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ARTICLE INFO ABSTRACT

Soft computing techniques including artificial neural networks (ANN) and machine learning reflect new pos-
sibilities to behavior prediction models of commingled composites. This study focuses on developing an arti-
ficial neural network capable of predicting the impact energy absorption capability of thermoplastic
commingled composites, in the context of crashworthiness, based on a compilation of experimental results,
multiple regression analytical model and factorial design method. Furthermore, the scientific approach of this
project comprises the (i) development of intelligent models for designing and manufacturing of new composite
components, (ii) application of computational methods to predict material performance and behavior, and (iii)
optimization of manufacturing processes. The innovativeness of this proposal is to initiate the use of computa-
tional methods to describe mechanical and structural properties of thermoplastic commingled composite mate-
rials and the development of an artificial neural network able to predict the energy absorption capability of
these materials, considering some properties of polymer matrix, thermal degradation kinetics model and con-
solidation parameters. The obtained results from impact testing indicate that the proposed approach can pre-
dict the impact energy with satisfactory accuracy. The use of an analytical model database as input for the ANN
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is an innovative methodology to increase the reliability and accuracy of the ANNs.

1. Introduction

Consolidation of thermoplastic composites involves a set of pro-
cessing parameters that, combined with the thermal properties of
the matrix, directly affect the impact energy absorption capability of
the structure [1]. Understanding the material performance in an
impact event associated with the level of thermo-oxidative thermo-
plastic matrix degradation during consolidation is a complex challenge
that requires the development of methods and models to predict and
optimize thermoplastic composites processing [2,3].

Interest in the use of structural composite materials in components
for the automotive industry has been increasing considerably in recent
years, driven by the manufacture of hybrid and electric vehicles [4,5].
For this reason, improvements on structural composites crashworthi-
ness are directly related to the human safety in a possible automotive
crash and it depends on the energy absorption capability of the com-
posite componentes [6-8].
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Part of the innovation of the proposed study is the incorporation of
an analytical regression model derived from experimental results as
input for training an artificial neural network (ANN). The use of ana-
lytical models as ANN input database is still largely unexplored in the
area of structural composite materials and the literature does not con-
tain well-defined research lines. Therefore, the development of an
ANN based on an analytical model and computer simulations is a
promising research topic and may assist in the accuracy and effective-
ness of prediction models. Therefore, this work aims the development
of an ANN trained by an analytical database to predict the impact
energy absorption (IEA) capability of thermoplastic commingled
composites.

Based on recent studies [1,9] a multiple regression model was used
to generate the ANN input database. This multiple regression model is
capable of predicting IEA of thermoplastic commingled composites as
a function the low velocity impact test (LVI) responses. In addition,
thermal degradation limits and consolidation parameters were
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provided by Friedman's isoconversional method [10] and the by the
Darcy's law [11]. The developed model can predict IEA at different
consolidation conditions. The equation generated by the regression
model was used to provide the dataset ANN input.

A literature review points to recent studies [12-19] of computa-
tional modeling development applied to structural composite materi-
als. Soft computing methods have been recently used [20] to
improve the behavior of structural composite materials [21], including
the design optimization of composite parts made of long fibers com-
posites [22], recyclability of thermoplastics composites [23], struc-
tural behavior of natural fibers reinforced composite [24], and to
improve the mechanical properties correlation of composite materials
[25,26]. However, most of the research has been focused on the
behavior of thermo-rigid composites, which reinforces the innovative-
ness of the present proposal in the development of an ANN applied in
thermoplastic composites, especially commingled ones. The use of
analytical models and artificial intelligence (AI) is still largely unex-
plored in the area of commingled composite materials and the litera-
ture does not contain well-defined research lines. Therefore, the
development of an ANN based on analytical models is a promising
research topic and may assist in the accuracy and effectiveness of
the commingled composites manufacturing.

Although many studies have been reported on the use of artificial
intelligence applied to composite structures [27-31], very few have
been focused on the use of ANN as a technique to predict the IEA of
thermoplastics composites. The work presented here assesses the
potential of a long-term prediction of impact energy absorption based
on manufacturing parameters. More specifically, the major contribu-
tions of this article are summarized as follows: (i) use of an analytical
model database as ANN input; (ii) obtain accurate predictions of
impact energy absorption as a function of the consolidation parame-
ters, thermal degradation kinetics and matrix properties; and (iii)
demonstrate the accuracy of the ANN developed.

