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ABSTRACT

It is commonly observed in the food industry, battery production, automotive paint shop, and
semiconductor manufacturing that an intermediate product’s residence time in the buffer within a
production line is controlled by a time window to guarantee product quality. There is typically a
minimum time limit reflected by a part’s travel time or process requirement. Meanwhile, these
intermediate parts are prevented from staying in the buffer for too long by an upper time limit,
exceeding which a part will be scrapped or need additional treatment. To increase production
throughput and reduce scrap, one needs to control machines’ working mode according to real-
time system information in the stochastic production environment, which is a difficult problem to
solve, due to the system’s complexity. In this article, we propose a novel decomposition-based
control approach by decomposing a production system into small-scale subsystems based on
domain knowledge and their structural relationship. An iterative aggregation procedure is then
used to generate a production control policy with convergence guarantee. Numerical studies sug-
gest that the decomposition-based control approach outperforms general-purpose reinforcement
learning method by delivering significant system performance improvement and substantial reduc-
tion on computation overhead.
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1. Introduction

Rapid advances in sensor technology, automation, and
artificial intelligence have the potential to contribute to
improving manufacturing efficiency and quality (Yang
et al., 2019). This could allow the creation of Smart
Manufacturing — enabling production systems to be self-
learning and self-optimizing “on the fly” using real-time
information to quickly respond to production uncertainties.

One common real-time production control problem is to
deal with production systems with residence time constraints
for intermediate products. For instance, a semiconductor
packaging and testing line consists of multiple operations.
During the production run, there are certain operations
(e.g., Die Attach), after which a product needs to be held for
a minimum time in the buffer for outgassing purposes
before being sent to the next operation. In addition, these
time windows are typically upper bounded around opera-
tions, where exposing parts to the atmosphere for too long
will lead to either surface oxidation or moisture absorption,
thus reducing production yield (Han and Kim, 2017).
Therefore, proper dispatching decisions need to be made
considering parts’ actual waiting time in buffers.

Similar issues are observed in many industries, including
food production lines and battery manufacturing, where per-
ishability of intermediate products is a major concern. For
example, yogurt goes through several processes from raw
milk to intermediate products and finally to final products,

and each stage is performed under strict time limits

(Amorim et al., 2013). Quality deterioration could occur

during the stoppage due to machine failures (Liberopoulos

and Tsarouhas, 2005). Similarly in battery manufacturing,

chemicals are filled into cells to form electrodes, and those

processes need to be done within a certain time limit to

ensure cell quality. A cell will be typically scrapped, if such

a time limit is exceeded, which potentially increases produc-

tion cost and wastes (Ju et al., 2017).
To optimize the system performance while providing a

guaranteed product quality, optimal production control and

dispatch strategy are pursued to coordinate machines and

product flow considering machines’ random failures. Due to

the complexity of production systems with residence time

constraints, current studies primarily focus on small-scale

problems with only two machines and one buffer (Ju et al.,

2017; Wang et al., 2019). The basic idea is to develop a

Markov Decision Process (MDP) model given machine

uncertainty and derive the optimal control policy for

sequential decision making in each cycle based on the real-

time system state. However, it is inapplicable to extend such

an approach to multi-stage transfer lines, where the system

state space increases exponentially as the system scales up.

Reinforcement learning can potentially solve the aforemen-

tioned production control problem for large-scale systems

(Bertsekas, 2019). Through discrete event simulations, the

mapping of states and actions to rewards can be learned by
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approximation architectures, such as regression and artificial

neural networks (Bertsekas, 2018). However, a heavy com-

putation overhead impedes reinforcement learning from

being practically implemented for real-time applications. In

addition, the learning process typically ignores the engineer-

ing domain knowledge, which makes the control solution

difficult to explain and lack managerial insights.
To overcome these drawbacks, we propose a novel

decomposition-based control approach by decomposing a

multi-stage production system into small-scale subsystems

using domain knowledge and their structural relationship.

The subsystems are simple enough to derive a control solu-

tion using local information. An iterative aggregation pro-

cedure is then used to improve the derived control policy

with convergence guarantee. Compared with a general-pur-

pose reinforcement learning-based method, the decompos-

ition-based control can deliver significant improvements on

system performance and substantial reduction on computa-

tion overhead, which makes it applicable for real-time pro-

duction decision making.
The rest of this article is organized as follows. Section 2

reviews the related literature. The mathematical formulation

is introduced in Section 3. In Section 4, we present the

framework of decomposition-based control, which includes

the modeling of subsystems and the aggregation procedure.

A simulation study is conducted in Section 5 to justify the

performance of the decomposition-based control. Finally,

the conclusions and future directions are provided in

Section 6.

2. Literature review

Perishability is usually a main reason why residence time

constraints need to be considered (Raafat, 1991). Different

classifications are proposed to deal with perishability

(Nahmias, 1982; Raafat, 1991). According to Amorim et al.

(2013), perishability has three dimensions: physical product

deterioration, authority limits, and customer value. In man-

ufacturing environments, the dimension of authority limits

is usually applied. A fixed threshold, obtained from experi-

ments or domain knowledge, is set to represent residence

time constraints. Perishability only refers to the upper

bound of the residence time, and in practice, the lower

bound of residence time is also often required in a produc-

tion system. In a production line, a machine’s random fail-

ure and repair are often the primary source of uncertainty,

and can significantly impact system performance. Transfer

line refers to a category of production systems, where system

performance is studied under the uncertainty of machine

reliability (Gershwin, 1994; Li and Meerkov, 2009;

Papadopoulos et al., 2019). Transfer lines with residence

time constraints are studied. One direction of the study is to

estimate the probability distribution of the residence time.

Shi and Gershwin (2012) study the distribution of the resi-

dence time of parts in the buffer for a two-machine transfer

line, and the risk of scrap is evaluated based on the derived

distribution. Such a residence time, especially counting from

part entry to the system to the departure from the system, is

often referred to as lead time or sojourn time in the litera-

ture. For instance, Shi and Gershwin (2015) and Angius

et al. (2016) consider lead time in a three-machine transfer

line and a production system with closed loop, respectively.

Shi and Gershwin (2016) extend the study on residence time

distribution to transfer lines with multiple machines and

obtain residence time distribution for each buffer. The stud-

ies in this direction help design buffer capacity to reduce a

rate of defective parts. However, a transfer line in those

studies can only identify a defective part at the end of the

transfer line. It wastes resources to process a defective part,

before its defect is identified. In Naebulharam and Zhang

(2014), the defect is able to be detected soon after the defect

is created, and quality buy rate is introduced to evaluate sys-

tem performance. Lee et al. (2017) and Lee et al. (2018)

consider Bernoulli lines where each machine inspects the

quality of parts, and parts with a residence time larger than

a limit have a certain probability of being scrapped. Another

direction of the study is to take residence time into consid-

eration in the modeling (Wang and Ju, 2020). System

dynamics can be more accurately captured in this way, and

it enables production control based on the residence time.

