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with residence time constraints
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ABSTRACT

It is commonly observed in the food industry, battery production, automotive paint shop, and
semiconductor manufacturing that an intermediate product’s residence time in the buffer within a
production line is controlled by a time window to guarantee product quality. There is typically a
minimum time limit reflected by a part’s travel time or process requirement. Meanwhile, these
intermediate parts are prevented from staying in the buffer for too long by an upper time limit,
exceeding which a part will be scrapped or need additional treatment. To increase production
throughput and reduce scrap, one needs to control machines’ working mode according to real-
time system information in the stochastic production environment, which is a difficult problem to
solve, due to the system’s complexity. In this article, we propose a novel decomposition-based
control approach by decomposing a production system into small-scale subsystems based on
domain knowledge and their structural relationship. An iterative aggregation procedure is then
used to generate a production control policy with convergence guarantee. Numerical studies sug-
gest that the decomposition-based control approach outperforms general-purpose reinforcement
learning method by delivering significant system performance improvement and substantial reduc-

ARTICLE HISTORY
Received 4 November 2019
Accepted 15 July 2020

KEYWORDS

Residence time; real-time
control; multi-stage transfer
line; decomposition-

based control

tion on computation overhead.

1. Introduction

Rapid advances in sensor technology, automation, and
artificial intelligence have the potential to contribute to
improving manufacturing efficiency and quality (Yang
et al, 2019). This could allow the creation of Smart
Manufacturing — enabling production systems to be self-
learning and self-optimizing “on the fly” using real-time
information to quickly respond to production uncertainties.

One common real-time production control problem is to
deal with production systems with residence time constraints
for intermediate products. For instance, a semiconductor
packaging and testing line consists of multiple operations.
During the production run, there are certain operations
(e.g., Die Attach), after which a product needs to be held for
a minimum time in the buffer for outgassing purposes
before being sent to the next operation. In addition, these
time windows are typically upper bounded around opera-
tions, where exposing parts to the atmosphere for too long
will lead to either surface oxidation or moisture absorption,
thus reducing production yield (Han and Kim, 2017).
Therefore, proper dispatching decisions need to be made
considering parts’ actual waiting time in buffers.

Similar issues are observed in many industries, including
food production lines and battery manufacturing, where per-
ishability of intermediate products is a major concern. For
example, yogurt goes through several processes from raw
milk to intermediate products and finally to final products,

and each stage is performed under strict time limits
(Amorim et al, 2013). Quality deterioration could occur
during the stoppage due to machine failures (Liberopoulos
and Tsarouhas, 2005). Similarly in battery manufacturing,
chemicals are filled into cells to form electrodes, and those
processes need to be done within a certain time limit to
ensure cell quality. A cell will be typically scrapped, if such
a time limit is exceeded, which potentially increases produc-
tion cost and wastes (Ju et al., 2017).

To optimize the system performance while providing a
guaranteed product quality, optimal production control and
dispatch strategy are pursued to coordinate machines and
product flow considering machines’ random failures. Due to
the complexity of production systems with residence time
constraints, current studies primarily focus on small-scale
problems with only two machines and one buffer (Ju et al,
2017; Wang et al, 2019). The basic idea is to develop a
Markov Decision Process (MDP) model given machine
uncertainty and derive the optimal control policy for
sequential decision making in each cycle based on the real-
time system state. However, it is inapplicable to extend such
an approach to multi-stage transfer lines, where the system
state space increases exponentially as the system scales up.
Reinforcement learning can potentially solve the aforemen-
tioned production control problem for large-scale systems
(Bertsekas, 2019). Through discrete event simulations, the
mapping of states and actions to rewards can be learned by

CONTACT Feng Ju 8 Feng.Ju@asu.edu
Copyright © 2020 “IISE”



944 (<) F.WANG AND F. JU

approximation architectures, such as regression and artificial
neural networks (Bertsekas, 2018). However, a heavy com-
putation overhead impedes reinforcement learning from
being practically implemented for real-time applications. In
addition, the learning process typically ignores the engineer-
ing domain knowledge, which makes the control solution
difficult to explain and lack managerial insights.

To overcome these drawbacks, we propose a novel
decomposition-based control approach by decomposing a
multi-stage production system into small-scale subsystems
using domain knowledge and their structural relationship.
The subsystems are simple enough to derive a control solu-
tion using local information. An iterative aggregation pro-
cedure is then used to improve the derived control policy
with convergence guarantee. Compared with a general-pur-
pose reinforcement learning-based method, the decompos-
ition-based control can deliver significant improvements on
system performance and substantial reduction on computa-
tion overhead, which makes it applicable for real-time pro-
duction decision making.

The rest of this article is organized as follows. Section 2
reviews the related literature. The mathematical formulation
is introduced in Section 3. In Section 4, we present the
framework of decomposition-based control, which includes
the modeling of subsystems and the aggregation procedure.
A simulation study is conducted in Section 5 to justify the
performance of the decomposition-based control. Finally,
the conclusions and future directions are provided in
Section 6.

2. Literature review

Perishability is usually a main reason why residence time
constraints need to be considered (Raafat, 1991). Different
classifications are proposed to deal with perishability
(Nahmias, 1982; Raafat, 1991). According to Amorim et al.
(2013), perishability has three dimensions: physical product
deterioration, authority limits, and customer value. In man-
ufacturing environments, the dimension of authority limits
is usually applied. A fixed threshold, obtained from experi-
ments or domain knowledge, is set to represent residence
time constraints. Perishability only refers to the upper
bound of the residence time, and in practice, the lower
bound of residence time is also often required in a produc-
tion system. In a production line, a machine’s random fail-
ure and repair are often the primary source of uncertainty,
and can significantly impact system performance. Transfer
line refers to a category of production systems, where system
performance is studied under the uncertainty of machine
reliability (Gershwin, 1994; Li and Meerkov, 2009;
Papadopoulos et al., 2019). Transfer lines with residence
time constraints are studied. One direction of the study is to
estimate the probability distribution of the residence time.
Shi and Gershwin (2012) study the distribution of the resi-
dence time of parts in the buffer for a two-machine transfer
line, and the risk of scrap is evaluated based on the derived
distribution. Such a residence time, especially counting from
part entry to the system to the departure from the system, is

often referred to as lead time or sojourn time in the litera-
ture. For instance, Shi and Gershwin (2015) and Angius
et al. (2016) consider lead time in a three-machine transfer
line and a production system with closed loop, respectively.
Shi and Gershwin (2016) extend the study on residence time
distribution to transfer lines with multiple machines and
obtain residence time distribution for each buffer. The stud-
ies in this direction help design buffer capacity to reduce a
rate of defective parts. However, a transfer line in those
studies can only identify a defective part at the end of the
transfer line. It wastes resources to process a defective part,
before its defect is identified. In Naebulharam and Zhang
(2014), the defect is able to be detected soon after the defect
is created, and quality buy rate is introduced to evaluate sys-
tem performance. Lee et al. (2017) and Lee et al. (2018)
consider Bernoulli lines where each machine inspects the
quality of parts, and parts with a residence time larger than
a limit have a certain probability of being scrapped. Another
direction of the study is to take residence time into consid-
eration in the modeling (Wang and Ju, 2020). System
dynamics can be more accurately captured in this way, and
it enables production control based on the residence time.
However, this modeling results in a large state space to be
addressed in system analysis (Ju et al, 2015 Kang
et al., 2016).

