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Abstract
Let 𝐺 be an affine algebraic group defined over a field
𝑘 of characteristic 0. We study the derived moduli
space of 𝐺-local systems on a pointed connected CW
complex𝑋 trivialized at the basepoint of𝑋. This derived
moduli space is represented by an affine DG scheme
𝐑Loc𝐺(𝑋, ∗): we call the (co)homology of the structure
sheaf of 𝐑Loc𝐺(𝑋, ∗) the representation homology of 𝑋
in 𝐺 and denote it by HR∗(𝑋, 𝐺). The 0-dimensional
homology, HR0(𝑋, 𝐺), is isomorphic to the coordinate
ring of the 𝐺-representation variety Rep𝐺[𝜋1(𝑋)] of
the fundamental group of 𝑋 — a well-known algebro-
geometric invariant that plays a role in many areas of
topology. The higher representation homology is much
less studied. In particular, when 𝑋 is simply connected,
HR0(𝑋, 𝐺) is trivial but HR∗(𝑋, 𝐺) is still an interesting
rational invariant of 𝑋 that depends on the Lie algebra
of 𝐺. In this paper, we use Quillen’s rational homotopy
theory to compute the representation homology of an
arbitrary simply connected space (of finite rational
type) in terms of its Lie and Sullivan algebraic models.
When 𝐺 is reductive, we also compute HR∗(𝑋, 𝐺)𝐺 , the
𝐺-invariant part of representation homology, and study
the question when HR∗(𝑋, 𝐺)𝐺 is free of locally finite
type as a graded commutative algebra. This question
turns out to be related to the so-called StrongMacdonald
Conjecture, a celebrated result in representation theory
proposed (as a conjecture) by Feigin and Hanlon in the
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1980s and proved by Fishel, Grojnowski and Teleman in
2008. Reformulating the Strong Macdonald Conjecture
in topological terms, we give a simple characterization
of spaces𝑋 for whichHR∗(𝑋, 𝐺)𝐺 is a graded symmetric
algebra for any complex reductive group 𝐺.

MSC ( 2020 )
14A30, 18A25, 55P62 (primary), 14D20, 14L24, 17B56 (secondary)

1 INTRODUCTION

The present paper is a sequel to our earlier work, [5, 6], where we study representation homol-
ogy of topological spaces. In [5], we established basic properties of representation homology, con-
structed natural maps and spectral sequences relating it to some well-known homology theories
associatedwith spaces (such as higherHochschild homology and homology of based loop spaces).
Further, in [6], we studied the linearization of representation homology and proved some van-
ishing theorems for groups, surfaces and certain 3-dimensional manifolds of interest in geomet-
ric topology.
The main aim of this paper is to compute the representation homology for an arbitrary simply

connected space 𝑋 over a field 𝑘 of characteristic 0. From [5], we know that the representation
homology of such a space is a rational homotopy invariant (that is, it depends only on the homo-
topy type of the rationalization𝑋ℚ of𝑋); on the other hand, by a fundamental theorem of Sullivan
[53], the homotopy type of 𝑋ℚ is completely determined by its algebraic model: a commutative
cochain DG algebra𝑋 , called the Sullivan model of 𝑋. This leads us to the natural question.

Question 1. How to describe the representation homology of 𝑋 in terms of𝑋?

The representation homology HR∗(𝑋, 𝐺) of a space 𝑋 in an algebraic group 𝐺 may be thought
of as a multiplicative version of ordinary (co)homology, where the commutative Hopf algebra
(𝐺) plays the role of coefficients (see [5]). In this regard, representation homology is analogous
to higher Hochschild homology, HH∗(𝑋,𝐴), which can be viewed as a homology of the space 𝑋
with coefficients in a commutative algebra 𝐴 (see [47]). While the two homology theories may be
defined in a similar way and are, in fact, closely related†, there is one important difference: unlike
HH∗(𝑋,𝐴), the HR∗(𝑋, 𝐺) carries a natural algebraic 𝐺-action induced by the adjoint action of
𝐺. Examples show that this action depends on the space 𝑋 in a nontrivial way, which makes
representation homology a richer and more geometric theory than Hochschild homology. When
𝑋 is simply connected (so thatHR0(𝑋, 𝐺) = 𝑘) and 𝐺 is reductive, it is natural to treatHR∗(𝑋, 𝐺)
as an object of representation theory — or even classical invariant theory (in the spirit of [61])
— and ask basic questions about the structure of the algebra HR∗(𝑋, 𝐺) as a 𝐺-module and its
subalgebra HR∗(𝑋, 𝐺)𝐺 of 𝐺-invariants. Perhaps, the following is the first natural question that
arises from this perspective.

†As shown in [5], there is a natural isomorphism HR∗(Σ𝑋+, 𝐺) ≅ HH∗(𝑋,(𝐺)), for any space 𝑋.



694 BEREST et al.

Question 2. When is the algebra HR∗(𝑋, 𝐺)𝐺 free and (locally) finitely generated, that is, iso-
morphic to the graded symmetric algebra of a (locally) finite-dimensional graded vector space
over 𝑘?

Question 2 turns out to be related to some of the deeper problems in Lie theory and algebraic
representation theory. Our second aim in this paper is to shed new light on these problems link-
ing them to topology. To state our results, we first recall a few basic facts about representation
homology (referring the reader to [5] for details and proofs).

1.1 Three definitions of representation homology

There are (at least) three different ways to define representation homology. Historically the first
and (arguably) most appealing definition comes from derived algebraic geometry (see, for exam-
ple, [36, 45, 46, 55]). Let 𝐺 be an affine algebraic group defined over a field 𝑘 of characteristic 0.
Given a pointed connected CW complex 𝑋 consider the (framed) moduli space Loc𝐺(𝑋, ∗) of 𝐺-
local systems on𝑋 with trivialization at the basepoint of𝑋. As shown in [36], this classical moduli
space has a natural derived extension which is represented by an affine differential graded (DG)
scheme 𝐑Loc𝐺(𝑋, ∗). The structure sheaf of 𝐑Loc𝐺(𝑋, ∗) is, by definition, a (negatively graded)
commutative cochain DG algebra whose cohomology is a homotopy invariant of 𝑋. We set

HR∗(𝑋, 𝐺) ∶= H
−∗[𝐑Loc𝐺(𝑋,∗)] (1.1)

and call HR∗(𝑋, 𝐺) the representation homology of 𝑋 in 𝐺. This terminology is motivated by
the fact that Loc𝐺(𝑋, ∗) can be identified with the classical representation scheme Rep𝐺[𝜋1(𝑋)],
parameterizing the representations of the fundamental group of𝑋 in𝐺, and theHR0(𝑋, 𝐺) is thus
naturally isomorphic to [Rep𝐺(𝜋1(𝑋))], the affine coordinate ring of Rep𝐺[𝜋1(𝑋)].
Another, less geometric but more general and conceptually simpler definition was proposed

in [5]. This definition rests on a fundamental result in simplicial homotopy theory, due to Kan
[35], that describes the homotopy types of pointed connected spaces in terms of simplicial groups.
More precisely, Kan’s theorem asserts that the model category 𝚜𝙶𝚛 of simplicial groups is Quillen
equivalent to the category 𝚜𝚂𝚎𝚝0 of reduced simplicial sets, which is, in turn, Quillen equivalent
to the category 𝚃𝚘𝚙0,∗ of pointed connected (CGWH) spaces; thus, there are natural equivalences
of homotopy categories

𝙷𝚘(𝚜𝙶𝚛) ≅ 𝙷𝚘(𝚜𝚂𝚎𝚝0) ≅ 𝙷𝚘(𝚃𝚘𝚙0,∗). (1.2)

Our construction of representation homology begins with the simple observation that the functor
of points 𝐺 ∶ 𝙲𝚘𝚖𝚖𝑘 → 𝙶𝚛 of any affine algebraic group (scheme) 𝐺 has a left adjoint

( – )𝐺 ∶ 𝙶𝚛 → 𝙲𝚘𝚖𝚖𝑘 (1.3)

which — when applied to a given group Γ — gives the coordinate ring of the affine scheme
Rep𝐺(Γ): that is, Γ𝐺 = [Rep𝐺(Γ)]. Thus, the functor (1.3) provides an alternative (dual) descrip-
tion of the representation scheme Rep𝐺(Γ) and is called the representation functor in 𝐺. Now, to
define representation homology we simply derive (1.3) following a standard procedure in homo-
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topical algebra [51]. First, we prolong the adjoint functors ( – )𝐺 ∶ 𝙶𝚛 ⇄ 𝙲𝚘𝚖𝚖𝑘 ∶ 𝐺 to the sim-
plicial categories 𝚜𝙶𝚛 and 𝚜𝙲𝚘𝚖𝚖𝑘 (by applying them degreewise to the corresponding simplicial
objects):

( – )𝐺 ∶ 𝚜𝙶𝚛 ⇄ 𝚜𝙲𝚘𝚖𝚖𝑘 ∶ 𝐺. (1.4)

Then, we replace the simplicial adjunction (1.4) with its universal ‘homotopy approximation’ rep-
resented by derived functors. To be precise, Theorem 1.1 of [5] says that each of the adjoint functors
in (1.4) has a total derived functor (left and right, respectively), and these functors form an adjoint
pair at the level of homotopy categories†:

𝑳( – )𝐺 ∶ 𝙷𝚘(𝚜𝙶𝚛) ⇄ 𝙷𝚘(𝚜𝙲𝚘𝚖𝚖𝑘) ∶ 𝑹𝐺. (1.5)

We can nowmake the following definitionwhichwill be ourmain definition for the present paper
(cf. [5, Definition 3.1]).

