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Introduction
Given a closed curve 𝛾 ⊂ ℝ3 we say that a surface Σ ⊂ ℝ3

spans the curve 𝛾 if 𝜕Σ = 𝛾. A natural question is:

What surface Σ has the least surface area out of all
surfaces spanning 𝛾?

We call this Plateau’s problem after Joseph Plateau, a 19th
century physicist who investigated the behavior of soap
films spanning wire contours. However, the question of
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finding a least area surface spanning a contour dates back
at least to work of Lagrange who considered this problem
for a graphical surface 𝑧 = 𝑢(𝑥, 𝑦) in one of his 1762 foun-
dational works on the calculus of variations.

Lagrange found that the property of having least area
implied that the graphical function 𝑢(𝑥, 𝑦) satisfied a par-
ticular partial differential equation (known today as the
minimal surface equation):

(1 + 𝑢2𝑥)𝑢𝑦𝑦 − 2𝑢𝑥𝑢𝑦𝑢𝑥𝑦 + (1 + 𝑢2𝑦)𝑢𝑥𝑥 = 0. (1)

In Figures 1 and 2 we depict the first known examples of
minimal surfaces after the flat plane.

Observe that surfaces depicted are not graphs, so what
we mean when we say these are minimal surfaces is that
each small piece of the surface is graphical over some plane
and this graph satisfies the minimal surface equation (1).

The First Variation of Area
As discovered by Meusnier, the minimal surface equation
(1) can be geometrically reformulated as the vanishing of
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Figure 1. The catenoid (discovered by Euler in 1744 and
proven to be minimal by Meusnier in 1776) is the unique
axially symmetric minimal surface in ℝ3.

Figure 2. The helicoid (discovered by Meusnier in 1776) is the
unique ruled surface in ℝ3.

the mean curvature of the surface. To define the mean cur-
vature, recall that any surface Σ ⊂ ℝ3 (locally) admits a
smoothly varying unit normal vector. From this, we can
define the Gauss map

𝑁 ∶ Σ → 𝕊2 = {𝑥 ∈ ℝ3 ∶ |𝑥| = 1}
by setting 𝑁(𝑝) to be the unit normal vector to Σ at the
point 𝑝. The mean curvature to Σ is the trace1 (over the
tangent plane 𝑇𝑝Σ) of the derivative of 𝑁, i.e.,

𝐻 = −
2
∑
𝑖=1

𝐷𝑒𝑖𝑁|𝑝 ⋅ 𝑒𝑖,

where 𝑒1, 𝑒2 ∈ 𝑇𝑝Σ ⊂ ℝ3 is any orthonormal basis.
If Σ𝑡 is a smooth family of surfaces2 with Σ0 = Σ and so

that Σ𝑡 has velocity 𝑉 at 𝑡 = 0, the first variation of the area
formula reads

𝑑
𝑑𝑡
||𝑡=0|Σ𝑡| = −∫

Σ
𝐻(𝑁 ⋅ 𝑉).

Thus, we see that the vanishing of the mean curvature is
precisely the first order condition to be area-minimizing,

1Classically, the mean curvature was an average (not just sum) of these deriva-

tives, but most modern references omit the factor of
1
2
here.

2If Σ is non-compact, we assume that Σ𝑡 agrees with Σ outside of a compact set.

𝑁

Figure 3. The Gauss map of the catenoid. One can identify the
catenoid with 𝕊2 ⧵ {𝑁, 𝑆} by “bundling up” both ends. In this
case, the Gauss map becomes 𝑁(𝑥) = −𝑥, an
anti-holomorphic map.

since𝐻 vanishes if and only if
𝑑
𝑑𝑡
||𝑡=0|Σ𝑡| = 0 for any family

Σ𝑡.
If 𝐻 vanishes, then Σ is called a minimal surface. Note

the potentially confusing nomenclature: a minimal sur-
face need not have minimal area, it is simply a critical
point of area. However, a smooth minimal surface is lo-
cally of least area in the sense that any point on a minimal
surface has a neighborhood that minimizes area.

