
1

On the Performance of Machine Learning Models
for Anomaly-Based Intelligent Intrusion Detection

Systems for the Internet of Things
Ghada Abdelmoumin, Danda B. Rawat, Senior Member, IEEE and Abdul Rahman

Abstract—Anomaly-based machine learning-enabled intrusion
detection systems (AML-IDS) show low performance and predic-
tion accuracy while detecting intrusions in the Internet of Things
(IoT) than that of deep learning-based intrusion detection systems
(DL-IDS). In particular, AML-IDS that employ low complexity
models for IoT, such as the Principal Component Machine (PCA)
method and the One-class Support Vector Machine (1-SVM)
method, are inefficient in detecting intrusions when compared to
DL-IDS with the two-class Neural Network (2-NN) method. PCA
and 1-SVM AML-IDS suffer from low detection rates compared
to DL-IDS. The size of the dataset and the number of features
or variants in the dataset may influence how well PCA and
1-SVM AML-IDS perform compared to DL-IDS. We attribute
the low performance and prediction accuracy of the AML-IDS
model to an imbalanced dataset, a low similarity index between
the training data and testing data, and the use of a single-
learner model. The intrinsic limitations of the single-learner
model have a direct impact on the accuracy of an intelligent
IDS. Also, the dissimilarity between testing data and training
data leads to an increasingly high rate of false positives in
AML-IDS than DL-IDS, which have low false alarms and high
predictability. In this paper, we examine the use of optimization
techniques to enhance the performance of single-learner AML-
IDS, such as PCA and 1-SVM AML-IDS models for building
efficient, scalable, and distributed intelligent IDS for detecting
intrusions in IoT. We evaluate these AML-IDS models by tuning
hyperparameters and ensemble learning optimization techniques
using the Microsoft Azure ML Studio (AMLS) platform and two
datasets containing malicious and benign IoT and industrial IoT
(IIoT) network traffic. Furthermore, we present a comparative
analysis of AML-IDS models for IoT regarding their performance
and predictability.

Index Terms—Intrusion detection, Internet of Things, machine
learning, hyperparameter tuning, ensemble learning, Stacking.

I. INTRODUCTION

Intelligent intrusion detection systems (IDSs) that employ
machine-learning (ML) have shown promising results in de-
tecting intrusions [1], [2], [3], [4], [5]. Anomaly-based

Ghada Abdelmoumin and Danda B Rawat are with the Department of
Electrical Engineering and Computer Science at Howard University, USA.
Email: ghada.abdelmoumin@bison.howard.edu, danda.rawat@howard.edu

Abdul Rahman is with Microsoft Corp. USA. Email: abdulrah-
man@microsoft.com

This work was supported in part by the DoD Center of Excellence in AI
and Machine Learning (CoE-AIML) at Howard University under Contract
Number W911NF-20-2-0277 with the U.S. Army Research Laboratory, by
the Microsoft Research and by the US National Science Foundation under
the grant number 1828811 and CNS/SaTC 2039583. However, any opinion,
finding, and conclusions or recommendations expressed in this document are
those of the authors and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the funding agencies.

machine learning-enabled intrusion detection systems (AML-
IDS) that employ less complex models for IoT such as the
Principal Component Machine (PCA) method and the One-
class Support Vector Machine (1-SVM) method are inefficient
in detecting intrusions when compared to deep learning IDS
(DL-IDS) with the two-class Neural Network (2-NN) method.
PCA and 1-SVM AML-IDS suffer from low detection rates
compared to DL-IDS [6], [7]. PCA AML-IDS is better when
dealing with relatively large data with a small number of
features and 1-SVM AML IDS does not scale well when
kernel-SVM is used [8]. The 1-SVM AML-IDS is more
suitable when the data traffic is relatively small. Furthermore,
PCA and 1-SVM AML-IDS are comparatively better than
signature-based IDS for detecting unknown attacks. The 2-NN
DL-IDS have shown good performance with low false alarms
for large and small datasets with a large or small number of
features.

ML based intelligent IDS models suffer from high false-
positive rates and low detection rates. We attribute the poor
performance of these models in detecting intrusions to using
a single-learner model to train the AML-IDS model, among
others. Hence, the need to explore ways to optimize the
performance of these models is acutely critical for building ef-
ficient and high-performing AML-IDS models with low false-
positives rates, good predictability, and high detection rate for
IoT. According to [1], ensemble learning is used widely where
the weakness of single-learner classifiers is compensatable
by integrating the predictions made by each classifier in the
ensemble and then combine these predictions to enhance the
performance. In addition to using ensemble learning as a
viable solution, we examine the use of hyperparameter tuning
as a standalone solution and in conjunction with ensemble
learning to optimize the low-performing AML-IDS models.

This paper focuses on optimizing the PCA and 1-SVM
AML-IDS models using hyperparameter tuning and ensemble
learning to enhance the security in IoT. First, we perform
hyperparameter tuning to optimize these models by selecting
the optimal model structure. Then, we apply ensemble learning
using the Stacking technique to create multiple learners and
train the single-learner AML-IDS models to boost the single-
learner model detection performance. We train the optimized
models using ground-truth network intrusion datasets contain-
ing both malicious and benign IoT and IIoT traffic and evaluate
their performance using standard ML/DL metrics.

The remainder of this paper is organized as follows. Section
II provides background and related work. Section III provides

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3103829

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

2

an overview of optimization techniques. Section IV describes
the experimental setup. Section V presents the performance
evaluation. Section VII provides conclusion and future work.

II. BACKGROUND AND RELATED WORK

Building reliable and accurate intrusion detection techniques
requires efficient clustering/classification, less human interac-
tion, low computational cost and overhead, identification of
new attacks and their types, and robustness [9]. There are
different approaches to overcome the limitations of traditional
IDS ranging from mining and statistics to logic and intelli-
gence to machine learning or deep learning based solutions [1],
[4], [10], [9]. For boosting the performance of intelligent IDS,
ensemble learning has been proposed as opposed to single
learning, where multiple classifiers are combined by using the
Stacking or Stacking Generalization technique to increase the
prediction accuracy and reduce false alarms [11].