Definition 1.1. For a space 𝑋 ∈ 𝚃𝚘𝚙0,∗, we choose a simplicial group model Γ𝑋 and define the
representation homology of 𝑋 in 𝐺 by

HR∗(𝑋, 𝐺) ∶= 𝜋∗𝑳(Γ𝑋)𝐺 ∶= H∗[𝑁𝑳(Γ𝑋)𝐺] , (1.6)

where 𝑁 stands for the standard (Dold–Kan) normalization functor (see Appendix A.1).

Note that, since 𝑳( – )𝐺 is a homotopy functor on simplicial groups, formula (1.6) does not
depend on the choice of a simplicial group model of 𝑋. In fact, there are several natural mod-
els that can be used in practical computations (see [6]). In this paper, we will use most exclusively
the so-called Kan loop group modelΓ = 𝔾𝑋, which is a semi-free simplicial group functorially
attached to the space 𝑋 (see [28, chapter V] or [5, section 2] for a brief summary of this construc-
tion). Since semi-free simplicial groups are cofibrant objects in 𝚜𝙶𝚛, formula (1.6) simplifies in this
case to

HR∗(𝑋, 𝐺) = 𝜋∗(𝔾𝑋)𝐺. (1.7)

To compareDefinition 1.1 with the algebro-geometric construction of representation homology,
(1.1), we associate to the derived representation functor (1.6) the derived representation scheme

DRep𝐺(𝑋) ∶= 𝐑Spec [𝑳(Γ𝑋)𝐺].

Here ‘𝐑Spec,’ stands for the Toën–Vezzosi derived Yoneda functor [56, 57] that assigns to a sim-
plicial commutative algebra 𝐴— a derived ring in terminology of [57] — the simplicial presheaf
(prestack)

𝐑Spec(𝐴) ∶ 𝚍𝙰𝚏𝚏
op
𝑘
∶= 𝚜𝙲𝚘𝚖𝚖𝑘 → 𝚜𝚂𝚎𝚝 , 𝐵 ↦ Hom(𝑄(𝐴), 𝐵) ,

†We should warn the reader that the functors (1.4) do not form a Quillen pair between the categories 𝚜𝙶𝚛 and 𝚜𝙲𝚘𝚖𝚖𝑘
equipped with standard (projective) model structures. The existence of the derived adjunction (1.5) is a nontrivial fact that
does not follow directly from Quillen’s Adjunction Theorem for model categories [51].



696 BEREST et al.

where 𝑄(𝐴) is a cofibrant model for 𝐴 and Hom is the simplicial mapping space (function com-
plex) in 𝚜𝙲𝚘𝚖𝚖𝑘. For any 𝐴 ∈ 𝚜𝙲𝚘𝚖𝚖𝑘, the prestack 𝐑Spec(𝐴) satisfies the descent condition for
étale hypercoverings and hence defines a derived stack (which is a derived affine scheme in the
sense of [57]). Now, in [6, Appendix A.2], we showed that for any pointed connected CW complex
𝑋, there is an equivalence of derived stacks DRep𝐺(𝑋) ≃ 𝐑Loc𝐺(𝑋, ∗). This implies that the two
definitions of representation homology — (1.1) and (1.6) — actually agree.
Our third definition of HR∗(𝑋, 𝐺) — perhaps the most elementary one — is given in terms

of functor homology. Let 𝔊 denote the small category whose objects ⟨𝑛⟩ are the finitely gen-
erated free groups 𝔽𝑛 (one for each 𝑛 ⩾ 0) and the morphisms are arbitrary group homomor-
phisms. This category carries a natural (strict) monoidal structure, with product ∗∶ 𝔊 ×𝔊 → 𝔊

being the free product (coproduct) of free groups: ⟨𝑛⟩ ∗ ⟨𝑚⟩ = ⟨𝑛 + 𝑚⟩. It is known that every
commutative Hopf algebra defines a (strict) monoidal functor on 𝔊 with values in 𝙲𝚘𝚖𝚖𝑘, and
conversely, every such functor corresponds to a commutative Hopf algebra (see, for example,
[48]). Following [5], for a commutative Hopf algebra , we denote the corresponding functor
by

 ∶ 𝔊 → 𝙲𝚘𝚖𝚖𝑘 , ⟨𝑛⟩→ ⊗𝑛. (1.8)

Note that (1.8) naturally extends to a functor on all groups: 𝙶𝚛 → 𝙲𝚘𝚖𝚖𝑘 by taking the left Kan
extension along the inclusion𝔊 ↪ 𝙶𝚛. To avoid complicated notation we will use the same sym-
bol  to denote the functor (1.8) and its Kan extension to 𝙶𝚛 (moreover, we will often drop the
underline in this symbol when there is no danger of confusion). Now, to define representation
homology with coefficients in a commutative Hopf algebra  we simply precompose the corre-
sponding functor ∶ 𝙶𝚛 → 𝙲𝚘𝚖𝚖𝑘 with the Kan loop group model of a given space 𝑋: the result
is the simplicial commutative algebra

(𝔾𝑋) ∶ Δop
𝔾𝑋
888→ 𝙶𝚛



88→ 𝙲𝚘𝚖𝚖𝑘

whose homology we denote by

HR∗(𝑋,) ∶= 𝜋∗[(𝔾𝑋)] = H∗[𝑁(𝔾𝑋)].

For = (𝐺), where 𝐺 is an affine algebraic group scheme over 𝑘, it is easy to show that there is
a natural isomorphism (see [5, Proposition 4.1]):

HR∗(𝑋, (𝐺)) ≅ HR∗(𝑋, 𝐺). (1.9)

Thus, we may think of the representation homology as a homology of a space with coefficients in
commutativeHopf algebras in the sameway as one thinks of the ordinary homology as a homology
with coefficients in abelian groups or the higher Hochschild homology [47] as a homology with
coefficients in commutative algebras.
Now, for any (discrete) group Γ ∈ 𝙶𝚛, the group algebra 𝑘[Γ] has a natural cocommutativeHopf

algebra structure and therefore defines a contravariant monoidal functor on𝔊:

𝑘[Γ] ∶ 𝔊op → 𝙲𝚘𝚖𝚖𝑘 , ⟨𝑛⟩↦ 𝑘[Γ]⊗𝑛.



REPRESENTATION HOMOLOGY OF SIMPLY CONNECTED SPACES 697

Regarding (𝐺) and 𝑘[Γ] as linear functors on 𝔊 (with values in 𝚅𝚎𝚌𝚝𝑘), we can form their ten-
sor product 𝑘[Γ] ⊗𝔊 (𝐺). It turns out that there is a natural isomorphism: 𝑘[Γ] ⊗𝔊 (𝐺) ≅

[Rep𝐺(Γ)]; more generally, it is shown in [5] that

HR∗(BΓ, 𝐺) ≅ Tor
𝔊
∗ (𝑘[Γ], (𝐺)) , (1.10)

where Tor𝔊∗ is the (homology of the) classical derived tensor product ⊗
𝑳
𝔊
between covariant and

contravariant linear functors on 𝔊. The ‘Tor’-formula (1.10) is remarkable for two reasons: first,
it gives a natural interpretation of representation homology in terms of usual (abelian) homolog-
ical algebra, placing it in one row with other classical invariants, such as Hochschild and cyclic
homology (see, for example, [39]). Second— as we will see in this paper— it provides an efficient
tool for computations†.

