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ABSTRACT

A key question in the tectonic evolution of the Sevier orogenic belt of the western 
U.S. Cordillera is when and why the overthickened crust of the hinterland plateau 
began to collapse giving rise to the modern extensional tectonic regime. Delineating 
the exhumation history of the Ruby Mountains, East Humboldt Range and Wood 
Hills metamorphic core complex (REHW) of Elko County, Nevada offers important 
evidence bearing on this question. Recent work from the northern REHW records a 
three-phase extensional history: (1) ~15–20 km of Late Eocene extension, (2) a second 
pulse of extension of similar rate and magnitude beginning in the late Oligocene or 
early Miocene (by 21 Ma) and continuing to approximately 11 Ma, and (3) the Basin-
and-Range extensional regime continuing at reduced rate to today. In contrast, previ-
ous work from the Harrison Pass area in the southern REHW does not recognize an 
imprint from the Late Eocene phase of extension, and places the onset of the second 
extensional phase after ~17 Ma. New intermediate closure temperature thermochro-
nology from the Harrison Pass pluton indicates that it remained at significant depth 
until at least ~25 Ma, severely limiting any possible Late Eocene to early Oligocene 
extension, consistent with previous interpretations. However, the new results chal-
lenge the previously proposed post-17 Ma onset for extension at Harrison Pass. New, 
intermediate closure temperature (U-Th)/He titanite and zircon ages from the eastern 
half of the pluton almost entirely predate 17 Ma and instead support an extensional 
onset bracketed between the Early Miocene (21 Ma) and the late Oligocene (25 Ma). 
Integrating potassium feldspar 40Ar/39Ar multi-diffusion domain modeling with the 
lower closure temperature thermochronometric systems reveals an inflection to faster 
cooling rates after ~25 Ma and further supports this inference. Nevertheless, all but 
the farthest east and structurally shallowest of the samples also show a second inflec-
tion point at ~17 Ma. We argue that previously reported apatite fission track and apa-
tite (U-Th)/He data captured this post-17.5 Ma reacceleration event but missed the 
earlier, late Oligocene-early Miocene extension recorded by the higher temperature 
thermochronometers. The latest Oligocene to early Miocene extensional phase cor-
relates with extensional events reported from southern Nevada and Arizona that may 
relate to the relaxation of contractional boundary conditions during the early evolu-
tion of the San Andreas margin. However, the post-17.5 Ma resurgence in extension 
probably correlates with large-scale crustal weakening across the northern Basin and 
Range province attending the arrival of the Yellowstone thermal plume.
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INTRODUCTION

The timing, pace, mechanism, magnitude and kinematic 
evolution of extension are fundamental issues throughout the 
Basin and Range province (e.g., Colgan and Henry, 2009; Hen-
ry and others, 2011). The most deeply exhumed terrains—the 
metamorphic core complexes—figure prominently in efforts 
to delineate the extensional history. With this paper we apply 
low to intermediate temperature thermochronometry to better 
resolve the extensional history of the southern part of the most 
deeply exhumed metamorphic terrain of the northern Basin and 
Range province—the Ruby Mountains-East Humboldt Range-
Wood Hills metamorphic core complex (REHW) in Figures 1 
and 2) (Howard, 1980; Snoke, 1980; Snoke and Miller, 1988; 
Snoke and others, 1990; Snoke and others, 1997; McGrew and 
others, 2000; Sullivan and Snoke, 2007). 

Geologic Setting

The REHW is the farthest west and most deeply exhumed 
of the iconic metamorphic core complexes of the northeastern 
Great Basin—the others being the Snake Range and the Albion-
Raft River-Grouse Creek Ranges (Coney, 1980; Howard, 2003; 
Sullivan and Snoke, 2007). Like the others, the REHW exhibits 
the classic definitive features of a metamorphic core complex: 
a high-grade metamorphic and plutonic core roofed by a well-
developed extensional mylonitic shear zone overprinted by a 
low-angle detachment fault that is in turn overlain by a com-
plexly normal faulted and brittlely attenuated superstructure of 
upper crustal sedimentary strata and syntectonic deposits. The 
Ruby Mountains-East Humboldt Range shear zone and detach-
ment fault extends over 100 km SSW from the northern end 
of the East Humboldt Range to the southern Ruby Mountains, 
and exhibits dominant top-to-WNW normal-sense shear along 
its entire length (Sullivan and Snoke, 2007) (Figures 1 and 2).

The southern part of the Ruby Mountains of interest here 
is dominated by the Harrison Pass pluton—an approximately 10 
km diameter stock emplaced at upper crustal levels into the tran-
sition zone between low-grade to non-metamorphic sedimen-
tary strata to its south and the high-grade migmatitic core of the 
REHW to its north (Kistler and others, 1981; Hudec, 1992; Bur-
ton, 1997; Barnes and others, 2001). In contrast with areas farther 
north in the REHW, the migmatitic core immediately north of the 
Harrison Pass pluton was constructed primarily in the Late Juras-
sic rather than the Late Cretaceous. It was tectonically buried at 
that time to pressures of ~4.5 kbar (paleodepths of ~18 km, ap-
proximately 1.5 times stratigraphic depth) (Hudec, 1992; Jones, 
1999). The mechanism of tectonic burial of these rocks remains 
unclear and somewhat controversial, but a number of complex 
thrust systems are discontinuously exposed in the Piñon Range 
to the west, including western facies rocks of the Roberts Moun-
tains allochthon (Johnson and Pendergast, 1981; Trexler and oth-
ers, 2004). Though commonly interpreted to have been emplaced 
during the Late Devonian to Mississippian, Ketner (1998) argues 

for complex and widespread overprinting and reactivation of the 
Antler belt from Late Jurassic onward, and a number of workers 
have documented evidence of significant Middle to Late Jurassic 
shortening—the “Elko Orogeny” (e.g., Thorman and Peterson, 
2003). However, regardless of whether and how much tectonic 
burial there may have been on the north side of the Harrison Pass 
pluton, there appears to be little evidence for pre-extensional tec-
tonic burial from Harrison Pass south. It appears likely that the 
Harrison Pass pluton was emplaced into the core of a broad, gen-
tle pre-existing arch, the Rattlesnake Mountain anticline (Burton, 
1997) that may correlate with the Illipah anticline of the Eastern 
Nevada fold belt (Long, 2015). 

Despite the evidence of pre-Cenozoic deformation, struc-
tural relief east of the Roberts Mountains allochthon was modest 
– no more than 3 km based on the Mississippian to Jurassic ages 
of the rocks underlying the basal Paleogene unconformity (Arm-
strong, 1968; Gans and Miller, 1983; Long, 2012). This observa-
tion is reinforced locally by the preservation of rocks as young as 
Triassic in both the footwall of the Medicine Range to the east of 
the Ruby Mountains and in the upper plate exposed in the Piñon 
Range to the west (Colgan and others, 2010). Furthermore, the 
preservation of Mesozoic apatite (U-Th)/He (AHe) and apatite 
fission track (AFT) ages from the Medicine Mountains also pre-
cludes substantial Paleogene unroofing. Since the ranges to the 
east of the southern Ruby Mountains show no evidence of major 
westward-dipping normal faults that could potentially correlate 
with the Ruby detachment system, the “breakaway zone” where 
the Ruby detachment fault daylighted must have been between 
the southern Ruby Mountains and the Medicine Mountains/Mav-
erick Springs Range—no more than ~8 km ESE of the upper 
contact of the pluton. This severely limits both the depth of burial 
of the pluton and the dip of the detachment (Figure 2). 

Adding to the above constraints, seismic stratigraphy and 
numerous well log records in Huntington Valley indicate that 
the hanging wall strata that were displaced from the roof of the 
pluton also preserve Pennsylvanian and possibly younger strata 
underlying the basal Paleogene unconformity (Figure 2) (Sata-
rugsa and Johnson, 2000; Hess and others, 2011). The Paleo-
gene strata overlying the unconformity have traditionally been 
assigned to the Elko and Indian Wells Formations, but recently 
acquired U-Pb detrital zircon geochronology has led to a rein-
terpretation, with most of the Indian Wells formation reassigned 
to the lower Humboldt Formation, and only the lower ~1 km 
being assigned to the Late Eocene tuff of Dixie Creek (Lund 
Snee and Miller, 2015; Lund Snee and others, 2016).

Barnes and others (2001) estimate emplacement pressures for 
the pluton itself of approximately 3 kbar, approximately equal to 
estimated stratigraphic depths. The south side of the pluton con-
sists of a low-grade (in the west) to unmetamorphosed Cambrian 
to Mississippian sedimentary sequence dipping moderately east-
ward and locally cut by the gently west-dipping Ruby Mountains 
detachment carrying moderately East-dipping syntectonic strata of 
the Humboldt Formation in its hanging wall (Figure 2). The plu-
ton consists of at least three major phases intruded into the upper 
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Figure 1. Regional geologic map of the Ruby Mountains—East Humboldt Range— Wood Hills Metamorphic core complex (REHW) (modified from Coats, 1987). 
Inset shows regional tectonic setting relative to the Snake River Plain (SRP) and calderas (with approximate ages) of the Yellowstone Hotspot track (Camp and 
others, 2015), Sevier orogenic belt, the Central Nevada thrust belt (CNTB), and the Snake Range (SR), Albion Range (A), Raft River (RR), and Grouse Creek (GC) 
metamorphic core complexes. Area of Figure 2 outlined by box in southwest quarter of main figure. Note 5 km square reference grid extending from the REHW 
baseline along the west flank of the northern REHW; red lines parallel to inferred tectonic transport direction (approximately 300°) whereas blue lines represent 
approximate paleodepth isolines. Mountain ranges abbreviated as follows: AR—Adobe Range; PR—Piñon Range; CR—Cedar Ridge, RM—Ruby Mountains, 
MR—northern Maverick Springs Range and Medicine Range; SM—Spruce Mountain; PM—Pequop Mountains; WH—Wood Hills; EH—East Humboldt Range. 
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middle crust between 38.1 ± 0.4 and 36.5 ± 0.2 Ma (Wright and 
Snoke, 1993; Barnes and others, 2001; Colgan and others, 2010). 