The above-mentioned studies aim at deriving analytical
performance measures of a transfer line given a system par-
ameter setting. Performance measures include production
rate and scrap rate. One way to improve the system is to
stop several machines from producing each cycle according
to real-time system states to reduce scrap rate without sacri-
ficing too much of the production rate. Thus, a control
problem arises and becomes worth studying. Real-time con-
trol of a two-machine transfer line is studied (Ju et al., 2017;
Wang et al, 2019). After problem approximation, the opti-
mal control policy is derived. Such a method works well for
a small-scale problem, but is not directly extendable.

Production control is studied to achieve a desired system
performance, and it has been investigated for decades. Due
to a lack of access to real-time system states, early practice
of production control mainly focuses on simple static system
settings (Jaegler et al., 2018) and event-driven/rule-based
approaches (Thiirer et al., 2019), and those strategies are still
widely used (Cao and Xie, 2015; Ju et al., 2016). Supported
by the Internet of Things technologies, real-time production
control based on real-time system state becomes possible,
and it provides potentials to further improve a production
system (Jia et al, 2016; Lu et al, 2016). Reinforcement
learning is a way to perform real-time production control
and enhance production performance (Stricker et al, 2018;
Waschneck et al, 2018). Through training, reinforcement
learning enables a complex production system to find a real-
time action that can improve its performance. However,
such a way to control production becomes difficult in many
cases for two reasons. First, training a reinforcement learn-
ing model is computationally expensive. Second, learning
methods, such as artificial neural networks, are black box
models, and it is difficult to combine domain knowledge
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Figure 1. lllustration of the multi-stage line with residence time constraints.

into them. Another direction to control a complex produc-
tion system is through a decentralized way (Lu and Ju, 2017;
Wang et al., 2017; Wang et al., 2018). The introduction of
the multi-agent system and holonic manufacturing system
attempts to address the production control problem in this
way (Leitao, 2009; Barbosa et al., 2015; Giret et al., 2016).
The decentralized control aims at achieving flexible control,
significantly reducing computational efforts, and improving
system performance globally. However, it is difficult to have
all three objectives well achieved, and there is a lack of
mathematical models supporting decentralized production
control, which motivates the work outlined in this article.

3. Problem formulation
3.1. System description and assumptions

For simplicity purposes, the term “multi-stage line” is used
to represent the multi-stage Bernoulli transfer line with resi-
dence time constraints for the rest of this article. The multi-
stage line under study is shown in Figure 1. Parts visit each
machine and buffer from the left side to the right side, until
they finish all the processes or get scrapped from the system.
The following assumptions define the machines, the buffers,
and their interactions:

(i) The multi-stage line consists of D machines, denoted
by my, my,...,mp, and (D — 1) buffers, denoted by
By, B,,...,Bp_1, where D> 2.
(if)  All machines are synchronized with a constant proc-
essing time (cycle time), which is the time to process
a single part on a machine.
Machines are subject to failures, and each machine
is assumed to be an independent Bernoulli machine.
The state of a machine is determined at the begin-
ning of a cycle. Before that, the state of machine m;
in cycle ¢, for i=1,...,D and t =1,2,..., is a ran-
dom variable, denoted by S;(¢), following the
Bernoulli distribution with parameter p;. Specifically,
machine m; is capable of producing a part in cycle ¢
with probability p; and fails to do so with probability
(1 —p;). It can be represented by P(S;(¢¥) =1) = p;
and P(S;(t) = 0) = 1 — p;. At the beginning of cycle
t, the machine state is realized, and the realized
machine state is denoted by s;(t) € {0,1}.
Buffer B; has a finite capacity N; (1 < N; < 00), for
i=1,2,..,D—1, and its buffer occupancy is deter-
mined at the end of a cycle and denoted by n;. First-
in-first-out policy is assumed regarding the buffer
outflow process.

(iii)

(iv)
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(v)  Each part in a buffer has its residence time, and it is
counted as the number of cycles, for which the part
has been staying in the buffer. Residence time of a
part is determined at the end of a cycle and starts at
zero as the part enters a buffer at the end of a cycle.

Residence time of a part in a buffer increases by one

each cycle, if the part remains in the same buffer.

Let 7;; denote the residence time of the jth part in

buffer B, if such a part exists.

The maximum allowable residence time for a part in

buffer B; is characterized by Tjma for i=

1,2,...,D — 1. A part in buffer B; will be scrapped

when its residence time reaches Tj yax. Let Tj pax >

N;, otherwise N; has no effect on the multi-

stage line.

The minimum required residence time for a part in

buffer B; is denoted by T; yu, for i =1,2,..,D —1.

A part in buffer B; is allowed to be processed by

machine m;y; only when its residence time reaches

or exceeds Tj, pin-

Machine m;, for i = 1,2,...,D — 1, is blocked during

a cycle, if (a) machine m; is up, (b) buffer B; is full,

(c) machine m;;; does not produce a part in this

cycle due to machine failure or blockage, and (d)

there will be no part scrapped from buffer B,

Machine mp is never blocked. In addition, the

block-before-service policy is assumed.

Machine m;, for i=2,..,D, is starved during a

cycle, if machine m; is up, and no part in buffer

Bi_1 has residence time greater than or equal to

Ti—1, min- Machine m; is never starved.

(x) At the end of each cycle, a machine can be stopped
to prevent it from producing in the next cycle. One
can also have a machine unchanged, and thus the
machine will work as a Bernoulli machine in the
next cycle. It is always beneficial not to stop the last
machine, so we only consider actions on machine
my, for i=1,2,..,D— 1. Let a;(t) € {1,0}, for i =
1,2,..,D—1 and t =0,1,..., denote the action on
machine m; at the end of cycle t. The action a;(¢) =
0 makes machine m; not work in cycle (t + 1). The
action a;(t) =1 represents that machine m; is
unchanged. The action on the whole system is repre-
sented by a(t) = [a1(t) ax(t) ap_1(t)]". The
action space is denoted by A = {0,1}"".

(vi)

(vii)

(vii)

(ix)

3.2. Performance measures

To evaluate the multi-stage line, we introduce the perform-
ance measures of interest as follows.

e Production rate of machine m;, PR;(t), for t=1,2, ...
and i=1,...,D: the expected number of parts pro-
duced by machine m; in cycle ¢

e Scrap rate of buffer B, SRi(t), for t=1,2,... and i=
1,...,D—1: the expected number of scrapped parts
from buffer B; in cycle ¢
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o Scrap rate of the multi-stage line, SR(t) for t =1,2, ...:
the expected number of scrapped parts from the multi-
stage line in cycle .