2. Theorical background
2.1. Impact energy absorption capability of composite materials

The evaluation of a composite material IEA capability is deter-
mined by the damage resistance of multidirectional polymer matrix
composite laminated plates subjected to a drop-weight impact event
(low velocity impact test). The damage resistance properties generated
by this test method are highly dependent upon several factors, which
include specimen geometry, layup, impactor geometry, impactor mass,
impact force, impact energy, and boundary conditions. Thus, results
are generally not scalable to other configurations, and are particular
to the combination of geometric and physical conditions tested.

The dissipated energy (Ep) of the specimens on LVI test is calcu-
lated considering the impact velocity (v;), impactor displacement (5)
and time during test (t), as shown in Egs. (1)-(3) [32]. The Ep, also rep-
resents the material IEA capability. The impact velocity is defined by:

vi:£+g<ti—M) (1)

th — 2

where, w;, is the distance between leading edges of the first
(lower) and second (upper) flag prongs; t;, t» and t; are, respectively,
the time first (lower) flag prong passes detector, the time second (up-
per) flag prong passes detector, and the time of initial contact obtained
from force versus time curve [33]. The impactor displacement is given
by:

. th t t F(t)
0 0
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where, §; is the impactor displacement from reference location (i) at
timet = O s, g is the acceleration due to gravity, m is the impactor
mass, and F is the measured impactor contact force at time t [31].
The dissipated energy is then defined by:

Ep= M + mgs(t), (3)

The total LVI energy (E7) is related to Ep and the elastic energy (Eg)
according the following relation:

Er =Ep +Eg (4)

2.2. Backpropagation artificial neural networks

Composite materials engineering needs systematic and interactive
approaches, which should allow for achieving optimum material char-
acteristics. This process requires the application of various methods
and technologies aiming at (i) investigation of the physical and
mechanical properties of each constituent, as well as of the composite
material; (ii) optimization of the properties of the composite according
to the specific working conditions; (iii) understanding the effects of
manufacturing and composition on the properties of the composite
material; and (iv) development of computational methods for charac-
terization, analysis and prediction of the performance of materials
under different working conditions. This appears especially important
in the case of composite materials characterized by strongly inhomoge-
neous properties.

The integrated process of modelling, calculation, prediction and/or
optimization of the properties of a composite material against different
influencing factors is the most important part of materials engineering.
That is why soft computing techniques, integrated with different
numerical methods, could support that process.

An ANN is a system composed of many simple processing elements
operating in parallel, whose function is determined by the network
structure, the connection strengths, and the processing performed at
computing elements or nodes. A neural network is a massively parallel
distributed processor that has a natural propensity for storing experi-
ential knowledge and making it available for use. It resembles the
brain in two respects: (i) knowledge is acquired by the network
through a learning process, and (ii) the interneuron connection
strengths, known as synaptic weights, are used to store this knowledge
[34].

The Levenberg-Marquardt algorithm (LMA), also known as the
Damped least-squares (DLS) method, is used to solve non-linear least
squares problems. These minimization problems arise especially in
least squares curve fitting. The LMA is used in many software applica-
tions for solving generic curve-fitting problems [35]. However, as with
many fitting algorithms, the LMA finds local minima, which is not nec-
essarily the global minimum. The LMA interpolates between the
Gauss—Newton algorithm (GNA) and the method of gradient descent.
The LMA is more robust than the GNA, which means that in many
cases it finds a solution even if it starts very far off the final minimum.
For well-behaved functions and reasonable starting parameters, the
LMA tends to be a bit slower than the GNA. LMA can also be viewed
as Gauss—-Newton using a trust region approach [36,37].

The Hyperbolic tangent sigmoid transfer function (Tansig) is usu-
ally used in multilayer networks that are trained using the backpropa-
gation algorithm [38]. Tansig is a neural transfer function that
calculates a layer’s output from its net input. ANN transfer functions
are the way to simulate phenomena’s reaction using input and output
parameters. Tansig was used as the activation function in the ANN
developed and it is related to a bipolar sigmoid which has an output
in the range of —1 to + 1, as shown in Fig. 1(a). The output n, often
referred to as the net input, goes into a transfer function f, which pro-



R.M. Di Benedetto et al.