Focusing on network anomalies in critical cyber-physical
systems network traffic, the authors in [12] proposed an
ensemble method that leveraged deep models and the Stack-
ing technique to obtain a reliable classification of outliers
using a heterogeneous flow-based dataset that included IoT
data. To find the best ensemble technique for detecting net-
work intrusions, authors in [13] analyzed and evaluated the
performance of the Bagging, AdaBoost, Stacking, Decorate,
Voting, and Random Forest ensemble (with homogeneous and
heterogeneous) techniques using several ML algorithms from
the Weka Data Mining tool. In [13], the ensembles that use
Stacking and Decorate techniques to aggregate the outcome
of their base classifiers have higher training time and testing
time than classifiers that used other ensemble techniques when
compared to single classifiers. To apply ensemble learning
while reducing the time complexity and utilizing resources
efficiently, the authors in [14] proposed an intrusion detec-
tion method based on recursive feature elimination and the
Stacking technique to reduce the training time and testing
time in ensemble learning. The semi-stack approach in [15]
used three layers; multi-view layer, semi-ensemble layer, and
meta-learning layer to improve the network classification while
reducing the bias and variance of the meta-classifier. The
semi-stack approach showed significant improvements in its
capability to classify network intrusions accurately compared
to other methods; however, the other methods were faster when
considering run-time. Focusing on the efficacy of intelligent
IDS deployed in a fog-to-things environment, the study in [3]
used a realistic intrusion detection dataset, ensemble learning,
and two classification levels to detect and prevent anomalies
while increasing detection accuracy, reducing latency, and
minimizing resource utilization. The cluster-based ensemble
classifier for IDS in [16] used clustering to reduce the number
of the features in the dataset and the Boosting technique to
obtain a precise prediction. The ANID-SEoKELM method
in [17] proposed an adaptable real-time intelligent IDS based
on the selective ensemble of kernel extreme learning machine
with random features. The authors in [18] provided a system-
atic review of intrusion detection systems based on ensembles
in machine learning and presented future research directions
for developing effective IDSs.

However, none of the state-of-the-art approaches use the
multi-expert method and Stacking techniques to build hetero-
geneous ensembles and aggregate the output of different in-
telligent IDS models (that are base learners) into an ensemble
IDS model (ensemble learner) that we consider in this paper.
The proposed approach focuses on optimizing anomaly detec-
tion IDS models where learning is statistical, ‘normal’ behav-
ior is observable, and anomalous traffic is distinguishable us-
ing supervised, semi-supervised, and unsupervised approaches.
Our goal is to optimize the performance of AML-IDS for
IoT by employing two optimization methods; hyperparameter
tuning and ensemble learning to improve the predictability and
boost the performance of single-learner AML-IDS models for
detecting intrusions in IoT environments.

III. OPTIMIZATION METHODS

A. Hyperparameter Tuning

Each ML/DL model has a set of hyperparameters that deter-
mine the complexity of its internal structure and learnability.
For example, the learning rate, number of layers, number
of hidden layers are examples of hyperparameters associated
with a deep neural network (DNN) model [19], and SVM has
hyperparameters related to balancing its prediction accuracy,
defining the dimensionality of its feature space, and controlling
the number of its data points [20], [21]. Finding the best
configurations that yield the best performance is a critical opti-
mization problem. Hence, hyperparameter tuning is achievable
by solving an optimization problem [20]. Therefore, rather
than choosing the best model via trial and error using different
ML/DL methods, hyperparameter tuning can achieve the same
results by tuning the model’s hyperparameters until the best
model is obtainable. According to [22], let Z be the n-
dimensional hyperparameters phase space and z1, z2, ..., zn a
set of n hyperparameters, such that z contained in Z, the goal
of hyperparameter tuning is to find a set of hyperparameters
ẑ (where ẑ= argmin f(z)) that gives an optimal model
performance ŷ (ŷ = f(ẑ)) measured using a validation set.
Finding the optimal hyperparameters that yield a suitable
model structure often depends on the dataset; hence, there are
different optimal hyperparameter settings for different datasets,
decision trees, or regression methods, each requiring a separate
tuning [23], [24]. Furthermore, the best configuration setting
depends not only on the dataset type but also on the dataset
size [22]. In the AMLS platform, the integrated train and tune
method helps to find the model’s optimum settings. Finding
the optimal model is achievable using the following steps:

1) Configure a set of parameters;
2) Iterate over multiple combinations of parameters;
3) For each set of combined parameters, measure the

accuracy (or other metrics) of the combined parameters;
4) Continue to measure the combined parameters’ accuracy

(or other metrics) until an optimal model emerges.
Selecting hyperparameters is a tedious and computationally

expensive process that may require an exhaustive search to ob-
tain the best parameters settings. As a result, several selection
methods, such as grid search, random search, and Bayesian-
based optimization techniques, are available. Grid search uses

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3103829

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

3

a pre-defined grid to try different configurations or settings and
identify the best model. The random search uses a defined
range of values and randomly selects parameter values to
obtain the optimum settings. While grid search is more suited
to use when the best parameter settings are unknown, random
search is more suitable to use when increasing performance
based on user-defined metrics is the goal. Additionally, the
random search conserves system resources compared to the
grid search, where the system tries all combinations of values
to obtain the optimum configurations. Bayesian-based opti-
mization, a statistical model, treats the problem of tuning the
model’s hyperparameter as an optimization problem [22]. As
a result, it has a high probability of finding the best parameter
settings. Similar to random search, it is more accurate and
computationally efficient compared to grid search. Both ran-
dom search and Bayesian-based optimization are suitable for
high-dimensionality datasets. This paper uses random search
based on a given number of iterations to obtain the best set
of hyperparameters that optimize the learning model F1-score,
accuracy, and area under the curve (AUC).

B. Ensemble Learning

Ensemble learning is a machine learning approach that
combines either similar or dissimilar models to improve
model predictability. The aggregation of multiple models can
boost the model performance by increasing its prediction
accuracy and detection rate [18], [25]. Further, combining
multiple models offset the weakness in individual models, thus
producing a single model with stable output and improved
prediction accuracy. In general, ensemble classifiers handle
the model’s bias, variance, or both more effectively than a
single classifier [11], [13]. When different classifiers determine
their individual biases, they collectively filter all biases. The
multiple competing models work collaboratively to assess
inaccurate regions in the feature space. The desired features
possessed by each model invariably increase the model stabil-
ity, thus addressing issues such as under-fitting, over-fitting,
or over-trained models. Fig. 1 shows the general architecture
of ensemble learning using the Stacking technique. The use

Fig. 1: General Architecture of Ensemble Techniques (adopted
from [26])

of ensemble learning can address issues resulting from in-
sufficient training data for modeling the hypothesis space or
all potential solutions, models trapped in local optima, and
the inability of the learning method to model the hypothesis

space [18] accurately. Aggregating the outcome (output) of
multiple models provides more accurate outcomes when data
is insufficient, provides enough computational effort to find
the global optima, and helps find the optimal model. How-
ever, the ensemble’s efficiency depends on the base classifier,
integration method, and errors reported by the multiple clas-
sifiers on the same training data subset. Building ensembles
is a systematic process that involves three phases: ensemble
generation, ensemble selection, and ensemble integration [18].
Consequently, creating the ensemble model, a.k.a. meta-model,
involves the following four steps:

• Input dataset
• Generate base classifiers C0, where

C0 ={C1, C2, C3, ..., Cn}
• Select based classifiers C, where C ={C1, C3, ..., Cn}

and C ⊆ C0

• Integrate base classifiers CFinal, where
CFinal ={C1, C3, ..., Cn}

Several methods can be used to generate, select, and integrate
an ensemble. The methods to generate base classifiers are
either parameter-based, feature-based, or data-based. It is
possible to select all the generated base classifiers, a subset,
or a reduced set that exceeds a pre-set threshold, such as
the performance threshold during the selection phase. Fig. 2
depicts the various phases of the ensemble building process
and their associated methods. In general, building ensembles
involves using two levels of classifiers; level-0 classifiers and
level-1 classifier [11], [12], [13]. Level-0 represents the base
models or classifiers, and level-1 represents the meta-model or
meta classifier. In the steps listed above, CFinal is the meta-
model whose output is the aggregate of level-0 classifiers or
base models.

Fig. 2: The Ensemble Process Phases and their Methods

Ensemble learning is achievable using methods that exploit
the different characteristics of the dataset for generating base
classifiers to build an effective meta-model [18]. These meth-
ods include Bagging, Boosting, Stacking, Voting, AdaBoost,
Output Code, Troika, Mixtures of Experts, Random Forest,
and Decorate. The primary goal of these methods is to reduce
or minimize the bias, variance, or their trade-off. Bias is an
error due to the geometric model, whereas variance is an error
due to variability of the model with respect to the dataset
randomness [13]. Fig. 3 shows the trade-off or proportional
relationship between the model’s bias and variance. The
Boosting and Stacking methods seek to minimize the bias of
the model to improve prediction results, whereas the bagging

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3103829

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

4

method reduces the variance without increasing the bias [14].

Fig. 3: Model Bias and Variance Trade-off(adopted from [13])
Ensemble techniques can be either homogeneous or hetero-

geneous. In the homogeneous ensemble techniques, such as
Bagging, the ensemble models belong to the same ML/DL
methods class. In contrast, heterogeneous ensemble tech-
niques, such as Stacking, create a learning ensemble from
different methods. Further, combining base learners is achiev-
able using two methods: multi-expert and multi-stage [3]. In a
multi-expert method, the base learning works in parallel, and
their outputs are combined using a simple function such as
sum, weighted sum, median, maximum, minimum, or product.
However, the multi-stage method combines the base learner
serially where each subsequent learner is only trainable or
testable using instances where the performance of the previous
learner is not satisfactory. Thus, while base learners using the
multi-expert method are complementary, base learners using
the multi-stage method are supplementary. This paper uses
the Stacking method and heterogeneous ensemble techniques
to design the ensemble model using the multi-expert method.

C. Optimization Methodology
We train and test each model (such as PCA and 1-SVM

AML-IDS) using hyperparameter tuning and ensemble learn-
ing, respectively, to optimize the single-learner models. For
ensemble learning, we consider four scenarios in which we
combine the two AML-IDS models to create the first scenario,
each of the AML-IDS models with DL-IDS to create the
second and third scenarios, and finally, the AML-IDS models
and DL-IDS to create the fourth scenario. We evaluate the
models’ detection rate, predictability, and performance using
AUC, F1-Score, and accuracy as metrics and compare their
performance to that of the non-optimized single-learner model.
The hyperparameter tuning method uses an iterative random
search to obtain the best set of hyperparameters that optimize
the base-learners and meta-learner score functions, i.e., F1-
Score, AUC, and accuracy. Although accuracy is not always
a strong performance indicator, it may provide some insight.
Fig. 4 shows the workflow of intelligent IDSs evaluation using
the AMLS platform.

In general, the dataset influences the model efficacy and
applicability in real applications, and the realistic of the dataset
used to train intelligent IDS highly also influences their appli-
cability in real-world applications. To that effect, we use the re-
alistic ToN IoT [27], [28] and UNSW 2018 IoT Botnet [29],

Fig. 4: Workflow for Intelligent IDS using AMLS

TABLE I: Summary of the IoT BoTnet and ToN IoT Datasets

Dataset No. of Fea-
tures

No. of
Records Traffic Type

IoT Botnet 29 2,000 Normal, DoS, and
DDoS

IoT Fridge 6 587,076

DDoS, backdoor,
injection, password,
ransomeware, and
XSS

TABLE II: Examples of Data Features

Dataset Features

IoT Botnet

flow state flag, protocol, source IP address and port
number, destination IP address and port number, record
time, number of packets, number of bytes, state, se-
quence number, packet count, byte count, class label,
traffic category, and traffic subcategory.

IoT Fridge date, time, temperature measurement, temperature con-
ditions, label, and type.

[30] to optimize the AML-IDS models. We optimize the AML-
IDS models using one scenario of the ToN IoT dataset and the
UNSW 2018 IoT Botnet dataset. We further processed the
UNSW 2018 IoT Botnet to include fewer features, records,
and attack types than the original full dataset. The IoT Fridge
representing one scenario from the ToN IoT dataset con-
tains fewer features and a large number of records than the
IoT Fridge scenario dataset. Table I shows a summary of the
two datasets and Table II shows some features of the two
ground truth datasets. Furthermore, a full description of the
data features and the frequency distribution of the attacks in
the datasets are shown in [7], [29], [27].

We use the following standard metrics: accuracy (A),
precision (P), recall (R), and F1-Score (F) to evaluate the
performance of the optimized single-learners (PCA and 1-
SVM) and the ensemble-learner models using Stacking on the
given IoT datasets. Also, the study considers area under the
curve (AUC), receiver operating characteristic curve (ROC),
True positive (TP), True negative (TN), false positive (FP), and
false negatives (FN) metrics. The later four metrics are critical
for calculating the A, P, R, and F metrics [10]. Table II and
Table III provide a concise definition of the basic and derived
metrics used in the evaluation of the optimized classifiers, as
noted in the literature in [2], [31], [32], [33], [34].

IV. EXPERIMENTAL SETUP

For learning models, We have six experimental runs for the
single-learner models with hyperparameter tuning optimiza-
tion and ten experimental runs for Stacking-based ensemble

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3103829

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

5

TABLE III: DESCRIPTION OF DERIVED METRICS

Metrics Description

Accuracy (A) Number of correct predictions to the total number of
predictions.

Precision (P) Frequency of true positives among all positive output.

Recall (R) The proportion of positive events that were classified
correctly.

F1-Score (F)
The harmonic mean of the previous two values, i.e.,
model precision and recall. A classifier with excellent
behavior has an F1-score close to 1.0.