We note that there are several equivalent properties of
minimality. For example, Σ ⊂ ℝ3 is minimal (𝐻 = 0)
if and only if ΔΣ𝑥𝑖 = 0 for 𝑖 = 1, 2, 3, where 𝑥𝑖 are the
coordinate functions on ℝ3. By the maximum principle,
this implies that no closed surface on ℝ3 can be minimal.
Thus, minimal surfaces in ℝ3 either have boundary, such
as solutions of the Plateau problem, or are complete and
non-compact.

For us, the most important equivalent characterization
will be the following: Σ ⊂ ℝ3 is minimal if and only if the
Gauss map 𝑁 ∶ Σ → 𝕊2 is anti-holomorphic. For example,
see the Gauss map of the catenoid in Figure 3.

These facts are the basis of the Weierstrass represen-
tation. Loosely speaking, the Weierstrass representa-
tion is based on the fact that the Gauss map (an anti-
holomorphicmap on Σ) and 𝑑𝑥3 (a harmonic 1-form) can
be used to recover the minimal surface Σ. This relates the
study of minimal surfaces inℝ3 to Riemann surface theory,
and proves to be a fruitful approach to study existence and
uniqueness questions for such surfaces.

The Second Variation of Area
Returning to the variational approach, if minimal surfaces
are critical points of the area functional, it is natural to
study the second derivative of area. This is relevant for sev-
eral reasons. First of all, minimal surfaces are often con-
structed via variational methods and so the second deriv-
ative of area (i.e., the Hessian) plays a central role in the
Morse theoretic point of view. Secondly, the second vari-
ation is a fundamental geometric object associated to the
minimal surface, as we now see.

Suppose that Σ is a minimal surface and Σ𝑡 is a family as
before. Modulo a reparametrization of Σ𝑡, we can assume
that the velocity at 𝑡 = 0 satisfies𝑉 = 𝜑𝑁 for some function
𝜑 along Σ. Then (at least for compactly supported 𝜑) we

JUNE/JULY 2021 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 893



Figure 4. Enneper’s surface is an immersed minimal surface
in ℝ3. Although it is not obvious from the picture, the induced
metric is (intrinsically) rotationally symmetric. Enneper’s
surface has Morse index 1.

can compute that

𝑑2
𝑑𝑡2

||𝑡=0|Σ𝑡| = ∫
Σ
|∇Σ𝜑|2 − |∇Σ𝑁|2𝜑2.

It is common to denote bilinear form on the right hand
side of this equation by 𝒬Σ(𝜑). This formulation of the
second variation of area is due to Fischer-Colbrie [FC85].
She observed that in this form, the second variation 𝒬Σ(𝜑)
is conformally invariant!

In particular, the second variation 𝒬Σ(𝜑) depends only
on (1) the conformal class of Σ and (2) the Gauss map.
Note that (1) and (2) do not necessarily uniquely deter-
mine the minimal surface! For example, the catenoid (Fig-
ure 1) and Enneper’s surface (Figure 4) have (essentially)
the same conformal type and Gauss map, although they
are clearly not the same minimal surface.
The Morse index. Recalling that 𝒬Σ(𝜑) is the second de-
rivative of area in the direction 𝜑 (really in the direction
𝜑𝑁), Morse theory suggests we should study the number
of negative and positive eigenvalues of 𝒬Σ(𝜑) (thought of
as a bilinear form). This is precisely the question of the
Morse index of the critical point of area Σ. It turns out that
𝒬Σ(𝜑) always has an infinite number of positive eigenval-
ues, but may or may not have a finite number of negative
eigenvalues.

If Σ has a finite number of negative eigenvalues, we say
that Σ has finite index, and call the number of such eigen-
values the (Morse) index of Σ (denoted index(Σ)).

Not all minimal surfaces in ℝ3 have finite index. For
example, any periodic minimal surface (other than the
plane) has infinite index (for example, the helicoid has
infinite index). To see that this is plausible, note that if
𝜑 has compact support and 𝒬Σ(𝜑) < 0, then translating 𝜑
by a large number of the periods of symmetries produces
a second function 𝜑′ with disjoint support and 𝒬Σ(𝜑′) < 0.
This can be repeated and the existence of such functions
implies that Σ has infinite index.