However, this modeling results in a large state space to be

addressed in system analysis (Ju et al., 2015; Kang

et al., 2016).
The above-mentioned studies aim at deriving analytical

performance measures of a transfer line given a system par-

ameter setting. Performance measures include production

rate and scrap rate. One way to improve the system is to

stop several machines from producing each cycle according

to real-time system states to reduce scrap rate without sacri-

ficing too much of the production rate. Thus, a control

problem arises and becomes worth studying. Real-time con-

trol of a two-machine transfer line is studied (Ju et al., 2017;

Wang et al., 2019). After problem approximation, the opti-

mal control policy is derived. Such a method works well for

a small-scale problem, but is not directly extendable.
Production control is studied to achieve a desired system

performance, and it has been investigated for decades. Due

to a lack of access to real-time system states, early practice

of production control mainly focuses on simple static system

settings (Jaegler et al., 2018) and event-driven/rule-based

approaches (Th€urer et al., 2019), and those strategies are still

widely used (Cao and Xie, 2015; Ju et al., 2016). Supported

by the Internet of Things technologies, real-time production

control based on real-time system state becomes possible,

and it provides potentials to further improve a production

system (Jia et al., 2016; Lu et al., 2016). Reinforcement

learning is a way to perform real-time production control

and enhance production performance (Stricker et al., 2018;

Waschneck et al., 2018). Through training, reinforcement

learning enables a complex production system to find a real-

time action that can improve its performance. However,

such a way to control production becomes difficult in many

cases for two reasons. First, training a reinforcement learn-

ing model is computationally expensive. Second, learning

methods, such as artificial neural networks, are black box

models, and it is difficult to combine domain knowledge
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into them. Another direction to control a complex produc-

tion system is through a decentralized way (Lu and Ju, 2017;
Wang et al., 2017; Wang et al., 2018). The introduction of
the multi-agent system and holonic manufacturing system

attempts to address the production control problem in this
way (Leit~ao, 2009; Barbosa et al., 2015; Giret et al., 2016).
The decentralized control aims at achieving flexible control,

significantly reducing computational efforts, and improving
system performance globally. However, it is difficult to have
all three objectives well achieved, and there is a lack of

mathematical models supporting decentralized production
control, which motivates the work outlined in this article.

3. Problem formulation

3.1. System description and assumptions

For simplicity purposes, the term “multi-stage line” is used

to represent the multi-stage Bernoulli transfer line with resi-
dence time constraints for the rest of this article. The multi-
stage line under study is shown in Figure 1. Parts visit each

machine and buffer from the left side to the right side, until
they finish all the processes or get scrapped from the system.
The following assumptions define the machines, the buffers,

and their interactions:

(i) The multi-stage line consists of D machines, denoted
by m1,m2, :::,mD, and ðD� 1Þ buffers, denoted by
B1,B2, :::,BD�1, where D> 2.

(ii) All machines are synchronized with a constant proc-

essing time (cycle time), which is the time to process
a single part on a machine.

(iii) Machines are subject to failures, and each machine
is assumed to be an independent Bernoulli machine.
The state of a machine is determined at the begin-

ning of a cycle. Before that, the state of machine mi

in cycle t, for i ¼ 1, :::,D and t ¼ 1, 2, :::, is a ran-
dom variable, denoted by SiðtÞ, following the

Bernoulli distribution with parameter pi. Specifically,
machine mi is capable of producing a part in cycle t
with probability pi and fails to do so with probability

ð1� piÞ: It can be represented by PðSiðtÞ ¼ 1Þ ¼ pi
and PðSiðtÞ ¼ 0Þ ¼ 1� pi: At the beginning of cycle

t, the machine state is realized, and the realized
machine state is denoted by siðtÞ 2 f0, 1g:

(iv) Buffer Bi has a finite capacity Ni ð1 � Ni < 1Þ, for
i ¼ 1, 2, :::,D� 1, and its buffer occupancy is deter-
mined at the end of a cycle and denoted by ni. First-

in-first-out policy is assumed regarding the buffer
outflow process.

(v) Each part in a buffer has its residence time, and it is

counted as the number of cycles, for which the part

has been staying in the buffer. Residence time of a

part is determined at the end of a cycle and starts at

zero as the part enters a buffer at the end of a cycle.

Residence time of a part in a buffer increases by one

each cycle, if the part remains in the same buffer.

Let si, j denote the residence time of the jth part in

buffer Bi, if such a part exists.
(vi) The maximum allowable residence time for a part in

buffer Bi is characterized by Ti,max, for i ¼
1, 2, :::,D� 1: A part in buffer Bi will be scrapped

when its residence time reaches Ti,max: Let Ti,max �
Ni, otherwise Ni has no effect on the multi-

stage line.
(vii) The minimum required residence time for a part in

buffer Bi is denoted by Ti,min, for i ¼ 1, 2, :::,D� 1:
A part in buffer Bi is allowed to be processed by

machine miþ1 only when its residence time reaches

or exceeds Ti,min:
(viii) Machine mi, for i ¼ 1, 2, :::,D� 1, is blocked during

a cycle, if (a) machine mi is up, (b) buffer Bi is full,

(c) machine miþ1 does not produce a part in this

cycle due to machine failure or blockage, and (d)

there will be no part scrapped from buffer Bi.

Machine mD is never blocked. In addition, the

block-before-service policy is assumed.
(ix) Machine mi, for i ¼ 2, :::,D, is starved during a

cycle, if machine mi is up, and no part in buffer

Bi�1 has residence time greater than or equal to

Ti�1,min: Machine m1 is never starved.
(x) At the end of each cycle, a machine can be stopped

to prevent it from producing in the next cycle. One

can also have a machine unchanged, and thus the

machine will work as a Bernoulli machine in the

next cycle. It is always beneficial not to stop the last

machine, so we only consider actions on machine

mi, for i ¼ 1, 2, :::,D� 1: Let aiðtÞ 2 f1, 0g, for i ¼
1, 2, :::,D� 1 and t ¼ 0, 1, :::, denote the action on

machine mi at the end of cycle t. The action aiðtÞ ¼
0 makes machine mi not work in cycle ðt þ 1Þ: The
action aiðtÞ ¼ 1 represents that machine mi is

unchanged. The action on the whole system is repre-

sented by aðtÞ ¼ a1ðtÞ a2ðtÞ � � � aD�1ðtÞ½ �T : The
action space is denoted by A ¼ f0, 1gD�1:

3.2. Performance measures

To evaluate the multi-stage line, we introduce the perform-

ance measures of interest as follows.

� Production rate of machine mi, PRiðtÞ, for t ¼ 1, 2, . . .

and i ¼ 1, . . . ,D : the expected number of parts pro-

duced by machine mi in cycle t;
� Scrap rate of buffer Bi, SRiðtÞ, for t ¼ 1, 2, . . . and i ¼

1, . . . ,D� 1 : the expected number of scrapped parts

from buffer Bi in cycle t;

Figure 1. Illustration of the multi-stage line with residence time constraints.
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� Scrap rate of the multi-stage line, SR(t) for t ¼ 1, 2, . . . :
the expected number of scrapped parts from the multi-
stage line in cycle t.

Remark 1. Both Ju et al. (2017) and Zhang et al. (2013)
study Bernoulli lines and are consistent with the early work
of Li and Meerkov (2009) in the problem formulation of
Bernoulli lines. Ju et al. (2017) and Zhang et al. (2013) have
a small difference in the definition of performance measures
due to the concern of transient analysis. In Ju et al. (2017),
the authors above performance measures in one cycle in the
current cycle; these are derived from the system state of the
previous cycle. In Zhang et al. (2013), the authors derive per-
formance measures in one cycle from the system state in the
current cycle; these can be observed at the end of the next
cycle. One cycle lag of performance measures is the only dif-
ference between the two studies. In the current article, we fol-
low the definition from Ju et al. (2017).

Remark 2. Scrap rate of the multi-stage line is the summa-

tion of scrap rates of all buffers. Thus, we have SRðtÞ ¼PD�1
i¼1 SRiðtÞ for all t.