TABLE IV: DESCRIPTION OF BASE METRICS

Metrics Description

AUC
Indicates the degree of separability. A classifier with
AUC =1 was able to classify all the observations
correctly. A random classifier AUC would be 0.5.

ROC
Quantitatively measured by AUC, is a probability curve
that compares the TP rate evolution versus the FP rate
for different threshold values.

TP Malicious events were detected as intrusive.

TN Normal events were detected as normal.

FP Normal events were detected as intrusive.

FN Malicious events were detected as normal.

techniques. For the hyperparameter tuning experiments, the
dataset split is 80% for training the model and 20% for testing
it. For ensemble-learner models, the data split is the same
for training models using IoT Botnet dataset and 50% for
training models using IoT Fridge dataset. The 50% split in
the dataset for IoT Fridge was due to the significant amount
of time spent training and testing the models. The datasets
are made available in .csv format via an AMLS upload file
operation. The model’s construction is achieved via the AMLS
drag and drop functionality and a set of predefined modules,
which allows the user to create, tune, train, test, score, and
evaluate the models for experimentation; see Table IV.

The three initial IDS models, PCA AML-IDS, 1-SVM
AML-IDS, and 2-NN DL-IDS, did not consider optimiza-
tion to boost performance and increase detection rates while
reducing false alarms. The DL-IDS model does not require
optimization due to its superior performance compared to the
other two IDS. We describe the optimized single-learner ex-
perimental setup and evaluation results using hyperparameter
tuning and Stacking-based ensemble learning in the following
subsections.

A. Optimized Single-learner Models Experimental Runs

Generally, PCA and 1-SVM AML-IDS models analyze
the feature space using imbalanced data to determine the
non-anomalous events (i.e., normal class). Determining what
constitutes a normal class requires training the models using
datasets containing more or all normal examples. Further, 1-
SVM AML-IDS models are better trainable on data with one
class, i.e., the normal class. Our study uses both a balanced and
an imbalanced dataset to evaluate the models’ performance and
optimize the features space to find the optimal single-learner
model structure.

TABLE V: DESCRIPTION OF AMLS MODULES

Module Description

Edit
Metadata

A data transformation module to change the metadata
associated with columns to indicate which column
contains the label or values to predict, make columns
as features, change the datetime to numeric values,
and treat Boolean or numerical columns as categor-
ical columns.

Select
Column
Data

A data transformation module to logically limit the
number of columns (features) or select the features
to include in the dataset.

Split Data
Data transformation module to divide a dataset into
distinct sets, i.e., training and testing sets, or training,
testing, and validation sets.

PCAbased
Anomaly
Detection

Creates an anomaly detection model based on the
PCA algorithm. It analyzes available feature to de-
termine the normal event.

One-Class
SVM Creates a model that is based on the SVM algorithm.

Two-Class
NN

Creates a model that is based on a neural network
to predict a target that has a binary value only.

Score Model A scoring module to generate predictions using a
trained classification or regression module.

Evaluate
Model

An evaluation module to measure the accuracy of a
trained model.

Train
Anomaly
Detection
Model

An anomaly detection module that takes a set of
parameters and an unlabeled dataset as input and
trains an anomaly detection model and a set of labels
for the training data.

Train Model A training module to train the classification or re-
gression model.

Tune Model
Hyperparam-
eters

Optimizes a given ML model by determining the
optimum hyperparameters or model structure.

The optimized single-learner experimental runs focus on
hyperparameter tuning to define the optimal model structure.
The goal is to improve the PCA and 1-SVM AML-IDS
models’ performance using the IoT Botnet dataset and 1-SVM
AML-IDS using the IoT Fridge dataset. We conducted two
experiments for each of these three low-performing models,
where we optimized the model based on AUC and F1-
Score metrics. Each experiment builds an optimized single-
learner model based on one of the specified metrics using the
following steps: 1) Supply the dataset; Extract the features; 2)
Select the ML or DL algorithms; 3) Split the data into training
and testing data (for 1-SVM, 4) split the data further to select
only the normal examples); 5) tune model hyperparameters
based on specified metrics; 6) Train the model; 7) Score the
model; and 8) Evaluate the model.

B. Ensemble-learner Models Experimental Runs

In contrast to single-learner models, ensemble-learner mod-
els build on each model’s strength in the ensemble to offset
the individual model weaknesses, combine their collective
knowledge, and aggregate their output to train a meta-model.
This meta-model, which we also call the ensemble-learner,
learns from other models to improve its performance and
prediction accuracy. Our study uses the Stacking technique
to train low-performing models using various Stacking by
enumerating all possible combinations of the three pre-defined

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3103829

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

6

Fig. 5: A schematic diagram depicting a triple Stacking-based
ensemble using a combination of PCA AML-IDS, 1-SVM
AML-IDS, and 2-NN DL-IDS models

models (PCA AML-IDS, 1-SVM AML-IDS, and 2-NN DL-
IDS). First, we use dual Stacking, in which we combine two
different models using all possible combinations, and triple
Stacking, in which we combine all three models to form the
ensemble. Then, we use similar steps to that in [35] to build
the ensemble and train and evaluate the meta-model using
the metric that yields the best intrusion detection results as
follows:

1) Combine n methods or classifiers ;
2) Find a method or classifier that optimizes AUC;
3) Select the ML or DL algorithms;
4) build n base methods or classifiers using the full training

set and obtain baseline AUC performance;
5) build a stacked ensemble of methods or classifiers;
6) Split the training set into set 1 and set 2;

a) Use Set 1 to train n base methods or classifiers
b) Use Set 2 to find their best combination

7) Tune the base method or classifiers and their ensemble
to optimize AUC; and

8) Output the final results by executing the R model.
To obtain the best model, first, we find a method or classifier
that optimizes AUC, F1-Score, or accuracy and then get
the ensemble’s corresponding baseline performance. Fig. 5.
shows a schematic diagram depicting a triple Stacking-based
ensemble.

Given specific ensembles and their tuning methods, i.e.,
tuned to optimize AUC, F1-Score, or accuracy, the initial
analysis of the three ensemble experiments reveals an im-
provement in the performance and predictability of the models
in question. Next, we present the detailed analysis of the
performance of the optimized single-learner and ensemble-
learner IDS models in the following section.

V. PERFORMANCE EVALUATION AND ANALYSIS

This section provides a performance evaluation to support
our analysis presented above.

