected, complete Riemannian 3-manifold with nonnegative scalar
curvature and which is C?-asymptotically flat of rate ¢ > 1/2. Consider a sequence
{Zk}pe, of stable CMC spheres Xy C M such that ro(Xx) — oo and area(Zg) —
oo. Then

area(zk)%/ h2dp = O(1) (23)

2k

as k — oo.

Proof

Since rog(Xg) — oo, we may assume that (M, g) has horizon boundary (cf. [23,
Lemma 4.1]). Let Q C M be the unique compact region Q; C M with X = 0Q.
Let Q) C M be the strictly minimizing hull of Q in (M, g) (cf. [23, p. 371]). Recall
from [23, Theorem 1.3] that the boundary X} of Q) is C L1 and smooth away from
Zk. By [23, (1.15)], the weak mean curvature of X satisfies HE;C =0on X \ X
and Hz;( = Hy, for s?-a.e. point of %) N . In particular,

H2, d,uf/ H%kd,u.
A k Sk

There is a weak solution in the sense of [23, p. 365] to inverse mean curvature flow
starting at 3} by [23, Lemma 5.6]. The monotonicity of the Hawking mass along the
flow in [23, (5.24)] in combination with [23, Lemma 7.3] gives5

area(Z}c)%(l&r —/ H, du) < (167) 2 mapw
Zy
so that
gt 2 3
area(X) )2 (1671 — Hg, d/L) < (167)2mapMm. (24)
g

The Christodoulou—Yau estimate (2) gives

SThe argument in [23] requires that (M, g) be asymptotically flat of rate ¢ = 1. Note that this case suffices
for the application in the proof of Theorem 1.2. To cover the full range ¢ > 1/2, we can argue exactly as in
Appendix Hof [11].
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2 o
—/ |h|?>dup < 167r—/ Hg, dpu. (25)
3 Ek z:k g

Finally, we note that
area(Zy) = (1 + o(1)) area(Z}). (26)

Indeed, this follows from the rescaling arguments in Propositions 2.2 and 2.3 and a
coarse, Euclidean area comparison. The asserted estimate now follows from combin-
ing (24), (25), and (26). O

Appendix E. A remark on the Minkowski inequality
The contribution here is an estimate for the remainder in the second-order Taylor
expansion of the Minkowski quantity

/ H — /167 area(X)
=

at the unit sphere of Euclidean space. The idea of computing and using the second
variation of this quantity appears in the dissertation of D. Perez [29].

All geometric quantities in this section are computed with respect to the
Euclidean metric. We abbreviate

S={xeR*®: |x|=1].
Let /€ C*(S) with || fl|c1(s) small, say || f [lc1s) < 1/2. Let
T={(1+ f()0:0€S}.

LEMMA E.1
We have that

/H— v/ 167 area(X)
b
_ 1 2 [ 2] 2
== (L) =[5 [19r
+ 0(1)/8(|f|3 + VAP +IVAIIVFI?+|Vdf|£3) (27)
as f — 0in C1(S).

Proof
Let

ML) = /;: Hyx, — /16w area(X;)
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for t € [0, 1], where £; C R3 is the surface
S = {(1+1/(8)8:0 € S).

Taylor’s theorem gives
1 1
A (1) = A (0) +.4'(0) + 5«///”(0) + g///"’(t)

for some ¢ € (0, 1). The computation in the proof of Proposition 4.1 in [29] shows
that

A (0) =0,
A'(0) =0,

///”(0)=%(/Sf)z%fsf“rfslvflz-

To see that .’ (t) has the asserted form, we recall the quasilinear structure of mean
curvature below. U

We briefly recall the quasilinear structure of mean curvature that is used in the
proof of (27). Let U C R™ be open. The mean curvature vector field of an immersion
¢ : U — R" is given by

g7(9;9,¢ — T 0kp).
Here,
gij = (0ip) - (3,9)

are the components of the first fundamental form, g/ are the components of its
inverse, and

1
Fikj = Egke(aig(j + 0, 8ie — 0egij)

are the Christoffel symbols. This expression is linear in the second-order partial
derivatives of the immersion.

Next, note that there is a universal constant § € (0, 1/2)—independent of a par-
ticular choice of f—with the following property. For every v € Bs(0), the translate
¥ + v is a C? graph over S.
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LEMMA E.2
Assume that ¥ C R3 is the graph of a function f € C(S) with small norm. There is
v € R3 small such that the translate X' = X+ v is the graph of a function ' € C1(S)

with small norm so that
[xlf/zfxzf’=/x3f/:o. (28)
S S S

We may homothetically rescale X' slightly to the graph of a function f” € C1(S)
where

/ f// =0 and / xlf" — xzf// — x3f// =0. (29)
S S S S

Proof
Let f, € C1(S) be such that

v+ (14 f(0)0:0eS}=S+v={(1+ f,(0)0:0€S].
For f =0, note that f,(6) =0 -v + O(|v|?). In general, we find that
fo@) =0-v+0(v?) + O(I flicr)-

Let 6 € (0, 1/2) be small. Consider the map
3
E: {v eR3: v 58}—>R3 given by v > v — 4—/(x1,x2,x3)fv.
T Js

It follows that

E(w) = O(jvP) + O(I fllcr)-

If || fllc1 is sufficiently small, then this map has a fixed point v by Brouwer’s fixed
point theorem.

Finally, if ¥ is the graph of f’ € C1(S) satisfying (28), then (the homothetic
rescaling) AX is the graph of A — 1 4+ Af”. For any A > 0, this still satisfies (28).
Choosing

r=(14 = [ /) =14 0(1f o).

4JTS

we find f” satisfying (29). O
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Clearly,
JLUVarI9 2+ 19ap1£2 419 77 +11P)
—o(1) [g (F2 +1V 12 + 1VdfP) (30)
as f — 0in C'(S). Moreover, the Bochner formula on the sphere gives
[S VarP = 2/S|Vdf —(afr2gf + 2/S V£, G31)

LEMMA E.3
We have that

[inf—(Af/Z)g|2§ 0(1)/ |13|2+o(1)/(f2+|Vf|2)
S ) S
as f — 0in C1(S).

Proof
Lemma 2.3 in [28] shows that

h=vdf —(Af/2)g
+ O(If1IVdf | + IV FIIVAf]) + O(f2 + [V £ ).

We now use (31) to absorb the error terms containing Vdf . O

From now on, we assume that the moment conditions (28) and (29) hold. Then

[wrezs s
S S
from which the estimate

1 2 1 1
=Ly =g wre=g 2w
follows. Putting this together, we obtain
\/16narea(2)§/ H—1—0(1)/’Vdf—(Af/Z)g|2—;/(f2+|Vf|2)
= S S

as f — 0 in C1(S). In combination with Lemma E.3, we obtain our final result in
this section.
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PROPOSITION E.4
We have that

\/16narea(2)§/ H+0(1)[ |}Ot|2 (32)
= =

as ¥ converges to S in C1L.

Remark E.5
For ¥ close enough to S in C2, by the classical Minkowski inequality for convex
surfaces,

\/lénarea(E)f/ H.
by

The Minkowski inequality has been generalized to mean-convex star-shaped surfaces
(see, e.g., [5], [20], [21]; see also Theorem 3.3 in [29]), as well as to outward mini-
mizing surfaces (see [22]).
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