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THE UCT PROBLEM FOR NUCLEAR C*-ALGEBRAS

NATHANIAL BROWN, SARAH L. BROWNE, RUFUS WILLETT AND JIANCHAO WU

In recent years, a large class of nuclear C*-algebras have been classified, modulo an assumption on the
universal coefficient theorem (UCT). We think this assumption is redundant and propose a strategy for
proving it. Indeed, following the original proof of the classification theorem, we propose bridging the gap
between reduction theorems and examples. While many such bridges are possible, various approximate
ideal structures appear quite promising.

1. Introduction

After decades of work by many hands, a remarkable classification theorem for simple C*-algebras has
emerged.! Specifically, assuming the universal coefficient theorem (UCT), when two simple C*-algebras
have finite nuclear dimension, they are isomorphic if and only if they have isomorphic K-theoretic
invariants [4; 14; 16; 17; 33]; without finite nuclear dimension, classification via these invariants is
impossible [28; 34]. Thus the classification of simple nuclear C*-algebras is complete — modulo the UCT.
This stunning fact has renewed interest in the old problem of whether or not every nuclear C*-algebra
satisfies the UCT. The purpose of this note is to review what is known about the UCT and propose a
strategy for proving it for all nuclear C*-algebras.

The UCT is topological in nature, having its roots in Kasparov’s KK-theory. Kasparov introduced
the KK-group KK(A, B) around 1980 [20] for the purpose of building and analyzing maps between
the K-theory groups of C*-algebras A and B. In the Cuntz picture [7], an element of KK(A, B) is
represented by a quasihomomorphism A — B and hence gives rise to a morphism at the level of K-theory
K.(A) - K.(B). This induces a group homomorphism

y : KK, (A, B) > Hom(K,(A), K.(B)).

Unfortunately y cannot be an isomorphism, in general, since the left- and right-hand sides treat short
exact sequences differently. Determining if y is surjective or describing its kernel is the role of the UCT.

In the stable case and Ext picture [20], an element of KK (A, B) is a C*-algebraic short exact sequence
0— B — E — A — 0. The boundary maps in the six-term exact sequence for K -theory then provide
the homomorphism K,(A) — K,+1(B). When these maps vanish, i.e., belong to the kernel of y, the
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K -theory of E provides an element of Ext(K,(A), K.+1(B)). Following the seminal paper of Rosenberg
and Schochet [30], we define the UCT class to be those C*-algebras A for which

0 — Ext(K«(A), Kyi1(B)) = KK,(A, B) 2> Hom(K.(A), K+(B)) — 0

is exact for any C*-algebra B.?> C*-algebras in the UCT class are said to satisfy the UCT.

The strategy we propose for proving nuclear C*-algebras satisfy the UCT is rooted in the original
proof of the stably finite case of the classification theorem for simple C*-algebras of finite nuclear
dimension. For a couple of decades, classification was only achieved for C*-algebras constructed as limits
of well-understood building blocks. It started with pioneering work of Elliott [11] on the classification of
AF-algebras, i.e., limits of direct sums of matrix algebras. With increasingly sophisticated techniques,
classification was achieved for simple AT-algebras of real rank zero, and then, unital simple AH-algebras
with no dimension growth [12; 13; 15]. In 2000, Huaxin Lin [23] made a conceptual leap with the
introduction and classification of TAF-algebras, which are defined by an abstract approximation property
as opposed to concrete inductive limit structure. This breakthrough was eventually generalized, leading to
the classification of algebras with generalized tracial rank (g-TR) at most one [16; 17]. Thus, the classes
of examples which could be classified via K -theoretic invariants grew over time, getting larger with each
decade.

At the same time, very general approximation properties were being introduced and studied [21; 42;
45], which led to reduction theorems in the classification program. That is, it was shown that in order to
classify algebras in a large class, it suffices to classify a smaller subclass. Perhaps the most influential
reduction theorem was due to Winter, who proved that to classify all simple C*-algebras A with finite
nuclear dimension, it suffices to classify A ® U/ where U is the universal UHF algebra [44]. This reduction
is quite surprising as algebras of the form A ® U have several special properties not enjoyed in the general
finite-nuclear-dimension case such as an abundance of projections and divisible K -theory. In the presence
of other conditions like real rank zero and quasidiagonality, related reduction theorems inched closer and
closer to the abstract approximation properties being classified [43]. In 2015, a remarkable bridge was
constructed by Elliott, Gong, Lin and Niu [14]: if A is simple, unital, satisfies the UCT, has finite nuclear
dimension and every tracial state on A is quasidiagonal, then A ® U/ has generalized tracial rank at most
one.