1.2 Main results

Throughout, 𝑘 stands for a commutative base field, which is always assumed to be of characteristic
0 but (unless specified so) not necessarily algebraically closed. Our answer to Question 1 can be
encapsulated into the following theorem which is the main result of the present paper.

Theorem 1.1. Let 𝑋 be a 1-connected pointed space of finite rational type with Sullivan model𝑋 .
Let ̄𝑋 denote the augmentation ideal of𝑋 corresponding to the basepoint of 𝑋.
(𝑎) For any affine algebraic group 𝐺 defined over 𝑘 with Lie algebra 𝔤, there is an isomorphism of

graded commutative algebras

HR∗(𝑋, 𝐺) ≅ H
−∗
CE(𝔤(̄𝑋); 𝑘) ,

where 𝔤(̄𝑋) is the current Lie algebra of 𝔤 over the commutative DG algebra ̄𝑋 .
(𝑏) If 𝐺 is a reductive affine algebraic group over 𝑘, then

HR∗(𝑋, 𝐺)
𝐺 ≅ H−∗CE(𝔤(𝑋), 𝔤; 𝑘) ,

where 𝔤(𝑋) is the current Lie algebra over𝑋 and 𝔤 ⊆ 𝔤(𝑋) is its canonical Lie subalgebra.

Theorem 1.1 needs some explanations. First, recall that for a Lie algebra 𝔤 and a commutative
DG algebra , the current Lie algebra 𝔤() is defined to be the tensor product 𝔤() ∶= 𝔤 ⊗

with Lie bracket [𝜉 ⊗ 𝑎 , 𝜂 ⊗ 𝑏] ∶= [𝜉 , 𝜂] ⊗ 𝑎𝑏 and the differential 𝑑(𝜉 ⊗ 𝑎) ∶= 𝜉 ⊗ 𝑑𝑎. If 𝑋
is a pointed 1-connected topological space of finite rational type, its Sullivan model 𝑋 is an
augmented commutative cochain DG algebra, so we can form the current Lie algebras 𝔤(𝑋)

and 𝔤(̄𝑋), both of which are cohomologically graded. In part (𝑎) of Theorem 1.1,H−∗
CE
(𝔤(̄𝑋); 𝑘)

stands for the classical (Chevalley–Eilenberg) cohomology of the Lie algebra 𝔤(̄𝑋) with trivial
coefficients; in Part (𝑏), H−∗

CE
(𝔤(𝑋), 𝔤; 𝑘), is the relative Lie algebra cohomology of the canonical

pair 𝔤 ⊆ 𝔤(𝑋). The ‘minus’ sign in the superscript of both cohomologies indicates that they are
considered with homological grading.

†We should also mention that, in recent years homological algebra in functor categories over𝔊 has been extensively used
in computations of stable homology of automorphism groups of free groups and the study of related questions of𝐾-theory
and topology (see, for example, [17–19, 49, 59]) and also [5, section 7]).
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The proof of Theorem 1.1 is fairly long and technical: it occupies most of Section 3 and relies
heavily on results of Quillen [50]. For reader’s convenience, we outline themain steps of this proof
in Subsection 3.2.1. Here we mention only two key results that are of independent interest. The
first is Theorem 3.1 which describes the representation homology of a simply connected space 𝑋
in terms of its Quillen DG Lie algebra model 𝔞𝑋 :

HR∗(𝑋, 𝐺) ≅ HR∗(𝔞𝑋, 𝔤). (1.11)

We call Theorem 3.1 the ‘Comparison Theorem’ as it compares two representation homology func-
tors: one with coefficients in an algebraic group𝐺 and the other with coefficients in its Lie algebra
𝔤. The second notable result is Theorem 2.1: it provides a functor homology interpretation — a
natural counterpart of the ‘Tor’-formula (1.10) — for representation homology of Lie algebras†:

HR∗(𝔞, 𝔤) ≅ Tor
𝔊
∗ (𝑈𝔞, 𝔤). (1.12)

Both isomorphisms (1.11) and (1.12) are deduced from Theorem 3.2, which is a result in rational
homotopy theory — a natural refinement of one of the main results of [50].
We now turn to Question 2. We will approach this question topologically by constructing

some natural maps with values in HR∗(𝑋, 𝐺)𝐺 whose images — in good cases — will generate
HR∗(𝑋, 𝐺)

𝐺 as an algebra. Given a simply connected space 𝑋, we consider the space L𝑋 of all
continuous maps 𝑆1 → 𝑋 from the topological circle 𝑆1 to 𝑋 equipped with compact open topol-
ogy. This classical space, called the free loop space of 𝑋, carries a natural 𝑆1-action induced by
the action of 𝑆1 on itself by rotations: thus, we can define the (reduced) 𝑆1-equivariant homol-

ogy H
𝑆1

∗ (L𝑋, 𝑘). It is well-known that, when 𝑘 = ℚ (or more generally, when 𝑘 is any field of
characteristic 0), there is a natural direct sum decomposition

H
𝑆1

∗ (L𝑋, 𝑘) =

∞⨁
𝑝=0

H
𝑆1, (𝑝)

∗ (L𝑋, 𝑘) , (1.13)

which is usually called theHodge decomposition of H
𝑆1

∗ (L𝑋, 𝑘). The𝑝th direct summand in (1.13)
— the Hodge component of degree 𝑝 – is defined topologically as the common eigenspace of the

degree 𝑝 Frobenius operations, that is, the graded endomorphisms of H
𝑆1

∗ (L𝑋, 𝑘) induced by
the finite coverings of the circle: 𝑆1 → 𝑆1, 𝑒𝑖𝜃 → 𝑒𝑖𝑛𝜃, corresponding to the eigenvalues 𝑛𝑝, 𝑛 ⩾ 0,
(see Subsection 4.1). A theoremof Burghelea, Fiedorowicz andGajda (see [12, TheoremA]) asserts

that, if all (rational) Betti numbers of 𝑋 are finite, then each Hodge component of H
𝑆1

∗ (L𝑋, 𝑘) is
locally finite: that is,

dim𝑘 H
𝑆1, (𝑝)

𝑖 (L𝑋, 𝑘) < ∞ for all 𝑖 ⩾ 0 and all 𝑝 ⩾ 0. (1.14)

Now, assume that 𝑘 = ℂ and 𝐺 is a complex reductive group of rank 𝑙 ⩾ 1. Let 𝔤 be the Lie
algebra of 𝐺 with classical exponents {𝑚1, 𝑚2, … , 𝑚𝑙} and let 𝐼(𝔤) ∶= Sym(𝔤∗)𝐺 be the ring of
𝐺-invariant polynomials on 𝔤. It is well-known that 𝐼(𝔤) is generated by 𝑙 algebraically indepen-
dent homogeneous polynomials {𝑃1, 𝑃2, … , 𝑃𝑙}, with deg(𝑃𝑖) = 𝑚𝑖 + 1 for 𝑖 = 1, 2, … , 𝑙. In Sub-

†We briefly review the definition of representation homology of Lie algebras in Section 2.
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section 4.1, for each such generator 𝑃𝑖 , we construct a natural linear map

H
𝑆1, (𝑚𝑖)

∗ (L𝑋, ℂ) → HR∗(𝑋, 𝐺)
𝐺

defined on the𝑚𝑖th Hodge component of (1.13). Assembling these maps (for all 𝑖 = 1, 2, … , 𝑙,), we
get a graded algebra homomorphism

Λ

[
𝑙⨁
𝑖=1

H
𝑆1, (𝑚𝑖)

∗ (L𝑋, ℂ)

]
→ HR∗(𝑋, 𝐺)

𝐺 , (1.15)

which we call a Drinfeld homomorphism for (𝑋, 𝐺).
Note that if 𝐺 is an algebraic torus, then 𝑚𝑖 = 0 for all 𝑖 = 1, 2, … , 𝑙, and HR∗(𝑋, 𝐺)

𝐺 =

HR∗(𝑋, 𝐺) because 𝐺 is commutative. On the other hand, for any simply connected space 𝑋,
we have

H
𝑆1, (0)

∗ (L𝑋, ℂ) ≅ H∗+1(𝑋, ℂ) ,

where the isomorphism is given by the classical Gysin map H
𝑆1

∗ (L𝑋, ℂ) → H∗+1(L𝑋, ℂ) com-
bined with the natural projectionH∗+1(L𝑋, ℂ) → H∗+1(𝑋, ℂ) induced by evaluation of loops at
the origin. Thus, for an algebraic torus, the Drinfeld homomorphism becomes

Λ
[
H∗+1(𝑋, ℂ)

⊕𝑙
]
→ HR∗(𝑋, 𝐺).