Previous Work and Research Objectives

The new results presented below complement and build on 
numerous previously reported results collected and/or synthe-

sized by Colgan and others (2010), although some of the older 
work comes with multi-million year uncertainties ( Reese, 1986, 
Burton, 1997). In addition, a substantial data set of legacy bio-
tite K-Ar (Kistler and others, 1981) and biotite 40Ar/39Ar (BtAr) 
dates also exists and records a well-developed WNW-younging 
apparent age gradient from ~36 Ma in the SE to ~25 Ma in the 
NW (Kistler and others, 1981; Colgan and others, 2010). 

Figure 2. Generalized geologic map of the southern REHW and adjacent areas (after Coats, 1987) with inset locating sample localities from this study and from 
Colgan and others (2010). Rock units and REHW grid as indicated in legend of Figure 1.
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Research Objective
Previous work offers only a few zircon fission track (ZFT) 

apparent ages (Reese, 1986) to fill in the ~200°C gap in closure 
temperatures between the BtAr and AFT systems—nominally 
~325°C for BtAr (Harrison and others, 1985) and ~120°C for 
AFT (Ketcham and others, 1999). The chief purpose of this pa-
per is to augment the pre-existing results with newly collected 
intermediate closure temperature systems—i.e., 40Ar/39Ar po-
tassium feldspar (KfAr) (Tc ≈ 150–350°C), (U-Th)/He titanite 
(TnHe) (Tc ≈ 210°C), and (U-Th)/He zircon (ZHe) (Tc ≈ 180°C). 
We emphasize that the nominal closure temperatures cited above 
depend on variables such as cooling rate, diffusion domain size, 
and, for the (U-Th)/He system, accumulated radiation damage. 
Consequently, the approach adopted here explicitly accom-
modates these variables by integrating KfAr multi-diffusion 
domain modeling (Lovera and others, 1989; Lovera and oth-
ers, 1997) with diffusional modeling of the lower temperature 
systems in order to develop continuous thermal histories from 
> 350°C to < 50°C (Zeitler, 1993; Ketcham, 2014; Zeitler, 
2017). The continuous nature of the modeled cooling histories 
is also important better captures inflections in cooling rate.

Comparison with Northern REHW
In addition to integrating previously published results from 

Harrison Pass, these results can also be compared with new and 
previously reported thermochronology from the northern half 
of the REHW. The results from farther north record a three-
phase exhumation history with the earliest phase occurring 
mostly during the Late Eocene but continuing into the early 
Oligocene (40 Ma to ~30 Ma), the second phase initiating in the 
late Oligocene (after ~26 Ma) or earliest Miocene and continu-
ing to ~11 Ma, and the final phase corresponding to the Late 
Miocene to Recent Basin and Range extension.

The earliest phase of extension is recorded primarily by 
cooling of the Wood Hills and the southern East Humboldt 
Range through 40Ar/39Ar mica, ZFt, ZHe, AFT, and AHe clo-
sure (Dallmeyer and others, 1986; Dokka and others, 1986; 
McGrew and Snee, 1994; Wolfe and others, 2016; Wolfe and 
Rahl, 2016; Metcalf and others, 2018; Gonzalez and others, 
2019; Jeruc and others, 2019; Metcalf and others, 2019; Mc-
Grew and others, 2019). For example, Wolfe and Rahl (2016) 
report ZHe dates (Tc ≈ 180°C) ranging from 37–40.5 Ma from 
the southeastern Wood Hills younging northwestward to 24–29 
Ma in extensional mylonites underlying the detachment fault in 
the NW Wood Hills. Consequently, the high amphibolite facies 
rocks of the Wood Hills must have cooled to < 180°C by the 
late Oligocene, and extensional mylonitiztion must also have 
predated the late Oligocene. 

Possibly the most compelling evidence for large magni-
tude Eocene extension comes from the southern East Humboldt 
Range where a dense sample transect underlying the detach-
ment fault yields 40Ar/39Ar biotite, muscovite (MsAr), K-
feldspar and ZHe ages that all record rapid cooling in the Late 
Eocene (mostly between 35 and 40 Ma) (McGrew and others, 

2019; Jeruc and others, 2019). The detachment fault in this area 
juxtaposes a tilted sedimentary sequence of Pennsylvanian to 
Triassic rocks down against a regionally metamorphosed foot-
wall sequence of Cambrian to Devonian strata, with the deeper 
parts of the section intruded by a suite of 10 m scale to 500 m 
scale peraluminous muscovite-garnet leucogranitic plugs dated 
at 84 Ma (Sample RM-12, Wright and Snoke, 1993). At the 
southern tip of the East Humboldt Range a Late Eocene volca-
nic sequence (39–41 Ma) (Brooks and others,1995) overlies the 
Triassic strata with angular unconformity, and appears itself to 
be cut and rotated by the detachment fault, although exposed 
field relationships do not definitively exclude the possibility 
that it may overlap the detachment. Therefore, the Late Eocene 
(~40 Ma) paleosurface was effectively faulted down against the 
metamorphosed core. In contrast to the sedimentary and vol-
canic sequence overlying the detachment fault, the metamor-
phosed lower plate rocks in this area include recently discovered 
kyanite-bearing schists correlative with the Dunderberg schist 
in the Wood Hills, where peak PT conditions of 610–630°C, 
6.1–7.1 kb have been dated at 82.8 ± 1.1 Ma (Lu-Hf garnet) 
(Wills, 2014). Though thermobarometric investigation of the 
kyanite schist locality in the southern East Humboldt Range is 
still underway, PT conditions were likely comparable to those 
of the Wood Hills based on phase equilibria constraints. Even 
ignoring thermobarometric constraints, assuming simple resto-
ration to inferred stratigraphic paleodepths would place these 
rocks above ZHe closure temperatures. Thus, there appears to 
be little recourse to explain the cooling and exhumation of these 
deep, mid-crustal rocks to upper crustal levels between 40 Ma 
and 35 Ma except by rapid, large-magnitude Late Eocene ex-
tensional exhumation on the overlying detachment fault. 

Notably, this phase of extensional unroofing also corre-
sponds with the principle extensional phase at Spruce Mountain, 
the inferred breakaway zone for the Late Eocene fault system 
(Pape and others, 2016). In addition, Canada and others (2020) 
infer a 42–43 Ma onset to extension regionally based on the 
sudden appearance of Late Eocene detrital zircon in the Elko 
Basin (mostly to the west of the REHW). We will henceforward 
refer to the inferred Late Eocene extension as the “Wood Hills 
phase” as its primary effect was to exhume most of the Wood 
Hills and southern East Humboldt Range.

In contrast, the later extensional phase in the northern half 
of the REHW appears to begin in the late Oligocene, and con-
tinues, possibly with episodic lulls, to ~10 Ma. It is recorded by 
WNW-directed cooling across the Ruby Mountains and cen-
tral and northern East Humboldt Range (Dallmeyer and oth-
ers, 1986; Dokka and others, 1986; McGrew and Snee, 1994; 
McGrew and others, 2019; Metcalf and others, 2018; Jeruc and 
others, 2019). The early stages of this phase of extension co-
incide with WNW-directed mylonitic shearing that overprints 
a variety of late Paleogene intrusive rocks (Wright and Snoke, 
1993). However, cooling through 40Ar/39Ar mica closure by 
~21 Ma implies that the mylonitic phase of extension was com-
plete by the Early Miocene and that subsequent extension oc-
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curred in the brittle upper crust. We will refer to this extensional 
episode as “REH phase extension.” The final extensional epi-
sode post-dates ~10 Ma and includes the currently active nor-
mal faults bounding both flanks of the Ruby Mountains and 
East Humboldt Range, which we will refer to as “Basin and 
Range extension.” 

In contrast with the cooling and exhumation histories sum-
marized above, the most comprehensive study of the cooling 
and exhumation of the southern part of the REHW reports little 
to no Late Eocene to Early Miocene extension (Colgan and 
others, 2010). Instead, Colgan and others (2010) interpret that 
the vast majority of the extension occurred after ~17 Ma, be-
ginning synchronously with impingement of the Yellowstone 
hotspot in northwestern Nevada and active chiefly during the 
Middle Miocene. This interpretation is based primarily on low 
temperature AFT and AHe thermochronology from the Har-
rison Pass pluton. Although K-Ar and 40Ar/39Ar biotite ages 
show a westward-younging trend from the Late Eocene to the 
Early Miocene across the Harrison Pass pluton, Colgan and 
others (2010) do not interpret this trend as recording the pro-
gression of extensionally-driven unroofing, but rather attribute 
it to an eastward-tilted 40Ar/39Ar partial retention zone (PRZ) 
developed during conductive cooling of the Late Eocene stock. 
Additional support for this interpretation is provided by the ob-
servation that the Paleozoic stratigraphy of the country rock to 
the south of the pluton is tilted ~30–60° eastward, as well as by 
arguments developed by Burton (1997) that originally flat-lying 
sills in the pluton have also been tilted ~30° toward the East.

Problem and Approach

In addition to the absence of the Wood Hills phase exten-
sional imprint, the Middle Miocene (17 Ma) onset for the REH 
phase of extension documented by Colgan and others (2010) 
significantly postdates the inferred Late Oligocene to Early 
Miocene extensional onset reported farther north (e.g., McGrew 
and others, 2019). Based on the ~17 Ma initiation of exten-
sion, Colgan and others (2010) infer that the approximately co-
incident impingement of North America over the Yellowstone 

hotspot was a key trigger mechanism for the onset of extension. 
Clearly, if the initiation of extension predated arrival of the Yel-
lowstone thermal anomaly (as argued by McGrew and others, 
2019), it could not have been caused by it. Consequently, there 
is a serious discrepancy between interpreted cooling and ex-
humation histories derived from the main part of the REHW 
farther north as contrasted with the southern part of the range 
centered on the Harrison Pass area. Resolving these conflicting 
interpretations is the chief purpose of this paper. To resolve this 
problem, below we complement the earlier reported low-tem-
perature thermochronometry of Colgan and others (2010, and 
references therein) with new KfAr, TnHe and ZHe thermochro-
nometry spanning the ~200°C temperature range between the 
BtAr and AFT systems. By integrating this data to develop diffu-
sional models of continuous thermal histories from ~350–50°C, 
we seek to better resolve the onset and early evolution of exten-
sion in the Harrison Pass area as a basis for comparison with 
results from the higher grade part of the REHW farther north.