We think following this roadmap could lead to a proof of the UCT for all nuclear C*-algebras.’ In
the next section we review existing reduction theorems. In Section 3 we review the classes of examples
known to satisfy the UCT. In Section 4 we discuss possible bridges between reduction theorems and
examples: we focus on a new reduction theorem (Theorem 4.6; also see Theorem 4.7) using a class
of C*-algebras that we call decomposable and that is related to the property of having finite nuclear
dimension (see Example 4.3). Finally, in Section 5 we sketch a proof of the UCT for decomposable
C*-algebras.

2The reader is warned that our discussion only conveys broad ideas, and sweeps substantial and subtle details under the rug.
Please see [30] for a precise treatment.

3 During the preparation of this article, Huaxin Lin proposed a different strategy in conference lectures. His interesting ideas
will not be covered here.
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2. Reduction theorems

The first important subclass to which the UCT can be reduced is the so-called Kirchberg algebras, i.e.,
simple nuclear and purely infinite C*-algebras. Recall that a simple C*-algebra is purely infinite if
every nonzero hereditary sub-C*-algebra contains an infinite projection, that is, a projection which is
Murray-von Neumann equivalent to a proper subprojection of itself. Kirchberg algebras enjoy many
useful properties, including:

(1) any two nonzero positive elements are Cuntz equivalent [29, Proposition 4.1.1];

(2) real rank zero, meaning any self-adjoint element can be approximated in norm by self-adjoint
elements with finite spectrum [29, Proposition 4.1.1];

(3) tensorial absorption of the Cuntz algebra O and thus the Jiang—Su algebra Z [29, Theorem 7.2.6].

Using the fact that A is KK-equivalent to A ® O and Kirchberg’s celebrated O,-embedding theorem
[29, Theorem 6.3.11], an inductive limit construction shows that every nuclear C*-algebra is KK-equivalent
to a Kirchberg algebra [29, Proposition 8.4.5]. Hence we have:

Theorem 2.1 (Kirchberg). The UCT holds for all nuclear C*-algebras if and only if it holds for all unital
Kirchberg C*-algebras.

In fact, Kirchberg reduced even further, to the simplest possible K-groups.

Theorem 2.2 [29, Corollary 8.4.6]. The UCT holds for all nuclear C*-algebras if and only if it holds for
all unital Kirchberg C*-algebras with trivial K -theory (i.e., they are all isomorphic to O,).

Our second reduction theorem deals with algebras at the opposite end of the spectrum from those
which are simple and purely infinite.

Definition 2.3. A C*-algebra is called RFD or residually finite-dimensional if it embeds into [ [ My, for a
sequence (k;);cn of integers, where My, denotes the C*-algebra of k; x k;-matrices.

Equivalently, a C*-algebra is RFD if it has a separating family of finite-dimensional representations.
Using Voiculescu’s stunning result that cones are always quasidiagonal [36], Dadarlat established the
following reduction theorem.

Theorem 2.4 [8, proof of Lemma 2.4]. The UCT holds for all nuclear C*-algebras if and only if it holds
for all nuclear RFD C*-algebras.

For our third reduction theorem we need Lin’s groundbreaking tracial-approximation idea.

Definition 2.5 [23, page 694]. A C*-algebra is TAF or tracially approximately finite-dimensional if for
any € > 0, any finite subset / C A containing a nonzero element, and any full a € A, there exists a
finite dimensional C*-subalgebra B C A with 15 = p such that, for all x € F, we have

(D) llpx —xpll <e,
(2) the distance from pxp to B is no more than €, and

(3) n[1 — p] < [p] in the Murray-von Neumann semigroup of A and 1 — p is equivalent to a projection
in the hereditary subalgebra generated by a.
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The following theorem of Dadarlat, which relies on Theorem 2.4 and utilizes another inductive limit
construction, is an analogue of Theorem 2.1 in the stably finite case.