(a)

Composite Structures 257 (2021) 113131

Inputs Multiple-input neurons
( \ 7 A
5 Wy,

B n a

Py - f —
: b

P

a=f(Wp +b)

(b)

Fig. 1. Hyperbolic tangent sigmoid transfer function: (A) TANSIG function and (B) multiple-input neurons. Source: DOROFKI et al. (2012) [39].

duces the scalar neuron output a. A neuron with P inputs is shown in
Fig. 1(b).

The Tansig function (/) can be calculate by using the following
equation [39].

2

a = Tansig(n) = Them ™

(s)

Tansig function takes one input and optional function parameters
and returns each element of n squashed between —1 and 1. The
multiple-input function is a good tradeoff for ANN, where data pro-
cessing speed is more important than the exact shape of the transfer
function.

3. Experimental background
3.1. Materials

The selected materials of this study have been used for crashwor-
thiness application [1,9]. The reinforced fibers were manufactured
by Toho Tenax® [40]. According to the supplier, the HTS40 carbon
fiber (CF) is characterized by 4,240 MPa and 237GPa of tensile
strength and elastic modulus, respectively. Concordia Manufacturing
Co Inc. has supplied the polymers yarns to manufacture the commin-
gled 12 k tows. The multifilament yarn polyamide 6 (PA6) has the
specification of Nylon 6-900/72 [41]. Both the CF/PA6 and CF/PEEK
12 k commingled tows have the standard type of interlacing [42]
which contributes to the wettability [43] of the reinforcing fibers dur-
ing the thermal consolidation [44]. The polyether ether ketone (PEEK)
has the specification PEEK-900/68 [41]. The CF/PEEK 12 k commin-
gled tow presents the specification of AS4. Both materials have 59%
of reinforcing fiber content. The response to low velocity impact test
was used in the factorial design analysis based on the multiple regres-
sion model developed previously [9], which is able to predict IEA as a
function of independent variables related to (i) consolidation parame-
ters, (ii) thermal degradation kinetics and (iii) matrix properties.

3.2. Consolidation parameters

From the perspective of fluid dynamics, Darcy's law is given by a
constructive equation that can be used to guarantee and predict
whether a given viscous fluid is able to impregnate the reinforcing
fibers in a composite material [11]. The flow rate of the viscous poly-
mer u, and the impregnation time t;,, can be described by the Darcy’s
law [11] (Eq. (6)) taking % constant (Eq. (7).

dx K dp

%= gy dx ©
z/DIf

timp = 5 p )

where, v is the polymer viscosity, K is the reinforcing fibers coeffi-
cient of permeability, & is the pressure gradient, and D, is the impreg-
nation distance. D,is directly associated with the homogeneity of the
polymer yarns distribution throughout the commingled tow. Inhomo-
geneity of distribution causes increase of D,. The consolidation pres-
sure P range was determined empirically by previous studies, as well
as the matrix viscosity as a function of temperature [1,9].

The quality of the commingled composites depends on the total and
effective impregnation of the matrix within the reinforcing fibers dur-
ing the consolidation process. The use of Darcy's law (Eq. (7)) accu-
rately determines the impregnation time required for the
manufacture of high-performance structural laminates.

3.3. Evaluation of thermal degradation kinetics

Friedman‘s isoconversional method was applied to both materials
to identify how the degradation kinetics acts during consolidation
and how does it affect the final mechanical properties of thermoplastic
commingled composites. Crashworthiness is directly associated to the
material structural performance after consolidation and the ANN con-
siders this topic.

The kinetics of degradation can be calculated using Eq. (8) [45,46],
where «a is the degree of degradation, ¢ is time, k(T) is a temperature-
dependent factor, and f(«) is the reaction model. Arrhenius’s equation
(Eq. (9)) determined the k(T), where E, represents the activation
energy, R is the universal gas constant and A, is the pre-exponential
factor,

da

3 = KDf(a) (8)
da —E,
@ = A ( RT > ©)

Friedman's isoconversional method [10] allows the determination
of E, and A, (Eq. (10)) considering the degradation degree rate % as
a function of {, for each predetermined degree of degradation a:

da E,
ln<E> =InA, - o (10)



R.M. Di Benedetto et al.