A. Optimized Single-learner Models Analysis

To find the best model structure that contains the optimal
set of parameters for controlling the learning process, we
optimized the three intelligent IDS models that exhibited low
performance on the corresponding dataset using the AUC and
F1-score metrics instead of accuracy. AUC provides a better
indication of the trained model’s performance based on its

degree of separability, i.e., its ability to separate normal from
anomalous examples. The F1-Score gives a good indication
of the quality of the classification. A model with a high F1-
Score value has high predictability, i.e., low FP and FN. While
accuracy gives the intuition on how often the model predic-
tions are correct, it may lead to erroneous results when the
data used to train the models has an imbalanced distribution,
e.g., the number of normal and anomalous examples varies
significantly.

To obtain better results, We designed the three IDS models
(PCA AML-IDS using IoT Botnet dataset, 1-SVM AML-
IDS using IoT Botnet dataset, and 1-SVM AML-IDS using
IoT Fridge dataset) by adding the tune hyperparameter model
module. We tuned the models’ hyperparameters to optimize
AUC and F1-Score and conducted three experimental runs.
Fig. 6, Fig. 7, Fig. 8 show the PCA and 1-SVM AML-IDS
models’ evaluation results using IoT Botnet dataset and 1-
SVM AML-IDS model’s evaluation using IoT Fridge dataset,
respectively. The ROC and metric values are the same for AUC
and F1-Score optimization.

Tuning the model hyperparameters to optimize AUC has led
to improved models’ performance and predictability to varying
degrees depending on the model and the selected tuning
metrics. Given the IoT Botnet dataset tuned to optimize AUC,
the 1-SVM AML-IDS model has shown better performance
and predictability than the PCA AML-IDS model. The AUC
for the 1-SVM AML-IDS model is 0.472 (47%) with tuning
compared to 0.155 (15%) without tuning, and the F1-Score is
0.968 (97%). The FN is 0 for the tuned model compared to
236 for the non-tuned model. On the other hand, PCA AML-
IDS AUC is 0.139 (13.9%) with tuning compared to 0.002
(0.2%) without tuning, and the F1-Score is 0.313 with tuning
compared to 0.272 (27.2%) without tuning, suggesting a high
FP, FN, or both. The FN is 303 for the tuned model and 312

Fig. 6: Tuned PCA AML-IDS model for AUC and F1-score
optimization using IoT Botnet experimental run results.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3103829

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

7

Fig. 7: Tuned 1-SVM AML-IDS model for AUC and F1-Score
optimization using IoT Botnet dataset experimental run results

Fig. 8: Tuned 1-SVM AML-IDS model for AUC and F1-score
optimization using IoT Fridge dataset experimental run results

for the non-tuned model.

B. Ensemble-learner Models Analysis

In general, ensemble-learning using Stacking techniques
improves the meta-model’s performance and predictability.
However, such improvement depends on the selected base
learners, tuning of the base learners and their ensemble tuning,
and the optimization metric. Given the IoT Botnet dataset,
the three types of ensembles, and the metrics to optimize,
the resulting PCA AML-IDS metal-model showed significant

Fig. 9: Dual Stacking ROC: PCA and SVM using IoT Botnet
dataset and optimized using (a) AUC, (b) F1-Score, and (c)
Accuracy

Fig. 10: Dual Stacking ROC: PCA and NN using IoT Botnet
dataset and optimized using (a) AUC, (b) F1-Score, and (c)
Accuracy

Fig. 11: Triple Stacking ROC: PCA, SVM, and NN using
IoT Botnet dataset and optimized using (a) AUC, (b) F1-
Score, and (c) Accuracy

improvement when using a PCA-SVM-NN ensemble and then
tuning the base-model hyperparameters to optimize accuracy.
The resulting meta-model has a 0.966 (97%), suggesting
all relevant examples are labeled and an AUC value of 1,
suggesting a high performance. Nonetheless, accuracy is not
always an accurate indication of the model’s performance and
predictability. Fig. 9, Fig. 10, and Fig. 11 show the ROC of the
PCA AML-IDS meta-model trained using IoT Botnet dataset
and a PCA-SVM ensemble, PCA-NN ensemble, and PCA-
SVM-NN ensemble,respectively.

Each ensemble optimized AUC, F1-Score, and accuracy
using hyperparameter tuning as shown in (a), (b), and (c),
respectively. Fig. 12 and Fig. 13 show the plotted values of
accuracy, precision, recall, and AUC and the plotted values of
TP, FP, TN, and FN, respectively.

The 1-SVM AML-IDS meta-model trained using
IoT Botnet has shown a significant improvement in
performance and predictability when trained using SVM-PCA
ensemble to optimize F1-score, and accuracy, SVM-NN

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3103829

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

8

Fig. 12: Dual and Triple Stacking: graphed derived metrics for
PCA and SVM, PCA and NN, and PCA, SVM, and NN using
the IoT Botnet dataset and AUC, F1-Score, and Accuracy
optimization

Fig. 13: Dual and Triple Stacking: graphed base metrics for
PCA and SVM, PCA and NN, and PCA, SVM, and NN using
the IoT Botnet dataset and AUC, F1-Score, and Accuracy
optimization

ensemble optimizing AUC, F1-Score, and accuracy. For the
mentioned ensembles, the meta-model’s AUC is 1, and the F1-
score 0.968 (97%) or 0.969 (97%), showing high performance
and predictability. However, for the SVM-PCA-NN ensemble,
the meta-model did not show comparable results. While
the meta-model recall is 0.966 (97%) for SVM-PCA-NN
optimizing AUC and F1-score, respectively, the performance
is significantly low (9.5%). Fig. 14, Fig. 15, and Fig. 16 show
the ROC of the SVM-based IDS meta-model trained using
IoT Botnet dataset and an SVM-PCA ensemble, SVM-NN
ensemble, and SVM-PCA-NN ensemble, respectively.

Similar to the PCA AML-IDS model, each ensemble op-
timized AUC, F1-Score, and accuracy using hyperparameter
tuning as shown in (a), (b), and (c), respectively. Fig. 17
and Fig. 18 show the charted values of accuracy, precision,
recall, and AUC and the charted values of TP, FP, TN, and

Fig. 14: Dual Stacking: SVM and PCA using IoT Botnet
dataset and optimized using (a) AUC, (b) F1-Score, and (c)
Accuracy

Fig. 15: Dual Stacking: SVM and NN using IoT Botnet
dataset and optimized using (a) AUC, (b) F1-Score, and (c)
Accuracy

Fig. 16: Triple Stacking: SVM, PCA, and NN using
IoT Botnet dataset and optimized using (a) AUC, (b) F1-
Score, and (c) Accuracy