Theorem 2.6 [8, Theorem 1.2]. The UCT holds for all nuclear C*-algebras if and only if it holds for all
nuclear TAF C*-algebras.

In fact [8, Theorem 1.2], analogously to Theorem 2.2, it suffices to prove the UCT for a simple,
unital, nuclear TAF C*-algebra with the same K -theory as the universal UHF algebra Q (and so that it is
isomorphic to Q).

Our last reduction theorem requires another groundbreaking idea: noncommutative topological covering
dimension.

Definition 2.7 [45, Definition 2.1]. The nuclear dimension of a separable C*-algebra A is the infimum of
all natural numbers d such that there is a sequence (F;);cn of finite-dimensional C*-algebras, a sequence
of completely positive contractions (¢; : A — F;);en, and (d + 1) sequences (¢l.(l)  Fi — A)jen of
order-zero completely positive contractions for/ =0, 1, ..., d such that for any a € A

1P+ + ) oi(a) —al > 0 asi — oo.

Note that having finite nuclear dimension implies nuclearity. Every Kirchberg algebra has nuclear
dimension one [3, Theorem GJ, hence Theorem 2.1 implies the following.

Theorem 2.8. The UCT holds for all nuclear C*-algebras if and only if it holds for all simple unital
C*-algebras with nuclear dimension 1.
There are several other open problems which are equivalent to the UCT for nuclear C*-algebras. Since

they are not reduction theorems in the sense we are considering the reader is referred to [2, Introduction]
for a nice summary.

3. Examples

In [30, page 439] Rosenberg and Schochet observed that abelian C*-algebras satisty the UCT. Essentially
every other known example is derived from this case using a variety of permanence properties. In this
section we recall the main examples, then review the long list of permanence properties enjoyed by the
UCT class.

A C*-algebra is type I if its double dual is a type I von Neumann algebra. Basic examples include
abelian C*-algebras and the compact operators on a Hilbert space. Another important class of examples,
particularly for classification, are subhomogeneous C*-algebras, i.e., subalgebras of C(X) ® M,,(C) for
some space X and n € N.

Theorem 3.1 [30, page 439]. Type I C*-algebras satisfy the UCT.

Groupoid* C*-algebras [25; 41] provide our next class of examples. For simplicity, we will stick to
the amenable case (as it corresponds to nuclearity, at least for étale groupoids).

Theorem 3.2 [35]. Let G be an amenable groupoid. Then its C*-algebra satisfies the UCT.

Importantly, the previous result was partially generalized by Barlak and Li [1] to twisted étale groupoid
C*-algebras. This allowed a connection with the notion of Cartan subalgebras.

4All groupoids here are locally compact, Hausdorff, and second countable.
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Definition 3.3. A maximal abelian self-adjoint subalgebra B C A is called a Cartan subalgebra if its

normalizer generates A, it is the image of a conditional expectation, and it contains an approximate unit
for A.

By work of Renault [26], Cartan subalgebras induce twisted groupoid structures (which are amenable
in the nuclear case) and hence we have the following:

Theorem 3.4. If A is nuclear and has a Cartan subalgebra, then A satisfies the UCT.

The converse is also true when A is simple and has finite nuclear dimension [22; 32].
Though narrow in scope when compared to the previous examples, Eckhardt and Gillaspy [10] used
special properties of nilpotent groups to prove the following interesting theorem.

Theorem 3.5. Let G be a finitely generated nilpotent group and w an irreducible representation of G.
Then C3 (G) satisfies the UCT.

Permanence properties. Here are the known permanence properties of the nuclear UCT class. Definitions
and descriptions of their utility follow.

» KK-equivalence.

e Tensor products.

« Inductive limits.

» Two out of three in a short exact sequence.
 Crossed products by Z or R.

« Internal approximation by subalgebras.

C*-algebras A and B are said to be KK-equivalent if there exists an invertible element in KK(A, B).
These equivalence classes are large, giving one lots of room to explore when searching for new examples
within a class. For instance, the Kirchberg algebra O is KK-equivalent to C! More generally, Rosenberg
and Schochet proved that a C*-algebra is in the UCT class if and only if it is KK-equivalent to an abelian
C*-algebra (see [29, pages 455-456] and [31, Proposition 5.3]).

When A and B satisfy the UCT, so does their minimal (and maximal) tensor product A ® B, since A
and B are KK-equivalent to abelian C*-algebras. In particular, the stabilization of something in the UCT
class remains in the UCT class.