METHODS

Sampling and Geological Context

This study complements and supplements previously pub-
lished low temperature thermochronometric data with newly 
collected KfAr, TnHe and ZHe results from the Harrison Pass 
pluton (Table 1). Sampling at intervals of 2–3.5 km defines a 
transect across the Harrison Pass pluton subparallel to the in-
ferred tectonic transport direction for the REHW (approximate-
ly 300°). In order to compare sample ages in tectonic context, 
we have established a baseline along the western flank of the 
range (which we henceforward refer to as the “REHW base-
line”) (Figure 1). The REHW baseline also approximately coin-
cides with the southeastern boundary of the “V-shaped” gravity 
high of northcentral Nevada as well as with the eastern limits 
of well-defined Neogene basin fill and the northwestern bound-
ary of the REHW positive aeromagnetic anomaly (Ponce and 
others, 2011). Additional thermochronology is in progress to 
confirm and better delineate the results presented below. 

Table 1.  SAMPLE LOCATION INFORMATION.

Sample Latitudea Longitude
Elevation 
(meters)

Distance 
(km)b Lithology/Systems Dated

RGD17-38 40.30997 –115.47489 1959 23.75 Granodiorite/ZHe

RGD17-39 40.31508 –115.49200 2038 22.4 Granodiorite/KfAr, TnHe, ZHe

RGD17-20 40.32619 –115.51047 2227 20.5 Granodiorite/TnHe

RGD17-21 40.32619 –115.51047 2227 20.5 Granodiorite/KfAr, ZHe

RGD17-19 40.32383 –115.55744 1998 17.2 Granodiorite/KfAr

RGD18-A6 40.34854 –115.5760 2022 14.2 Granodiorite/KfAr
aAll locations in decimal degrees, WGS84 datum.
bDistance in transport direction (decreasing toward the WNW) as measured from the REHW baseline (Figure 1).
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Analytical Methods

(U-Th)/He analyses were conducted at the University of 
Colorado Boulder TRaIL (Thermochronology Research and 
Instrumentation Laboratoty) whereas 40Ar/39Ar analyses were 
conducted at the University of Nevada—Las Vegas Nevada Iso-
tope Geochronology Laboratory. After sampling as described 
above, pure mineral separations were obtained and samples 
were analyzed following methods detailed in Appendix 1.

Diffusion Modeling and Thermal Histories

Due to its moderate retentivity for argon over a broad tem-
perature range from ~150–350°C, 40Ar/39Ar dating of potas-
sium feldspar (K-feldspar) is a key thermochronometer linking 
higher and lower temperature systems (McDougall and Harri-
son, 1999). Low temperature plutonic K-feldspar such as those 
investigated here typically exhibit complex microstructures that 
commonly yield reliable thermal histories when modeled based 
on the assumption of multiple diffusion domain behavior (Lo-
vera and others, 1989, 1991, 2002). In this approach, the step 
heating experiments described in Appendix 1 are used to in-
dependently constrain each sample’s specific diffusion kinetics 
and domain size distribution. These data are then used to model 
thermal histories on geologic time scales that optimally fit the 
observed age spectrum. Since the results derive from laborato-
ry-based diffusion experiments on the material being dated, the 
model results inherently incorporate the sample-specific diffu-
sion domain structure and allow for the investigation of diverse 
cooling paths for comparison with the observed age spectrum. 
The model output is a continuous cooling history for each sam-
ple from ~350–150°C. 

The thermal histories presented below were generated 
using the Arvert 6.1.1 code (Zeitler, 2017), a software pack-
age that allows the integration of KfAr multi-diffusion domain 
modeling as described above with explicit mineral constraints 
(e.g., BtAr ages) and with diffusion modeling of lower-tem-
perature systems—e.g., the AHe, ZHe, and/or TnHe systems 
(Ketcham, 2014). Thus extended, Arvert can yield continuous 
thermal histories from > 350°C to < 70°C while optimizing in-
ternal consistency between a variety of thermochronometers. 
The inputs for this model are the observed age spectrum and 
the sample-specific diffusion models described in Appendix 1. 

All samples investigated here showed the expected dif-
fusive loss pattern required to appropriately model the KfAr 
system—i.e., after discounting excess argon in the lowest or 
highest temperature steps, the spectra show a step-wise release 
of 39Ar that either remains age-consistent or (more typically) 
increases monotonically with increasing temperature (Fig-
ure 3). Modeling was conducted only over increments below 
the temperature of sample breakdown due to partial melting 
(~1100°C). We explored both infinite slab and spherical diffu-
sion models, and here we present results from the model that 
generated the most reliable diffusion parameters as judged by 

comparison of the modeled with the observed log r – r0 domain 
size distributions and comparison of the activation energies and 
log ( / )D r0 0

2 values with those typically observed for basement 
potassium feldspar (Lovera, and others, 1997). Due to the na-
ture of the 39Ar release, just one sample (RGD17-39) failed to 
yield a good fit based on the automatically generated regression 
of the three lowest temperature steps. For this sample, we chose 
an alternative domain model based on an unweighted regres-
sion on steps 3–6 that fell within the expected range of values 
reported by Lovera and others (1997) (Figure 3).

It is important to understand that Arvert utilizes a controlled 
random search algorithm to generate a family of optimal solu-
tions for the thermal history using the mean square of weighted 
deviates (MSWD) as the objective measure of fit between the 
modeled and observed spectra and other specified mineral con-
straints. Thus, it does not return a statistically determined confi-
dence level envelope, but rather yields a range of acceptable-fit 
solutions, with the “best-fit” solutions within that range indi-
cated in green and the “worst-fit” in red (Figure 3). Paths that 
were tried but discarded are shown in pale gray. Because Arvert 
seeks the best-fit solution, the relative width of the band of best-
fit solutions tends to narrow the longer the program runs. Accord-
ingly, it may overstate uncertainties (and, more importantly, fail 
to “discover” the best-fit solution) for too few trials whereas it 
tends to over-converge on the best-fit solution for more extended 
runs—possibly discarding paths that may be within a reasonable 
uncertainty envelope of the “best-fit” solutions. Nevertheless, the 
width of the band is meaningful in that it suggests how strongly 
constrained the overall path is, and which aspects of the cooling 
history are most strongly constrained. 

Since all samples were from the Harrison Pass pluton, we 
specified starting conditions of 550–750°C at 40 Ma. We were 
unable to specify the 36 Ma age of the pluton as the “start time” 
because Arvert requires a minimum modeled run time before 
the system begins to close. Therefore, the part of the returned 
histories above ~350°C are mostly constrained by the user-
specified start time and temperature, and similarly the lowest 
part of the thermal history (below ~50°C, assuming the AHe 
system is included in the mineral constraints) is mostly con-
strained by the requirement that the sample end the run at the 
estimated mean surface temperature. We typically explored a 
minimum of ten model runs systematically varying the explicit 
time-temperature constraints, whether or not heating was al-
lowed in the thermal history, and alternately including or ig-
noring constraints from adjacent thermochronometers (i.e., the 
AHe, ZHe, TnHe, or BtAr systems). This yielded a good under-
standing of what parts of the thermal history were most robust 
regardless of the constraints specified versus those parts of the 
thermal history that were more sensitive to variations in speci-
fied constraints. For display in Figure 3, we chose model runs 
that incorporated the maximum number of mineral constraints 
available while still yielding a good fit as judged by the MSWD 
for the run. All four samples yielded reasonably robust results 
that were not over-sensitive to input assumptions.
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Figure 3. Thermal histories modeled with Arvert for samples (a) RGD17-39, (b) RGD17-21, (c) RGD17-19, and (d) RGD18-A6. Top row pres-
ents best-fit thermal models with systems included and arrows indicating the ages of corresponding bounding isochrons (compare Table 3). An 
ensemble of histories with acceptable fits are shown with Best fit histories indicated in green and worst fit in red. The pale green shaded region 
indicates the range of the KfAr spectrum, and the pale gray “spaghetti lines” indicate all trial paths. Second row presents modeled age spectra 
(in green and red, as described above) compared with the observed spectrum (blue). Model parameters are provided in Appendix 3.
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Finally, as a consistency check on the modeled thermal 
histories, we also generated bounding isochrons on the inverse 
isochron plot using IsoplotR (Vermeesch, 2018). These samples 
typically yielded linear arrays over the lower temperature steps 
(excluding steps with conspicuous extraneous argon) that con-
trasted in age and/or 40Ar/39Ari ratios with isochrons based on 
the intermediate to higher temperature steps. In some cases, the 
inverse isochron ages correlated with distinct inflections in the 
thermal histories, enhancing our confidence in the significance 
of both results (Figure 3).

RESULTS

The thermochronologic constraints developed here are pre-
sented in Tables 2 and 3, Figures 3 and 4, and Appendix Tables 
A1 and A2. Sample locality information is summarized in Table 
1 whereas Table 2 summarizes the (U-Th)/He results and Table 
3 summarizes the KfAr results. The samples form a transect 
through the Harrison Pass pluton approximately parallel to tec-
tonic transport direction, with distances decreasing toward the 
WNW. Figure 4 plots observed ages versus distance parallel to 
the tectonic transport direction.

The KfAr spectra show extraneous argon release in the 
lower temperature steps, which was adequately treated by the 
standard practice of running duplicate isothermal steps. Overall, 
the spectra show well-behaved step-release patterns that were ap-
propriate for multi-diffusion domain modeling. For comparison 
with the multi-diffusion domain model results, upper and lower 
bounding isochrons were defined for each of the KfAr samples 
(Table 3). All isochrons reveal the same WNW-younging pattern 
evident in the age spectra and in the other thermochronometric 
systems, as would be expected in either the rotated PRZ or the 
extensionally-driven cooling models discussed in detail below.

For the farthest east sample (RGD17-38 at a distance of 
23.75 km up-dip from the REHW baseline) three zircon ali-
quots range in age from 19.75 ± 0.52 Ma to 24.72 ± 0.47 Ma 
suggesting cooling in the early Miocene (Table 2). Slightly far-
ther to the WNW, sample RGD17-39 (22.4 km up-dip from the 
REHW baseline) also yields evidence of early Miocene to late 
Oligocene cooling. Three TnHe ages range from 22.66 ± 0.47 
to 28.97 ± 0.99 Ma and six ZHe aliquots range in age from 
19.32 ± 0.79 to 24.96 ± 1.24 Ma (Table 2). 

