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Analysis of Networked Structural Control With Packet Loss
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Abstract—This brief considers the analysis of networked
structural control systems with measurement loss. This is mod-
eled as a sampled-data system that integrates the discrete-time
operation of the controller with a fast-sampling approximation
of the continuous-time structural (plant) dynamics. Random
measurement loss in each channel due to the use of the wireless
transmission is modeled as a Bernoulli process. This leads to
a discrete-time, Markov jump linear model for the feedback
system. An H2-norm analysis is proposed to assess the stability
and the performance of the structural control. An example of a
three-story building model is used to illustrate this approach. The
H2-norm results are shown to be in agreement with the numerical
simulations. The analysis can, thus, be used to assess various
design choices. For example, the relationship between the prob-
ability of signal loss and the H2-norm depends on the method
used to handle the signal loss. Moreover, the analysis shows that,
for a jump controller setup using steady-state Kalman gains,
the system can become unstable at very small probabilities of
signal loss.

Index Terms—Earthquake engineering, Markov jump linear
system, networked control system, packet loss, sampled-data
system, stability, structural engineering.

I. INTRODUCTION

C IVIL structures are vulnerable to dynamic deformation
during natural hazards. Significant economic losses in

past earthquakes due to structural damage have encouraged a
transition to low-damage design, as opposed to focusing only
on life safety. These tighter response requirements motivate
the use of feedback structural control [1], [2].
Traditionally, the communication between the components

of control systems is cabled. Compared to tethered systems,
wireless networks offer potential flexibility and redundancy
through applications of decentralized and adaptive control
strategies [3], [4]. Wireless smart sensor platforms were orig-
inally developed for monitoring applications and have been
successfully applied to bridge structures [5]. However, unlike
monitoring applications, feedback control requires reliable
and real-time measurements, which can be challenging due
to signal loss and delay inherent in wireless communica-
tion. Therefore, the impact of signal loss and delay must
be addressed for the successful implementation of wireless
sensors in structural control.
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Approaches for dealing with signal loss and delay include
the utilization of decentralization, communication protocols,
hardware/middleware design, and control algorithms. Decen-
tralization limits the distance and the number of commu-
nication links by dividing the network into subsystems.
This compromises the system knowledge available to the
controller for improved communication performance [6].
Hardware/middleware design makes use of onboard com-
puting and network utilization to reduce and provide tol-
erance to signal loss and delay [4], [7]–[9]. In addition,
the wireless communication protocols, such as time-division
multiple access (TDMA) and code-division multiple access
(CDMA), can be tailored for civil engineering applications [4],
[9], [10], and there often exists a tradeoff between latency
and reliability while considering the optimal protocol [11].
Beyond improving the communication, control implementa-
tions directly account for delay and signal loss in the algo-
rithms [12]–[15]. Previous work shows that different ways of
handling signal loss affect system passivity [16], [17]. While
holding the control command when the signal loss occurs [16]
may inject additional energy to the system and cause a
loss of passivity, dropping the command to zero [17] retains
passivity.
Developers of wireless structural control often validate

their design using limited experimental and numerical sim-
ulations [4], [7]–[9], [12]. A drawback of simulation-based
methods is that the limited duration of earthquake excitations
and the random occurrence of signal loss may not reflect
the performance loss possible during the lifetime of the
system and, therefore, underestimate the possible responses.
Within the controls community, the mathematical analyses
for system norms, such as H2-norm and H∞-norm, are often
used as the system performance evaluations, which could be
alternatives for the simulation-based methods. The H2-norm
of a linear time-invariant system can be interpreted as the
gain from the white noise disturbance to the steady-state
variance of the output. Earthquake response analysis often
leverages a filtered random disturbance [18], [19] as real
earthquake excitations are highly random and wideband.
Therefore, the H2-norm is the suitable choice for the perfor-
mance criterion. Wireless feedback control introduces packet
drops that are both time-varying and random. The stan-
dard H2-norm must be adapted to address both of these
effects.
The key contribution of this brief is to assess the per-

formance of wireless structural control systems using an
adapted version of the H2-norm, which considers the effects
of signal loss and slow sampling time. The proposed
H2-norm analysis method is based on the Lyapunov stability
theorem. The analysis follows two steps: modeling of the lossy,
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slow-sampled system and solving the Lyapunov equation.
Markov jump linear systems’ theory [20] and sampled-data
systems’ theory [21], [22] are employed for the modeling. The
H2-norm is obtained by solving the set of Lyapunov equations
associated with the jump model. The analysis method is
applied to study the stability and performance of a controlled
building. The outcome of the analysis relates the probability
of signal loss and the sampling time to the H2-norm. This can
be used to assess the design tradeoff between sampling time
and signal reliability.