If Ay - A, - A3 — --- is an inductive system and each A; satisfies the UCT, then so does
their inductive limit [30, Proposition 2.3]. It follows that AF algebras, and their generalizations using
subhomogeneous building blocks, satisfy the UCT.

If0 - A— D — B — 0is short exact and two of the algebras A, D or B satisfy the UCT, so does
the third. In particular, the UCT class is closed under extensions and taking quotients by ideals in the
UCT class [30, Proposition 2.3].

If A satisfies the UCT and « is an action of either Z or R, then the crossed products A X, Z or A x4 R
satisfy the UCT [30, Propositions 2.6 and 2.7]. One can show Cuntz algebras satisfy the UCT this way,
since their stabilizations are isomorphic to crossed products of AF algebras [29, page 87].

The internal-approximation permanence property (which generalizes the inductive limit result) is a
theorem of Dadarlat [8, Theorem 1.1].
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Theorem 3.6. Let A be a nuclear C*-algebra. Assume for any finite set F C A and any € > 0 there is a
C*-subalgebra B of A satisfying the UCT and such that dist(a, B) < € for all a € F. Then A satisfies
the UCT.

Taken together, these permanence properties are wide ranging and exceedingly useful. For instance,
Tu’s proof of the UCT for C*-algebras associated to amenable groupoids first uses Kasparov’s so-called
Dirac-dual Dirac method to construct a C*-algebra A(G) which is KK-equivalent to C*(G). He then
observes that A(G) is an inductive limit of type I C*-algebras, completing the proof.

4. Possible bridges
Summarizing Section 2, we know the UCT holds for all nuclear C*-algebras if and only if it holds for
any of the following subclasses:
« Kirchberg algebras (with trivial K-theory);
 nuclear RFD algebras;
« simple, nuclear, unital TAF algebras;
« simple, unital C*-algebras with nuclear dimension one.

In Section 3 we saw that the following examples, and anything built out of them via appropriate
permanence properties, satisfy the UCT:

e type I C*-algebras;
» C*(G), where G is an amenable groupoid;
o any C*-algebra with a Cartan subalgebra.

Any KK-equivalence from the first group to the second would prove the UCT for all nuclear C*-
algebras. For instance, one could try to prove that every Kirchberg algebra is KK-equivalent to something
with a Cartan subalgebra. Or perhaps there is a notion of “tracial Cartan subalgebra” which still allows
one to prove the UCT, thereby adding another bullet point to the second group, and for which every TAF
algebra is KK-equivalent to an algebra with this property. There are lots of possibilities.

Decomposable C*-algebras. In the classification program, bridging the gap between reduction theorems
and examples took decades of hard work and experimentation. The same could be true for the UCT,
but there is a potential bridge that seems particularly promising. It is based on “approximate ideal
structures” as introduced in [37], although in the very special case when the “approximate ideals” are
finite dimensional.

Definition 4.1. We say a unital C*-algebra A is decomposable.® If for every € > 0 and every finite
subset X C A there is a triple (4, C, D) consisting of a positive contraction /4 in A and finite-dimensional
sub-C*-algebras C and D of A such that, under the operator norm and its induced metric, we have:

(D) |Ith, x]|| <eforall x € X;
2) d(hx,C) <eand d((1 —h)x, D) <eforall x € X;
3) d((1—h)hx,CND)<eforall x € X.

STt is shown in [19] that the definition we give here is equivalent to the one from [40].
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If one can only arrange the first two conditions, we say A is a weakly decomposable C*-algebra.

Observe that if I, J C A are ideals such that A = I 4 J, an exercise using quasicentral approximate
units shows that for any € > 0 and finite X C A there is a positive contraction & € A satisfying (1),
(2), and (3) above with I and J in place of C and D. Philosophically then, A is decomposable if it is
“approximately a sum of finite-dimensional ideals”. It is this analogy that gives applications to KK-theory
via an approximate version of the Mayer—Vietoris exact sequence (see Section 5 and [40]). On the other
hand, despite this philosophical relation to ideals, there are many simple examples.