Remark 1. Both Ju et al. (2017) and Zhang et al. (2013)
study Bernoulli lines and are consistent with the early work
of Li and Meerkov (2009) in the problem formulation of
Bernoulli lines. Ju et al. (2017) and Zhang et al. (2013) have
a small difference in the definition of performance measures
due to the concern of transient analysis. In Ju et al. (2017),
the authors above performance measures in one cycle in the
current cycle; these are derived from the system state of the
previous cycle. In Zhang et al. (2013), the authors derive per-
formance measures in one cycle from the system state in the
current cycle; these can be observed at the end of the next
cycle. One cycle lag of performance measures is the only dif-
ference between the two studies. In the current article, we fol-
low the definition from Ju et al. (2017).

Remark 2. Scrap rate of the multi-stage line is the summa-
tion of scrap rates of all buffers. Thus, we have SR(t) =

S P SRi(t) for all t.

For the system under consideration, it is desired to maxi-
mize the production rate PRp(¢) and minimize scrap rate
SR(t) simultaneously. The objective of the study is therefore
to maximize (PRp(t) — wSR(t)) through the actions defined
in assumption (x), where w is a positive constant to balance
the trade-off between production rate PRp(f) and scrap
rate SR(¥).

3.3. System dynamics and optimization model

Let H;, for i =1,2,...,D — 1, be a collection of all subsets
of set {0,1,..., Tj max — 1} that have cardinality smaller than
or equal to N;. Specifically,

H;, = {h|h C {0, 1,.., Ti,mux - 1)

for i =1,2,..,D — 1, which is the state space for buffer B;.
H;i(t) € H;, for t =0,1,..., is defined to be the state of buffer
B; at the end of cycle ¢, and H;(t) represents a set of residence
times of parts in buffer B;. The occupancy of buffer B; at the
end of cycle t can be represented by n; = |H;(t)|. We follow
the convention that machine state is determined at the begin-
ning of a cycle, buffer state is determined at the end of a cycle,
and the system state is determined at the end of a cycle. Thus,
system state is represented by the states of all buffers. The state
of a multi-stage line at the end of cycle ¢ can be defined by
H(t) = (H,(t), Hy(¢), ..., Hp—1(t)), which belongs to the state
space of the multi-stage line, denoted by H = ®27'H,. In
addition, we define two other collections as follows:

Hi,min = {H; € Hi|supH; > T, min }»

1} and |h| < N;},

)

A3)

for i=1,2,...,D—1. If buffer B; is not empty, supH; is
equal to the residence time of the first part in the buffer and
we have 1,1 = supH;. If buffer B; is empty, then the set H;
is empty and we have supH; = —00. H, min is a collection of

Hi max = {Hi € HilsupH; = T ax — 1},

states of buffer B; that the first part in the buffer has resi-
dence time greater than or equal to Tj jin, Whereas H; max is
a collection of states of buffer B; that the first part in the
buffer has residence time equal to (Tj yax — 1).

A discounted infinite horizon dynamic optimization
problem is considered, and the objective is to maximize the
discounted cumulative production rate while minimizing the
scrap rate in the long term. Given the known initial state
H(0), the objective function is

max E{iﬂfl (ﬁ(D(t) - wgli(t)) },

t=1

(4)

where PRy(t), for i=1,2,...,D,SR;(t), for i=1,2,...,D—
1, and SR(t) are random variables, and 4 € [0,1) is the
discount factor. We have PR;(t) :E{l,)\l/l,-(t)},SR,-(t) =
E{gﬁ,(t)} and SR(t) = E[gli(t)} We start with machine mp
to formulate the system dynamics. The production and

scrap of the last machine at time (¢ + 1), for t = 0,1, ..., are
represented as follows:

1.1, (HD-1())Sp(t + 1) = PRp(t + 1), (5)
11 e H-1 (D)) (1= Sp(t 4+ 1)) = SRp1 (4 1), (6)
where a characteristic function yy(x) is used. Specifically,
1 if xeX,
1x(x) = {0 otherwise. @

Equation (5) means that machine mp will finish
producing a part at the end of cycle (¢t + 1), if there is at
least a part in buffer Bp_; with residence time greater than
or equal to Tp_1, iy at the end of cycle t and machine mp, is
up during cycle (t+1). Equation (6) represents that a
part will be scrapped from buffer Bp_; if there exists a part
in buffer Bp_; with residence time equal to (Tp_j, mex — 1)
at the end of cycle t and the machine is down during
cycle (t+1). Then, the state of buffer Bp_; is updated as
follows:

, _ ) Hp(t)
Hp o (t) = {le(t) \ supHp_1(¢)

if PRp(t+1)+SRp_1(t+1) =0,
otherwise,

(8)
H//Dﬂ(t) = F(H/Dfl(t))’ %)

for t =0,1,.... Equation (8) suggests that the part with the
largest residence time in buffer Bp_; is removed if a part in
this buffer is either produced or scrapped. In Equation (9),
we introduce an operator F() on the set. For two sets X and
X' such that X' = F(X),x + 1 € X’ is satisfied for any elem-
ent x € X, and x —1 € X is satisfied for any element x €
X'. Equation (9) means that the residence time of each part
increases by one.

In a similar way, the production rate and scrap rate of
machine m;, fori =1,2,...,D — 2, are expressed as follows:

1ty (Hi () 2o (Nt = [Hiyy (D)) Sia (£ + D)@ (£)

" 10
= PR (t+1), (10)



Tty e (Hi() (1= sy (Nip1 = [Hiy (O)])Sia (£ 4 Daia (1)) = SRi(t + 1),
(11)

for t = 0, 1, .... If machine m; finishes producing a part at the
end of cycle (t + 1), suggested by Equation (10), four conditions
should be met. First, there is at least one part in buffer B; with
residence time greater than or equal to T; u;, at the end of cycle ¢.
Second, there is no blockage in buffer B; ;. Third, machine m;,,
is up during cycle (t + 1). Finally, machine m;; is not turned
down. If there is one part in buffer B; with residence time equal
to (T, max — 1) and at least one of the last three conditions above
is not satisfied, then a part is scrapped from buffer B;, suggested
by Equation (11). Then, we update the states of those buffers,
shown in Equation (12) and Equation (13) below:

/ o H,-(t)
&w{mmmem

if PRiyi(t+1)+ SRi(t+1) =0,
otherwise,

(12)

H'|(t) = F(H\(1)), (13)

for i=1,2,..,D—2 and t=0,1,.... Equation (12) and
Equation (13) are similar to Equation (8) and Equation (9),
respectively. If a machine produces a part, the number of
parts in its downstream buffer will increase by one. After
considering both inflow and outflow of a buffer, we can
determine the state of a buffer in the next cycle as follows:

H, (1) if PRia(t+1) =0,

0 ¢ 1) — i+l i+1

ir1(t+1) { H' ,(t) U{0} otherwise,

(14)

for i=1,2,..,D—2 and t =0,1,.... Equation (14) suggests
that a new part with residence time equal to zero is added to buf-
fer B;1; at the end of cycle (¢ + 1) if machine m;;; successfully
produces a part at the end of cycle (¢ + 1). In addition, we have:

2o, (N = HLO)S (0 4+ Day(t) = PRt + 1), (15)
H' (1) = F(H, (1), 1o

NS A0 if PRi(t+1)=0
Hi(t+1) = { H”i(f) U {0} other\}vise, )

for t =0,1,.... Equation (15), Equation (16) and Equation
(17) are for the first machine and first buffer, and they are
similar to Equation (10), Equation (9) and Equation (14),
respectively. Finally, by Remark 2, we have:

D-1
SR(t+1) = > SRi(t+1), (18)
i=1

fort=0,1,....