In addition to the above (U-Th)/He results, sample RGD17-
39 also yields a KfAr age spectrum showing step release from 
a quasi-plateau in the upper temperature steps with a weighted 
mean age of 33.6 ± 0.7 Ma. A bounding isochron on the upper 
temperature steps indicates an age of 30.7 ± 0.5 Ma whereas a 
bounding isochron calculated on the lower temperature steps 
yields an age of 28.4 ± 0.4 Ma (confidence intervals on iso-
chrons include dispersion as described by Vermeesch, 2018). 

Probably because so much of the 39Ar was released in the 
highest temperature steps, KfAr sample RGD17-39 was the 
only sample that did not yield a well-constrained domain mod-
el. Nevertheless, a regression of the diffusion parameters on 

steps 3–6 of the release yields a well-constrained and reason-
able thermal history that integrates tightly with the above sum-
marized TnHe and ZHe data, as well as with nearby BtAr and 
AHe results previously reported by Colgan and others (2010) 
(Figure 3a). Within 600 m of RGD17-39, Colgan and others 
(2010) report AFT ages of 16.3 ± 1.5 Ma and 15.1 ± 1.6 Ma and 
AHe dates of 16.7 ± 1.1 Ma and 16.5 ± 2.8 Ma from their sam-
ples JC05-HP8 and HP9, respectively. In addition, they report 
a BtAr age of 34.31 ± 0.06 Ma from their sample JC05-HP9. 
Diffusive modeling incorporating all of the above mineral con-
straints was integrated with Kfs multi-diffusion domain mod-
eling using Arvert 6.1.1, yielding a well-constrained thermal 
history for the upper part of the pluton (Figure 3a). The initial 
rapid cooling phase inferred from the isochron and weighted 
mean ages is also evident in the modeled cooling history, which 
yields a steep, concave-upward profile with cooling rates in ex-
cess of 25°C/m.y. Though it would be difficult to definitively 
exclude a component of early extension-related cooling, this re-
sult is consistent with relaxation of the upper crustal geotherm 
following a thermal event associated with emplacement of the 
Harrison Pass pluton into the upper crust. The cooling history 
appears to approach an asymptote at ~180°C by ~25 Ma, after 
which there is an inflection to steeper cooling rates in the latest 
Oligocene to earliest Miocene that we interpret below as mark-
ing the initiation of REH-phase extension.

At a transport direction distance of 20.5 km, sample 
RGD17-21 represents the central part of the pluton. It yields a 
KfAr spectrum showing step release from ~28 Ma to < 17 Ma, 
with two bounding isochrons, one on the higher temperature 
steps at 21.8 ± 0.7 Ma and another on the lower temperature 
steps at 16.8 ± 0.5 Ma (Table 3). Additional constraints are pro-
vided by two ZHe ages of 20.01 ± 0.64 and 16.05 ± 0.33, respec-
tively, and an adjacent sample (RGD17-20) that yielded three 
TnHe ages ranging from 19.75–24.72 (Table 2). In addition, 
Colgan and others (2010) report a BtAr age of 31.35 ± 0.06 Ma, 
an AFT age of 16.2 ± 1.3, and an AHe mean age of 13.4 ± 0.4 
from their sample H05-RM104 collected approximately 500 m 
from samples RGD17-20 & 21. These data were also included 
in the thermal history shown in Figure 3, although multiple runs 
were conducted including or excluding these mineral ages to 
test for consistency of results. As elaborated in the Discussion 
below, accelerations in the modeled cooling history at ~23 Ma 
and ~17 Ma, suggest the possibility that the isochron ages ap-
proximate the timing of two sub-pulses in the Miocene cooling 
and unroofing history (Table 2).

Sample RGD17-19 (17.2 km up-dip) shows a step-release 
spectrum resembling that of sample RGD17-21 above, with an 
isochron age of 21.0 ± 0.4 Ma on the upper temperature steps, 
and 17.5 ± 0.4 Ma on the lower temperature steps. In this case, 
we do not yet have ZHe or TnHe results, but Colgan and others 
(2010) report a BtAr age of 25.40 ± 0.07 Ma, an AFT age of 16.4 
± 2.4 Ma, and an AHe age of 17.0 ± 1.0 Ma from their sample 
JC05-HP4 collected approximately 120 m away. We note that 
the corrected AHe age is older than both the co-located AFT 
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Figure 4. Time-distance diagram illustrating variation in cooling ages with distance in transport direction as measured from a base line along the west flank of the 
REHW (See Figure 1). Isotherms are defined by the time of cooling through benchmark temperatures in the cooling histories presented in Figure 3. Also shown 
are the apparent cooling ages for the BtAr, TnHe, ZFT, ZHe, AFT, and AHe systems synthesizing results from this study with previously published data (Kistler 
and others, 1981; Reese, 1986; Burton, 1997; Colgan and others, 2010). The rose-colored, gradient-shaded band indicates the range of possible starting times for 
REH-1 phase extension in the Harrison Pass region, with the most likely times of initiation indicated by darker shading and less likely times in lighter shading. 
The gradient-shaded blue band similarly indicates the probable age of onset of REH-2 extension. Linear best-fit trendlines are provided for systems that appear to 
show linear relationships whereas systems that appear to show possible inflections are merely connected by lines. Note the possibility of a brief lull in extension 
between ~20 and ~17.5 Ma. The WNW-directed progression of cooling ages is recorded in all systems; the orange double-headed arrow and associated dot-dash 
line indicate the likely range of partial retention (or partially annealed) ages.

age and the regional age trend. The best-fit cooling history, like 
that of RGD17-21, flattens at ~25 Ma before reaccelerating at 
~21 Ma (approximately synchronous with the isochron on the 
higher temperature steps). Unlike RGD17-21, sample RGD17-
19 does not preserve evidence of a second inflection at ~17 Ma, 
but the near correspondence of the lower temperature KfAr 
bounding isochron (17.5 Ma) with the AFT age (16.4 Ma) and 
the AHe age (17.0 Ma) suggests rapid cooling after ~17.5 Ma.

Finally, from the farthest west and deepest structural lev-
els of the pluton, sample RGD18-A6 (14.2 km up-dip) exhib-
its a step-release KfAr age spectrum from ~25 Ma to ~16 Ma 
and bounding isochrons over the higher and lower temperature 
steps yielding statistically identical ages of 16.4 ± 0.6 and 16.4 

± 1.1 Ma, respectively. The closest results reported by Colgan 
and others (2010) are their samples JC05-HP2 and HP3, 1.75 
and 2.0 km to the south, respectively. However, with up-dip 
distances of 13.7 km and 15.6 km, respectively, these samples 
bracket the position of Sample RGD18-A6. They report an AFT 
age of 14.7 ± 1.6 Ma from sample JC05-HP2 and from sample 
HP3 a BtAr age of 24.03 ± 0.06 Ma, an AFT age of 13.4 ± 2.0 
Ma, and an AHe date of 10.8 ± 3.3 Ma (Colgan and others, 
2010). 

Given the distance of the above BtAr and AHe results from 
sample locality RGD18-A6, the thermal history of RGD18-A6 
was tried both with and without the additional mineral con-
straints provided by the BtAr and AHe results reported by Col-
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gan and others (2010). The timing of inflections in the cooling 
history did not vary significantly whether or not the AHe and 
BtAr results were included, and the fit to the data with inclusion 
was significantly better, so the thermal model reported in Figure 
3d includes the AHe and BtAr mineral constraints from Colgan 
and others (2010). Notably, the early Miocene cooling history 
recorded by the samples from shallower structural levels does 
not appear to be preserved in the western part of the pluton, be-
ing recorded only by the upper part of the KfAr age spectrum 
and the 24-Ma BtAr age reported by Colgan and others (2010). 
In addition, the best fit of the KfAr MDD model converged on a 
solution with a heating event from ~200 to ~250°C starting af-
ter 22 Ma and reaching a sharp peak at 17.5 Ma before suddenly 
dropping > 100°C in 1 m.y. (Figure 3d). Final cooling through 
AFT and AHe closure appears to have proceeded more gradu-
ally thereafter. However, we have not yet obtained ZHe and 
TnHe results from this locality to incorporate into the thermal 
model and enhance our confidence in this result.

Figure 4 summarizes the above cooling histories against 
distance parallel to tectonic transport direction as determined 
from the REHW grid (Figure 1). For the thermal history models 
it maps the approximate time of passage through benchmark 
isotherms 350°C, 300°C, 250°C, 200°C, 150°C, and 100°C; 
for other thermochronometric systems the cooling histories are 
plotted using nominal closure temperatures of the systems. It 
should be noted that the “error bars” on these systems repre-
sent analytical uncertainties only for the AFT and AHe systems. 
For the other systems they represent the range in ages observed 
(TnHe, ZHe) or the range in observed “best-fit” ages at a given 
temperature for the thermal models. The colored bands and 
double arrows decorating the diagram indicate our preferred 
interpretation of the cause and timing of cooling events and 
will be discussed in detail below. The chief trend evident in this 
diagram is that all thermochronometric systems show a distinct 
age gradient younging westward. The highest temperature sys-
tems (Tc ≥ 300°C) show an apparent age gradient of ~1.2 Ma/
km whereas the lowest temperature systems (AFT and AHe) 
show age gradients of ~2.2 Ma/km; intermediate systems show 
“kinked” cooling profiles, with higher temperature and farther 
up-dip systems tending to follow the older age trends of the 

higher Tc systems whereas the lower temperature or farther 
down-dip systems tend to follow the younger age trends of the 
AFT and AHe systems.

DISCUSSION

Interpretation of the extensional history of the Harrison 
Pass area is complicated by the the interactions between ex-
tensional history and the thermal evolution of the crust. As 
illustrated in Figure 4, the general picture is clear: every 
thermochronometer investigated reveals westward-younging 
ages consistent with exhumation beneath a westward-dipping 
normal fault system beginning no later than ~17 Ma, broad-
ly consistent with the previous interpretations of Colgan and 
others (2010). However, understanding the precise timing and 
progression of extensional initiation hinges critically on un-
derstanding the thermochronologic record in the context of the 
broader geologic setting.

The chief goal of this investigation is to constrain the tim-
ing of onset of extension in the Harrison Pass area. A key ques-
tion is whether the early Oligocene BtAr dates from the eastern 
part of the Harrison Pass pluton record cooling driven at least in 
part by extensional unroofing, or whether they instead represent 
a rotated PRZ as argued by Colgan and others (2010). If exten-
sion in the Harrison Pass area did not begin (or at least was not 
significant) before the mid-Oligocene, when did it begin? Spe-
cifically, did it begin in the mid- to late Oligocene, concurrent 
with the timing of the second major phase of extension reported 
from the northern REHW, or did it initiate after ~17.5 Ma as 
inferred by Colgan and others (2010)? The following sections 
address these questions in chronological order.