A simple calculation with a minimal Quillen model shows that the above map is an isomorphism
for any simply connected space 𝑋 and, in fact, for any commutative — not necessarily diagonal-
izable — algebraic group 𝐺 (see Theorem 4.4). Thus, we get an answer to Question 2, though in a
very special and somewhat trivial case.
Suppose now that 𝐺 is an arbitrary complex reductive group. Then we can ask:

Question 3. For which spaces 𝑋 is the Drinfeld homomorphism (1.15) an isomorphism?

The following theorem, which is our second main result in this paper, specifies simple con-
ditions on cohomology of the space 𝑋 that are sufficient for (1.15) to be an isomorphism for all
reductive groups 𝐺.

Theorem1.2 (see Theorem 4.5).Assume that the rational cohomology algebraH∗(𝑋;ℚ) of a simply
connected space 𝑋 is either generated by one element (in any dimension) or freely generated by two
elements: one in even and one in odd dimensions. Then, the Drinfeld homomorphism (1.15) is an
isomorphism for 𝑋 and any complex reductive algebraic group 𝐺.

Note that any space𝑋 satisfying the assumptions of Theorem 1.2 obviously satisfies the assump-
tions of the Burghelea–Fiedorowicz–Gajda theorem [12], which ensures the (local) finiteness of all
Hodge components ofL𝑋: see (1.14). Thus, Theorem 1.2 combined with [12] provides an answer
to Question 2.
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Corollary 1.1. If 𝑋 satisfies the conditions of Theorem 1.2, then for any complex reductive group 𝐺,
HR∗(𝑋, 𝐺)

𝐺 is a free graded commutative algebra of locally finite type over ℂ.

Theorem 1.2 relies on (part (𝑏) of) Theorem 1.1 and a certain (minor) refinement of the main
result of the paper [24] by Fishel, Grojnowski and Teleman. This last paper settles the so-called
StrongMacdonald Conjecture—adeep and celebrated result in representation theory proposed as
a conjecture by Macdonald [40], Feigin [21] and Hanlon [30, 31] in the early 1980s and proved (in
full generality) in [24]. The StrongMacdonald Conjecture comprises two cases: the first describes
the structure of cohomology of the nilpotent Lie algebras 𝔤[𝑧]∕(𝑧𝑟+1) (see [31] for the case 𝔤 = 𝔤𝔩𝑛
and [24, TheoremA] for an arbitrary reductive 𝔤) and the second describes the cohomology of the
Lie superalgebra 𝔤[𝑧, 𝑠] (see [21; 24, Theorem B]). These two cases roughly correspond to the two
cases of Theorem 1.2. Thus, Theorem 1.2 gives a topological meaning to the full StrongMacdonald
Conjecture. The proof of [24] is an algebraic tour de force. Given the simplicity of our topological
reformulation, it is tempting to expect that topology might also lead to a new simpler proof. We
leave this as a project for the future.
We would like to conclude this introduction with a few nice examples illustrating Corollary 1.1.

Let us consider the spaces 𝑋 with rational cohomology algebra H∗(𝑋,ℚ) ≅ ℚ[𝑧]∕(𝑧𝑟+1) where
the generator 𝑧 is in even dimension 𝑑 ⩾ 2. The most familiar examples of such spaces are the
even-dimensional spheres 𝕊2𝑛 (𝑟 = 1, 𝑑 = 2𝑛) and the classical projective spaces: the complex
ones, ℂℙ𝑟 (𝑟 ⩾ 1, 𝑑 = 2), the quaternionic ℍℙ𝑟 (𝑟 ⩾ 1, 𝑑 = 4) and the octonionic (Cayley) plane
𝕆ℙ2 (𝑟 = 2, 𝑑 = 8). For these spaces, we have (see Corollary 4.3):

HR∗(𝑋, 𝐺)
𝐺 ≅ Λ [𝜉(𝑖)

1
, 𝜉(𝑖)
2
, … , 𝜉(𝑖)𝑟 ∶ 𝑖 = 1, 2, … , 𝑙] ,

where the generators 𝜉(𝑖)
𝑗
have homological degrees

deg 𝜉(𝑖)
𝑗
= (𝑑(𝑟 + 1) − 2)𝑚𝑖 + 𝑑𝑗 − 1.

Note that, in this case, the algebra HR∗(𝑋, 𝐺)𝐺 is generated by finitely many elements of odd
degrees: hence, it is finite-dimensional (as a vector space) and concentrated in finitely many
homological degrees. In fact, knowing the exact degrees of generators, it is easy to calculate the
exact upper bound for the vanishing of HR𝑛(𝑋, 𝐺)𝐺 :

𝑙∑
𝑖=1

𝑟∑
𝑗=1

deg 𝜉(𝑖)
𝑗
=
1

2
𝑟 (𝑑(𝑟 + 1) − 2) dim𝐺.

Somewhat miraculously, this allows one to determine the exact upper bound for the full repre-
sentation homology of 𝑋 (see Lemma 4.5):

HR𝑛(𝑋, 𝐺) = 0 for all 𝑛 > 1

2
𝑟 (𝑑(𝑟 + 1) − 2) dim𝐺.

Now, the weighted Euler–Poincaré series of HR∗(𝑋, 𝐺)𝐺 is given by the polynomial

𝑃𝑋,𝐺(𝑞, 𝑧) =

𝑙∏
𝑖=1

𝑟∏
𝑗=1

(1 + 𝑞𝑗+𝑚𝑖(𝑟+1) 𝑧
deg 𝜉(𝑖)

𝑗 ) ,
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which specializes (at 𝑧 = −1) to the following (weighted) Euler characteristic

𝜒𝑋,𝐺(𝑞) =

𝑙∏
𝑖=1

𝑟∏
𝑗=1

(1 − 𝑞𝑗+𝑚𝑖(𝑟+1)).

The latter can be also computed — by Theorem 1.1(𝑏) — as the Euler characteristic of the
Chevalley–Eilenberg complex −∗(𝔤(𝑋), 𝔤; ℂ), where𝑋 is the (minimal) Sullivanmodel of the
corresponding space 𝑋. The resulting equality of Euler characteristics gives the following combi-
natorial formula

1|𝑊|CT
{

𝑟∏
𝑗=0

∏
𝛼 ∈𝑅

(1 − 𝑞𝑗𝑒𝛼)

}
=

𝑙∏
𝑖=1

𝑟∏
𝑗=1

1 − 𝑞𝑗+𝑚𝑖(𝑟+1)

1 − 𝑞𝑗
,

which is Macdonald’s famous Constant Term Identity [40]. For more examples and explicit cal-
culations we refer the reader to Subsection 4.4.

Appendix

In the Appendix, we describe an abstract monoidal version of the classical Dold–Kan corre-
spondence relating the category of (non-negatively graded) DG -algebras and the category of
simplicial -algebras for an arbitrary 𝑘-linear operad  . This is needed for our proof of Com-
parison Theorem in Section 3. The main result of the Appendix is Theorem A.1, which states
that when 𝑘 is a field of characteristic 0, there is a Quillen equivalence between the category of
(non-negatively graded) DG -algebras and the category of simplicial -algebras. Various spe-
cial cases of this theorem have appeared in the literature. First of all, when  is the Lie operad, a
slightly weaker version (namely, a Quillen equivalence between the category of positively graded
DG Lie algebras and reduced simplicial Lie algebras) was proved in [50, part I, Theorem 4.6].
In [50], Quillen also outlines a proof for the commutative operad (that controls commutative
unital 𝑘-algebras) under the same reducedness assumptions. For general (non-reduced) com-
mutative algebras, the proof of the Dold–Kan correspondence is given in [58, Proposition A.1].
The case of the associative operad is treated in greater generality (for any commutative ring
𝑘) in [52], where the DG associative algebras and simplicial associative algebras are viewed as
monoids in the (symmetric) monoidal model categories of chain complexes and simplicial 𝑘-
modules, respectively. In this case, the Dold–Kan correspondence follows from an abstract com-
parison theorem between monoids in different (symmetric) monoidal model categories. The
arguments that establish each of these special cases seem to apply only to the case in hand.
To the best of our knowledge, a unified proof for any linear operad is missing in the literature.
Our Theorem A.1 fills in this gap†. Theorem A.1 is crucial for the proof of our Theorem 1.1.
While Quillen’s original result for reduced DG Lie algebras is sufficient for this proof, the full
strength of Theorem A.1 is needed to prove Proposition 2.1, which is an interesting result on
its own.