Example 4.2. The following simple C*-algebras are decomposable:
e The Cuntz algebras O, for n finite [19], following [45, Section 7].
e The crossed product C(X) x Z for any minimal action on a Cantor set [18, Sections 2 and 8].
It is not clear exactly how large the class of simple (nuclear) decomposable C*-algebra is, but the above

shows that it contains many interesting examples, and includes both infinite and finite simple C*-algebras.
On the other hand, the class of simple C*-algebras that are weakly decomposable is certainly very large.

Example 4.3 [19]. Say A has nuclear dimension one and real rank zero. Then A is weakly decomposable.®

Combined with recent deep advances in the structure theory of simple nuclear C*-algebras [5; 6],
this example implies that all simple, nuclear, Z-stable C*-algebras with real rank zero are weakly
decomposable. In particular, all Kirchberg algebras are weakly decomposable. From this and Theorem 2.2
of Kirchberg, we get another reduction theorem.

Theorem 4.4. [f the UCT holds for all simple, unital, separable, weakly decomposable C*-algebras with
K. (A) =0, then it holds for all nuclear C*-algebras.

On the other hand, the third author and Yu have proved the following in [40], based on machinery built
in [38]. The proof will be explained in the next section.

Theorem 4.5. The UCT holds for all unital, separable, decomposable C*-algebras with K ,(A) = 0.

As a direct consequence of this, the fact that O; is decomposable (see Example 4.2), and Theorem 2.2
of Kirchberg, we get the following structural reformulation of the UCT.

Theorem 4.6. The following are equivalent:
(1) All nuclear C*-algebras satisfy the UCT.
(2) Any Kirchberg algebra with trivial K -theory is decomposable.

We would guess that not all Kirchberg algebras are decomposable (even though they are all weakly
decomposable by Example 4.3). Indeed, Jaime and the third author [19] have shown that C*-algebras
satisfying a slight strengthening of decomposability have torsion-free K group, and Kirchberg algebras
can have arbitrary (countable) abelian groups as their K -theory. We conjecture that a (UCT) Kirchberg
algebra is decomposable if and only if it has torsion free K; group.

This section can be summarized by giving the following bridge to the UCT.

6C0nversely, if A is weakly decomposable, then it has nuclear dimension one. We do not know if (weak) decomposability
implies real rank zero in general, but this is true in some interesting special cases such as when A is separable and unital with
unique trace [19].
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Theorem 4.7. To prove the UCT for all nuclear C*-algebras, it suffices to prove that any weakly
decomposable C*-algebra with trivial K -theory is equal to’ to a decomposable C*-algebra.

5. The UCT for decomposable C*-algebras

In this section, we will sketch the proof of Theorem 4.5. The proof is technical; we give a different
exposition here than in the original papers to try to make it more palatable.

We want to prove the UCT for a separable, unital, decomposable C*-algebra A with K,(A) = 0. This
is equivalent to showing that KK(A, A) = 0. Using a result of Dadarlat [9, Corollary 5.3], to show that
KK(A, A) =0, it suffices to show that a certain quotient group KL(A, A) of KK(A, A) is 0. We will
just use KL as a black box in this exposition, so do not define it: suffice to say that it was introduced by
Rgrdam [27, Section 5] in the case that A satisfies the UCT, and in general it is defined as the largest
Hausdorff quotient group of KK(A, A) for a certain canonical topology on KK(A, A) [9, Section 5].

The first step [38] in the proof of Theorem 4.5 is to produce a good model for KL.(A, B), with A
and B separable, unital, nuclear C*-algebras. To explain this, we first recall a nonstandard description of
the K-theory of B. Let B ® K denote the stabilization of B, and let M (B ® K) be its multiplier algebra.
Let P(B) be the set of all projections p € M>(M(B ® K)) such that p — ((1) 8) is in M>(B ® K). Then
Ko(B) canonically identifies with the set 7o(P(B)) of path components of P(B).

Let now 7 : A — B(£?) be a unital, faithful, infinite multiplicity® representation. This gives rise to an

inclusion
A — B(t*) = M(K) C M(B®K),

which we use to identify A with a C*-subalgebra of M(B ® K) (and therefore with a subalgebra of
My (M(B ® K)) by having it act diagonally). For a subset X C A and € > 0, define

(1) Pe(X,B):={pePB)||lp,x]l| <e€forall x € X}.