For the system under consideration, it is desired to maxi-
mize the production rate PRDðtÞ and minimize scrap rate
SR(t) simultaneously. The objective of the study is therefore
to maximize ðPRDðtÞ � xSRðtÞÞ through the actions defined
in assumption (x), where x is a positive constant to balance
the trade-off between production rate PRDðtÞ and scrap
rate SR(t).

3.3. System dynamics and optimization model

Let Hi, for i ¼ 1, 2, :::,D� 1, be a collection of all subsets
of set f0, 1, :::,Ti,max � 1g that have cardinality smaller than
or equal to Ni. Specifically,

Hi ¼ hjh � f0, 1, :::,Ti,max � 1g and jhj � Nif g, (1)

for i ¼ 1, 2, :::,D� 1, which is the state space for buffer Bi.
HiðtÞ 2 Hi, for t ¼ 0, 1, :::, is defined to be the state of buffer
Bi at the end of cycle t, and HiðtÞ represents a set of residence
times of parts in buffer Bi. The occupancy of buffer Bi at the
end of cycle t can be represented by ni ¼ jHiðtÞj: We follow
the convention that machine state is determined at the begin-
ning of a cycle, buffer state is determined at the end of a cycle,
and the system state is determined at the end of a cycle. Thus,
system state is represented by the states of all buffers. The state
of a multi-stage line at the end of cycle t can be defined by
HðtÞ ¼ ðH1ðtÞ,H2ðtÞ, :::,HD�1ðtÞÞ, which belongs to the state

space of the multi-stage line, denoted by H ¼ 	D�1
i¼1 Hi: In

addition, we define two other collections as follows:

Hi,min ¼ Hi 2 HijsupHi � Ti,min

� �
, (2)

Hi,max ¼ Hi 2 HijsupHi ¼ Ti,max � 1
� �

, (3)

for i ¼ 1, 2, :::,D� 1: If buffer Bi is not empty, supHi is
equal to the residence time of the first part in the buffer and
we have si, 1 ¼ supHi: If buffer Bi is empty, then the set Hi

is empty and we have supHi ¼ �1: Hi,min is a collection of

states of buffer Bi that the first part in the buffer has resi-
dence time greater than or equal to Ti,min, whereas Hi,max is
a collection of states of buffer Bi that the first part in the
buffer has residence time equal to ðTi,max � 1Þ:

A discounted infinite horizon dynamic optimization
problem is considered, and the objective is to maximize the
discounted cumulative production rate while minimizing the
scrap rate in the long term. Given the known initial state
H(0), the objective function is

max E
X1

t¼1

kt�1 fPRDðtÞ � xfSRðtÞ
� �( )

, (4)

where fPRiðtÞ, for i ¼ 1, 2, :::,D,fSRiðtÞ, for i ¼ 1, 2, :::,D�

1, and fSRðtÞ are random variables, and k 2 ½0, 1Þ is the

discount factor. We have PRiðtÞ ¼ E fPRiðtÞ
h i

, SRiðtÞ ¼

E fSRiðtÞ
h i

and SRðtÞ ¼ E fSRðtÞ
h i

: We start with machine mD

to formulate the system dynamics. The production and
scrap of the last machine at time ðt þ 1Þ, for t ¼ 0, 1, :::, are
represented as follows:

vHD�1,min
ðHD�1ðtÞÞSDðt þ 1Þ ¼ fPRDðt þ 1Þ, (5)

vHD�1,max
ðHD�1ðtÞÞð1� SDðt þ 1ÞÞ ¼ fSRD�1ðt þ 1Þ, (6)

where a characteristic function vXðxÞ is used. Specifically,

vXðxÞ ¼
1 if x 2 X,
0 otherwise:

�
(7)

Equation (5) means that machine mD will finish
producing a part at the end of cycle ðt þ 1Þ, if there is at
least a part in buffer BD�1 with residence time greater than
or equal to TD�1,min at the end of cycle t and machine mD is
up during cycle ðt þ 1Þ: Equation (6) represents that a
part will be scrapped from buffer BD�1 if there exists a part
in buffer BD�1 with residence time equal to ðTD�1,max � 1Þ
at the end of cycle t and the machine is down during
cycle ðt þ 1Þ: Then, the state of buffer BD�1 is updated as
follows:

H0
D�1ðtÞ ¼

HD�1ðtÞ if fPRDðt þ 1Þ þ fSRD�1ðt þ 1Þ ¼ 0,
HD�1ðtÞ n supHD�1ðtÞ otherwise,

(

(8)

H00
D�1ðtÞ ¼ F H0

D�1ðtÞ
� �

, (9)

for t ¼ 0, 1, :::: Equation (8) suggests that the part with the
largest residence time in buffer BD�1 is removed if a part in
this buffer is either produced or scrapped. In Equation (9),
we introduce an operator FðÞ on the set. For two sets X and
X0 such that X0 ¼ FðXÞ, xþ 1 2 X0 is satisfied for any elem-
ent x 2 X, and x� 1 2 X is satisfied for any element x 2
X0: Equation (9) means that the residence time of each part
increases by one.

In a similar way, the production rate and scrap rate of
machinemiþ1, for i ¼ 1, 2, :::,D� 2, are expressed as follows:

vHi,min
ðHiðtÞÞvR>0

ðNiþ1 � jH0
iþ1ðtÞjÞSiþ1ðt þ 1Þaiþ1ðtÞ

¼ fPRiþ1ðt þ 1Þ,
(10)
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vHi,max
HiðtÞð Þ 1� vR>0

Niþ1 � jH0
iþ1ðtÞj

� �
Siþ1 t þ 1ð Þaiþ1ðtÞ

� �
¼ fSRi t þ 1ð Þ,

(11)

for t ¼ 0, 1, :::: If machine miþ1 finishes producing a part at the
end of cycle ðt þ 1Þ, suggested by Equation (10), four conditions
should be met. First, there is at least one part in buffer Bi with
residence time greater than or equal to Ti,min at the end of cycle t.
Second, there is no blockage in buffer Biþ1: Third, machinemiþ1

is up during cycle ðt þ 1Þ: Finally, machine miþ1 is not turned
down. If there is one part in buffer Bi with residence time equal
to ðTi,max � 1Þ and at least one of the last three conditions above
is not satisfied, then a part is scrapped from buffer Bi, suggested
by Equation (11). Then, we update the states of those buffers,
shown in Equation (12) and Equation (13) below:

H0
iðtÞ ¼

HiðtÞ if fPRiþ1ðt þ 1Þ þ fSRiðt þ 1Þ ¼ 0,
HiðtÞ n supHiðtÞ otherwise,

(

(12)

H00
iðtÞ ¼ F H0

iðtÞ
� �

, (13)

for i ¼ 1, 2, :::,D� 2 and t ¼ 0, 1, :::: Equation (12) and
Equation (13) are similar to Equation (8) and Equation (9),
respectively. If a machine produces a part, the number of
parts in its downstream buffer will increase by one. After
considering both inflow and outflow of a buffer, we can
determine the state of a buffer in the next cycle as follows:

Hiþ1ðt þ 1Þ ¼
H00

iþ1ðtÞ if fPRiþ1ðt þ 1Þ ¼ 0,
H00

iþ1ðtÞ [ f0g otherwise,

(

(14)

for i ¼ 1, 2, :::,D� 2 and t ¼ 0, 1, :::: Equation (14) suggests
that a new part with residence time equal to zero is added to buf-
fer Biþ1 at the end of cycle ðt þ 1Þ if machine miþ1 successfully
produces a part at the end of cycle ðt þ 1Þ: In addition, we have:

vR>0
N1 � jH0

1ðtÞj
� �

S1 t þ 1ð Þa1ðtÞ ¼ fPR1 t þ 1ð Þ, (15)