II. FORMULATION OF THE CONTROLLED SYSTEMS

A. Feedback Control of Structures

In this brief, we consider the feedback control of a building
structure for mitigating the earthquake response. The structure
(the plant) P is controlled by actuators placed on each floor.
The feedback control system consists of the sensors that
measure the building response, the centralized controller C that
computes the control command using the measurement from
the sensors, the actuators that execute the control command,
and the communication links between the components to
transfer all the required data. During earthquakes, the building
deformation, specifically, the interstory drifts (unitless ratio
calculated by the difference in horizontal displacements of two
adjacent floors divided by the floor height) is to be limited by
the control system.
In continuous time, the horizontal displacement and velocity

of the floors relative to the ground together form the state vec-
tor x(t) ∈ Rnx . To detect the building response, the measured
response vector y(t) ∈ Rny (floor horizontal accelerations
or full-state measurements) is gathered by ny sensors placed
on the structure at each level. The building is subjected to
the earthquake loading, which is modeled by the ground
acceleration, a(t) ∈ R. Unless the statistical data about the
frequency content and the duration of the targeted earthquakes
are available to generate synthetic ground motions, a white
noise can be a sufficiently suitable input model [23]. In this
work, a band-limited white noise with a 400-Hz bandwidth
is considered for the earthquake input. The structure is also
excited by the actuators, which generates nu actuator forces
denoted by the input vector u(t) ∈ Rnu . The state-space
representation of the building is given as follows:

P :



ẋ(t) = Ax(t) + B1a(t) + B2u(t)

z(t) = Czx(t)

y(t) = Cyx(t) + Dyu(t)

(1)

where z(t) ∈ Rnz is the vector containing the controlled
responses of the structure, which are the interstory drifts.
The building dynamics are in continuous time, but the

controller is implemented in discrete time. Let xs[k], us[k],
and ys[k] be the discrete-time companions of x(t), u(t), and
y(t), respectively. xs[k] and ys[k] are obtained by sampling
x(t) and y(t) with time step Ts. The controller updates the
required actuator forces at discrete time instances, denoted
as us[k]. A zero-order hold is used between sample times to
generate u(t).

Fig. 1. Bernoulli process of the signal loss on each channel.

B. Wireless Sensor Network and Signal Loss

For a controlled structure that uses a wireless sensor net-
work for measurement feedback, the controller sampling rate
will be limited, predominantly by the communication latency
of the transceivers. A typical guideline for the selection of the
sampling time is about ten times faster than the system band-
width and never less than two times the frequency that needs to
be observed [24, Sec. 8.8]. However, such a fast sampling time
is difficult to achieve in this centralized, wireless structural
control setting. As seen in [3], the sampling period in the
case study was limited to 0.08 s (12.5-Hz sampling frequency)
for the centralized wireless control system of the three-story
structure. Such a slow sampling time has significant effects on
the closed loop. In this brief, the results for Ts = 0.02 s and
Ts = 0.05 s are presented.
Signal loss causes random changes in the dynamics of

the model visible to the controller. Under assumptions about
the stochastic process governing the occurrence of signal
loss, the system can be modeled as a Markov jump linear
system, a class of time-varying models that can switch between
multiple linear modes following a Markov chain process.
A single measurement can be either lost (L) or received
(R) during the transmission for the network to be studied,
so the total number of Markov modes with nc channels is
2nc . We assume that each channel is lost with probability
p or received with probability 1 − p (see Fig. 1) at the
receptor following an independent identically distributed (i.i.d)
Bernoulli process [25]. Time-varying network performance
captured by fading models [14], e.g., network dropout due
to the environment as in vehicle control, is not a significant
concern for building control. That being said, a fading model
could be incorporated within this analysis framework. The
Bernoulli process, however, is sufficient for modeling the
signal loss in the wireless structural control problems.
The lossy, individual channels of the sampled system are

captured by partitioning the received measurement vector.
Let ys[k] = [ys,1[k]T ys,2[k]T · · · ys,nc[k]T]T be the sample
of the measured response, y(t), at the kth time step. ys[k]
is partitioned so that the signals sent in the same channel
are grouped together. The received measurement is yr[k] =[
yr,1[k]T yr,2[k]T · · · yr,nc[k]T