†We should mention, however, that one of the key arguments that we use in our proof of Theorem A.1 is sketched in [25,
Remark 6.4.5] in the special case of the commutative operad.
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Outline of the paper

In Section 2, we recall the definition of representation homology of Lie algebras from [3] and prove
our first result, Theorem 2.1, which gives a realization of this kind of representation homology
as functor homology, see (1.12). In Section 3, we prove our main result, Theorem 1.1, answering
Question 1 stated in the beginning of the introduction. We deduce this result from Theorem 3.1
— the Comparison Theorem—which expresses representation homology of a simply connected
space in terms of its Quillen Liemodel. The Comparison Theorem is technically themost involved
result of this paper: its proof occupies the whole of Subsection 3.2 (with a brief outline given in
Subsection 3.2.1). We close Section 3 with a conjectural generalization of Theorem 3.1 to non-
simply connected spaces (see Conjecture 1). Our conjecture is inspired by the recent work [9–11]
of Buijs, Félix, Murillo and Tanré who proposed a natural generalization of Quillen models to
non-simply connected spaces. In Section 4, after some necessary preliminaries we construct the
Drinfeld homomorphism (1.15) and prove our secondmain result, Theorem 1.2, that gives (partial)
answers to Question 2 and Question 3. We also describe explicitly the algebra HR∗(𝑋, 𝐺)𝐺 for all
spaces𝑋 satisfying the conditions of Theorem 1.2 and givemany concrete examples of such spaces.
Finally, we show how the classical root systems identities — the original 𝑞- and (𝑞, 𝑡)-Macdonald
Conjectures proposed in [40] and proved in [14]— arise from our examples. The last section is an
appendix on theDold–Kan correspondence that can be read independently of the rest of the paper.

NOTATION AND CONVENTIONS

Throughout this paper, 𝑘 denotes a field of characteristic 0. All vector spaces as well as unadorned
multilinear operations, such as⊗, Hom, Λ, and so on, are defined over 𝑘. The categories of asso-
ciative, commutative and Lie algebras are denoted 𝙰𝚕𝚐𝑘, 𝙲𝚘𝚖𝚖𝑘 and 𝙻𝚒𝚎𝑘, respectively. Unless
stated otherwise, all DG objects (chain complexes, DG algebras, DG Lie algebras and DG coal-
gebras) are assumed to be non-negatively graded. The categories of associative DG algebras,
commutative DG algebras, DG Lie algebras and (conilpotent) DG coalgebras are denoted 𝙳𝙶𝙰𝑘,
𝙳𝙶𝙲𝙰𝑘, 𝙳𝙶𝙻𝙰𝑘 and 𝙳𝙶𝙲𝑘, respectively. The corresponding categories of augmented algebras and
co-augmented coalgebras are denoted 𝙰𝚕𝚐𝑘∕𝑘, 𝙲𝚘𝚖𝚖𝑘∕𝑘, 𝙳𝙶𝙰𝑘∕𝑘, 𝙳𝙶𝙲𝙰𝑘∕𝑘 and 𝙳𝙶𝙲𝑘∕𝑘. The Koszul
sign rule is tacitly used throughout the paper.

2 REPRESENTATION HOMOLOGY OF LIE ALGEBRAS

The goal of this section is to prove Theorem 2.1 which gives a functor homology interpretation—
a counterpart of formula (1.10) — for the representation homology of Lie algebras. This result is
a key step in the proof of our main theorem in Section 3. We begin by recalling the construction
of representation homology in the form it first appeared in [3].

2.1 The representation functor for Lie algebras

Let 𝔤 be a finite-dimensional Lie algebra over 𝑘. Given an (arbitrary) Lie algebra 𝔞 ∈ 𝙻𝚒𝚎𝑘, the
moduli scheme Rep𝔤(𝔞) classifying the 𝑘-linear representations of 𝔞 in 𝔤 is defined by the functor
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on the category of commutative algebras

Rep𝔤(𝔞) ∶ 𝙲𝚘𝚖𝚖𝑘 → 𝚂𝚎𝚝𝚜 , 𝐴 ↦ Hom𝙻𝚒𝚎(𝔞, 𝔤(𝐴)) ,

that assigns to an algebra𝐴 the set of families of representations of 𝔞 in 𝔤 parameterized by the 𝑘-
scheme Spec(𝐴). It is easy to show that this functor is representable, and the commutative algebra
𝔞𝔤 representing Rep𝔤(𝔞) has the following canonical presentation (cf. [3, Proposition 6.4]):

𝔞𝔤 =
Λ𝑘(𝔞 ⊗ 𝔤

∗)⟨⟨ (𝑥 ⊗ 𝜉∗
1
) ⋅ (𝑦 ⊗ 𝜉∗

2
) − (𝑦 ⊗ 𝜉∗

1
) ⋅ (𝑥 ⊗ 𝜉∗

2
) − [𝑥, 𝑦] ⊗ 𝜉∗ ⟩⟩ . (2.1)

Here 𝑥 ⊗ 𝜉∗ are elements of 𝔞 ⊗ 𝔤∗, where 𝔤∗ ∶= Hom𝑘(𝔤, 𝑘) is the vector space dual to 𝔤, and
𝜉∗ ↦ 𝜉∗

1
∧ 𝜉∗

2
, is the linear map 𝔤∗ → ∧2𝔤∗ dual to the Lie bracket on 𝔤. The tautological (univer-

sal) representation 𝜚𝔤 ∶ 𝔞 → 𝔤(𝔞𝔤) is given by the natural Lie algebra map

𝔞 → 𝔞⊗ 𝔤∗ ⊗ 𝔤 ↪ Λ𝑘(𝔞 ⊗ 𝔤
∗) ⊗ 𝔤 ↠ 𝔞𝔤 ⊗ 𝔤 = 𝔤(𝔞𝔤) , 𝑥 ↦

∑
𝑖

[𝑥 ⊗ 𝜉∗𝑖 ] ⊗ 𝜉𝑖 , (2.2)

where {𝜉𝑖} and {𝜉∗𝑖 } are dual bases in 𝔤 and 𝔤
∗. The 𝑘-algebra 𝔞𝔤 has a canonical augmentation

𝜀 ∶ 𝔞𝔤 → 𝑘 induced by the zero map 𝔞 ⊗ 𝔤∗ → 0. The assignment 𝔞 ↦ (𝔞𝔤, 𝜀) defines a functor
with values in the category of augmented commutative algebras

( – )𝔤 ∶ 𝙻𝚒𝚎𝑘 → 𝙲𝚘𝚖𝚖𝑘∕𝑘 , (2.3)

which is left adjoint to the current Lie algebra functor 𝔤 ∶ 𝙲𝚘𝚖𝚖𝑘∕𝑘 → 𝙻𝚒𝚎𝑘 , 𝐴 ↦ 𝔤(𝐴̄). We call
(2.3) the representation functor in 𝔤. Geometrically, one can think of (𝔞𝔤, 𝜀) as the coordinate ring
𝑘[Rep𝔤(𝔞)] of the based affine scheme Rep𝔤(𝔞), with the basepoint corresponding to the triv-
ial representation.
The adjoint functors (( – )𝔤, 𝔤) extend naturally to the categories of DG algebras:

( – )𝔤 ∶ 𝙳𝙶𝙻𝙰𝑘 ⇄ 𝙳𝙶𝙲𝙰𝑘∕𝑘 ∶ 𝔤. (2.4)

It is well-known [51] that the categories 𝙳𝙶𝙻𝙰𝑘 and 𝙳𝙶𝙲𝙰𝑘∕𝑘 carry natural (projective)model struc-
tures, where the weak equivalences (respectively, fibrations) are the quasi-isomorphisms (respec-
tively, degreewise surjective maps) of DG algebras. It is shown in [3] that (2.4) is a Quillen adjunc-
tion with respect to these model structures. Hence, although the representation functor ( – )𝔤 is
not homotopy invariant (it does not preserve quasi-isomorphisms), it is left Quillen and therefore
has a well-behaved left derived functor

𝑳( – )𝔤 ∶ 𝙷𝚘(𝙳𝙶𝙻𝙰𝑘) 8→ 𝙷𝚘(𝙳𝙶𝙲𝙰𝑘∕𝑘). (2.5)

For a given DG Lie algebra 𝔞, we now define the representation homology of 𝔞 in 𝔤 by

HR∗(𝔞, 𝔤) ∶= 𝑳∗(𝔞)𝔤 ,

where 𝑳∗( – )𝔤 ∶= H∗[𝑳( – )𝔤] denotes the composition of (2.5) with the homology functor on
𝙳𝙶𝙲𝙰𝑘∕𝑘. By definition, HR∗(𝔞, 𝔤) is a graded commutative 𝑘-algebra, which depends on 𝔤 and
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(the homotopy type of) the DG Lie algebra 𝔞. If 𝔞 ∈ 𝙻𝚒𝚎𝑘 is an ordinary Lie algebra, there is a
natural isomorphism H0(𝔞, 𝔤) ≅ 𝔞𝔤 which justifies our definition for the derived representation
scheme of Rep𝔤(𝔞):

DRep𝔤(𝔞) ∶= 𝐑Spec[𝑳∗(𝔞)𝔤].