H00
1ðtÞ ¼ F H0

1ðtÞ
� �

, (16)

H1 t þ 1ð Þ ¼
H00

1ðtÞ if fPR1 t þ 1ð Þ ¼ 0
H00

1ðtÞ [ f0g otherwise,

(
(17)

for t ¼ 0, 1, :::: Equation (15), Equation (16) and Equation
(17) are for the first machine and first buffer, and they are
similar to Equation (10), Equation (9) and Equation (14),
respectively. Finally, by Remark 2, we have:

fSRðt þ 1Þ ¼
XD�1

i¼1

fSRiðt þ 1Þ, (18)

for t ¼ 0, 1, ::::

4. Decomposition-based control framework

4.1. Complexity of multi-stage line

The production control problem introduced in Section 3
cannot be analyzed directly, due to the large state space. The
total number of system states of a multi-stage line, denoted
by M, is provided as follows:

M ¼
YD�1

i¼1

XNi

j¼0

Ti,max

j

	 

: (19)

Consider a single buffer first. If we fix the buffer occupancy

to be j, the number of combinations for a buffer is equal to

the number of ways to choose j different residence times

from Ti,max options, which is represented by

Ti,max

j

	 

:

Then, the total number of system states can be calculated by

considering all buffers and all possible buffer occupancies.

For example, for a multi-stage line that has seven machines

and six buffers with buffer capacity Ni ¼ 6 and maximum

allowable residence time Ti,max ¼ 8, for i ¼ 1, 2, :::, 6, the

number of system states is as large as 2:3
 1014 according

to Equation (19). To deal with this level of complexity, one

common approach is to use reinforcement learning to per-

form production control by approximately mapping system

states and actions to rewards. However, these methods result

in a long training time and suffer from interpretability.

In addition, the approximation architecture can quickly

deteriorate as the problem scale continues to increase.

To tackle these issues, we propose a novel approach, decom-

position-based control. We hypothesize that, by leveraging

the system decomposition, we can effectively optimize pro-

duction performance in real-time.

4.2. Overview of the decomposition-based control approach

Instead of analyzing and controlling a multi-stage line as a

whole, we propose the decomposition-based control

approach. The concept of decomposition-based control is

shown in Figure 2. A multi-stage line is decomposed into

subsystems, and a structural relationship between subsys-

tems is defined. Under a properly defined structural rela-

tionship, each subsystem is assumed to behave like its

corresponding part in the multi-stage line. Each subsystem

is modeled independently as an MDP model. Since the state

space of a subsystem is small enough, the control policy for

each subsystem can be derived through value iteration or

policy iteration. Each subsystem takes action by observing

its local environment. The control policy of a multi-stage

line is a combination of all control policies derived from all

subsystems. However, as a control policy is implemented,

Figure 2. Concept of decomposition-based control.
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the original structural relationship between subsystems

changes. Due to this change, the behavior of a subsystem

does not truly represents its corresponding part in the

multi-stage line. It requires subsystems to update their rela-

tionship according to the current control policy, which is

part of the aggregation procedure. A new iteration starts,

since the current control policy may not be optimal as the

relationship between subsystems is updated. The MDP

model for each subsystem with updated relationship is

developed, and new control policy is derived. After several

iterations, this process converges, and each subsystem has a

similar behavior as its corresponding part in the multi-stage

line. The control policy for each subsystem can achieve a

global improvement.
In the following subsections, the system decomposition

and modeling of subsystems will be introduced in details,

and a novel aggregation-based procedure will be provided to

generate the control policy.

4.3. System decomposition

A subsystem, isolated from a multi-stage line, serves as a

building block to support the decomposition-based control,

and it can be a two-machine-one-buffer subsystem or a

three-machine-two-buffer subsystem, shown in Figure 3.

Figure 3(a) shows how a multi-stage line with D machines is

decomposed into ðD� 1Þ two-machine-one-buffer subsys-

tems. Each subsystem consists of two machines, msub
1 and

msub
2 , and a buffer Bsub

1 : The ith subsystem of a multi-stage

line is denoted by SSi, for i ¼ 1, 2 � � � ,D� 1: The control

model for a two-machine-one-buffer subsystem is to deter-

mine when to turn machine msub
1 down based on the state

of the subsystem. Figure 3(b) shows how a multi-stage line

with D machines is decomposed into ðD� 1Þ=2 three-

machine-two-buffer subsystems. Each three-machine-two-

buffer subsystem consists of three machines, denoted by

msub
1 ,msub

2 and msub
3 , and two buffers, denoted by Bsub

1 and

Bsub
2 : Similar to a two-machine-one-buffer subsystem, the

control model for a three-machine-two-buffer subsystem is

to control machine msub
1 and msub

2 according to the state of

the subsystem.
We decompose a transfer line into subsystems, since the

system as a whole is infeasible to analyze directly, due to its

large state space. Decomposition, as an approximation-based

method, can compromise modeling accuracy, when too

many subsystems are involved. Also to consider the com-

plexity of the subsystem itself, we find the balance to be the

use of a three-machine-two-buffer subsystem as a general

building block in the decomposition method. One two-

machine-one-buffer subsystem will be utilized to handle the

systems with an even number of machines.

4.4. Descriptive model of subsystem

The relevant parameters to model a subsystem are presented

in Figure 4. The ith machine in a subsystem is denoted by

msub
i , and it is a Bernoulli machine with parameter psubi : The

ith buffer in a subsystem is denoted by Bsub
i : Buffer Bsub

i is

described by buffer capacity Nsub
i , maximum allowable resi-

dence time Tsub
i,max and minimum required residence time

Tsub
i,min: Neighboring subsystems are mutually influenced.

Such influence is modeled by starvation probability, ps, and

blockage probability, pb. The probability that machine msub
1

Figure 3. System decomposition with two- or three-machine subsystems.

Figure 4. Models for subsystems.
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is not able to produce, due to the starvation from its

upstream buffer is denoted by ps. If buffer Bsub
1 has available

space, the probability that the first machine can produce is

psub1 ð1� psÞ: Machine msub
2 in a two-machine-one-buffer

subsystem and machine msub
3 in a three-machine-two-buffer

subsystem are shared by its downstream subsystem, which is
illustrated in Figure 3. The probability pb represents the

probability that machine msub
2 in a two-machine-one-buffer

subsystem or machine msub
3 in a three-machine-two-buffer

subsystem is not allowed to work, either due to downstream
blockage or the control policy of the downstream subsystem.

Thus, if there is at least one part in buffer Bsub
1 of a two-

machine-one-buffer subsystem or buffer Bsub
2 of a three-

machine-two-buffer subsystem with residence time larger
than or equal to the minimum required residence time, the
probability that the part can be produced and leave the

subsystem is psub2 ð1� pbÞ and psub3 ð1� pbÞ for a two-

machine-one-buffer subsystem and three-machine-two-buf-
fer subsystem, respectively. Assumption (ix) suggests that
machine m1 is never starved, so ps is always equal to zero
for the first subsystem. Similarly, the last machine of the last
subsystem is never blocked, and thus pb in the last subsys-
tem is always equal to zero.

4.5. Markov decision model for the subsystem

When a two-machine-one-buffer subsystem is isolated, the
subsystem can be viewed as a two-machine transfer line

with two Bernoulli machines with parameters psub1 ð1� psÞ

and psub2 ð1� pbÞ, respectively. Similarly, a three-machine-

two-buffer subsystem can be viewed as a three-machine
transfer line with three Bernoulli machines with parameters

psub1 ð1� psÞ, p2 and psub3 ð1� pbÞ, respectively. The modeling

of two-machine-one-buffer subsystem shares similarities
with the modeling of a three-machine-two-buffer subsystem.
In this subsection, we only show how to model a three-
machine-two-buffer subsystem without repeating it for two-
machine-one-buffer subsystem.