Let KK¢ (X, B) := mo(P:(X, B)) be the set of path components of P.(X, B), which is an abelian group
in a natural way. As discussed above, Ko(B) = mo(P (<, B)) for any €, so one can think of KK, (X, B)
as “the part of Ko(B) that commutes with X up to € error”.

Let now (X,) be an increasing sequence of finite subsets of A with dense union and let (¢,) be a
decreasing sequence of positive numbers tending to zero. Then there is a system of homomorphisms

2 - = KK, (Xn, B) > KK, (X—1, B) = --- = KK, (X1, B),

where each arrow comes from the fact that commuting with X, up to €,_ is easier than commuting
with X, up to €,. Hence we can define the inverse limit lim KK, (X,, B) in the sense of abelian group
theory. One can also (we will not go into the details as we do not want to define KLL(A, B)) construct
homomorphisms «, : KL(A, B) - KK, (X,, B) for each n.

Theorem 5.1 [38]. With notations as above, the maps «, fit together to define an isomorphism
KL(A, B) —> limKK,, (X, B).

Tor just KK-equivalent to
8This just means we take some faithful unital representation and add it to itself infinitely many times.
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In particular, this theorem implies (by definition of the inverse limit) that to show that KL(A, B) =0,
it suffices to show that for any o« € KLL(A, B) and any n, there exists N > n such that xy (o) maps to zero
under the canonical map KK, (Xn, B) = KK, (X,, B).

We now turn to the second step [40] in the proof of Theorem 4.5, which is a Mayer—Vietoris argument.
Our aim is to show that for any class « € KL(A, A) =0 and any n, there exists N > n such that «y ()
maps to zero in KK, (X, A). Recall” that if A is nuclear and splits as a sum of two ideals A =1 + J,
then there is a six-term exact Mayer—Vietoris sequence

.. S KK(INJ,SA) -5 KK(A, A) <> KK(I, A) @KK(J, A) —> - --

where SA is the suspension of A. We want to reproduce this “locally”.

Choose a triple (k, C, D) with the properties in Definition 4.1 for the given X, and some suitably
small € (determined by the proof). We claim that for any large enough N (how large depends on #, £,
C, D) we can find a collection of maps

KK, (Xy, A) = KK(C, A) 8KK(D, A)

l

KK(CN D, SA) == KK, (X,, A)

where the vertical map comes from line (2), and with the following exactness property: if an element
of KK, (Xn, A) is mapped to zero in KK(C, A) & KK(D, A) by o, then its image in KK, (X, SA)
comes from KK(C N D, SA) via 9. However, the groups KK(C, A), KK(D, A) and KK(CN D, SA) are
all zero as C and D are finite dimensional and K.(A) = 0, so the claim completes the proof.

The construction of the “local Mayer—Vietoris sequence” in the claim above uses the same ideas as the
classical six-term exact sequence in K-theory. The map

o : KK, (Xy, A) = KK(C, A) 8KK(D, A)

is defined by choosing X large enough to (approximately) contain the unit balls of C and D. A cycle
for KK, (Xn, A) thus approximately commutes with the unit ball of C, and is therefore close to an
element that actually commutes with C by averaging over the (compact!) unitary group of C. For
C finite-dimensional, one can show that the group KK(C, A) identifies!®with the set of path compo-
nents of Py(C, A) (see line (1) for notation), so we get a map KK, (Xy, A) — KK(C, A). A map
KK, (Xy, A) = KK(D, A) is defined similarly, and putting these together defines o.

The map
0:KK({CND, SA) — KK, (X,, A)

is defined by adapting classical, purely algebraic, formulas'! for the boundary map in K -theory in terms
of 4 and 1 — h. Given an element § in the kernel of o, these formulas also give an ansatz for an element
of KK(C N D, SA) that maps to the image of 8 in KK¢, (X,, A). A careful approximation (and using the

9We cannot find this in the literature, but it is well known and can be derived from the usual long exact sequence by the
arguments of [39, Proposition 2.7.15], for example.

10This is cheating in general: there is a mild extra complication if C is not a unital subalgebra of A. However, it is precisely
true when K, (A) = 0, which is all we need.

HThese go back at least to Milnor’s exposition of algebraic K -theory [24, Chapter 2].
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same averaging argument as above, this time based on the compactness of the unitary group of C N D)
shows that this ansatz can be made to work, completing the proof.
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