Now, let𝐺 be an affine algebraic group over 𝑘 associatedwith the Lie algebra 𝔤. Observe that for
any 𝔞 ∈ 𝙻𝚒𝚎𝑘,𝐺 acts naturally on 𝔞𝔤 by automorphisms: this action is algebraic and functorial in𝔞.
Wewrite ( – )𝐺𝔤 ∶ 𝙻𝚒𝚎𝑘 → 𝙲𝚘𝚖𝚖𝑘∕𝑘 for the subfunctor of ( – )𝔤 defined by taking the𝐺-invariants:

𝔞𝐺𝔤 ∶= {𝑥 ∈ 𝔞𝔤 ∶ g(𝑥) = 𝑥 , ∀ g ∈ 𝐺}.

The algebra 𝔞𝐺𝔤 represents the affine quotient scheme Rep𝔤(𝔞)∕∕𝐺, parameterizing the closed
orbits of 𝐺 in Rep𝔤(𝔞),. Although it is not, in general, left Quillen, the functor ( – )𝐺𝔤 also admits
the (total) left derived functor

𝑳( – )𝐺𝔤 ∶ 𝙷𝚘(𝙳𝙶𝙻𝙰𝑘) 8→ 𝙷𝚘(𝙳𝙶𝙲𝙰𝑘∕𝑘) ,

and we can consider the associated homology functor 𝑳∗( – )𝐺𝔤 ∶= H∗[𝑳( – )
𝐺
𝔤 ] (cf. [1, Theo-

rem 2.6]). Then, if the algebraic group 𝐺 is reductive over 𝑘, there is a natural isomorphism

𝑳∗(𝔞)
𝐺
𝔤 ≅ HR∗(𝔞, 𝔤)

𝐺,

where HR∗(𝔞, 𝔤)𝐺 denotes the invariant part of the representation homology of 𝔞 in 𝔤.

2.2 A functor homology interpretation

Recall from the introduction that𝔊 denotes the full subcategory of 𝙶𝚛 whose objects are the free
groups ⟨𝑛⟩ based on the sets 𝑛 ∶= {1, 2, … , 𝑛}, 𝑛 ⩾ 0. We write𝔊-𝙼𝚘𝚍 (respectively, 𝙼𝚘𝚍-𝔊) for the
categories of all covariant (respectively, contravariant) functors on𝔊 with values in the category
of 𝑘-vector spaces. Since𝔊 is a small category, the categories 𝔊-𝙼𝚘𝚍 and 𝙼𝚘𝚍-𝔊 are both abelian
with sufficientlymany injective and projective objects.We view (and refer to) the objects of𝔊-𝙼𝚘𝚍
and 𝙼𝚘𝚍-𝔊 as left and right𝔊-modules, respectively.
There is a natural bifunctor called the functor tensor product (see, for example, [39,

Appendix C]):

–⊗𝔊 – ∶ 𝙼𝚘𝚍-𝔊 ×𝔊-𝙼𝚘𝚍 8→ 𝚅𝚎𝚌𝚝𝑘.

This bifunctor is right exactwith respect to each argument, preserves sums, and is left balanced. By
classical homological algebra [13]), the derived functors of –⊗𝔊 – with respect to each argument
are thus isomorphic, and we denote their common value by Tor𝔊∗ ( – , – ). Now, as explained in the
introduction, every commutative Hopf algebra  defines a left 𝔊-module  ∶ ⟨𝑛⟩↦ ⊗𝑛, and
dually, every cocommutative Hopf algebra𝑈 defines a right𝔊-module𝑈 ∶ ⟨𝑛⟩↦ 𝑈⊗𝑛. Abusing
the notation we will often omit the ‘underline’ in the above formulae, identifying the𝔊-modules
 and 𝑈 with the corresponding Hopf algebras and 𝑈.
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Theorem 2.1. Let 𝐺 be an affine algebraic group with coordinate ring(𝐺) and the associated Lie
algebra 𝔤. Then, for any Lie algebra 𝔞 ∈ 𝙻𝚒𝚎𝙰𝚕𝚐𝑘 , there is a natural isomorphism

HR∗(𝔞, 𝔤) ≅ Tor
𝔊
∗ (𝑈𝔞, (𝐺)) ,

where (𝐺) and 𝑈𝔞 are equipped with the standard Hopf algebra structures (commutative and
cocommutative, respectively).

Theorem 2.1 follows from Lemma 2.1, which is a simple formal result (probably well-known
to experts: see, for example, [37]), and Proposition 2.1 — an apparently deeper result on functor
homology — whose proof involves topological arguments.

Lemma 2.1. For any 𝔞 ∈ 𝙻𝚒𝚎𝑘 , there is a natural isomorphism of commutative algebras

𝑈𝔞⊗𝔊 (𝐺) ≅ 𝔞𝔤 ,

where 𝔞𝔤 is the representation algebra defined in (2.1).

Proof. Let 𝐵 ∈ 𝙲𝚘𝚖𝚖𝑘. From the left 𝔊-module (𝐺), we form the right 𝔊-module
Hom𝑘((𝐺), 𝐵), which assigns Hom𝑘((𝐺)⊗𝑚, 𝐵) to ⟨𝑚⟩. Since 𝐵 is a commutative 𝑘-algebra
and since (𝐺) is a strictly monoidal left 𝔊-module, Hom𝑘((𝐺), 𝐵) acquires the structure of a
lax monoidal right𝔊-module. This structure is given by the maps

where 𝜇𝐵 is the product on 𝐵. By the standard Hom −⊗ adjunction, there is a natural isomor-
phism of 𝑘-vector spaces

Hom𝑘(𝑈𝔞 ⊗𝔊 (𝐺), 𝐵) ≅ Hom𝙼𝚘𝚍-𝔊(𝑈𝔞,Hom𝑘((𝐺), 𝐵)).

It is routine to check that under this isomorphism, the 𝑘-algebra homomorphisms from 𝑈𝔞⊗𝔊
(𝐺) to 𝐵 correspond to the right 𝔊-module homomorphisms from 𝑈𝔞 to Hom𝑘((𝐺), 𝐵) that
respect the (lax)monoidal structure. Since(𝐺) is a coalgebra and𝐵 is an algebra,Hom𝑘((𝐺), 𝐵)
has an algebra structure (with product given by convolution). Another routine verification shows
that the set of right𝔊-module homomorphisms from𝑈𝔞 toHom𝑘((𝐺), 𝐵) that respect the (lax)
monoidal structure is in (natural) bijection with the set of 𝑘-algebra homomorphisms 𝜑 from𝑈𝔞
to Hom𝑘((𝐺), 𝐵) that satisfy the following additional conditions:

𝜑(𝑥)(𝑓g) = 𝜑(𝑥(1))(𝑓)𝜑(𝑥(2))(g) , 𝜑(𝑥)(1(𝐺)) = 𝜀(𝑥)1𝐵 , 𝜑(𝑆𝑥)(𝑓) = 𝜑(𝑥)(𝑆𝑓)

for all 𝑥 ∈ 𝑈𝔞 and 𝑓, g ∈ (𝐺). Here, 𝜀 and 𝑆 stand for the counit and antipode of 𝑈𝔞, respec-
tively, the coproduct in 𝑈𝔞 is given by 𝑥 ↦ 𝑥(1) ⊗ 𝑥(2) in Sweedler notation. It is not difficult to
verify that the third condition above follows from the first two. As shown in [42, Example 3.4], the
algebra homomorphisms from𝑈𝔞 toHom𝑘((𝐺), 𝐵) satisfying the above conditions are in natu-
ral bijection with Lie algebra homomorphisms from 𝔞 to 𝔤(𝐵). Indeed, 𝜑 satisfies these conditions
for all 𝑥 in𝑈𝔞 if and only if it satisfies these conditions for 𝑥 ∈ 𝔞. For 𝑥 ∈ 𝔞, these conditions are
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equivalent to the assertion that 𝜑(𝑥) is a 𝑘-linear derivation on (𝐺) with respect to the homo-
morphism 1𝐵◦𝜀(𝐺), where 𝜀(𝐺) denotes the canonical augmentation on (𝐺). Such derivations
are indeed in bijection with elements of Hom𝑘(𝔤∗, 𝐵) ≅ 𝔤(𝐵). We thus have a natural bijection

Hom𝙲𝚘𝚖𝚖𝑘 (𝑈𝔞 ⊗𝔊 (𝐺), 𝐵) ≅ Hom𝙻𝚒𝚎𝑘 (𝔞, 𝔤(𝐵)).