� Decision epochs: t ¼ 0, 1, . . . :
� System state: hsubðtÞ ¼ ðnsub1 , ssub1 , nsub2 , ssub2 Þ 2 Hsub: nsub1

and nsub2 are the buffer occupancy of buffer Bsub
1 and buf-

fer Bsub
2 , respectively. ssub1 and s

sub
2 are the residence time

of the first part in buffer Bsub
1 and buffer Bsub

2 , respect-
ively, if the buffer is not empty. Let ssubi ¼ 0, for i¼ 1, 2,
if nsubi ¼ 0: The state space of a subsystem is denoted
by Hsub:

� Action: asubðtÞ ¼ asub1 ðtÞ asub2 ðtÞ
� �T

2 Asub, where asubi

ðtÞ 2 f1, 0g, for i¼ 1, 2, at any time t. The action asubi

ðtÞ ¼ 0 makes machine msub
i not work in cycle ðt þ 1Þ,

and the action asubi ðtÞ ¼ 1 keeps machine msub
i

unchanged. The action space of a subsystem is denoted
by Asub:

� Reward: the reward at time ðt � 1Þ is denoted by
rðhsubðt � 1Þ, asubðt � 1ÞÞ: Specifically,

r hsub t � 1ð Þ, asub t � 1ð Þ
� �

¼ fPRsub
ðtÞ � xfSRsub

ðtÞ, (20)

where fPRsub
ðtÞ and fSRsub

ðtÞ are random variables repre-
senting the production of the last machine msub

3 and the
scrap from both buffers, respectively.

� Expected total discounted reward of policy psub:

vp
sub

¼ Ep
sub

X1

t¼0

ktr hsubðtÞ, asubðtÞ
� �

( )
, (21)

where k 2 ½0, 1Þ is the discount.
The optimal control policy of a subsystem can be expressed as

p� 2 arg max
psub

Ep
sub

X1

t¼0

ktr hsubðtÞ, asubðtÞ
� �

( )
: (22)

Remark 3. We define the state of a buffer only by the buffer
occupancy and the residence time of the first part in the buf-
fer. Following the approximate method detailed in Ju et al.
(2017), the optimization problem can be treated as an MDP
with an exact stochastic model, and standard methods, such
as the value iteration and the policy iteration, can be used to
solve the problem.

Let psub : Hsub ! Asub be a mapping from state to action
under control policy psub. As control policy psub is implemented,

the subsystem reaches steady state. Let l : Hsub ! 0, 1½ � be a
mapping from state to its steady-state probability under control

policy psub. cPRsub
,cSRsub

,cST sub
and cBLsub

denote the estimated
long-term performance measures of the subsystem under control
policy psub, and they are defined and derived as follows.

� Estimated production rate cPRsub
: the expected number of

parts produced by the last machine of the subsystem in a
cycle, and specifically,

cPRsub
¼

X

hsub2Hsub
PR

l hsubð Þpsub3 1� pb
� �

, (23)

where

Hsub
PR ¼ hsub 2 Hsubjssub2 � Tsub

2,min

n o
: (24)

The subset of state space, Hsub
PR , represents all states

where the residence time of the first part in buffer Bsub
2 is

equal to or larger than Tsub
2,min: It is suggested by Equation

(23) that one part can be produced for a subsystem in a
state in Hsub

PR if machine msub
3 is up and there is no block-

age to the machine.
� Estimated scrap rate cSRsub

: the expected number of scrapped
parts from the subsystem in a cycle, and specifically,

cSRsub
¼

X

hsub2Hsub
SR, 1

l hsubð Þ 1� 0 psub2

h i
psub hsubð Þ

� �

þ
X

hsub2Hsub
SR, 2

l hsubð Þ 0 psub2

h i
psub hsubð Þ 1� psub3 1� pb

� �� �

þ
X

hsub2Hsub
SR, 3

l hsubð Þ 1� psub3 1� pb
� �� �

,

(25)
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where

Hsub
SR, 1 ¼ hsub 2 Hsubjssub1 ¼ Tsub

1,max � 1
n o

, (26)

Hsub
SR, 2 ¼ hsub 2 Hsubjssub1 ¼ Tsub

1,max � 1, nsub2 ¼ Nsub
2 , ssub2 < Tsub

2,max � 1
n o

:

(27)

Hsub
SR, 3 ¼ hsub 2 Hsubjssub2 ¼ Tsub

2,max � 1
n o

: (28)

Equation (25) is the summation of three terms. The first
term represents the case that a part is scrapped from buf-
fer Bsub

1 due to failure of machine msub
2 or an action that

turns machine msub
2 down. In the second term, machine

msub
2 is capable of working, but a part is scrapped from

buffer Bsub
1 due to blockage of buffer Bsub

2 : The third
term represents a scrap from buffer Bsub

2 caused by
machine msub

3 :
� Estimated starvation probability cST sub

: the probability
that the last machine of the subsystem is not able to
produce due to starvation, and specifically,

cST sub
¼

X

hsub2Hsub
ST

l hsubð Þ, (29)

where

Hsub
ST ¼ hsub 2 Hsubjssub2 < Tsub

2,min

n o
: (30)

The estimated starvation probability cST sub
is the prob-

ability that buffer Bsub
2 has no part with residence time

larger than or equal to Tsub
2,min:

� Estimated blockage probability cBLsub
: the probability that

the first machine of the subsystem is not able to produce
due to blockage or control policy, and specifically,

cBLsub
¼

X

hsub2Hsub

l hsubð Þ 1� 1 0½ �psub hsubð Þ
� �

þ
X

hsub2Hsub
BL, 1

l hsubð Þ 1 0½ �psub hsubð Þ

1� 0 psub2

h i
psub hsubð Þ

� �

þ
X

hsub2Hsub
BL, 2

l hsubð Þ 1 0½ �psub hsubð Þ

0 psub2

h i
psub hsubð Þ 1� psub3

� �
þ psub3 pb

� �
,

(31)

where

Hsub
BL, 1 ¼ hsub 2 Hsubjnsub1 ¼ Nsub

1 , ssub1 < Tsub
1,max � 1

n o
,

(32)

Hsub
BL, 2 ¼ fhsub 2 Hsubjnsub1 ¼ Nsub

1 , ssub1 < Tsub
1,max � 1, nsub2

¼ Nsub
2 , ssub2 < Tsub

2,max � 1g:

(33)

The first term of Equation (31) is the probability that
machine msub

1 is blocked by the control policy that

directly turns machine msub
1 down. The second term rep-

resents the case when buffer Bsub
1 is full and machine

msub
2 cannot produce a part from buffer Bsub

1 due to the
control policy or failure on machine msub

2 : The third
term gives the situation where both buffer Bsub

1 and buf-
fer Bsub

2 are full and machine msub
3 cannot produce a part

due to the control policy or failure.

In a similar way, the MDP model of a two-machine-one-
buffer subsystem can be built, and the performance meas-
ures of a two-machine-one-buffer subsystem can be derived.

4.6. Aggregation procedure

The structural relationship between neighboring subsystems
is defined by the starvation probability ps and blockage
probability pb. If ps and pb are accurate, the behavior of a
subsystem will be similar to its corresponding part in the
multi-stage line. The control policy of each subsystem is
derived from its MDP model as ps and pb are assumed to be
known. However, as the control policy of each subsystem is
implemented, it changes the relationship between neighbor-
ing subsystems. Thus, it requires the relationship to be
updated. The update of the relationship further requires
each subsystem to derive an updated control policy. Thus,
an iterative method, the aggregation procedure, is proposed
to update the relationship between neighboring subsystems
and the control policy of each subsystem.