4. Decomposition-based control framework
4.1. Complexity of multi-stage line

The production control problem introduced in Section 3
cannot be analyzed directly, due to the large state space. The
total number of system states of a multi-stage line, denoted
by M, is provided as follows:
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Subsystem

—1 N;

w=I (1)

i=1 j=0

(19)

Consider a single buffer first. If we fix the buffer occupancy
to be j, the number of combinations for a buffer is equal to
the number of ways to choose j different residence times
from T; ;.. Options, which is represented by

( Ti, max >
], .

Then, the total number of system states can be calculated by
considering all buffers and all possible buffer occupancies.
For example, for a multi-stage line that has seven machines
and six buffers with buffer capacity N; = 6 and maximum
allowable residence time Tj 4 =8, for i=1,2,...,6, the
number of system states is as large as 2.3 x 10'* according
to Equation (19). To deal with this level of complexity, one
common approach is to use reinforcement learning to per-
form production control by approximately mapping system
states and actions to rewards. However, these methods result
in a long training time and suffer from interpretability.
In addition, the approximation architecture can quickly
deteriorate as the problem scale continues to increase.
To tackle these issues, we propose a novel approach, decom-
position-based control. We hypothesize that, by leveraging
the system decomposition, we can effectively optimize pro-
duction performance in real-time.

4.2. Overview of the decomposition-based control approach

Instead of analyzing and controlling a multi-stage line as a
whole, we propose the decomposition-based control
approach. The concept of decomposition-based control is
shown in Figure 2. A multi-stage line is decomposed into
subsystems, and a structural relationship between subsys-
tems is defined. Under a properly defined structural rela-
tionship, each subsystem is assumed to behave like its
corresponding part in the multi-stage line. Each subsystem
is modeled independently as an MDP model. Since the state
space of a subsystem is small enough, the control policy for
each subsystem can be derived through value iteration or
policy iteration. Each subsystem takes action by observing
its local environment. The control policy of a multi-stage
line is a combination of all control policies derived from all
subsystems. However, as a control policy is implemented,
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(a) Two-machine-one-buffer subsystems

Figure 3. System decomposition with two- or three-machine subsystems.

sub
) TI ,max
[

sub
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(a) A two-machine-one-buffer subsys-
tem

Figure 4. Models for subsystems.

the original structural relationship between subsystems
changes. Due to this change, the behavior of a subsystem
does not truly represents its corresponding part in the
multi-stage line. It requires subsystems to update their rela-
tionship according to the current control policy, which is
part of the aggregation procedure. A new iteration starts,
since the current control policy may not be optimal as the
relationship between subsystems is updated. The MDP
model for each subsystem with updated relationship is
developed, and new control policy is derived. After several
iterations, this process converges, and each subsystem has a
similar behavior as its corresponding part in the multi-stage
line. The control policy for each subsystem can achieve a
global improvement.

In the following subsections, the system decomposition
and modeling of subsystems will be introduced in details,
and a novel aggregation-based procedure will be provided to
generate the control policy.

4.3. System decomposition

A subsystem, isolated from a multi-stage line, serves as a
building block to support the decomposition-based control,
and it can be a two-machine-one-buffer subsystem or a
three-machine-two-buffer subsystem, shown in Figure 3.
Figure 3(a) shows how a multi-stage line with D machines is
decomposed into (D — 1) two-machine-one-buffer subsys-

sub

tems. Each subsystem consists of two machines, m{*’ and

m3*’, and a buffer B{’. The ith subsystem of a multi-stage
line is denoted by SS;, for i=1,2---,D — 1. The control
model for a two-machine-one-buffer subsystem is to deter-

mine when to turn machine m** down based on the state

Multi-stage line eee

n B mz B ms B ma B ms

Decomposition

Decomposition
Sub-system SS:

Sub-system SS:

(b) A three-macine-two-buffer subsystem

of the subsystem. Figure 3(b) shows how a multi-stage line
with D machines is decomposed into (D —1)/2 three-
machine-two-buffer subsystems. Each three-machine-two-
buffer subsystem consists of three machines, denoted by
m, ms? and m$*, and two buffers, denoted by B{** and
B;“b. Similar to a two-machine-one-buffer subsystem, the
control model for a three-machine-two-buffer subsystem is

sub

sub and ms

to control machine m;
the subsystem.

We decompose a transfer line into subsystems, since the
system as a whole is infeasible to analyze directly, due to its
large state space. Decomposition, as an approximation-based
method, can compromise modeling accuracy, when too
many subsystems are involved. Also to consider the com-
plexity of the subsystem itself, we find the balance to be the
use of a three-machine-two-buffer subsystem as a general
building block in the decomposition method. One two-
machine-one-buffer subsystem will be utilized to handle the
systems with an even number of machines.

according to the state of

4.4. Descriptive model of subsystem

The relevant parameters to model a subsystem are presented
in Figure 4. The ith machine in a subsystem is denoted by
mf“b, and it is a Bernoulli machine with parameter pf”b . The
ith buffer in a subsystem is denoted by B’. Buffer B{*® is
described by buffer capacity Ni**, maximum allowable resi-
dence time T
T54b... Neighboring subsystems are mutually influenced.
Such influence is modeled by starvation probability, p*, and

blockage probability, p°. The probability that machine m:*

and minimum required residence time



is not able to produce, due to the starvation from its
upstream buffer is denoted by p*. If buffer B"® has available
space, the probability that the first machine can produce is
psl“b (1 —pf). Machine m;"b

subsystem and machine m$* in a three-machine-two-buffer
subsystem are shared by its downstream subsystem, which is
illustrated in Figure 3. The probability p” represents the
probability that machine m$* in a two-machine-one-buffer

in a two-machine-one-buffer
sub

subsystem or machine m$* in a three-machine-two-buffer

subsystem is not allowed to work, either due to downstream
blockage or the control policy of the downstream subsystem.
Thus, if there is at least one part in buffer B{** of a two-
machine-one-buffer subsystem or buffer B’ of a three-
machine-two-buffer subsystem with residence time larger
than or equal to the minimum required residence time, the
probability that the part can be produced and leave the
subsystem is p3®(1—pb) and p$b(1—p?) for a two-
machine-one-buffer subsystem and three-machine-two-buf-
fer subsystem, respectively. Assumption (ix) suggests that
machine m; is never starved, so p* is always equal to zero
for the first subsystem. Similarly, the last machine of the last
subsystem is never blocked, and thus p® in the last subsys-
tem is always equal to zero.

4.5. Markov decision model for the subsystem

When a two-machine-one-buffer subsystem is isolated, the
subsystem can be viewed as a two-machine transfer line
with two Bernoulli machines with parameters p**(1 — p*)
and p$“*(1 — pP), respectively. Similarly, a three-machine-
two-buffer subsystem can be viewed as a three-machine
transfer line with three Bernoulli machines with parameters
P (1 —p%), p, and p®(1 — pt), respectively. The modeling
of two-machine-one-buffer subsystem shares similarities
with the modeling of a three-machine-two-buffer subsystem.
In this subsection, we only show how to model a three-
machine-two-buffer subsystem without repeating it for two-
machine-one-buffer subsystem.