For each temperature, Friedman's isoconversional method also
allows for predicting a over time, according to Eq. (11),

—E
a:A,,exp<RTa)t (11)

The commingled composites manufacturing depends on the
thermo-oxidative degradation limits provided by the Friedman's iso-
conversional method [47,48]. Thermogravimetric methods for the
evaluation of degradation kinetics of thermoplastic composites deal
with tests at different heating rates to plot the material limits of degra-
dation, beyond the E, determination as a function of a. The tempera-
ture of the peak Tp.q represents the point at which the heat input is
equal to the heat absorption ratio (Egs. (12) and (13)):

m(AH) B T2

e / ATdT (12)
T1
dH m

where AH is the total enthalpy, m is the mass of the sample,AT is
the temperature variation between the start T;and the final T,of the
process,g and k are constants related to the sample, the sample port
and the instrument used [48]. Consequently, the Friedman'‘s isocon-
versional kinetic method was able to estimate the degradation time
limits at each processing temperature, considering the a predeter-
mined. The polymer melting point Ty, is associated with its time limit
tmer- Furthermore, T,y ccan be determined by thermogravimetry and it
is associated with the onset time limit t.

3.4. Multiple regression model

The multiple regression model used to generate the ANN input
database is described by Eq. (14) [9]:

—E, L/Dg >

= | 48,2 14
ln(A‘_’;[> +/Z(ZI(P ( )

The analytical model correlates the Friedman‘s isoconversional
method degradation limits, the matrix properties, and the consolida-
tion parameters provided by the Darcy‘s law. Theoretically, the regres-
sion model predicts the IEA capability of commingled composites.

The regression coefficients f,, f,,and f, indicate a change in the
mean response to each unit of the independent variable [49,50]. The
regression model was based on the method of least square to find
the more appropriate fit for a set of data to minimize the maximum
likelihood of the function L of the model [49-52]. Also, the stepwise
method of variable selection determined a subset of independent vari-
ables that best explain the response, and the Akaike Information Crite-
rion (AIC) was based on a sample fit to estimate the likelihood of a
model to predict or estimate future values [53-54].

Previous work [1,3,9] supported the database acquisition related to
the LVI test and to regression model development to predict the energy
absorption capability and crashworthiness of composite materials.

IEA = B, +

3.5. Full factorial design

A recent study [20] developed a custom factorial design model
based on multiple regression model analytical responses for under-
standing the effects and interactions of the independent variables
related to processing, properties of the polymer matrix and thermal
degradation kinetics on the impact energy absorption capability of
thermoplastic commingled composites. The design of experiments
(DOE) analysis indicated how the effects and interactions of the inde-
pendent variables significantly affect the impact energy absorption
capability of commingled composites.
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Table 1

Model summary.
S R-sq R-sq (adj) R-sq (pred)
1.54476 97.46% 97.46% 97.46%

Adjusted R-squared (Ridj) of 97.46% proved the efficiency of facto-
rial design model. The factorial model summary is shown in Table 1.
The regression Eq. [20] in uncoded units (Eq. (15)) obtained by the

DOE analysis is shown below:
IEA = 116.81 — 0.1438P — 0.2427T — 49.99Dp
+ 0.01036v + 0.000344P « T + 0.2348 + P x Dp
+ 0.000038P x v+ 0.0431T =« Dp — 0.000057 T * v
— 0.05718Dp x v — 0.000499P « T x Dp — 0.000005P % Dp v
+ 0.000192T * Dp v
(15)

3.6. ANN development

In this study, Matlab® software was used for computational pro-
gramming of the artificial neural network. It is important to mention
that no rule was established for choosing the optimal number of hid-
den layers and neurons for each layer, therefore they were decided
by trial and error, and the mean square error (MSE) was used to con-
trol the performance of the neural network. According to Zhang et al.
(2013) [56], while the error on the training set is driven to a very
small value due to the powerful ANN learning process, a problem
called over-fitting may arise. This is when new data is presented to
the network and the error is large. This is because the network has

T —>a
P —e
®»—> IEA = f(T,Py,D,)
vV —>@

D,—»>@

Fig. 2. ANN structure composed of 4 inputs, 1 hidden layer and 1 output.

Table 2
Neural network parameters setup.