The aggregation procedure, shown in Figure 5, includes
the backward aggregation and the forward aggregation.
Figure 5(a) shows that a multi-stage line is decomposed into
several subsystems, and a control policy psub is derived for
each subsystem as the starvation probability ps and the
blockage probability pb of each subsystem are assumed to be
known and fixed. Figure 5(b) and Figure 5(c) illustrate the
backward aggregation and the forward aggregation, respect-
ively. In this process, the control policy psub is fixed, and pb

and ps are updated through the backward aggregation and
forward aggregation, respectively. In addition, performance

measures, including cPRsub
,cSRsub

, are derived.
The backward aggregation, shown in Figure 5(b), starts

with the last subsystem and moves backward. The blockage

probability cBLsub
, derived by Equation (31) from the a sub-

system, is used to update pb of its upstream neighboring
subsystem, and this process continues until pb of the first
subsystem is updated. The forward aggregation, shown in
Figure 5(c), is similar to the backward aggregation but starts

with the first subsystem. The starvation probability cST sub
,

derived by Equation (29) from a subsystem, is used to
update ps of its downstream neighboring subsystem. This
forward aggregation continues until ps of the last subsystem
is updated.

Figure 6 provides the pseudocode of the decomposition-
based control approach. Line 1 is to decompose the multi-
stage line into subsystems. Line 2 initializes the control pol-
icy for each subsystem, and the initial control policy never
turns machines down. The decomposition-based control
consists of several iterations to finally derive the control
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policy for each subsystem, and the iterations are presented

from line 3 to line 18. It is a loop from line 3 to line 18.

Inside the loop, the steps from line 6 to line 9 represent the

backward aggregation, and the the steps from line 10 to line

13 represent the forward aggregation. As ps and pb of each

subsystem are updated, the new control policy for each sub-

system is derived, shown from line 15 to line 17. A stop cri-

terion is set for the loop, and it can be a certain number of

iterations or the indication of convergence of ps and pb.

4.7. Convergence

A parameter setting is selected as follows to numerically

study the convergence of the aggregation procedure:

D ¼ 7,

p1 ¼ 0:9, p2 ¼ 0:87, p3 ¼ 0:85, p4 ¼ 0:83,

p5 ¼ 0:8, p6 ¼ 0:77, p7 ¼ 0:75,

Ni ¼ 6,Ti,max ¼ 8,Ti,min ¼ 2, for i ¼ 1, :::,D� 1,

x ¼ 1:3:

(34)

The discount, k, is set to be 0.95. A set of control policies

for subsystems are obtained in each iteration, and we com-

pare the steady-state performance measures under those

control policies through simulation. The simulation repeats

1000 times, and the steady-state performance measures are

shown in Figure 7. The horizontal axis represents the itera-

tions, and the vertical axis represents the performance meas-

ures. Iteration 0 shows the performance measures where the

initial control policy is implemented. The result suggests

that the decomposition-based control can soon improve the

performance in a small number of iterations. The perform-

ance measures oscillate with in a small zone, primarily due

to the random error from the simulation. The oscillation of

production rate looks more obvious, because the control

policy does not significantly change the production rate.
To numerically study the convergence in a more general

sense, we introduce vectors psi and pbi, for i ¼ 0, 1, :::: Let

psi and pbi, for i ¼ 0, 1, :::, be a vector of the starvation

probabilities and a vector of blockage probabilities from all

subsystems under the control policy obtained from the ith

iteration, respectively. Specifically,

psi ¼ ps1 ps2 � � �
� �T

, (35)

pbi ¼ pb1 pb2 � � �
h iT

, (36)

where psj and pbj , for j ¼ 1, 2, :::, are the starvation probabil-

ity ps and blockage probably pb of subsystem SSj, respect-

ively. The distance of psi and psi�1 and the distance of pbi

Figure 5. The aggregation procedure.
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and pbi�1 are denoted by dsi and dbi for i ¼ 1, 2, :::, respect-

ively, and defined as follows:

dsi ¼ psi � psi�1ð ÞT psi � psi�1ð Þ, (37)

dbi ¼ pbi � pbi�1

� �T
pbi � pbi�1

� �
: (38)

The convergence can be observed, if dsi and dbi are getting

close to zero as i increases.
To numerically show the convergence of the aggregation

procedure of the decomposition-based control, 2000 param-

eter settings are randomly generated from the range of par-

ameter settings as follows:

p1 2 0:85, 0:99½ �,
pi 2 0:65, 0:99½ � for i ¼ 2, :::,D,
Ni 2 5, 6, 7f g for i ¼ 1, :::,D� 1,
Ti,max 2 Ni þ 1,Ni þ 2,Ni þ 3f g for i ¼ 1, :::,D� 1,
Ti,min 2 1, 2f g for i ¼ 1, :::,D� 1,
x 2 0:7, 1:7½ �:

(39)

Parameters are selected with equal probability from the

range. We let the number of machines be nine. The number

of iterations is set to be eight. Both ds8 and db8 at the end of

the iteration are obtained for each parameter setting. The

experiment result shows that 99.95% of all cases have ds8
smaller than 10�3 and 100.00% of the cases result in db8
smaller than 10�3: This indicates that the performance

measures converge within a small interval after a certain

number of iterations.

5. Numerical experiments and performance

comparison

5.1. RL control for comparison

The decomposition-based control is compared with a

feature-based reinforcement learning control (RL control).

In the RL control, a feature-based architecture is used to
handle the large state space.

Let rðHðt � 1Þ, aðt � 1ÞÞ be the reward function of the
multi-stage line at time ðt � 1Þ: Specifically,

r H t � 1ð Þ, aðt � 1Þ
� �

¼ gPRDðtÞ � xfSRðtÞ: (40)

Given the initial system state Hð0Þ, the optimal expected
total discounted reward is expressed as follows:

v� Hð0Þð Þ ¼ max
p

Ep
X1

i¼0

kir HðiÞ, aðiÞð Þ

( )
, (41)

which, however, is impossible to obtain, due to the large
state space of the problem. An approximate lookahead func-
tion v̂ð/ðHðtÞÞ,bÞ with parameters b is introduced to
replace v�ðHðtÞÞ: Function /ðHðtÞÞ maps system state H(t)
to the feature, and v̂ð/ðHðtÞÞ, bÞ can be obtained through
training. The buffer occupancy of each buffer and the resi-
dence time of the first part in each buffer are important
measures to capture system dynamics, and thus we take
them as candidates of features. To further explore features, a
preliminary analysis of features is performed with parame-
ters given as follows.

D ¼ 4,
p1 ¼ 0:9, p2 ¼ 0:83, p3 ¼ 0:75, p4 ¼ 0:7,
Ni ¼ 6, for i ¼ 1, 2, 3
Ti,max ¼ 8 for i ¼ 1, 2, 3,
Ti,min ¼ 0 for i ¼ 1, 2, 3,
x ¼ 0:9, k ¼ 0:95:

(42)

Let the initial buffer occupancy of each buffer be two and
residence time of the first part in each buffer be six. The
effect of the initial buffer occupancy is studied. We change
the initial buffer occupancy from one to six for each buffer
each time with all other parameters fixed. For each initial
buffer occupancy, 4000 initial system states are randomly
generated, and a simulation is run for 50 cycles starting
with each initial system state. The average total discounted

rewards,
P50

t¼1 k
t�1ðPRðtÞ � xSRðtÞÞ, starting with different

initial buffer occupancy are compared. The result is shown
in Figure 8. This suggests that, to have a large average total
discounted reward, the buffer occupancy should not be
either too small or too large. A small buffer occupancy
results in a high probability of starvation for the down-
stream machines, and it reduces the production rate. In con-
trast, a large buffer occupancy requires a long time to have
all the parts in the buffer processed, and the risk of
scrap increases.