Decision epochs: t =0, 1,
System state: h¢(t) = (n S“b, b, sl 1 HU, b
and n$* are the buffer occupancy of buffer B’ and buf-
fer BS“b, respectively. r”‘b and rS“b are the residence time
of the first part in buffer Bub and buffer B§*, respect-
ively, if the buffer is not empty. Let rf”b =0, fori=1, 2,
if n* = 0. The state space of a subsystem is denoted
bY Hsub.

o Action: a(t) = [as“b(t) ai”b(t)]r € A", where ag
(t) € {1,0}, for i=1, 2, at any time t. The action af“b
(t) = 0 makes machine m*® not work in cycle (t+ 1),
and the action a(t ) =1 keeps machine m"
unchanged. The action space of a subsystem is denoted
by Asub‘

e Reward:

r(hs"h(t —
r(hsub(t

sub)

the reward at time (t+—1) is denoted by
1),a(t — 1)). Specifically,

. 1),asub(t _ 1)) — ﬁ{sub(t) — wgﬁsub(t), (20)
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where ﬁ%sub(t) and ﬁsub(t) are random variables repre-
senting the production of the last machine m$* and the
scrap from both buffers, respectively.

e Expected total discounted reward of policy 7’

Trsub _ Sub{zit hsub asub( )) },

where A € [0,1) is the discount.
The optimal control policy of a subsystem can be expressed as

n" € arg math“ {ZA r(R(t), a (t ))}

Remark 3. We define the state of a buffer only by the buffer
occupancy and the residence time of the first part in the buf-
fer. Following the approximate method detailed in Ju et al
(2017), the optimization problem can be treated as an MDP
with an exact stochastic model, and standard methods, such
as the value iteration and the policy iteration, can be used to
solve the problem.

1)

(22)

sub: H . A be a mapping from state to action

under control policy 7. As control policy 7* is implemented,

the subsystem reaches steady state. Let u: H’ — [0,1] be a

mapping from state to its steady-state probability under control
—~sub

— sub —sub
policy 7. PR ,SR™,ST™ and BL™ denote the estimated
long-term performance measures of the subsystem under control
policy 7%, and they are defined and derived as follows.

Let w

—sub
o Estimated production rate PR™: the expected number of
parts produced by the last machine of the subsystem in a
cycle, and specifically,

—~sub
PRsu _ Z /l(hsub>P§uh( b)) (23)
hsubE’HgRb
where
H;ﬁa _ {hsub Hsubhsub > Téufmn} (24)

The subset of state space, M4, represents all states

where the residence time of the first part in buffer B§*® is

equal to or larger than T5*?, . It is suggested by Equation

(23) that one part can be produced for a subsystem in a

state in M3 if machine m$* is up and there is no block-
age to the machine.

o Estimated scrap rate SR™": the expected number of scrapped

parts from the subsystem in a cycle, and specifically,

K= 3w (1o p et
bR,
I Z 'u(hsub)[o pszub]nsub(hsub)( (1 pb))
ey,
i Z 'u(hsub( P (1 pb)),
hs ’76%5“

(25)
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where

Tsub

Mgy = {0 € M = T, (26)

_1},

H?Asz {hsub c Hsubhsub T;ufnax _ l,n Nmb ,L_sub < T;ufnax _ 1}
(27)

sub sub sub | _sub sub
iy = {h e Wyt = 1 —1). (@29)

Equation (25) is the summation of three terms. The first

term represents the case that a part is scrapped from buf-

fer B*® due to failure of machine m* or an action that
turns machine m$** down. In the second term, machine
m$* is capable of working, but a part is scrapped from
buffer B{* due to blockage of buffer B§*. The third
term represents a scrap from buffer B3 caused by
machine m$*. b

o Estimated starvation probability ST the probability
that the last machine of the subsystem is not able to

produce due to starvation, and specifically,

—~sub
s _ Z M<h5ub)’ (29)
hsub 5
where
H.;I:}I? _ {hsub c Hsub|,r§ub T;ufnm} (30)
sub
The estimated starvation probability ST is the prob-

ability that buffer BS* has no part with residence time
larger than or equal to T;”fmn b
o Estimated blockage probability BL™: the probability that
the first machine of the subsystem is not able to produce

due to blockage or control policy, and specifically,

—~sub

BL" = > ur)(1—[1 o]z (nt))
hsub e

+ Z hsub 0] nsub (hsub)
=

(1 _ |:0 pszub:| sub(hsub))

+ Z hsub 0] nsub (hsub )
e

|:0 psub} sub(hsub)(( pgub) _,r_P;ubpb),

(31)
where

sub sub sub| sub __ nysub _sub sub
Hpr *{h € H™m" = Ny"°, i < Ty, max_l}’

(32)
Hsub _ {hsub c Hsub|nsub Nsub sub Tsuh _1 nsub
BL,2 — 1, max 2
- Néub’ ;ub < Tgurhnax 1}'
(33)

The first term of Equation (31) is the probability that
machine m{* is blocked by the control policy that

directly turns machine m5** down. The second term rep-
resents the case when buffer B{* is full and machine
m3* cannot produce a part from buffer B’ due to the
control policy or failure on machine m$*®. The third
term gives the situation where both buffer B’ and buf-
fer B*® are full and machine m$** cannot produce a part

due to the control policy or failure.

In a similar way, the MDP model of a two-machine-one-
buffer subsystem can be built, and the performance meas-
ures of a two-machine-one-buffer subsystem can be derived.

4.6. Aggregation procedure

The structural relationship between neighboring subsystems
is defined by the starvation probability p* and blockage
probability p”. If p* and p” are accurate, the behavior of a
subsystem will be similar to its corresponding part in the
multi-stage line. The control policy of each subsystem is
derived from its MDP model as p* and p” are assumed to be
known. However, as the control policy of each subsystem is
implemented, it changes the relationship between neighbor-
ing subsystems. Thus, it requires the relationship to be
updated. The update of the relationship further requires
each subsystem to derive an updated control policy. Thus,
an iterative method, the aggregation procedure, is proposed
to update the relationship between neighboring subsystems
and the control policy of each subsystem.

The aggregation procedure, shown in Figure 5, includes
the backward aggregation and the forward aggregation.
Figure 5(a) shows that a multi-stage line is decomposed into
several subsystems, and a control policy 7 is derived for
each subsystem as the starvation probability p° and the
blockage probability p® of each subsystem are assumed to be
known and fixed. Figure 5(b) and Figure 5(c) illustrate the
backward aggregation and the forward aggregation, respect-
ively. In this process, the control policy 7% is fixed, and p®
and p° are updated through the backward aggregation and

forward aggregation, respectively. In addition, performance

—~sub —sub
measures, including PR ,SR , are derived.

The backward aggregation, shown in Figure 5(b), starts
with the last subsystem and moves backward. The blockage

probability BAL”’b, derived by Equation (31) from the a sub-
system, is used to update p” of its upstream neighboring
subsystem, and this process continues until p’ of the first
subsystem is updated. The forward aggregation, shown in
Figure 5(c), is similar to the backward aggregation but starts

with the first subsystem. The starvation probability ST sub,
derived by Equation (29) from a subsystem, is used to
update p° of its downstream neighboring subsystem. This
forward aggregation continues until p° of the last subsystem
is updated.