]T
. The lossy signal received by

the cth channel (c = 1, 2, . . . , nc) is modeled as yr,c[k] =
θc[k] × ys,c[k], where θc[k] is the binary variable modeling
the loss process (θc[k] = 0: lost; θc[k] = 1: received). For
the building structure in this work, each channel transmits the
measurements from one floor. The number of channels, nc,
is also the number of floors of the building.
In this brief, we investigate the jump controllers

that switch between predefined modes. Let θ [k] =[
θ1[k], θ2[k], . . . , θnc[k]

]T
be the binary array containing the
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Fig. 2. Signal loss and jump controller (three wireless channels and eight
controller modes).

reception information of all channels at the time step k. The
switching logic of the controller depends on θ [k], which is
known by the controller (see Fig. 2).

C. Numerical Building Model

The structure in this study is the three-story benchmark
model that is described by Ohtori et al. [26]. The structure
is a steel building with dimensions 36.58 m × 54.87 m in
plan and 11.89 m in elevation (see Fig. 3). Designed for
seismic research, the structure is commonly used to investigate
structural control strategies. The benchmark supports both
linear and nonlinear simulations. The linear version is used
in this work. The initial benchmark model has 33 degrees of
freedom. The Guyan condensation [27] is used to reduce the
complexity of the model for the control design. The linear
condensed model has 3 degrees of freedom, which are the
horizontal displacements of the floors. The natural frequencies
of the simulated model are 0.99, 3.06, and 5.83 Hz.
The dynamic model of the controlled structure subjected to

ground acceleration is given by the equation of motion

Mχ̈(t) + Cχ̇(t) + Kχ(t) = Ga(t) + Hu(t) (2)

where χ(t), χ̇(t), and χ̈(t) ∈ R3 are vectors of horizontal
displacements, velocities, and accelerations of the floors rela-
tive to the ground, M,C, and K ∈ R3×3 are mass, damping,
and stiffness matrices of the structure, respectively, G ∈ R3 is
the loading vector for the ground acceleration, and H ∈ R3×3

is the loading matrix for the actuator forces. M, C, K , G,
and H are given in Appendix A. Let the state vector of the
continuous-time plant be

x(t) =
[
χ(t)
χ̇ (t)

]

and the state-space matrices of the plant are as follows:
A =

[
0 I

−M−1K −M−1C

]

B1 =
[

0
M−1G

]
, B2 =

[
0

M−1H

]

Cz =




1

h1
0 0

− 1

h2

1

h2
0

0 − 1

h3

1

h3




, Dz = 0 (3)

Fig. 3. Three-story building model.

where h1, h2, and h3 are the story heights. Cy and Dy define
the measured responses. For full-state feedback (measure the
relative displacements and velocities)

Cy = I, Dy = 0. (4)

For absolute floor acceleration feedback

Cy = [−M−1K −M−1C
]
, Dy = [

M−1G
]
. (5)

D. Control Laws

Three different control laws are evaluated. The first control
law, LQRonoff, uses a linear quadratic regulator (LQR) with
full-state feedback (measures the floor horizontal displace-
ments and velocities). When a subset of the state feedback
from a floor is lost, it will be replaced by zeros in the
regulator.
The second control law, LQRhold, also uses a full-state

feedback LQR but replaces the lost measurements with the
previously received values. The initial state-feedback for
LQRhold is 0nx×1.
The third control law to be considered, LQGswitch (Appen-