Late Eocene to early Oligocene Cooling history

The data presented in Tables 1–3 and Figures 3 and 4 clear-
ly record rapid early Oligocene cooling at intermediate to high 
temperatures from the structurally higher eastern half of the 
Harrison Pass pluton. The farthest east and structurally highest 
sample, RGD17-38 (Table 2, Figure 4) cooled from pluton em-
placement temperatures of >700°C through BtAr closure (Tc ≈ 

Table 3.  40Ar/39Ar POTASSIUM FELDSPAR ISOCHRON DATA.

Sample 
Distance4 

(km)

Isochron 1 (low temperature steps) Isochron 2 (high temperature steps)

Steps Included
Age 
(Ma) ±5 40Ar/36Ari ±b MSWD Steps Included

Age 
(Ma) ±b 40Ar/36Ari ±b MSWD

RGD17-39 22.4 4, 6, 8, 10–18 28.4 0.4 363 37 42 19–32 30.7 0.5 459 46 100

RGD17-21 20.5 2, 4, 6, 8 16.8 0.5 350.3 4.2 1.3 15–34 21.8 0.7 750 97 580

RGD17-19 17.2 4, 6, 8-13 17.5 0.4 354 14 110 20–26 21.0 0.4 463 35 32

RGD18A-6 14.2 1, 3-5, 7, 9, 11–18 16.4 0.6 360 18 200 20–31 16.4 1.1 696 74 65
4Distance in transport direction (decreasing toward the WNW) as measured from the REHW baseline (Figure 1).
5Uncertainties presented as confidence interval including dispersion as calculated by IsoplotR (Vermeesch, 2019).
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325°C) by 30 Ma and through ZHe closure (Tc ≈ 180°C) by ~25 
Ma—a cooling rate decelerating over time from > 60°C/m.y to 
< 30°C/m.y. The more fully constrained result from the cooling 
model presented in Figure 3A (sample RGD17-39) (see also 
Tables 2 and 3 and Figure 4) requires a similar, though slightly 
younger cooling history.

The rapid early Oligocene cooling history can be attributed 
alternatively to extensional unroofing or to conductive cool-
ing of the pluton followed by longer-term thermal relaxation 
of the crust following the widespread Late Eocene magmatic 
episode. Evaluating these alternatives depends on a variety of 
unknowns, not all of which are constrained in the Harrison Pass 
area. Among these are rate of conductive cooling, the possibil-
ity of convective contributions to the cooling history, whether 
the regional geothermal gradient is increasing or decreasing, 
and (if extension is involved) the rate, magnitude and mecha-
nism of extension (e.g., Whittington and others, 2009; Murray 
and others, 2018; Zuza and others, 2019). 

The most important constraint in the case of the Harrison 
Pass pluton is the structural reconstruction of the depth of plu-
ton emplacement. As discussed in the Geologic Setting section 
above, the Harrison Pass pluton was probably emplaced at the 
approximate stratigraphic depths of the country rocks that it 
intrudes. The inferred roof of the pluton at its eastern contact 
intrudes the lower Pogonip Group at an inferred stratigraphic 
depth of ~4–6 km (Colgan and others, 2010). Figure 5 pres-
ents a simplified conceptual framework that illustrates how 
the observed cooling histories could be achieved simply by a 
Late Eocene heating event associated with pluton emplacement 
followed by thermal relaxation to a more stable geotherm of 
~30°C/km similar to that of the modern Basin and Range prov-
ince (e.g., Blackwell, 1983). The initial geotherm for this model 
(Figure 5c) is based on an assumed emplacement temperature 
of at least 650°C at the roof of the pluton. Although the regional 
geotherm during the Late Eocene is poorly constrained, wide-
spread Late Eocene to early Oligocene volcanism across north-
ern Nevada and deep-seated magmatism in the REHW support 
the inference that the geothermal gradient was probably high 
(e.g., Wright and Snoke, 1993; Brooks and others, 1995; Henry 
and John, 2013). In addition, thermobarometric estimates on 
the conditions of Paleogene extensional mylonitization from 
the northern REHW also imply an elevated geotherm—poten-
tially even higher than the 40°C/km geotherm assumed here 
(e.g., Hurlow and others, 1991; Hodges and others, 1992). Con-
sequently, the subsequent period (the Oligocene) was likely 
a time of thermal relaxation and crustal re-equilibration to a 
lower geothermal gradient. 

In light of the above constraints, if Late Eocene exten-
sion did accompany pluton emplacement, its thermal signature 
could be difficult to deconvolve from simple thermal relaxation 
of the crustal geotherm. Given the relatively shallow emplacement 
depth of the pluton (~4–6 km in the east to ~11–12 km in the NW), 
even a small amount of extension would likely have cooled the 
shallow eastern part of the pluton through closure of the lower tem-

perature thermochronometers. Consequently, the observation that 
the pluton did not cool through closure of the AFT and AHe ther-
mochronometers until the Miocene severely limits the magnitude 
of any possible Late Eocene or early Oligocene extension. Figure 
6 illustrates the effect that the first increments of extension would 
likely have had on the cooling histories from different structural 
levels in the pluton. Though the primary purpose of this figure is 
to illustrate our interpretation of latest Oligocene to early Miocene 
extension (see below), it also serves to illustrate the constraints on 
the possible magnitude of Late Eocene extension. 

Clearly, there are many uncertainties here—e.g., the dip 
of the fault, the precise position of the “breakaway zone,” the 
geothermal gradient, and the kinematics of isostatic response. 
For example, a steeper fault would result in a steeper uplift path 
with more cooling for a given amount of extension. In addi-
tion, the model presented in Figure 6 approximates a flexural 
response to accommodate isostatic uplift. Alternatively, ac-
commodating the isostatic uplift of the lower plate by vertical 
simple shear would approximately double the rate of vertical 
exhumation (and thus the inferred cooling rate) for a given in-
crement of horizontal extension. To investigate the sensitivity 
of the cooling history to some of these variables, the table be-
neath the cross-section presents cooling histories for a range 
of reconstructed paleodepths of each of the samples reported 
above, and for a variety of possible geothermal gradients from 
25–40°C/km. Thus, the reported temperature ranges at each 
sample locality at 25 Ma (third column from left) can be com-
pared with the estimated temperatures at any given paleodepth 
for a particular geothermal gradient. 

The most comparable model temperatures to the 25 Ma 
temperatures are highlighted in cyan in the table underlying the 
cross-section. Only by maintaining a relatively high geothermal 
gradient of 30–40°C/km throughout the Oligocene would it be 
possible to match the observed cooling histories following 4 km 
of latest Eocene to early Oligocene extension. While possible, 
we view this as an upper limit on the plausible magnitudes of 
Late Eocene to early Oligocene extension near Harrison Pass. 
However, we agree with Colgan and others (2010) that little 
to no extension is required before the late Oligocene, and the 
analysis of subsequent extensional phases adopts the simplest 
assumption that there was no Late Eocene extension. 

REH-Phase Extensional Onset

The most difficult issue is the timing of initiation of the 
REH phase of extension. The newly acquired data at least 
raise a question as to whether it may have begun earlier than 
the ~17 Ma start date inferred by Colgan and others (2010). 
As discussed above the BtAr system has a high enough closure 
temperature that most BtAr ages are likely partial retention ages 
as surmised by Colgan and others (2010). Assuming cooling to 
an ambient geothermal gradient resembling that of the modern 
northern Basin and Range province (29 ± 5°C/km), only the 
northwestern part of the pluton would likely have been near or 
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above the nominal BtAr closure temperature of ~325°C before 
the onset of extension.

As shown in Figure 5, the timing of onset of extension 
would ideally be marked by temporally coincident inflections 
in the cooling histories at any given point along the transect 
(Figure 5a) and/or by geographically defined inflections on the 
time-distance plots (Compare Figures 5b, d and e). However, if 

as illustrated in Figure 5b extension initiated in a crustal section 
that was already cooling, the expected inflections in cooling 
rates on the time-distance graphs could be subtle or impercep-
tible and the most pronounced inflections could even predate 
the onset of extension. The expected inflection in cooling rates 
in the thermal histories at the onset of extension on the time-
temperature graphs (Figure 5a) appears more likely to be reli-

Figure 5. Conceptual cartoon illustrating expected cooling age patterns resulting from rolling hinge-style exhumation of the lower plate of a metamorphic core 
complex. (a) Predicted thermal histories for points A–E at regularly spaced intervals in the lower plate of the fault depicted in cross-sections c, d, and e. Closure 
temperature bands for the various thermochronometers pertinent to this investigation are illustrated on right side of diagram. (b) Predicted time-distance relation-
ships for the thermochronometers introduced in (a). (c) Hypothesized temperature field surrounding pluton immediately following emplacement. (d) Same as in 
(c) but after conductive cooling of pluton and relaxation of regionally elevated geothermal gradient and immediately before the onset of extension. (e) State of the 
crust after ~16 km extension.
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able, but here, too, the inflections may be suppressed for some 
thermochronometric systems if imposed on an already cooling 
crustal section.

Conversely, if the geographic inflection points in the AHe 
and AFT cooling histories are not preserved (e.g., either by ero-
sion, non-sampling, or, as may be the case here, due to cross-
cutting younger faults), then these systems may underestimate 
the timing of extensional onset (Figure 5b). By connecting the 
moderate with the low temperature thermal histories in order 
to model continuous thermal histories for the TnHe, ZHe and 
KfAr systems we gain crucial leverage in addressing these 
problems. Figures 3 (compare to Figure 5a) and 4 (compare 
to Figure 5b) do, in fact, show the anticipated inflections, but 
especially in Figure 4 they are not perfectly contemporaneous 
but rather are time-transgressive between approximately 25 Ma 
and 17.5 Ma. Below, we argue that this “smearing” of results 
could be explained by nonlinearities in both the rate of exten-
sion and/or the thermal evolution of the system during the early 
phases of extension.