Variable Value

Training function
Activation function 1
Activation function 2

Levenberg-Marquardt
Hyperbolic tangent sigmoid
Linear transfer

Error (performance) 1073
Number of Neurons 50

Learning rate 0.02
Max. iterations 1000
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Fig. 3. Data set used in ANN.
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Fig. 4. Database percentile used to train and to verify the ANN.

memorized the training examples, but it has not learned to generalize
to new situations.

Artificial neural networks are computational systems, which simu-
late the microstructure (neurons) of a biological nervous system [55].
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ANNs are composed of simple elements operating in parallel, i.e.,
ANNs are the simple clustering of the primitive artificial neurons. A
neuron influences others behavior through a weight. Each neuron sim-
ply computes a non-linear weighted sum of its inputs and transmits the
result over its outgoing connections to other neurons.

In the training phase, the ANN system learns by adjusting the
weights of relative impact of inputs to outputs and trying many com-
binations of weights until a good fit to the training cases is obtained
[56]. The network generally consists of several layers of neurons,
namely input layer, hidden layer or layers, and output layer. The input
layer takes the input data and distributes them to the hidden layer(s)
which do all the necessary computation and transmit the final results
to the output layer [57].

In this work, no rule was established for choosing the optimal num-
ber of hidden layers and neurons for each layer, therefore they were
decided by trial and error, and the mean square error (MSE) is used
to control the performance of the neural network. According to Zhang
et al. (2013) [58], while the error in the training set is driven to a very
small value due to the powerful ANN learning process, a problem
called over-fitting may arise. In this case, when new data is presented
to the network and the error is large. This happens because the net-
work has memorized the training examples, but it has not learned to
generalize to new situations.

Gradient = 4.2997, at epoch 11

10°
5
2
<
)
10° . . . . .
e Mu = 1e-06, at epoch 11
210t i
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Fig. 5. ANN training results: (a) performance, (b) training state, (c) error histogram and (d) regression.
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Fig. 6. Experimental and ANN trained output results (legend: = Experimental == ANN).

Then, after training sessions and ANN parameter modifications, the
best configuration was found using 50 neurons in a single hidden
layer. Fig. 2 shows the network architecture built for the IEA predic-
tion problem addressed in this paper. As can be seen, the temperature,

pressure, viscosity and impregnation distance were chosen as input
variables. The hidden layer has the interconnection of artificial neu-
rons. The output layer then provides information about the impact
energy absorption.
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Fig. 7. Experimental and ANN output results for unknown data (legend: = Experimental == ANN).

Table 2 presents a summary of the neural network training and test-
ing parameters. The learning rule employed was based on Levenberg-
Marguardt algorithm, and the gradient descent transfer function was

incorporated into the network.

The database generated by Eq. (14) provided n = 64296, consider-
ing all possible combinations by the allowable range of independent
variables P, T, D, and v.
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Fig. 8. Graphical results of the IEA standard for trained data known (legend: = Experimental == ANN).

Fig. 3 shows the data set according to decision variables (or inputs)
pressure P (Fig. 3a), temperature T (Fig. 3b), impregnation distance D,
(Fig. 3c) and viscosity v (Fig. 3d). The data set represents a total of 24
subsets (samples) that result in different IEA values (Fig. 3e).

The ANN was trained using 50% of the total observations, which
was separated in 12 subsets according to Fig. 4. Each subset was
trained separately, in order to later identify the accuracy of the
ANN. The 50% of database remaining (unknown database) were used
to check the forecasting capacity of the ANN.

4. Results

The artificial neural network developed in the present study was
applied to Carbon Fiber/PA6 and Carbon Fiber/PEEK specimens sub-
jected to LVI testing. In the training phase of the neural network, tem-
perature, pressure, impregnation distance, and viscosity were selected
as input variables. There was no need to preprocess the inputs, that is,
normalize in the range 0 to 1. The output of the network is then tar-
geted by obtaining the dynamic impact energy absorption property.