dices C and E), employs the linear quadratic Gaussian (LQG)
algorithm that combines the same LQR design from the
full-state feedback cases with a switch estimator. LQGswitch
uses the floor horizontal, absolute acceleration for feedback.
The switch estimator has a propagation/correction form, where
the corrector gain varies between 2nc modes. For each mode,
a subset of the measurements vector is received by the
controller, and the corrector gain is the steady-state Kalman
gain solution computed on that subset of measurements. Note
that while this “ad hoc” control law is simple to come up with,
it is not an optimal solution. Switching between the corrector
gains potentially leads to stability issues, which are shown and
discussed in Section IV.
The design parameters of the LQR and the Kalman estima-

tor are given in Appendix B.
The goal of the control is to limit the impact of the

earthquake input on the interstory drift output of the building.
The performance can be evaluated by the power gain from
the input to the output. The metrics that we want to compute
can be approximated by simulating the linear model with a
noisy input and measuring the output variance. The analysis
method, as presented in Section III, allows the expectation at
the infinite time of this power gain to be evaluated without
Monte Carlo simulations; the H2-norm of the system is the
square root of this input–output power gain.
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III. MODELING AND H2-NORM ANALYSIS

This section introduces the modeling and H2-norm analy-
sis of the closed loop with signal loss. A continuous-time
model and a discrete-time controller are combined using the
sampled-data system theory [21], [22]. The closed loop is
identified as a jump system, where the switching depends on
the reception of measurement. Upon the sampled-data jump
model, H2-norm analyses can be carried out by solving the
associated Lyapunov equation.

A. Sampled-Data Systems

Given a continuous-time controlled structure and a control
system running with a slow sampling time, Ts, the closed loop
is identified as a sampled-data system. The technique [21] is
a precise way to build a model with sampling time Ts for this
class of systems (see Fig. 4). Instead of directly connecting a
continuous-time plant and a discrete-time controller, the plant
is first approximated by a fast-sampled discrete-time model
with a time step Tf. In the lifting technique, two discrete-time
subsystems with different sampling times are connected to
form a closed loop that captures the response of the fast plant.
A small Tf ensures the accuracy of the approximation. We used
Tf = 0.0025 s, which is more than 50 times faster than the
dynamics of the plant. Note that Tf must be a divisor of Ts

Ts = NTf withN ∈ Z+. (6)

With the approximate plant, the controller samples and sends
a new command every N steps [see Fig. 4(b)].
The fast-sampled plant model for the building is

Pf :



xf[kf + 1] = Afxf[kf] + Bf,1af[kf] + Bf,2uf[kf]
zf[kf] = Czxf[kf]
yf[kf] = Cyxf[kf] + Dyuf[kf]

(7)

where Bf,1 = ∫ Tf
0 eAτB1 dτ , Bf,2 = ∫ Tf

0 eAτB2 dτ , and
Af = eATf .
Stacking the input and output of the fast-sampled plant and

formulating the state-space model (see Appendix D) creates an
equivalent approximation but with time step Ts [see Fig. 4(c)].
The equivalent plant (lifted plant)

Ps :



xs[k + 1] = Asxs[k] + Bs,1as[k] + Bs,2us[k]
zs[k] = Cs,zxs[k] + Ds,z1as[k] + Ds,z2us[k]
ys[k] = Cyxs[k] + Dyus[k]

(8)

where xs[k] and ys[k] are sampled from xf[kf] and yf[kf],
respectively

xs[k] = xf[N(k − 1) + 1], ys[k] = yf[N(k − 1) + 1]. (9)

The earthquake acceleration input, af[kf], and the con-
trolled response output, zf[kf], of the fast-sampled system are
arranged into the stacked input, as[k], and stacked output,

Fig. 4. Formulation of the analysis model using the lifting technique
(solid lines: continuous-time signals; dashed lines: discrete-time signals with
sampling time Ts; and dotted lines: discrete-time signals with sampling time
Tf). (a) Closed loop with the continuous-time plant, P , and slow-sampled
controller, C. (b) With the fast-sampled plant, Pf. (c) With the lifted
plant, Ps.

zs[k], respectively

as[k] =



af[N(k − 1) + 1]
af[N(k − 1) + 2]

. . .
af[Nk]


 (10)

zs[k] =



zf[N(k − 1) + 1]
zf[N(k − 1) + 2]

. . .
zf[Nk]


. (11)

The control forces are held during each control time step

uf[kN + 1] = uf[kN + 2] = · · · = uf[kN + N] = us[k].
(12)

Given the slow-sampled equivalent model of the structure,
Ps, and the control system, C, both with sampling time Ts,
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Fig. 5. H2-norm for LQRonoff and LQRhold.