Following the same way with parameters given in
Equation (42), we study the effect of initial residence time
of the first part in the buffer. The initial buffer occupancy is
set to be four for each buffer, and the initial residence time
of the head part in each buffer is set to be three. We change
the residence time from three to seven and plot the average
total discounted reward in Figure. 9. A trend can be seen
that the average total discounted reward decreases as the ini-
tial residence time of the head part in the buffer increases.
A large residence time results in a high risk of scrap, and
thus a small residence time is always preferred.

Figure 6. The iterative procedure for decomposition-based control.
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According to the simulation study, three features are
adopted for each buffer, and they are the buffer occupancy

ni, the square of the buffer occupancy n2i , and residence

time of the first part in the buffer si, 1: Thus, the features for
the multi-stage line are provided by

/ HðtÞð Þ ¼ /1 /2 � � � /3D�2½ �T , (43)

where /1 is a constant term, and /3i�1,/3i and /3iþ1 are

features of buffer Bi, for i ¼ 1, 2, :::,D� 1: Specifically,

/3i�1 ¼ ni,

/3i ¼ n2i ,

/3iþ1 ¼
si, 1, if ni 6¼ 0

0, if ni ¼ 0
, i ¼ 1, 2, :::,D� 1:

( (44)

Then, the lookahead function, following a linear feature-
based architecture, is expressed as follows:

v̂ / HðtÞð Þ, bð Þ ¼ bT/ HðtÞð Þ: (45)

Parameter b in Equation (45) can be estimated in training
through simulation. The optimal action can be expressed as

a�ðt � 1Þ 2 arg max
aðt�1Þ2A

E r H t � 1ð Þ, aðt � 1Þ
� �

þ kv̂ / HðtÞð Þ,bð Þ
� �

: (46)

5.2. Simulation experiment with a single case

To show how the decomposition-based control improves the
multi-stage line, we use the parameter setting in Equation (34).
The simulation runs 200 cycles with all buffers empty initially
and repeats 1000 times. The multi-stage line is decomposed
into three-machine-two-buffer subsystems.

The result of the simulation experiment is shown in
Figure 10. In each one of the three plots in Figure 10, the
horizontal axis represents the time from cycle 0 to cycle 200,
and the vertical axis represents the performance measures.
There are three plots representing three performance meas-
ures, and they are production rate PRDðtÞ, scrap rate SR(t)
and reward ðPRDðtÞ � xSRðtÞÞ: The average performance
measures and 95% confidence intervals without control are
plotted by blue lines and blue shaded areas, respectively.
Similarly, the green color and red color are used for the RL
control and the decomposition-based control, respectively.

Production rates with two control methods and without
control are plotted in Figure 10(a), and it shows no significant
difference in production rates among the three methods. The
two control methods slightly reduce the production rate.
Among the two control methods, the decomposition-based
control maintains a higher production rate. The two control
methods show a significant improvement in the scrap rate,
shown in Figure 10(b), and in this case, RL control reduces the
scrap rate to a greater extent. This result suggests that both
control methods can significantly reduce the scrap rate with-
out sacrificing too much in the production rate. Figure 10(c)
shows the rewards of the three methods. The rewards under
RL control and decomposition-based control are higher than

Figure 8. The average total discounted reward with different initial buf-
fer occupancy.

Figure 7. Steady-state performance measures with control policies obtained in each iteration.

Figure 9. The average total discounted reward with different initial residence
time of head part in the buffer.
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the reward without control. The rewards of RL control and

decomposition-based control are almost overlapped, and RL

control results in a slightly higher reward in this case. In terms

of computing time, the decomposition-based control is much

more computationally efficient than the RL control. The

experiment runs on a server with Intel(R) Core(TM) i7-5930K

CPU, sufficiently large RAM and Linux operating system. In

this single experiment, the decomposition-based control takes

19 seconds to generate the control policy, whereas the RL con-

trol needs as much as 10 222 seconds for training.
After the last iteration of the aggregation procedure, each

subsystem has its control policy. We partially present the

control policies for machine m3 and machine m4 in Figure

11 and Figure 12, respectively. Machine m3 and machine m4

are assigned to the second subsystem, which consists of

machine m3, machine m4, machine m5, buffer B3 and buffer

B4. Both machine m3 and machine m4 take actions by

observing the states of buffer B3 and buffer B4.
Figure 11 presents the control policy for machine m3. We

first fix the state of buffer B4. The relationship between the

action that machine m3 takes and the state of buffer B3 is

illustrated in Figure 11(a), Figure 11(b) and Figure 11(c).

The horizontal axis represents the residence time of the first

part in buffer B3, and the vertical axis represents the buffer

occupancy of buffer B3. Given that the state of buffer B4 is

fixed, a state for the subsystem is represented by a block in

the figure. The black blocks are the infeasible regions that

the subsystem never visits. In the feasible regions, a block is

colored to be white or gray, indicating two actions. The

white color means that machine m3 will be unchanged,

whereas the gray color indicates that machine m3 will be

turned down manually. Figure 11(a) shows the case when

buffer B4 has a low buffer occupancy and a small residence

time of the first part. It can be observed that machine m3 is

turned down only when there is a high buffer occupancy in

buffer B3. Figure 11(b) shows a control policy where buffer

B4 has a median buffer occupancy and a median residence

time of the first part, and the control policy is similar to the

control policy shown in Figure 11(a). When buffer B4
reaches a high occupancy and has a large residence time of

the first part, machine m3 is more likely to be turned down

to maintain a lower buffer occupancy for buffer B3, shown

in Figure 11(c).
Then, we fix the state of buffer B3 and present the con-

trol policy with respect to the state of buffer B4. The result

is shown in Figure 11(d), Figure 11(e) and Figure 11(f).

Figure 11(d) indicates that machine m3 always keeps

unchanged whatever state buffer B4 is when buffer B3 has a

Figure 10. Comparison of performance measures.
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low buffer occupancy and a small residence time of the first

part. In contrast, machine m3 is always turned down what-

ever state buffer B4 is when buffer B3 has a high buffer

occupancy and a large residence time of the first part, which

is shown in Figure 11(f). Figure 11(e) indicates that when

buffer B3 has a median buffer occupancy and a median resi-

dence time of the first part, machine m3 is turned down

only when buffer B4 reaches a high buffer occupancy.
From Figure 11, three main features related to the deci-

sion making of machine m3 can be observed. First, buffer

occupancy of buffer B3 and buffer B4 plays an important

role in machine m3’s decision making. Machine m3 is more

likely to be turned down when buffer B3 and/or buffer B4
have/has a high buffer occupancy. Such actions prevent the

subsystem from a potential scrap by turning machine m3

down and stopping new parts from entering the subsystem.