In fact, as proven by Fischer-Colbrie [FC85], a com-
plete non-compact Σ having finite index places strong

constraints on the geometry of Σ. She showed that
index(Σ) < ∞ is equivalent to Σ having finite total curva-
ture (FTC), i.e.,

∫
Σ
|𝐾| < ∞,

where 𝐾 = − 1
2
|∇Σ𝑁|2 is the Gaussian curvature. The class

of finite total curvature surfaces had been studied earlier
by Osserman [Oss64] who proved that a finite total curva-
tureminimal surface Σ ⊂ ℝ3 is conformally equivalent to a
punctured compact Riemann surfaceΣ⧵{𝑝1, … , 𝑝𝑟}, and the
Gauss map extends anti-holomorphically across the punc-
tures. The reader can compare this to the example of the
catenoid discussed previously to see that it is a punctured
sphere and the Gauss map extends across the punctures to
𝑁 ∶ 𝕊2 → 𝕊2, 𝑁(𝑥) = −𝑥.

What’s more, Fischer-Colbrie showed that the Morse in-
dex of Σ (if we know that index(Σ) < ∞) is purely an in-
variant of the conformal type of Σ and the extended Gauss
map𝑁. (This is a consequence of the conformal invariance
of 𝒬Σ, combined with a log-cutoff3 argument.)

The Index of the Plane/Catenoid
We note that for the flat plane, 𝑁 is constant, so

𝒬plane(𝜑) = ∫
ℝ2
|∇𝜑|2.

This is always non-negative, so we see that the plane has
index(plane) = 0.

Similarly, for the catenoid, using𝑁(𝑥) = −𝑥, we see that
∇𝑁 = −Id ⇒ |∇𝑁|2 = 2, so

𝒬catenoid(𝜑) = ∫
𝕊2
|∇𝕊2𝜑|2 − 2𝜑2.

Recalling that the first eigenvalue of the Laplace–Beltrami
operator on 𝕊2 is 0 and the second is 2, we thus see that
index(catenoid) = 1.

Finite Total Curvature Minimal Surfaces
The set of finite total curvature minimal surfaces (equiva-
lent to finiteMorse index surfaces) turns out to be very rich.
The class of FTC minimal surfaces is sufficiently restrictive
to allow interesting classification results, while being gen-
eral enough to have a rich set of examples. In large part,
this is due to the fact that Weierstrass representation (as
mentioned above) allows one to lean on complex analysis
when seeking examples of FTC surfaces. Besides the plane,
the catenoid (Figure 1), and Enneper’s surface (Figure 4),
there are many other examples. For example, an immersed
example is found in Figure 5.

3The log-cutoff function uses the Green’s function on ℝ2 to produce a sequence
of functions 𝜑𝑗 ∈ 𝐶∞𝑐 (ℝ2) with 𝜑𝑗 → 1 pointwise but ∫ℝ2 |∇𝜑𝑗 |2 → 0. This
can be used to show that point singularities are “removable” in certain problems.
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Figure 5. The Jorge–Meeks surfaces are immersed FTC
minimal surfaces with 𝑟 ≥ 3 catenoidal ends arranged around
a circle. The Jorge–Meeks surface with 𝑟 ends has index 2𝑟− 3.

Figure 6. Costa’s surface was the first embedded FTC minimal
surface (other than the plane and catenoid) to be discovered.
The Costa surface has index 5.

Figure 7. Hoffman–Meeks discovered how to add more
handles and bend the middle end of the Costa surface.

A famous and important example of a finite total curva-
ture surface was discovered by Costa in the 1980s [Cos84]
(see Figure 6). Costa discovered his surface (conformally a
thrice punctured torus) by providing Weierstrass data, but
was unable to prove that it was embedded. This was ac-
complished by Hoffman–Meeks [HM85] who discovered
that the surface had certain symmetries and used these to
prove embeddedness. They also found generalizations of
the Costa surface, in which the middle end bends into a
catenoidal shape, and also examples with higher genus.
See Figure 7.

The geometry of Costa’s surface is considerably more
complicated than that of the catenoid. As such, the in-
dex of the Costa surface is rather difficult to calculate.
This was achieved by Nayatani [Nay93] who showed that

index(Costa) = 5 by intricate methods relating the geome-
try of the second variation operator to the geometry of the
Gauss map.