Fig. 6. Comparison between simulation result (error bars) and analysis result
(curves).

the closed-loop model, G, can be obtained by linear fractional
transformation (lft).

B. Jump System and H2-Norm

While the building model is linear time-invariant, the con-
trol system varies due to the loss of the measurements
(see Section II-B) and the switching controller upon the
detection of signal loss (see Section II-D). Considering the
plant Ps and the jump controller C that switches between nm
modes, {C1, C2, . . . , Cnm} (see Fig. 2), the closed-loop system
[see Fig. 4(c)] becomes a Markov jump linear system of nm
modes {G1, G2, . . . ,Gnm}

Gi = lft(Ps, Ci ) for i = 1, 2, . . . , nm. (13)

Let V = {v1, v2, . . . , vnm} be the unconditional probabil-
ity distribution of the Markov modes, P = {qi j} (i, j =
1, 2, . . . , nm) be the Markov transition matrix, and α[k] ∈
{1, 2, . . . , nm} denote the mode of the closed loop at any time
step k

v j = Pr{α[k] = j} (14)

qi j = Pr{α[k + 1] = j | α[k] = i}. (15)

For the systems studied in this brief, the signal loss on each
channel follows a Bernoulli process with probability p, and
the probability distribution of the Markov mode at any time
step is independent of the previous time step. Therefore, q1 j =
q2 j = · · · = qnm j = v j (for j = 1, 2, . . . , nm). The values of
v j ’s depend on p (see Appendix E).
The square of the H2-norm, γ 2, is the expectation of the

power of the impulse response over all possible sequences

Fig. 7. LQGswitch simulation result (error bars), analysis result (curves),
and stability limit of p (dashed lines).

of signal loss, as defined in [20, Definition 4.7]. An equiv-
alent interpretation of the H2-norm squared is the expected
infinite-time input–output power gain from an i.i.d white noise
input over all possible signal loss sequences.
Let [Acl,i , Bcl,i , Ccl,i , Dcl,i ] denote the state-space repre-

sentation of Gi . We compute the H2-norm from the observ-
ability Grammians [see (16) and (17)] as presented in [20,
eq. 4.40 and Prop. 4.8]. The observability Grammians are
found by solving the set of nm Lyapunov equations

Yi = AT
cl,i

nm∑
j=1

(
qi jY j

)
Acl,i + CT

cl,iCcl,i (i = 1, 2, . . . , nm) (16)

where Yi ’s are the expectations of the observability Grammians
of the i th mode of the closed loop. These are linear equations
of Yi ’s. A positive definite solution to all Yi ’s exists when
the system is mean-square stable [28]. The H2-norm, γ ,
is computed from

γ 2 = Tr
nm∑
i=1


vi


BT

cl,i

nm∑
j=1

(qi jY j)Bcl,i + DT
cl,i Dcl,i





. (17)

IV. RESULT

This section discusses the outcome of the H2-norm analy-
sis of the controlled three-story building. The analyses are
conducted to assess the performance of the three control laws:
LQRhold, LQRonoff, and LQGswitch. Many factors affect the
relationship between the performance and the probability of
signal loss, including: 1) how the signal loss is handled and
2) the sampling rate of the controller. The H2-norm analysis
reflects the performance as a function of all the abovemen-
tioned factors. In addition, the agreement between the analysis
result and the Monte Carlo simulation is persuasive that the
analysis method can be used as an alternate tool for evaluating
the effectiveness of the wireless structural control system.