We begin by considering the time-temperature histories 
(Figure 3). As discussed in the Results section above, it is im-
portant to recognize that the cooling histories above the green 
bands in the thermal history models are mostly constrained by 
the time and temperature of pluton emplacement. With this lim-
itation in mind, comparing the results in Figure 3 with Figure 
4a suggests that sample RGD18-A6 from the deepest structural 
levels in the western part of the pluton chiefly records only the 
post-18 Ma component of the cooling history. However, the 
~24-Ma BtAr ages reported by Colgan and others (2010) from 
the western part of the pluton are nearly time-coincident with 
the early steep cooling histories recorded by the KfAr diffusion 
models from the same area, suggesting that they may record 
a latest Oligocene onset of extensional exhumation and rapid 
cooling (Figures 3c, 3d, and Figure 4). 

Samples from higher structural levels build a more com-
pelling case for a late Oligocene initiation of extension, with 
each showing inflections to faster cooling trajectories in the 
21–24 Ma time window, which is our preferred timing for 
the initiation of extension. Particularly compelling is sample 
RGD17-39, which shows a sharp acceleration in cooling rate at 
~25 Ma resulting in cooling to < 100°C by 21 Ma (Figure 3a). 
This abrupt acceleration in cooling rate also agrees well with a 
nearby AFT result of 24.1 ± 5.2 Ma reported by Reese (1986). 
With an estimated pre-extensional paleodepth of 6.5 km (Figure 
6), cooling of this magnitude would be difficult to explain with-
out significant extension. This timing is also consilient with 
results from samples RGD17-19 and 17-21 from deeper struc-
tural levels, both of which show Early Miocene KfAr inverse 
isochron ages (IC2, Table 2) with correlative inflections in the 
cooling curves (Figures 4b and 4c). 

However, the cooling histories in Figures 3b and 3d sug-
gest a lull in cooling after this initial cooling event, followed 
by a re-acceleration in the cooling histories after ~17.5 Ma. 
This renewed acceleration in the cooling histories is recorded 

by bounding isochrons defined over the lowest temperature 
steps in the KfAr spectra for samples RGD17-19 and 17-21, 
and RGD18-A6. In addition, these cooling events correspond 
well with the proposed initiation of rapid cooling reported by 
Colgan and others (2010). We suggest that these histories most 
likely record a two-step initiation to the extensional history, 
with an abortive initiation to extension between ~25 Ma and 21 
Ma followed by a lull and then a renewal of rapid extension and 
exhumation after ~17.5 Ma.

This interpretation can be evaluated further in light of the 
time-distance relationships illustrated in Figure 4, which can 
be compared to the predictions in Figure 5b. Figure 4 graphs 
the approximate time of closure for the various isotope systems 
against distance in the inferred transport direction. For the in-
tegrated cooling history models (Figure 3) it records the tim-
ing of passage through benchmark isotherms 350°C, 300°C, 
250°C, 200°C, 150°C, and 100°C, respectively. It should be 
noted that the “error bars” on these systems represent uncer-
tainty envelopes only for the AFT and AHe systems. For the 
ZHe and TnHe systems they represent the range in ages ob-
served, and for the integrated cooling history models, the error 
bars represent the range in observed “best-fit” ages at a given 
temperature. The rose-colored band across the middle of Fig-
ure 5 indicates the timing of the early extensional and cooling 
phase inferred above (23 ± 2 Ma), which we will term “REH 
1,” whereas the paler hues denote the proposed extensional lull 
between ~20 and ~17.5 Ma; and the blue shading indicates the 
most likely timing of reaccelerated extension post-dating 17.5 
Ma (“REH 2”). 

As expected, all systems in Figure 4 show WNW-younging 
age trends, but the rate of younging varies, and the sampling 
density is insufficient to precisely define the position of ma-
jor inflections, although such inflections are evident. The time-
temperature curves for the intermediate closure temperature 
systems all appear to show distinctly steeper trajectories in the 
eastern half of the pluton (i.e., ZHe, TnHe, and the 150°C to 
250°C isotherms) (Figure 4). Before ~25 Ma (labeled “PRZ” 
in Figure 4), we interpret cooling age trends to record partial 
retention of 40Ar following pluton emplacement. Consequently, 
these should be considered “apparent cooling ages.” A tighter 
sampling density would be ideal to capture the nuances of these 
variations, but the results are suggestive nonetheless.

We interpret the BtAr cooling ages and the 350°C and 
300°C isotherms to be entirely or almost entirely within the 
PRZ, except perhaps for the westernmost samples, as noted 
above. Accordingly, the apparent WNW-younging age gradient 
within the PRZ probably reflects the mixed effects of the down-
ward relaxation of isotherms following pluton emplacement 
and the thickness of the PRZ—i.e., these would be mixing ages 
of indeterminant geologic significance. However, the similarity 
of BtAr ages and the early parts of the KfAr cooling histories 
from the western part of the pluton with the ZHe and TnHe ages 
from the east, suggests that the westernmost sample (RGD18-
A6) may have been at or near the base of the partial retention 
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zone, and thus may record the earliest stages of extension. We 
plan to obtain TnHe and ZHe data from this locality to evaluate 
this possibility more fully.

The intermediate temperature systems appear to be espe-
cially important in bracketing the progression of initial exten-
sion. First, note the large age-range bars for the 250°C isotherm 
from the samples from the western half of the pluton (RGD18-
A6 and 17-19) (Figure 5). This is because both samples reached 
250°C contemporaneously at ~23–6 Ma, but then remained 
within the 200–250°C temperature window for the next sev-
eral million years before continuing to cool through the lower 
temperature range, starting after 21 Ma for RGD17-19 and after 
17.5 Ma for RGD18-A6 (Figures 3 and 4). Sample RGD17-21 
shows an analogous pattern, but at lower temperatures–initially 
cooling to 200°C at approximately 27 Ma, and then stabiliz-
ing in the 170–210°C window until cooling re-accelerated after 

~23 Ma, coincident with the mean TnHe cooling age from the 
same locality. We interpret this as recording the REH-1 stage of 
extension proposed above.

To test the viability of the hypothesized latest Oligocene to 
earliest Miocene extensional pulse Figure 6 presents a simple 
kinematic model for the progression of REH-1 extension. We 
assume approximately 4 km of horizontal extension accom-
modated on a listric initial fault geometry flattening into the 
seismic/aseismic transition zone at ~13 km depth, using the in-
ferred geometry of the 2008 Wells earthquake fault as an analog 
(Figure 6) (Smith and others, 2011). Based on regional geologic 
constraints summarized in the introduction, we infer that the 
fault must have daylighted at approximately 30 km up-dip from 
the REHW baseline (Figures 1 and 2). The listric fault geom-
etry we assumed yields pre-extensional paleodepth estimates 
ranging from ~11.3 km for sample RGD18-A6 to ~5.2 km for 

Figure 6. A possible kinematic model for the onset and evolution of REH-1 extension between ~25 and 21 Ma illustrating a plausible thermal evolution of the lower 
plate as a consequence of extension and isostatic uplift in the footwall of an initially listric normal fault (see discussion in text). “Before” state of cross-section (25 
Ma) is lightly shaded; “after” state (21 Ma) is in color. Key assumptions of the model are itemized on the left, and the inferred thermal history from the kinematic 
model is compared with the observed cooling histories (from Figure 3) in the table underlying the diagram. Light blue shadings indicate the best matched thermal 
histories if extension began in the early Oligocene; light green shadings indicate the best matched thermal histories assuming initial extension bracketed between 
21–25 Ma (See discussions in text).
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sample RGD17-38. These estimates resemble those of Colgan 
and others (2010), though generally ~500–1000 m deeper. Us-
ing this model we located the position of each of the analyzed 
samples and estimated the temperature of each at 25 Ma, our 
proposed initiation time for REH-1 extension. The estimated 
paleodepths and temperatures suggest geothermal gradients 
ranging from 22–33°C/km—similar to the modern Basin and 
Range geotherm. 

We then imposed 4 km of extension assuming that the room 
problem between the two plates was accommodated mostly by 
isostatically-driven upward flexure of the lower plate as exten-
sion proceeds (i.e., the “rolling hinge model”) (e.g., Lavellier 
and others, 1999). The remainder of the room problem was ac-
commodated by ~1 km of hanging wall collapse. We assumed 
that extension accumulated at a constant rate of 1 km/m.y. until 
it stalled at ~21 Ma, and we then estimated temperatures based 
on their new depths and assuming a range of geothermal gradi-
ents from 25–40°C (Figure 6). Assuming this initial phase was 
complete and geotherms had stabilized by ~20 Ma, the results 
in the central part of the table in Figure 6 can be compared 
with the inferred temperature estimates for each of the samples 
at ~20 Ma, with the best-fit solutions highlighted in green. Al-
though these assumptions yield non-unique solutions, it would 
be difficult to reproduce the observed thermal histories without 
invoking significant extension during the earliest Miocene to 
latest Oligocene time frame. Conversely, if extension continued 
at the same rate of 1 km/m.y. over the entire 8 m.y. time span 
from ~25–17 Ma, it would be extremely difficult not to force a 
wide area of the pluton through AFT and AHE closure tempera-
tures. Either there must be a break in the continuity of exten-
sion or this early phase of extension must have proceeded much 
more slowly. The observed inflections in the cooling histories 
(Figure 3) favor the former alternative.

Finally, we can ask whether there is a stratigraphic record 
for the proposed REH-1 extensional phase. Lund-Snee and Mill-
er (2015) document an approximately 300 m thick sequence of 
coarse cross bedded sandstone at the base of the Humboldt For-
mation near Indian Well at the north end of Cedar Ridge, with 
the basal beds yielding a minimum depositional age of 24.4 Ma 
based on detrital zircon and with a younger age bracket placed 
by 40Ar/39Ar sanidine ages of 15.51 ± 0.44 and 15.78 ± 0.45 Ma 
from immediately overlying tuff. Although these relationships do 
not preclude an age between 16 and 17 Ma for this subunit, we 
suggest that it represents a potential record of REH-1 syntectonic 
sedimentation. In addition, Satarugsa and Johnson (2000) inter-
pret a wedge of chaotic reflectors at ~1 km depth on the west 
flank of Harrison Pass as a probable alluvial fan or megabreccia 
wedge. Interpreted from seismic line CT-1 (Satarugsa and John-
son, 2000), this unit is sandwiched between the upper “Indian 
Wells Formation” (probable Late Eocene tuff of Dixie Creek)
(Lund Snee and others, 2016) and the basal Humboldt Forma-
tion. Thus, it represents another candidate for REH-1 syntec-
tonic deposition. Finally, much farther north, recent mapping 
has documented megabreccia masses introduced at ~21 Ma into 

the sedimentary sequence of Clover Creek, a unit underlying the 
basal Humboldt Formation and overlying the 28-Ma tuff of Coal 
Mine Canyon (Henry and others, 2012; McGrew and Snoke, 
2015)—thus documenting an analogous record elsewhere in the 
REHW. If the REH-1 phase extension reactivated pre-existing 
Wood Hills phase extensional structures, then this phase of ex-
tension may similarly be more strongly developed in the northern 
half of the REHW than it is in the Harrison Pass area. Most of 
the extensional mylonitization in the northern half of the REHW 
is bracketed between ~29 Ma and ~21 Ma (Wright and Snoke, 
1993; McGrew and Snee, 1994).