The desired lemma now follows from the Yoneda lemma. □

Proposition 2.1. Let𝑉 be a 𝑘-vector space, and let𝑇𝑉 be the right𝔊-module associated to the tensor
algebra of 𝑉 equipped with the standard cocommutative Hopf algebra structure. Then

Tor𝔊
𝑖
(𝑇𝑉, (𝐺)) ≅

{
Λ(𝔤∗ ⊗ 𝑉) if 𝑖 = 0
0 if 𝑖 > 0.

In particular, Tor𝔊
𝑖
[(𝑇𝑉)𝑞,(𝐺)] = 0 for all 𝑖 > 0 and 𝑞 ⩾ 0.

Our proof of Proposition 2.1 is based on topological arguments: specifically, it uses Theorem 3.2
(and its Corollary 3.2) as well as our earlier computations of the representation homology of
wedges of spheres ([5, Proposition 5.3]).We do not knowa completely algebraic proof of this result.

Proof of Proposition 2.1. Note that the cocommutative Hopf algebra 𝑇𝑉 can be viewed as the
universal enveloping algebra 𝑈(𝐿𝑉) of the free Lie algebra generated by 𝑉. The corresponding
module 𝑇𝑉 has a weight grading induced by the weight grading on 𝑇𝑉 in which 𝑉 has weight
1. Let (𝑇𝑉)𝑞 denote the component of 𝑇𝑉 of weight 𝑞. For example, 𝑉 ∶= 𝑇𝑉1 is the 𝔊-module
defined by 𝚕𝚒𝚗∗

𝑘
⊗ 𝑉, where 𝚕𝚒𝚗ℚ is the linearization functor (cf. [5, Example 3.1])

𝚕𝚒𝚗𝑘 ∶ 𝔊 → 𝚅𝚎𝚌𝚝𝑘 , ⟨𝑛⟩↦ ⟨𝑛⟩ab ⊗ℤ 𝑘 = 𝑘
𝑛.

Since 𝑇𝑉 ⊗𝔊 (𝐺) ≅ 𝑈(𝐿𝑉) ⊗𝔊 (𝐺), the required isomorphism for 𝑖 = 0 follows from
Lemma 2.1. To prove the vanishing ofTor𝔊

𝑖
(𝑇𝑉, (𝐺)) for 𝑖 > 0, we assign𝑉 (homological) degree

2. Then 𝑇𝑉 is a graded right𝔊-module, whose component in degree 2𝑞 is (𝑇𝑉)𝑞. Thus,

H𝑛[𝑇𝑉 ⊗
𝑳
𝔊
(𝐺)] ≅

⨁
2𝑞+𝑖=𝑛

Tor𝑖
𝔊
[(𝑇𝑉)𝑞,(𝐺)] .

The desired proposition will follow once we show that

H∗[𝑇𝑉 ⊗
𝑳
𝔊
(𝐺)] ≅ Λ(𝔤∗ ⊗ 𝑉) . (2.6)

By Theorem A.1, there are Quillen equivalences refining the Dold–Kan correspondence

𝑁∗ ∶ 𝙳𝙶𝙻𝙰+
𝑘
⇄ 𝚜𝙻𝚒𝚎𝑘 ∶ 𝑁 , 𝑁∗ ∶ 𝙳𝙶𝙰+

𝑘
⇄ 𝚜𝙰𝚕𝚐𝑘 ∶ 𝑁 ,

where 𝚜C denotes the category of simplicial objects in a category C . Equip 𝑁∗𝑇𝑉 ≅ 𝑇(𝑁−1𝑉)

(see formula A.4 in the Appendix ) with the simplicial cocommutative Hopf algebra structure
given by its identification with 𝑈𝐿(𝑁−1𝑉). This gives 𝑁∗𝑇𝑉 the structure of a simplicial right
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𝔊-module (which we denote by𝑁∗𝑇𝑉). This module assigns to the free group ⟨𝑚⟩ the simplicial
vector space𝑁∗𝑇𝑉⊗𝑚. Since𝑉 has degree 2,𝑁∗𝐿𝑉 ≅ 𝐿(𝑁−1𝑉) is a semi-free simplicial Liemodel
for the space 𝑋 given by the wedge of (dim𝑘 𝑉) copies of the 3-spheres 𝕊3. By Theorem 3.2 (in
particular, Corollary 3.2 thereof) and [5, Proposition 5.3], we then conclude

H∗[𝑁(𝑁
∗𝑇𝑉) ⊗𝑳

𝔊
(𝐺)] ≅ HR∗(𝑋, 𝐺) ≅ Λ(𝔤

∗ ⊗ 𝑉) .

To complete the proof it remains to note that the natural map 𝜀 ∶ 𝑇𝑉 8→ 𝑁(𝑁∗𝑇𝑉) (induced by
the unit of the adjunction between the functors 𝑁 and 𝑁∗) is a quasi-isomorphism of right 𝔊-
modules. Indeed, 𝜀, is defined by the family of maps

𝜀(⟨𝑚⟩) ∶ 𝑇𝑉⊗𝑚 𝜖⊗𝑚

8888→ 𝑁(𝑁∗𝑇𝑉)⊗𝑚 → 𝑁(𝑁∗𝑇𝑉⊗𝑚) ,

where the last arrow is the Eilenberg–Zilber map (which is well-defined for𝑚 > 2 because of the
associativity of the Eilenberg–Zilber map for 𝑚 = 2). That this is a quasi-isomorphism follows
from the Künneth theorem and the fact that 𝜀 ∶ 𝑇𝑉 8→ 𝑁(𝑁∗𝑇𝑉) is a quasi-isomorphism of alge-
bras. The associativity of the Eilenberg–Zilber map implies that the maps 𝜀(⟨𝑚⟩) indeed assemble
into a morphism of right𝔊-modules. □

Remark. The result of Proposition 2.1 extends to (homologically) graded vector spaces. To be pre-
cise, if𝑉 = 𝑉∗ be a DG 𝑘-module with trivial differential, such that𝑉𝑖 = 0 for all 𝑖 ≪ 0, then there
is an isomorphism in the derived category of 𝑘-modules:

𝑇𝑉 ⊗𝑳
𝔊
(𝐺) ≅ Λ(𝔤∗ ⊗ 𝑉).

As a result, there is a homology spectral sequence of the form

𝐸2𝑝𝑞 = Tor𝔊𝑝 (H𝑞(𝑇𝑉) , (𝐺)) ⇒ Λ(𝔤∗ ⊗ 𝑉) , (2.7)

whereH𝑞(𝑇𝑉) stands for the component of the right𝔊-module 𝑇𝑉 in homological degree 𝑞 (note
that this module is in general different from (𝑇𝑉)𝑞). Now, if we take 𝑉 = H∗(𝑋, 𝑘), the (reduced)
homology of some pointed space 𝑋, then the spectral sequence (2.7) has a topological meaning: it
is isomorphic to the fundamental spectral sequence of [5, Theorem4.3] for the reduced suspension
Σ𝑋:

𝐸2𝑝𝑞 = Tor𝔊𝑝 (H𝑞(ΩΣ𝑋) , (𝐺)) ⇒ HR∗(Σ𝑋, 𝐺).

Indeed, by [5, Proposition 5.3], HR∗(Σ𝑋, 𝐺) ≅ Λ(𝔤∗ ⊗ 𝑉). On the other hand, by the classical
Bott–Samelson theorem [8], we have an isomorphism of graded Hopf algebras: H∗(ΩΣ𝑋, 𝑘) ≅
𝑇𝑉; the latter gives isomorphisms of right𝔊-modules: H𝑞(ΩΣ𝑋, 𝑘) ≅ H𝑞(𝑇𝑉) for all 𝑞 ⩾ 0.