FN, respectively.
The ensemble-learning using the IoT Fridge dataset has

shown promising results for the 1-SVM AML-IDS model. The
1-SVM AML-IDS meta-model exhibited high performance
when trained using the SVM-PCA and SVM-NN and AUC,
F1-Score, and accuracy optimization. The meta-model trained
using the SVM-NN ensemble showed superior performance
and predictability with an AUC and F1-score value of 1 for
AUC, F1-Score, and accuracy optimization. Also, the meta-
model has high accuracy, precision, and recall of 1. While
the meta-model performance using the SVM-PCA is 100%,
the predictability is 87.5%, 89.4%, and 87.2% for the AUC,
F1-Score, and accuracy optimization, respectively. Fig. 19,
Fig. 20, and Fig. 21 show the ROC of the PCA-based IDS
meta-model trained using IoT Botnet dataset and a PCA-SVM
ensemble, PCA-NN ensemble, and PCA-SVM-NN ensemble,
respectively. Each ensemble optimized AUC, F1-Score, and
accuracy using hyperparameter tuning as shown in (a), (b),
and (c), respectively. Fig. 22 and Fig. 23 show the charted

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3103829

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

9

Fig. 17: Dual and Triple Stacking: graphed derived metrics for
SVM and PCA, SVM and NN, and SVM, PCA, and NN using
the IoT Botnet dataset and AUC, F1-Score, and Accuracy
optimization

Fig. 18: Dual and Triple Stacking: graphed base metrics for
SVM and PCA, SVM and NN, and SVM, PCA, and NN using
the IoT Botnet dataset and AUC, F1-Score, and Accuracy
optimization

values of accuracy, precision, recall, and AUC and the charted
values of TP, FP, TN, and FN, respectively.

The above results show that while some ensembles im-
proved performance and predictability, others provided either
slight or zero improvement. While the 2-NN DL-IDS model in

Fig. 19: Dual Stacking: SVM and PCA using IoT Fridge
dataset and optimized using (a) AUC, (b) F1-Score, and (c)
Accuracy

Fig. 20: Dual Stacking: SVM and NN using IoT Fridge
dataset and optimized using (a) AUC, (b) F1-Score, and (c)
Accuracy

Fig. 21: Triple Stacking: SVM, PCA, and NN using
IoT Fridge dataset and optimized using (a) AUC, (b) F1-
Score, and (c) Accuracy

Fig. 22: Dual and Triple Stacking: graphed derived metrics for
SVM and PCA, SVM and NN, and SVM, PCA, and NN using
the IoT Fridge dataset and AUC, F1-Score, and Accuracy
optimization

the non-optimized single-learner scenario scored well, show-
ing high performance and good predictability, when used in
an ensemble of a heterogeneous type, for some instances,
it did not affect the outcome to boost the performance and
predictability of the model, e.g., when combined with PCA
and 1-SVM. The recall and F1-Score values are 0, suggesting
no anomalous events and the inability of the model to predict
anomalous events.

VI. OPEN RESEARCH CHALLENGES

Ensemble learning is costly in terms of training time, testing
time, and computational overhead. Consequently, this leads

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3103829

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

10

Fig. 23: Dual and Triple Stacking: graphed base metrics for
SVM and PCA, SVM and NN, and SVM, PCA, and NN using
the IoT Fridge dataset and AUC, F1-Score, and Accuracy
optimization

to high latency and resource utilization which significantly
impacts intelligent IDS real-time capability. A distributed
intelligent IDS architecture can help reduce the computational
overhead, hence reduced latency. To decrease the false alarm
and increase detection accuracy in ensemble learning, emerg-
ing approaches that use neutrosophic logic classifiers and
Genetic algorithms to generate rules are showing promising
potential [11].

In general, anomaly-based IDS models suffer from high
false positives due to using one rule that focuses on detecting
intrusions based on the normal traffic pattern. As a result, it
considers all other traffic that does not conform to the normal
pattern as anomalous. A better approach is to use a set of rules
to filter non-anomalous traffic that does not conform to the
normal pattern of behavior, which is achievable using meta-
heuristic algorithms such as genetic algorithms.

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied optimization of PCA and 1-
SVM AML-IDS models using hyperparameter tuning and
ensemble learning to detect the intrusions in IoT. Specifically,
we performed hyperparameter tuning to optimize these models
by selecting the optimal model structure. then we used en-
semble learning with the Stacking technique to create multiple
learners and train the single-learner AML-IDS models to boost
the single-learner model detection performance. We trained
these optimized models using ground-truth network intrusion
datasets containing both malicious and benign IoT and IIoT
traffic and evaluated their performance using typical ML/DL
metrics. In general, the SVM-based IDS model offered better
results when a heterogeneous ensemble was used. For large
datasets where normal examples occur more frequently, the
SVM-based IDS model exhibited high performance and good
predictability with ensembles involving SVM-PCA and SVM-
NN and hyperparameter tuning to optimize AUC, F-Score,
and accuracy. However, the model did not show similar results
when using the SVM-PCA-NN ensemble. Single-learner 2-NN
DL-IDS models have shown superior performance detecting
intrusions in IoT environments irrespective of the size of

the dataset, imbalances within the dataset, dataset frequency
distribution, and the number of features. However, stacking
high-performing classifiers such as neural networks and low
performing classifiers such as PCA and 1-SVM in an ensemble
does not necessarily generate a high-performing ensemble
classifier.

In the future, we plan to examine the use of the Boosting
ensemble learning method and Genetic algorithms in ensemble
learning to improve AML-IDS detection rate and performance
by reducing the false-positive rate and minimizing the training
and testing time. Also, we plan to address issues related to
latency and resource utilization, adaptability to the dynamic
IoT environment, and deployment architecture.

REFERENCES

[1] J. Asharf, N. Moustafa, H. Khurshid, E. Debie, W. Haider, and A. Wa-
hab, “A review of intrusion detection systems using machine and
deep learning in internet of things: Challenges, solutions and future
directions,” Electronics (Basel), vol. 9, no. 7, pp. 1177–, 2020.

[2] B. Kelem, “Comparison of machine learning techniques for intrusion
detection system,” phdthesis, National Academic Digital Repository of
Ethiopia, 2018. [Online]. Available: https://search.datacite.org/works/
10.20372/nadre/6054

[3] P. Illy, G. Kaddoum, C. Miranda Moreira, K. Kaur, and S. Garg,
“Securing Fog-to-Things Environment Using Intrusion Detection System
Based On Ensemble Learning,” in IEEE Wireless Comm and Networking
Conf (WCNC), 4 2019, pp. 1–7.

[4] A. Uprety and D. B. Rawat, “Reinforcement Learning for IoT Security:
A Comprehensive Survey,” IEEE Internet of Things Journal, vol. 8,
no. 11, 2021.

[5] X. Liu, G. Yan, D. B. Rawat, and S. Deng, “Data mining intrusion
detection in vehicular ad hoc network,” IEICE TRANSACTIONS on
Information and Systems, vol. 97, no. 7, pp. 1719–1726, 2014.