Regardless of the interpretation of the pre-17.5 Ma cooling 
history, there can be little doubt that extension surged dramati-
cally after ~17.5 Ma, as previously detailed by Colgan and oth-
ers (2010). We will refer to this as “REH-2” extension to distin-
guish it from the pre-20 Ma extensional history discussed above. 
Our new results offer additional support for this inference based 
on KfAr isochrons regressed over the lower temperature steps 
and inflections in modeled cooling histories bracketed between 
17 and 18 Ma (Figure 3b-d). With the exception of the eastern-
most samples, nearly the entire pluton cooled through AFT and 
AHe closure between 17 Ma and 10 Ma (Figure 4). However, 
there appears to be a likely inflection to a steeper slope on the 
time-distance graph east of ~22 km up-dip distance (Figure 4). 
This inference is also supported by the model presented in Fig-
ure 6, which would place everything southeast of sample 17-21 
at or just-above the AFT and AHe closure temperature range at 
17 Ma. At predicted paleodepths of < 4.5 km at 18 Ma, practi-
cally any extension would be sufficient to close the AFT system 
and very likely the AHe systems in the upper part of the pluton. 

In light of the above relationships, we regressed only the 
data west of 22 km in order to obtain an estimate for the exten-
sion rate during the REH-2 extensional phase (Figure 4). Both 
the AFT and AHe data yield identical regressed age gradients 
of 2 km/m.y. If maintained at this rate over the entire 7 m.y. 
period from 17–10 Ma, this would yield ~14 km of extension 
(assuming an average 45° fault dip)—enough to nearly fully 
exhume the entire width of the southern Ruby Mountains. In 
this context, we note that the stratigraphic record from the 
Robinson Mountain volcanic field to the west suggests that the 
greatest rate of accumulation of the Miocene Humboldt Forma-
tion (> 1 km of sedimentary and volcanic strata) was bracketed 
between 15.8 and 12.4 Ma (Lund Snee and Miller, 2015; Lund 
Snee and others, 2016). We suggest 10–14 km of extension dur-
ing the REH-2 phase, and an additional 3–5 km predating it in 
the REH-1 phase. Allowing an additional 3–5 km of extension 
after 10 Ma (Basin and Range extension) and 0–4 km of exten-
sion during the Late Eocene, total extension across the Harrison 
Pass area was probably in the range of 16–28 km. Our favored 
estimate is 22 ± 6 km of total extension. This would effectively 
restore Cedar Ridge to the western margin of the modern Ruby 
Mountain range front at Harrison Pass, with the strata under-
lying Huntington Valley restoring to a position overlying the 
Harrison Pass pluton.
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Tectonic Implications

Late Eocene to Oligocene Tectonics (Wood Hills Phase)
The lack of appreciable Late Eocene to early Oligocene 

extension at the latitude of Harrison Pass poses the problem 
of how to reconcile these relationships with evidence for ma-
jor Late Eocene extension farther north, centered on the Wood 
Hills (Figure 1). We suggest that the Wood Hills phase exten-
sion died out southward and that the younger REHW extension-
al system nucleated on the older, Wood Hills phase detachment 
fault farther north and then propagated southward into previ-
ously unextended or only weakly extended terrain, thus captur-
ing and exhuming the Harrison Pass pluton during the REH-1 
and REH-2 extensional phases detailed above. A number of 
other observations support the plausibility of this interpretation: 

1.	 The west-east width of the exhumed metamorphic/plutonic 
domain is much greater to the north (≥ 30 km) than it is to 
the south (15–20 km) (Figure 1).

2.	 The extensional mylonitic shear zone thins and disappears 
from Harrison Pass southward, suggesting that both dis-
placement and/or temperature conditions during exhuma-
tion diminish southward.

3.	 Thermobarometric constraints suggest exhumation of the 
metamorphic rocks from much greater paleodepths to the 
north than to the south. Specifically, kyanite-bearing pelitic 
assemblages in the East Humboldt Range and the Wood 
Hills record peak PT conditions ranging from 625°C, 6 kb 
to 775°C, 10 kb (Wills, 2014; McGrew and others, 2000; 
Hallett and Spear, 2014 and 2015). In contrast, andalusite-
bearing assemblages in the contact aureole of the Harrison 
Pass pluton preclude pressures >4 kb near the southern end 
of the REHW—equivalent to paleodepths < 15 km (Barnes 
and others, 2001), and consistent with the pre-extensional 
burial depths inferred from stratigraphic reconstruction of 
the country rock into which the pluton intrudes (Colgan and 
others, 2010).

4.	 The depositional basin to the west of the REHW is divided 
into two distinct subbasins—the deeper (locally > 4 km) 
and more regionally extensive Lamoille-Starr Valley sub-
basin north of the Lamoille salient vs. the smaller Hunting-
ton Valley subbasin to the west of the Harrison Pass area 
(Satarugsa and Johnson, 2000). This suggests the possibil-
ity of a tectonic discontinuity between the Lamoille salient 
and Harrison Pass. 

We note that the total width of the extended terrain plus the 
adjacent basin to the west narrows abruptly south of line 45S in 
Figure 1, from ~66 km to ~ 46 km. This suggests the hypothesis 
that the Wood Hills phase extension may have largely terminated 
in a now-buried NW-trending left-lateral strike-slip boundary 
subparallel to this line. This also correlates with the transition 
zone from the Lamoille subbasin in the north to the Huntington 
subbasin in the south (Satarugsa and Johnson, 2000).

Regardless of the above relationships, while it is difficult to 
establish any Eocene extension at the latitude of Harrison Pass, 
it is also difficult to exclude the possibility of a small amount 
of extension (no more than 3–4 km). The distribution of the 
Late Eocene Elko Formation and the overlying Tuff of Dixie 
Creek supports this possibility. The occurrence of 500–1000 m 
of these units in well logs in Huntington Valley shows that they 
were probably deposited over the Harrison Pass area before be-
ing translated westward to their current location. Yet there is no 
evidence for their deposition over Medicine Mountain or the 
Maverick Springs Range to the east. On the contrary, the de-
position of mid-Miocene Humboldt formation directly on the 
Upper Paleozoic strata of Medicine Mountain and the Maverick 
Springs Range suggests that they were positive areas before the 
Miocene—a transition that is most easily explained if they were 
in the uplifted footwall of a normal fault bounding the eastern 
side of the Elko Basin. Furthermore, recent investigation of the 
detrital zircon geochronology of the Elko Formation strongly 
suggests a transition to extension between 43–42 Ma based on 
an influx of sediment with dramatically reduced lag times be-
tween U-Pb zircon and (U-Th)/He zircon double dates (Canada 
and others, 2020).

Late Oligocene to Miocene Tectonics (REH-phase)
Regardless of the earlier tectonic history, the vast majority 

of extension at the latitude of Harrison Pass clearly occurred 
during the Miocene. As summarized above, this may have in-
cluded up to 4 km of extension accumulated between 25–21 
Ma (“REH-1”) followed by 10–14 km extension accumulated 
between 17.5 and ~ 11 Ma (“REH-2”). The tectonic trigger for 
REH-1 phase extension is unclear, but we note the temporal cor-
respondence of this event with major extension farther south in 
Nevada and in the Arizona metamorphic core complexes (e.g., 
Singleton and others, 2014; Long and others, 2018; Spencer 
and others, 2019). The initiation of extension during this time 
frame may have been triggered by the relaxation of contrac-
tional boundary conditions following the initiation and early 
growth of the San Andreas transform margin. In particular, we 
note the approximate coincidence in timing with the inferred 
subduction of the Pioneer fracture zone, which would have 
abruptly lengthened the transform margin and introduced a slab 
window (e.g., Severinghaus and Atwater, 1990). We suggest the 
possibility that rifting that initiated farther south at the latitude 
of the growing transform margin may have penetrated farther 
north and deeper into the interior of the Cordillera than has been 
widely appreciated. This phase of extension may have nucle-
ated on pre-existing Late Eocene structures and thus may have 
focused into a relatively narrow zone centered on the REHW.

The tectonic trigger for post-17.5-Ma (REH-2) regional 
extension across northern Nevada has previously been attrib-
uted to impingement of NW Nevada over the Yellowstone ther-
mal plume (Colgan and Henry, 2009; Colgan and others, 2010; 
Camp and others, 2015). Intriguingly, the deeper level samples 
(especially RGD18-A6, Figure 3d) appear to preserve evidence 
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for a thermal pulse peaking at 17.5 Ma immediately before the 
onset of REH-2 extension. This possible heating event is con-
sistent with the hypothesis that the arrival of the Yellowstone 
hotspot may have been the key trigger for the onset of this 
phase of extension. In the REHW a widespread (though not vo-
luminous) suite of basaltic dikes also approximately coincides 
with this possible thermal event. We note that such a nonlinear-
ity in the thermal history could also help to explain some of 
the discordances in the data. For example, potentially resetting 
all thermochronometers at deeper structural levels but resetting 
progressively lower temperature thermochronometers at higher 
structural levels while not affecting areas that had already been 
exhumed and cooled to well below their closure temperatures. 

We suggest that the relatively small amount of extension 
associated with the REH-1 phase (and possibly also with the 
older Wood Hills extensional phase discussed above) indicates 
that the crust was probably on the brink of extensional collapse 
from the Late Eocene onward. In this conception, the arrival of 
the Yellowstone hotspot played a pivotal role by introducing a 
thermal pulse that weakened the crust and triggered the release 
of long-standing extensional boundary conditions and the ac-
celeration in extension observed after 17.5 Ma. That extension 
continues to the present day, though at a greatly reduced rate, as 
expressed by the Basin and Range extensional phase.