A. Performance Evaluation Using the H2-Norm

The impact of different ways of handling signal loss on
the H2-norm is shown in Fig. 5. In the figure, the H2-norms
of LQRonoff and LQRhold at two different sampling times,
Ts = 0.02 s and Ts = 0.05 s, are plotted as a function of
the probability of signal loss. At small probabilities, p < 0.2,
the difference between the four curves is negligible. When
p > 0.2, the different effects of the two control laws are
clearly evident. Comparing LQRonoff and LQRhold, the for-
mer has the H2-norm monotonically degrade with the increase
of probability of signal loss, while the latter has a drastic
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degradation of H2-norm at a high loss. The performance of
LQRhold is better than LQRonoff up to high probabilities of
packet loss (p < 0.76 for Ts = 0.05 s and p < 0.92 for
Ts = 0.02 s) but can be even worse than the uncontrolled
system at higher loss rates. These results appear to be related
to prior work on networked systems. Specifically, it has been
observed, under slightly different technical formulations, that
passivity is retained when the control command is dropped
to zero after a packet drop [17], while passivity is lost if the
control command is held at its prior value [16]. Complete
loss of the measurements (p = 1) brings both LQRonoff and
LQRhold to the uncontrolled case, where there are no control
forces. For LQRonoff, when a part of the state feedback
is lost, the impact of the control lies between the fully
controlled and the uncontrolled cases. However, for LQRhold,
the consecutive losses interspersed with the occasional receipts
of the measurement result in a large amount of energy injected
into the system. This is more likely to have a significant impact
when the time between the successful receptions is long.
Therefore, the performance no longer degrades monotonically,
and the peak of the H2-norm takes place as p is close to 1.
The analysis results also illustrate the impact of sampling

time. In Fig. 5, H2-norms of LQRonoff with Ts = 0.02 s
and Ts = 0.05 s are almost equal. However, the H2-norm
of LQRhold is strongly dependent on Ts. LQRhold with
Ts = 0.02 s clearly outperforms the same control laws with
Ts = 0.05 s at p < 0.95.

B. Simulation Versus Analysis Result

Simulations are conducted to validate the analysis results.
The simulations are performed with the closed-loop system
excited by a random white noise input for 200 s. The simula-
tion length is selected based on a typical earthquake duration.
We compute the empirical H2-norm for each simulation. This
is defined as the ratio of the root mean square (rms) of the
norm of the interstory drift vector and the rms of the input
white noise. An empirical estimate of the H2-norm is obtained
by averaging over 100 simulations. The empirical estimate
and the analysis result are compared in Fig. 6. Two control
laws, LQRonoff and LQRhold with Ts = 0.02 s, are shown.
For both cases with p < 0.8, the standard deviation of the
empirical H2-norm is small (less than 6.3% of the mean), and
the analysis result is in strong agreement with the mean value.
At p > 0.8, the LQRonoff maintains this good agreement. For
LQRhold, when p is near the extremal point, the empirical
H2-norm has a very high variance (40% of the mean value
at p = 0.966). Note that the analysis efficiently provides
the expected value of the H2-norm considering all possible
scenarios over an infinite horizon but does not capture the
variation of the performance. The simulations, on the other
hand, capture the variance of the empirical H2-norm. The
high standard deviation of the empirical H2-norm given by
the simulations shows that the performance of LQRhold at
0.95 < p < 1 is strongly influenced by the loss sequence.

C. Stability of the Closed Loop

A finite H2-norm indicates the system is (mean-square)
input–output stable, while an infinite H2-norm indicates

system instability. A time-varying system jumping between
stable modes may be unstable. Fig. 7 shows that, for
LQGswitch and Ts = 0.05 s, between p = 0.0058 and
p = 0.9942, the system is unstable. The results for Ts = 0.02 s
(not shown in the figure) mirror those of Ts = 0.05 s. For
Ts = 0.02 s, the destabilizing range of p has the lower limit
at 0.0058 and the upper limit is even closer to 1. Note that
all modes are stable when considered as standalone systems.
The fact that the jump system is stable for both uncontrolled
(p = 1) and no-loss controlled (p = 0) cases but becomes
unstable when switching between stable modes (0 < p < 1)
suggests that implementation of a control law requires careful
evaluation of the destabilizing effect of signal loss.
In addition, as can be seen in Fig. 7, for a stable LQGswitch,