Classification Results
The class of finite total curvature surfaces is rigid enough to
hope to classify simple surfaces. Such results mostly take
one of two forms: classification of surfaces of simple topol-
ogy or low Morse index. These results are rare enough that
we can list essentially all of them here.
Classification based on topology. The following results
hold for embedded finite total curvature minimal surfaces
in ℝ3:

• The plane is the unique surface with one end.
• The catenoid is the unique surface with two ends

(Schoen [Sch83]).
• The plane and catenoid are the unique genus zero

surfaces (López–Ros [LR91]).
• The Costa surface (and the deformed version as

constructed by Hoffman–Meeks) are the unique
genus one surfaces with three ends (Costa
[Cos91]).

It would be very interesting to classify embedded genus
one FTC minimal surfaces with more than three ends. Ac-
cording to a famous conjecture of Hoffman–Meeks, such
surfaces should not exist. More generally they conjecture
that

genus ≥ ends − 2. (2)

Classification based on index. The following results hold
for immersed finite total curvature minimal surfaces in ℝ3:

• The plane is the unique index 0 (stable) surface
(Fischer-Colbrie–Schoen [FCS80], do Carmo–
Peng [dCP79], Pogorelov [Pog81]).4

• There is no stable one-sided surface (Ros [Ros06]).
• There is no index 1 one-sided surface (the authors

[CM18]).
• The catenoid and Enneper’s surface are the unique

index 1 surfaces (López–Ros [LR89]).
• There are no index 2 surfaces (the authors [CM16,

CM18]).
• There are no index 3 embedded surfaces (the au-

thors [CM18]).

Based on the known examples, it is tempting to con-
jecture that if Σ ⊂ ℝ3 is an embedded minimal surface
with index(Σ) ≤ 5, then Σ is a plane, catenoid, Costa’s sur-
face, or a member of the Hoffman–Meeks deformation of
the latter. Many aspects of this conjecture remain unre-
solved; in particular it is not known what the precise index

4We remark that this classification result and higher dimensional analogues
lead to fundamentally important curvature estimates for stable minimal hyper-
surfaces in Riemannian manifolds.
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of the Hoffman–Meeks deformation family is, much less
that there is no other surface with index(Σ) ≤ 5.

Relating Index and Topology
Recall that Fischer-Colbrie proved that a minimal surface
Σ in ℝ3 has index(Σ) < ∞ if and only if Σ has finite to-
tal curvature. Using the Gauss–Bonnet formula and Osser-
man’s compactification theorem, one can prove the follow-
ing Jorge–Meeks formula quantizing the total curvature of
Σ in terms of the topology5 of Σ:

∫
Σ
|𝐾| = 4𝜋(genus + ends − 1).

Thus, based on Fischer-Colbrie’s “finite index ⇔ finite to-
tal curvature” result, it is natural to ask if there is such a
formula for the Morse index.

Based on the examples of surfaces with explicitly com-
puted index, it seems unlikely that such an exact formula
would hold. However, it turns out that the index and total
curvature are linearly related:

𝑐1 + 𝑐2∫
Σ
|𝐾| ≤ index(Σ) ≤ 𝐶1 + 𝐶2∫

Σ
|𝐾|.

The upper bound was proved by Tysk [Tys87], while the
lower bound was proved by the authors [CM16, CM18]
(one can obtain explicit values for the constants here).

This provides a quantitative version of Fischer-Colbrie’s
theorem. More importantly, the lower bound for the in-
dex (when stated in a more precise form) allows one to
prove classification results for low-index surfaces. The pre-
cise bound is

1
3(2 genus + 4 ends − 5) ≤ index(Σ) (3)

for Σ an embedded minimal surface in ℝ3.
Applications to low-index surfaces. We explain how (3)
can be used to classify low-index surfaces. For the sake of
clarity, we consider here an embedded minimal surface Σ
with index(Σ) = 0, 1 (these cases were already known by
previous methods as discussed above).

If index(Σ) = 0, then (3) yields

2 genus + 4 ends ≤ 5.
Thus, Σ has at most one end, so it must be a plane (by the
topological classification results listed above).