After performing the training phase, it can be verified that there
was an excellent fit and regression results with experimental and
trained data. The results showed that the application of the
Levenberg-Marquardt/Hyperbolic tangent sigmoid/Linear transfer

algorithm leads to a high predictive quality for the global training
results. In this situation, Fig. 5 shows the results for the training
ANN phase considering a database corresponding to the subset of 12
specimens. The ANN showed a rapid rate of convergence (Fig. 5a) in
the early stages considering the contour conditions and the methodol-
ogy adopted. The gradient or gradient of the square of the error func-
tion (known target — ANN output) with respect to the unknown
weights and biases is shown in Fig. 5(c). The training objective is to
optimize the choice of weights and biases by minimizing the sum of
the squared errors by using the method of steepest descent. In addi-
tion, Fig. 5(c) shows Mu control parameter for the algorithm used to
train the network. The choice of Mu directly affects the error conver-
gence. In case of LMS algorithm, Mu is dependent on the maximum
eigen value of the input correlation matrix. Equally important, the his-
togram of the errors (uniform) between target values and predicted
values after training a feedforward neural network are presented in
Fig. 5(c). These error values indicate how predicted values are differ-
ing from the target values. In terms of materials engineering, the char-
acteristics of the data in question and the correct use of the network
parameters reduces the time it takes to process the data and makes
the analysis faster.

Equally important, Fig. 5(d) shows the regression results in relation
to the experimental data and the ANN adjustment. The excellent
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Fig. 9. Graphical results of the IEA standard for unknown trained data (legend: = Experimental == ANN).

adjustment by means of the coefficient R is clear (~1.00). This shows
a relation of the physical phenomenon between input-output data.

Fig. 6 shows the experimental and adjusted IEA values by training
the network. Due to overlapping curves shown by the subsets (#1 to
#12) IEA data has a very well-defined pattern which led to an excel-
lent prediction result.

Then, the unknown database was tested by the RNA to verify its
competence in predicting the IEA. Thereby, a new data set consisting
of 12 subsets (#13 to #24) was selected to verify the ANN's efficiency.
Fig. 7 shows the results for the 12 unknown data subsets of the neural
network. ANN's validity and accuracy test proved that even with
unknown data, the built architecture was able to efficiently predict
the IEA. Comparing the ANN responses with experimental data, a high
compatibility has been observed.

Furthermore, Fig. 8 shows the graphical results of the IEA standard
as a function of pressure and temperature for fixed values of impregna-
tion and viscosity. Fig. 8a and ¢ show the overlapping experimental
results and those obtained by ANN. It turns out that the planes are
practically overlapping. Fig. 8b and 8d show the error obtained, that
is, the difference between trained (IEArg) and experimental (IEAgxp)
data, so IEAg-IEATg. The global difference for the known data from
the neural network is of the order of 0.02 kJ (<1%).
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Subsequently, Fig. 9 presents the prediction results considering the
12 subsets of data unknown of the neural network. The planes of
experimental IEA and the IEA obtained by ANN are overlapping
(Fig. 9a and c).

The errors observed are of the order of 0.02 kJ, as in the previous
case. It is worth mentioning that this unknown data set has viscosity
values of v = 2.0, which was not part of the network's training data.
Therefore, the network can be considered robust in terms of IEA fore-
casting. This is due to the quality of the data obtained from the exper-
imental tests and the good configuration of the neural network
parameters.

5. Conclusions

ANN technique has been used to model the IEA dependence of
manufacturing input variables pressure, temperature, impregnation
distance and viscosity. Experimental IEA data obtained from impact
testing and treated by a multiple regression model have been modeled
by backpropagation ANN. An excellent agreement between the mod-
eled and experimental data has been found. The predictive abilities
of ANN models can also be used in the development of new thermo-
plastic composites with desired mechanical impact properties.
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As a main result, it is found that the application of Backpropagation
ANN is effective in the prediction of the Impact Energy Absorption in
commingled composites due to the data linearity. Accurate results
have been obtained in the testing and validation stages.

It could be also concluded that the ANN may be considered an
alternative to traditional methods to determine the appropriate pro-
cessing parameters for the manufacturing of commingled composites
for impact purposes. Furthermore, the use of an analytical multiple
regression model as a new approach of ANN architecture is a promis-
ing approach which, based on the results of this study, causes an
increase of ANN's reliability.

The results from this study will be particularly useful for designers,
manufacturers and engineers that wish to employ commingled com-
posites for impact applications. Using the analytical-numerical-experi
mental results of this study, the IEA can be determined according to
the ANN input variables temperature, pressure, impregnation distance
and viscosity.
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