Since the buffer occupancy is high, the action that turns

machine m3 down will not cause too much loss of produc-

tion. Second, buffer B3 has a larger influence on machine

m3’s decision making than buffer B4. It can be observed that

the lookup tables shown in Figure 11(a), Figure 11(b) and

Figure 11(c) does not change too much mutually, while the

lookup tables in Figure 11(d), Figure 11(e) and Figure 11(f)

shows a large difference. Machine m3 is closer to buffer B3
than buffer B4, and it explains why buffer B3 has a larger

influence on machine m3’s decision making. Finally, the

control policy is not sensitive to the residence time of the

first part in either buffer B3 or buffer B4, and the boundary

that separates the white region and gray region does not

show the property of monotonicity.
Figure 12 presents the control policy for machine m4. In

each plot, the black blocks represent the infeasible regions.

Within the feasible regions, the white blocks indicate the

action that no intervention is given, whereas the gray block

indicates the action to turn machine m4 down. We first fix

the state of buffer B4. When buffer B4 has a low buffer occu-

pancy and a small residence time of the first part, machine

m4 is always kept unchanged. In such a situation, there is

no risk of scrap from buffer B4, and letting machine m4

work can potentially increase the production rate. When

buffer B4 has a median buffer occupancy and a median resi-

dence time of the first part, machine m4 is turned down

when buffer B3 has a small buffer occupancy and a small

residence time for the first part. This action can decrease

the risk of scrap from buffer B4 without increasing the risk

of scrap from buffer B3. It can be observed that the feasible

region with s3, 1 smaller than two is white, and the actions

in those states in fact do not make any difference. The rea-

son for this behavior is that machine m4 cannot produce a

part from buffer B3 when the residence time of the first part

in buffer B3 is smaller than T3,min: When buffer B4 has a

high buffer occupancy and a large residence time of the first

part, machine m4 produces when the residence time of the

first part in buffer B3 is large. In this case, machine m4 has

to do a trade-off by considering scrap from both buffer B3
and buffer B4.

Then, we fix the state of buffer B3. Figure 12(d) suggests

that machine m4 is more likely to be turned down when B3
has a low buffer occupancy and a small residence time of

the first part. Figure 12(e) indicates that, in the cases that B3
has a median buffer occupancy and a median residence time

of the first part, machine m4 is turned down only when buf-

fer occupancy of buffer B4 is high. Machine m4 does so due

to the trade-off of scrap in buffer B3 and buffer B4. Figure

12(f) suggests that machine m4 is unchanged whatever state

buffer B4 is when buffer B3 has a high buffer occupancy and

a large residence time of the first part.
When we compare Figure 11 with Figure 12, we can

observe that the action on machine m3 and the action on

machine m4 play different roles in improving the systems.

Figure 11. Control policy obtained from the decomposition-based control for machine m3.
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Machine m3 is the first machine of its subsystem, and it

decides to allow a part to enter the subsystem or prevent a

part from entering the subsystem. Machine m4 is in the

middle of buffer B3 and buffer B4. Its responsibility is to bal-

ance the risk of scrap from buffer B3 and buffer B4.

5.3. Simulation experiment with randomly selected

parameter settings

To evaluate the performance of the decomposition-based

control in a more general sense, we randomly select param-

eter settings of a multi-stage line from a predefined range

and compare the performance measures of a system without

control, with RL control and with decomposition-based

control. The range of parameter settings is given in

Equation (39). Parameters are selected with equal probability

from the range. A total of 200 parameter settings are

randomly selected for multi-stage lines with D¼ 5 machines

and D¼ 7 machines, respectively. In each parameter

setting, the average steady-state performance measures of a
system without control, with RL control and with decom-
position-based control are obtained through simulation and
compared mutually. The simulation starts with empty buf-
fers. The average reward of each cycle from cycle 201 to
cycle 400 among 100 repeats, which is the mean value of 20
000 observations, is calculated and compared. In the decom-
position-based control, multi-stage line is decomposed into
three-machine-two-buffers subsystems.

The results of the simulation experiment for the multi-
stage lines with five machines and seven machines are
shown in Figure 13 and in Figure 14, respectively. Figure
13(a) and Figure 13(b) show the improvement of reward
by RL control and the decomposition-based control for the
multi-stage line with five machines, respectively. In most
cases among 200 random parameter settings, the RL con-
trol can improve the system, but it could happen in some
cases that the RL control makes the performance worse. In
contrast, the decomposition-based control is more robust,
and all 200 cases can be improved. Figure 13(c) shows a

Figure 12. Control policy obtained from the decomposition-based control for machine m4.

Figure 13. Improvement of average reward for multi-stage lines with five machines. The average reward without control is 0.525.
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pairwise comparison where the improvement of decompos-
ition-based control minus the improvement of RL control
for each case is presented, and the result suggests that the
decomposition-based control outperforms the RL control.
Considering the average reward without control is 0.525,
such an improvement is significant. The same comparison
is performed for the multi-stage line with seven machines
as well. Figure 14(a), compared with Figure 13(a), shows
more negative improvement. It suggests that as the number
of machines increases the RL control is more likely to fail
to work. In contrast, Figure 14(b) suggests that the decom-
position-based control can still maintain a good perform-
ance. Figure 14(c), compared with Figure 13(c), shows that
the strength of decomposition-based control over the RL
control is more significant as the number of machines
increases. The average reward without control is 0.464,
and it shows a significant improvement of the decompos-
ition-based control.

The control methods are developed with MATLAB and
run on a server with Intel(R) Core(TM) i7-5930K CPU, suf-
ficiently large RAM and Linux operating system. It takes
time to perform training for RL control and perform the
aggregation procedure of decomposition-based control.
When there are five machines, the average computing time
is 1037.8 seconds for RL control and 34.6 seconds for
decomposition-based control. As the total number of
machines increases to seven, the average computing time is
14 506.3 seconds for RL control and 70.8 seconds for decom-
position-based control. The result suggests that the decom-
position-based control is much more computationally
efficient than the RL control. When the number of machines
increases, the computing time of the RL control increases
much faster than the decomposition-based control.

Transfer lines with more machines are tested, and the
result is summarized in Tables 1 and 2. Table 1 provides the
reward of each method under each setting. The

decomposition-based control shows a good performance and

also outperforms the RL control and the case under no con-

trol. The computing time is presented in Table 2. The com-

puting time of the aggregation procedure of the

decomposition-based control is much smaller than the train-

ing time of RL control and also much less sensitive to the

number of machines than the RL control.

6. Conclusions and future work

In this article, a multi-stage Bernoulli transfer line with resi-

dence time constraints is formulated. Due to a large state

space of the production line, it is difficult to perform real-

time control according to system state. The decomposition-

based control is proposed to address the problem. The

simulation experiment suggests that the proposed method

can improve system performance. Compared with a general-

purpose reinforcement learning-based control method, the

decomposition-based control can achieve a better system

performance improvement and a significant reduction in

computing time. It thus provides production engineers with

an effective and quantitative tool to perform real-time con-

trol of production lines with residence time constraints.
In the future, work can be directed to investigating trans-

fer lines with different structures, such as distributed system

and assembly systems. In addition, it is worth studying

Figure 14. Improvement of average reward for multi-stage lines with seven machines. The average reward without control is 0.464.

Table 1. Average reward of different methods.

D
Average reward
without control

Average reward with
decomposition-based control

Relative improvement of
decomposition-based control(%)

Average reward with
RL control

Relative improvement
of RL control(%)

5 0.525 0.648 23.4 0.588 12
7 0.464 0.608 31.0 0.506 9.1
9 0.403 0.563 39.7 – –

11 0.385 0.543 41.0 – –

Table 2. Computing time of different methods (seconds).

D
Aggregation procedure

of decomposition-based control
Training of
RL control

5 34.6 1037.8
7 70.8 14 506.3
9 170.7 –

11 211.6 –
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decomposition-based control in a manufacturing environ-

ment with more general machine reliability models.
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