Figure 6 provides the pseudocode of the decomposition-
based control approach. Line 1 is to decompose the multi-
stage line into subsystems. Line 2 initializes the control pol-
icy for each subsystem, and the initial control policy never
turns machines down. The decomposition-based control
consists of several iterations to finally derive the control
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Figure 5. The aggregation procedure.

policy for each subsystem, and the iterations are presented
from line 3 to line 18. It is a loop from line 3 to line 18.
Inside the loop, the steps from line 6 to line 9 represent the
backward aggregation, and the the steps from line 10 to line
13 represent the forward aggregation. As p* and p” of each
subsystem are updated, the new control policy for each sub-
system is derived, shown from line 15 to line 17. A stop cri-
terion is set for the loop, and it can be a certain number of
iterations or the indication of convergence of p* and p’.

4.7. Convergence

A parameter setting is selected as follows to numerically
study the convergence of the aggregation procedure:

D=7,

p1=0.9,p; = 0.87,p3 = 0.85, p; = 0.83,
ps = 0.8,ps = 0.77,p7 = 0.75,
Ni =6, T; max = 8, Ti,min = 2,
o =1.3.

(34)
fori=1,..,D—1,

The discount, 4, is set to be 0.95. A set of control policies
for subsystems are obtained in each iteration, and we com-
pare the steady-state performance measures under those
control policies through simulation. The simulation repeats

sub sub sub sub sub
Bi mz B> ns

J L Derive
 sub =~ sub

PR" SR
ﬂ.sr:b 517,,\va:>[)~ ces
Update

sub

Fix control policy 7 and

1000 times, and the steady-state performance measures are
shown in Figure 7. The horizontal axis represents the itera-
tions, and the vertical axis represents the performance meas-
ures. Iteration 0 shows the performance measures where the
initial control policy is implemented. The result suggests
that the decomposition-based control can soon improve the
performance in a small number of iterations. The perform-
ance measures oscillate with in a small zone, primarily due
to the random error from the simulation. The oscillation of
production rate looks more obvious, because the control
policy does not significantly change the production rate.

To numerically study the convergence in a more general
sense, we introduce vectors p*; and p%;, for i =0,1,.... Let
p’i and pb, for i=0,1,.., be a vector of the starvation
probabilities and a vector of blockage probabilities from all
subsystems under the control policy obtained from the ith
iteration, respectively. Specifically,

S S S T
= o] (35)
b boob !
pi= [P1 2 } » (36)
where p; and p]l-’, for j = 1,2, ..., are the starvation probabil-

ity p°* and blockage probably p” of subsystem SS;, respect-
ively. The distance of p; and p*;_; and the distance of p¥;
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1: Decompose multi-stage line into K subsystems
2: Initialize control policy for each subsystem

3: while Stop criteria is not satisfied do

4: Initialize p* and p° to 0

5 while Stop criteria is not satisfied do

6: fork=1,K-1do

7 Derive performance of subsystem SSk_g+1
8: Update p® of subsystem SSx_j,

9: end for
10: fork=1,K—-1do
11: Derive performance of subsystem S5%
12: Update p* of subsystem SSk.1
13: end for

14: end while

15: fork=1,K—-1do

16: Obtain control policy for subsystem S5
17: end for

18: end while
Figure 6. The iterative procedure for decomposition-based control.

and p;_, are denoted by & and d’ for i = 1,2, ..., respect-
ively, and defined as follows:

&= —p') (05— p'io)s
&= (p% —p"1) (0% — plis).

The convergence can be observed, if d5 and d’ are getting
close to zero as i increases.

To numerically show the convergence of the aggregation
procedure of the decomposition-based control, 2000 param-
eter settings are randomly generated from the range of par-
ameter settings as follows:

p1 €[0.85,0.99],

pi €10.65,0.99] for i =2,...,D,

N; € {5,6,7} for i=1,..,D— 1,

Ti,mux S {Nz + I,Ni + Z,Ni + 3} for i = 1,...,D — 1,
Ti,min c {1,2} for i = 1,...D—1,

w € [0.7,1.7].

(37)

(38)

(39)

Parameters are selected with equal probability from the
range. We let the number of machines be nine. The number
of iterations is set to be eight. Both d§ and d! at the end of
the iteration are obtained for each parameter setting. The
experiment result shows that 99.95% of all cases have dj
smaller than 1073 and 100.00% of the cases result in df
smaller than 1073. This indicates that the performance
measures converge within a small interval after a certain
number of iterations.

5. Numerical experiments and performance
comparison

5.1. RL control for comparison

The decomposition-based control is compared with a
feature-based reinforcement learning control (RL control).

In the RL control, a feature-based architecture is used to
handle the large state space.

Let r(H(t —1),a(t — 1)) be the reward function of the
multi-stage line at time (¢ — 1). Specifically,

r(H(t — 1),a(t — 1)) = PRp(t) — wSR(t). (40)

Given the initial system state H(0), the optimal expected
total discounted reward is expressed as follows:

V' (H(0) = m;xE"{iﬂfﬂH(i),a(i»}, (a)

which, however, is impossible to obtain, due to the large
state space of the problem. An approximate lookahead func-
tion V(¢p(H(t)),p) with parameters f is introduced to
replace v*(H(t)). Function ¢(H(t)) maps system state H(f)
to the feature, and V(¢(H(¢)), B) can be obtained through
training. The buffer occupancy of each buffer and the resi-
dence time of the first part in each buffer are important
measures to capture system dynamics, and thus we take
them as candidates of features. To further explore features, a
preliminary analysis of features is performed with parame-
ters given as follows.

D =4,

p1 = 0.9,1)2 = 083,1)3 = 075,])4 =0.7,
N; =6, fori=1,2,3

Timax =8 for i =1,2,3,

Ti,min =0 for i = 1,2,3,
w=0.9,4=0.95.

(42)

Let the initial buffer occupancy of each buffer be two and
residence time of the first part in each buffer be six. The
effect of the initial buffer occupancy is studied. We change
the initial buffer occupancy from one to six for each buffer
each time with all other parameters fixed. For each initial
buffer occupancy, 4000 initial system states are randomly
generated, and a simulation is run for 50 cycles starting
with each initial system state. The average total discounted
rewards, S0 27! (PR(t) — wSR(t)), starting with different
initial buffer occupancy are compared. The result is shown
in Figure 8. This suggests that, to have a large average total
discounted reward, the buffer occupancy should not be
either too small or too large. A small buffer occupancy
results in a high probability of starvation for the down-
stream machines, and it reduces the production rate. In con-
trast, a large buffer occupancy requires a long time to have
all the parts in the buffer processed, and the risk of
scrap increases.