If index(Σ) = 1, then (3) yields

genus + 2 ends ≤ 4.
We know that Σ has at least two ends (since it is not the
plane). Thus, it has exactly two ends and is genus zero.
Either one of these would suffice to conclude that Σ is
the catenoid (by the topological classification results listed
above).

5One must modify this equation when Σ has non-embedded ends.

The non-existence of index(Σ) = 2, 3 surfaces follows
from similar but more involved arguments.

The Harmonic Form Method
We briefly comment on the proof of the lower bound (3).
There are special methods that can be used to study in-
dex 0 or 1 surfaces, but to go beyond this one needs a
general way of relating the geometry (the index) to the
topology of the surface; this can be accomplished by us-
ing harmonic (holomorphic) 1-forms. This approach was
pioneered by Ros [Ros06], using some test functions con-
structed by Palmer [Pal91], and later extended by the au-
thors [CM16,CM18].

Because the second variation operator takes functions
and not forms, one must turn the 1-forms into functions.
One way to do so, while preserving the vector space struc-
ture of the space of harmonic 1-forms, is to take a 1-form 𝜔
on Σ and form the inner product ⟨𝜔, ⋆𝑑𝑥𝑖⟩, where ⋆ is the
Hodge star operator on Σ. One reason that this is a fruit-
ful choice is that, as we have seen above, the coordinate
functions 𝑥𝑖 are harmonic on Σ.

If the topology of Σ is large, there are a lot of harmonic
1-forms. So, if the index is smaller than expected, we can
find 𝜔 so that ⟨𝜔, ⋆𝑑𝑥𝑖⟩ is 𝐿2-orthogonal to the index. Us-
ing the Bochner formula, Ros proved that this property is
highly constraining (only a linear combination of ⋆𝑑𝑥𝑖,
𝑖 = 1, 2, 3 can satisfy this property, corresponding to an
ambient translation of Σ).

It thus remains to find harmonic 1-forms that are allow-
able in the above argument. Ros used harmonic forms that
are in 𝐿2. Because the 𝐿2 norm of a 1-form on a surface
is conformally invariant, one can show that the space of
𝐿2-harmonic 1-forms on Σ is the same as the space of har-
monic 1-forms on the compactified Σ, i.e., twice the genus.

The key observation in [CM16,CM18] is that by replac-
ing 𝐿2 with an appropriately weighted 𝐿2-space, one can
find more harmonic 1-forms (corresponding to the ends).
This improves the estimate to the point where it can be
used to classify low-index surfaces.
1-forms on the catenoid. If one considers the estimate (3)
for Σ the catenoid, we note that genus = 0, ends = 2 so the
equation reads

1
3(2 × 0 + 4 × 2 − 5)⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

=1

≤ index(catenoid) = 1.

So we can see that (at least in this case) the estimate is
sharp. We now explain the various 1-forms. Recalling that
the catenoid is conformally equivalent to 𝕊2 ⧵ {𝑁, 𝑆}, it is
useful to choose a different representative of the confor-
mal class: ℂ ⧵ {0} (this allows us to make direct contact
with complex analysis). What are the harmonic forms on
ℂ⧵{0}? We know they are the real/imaginary parts of holo-
morphic forms. Some simple forms we can think of are
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𝑑𝑧, 𝑑𝑧
𝑧
, 𝑑𝑧
𝑧2

. It turns out that these forms are precisely the
ones that can be used in the weighted spaces described

above (forms such as 𝑧 𝑑𝑧, 𝑑𝑧
𝑧3

turn out to grow too quickly
along the ends). This yields 6 harmonic forms, but we
must ignore 3 of them coming from the coordinate func-
tions. This yields 3 forms, and we divide by 3 correspond-
ing to the way we plug them into the second variation; this
yields 1 as expected!