[6] F. O. Olowononi, D. B. Rawat, and C. Liu, “Resilient Machine Learning
for Networked Cyber Physical Systems: A Survey for Machine Learning
Security to Securing Machine Learning for CPS,” IEEE Communications
Surveys & Tutorials, vol. 23, no. 1, pp. 524 1– 552, 2021.

[7] G. Abdelmoumin and D. B. Rawat, “A Comparative Study of Intelligent
Intrusion Detection Systems for Internet of Things,” in Springer Lecture
Notes in Networks and Systems. Springer, 28-29 October 2021, to
appear.

[8] X. Zhang. ML studio (classic): One-class support vector
machine - azure (online accessed on 10 may 2021). [Online].
Available: https://docs.microsoft.com/en-us/azure/machine-learning/
studio-module-reference/one-class-support-vector-machine

[9] M. Chattopadhyay, R. Sen, and S. Gupta, “A comprehensive review
and meta-analysis on applications of machine learning techniques in
intrusion detection,” Australasian J. of Info. Sys., vol. 22, 2018.

[10] S. Laqtib, K. E. Yassini, and M. L. Hasnaoui, “A deep learning
methods for intrusion detection systems based machine learning
in MANET,” in Proceedings of the 4th International Conference
on Smart City Applications, ser. SCA ’19. Association for
Computing Machinery, 2019-10-02, pp. 1–8. [Online]. Available:
https://doi.org/10.1145/3368756.3369021

[11] S. Rajagopal, P. P. Kundapur, and K. S. Hareesha, “A stacking ensemble
for network intrusion detection using heterogeneous datasets,” Security
and Communication Networks, vol. 2020, p. e4586875, 1 2020.

[12] V. Dutta, M. Choraś, M. Pawlicki, and R. Kozik, “A deep learning
ensemble for network anomaly and cyber-attack detection,” Sensors,
vol. 20, no. 16, p. 4583, 1 2020.

[13] H. Thanh and T. Lang, “Use the ensemble methods when detecting
DoS attacks in network intrusion detection systems,” EAI Endorsed
Transactions on Context-aware Systems and Applications, vol. ”6”,
no. 19, 11 2019.

[14] W. Lian, G. Nie, B. Jia, D. Shi, Q. Fan, and Y. Liang,
“An intrusion detection method based on decision tree-recursive
feature elimination in ensemble learning,” Mathematical Problems in
Engineering, vol. 2020, p. e2835023, 11 2020. [Online]. Available:
https://www.hindawi.com/journals/mpe/2020/2835023/

[15] A. Fahada, “A semi-stack approach for accurate network traffic classifi-
cation using multi-view stacking,” IOP Conf. Ser.: Mater. Sci. Eng., vol.
811, p. 012026, 5 2020.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3103829

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://search.datacite.org/works/10.20372/nadre/6054
https://search.datacite.org/works/10.20372/nadre/6054
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/one-class-support-vector-machine
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/one-class-support-vector-machine
https://doi.org/10.1145/3368756.3369021
https://www.hindawi.com/journals/mpe/2020/2835023/

11

[16] M. A. Jabbar, R. Aluvalu, and S. S. S. Reddy, “Cluster based ensemble
classification for intrusion detection system,” in Proceedings of the 9th
International Conference on Machine Learning and Computing, ser.
ICMLC 2017. Association for Computing Machinery, 2 2017, pp.
253–257. [Online]. Available: https://doi.org/10.1145/3055635.3056595

[17] J. Liu, J. He, W. Zhang, T. Ma, Z. Tang, J. P. Niyoyita, and W. Gui,
“ANID-SEoKELM: Adaptive network intrusion detection based on
selective ensemble of kernel ELMs with random features,” Knowledge-
Based Systems, vol. 177, pp. 104–116, 08 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S095070511930173X

[18] G. Kumar, K. Thakur, and M. R. Ayyagari, “MLEsIDSs: machine
learning-based ensembles for intrusion detection systems—a review,”
The Journal of supercomputing, vol. 76, no. 11, pp. 8938–8971, 2020.

[19] M. Kim, “Supervised learning-based DDoS attacks detection: Tuning
hyperparameters,” ETRI Journal, vol. 41, no. 5, pp. 560–573, 2019,
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.4218/etrij.2019-0156.

[20] J. Liu and E. Zio, “SVM hyperparameters tuning for recursive
multi-step-ahead prediction,” Neural Comput & Applic, vol. 28,
no. 12, pp. 3749–3763, 12 2017. [Online]. Available: https:
//doi.org/10.1007/s00521-016-2272-1

[21] R. G. Mantovani, A. L. D. Rossi, E. Alcobaça, J. Vanschoren, and
A. C. P. d. L. F. de Carvalho, “A meta-learning recommender system
for hyperparameter tuning: predicting when tuning improves SVM
classifiers,” Information Sciences, vol. 501, pp. 193–221, 10 2019.
[Online]. Available: http://arxiv.org/abs/1906.01684

[22] A. Stuke, P. Rinke, and M. Todorović, “Efficient hyperparameter tuning
for kernel ridge regression with bayesian optimization,” Mach. Learn.:
Sci. Technol., 03 2021.

[23] A. Zheng, Evaluating Machine Learning Models: A Beginner’s Guide
to Key Concepts and Pitfalls. O’Reilly Media, 9 2015. [Online].
Available: https://books.google.com/books?id=OFhauwEACAAJ

[24] B. Li and P. Lu. (2020, 10) Tune model hyperparameters. [Online].
Available: https://docs.microsoft.com/en-us/azure/machine-learning/
algorithm-module-reference/tune-model-hyperparameters

[25] P. N. Tattar, Hands-On Ensemble Learning with R: A Beginner’s
Guide to Combining the Power of Machine Learning Algorithms Using
Ensemble Techniques. Packt Publishing, Limited, 2018.

[26] Nouf Rahimi, Fathy Eassa, and Lamiaa Elrefaei, “An ensemble machine
learning technique for functional requirement classification,” Symmetry
(Basel), vol. 12, no. 1601, pp. 1601–, 2020.

[27] N. Moustafa, “ToN iot datasets,” 10 2019. [Online]. Available:
https://ieee-dataport.org/documents/toniot-datasets

[28] A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, and A. Anwar, “TON iot
telemetry dataset: A new generation dataset of IoT and IIoT for data-
driven intrusion detection systems,” IEEE Access, vol. 8, pp. 165 130–
165 150, 2020.