Ts = 0.05 s and p /∈ (0.0058, 0.9960), the simulation mean
aligns with the analysis result. For p in the middle of the
destabilizing range (0.06 < p < 0.98), the simulation and
analysis also agree on the instability (very large empirical
H2-norm from the simulations). However, when p is close
to the destabilizing limit, the simulations may not capture the
unstable response. For example, with Ts = 0.02 s and for
p = 0.02, the analysis detects instability, but the simulations
return a finite average value of the empiricalH2-norm less than
the stable uncontrolled H2-norm. There are extreme sequences
of loss and reception of signal that increases the variance of the
output response to very high values. The combination of the
probability of these extreme sequences and their amplification
effect on the output response dictates the mean-square stability.
There are cases in which the probabilities of these extreme
sequences are too small that they are unlikely to occur in the
finite-time simulations, but the amplification is large enough
so that, if the simulations could be run forever, the expected
input-to-output power gain would eventually go to infinity.
While the simulations are unable to identify such cases,
the analysis approach will be able to effectively capture the
instability.
The source of instability of LQGswitch is the use of the

steady-state Kalman gains that are not optimized for the esti-
mation with intermittent observation. The necessary condition
for the stability of the estimator is the convergence of the
expectation of the predicted estimation error covariance [14].
By propagating the expected error covariance, which can be
computed ahead of time for this i.i.d. switching estimator,
we obtain the same destabilizing thresholds for p.

D. Application of the Analysis Method

While the performance of the controlled system depends on
the probability of signal loss and the sampling time, there is no
specific rule governing the performance. In fact, each control
law has a different pattern for the relationship between the
probability of signal loss, sampling time, and the H2-norm.
The analysis method, therefore, is useful in selecting the best
among a finite set of control laws, given prior knowledge about
the signal loss. For example, Fig. 5 shows that LQRhold results
in better H2-norm than LQRonoff for p < 0.6.
In addition, the analysis shows the sensitivity of the per-

formance to signal loss and sampling time. For example,
LQRhold can maintain the performance of less than 5%
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increase in H2-norm up to p = 0.58 for Ts = 0.02 s, while, for
Ts = 0.05 s, only up to p = 0.15 (see Fig. 5). In practice, there
is often a bandwidth constraint that prevents simultaneously
improving the sampling time and decreasing the probability
of signal loss. From the analysis results, designers can choose
whether to prioritize faster sampling time or lower signal loss
in the implementation of the control algorithm.

V. CONCLUSION

This study considered the use of H2-norm analysis in
performance and stability evaluation of networked controlled
systems with signal loss. A significant concern while designing
a wireless control system is the combinatory effects of signal
loss and sampling time on system performance. The analysis
method presented in this brief addressed that concern. At the
core of the analysis method is the use of the Markov jump
linear systems’ theory to account for signal loss and the
sampled-data systems’ theory to account for the sampling time.
The analysis was specifically applied to the problem of

wireless control of building structures. Observation from the
case study on a three-story building model includes the effects
of different ways of handling the measurement loss on the per-
formance, the influence of sampling time, and the instability
caused by signal loss.
The proposed analysis method can quantify the relationship

between signal loss and performance. The use of a specific
control law will lead to a unique signal-loss-to-performance
relation; therefore, the method can be an efficient tool for
selecting the best among a set of control laws. In addition,
the analysis can be used as a stability assessment tool, which
clearly shows the limiting probability of signal loss at which
the system became unstable. In some cases, the corresponding
simulations did not capture the instability, specifically when
the probability of signal loss was close to the instability
thresholds. With a finite simulation time and transient system
variation due to high signal loss rate, the empirical H2-norm
from the simulations might not approach the true value of
the H2-norm. On the other hand, the simulation approach is
still useful, as the variance of the empirical H2-norm can tell
whether the performance of the system at a specific value of
the probability of signal loss is reliable or not.
Future work will explore the application of the proposed

analysis method in a reliability-based design framework for
structural control, in which, traditionally, simulation-based
methods are used for performance assessment. Incorporating
the H2-norm analysis potentially reduces the required compu-
tational resources and, more importantly, captures the expected
performance independent of a specific signal loss sequence.