Following the same way with parameters given in
Equation (42), we study the effect of initial residence time
of the first part in the buffer. The initial buffer occupancy is
set to be four for each buffer, and the initial residence time
of the head part in each buffer is set to be three. We change
the residence time from three to seven and plot the average
total discounted reward in Figure. 9. A trend can be seen
that the average total discounted reward decreases as the ini-
tial residence time of the head part in the buffer increases.
A large residence time results in a high risk of scrap, and
thus a small residence time is always preferred.
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Figure 7. Steady-state performance measures with control policies obtained in each iteration.
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Figure 9. The average total discounted reward with different initial residence
time of head part in the buffer.

According to the simulation study, three features are
adopted for each buffer, and they are the buffer occupancy
n;, the square of the buffer occupancy n?, and residence
time of the first part in the buffer 7; ;. Thus, the features for
the multi-stage line are provided by

PH®) =[d, ¢, b3pa]'s

where ¢, is a constant term, and ¢5;_,, ¢;; and ¢, are
features of buffer B;, for i = 1,2,..., D — 1. Specifically,

(43)

Then, the lookahead function, following a linear feature-
based architecture, is expressed as follows:

V(P(H(1)), B) = B"d(H(1)).

Parameter f in Equation (45) can be estimated in training
through simulation. The optimal action can be expressed as

a‘(t—1)e arg“(ff)aéAE{r(H(t —1),a(t—1)) + 0 (p(H(t), B) }-

(45)

(46)

5.2. Simulation experiment with a single case

To show how the decomposition-based control improves the
multi-stage line, we use the parameter setting in Equation (34).
The simulation runs 200 cycles with all buffers empty initially
and repeats 1000 times. The multi-stage line is decomposed
into three-machine-two-buffer subsystems.

The result of the simulation experiment is shown in
Figure 10. In each one of the three plots in Figure 10, the
horizontal axis represents the time from cycle 0 to cycle 200,
and the vertical axis represents the performance measures.
There are three plots representing three performance meas-
ures, and they are production rate PRp(t), scrap rate SR(f)
and reward (PRp(t) — @SR(¢)). The average performance
measures and 95% confidence intervals without control are
plotted by blue lines and blue shaded areas, respectively.
Similarly, the green color and red color are used for the RL
control and the decomposition-based control, respectively.

Production rates with two control methods and without
control are plotted in Figure 10(a), and it shows no significant
difference in production rates among the three methods. The
two control methods slightly reduce the production rate.
Among the two control methods, the decomposition-based
control maintains a higher production rate. The two control
methods show a significant improvement in the scrap rate,
shown in Figure 10(b), and in this case, RL control reduces the
scrap rate to a greater extent. This result suggests that both
control methods can significantly reduce the scrap rate with-
out sacrificing too much in the production rate. Figure 10(c)
shows the rewards of the three methods. The rewards under
RL control and decomposition-based control are higher than
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Figure 10. Comparison of performance measures.

the reward without control. The rewards of RL control and
decomposition-based control are almost overlapped, and RL
control results in a slightly higher reward in this case. In terms
of computing time, the decomposition-based control is much
more computationally efficient than the RL control. The
experiment runs on a server with Intel(R) Core(TM) i7-5930K
CPU, sufficiently large RAM and Linux operating system. In
this single experiment, the decomposition-based control takes
19 seconds to generate the control policy, whereas the RL con-
trol needs as much as 10 222 seconds for training.

After the last iteration of the aggregation procedure, each
subsystem has its control policy. We partially present the
control policies for machine m; and machine m, in Figure
11 and Figure 12, respectively. Machine m3; and machine my,
are assigned to the second subsystem, which consists of
machine ms, machine m,, machine ms, buffer B; and buffer
B,. Both machine mj; and machine m, take actions by
observing the states of buffer B; and buffer B,.

Figure 11 presents the control policy for machine m;. We
first fix the state of buffer By. The relationship between the
action that machine m; takes and the state of buffer B; is
illustrated in Figure 11(a), Figure 11(b) and Figure 11(c).
The horizontal axis represents the residence time of the first
part in buffer Bs;, and the vertical axis represents the buffer

occupancy of buffer B;. Given that the state of buffer B, is
fixed, a state for the subsystem is represented by a block in
the figure. The black blocks are the infeasible regions that
the subsystem never visits. In the feasible regions, a block is
colored to be white or gray, indicating two actions. The
white color means that machine m; will be unchanged,
whereas the gray color indicates that machine m; will be
turned down manually. Figure 11(a) shows the case when
buffer B, has a low buffer occupancy and a small residence
time of the first part. It can be observed that machine mj is
turned down only when there is a high buffer occupancy in
buffer B;. Figure 11(b) shows a control policy where buffer
B, has a median buffer occupancy and a median residence
time of the first part, and the control policy is similar to the
control policy shown in Figure 11(a). When buffer B,
reaches a high occupancy and has a large residence time of
the first part, machine m; is more likely to be turned down
to maintain a lower buffer occupancy for buffer B;, shown
in Figure 11(c).

Then, we fix the state of buffer B; and present the con-
trol policy with respect to the state of buffer B,. The result
is shown in Figure 11(d), Figure 11(e) and Figure 11(f).
Figure 11(d) indicates that machine mj; always keeps
unchanged whatever state buffer B, is when buffer B; has a
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Figure 11. Control policy obtained from the decomposition-based control for machine ms.

low buffer occupancy and a small residence time of the first
part. In contrast, machine mj; is always turned down what-
ever state buffer B, is when buffer B; has a high buffer
occupancy and a large residence time of the first part, which
is shown in Figure 11(f). Figure 11(e) indicates that when
buffer B; has a median buffer occupancy and a median resi-
dence time of the first part, machine mj; is turned down
only when buffer B, reaches a high buffer occupancy.

From Figure 11, three main features related to the deci-
sion making of machine m; can be observed. First, buffer
occupancy of buffer B; and buffer B, plays an important
role in machine mj’s decision making. Machine mj; is more
likely to be turned down when buffer B; and/or buffer B,
have/has a high buffer occupancy. Such actions prevent the
subsystem from a potential scrap by turning machine m;
down and stopping new parts from entering the subsystem.
Since the buffer occupancy is high, the action that turns
machine m; down will not cause too much loss of produc-
tion. Second, buffer B; has a larger influence on machine
mjy’s decision making than buffer B,. It can be observed that
the lookup tables shown in Figure 11(a), Figure 11(b) and
Figure 11(c) does not change too much mutually, while the
lookup tables in Figure 11(d), Figure 11(e) and Figure 11(f)
shows a large difference. Machine m; is closer to buffer B,
than buffer B,, and it explains why buffer B; has a larger
influence on machine mj’s decision making. Finally, the
control policy is not sensitive to the residence time of the
first part in either buffer B; or buffer B,, and the boundary
that separates the white region and gray region does not
show the property of monotonicity.