The Bigger Picture
We conclude by discussing how this fits into the broader
study of the Morse index and Morse theoretic methods for
producing and studying minimal surfaces, as well as point
out several open questions.
The index as a geometric invariant. TheMorse index is an
interesting invariant of a rich class of objects (finite total
curvature minimal surfaces) that have been studied since
the beginnings of differential geometry. This alone moti-
vates its study. From this point of view, one can ask the
following simple question: What is the set

𝐼emb ∶= {index(Σ) ∶ Σ ⊂ ℝ3 emb. minimal surface}
of non-negative integers (one can also replace “embedded”
with “immersed” and ask the same question)? We have
seen that {0, 1, 5} ⊂ 𝐼emb. Moreover, the higher genus Costa
surfaces constructed by Hoffman–Meeks turn out to have
index 2 genus+3 when the middle end is flat.6 Thus, com-
bining these examples with our non-existence results, we
can say that

{0, 1, 2/, 3/, ? , 5, ? , 7, ? , 9, … } ⊂ 𝐼emb.

We don’t know about any of the even numbers bigger than
2, although it seems likely that 4 ∉ 𝐼emb. As we have dis-
cussed above, it would be very interesting to classify Σwith
index(Σ) ≤ 5.

There are many more examples of FTC surfaces in ℝ3

that are constructed using various methods (gluing, Weier-
strass, etc.). However, we do not know the index of any of
them (a wonderful geometric idea of Choe [Cho90] allows
us to estimate the index from below, but it does not seem
like this gives sharp estimates in general). Just to give a
concrete example, we do not know the index of the Costa–
Wohlgemuth surface in Figure 8.
The Morse index in manifolds. As first observed by
Schoen and Yau, the existence of stable minimal hyper-
surfaces of certain topological type poses restrictions on
the scalar curvature of the ambient manifold, and vice-
versa. They used this to prove (among other things) the
celebrated positive mass theorem [SY79]. This, along with

6At present, nobody knows how to compute the index of the surfaces with a bent
middle end.

Figure 8. Wohlgemuth generalized the Costa surface by
adding an extra flat end. This does not contradict the
Hoffman–Meeks conjecture (2), since it has genus two, not
one. The index of this surface is not known.

related work, initiated a more systematic study of the rela-
tionship between the Morse index and topology of a mini-
mal submanifold as it relates to the geometry of the ambi-
ent manifold.

More recently, unstable minimal submanifolds have
been used by Marques and Neves on their solution of the
Willmore conjecture. Since then there has been an explo-
sion of activity towards the study of Morse theoretic prop-
erties of the area functional on submanifolds of Riemann-
ian manifolds. The basic idea here is to find/study mini-
mal surfaces based on the topology of the space of surfaces
in the manifold, and the geometry of the area function on
this space.

This is an intricate and technical field, but it has
had remarkable successes. For example, famous work
of Almgren–Pitts (along with important contributions by
Schoen–Simon) shows that any Riemannian manifold ad-
mits a minimal hypersurface. Thanks to recent work of
Marques–Neves and others, this surface will have Morse
index at most 1. In fact, these ideas have led to the
following result of Song resolving the general case of a
well-known conjecture by Yau: any Riemannian manifold
(𝑀𝑛, 𝑔) (3 ≤ 𝑛 ≤ 7) admits infinitelymany embeddedmin-
imal hypersurfaces. We recommend the recent survey arti-
cle by Marques–Neves [MN20] for an excellent exposition
of these and more exciting results in this direction.

In some cases (although not all), one knows even more:
there is at least one minimal hypersurface of each positive
Morse index in certain manifolds. Thus, to study the prop-
erties of such minimal hypersurfaces, one might place var-
ious restrictions on the index or topology and investigate
this class of surfaces. It turns out that studying the man-
ner in which bounded index minimal hypersurfaces can
degenerate leads to a rather complete and satisfying the-
ory. In particular, bounded index minimal hypersurfaces
degenerate precisely by “bubbling off” bounded index hy-
persurfaces in ℝ𝑛. So, a refined understanding of such sur-
faces can lead to refined results about such degeneration.
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For example, our results [CM16, CM18] have recently
been applied in this direction by Ambrozio–Buzano–
Carlotto–Sharp. In fact, similar work of the same authors
suggested that further investigation of our index bounds
(3) for surfaces with symmetries could have applications
to degeneration of free boundary minimal surfaces; Shuli
Chen has recently obtained a result along these lines.
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