[29] N. Moustafa, “The bot-IoT dataset,” 10 2019. [Online]. Available:
https://ieee-dataport.org/documents/bot-iot-dataset

[30] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards
the development of realistic botnet dataset in the internet of things
for network forensic analytics: Bot-IoT dataset,” Future Generation
Computer Systems, vol. 100, pp. 779–796, 11 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X18327687

[31] P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli, “A detailed
investigation and analysis of using machine learning techniques for
intrusion detection,” IEEE Communications Surveys Tutorials, vol. 21,
no. 1, pp. 686–728, 2019.

[32] Y. Hamid, M. Sugumaran, and L. Journaux, “Machine learning
techniques for intrusion detection: A comparative analysis,” in
Proceedings of the International Conference on Informatics and
Analytics, ser. ICIA-16. Association for Computing Machinery, 8 2016,
pp. 1–6. [Online]. Available: https://doi.org/10.1145/2980258.2980378

[33] R. Magán-Carrión, D. Urda, I. Dı́az-Cano, and B. Dorronsoro, “Towards
a reliable comparison and evaluation of network intrusion detection
systems based on machine learning approaches,” Applied sciences,
vol. 10, no. 5, pp. 1775–, 2020.

[34] 20 popular machine learning metrics. part 1: Classification & regression
evaluation metrics. [Online]. Available: https://bit.ly/3vZyUgm

[35] D. Pechyony. (2015, 02) Building ensemble of classifiers
using stacking. [Online]. Available: https://gallery.azure.ai/Experiment/
Building-Ensemble-of-Classifiers-using-Stacking-2

Ghada Abdelmoumin (IEEE Student Member) is
currently pursuing her PhD in computer science
under the supervision of Dr. Danda B Rawat at
Howard University and a professor of information
technology at Northern Virginia Community Col-
lege. Ghada received a Bachelor of Science degree
in mechanical power engineering from Alexandria
University, a public research institution that is the
second largest university in Egypt. She also earned
Master of Science in computer science from Western
Illinois University and Master of Science in com-

puter science and applications from Virginia Tech. She is a member of
Association for Computing Machinery (ACM), IEEE Young Professionals and
a GEM Fellow. Her teaching and research interests have focused on machine
learning, IoT, cybersecurity, cloud computing, mobile computing, and software
engineering.

Danda B. Rawat (IEEE Senior Member, 2013) is
a Full Professor in the Department of Electrical En-
gineering & Computer Science (EECS), Director of
the Howard University Data Science and Cybersecu-
rity Center, Director of DoD Center of Excellence in
AI/ML (CoE-AIML), Director of Cyber-security and
Wireless Networking Innovations (CWiNs) Research
Lab, Graduate Program Director of Graduate CS
Programs and Director of Graduate Cybersecurity
Certificate Program at Howard University, Washing-
ton, DC, USA. Dr. Rawat is engaged in research and

teaching in the areas of cybersecurity, machine learning, big data analytics
and wireless networking for emerging networked systems including cyber-
physical systems, Internet-of-Things, multi domain operations, smart cities,
software defined systems and vehicular networks. He has secured over $16
million in research funding from the US National Science Foundation (NSF),
US Department of Homeland Security (DHS), US National Security Agency
(NSA), US Department of Energy, National Nuclear Security Administration
(NNSA), DoD and DoD Research Labs, Industry (Microsoft, Intel, etc.) and
private Foundations. Dr. Rawat is the recipient of NSF CAREER Award in
2016, Department of Homeland Security (DHS) Scientific Leadership Award
in 2017, Researcher Exemplar Award 2019 and Graduate Faculty Exemplar
Award 2019 from Howard University, the US Air Force Research Laboratory
(AFRL) Summer Faculty Visiting Fellowship in 2017, Outstanding Research
Faculty Award (Award for Excellence in Scholarly Activity) at GSU in 2015,
the Best Paper Awards (IEEE CCNC, IEEE ICII, BWCA) and Outstanding
PhD Researcher Award in 2009. He has delivered over 20 Keynotes and invited
speeches at international conferences and workshops. Dr. Rawat has published
over 200 scientific/technical articles and 10 books. He has been serving as an
Editor/Guest Editor for over 50 international journals including the Associate
Editor of IEEE Transactions of Service Computing, Editor of IEEE Internet of
Things Journal, Associate Editor of IEEE Transactions of Network Science
and Engineering and Technical Editors of IEEE Network. He has been in
Organizing Committees for several IEEE flagship conferences such as IEEE
INFOCOM, IEEE CNS, IEEE ICC, IEEE GLOBECOM and so on. He served
as a technical program committee (TPC) member for several international
conferences. He served as a Vice Chair of the Executive Committee of the
IEEE Savannah Section from 2013 to 2017. Dr. Rawat is a Senior Member
of IEEE and ACM, a member of ASEE and AAAS, and a Fellow of the
Institution of Engineering and Technology (IET). He is an ACM Distinguished
Speaker.

Abdul Rahman is a subject matter expert in the
design and implementation of cloud analytics and
architectures that support Cyber Situational Aware-
ness (SA) tools and cyber defense capabilities. He
has led large scale programs as the chief architect
and chief engineer responsible for cyber network
defense architectures and analytic capabilities (ML,
AI, hybrid) focused on integrated full spectrum
cyber operations supporting defensive and offensive
cyber mission synergy. Dr. Rahman has over 25
years of information technology (IT) experience and

has published in physics, mathematics, and information technology. He holds
Ph.D.s in mathematics and physics.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3103829

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://doi.org/10.1145/3055635.3056595
https://www.sciencedirect.com/science/article/pii/S095070511930173X
https://doi.org/10.1007/s00521-016-2272-1
https://doi.org/10.1007/s00521-016-2272-1
http://arxiv.org/abs/1906.01684
https://books.google.com/books?id=OFhauwEACAAJ
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/tune-model-hyperparameters
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/tune-model-hyperparameters
https://ieee-dataport.org/documents/toniot-datasets
https://ieee-dataport.org/documents/bot-iot-dataset
http://www.sciencedirect.com/science/article/pii/S0167739X18327687
https://doi.org/10.1145/2980258.2980378
https://bit.ly/3vZyUgm
https://gallery.azure.ai/Experiment/Building-Ensemble-of-Classifiers-using-Stacking-2
https://gallery.azure.ai/Experiment/Building-Ensemble-of-Classifiers-using-Stacking-2

	Introduction
	Background and Related Work
	Optimization Methods
	Hyperparameter Tuning
	Ensemble Learning
	Optimization Methodology

	Experimental Setup
	Optimized Single-learner Models Experimental Runs
	Ensemble-learner Models Experimental Runs

	Performance Evaluation and Analysis
	Optimized Single-learner Models Analysis
	Ensemble-learner Models Analysis

	Open Research Challenges
	Conclusion and Future Work
	References
	Biographies
	Ghada Abdelmoumin
	Danda B. Rawat
	Abdul Rahman