Figure 12 presents the control policy for machine m,. In
each plot, the black blocks represent the infeasible regions.
Within the feasible regions, the white blocks indicate the
action that no intervention is given, whereas the gray block
indicates the action to turn machine m, down. We first fix

the state of buffer B,. When buffer B, has a low buffer occu-
pancy and a small residence time of the first part, machine
my is always kept unchanged. In such a situation, there is
no risk of scrap from buffer By, and letting machine my
work can potentially increase the production rate. When
buffer B, has a median buffer occupancy and a median resi-
dence time of the first part, machine my is turned down
when buffer B; has a small buffer occupancy and a small
residence time for the first part. This action can decrease
the risk of scrap from buffer B, without increasing the risk
of scrap from buffer B;. It can be observed that the feasible
region with 73 ; smaller than two is white, and the actions
in those states in fact do not make any difference. The rea-
son for this behavior is that machine m, cannot produce a
part from buffer B; when the residence time of the first part
in buffer B; is smaller than T3 ,;,. When buffer B, has a
high buffer occupancy and a large residence time of the first
part, machine m, produces when the residence time of the
first part in buffer B; is large. In this case, machine m, has
to do a trade-off by considering scrap from both buffer B,
and buffer B,.

Then, we fix the state of buffer B;. Figure 12(d) suggests
that machine m, is more likely to be turned down when B;
has a low buffer occupancy and a small residence time of
the first part. Figure 12(e) indicates that, in the cases that B;
has a median buffer occupancy and a median residence time
of the first part, machine m, is turned down only when buf-
fer occupancy of buffer B, is high. Machine m, does so due
to the trade-off of scrap in buffer B; and buffer B,. Figure
12(f) suggests that machine m, is unchanged whatever state
buffer B, is when buffer B; has a high buffer occupancy and
a large residence time of the first part.

When we compare Figure 11 with Figure 12, we can
observe that the action on machine ms; and the action on
machine m, play different roles in improving the systems.
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Figure 12. Control policy obtained from the decomposition-based control for machine m,.

os : 05
=]

g 5

(3 Z

3 g

£ £

5 =05

©
n

Improvement
=)

100 150 050

Case number

(a) Improvement of RL control control

100
Case number

(b) Improvement of decomposition-based

150 200 0 50 100 150

Case number

200

(¢) Improvement of decomposition-based
control minus improvement of RL control

Figure 13. Improvement of average reward for multi-stage lines with five machines. The average reward without control is 0.525.

Machine mj; is the first machine of its subsystem, and it
decides to allow a part to enter the subsystem or prevent a
part from entering the subsystem. Machine m, is in the
middle of buffer B; and buffer B,. Its responsibility is to bal-
ance the risk of scrap from buffer B; and buffer B,.

5.3. Simulation experiment with randomly selected
parameter settings

To evaluate the performance of the decomposition-based
control in a more general sense, we randomly select param-
eter settings of a multi-stage line from a predefined range
and compare the performance measures of a system without
control, with RL control and with decomposition-based
control. The range of parameter settings is given in
Equation (39). Parameters are selected with equal probability
from the range. A total of 200 parameter settings are
randomly selected for multi-stage lines with D=5 machines
and D=7 machines, respectively. In each parameter

setting, the average steady-state performance measures of a
system without control, with RL control and with decom-
position-based control are obtained through simulation and
compared mutually. The simulation starts with empty buf-
fers. The average reward of each cycle from cycle 201 to
cycle 400 among 100 repeats, which is the mean value of 20
000 observations, is calculated and compared. In the decom-
position-based control, multi-stage line is decomposed into
three-machine-two-buffers subsystems.

The results of the simulation experiment for the multi-
stage lines with five machines and seven machines are
shown in Figure 13 and in Figure 14, respectively. Figure
13(a) and Figure 13(b) show the improvement of reward
by RL control and the decomposition-based control for the
multi-stage line with five machines, respectively. In most
cases among 200 random parameter settings, the RL con-
trol can improve the system, but it could happen in some
cases that the RL control makes the performance worse. In
contrast, the decomposition-based control is more robust,
and all 200 cases can be improved. Figure 13(c) shows a



IISE TRANSACTIONS . 957

o
9]
Improvement

Improvement
o

=
9]

e
W

Improvement

o
9]

0 50 100 150
Case number

200 0 50

(a) Improvement of RL control
control

100 150
Case number

(b) Improvement of decomposition-based

200 0 50 100 150

Case number

200

(¢) Improvement of decomposition-based
control minus improvement of RL control

Figure 14. Improvement of average reward for multi-stage lines with seven machines. The average reward without control is 0.464.

Table 1. Average reward of different methods.

Average reward Average reward with

Relative improvement of

Average reward with Relative improvement

D without control decomposition-based control decomposition-based control(%) RL control of RL control(%)
5 0.525 0.648 234 0.588 12

7 0.464 0.608 31.0 0.506 9.1

9 0.403 0.563 39.7 - -

1 0.385 0.543 41.0 - -

pairwise comparison where the improvement of decompos-
ition-based control minus the improvement of RL control
for each case is presented, and the result suggests that the
decomposition-based control outperforms the RL control.
Considering the average reward without control is 0.525,
such an improvement is significant. The same comparison
is performed for the multi-stage line with seven machines
as well. Figure 14(a), compared with Figure 13(a), shows
more negative improvement. It suggests that as the number
of machines increases the RL control is more likely to fail
to work. In contrast, Figure 14(b) suggests that the decom-
position-based control can still maintain a good perform-
ance. Figure 14(c), compared with Figure 13(c), shows that
the strength of decomposition-based control over the RL
control is more significant as the number of machines
increases. The average reward without control is 0.464,
and it shows a significant improvement of the decompos-
ition-based control.

The control methods are developed with MATLAB and
run on a server with Intel(R) Core(TM) i7-5930K CPU, suf-
ficiently large RAM and Linux operating system. It takes
time to perform training for RL control and perform the
aggregation procedure of decomposition-based control.
When there are five machines, the average computing time
is 1037.8seconds for RL control and 34.6seconds for
decomposition-based control. As the total number of
machines increases to seven, the average computing time is
14 506.3 seconds for RL control and 70.8 seconds for decom-
position-based control. The result suggests that the decom-
position-based control is much more computationally
efficient than the RL control. When the number of machines
increases, the computing time of the RL control increases
much faster than the decomposition-based control.

Transfer lines with more machines are tested, and the
result is summarized in Tables 1 and 2. Table 1 provides the
reward of each method wunder each setting. The

Table 2. Computing time of different methods (seconds).

Aggregation procedure Training of
D of decomposition-based control RL control
5 346 1037.8
7 70.8 14 506.3
9 170.7 -
1 211.6 -

decomposition-based control shows a good performance and
also outperforms the RL control and the case under no con-
trol. The computing time is presented in Table 2. The com-
puting time of the aggregation procedure of the
decomposition-based control is much smaller than the train-
ing time of RL control and also much less sensitive to the
number of machines than the RL control.

6. Conclusions and future work

In this article, a multi-stage Bernoulli transfer line with resi-
dence time constraints is formulated. Due to a large state
space of the production line, it is difficult to perform real-
time control according to system state. The decomposition-
based control is proposed to address the problem. The
simulation experiment suggests that the proposed method
can improve system performance. Compared with a general-
purpose reinforcement learning-based control method, the
decomposition-based control can achieve a better system
performance improvement and a significant reduction in
computing time. It thus provides production engineers with
an effective and quantitative tool to perform real-time con-
trol of production lines with residence time constraints.

In the future, work can be directed to investigating trans-
fer lines with different structures, such as distributed system
and assembly systems. In addition, it is worth studying
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decomposition-based control in a manufacturing environ-
ment with more general machine reliability models.
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