APPENDIX A
PARAMETERS OF THE THREE-STORY BUILDING MODEL

M = diag([478350 478350 517790]) (kg) (18)

C = 1.0e + 5 ×

 7.7626 −3.7304 0.6514

−3.7304 5.8284 −2.0266
0.6514 −2.0266 2.4458


 (Ns/m)

(19)

K = 1.0e + 8 ×

 4.3651 −2.3730 0.4144

−2.3730 3.1347 −1.2892
0.4144 −1.2892 0.9358


 (N/m)

(20)

G = [478350 478350 517790]T (kg) (21)

H =

1 −1 0
0 1 −1
0 0 1


 (22)

APPENDIX B
PARAMETERS FOR THE STEADY-STATE LQR AND KALMAN

GAIN SYNTHESES

The control forces and the interstory drift outputs are
weighted in the optimized cost of the discrete-time LQR
synthesis. The weighting matrices are given in the following,
in which Q weighs the interstory drifts, and R weighs the
control forces

Q = I3×3, R = 4.0e − 17 × I3×3. (23)

The assumed process noise covariance, W , and the mea-
surement noise covariance, V , for the discrete-time Kalman
estimator design are given as follows:

W = 1, V = 7.2e − 6 × I3×3. (24)

APPENDIX C
LQGSWITCH SCENARIO

The estimator has the correction-propagation form as fol-
lows.
Correction:

x̂[k|k] = x̂[k|k − 1]
−Eα[k](Cd,α[k] x̂[k|k − 1]+Dd,α[k]u[k]−y∗

r [k]).
(25)

Propagation:

x̂[k + 1|k] = Adx̂[k|k] + Bdu[k] (26)

where x̂[k|k] and x̂[k|k−1] are the estimates of x(t) during the
kth time step. x̂[k|k] uses the measurements up to the kth time
step, while x̂[k|k − 1] uses the measurements only up to the
(k−1)th time step. α[k] ∈ {1, 2, . . . , nm} denotes the Markov
mode of the controller at time k. (Ad,Bd,Cd,α[k],Dd,α[k]) is the
discrete-time state-space model of the plant used for Kalman
estimator design. Ad = eATs , Bd = ∫ Ts

0 eAτB2 dτ , Cd,α[k] ,
and Dd,α[k] are formed from the rows of Cy and Dy that
connect to the remaining measurements. When a subset of the
measurements is lost, the estimator will perform the correction
step using only the remaining measurements, y∗

r [k], and the
corrector gains, Eα[k]. Eα[k] is obtained from the steady-state
Kalman estimator solution of (Ad,Bd,Cd,α[k],Dd,α[k]).
Initial Conditions: u[0] = 0, and x̂[0|0] = 0.
The regulator uses x̂[k + 1|k] to compute the control forces

to be applied during the (k + 1)th time step

u[k + 1] = −Fx̂[k + 1|k] (27)

where F is the steady-state LQR gain.
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APPENDIX D
FORMULATION OF THE LIFTED PLANT

As = AN
f (28)

Bs,1 = [
AN−1
f Bf,1 AN−2

f Bf,1 · · · AfBf,1 Bf,1
]

(29)

Bs,2 = AN−1
f Bf,2 + AN−2

f Bf,2 + · · · + AfBf,2 + Bf,2 (30)

Cs,z =




Cz

Cz Af

· · ·
Cz A

N−1
f


 (31)

Ds,z1 =




0 0 · · · · · · 0
CzBf,1 0 · · · · · · 0

CzAfBf,1 CzBf,1
. . . · · · 0

...
...

...
. . .

...

CzA
N−2
f Bf,1 CzA

N−3
f Bf,1 · · · · · · 0




(32)

Ds,z2 =




0
CzBf,2

CzAfBf,2 + CzBf,2
...

CzA
N−2
f Bf,1 + · · · + CzAfBf,2 + CzBf,2




. (33)

APPENDIX E
PROBABILITY DISTRIBUTION OF THE JUMPING MODES

OF LQRONOFF, LQRHOLD, AND LQGSWITCH

α[k] (or i ) indexes the Markov mode, θ [k] describes the
loss/receipt for each floor, for example, θ(k) = [1, 0, 0]T cor-
responds to receiving only the first floor, vi is the probability
of the i th Markov mode, and p is the probability of signal
loss of an individual channel.
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