CONCLUSIONS

The southern Ruby Mountains, at the latitude of Harrison 
Pass, were exhumed by up to four episodes of extension. If 
present at all, the earliest extensional phase, the Late Eocene 
“Wood Hills” phase, is much less significant than it appears to 
be in the northern half of the REHW because it was insufficient 
to trigger the closure of major thermochronometric systems. 
Thus, this early phase of extension must have been relatively 
concentrated and localized to the northern REHW. At Harrison 
Pass it could have accommodated no more than ~4 km of hori-
zontal extension. 

The thermochronometric record of extensional exhumation 
appears to begin with an as-yet poorly defined latest Oligocene—
earliest Miocene extensional phase (here termed “REH-1”) re-
corded by cooling of midrange thermochronometers (TnHe, ZHe 
and KfAr) between ~21 and ~25 Ma. REH-1 phase extension 
probably was not great in magnitude (< 5 km) and either pro-
ceeded at a slow rate << 1 km/m.y. or, more likely, stalled after 
~20 or 21 Ma. Though the tectonic trigger of this phase is un-
clear, we suggest that it may correlate with similar-aged exten-
sion farther south in the Cordillera that may relate to evolving 
far-field boundary conditions associated with the establishment 
and early lengthening of the San Andreas transform.

The main extensional phase (REH-2) began after 17.5 Ma 
and proceeded rapidly (~2 km/m.y.) until ~11 Ma. The initia-
tion of this pulse of extension correlates closely with the arrival 
of the Yellowstone hot spot in northwestern Nevada, and the 
deeper level KfAr samples investigated here suggest a possible 

thermal pulse peaking at 17.5 Ma immediately before the onset 
of REH-2 extension. In total, REH-2 probably accommodated 
at least 10 km of horizontal displacement and was primarily 
responsible for the exhumation and eastward-tilting of the Har-
rison Pass pluton. Much slower, post-10 Ma Basin and Range 
extension brings the history to date. Total extension across the 
Harrison Pass area likely was between 16 and 28 km, with a 
preferred estimate of 22 km. Taken together, the new results 
support the prior synthesis of Colgan and others (2010) with the 
addition of the previously unrecognized REH-1 phase exten-
sion. We suggest that the crust of the northern Basin and Range 
province was primed for collapse from the Late Eocene onward, 
but that regional (as opposed to localized) collapse awaited the 
thermal weakening of the crust associated with the arrival of the 
Yellowstone thermal plume (Colgan and Henry, 2009).
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APPENDIX 1. ANALYTICAL METHODS

(U-Th)/He Methods

Analyses carried out at the University of Colorado Boul-
der TRaIL (Thermochronology Research and Instrumentation 
Lab) used the following methods. Individual mineral grains are 
handpicked using a Leica M165 binocular microscope equipped 
with a calibrated digital camera and capable of both reflected 
and transmitted, polarized light. The grains are screened for 
quality, including crystal size, shape, and the presence of in-
clusions. After characterization, grains are placed into small, 
acid cleaned Nb tubes that are then crimped on both ends. This 
Nb packet is then loaded into an ASI Alphachron He extraction 
and measurement line. The packet is placed in the UHV extrac-
tion line (~3 × 10–8 torr) and heated with a 25W diode laser 
to ~800–1100°C for 10 minutes to extract the radiogenic 4He. 
The degassed 4He is then spiked with approximately 13 ncc of 

pure 3He, cleaned via interaction with two SAES getters, and 
analyzed on a Balzers PrismaPlus QME 220 quadrupole mass 
spectrometer. This procedure is repeated at least once to ensure 
complete mineral degassing. Degassed grains are then removed 
from the line and taken to a Class 10 clean lab for dissolution. 

Individual zircon and titanite grains are dissolved using 
Parr large-capacity dissolution vessels in a multi-step acid-
vapor dissolution process. Grains (including the Nb tube) are 
placed in Ludwig-style Savillex vials, spiked with a 235U – 
230Th – 145Nd tracer, and mixed with 200 μl of Optima grade 
HF. The vials are then capped, stacked in a 125 mL Teflon liner, 
placed in a Parr dissolution vessel, and baked at 220°C for 72 
hours. After cooling, the vials are uncapped and dried down 
on a 90°C hot plate until dry. The vials then undergo a second 
round of acid-vapor dissolution, this time with 200 μl of 6N 
Optima grade HCl in each vial that is baked at 200°C for 24 
hours. Vials are then dried down a second time on a hot plate. 
Once dry, 200 μl of a 7:1 HNO3:HF mixture is added to each 
vial, the vial is capped, and cooked on the hot plate at 90°C for 
4 hours. Once the minerals are dissolved they are diluted with 
3 mL of doubly-deionized water, and taken to the ICP-MS lab 
for analysis. Sample solutions, along with normal solutions and 
blanks, are analyzed for U, Th, and Sm content using an Agilent 
7900 quadrupole ICP-MS. After the U, Th, and Sm contents are 
measured, He dates and all associated data are calculated on a 
custom spreadsheet using the methods described in Ketcham 
and others, (2011). The natural occurring 238U/235U ratio used in 
data reduction is 137.818 after Hiess and others (2012). Every 
batch of samples includes standards run sporadically through-
out the process to monitor procedures and maintain consistency 
from run to run. Long term averages of Fish Canyon Tuff zir-
cons and Durango fluorapatites run in the CU TRaIL are 28.7 ± 
1.8 Ma (n = 150) and 31.1 ± 2.1 (n = 85), respectively.

40Ar/39Ar K-feldspar Methods

Laboratory Methods
K-feldspar samples for analysis by the 40Ar/39Ar method 

were first disaggregated by hand and relatively inclusion free 
fragments selected from broken K-feldspar grains (megacrysts 
where possible). These fragments were then crushed by hand 
with a mortar and pestle, sieved, cleaned ultrasonically, and 
separated by conventional density separation methods before 
hand-picking the aliquots sent to the Nevada Isotope Geochro-
nology Laboratory for final processing and analysis.

Samples analyzed by the 40Ar/39Ar method at the Univer-
sity of Nevada Las Vegas were wrapped in Al foil and stacked 
in 6 mm inside diameter sealed fused silica tubes. Individual 
packets averaged 3 mm thick and neutron fluence monitors 
(GA-1550 biotite) were placed every 5–10 mm along the tube. 
Synthetic K-glass and optical grade CaF2 were included in the 
irradiation packages to monitor neutron induced argon inter-
ferences from K and Ca. Loaded tubes were packed in an Al 
container for irradiation. Samples irradiated at the U. S. Geo-
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logical Survey TRIGA Reactor, Denver, CO were in-core for 
10 hours in the 1 MW TRIGA type reactor. Correction factors 
for interfering neutron reactions on K and Ca were determined 
by repeated analysis of K-glass and CaF2 fragments. Measured 
(40Ar/39Ar)K values were 4.29 (± 7.89%) × 10–2. Ca correc-
tion factors were (36Ar/37Ar)Ca = 1.93 (± 0.59%) x 10–4 and 
(39Ar/37Ar)Ca = 5.69 (± 0.25%) × 10–4. J factors were deter-
mined by fusion of 4–8 individual crystals of GA-1550 biotite 
neutron fluence monitors which gave reproducibility’s of 0.3% 
to 0.8% at each standard position. Matlab curve fit was used to 
determine J and uncertainty in J at each standard position. No 
significant neutron fluence gradients were present within indi-
vidual packets of crystals as indicated by the excellent repro-
ducibility of the single crystal GA-1550 biotite fluence monitor 
fusions.

Irradiated GA-1550 biotite standards together with CaF2 
and K-glass fragments were placed in a Cu sample tray in a 
high vacuum extraction line and were fused using a 20 W CO2 
laser. Sample viewing during laser fusion was by a video cam-
era system and positioning was via a motorized sample stage. 
Samples analyzed by the furnace step heating method utilized a 
double vacuum resistance furnace similar to the Staudacher and 
others (1978) design. Reactive gases were removed by three 
GP-50 SAES getters prior to being admitted to a MAP 215-50 
mass spectrometer by expansion. The relative volumes of the 
extraction line and mass spectrometer allow 80% of the gas to 
be admitted to the mass spectrometer for laser fusion analyses 
and 76% for furnace heating analyses. Peak intensities were 
measured using a Balzers electron multiplier by peak hopping 
through 7 cycles; initial peak heights were determined by lin-
ear regression to the time of gas admission. Mass spectrom-
eter discrimination and sensitivity was monitored by repeated 
analysis of atmospheric argon aliquots from an on-line pipette 

system. Measured 40Ar/36Ar ratios were 321.98 ± 0.02% during 
this work, thus a discrimination correction of 0.9177 (4 AMU) 
was applied to measured isotope ratios. The sensitivity of the 
mass spectrometer was ~6 × 10–17 mol/mV with the multiplier 
operated at a gain of 36 over the Faraday. Line blanks aver-
aged 2.84 mV for mass 40 and 0.01 mV for mass 36 for laser 
fusion analyses and 12.80 mV for mass 40 and 0.04 mV for 
mass 36 for furnace heating analyses. Discrimination, sensitiv-
ity, and blanks were relatively constant over the period of data 
collection. Computer automated operation of the sample stage, 
laser, extraction line and mass spectrometer as well as final 
data reduction and age calculations were done using LabSPEC 
software written by B. Idleman (Lehigh University). An age of 
98.50 Ma (Spell and McDougall, 2003) was used for the GA-
1550 biotite fluence monitor in calculating ages for samples.

To support the diffusion modeling described below potas-
sium feldspar samples were run using tightly controlled heat-
ing schedules of 34 steps from 422–1398°C, including multiple 
replicate isothermal steps across the lower temperature range 
(< 800°C). None of the samples considered here yielded statis-
tically consistent plateau ages (3 or more contiguous gas frac-
tions having analytically indistinguishable ages at ± 2σ analyti-
cal error and comprising ≥ 50% of the released gas). Total gas 
(integrated) ages were calculated by weighting by the amount 
of 39Ar released, whereas plateau ages are weighted by the in-
verse of the variance. For each sample inverse isochron dia-
grams were examined to check for the effects of excess argon. 
Reliable isochrons are based on the MSWD criteria of Wendt 
and Carl (1991) and, as for plateaus, must comprise contiguous 
steps and a significant fraction of the total gas released. All ana-
lytical data are reported at the confidence level of 1σ (standard 
deviation). Full 40Ar/39Ar analytical data tables are presented in 
Appendix 2.
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