Proof of Theorem 2.1. By TheoremA.1 (see the Appendix), there are Quillen equivalences refining
the classical Dold–Kan correspondence

𝑁∗ ∶ 𝙳𝙶𝙻𝙰𝑘 ⇄ 𝚜𝙻𝚒𝚎𝑘 ∶ 𝑁 , 𝑁∗ ∶ 𝙳𝙶𝙲𝙰𝑘 ⇄ 𝚜𝚌𝙰𝚕𝚐𝑘 ∶ 𝑁 ,
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where 𝚜C denotes the category of simplicial objects in a category C . Let 
∼
8→ 𝔞 be a semi-free DG

resolution of 𝔞. Let 𝐿 ∶= 𝑁∗(). By Theorem A.1, 𝐿
∼
8→ 𝔞 is a cofibrant resolution in 𝚜𝙻𝚒𝚎𝑘. Since

the representation functor ( – )𝔤 is left adjoint, it commutes with 𝑁∗, i.e, there is a commutative
diagram of functors

Thus,HR∗(𝔞, 𝔤) ≅ H∗[𝔤] ≅ 𝜋∗[𝐿𝔤]. By Lemma 2.1, 𝐿𝔤 ≅ 𝑈⊗𝔊 (𝐺). Since 𝐿 is semi-free by
Proposition A.2, the right𝔊-module of 𝑛-simplices in the simplicial right𝔊-module𝑈 is of the
form 𝑇𝑉 for some vector space𝑉. It follows from Proposition 2.1 that the map C(𝑈) ⊗𝑳

𝔊
(𝐺) 8→

C(𝑈) ⊗𝔊 (𝐺) is a quasi-isomorphism, where C(–) stands for associated chain complex. The
desired result then follows once we establish that𝑈 is a simplicial resolution of𝑈𝔞. For this, we
need to check that for any𝑚, 𝑈⊗𝑚 resolves 𝑈𝔞⊗𝑚. This follows from the Eilenberg–Zilber and
Künneth theorems. □

3 THEMAIN THEOREM

In this section, we prove Theorem 1.1 stated in the introduction. We deduce this result from Theo-
rem 3.1 which we call the Comparison Theorem. Despite its modest appearance, this theorem is a
nontrivial result, the proof of which relies heavily on Quillen’s theory [50] and requires a number
of technical refinements thereof. As these refinements may be useful for other applications, we
state them carefully and prove in a detailed manner.

3.1 Comparison theorem

In this section for simplicity, we assume that 𝑘 = ℚ to use directly the results of [50]. However, as
explained in Remark 3.2.5, the results of this section extend to an arbitrary field of characteristic
0 by a universal coefficient argument.
Let𝑋 be a 1-connected topological space of finite rational type. Recall (cf. [23]) that one can asso-

ciate to 𝑋 a commutative cochain DG algebra𝑋 , called a Sullivan model of 𝑋, and a connected
(chain) DG Lie algebra 𝔞𝑋 , called a Quillen model of 𝑋. Each of these algebras is uniquely deter-
mined up to homotopy and each encodes the rational homotopy type of 𝑋. The relation between
them is given by a DG algebra quasi-isomorphism

∗(𝔞𝑋; ℚ)
∼
→ 𝑋 , (3.1)

where ∗(𝔞𝑋; ℚ) is the Chevalley–Eilenberg cochain complex of 𝔞𝑋 . The homology of 𝔞𝑋 is the
homotopy Lie algebra 𝐿𝑋 = 𝜋∗(Ω𝑋)ℚ, while the cohomology of 𝑋 is the rational cohomology
algebraH∗(𝑋;ℚ) of𝑋. AmongQuillenmodels of𝑋 there is aminimal one given by a semi-free DG
Lie algebra ((𝑉), 𝑑) generated by a gradedℚ-vector space𝑉 with differential 𝑑 satisfying 𝑑(𝑉) ⊂
[(𝑉), (𝑉)]. Such aminimal model is determined uniquely up to (noncanonical) isomorphism.
In particular, 𝑉 ≅ H∗(𝑋;ℚ)[−1] (see [23, p. 326]).
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Now, given an algebraic group𝐺, one can associate to a 1-connected space𝑋 two kinds of repre-
sentation homology: the representation homologyHR∗(𝑋, 𝐺) of 𝑋 with coefficients in 𝐺 and the
representation homologyHR∗(𝔞𝑋, 𝔤) of a Lie model 𝔞𝑋 of𝑋 with coefficients in the Lie algebra of
𝐺 (in the sense of Section 2). A priori, these two homology groups are defined in a very different
way, but the following Comparison Theorem shows that they actually agree.

Theorem 3.1 (Comparison Theorem). For any affine algebraic group 𝐺 with Lie algebra 𝔤, there is
an isomorphism of graded commutative ℚ-algebras

HR∗(𝑋, 𝐺) ≅ HR∗(𝔞𝑋, 𝔤).

Theorem 1.1 follows fromTheorem 3.1modulo some general algebraic results on representation
homology of Lie algebras proved in [3].

Proof of Theorem 1.1. Since the Sullivan model of 𝑋 is uniquely determined up to homotopy,
it suffices to prove the desired theorem for a particular choice of Sullivan model of 𝑋. Let
𝔞𝑋 ∶= ((𝑉), 𝑑) be the minimal Quillen model of 𝑋. Then, 𝔞𝑋 is connected, i.e, concentrated
in positive homological degree and finite-dimensional in each homological degree. Hence, 𝐶 ∶=
∗(𝔞𝑋; ℚ) is 2-connected (i.e, its coaugmentation coideal is concentrated in degrees⩾ 2) and finite-
dimensional in each homological degree. The graded ℚ-linear dual of 𝐶 is 𝑋 ∶= ∗(𝔞𝑋; ℚ),
which is a Sullivan model of 𝑋. Moreover, 𝐶 is Koszul dual† to 𝔞𝑋 . It follows from Theorem 3.1
and [3, Theorem 6.7(b)] (also see [3, Theorem 6.3] and the subsequent remark) that

HR∗(𝑋, 𝐺) ≅ HR∗(𝔞𝑋, 𝔤) ≅ H
−∗
CE(𝔤(̄𝑋); ℚ).

If, moreover, 𝐺 is reductive, we have

HR∗(𝑋, 𝐺)
𝐺 ≅ H−∗CE(𝔤(̄𝑋); ℚ)

𝐺 ≅ H−∗CE(𝔤(̄𝑋); ℚ)
ad 𝔤 = H−∗CE(𝔤(𝑋), 𝔤; ℚ).

The first isomorphism above follows from the fact that all (quasi-)isomorphisms in the proof of
Theorem 3.1 are 𝐺-equivariant. Indeed, every 𝐺-action involved is induced by the 𝐺-action on the
left𝔊-module (𝐺) coming from the conjugation action of 𝐺 on itself. This finishes the proof of
the theorem. □

Before proving Theorem3.1, we record one useful consequence that gives an explicit DG algebra
model for the representation homology of 𝑋 in terms of the minimal Quillen model of 𝑋.

Corollary 3.1. Let 𝔞𝑋 = ((𝑉), 𝑑) be the minimal Quillen model of 𝑋. Then, (𝔞𝑋)𝔤 is a canonical
DG ℚ-algebra whose homology is isomorphic toHR∗(𝑋, 𝐺). Thus, as graded algebras,

HR∗(𝑋, 𝐺) ≅ H∗[Λ𝑘(𝔤
∗ ⊗ 𝑉), 𝜕] ,

†Recall that there is a Quillen equivalence 𝛀𝚌𝚘𝚖𝚖 ∶ 𝙳𝙶𝙲𝙲1𝑘∕𝑘 ⇄ 𝙳𝙶𝙻𝙰𝑘 ∶ ∗( – ; 𝑘) between the category 𝙳𝙶𝙻𝙰𝑘 of (non-
negatively graded) DG Lie algebras and the category 𝙳𝙶𝙲𝙲1

𝑘∕𝑘
of coaugmented, conilpotent, cocommutative DG coalgebras

whose coaugmentation coideals are concentrated in homological degree ⩾ 1. We say that a DG coalgebra 𝐶 ∈ 𝙳𝙶𝙲𝙲1
𝑘∕𝑘

is

Koszul dual to a DG Lie algebra 𝔞 ∈ 𝙳𝙶𝙻𝙰𝑘 if there is a quasi-isomorphism of DG Lie algebras 𝛀𝚌𝚘𝚖𝚖(𝐶)
∼
8→ 𝔞.
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where the differential 𝜕 is given on generators by

𝜕(𝜉∗ ⊗ 𝑣) = ⟨𝜉∗, 𝜚(𝑑𝑣)⟩ , ∀ 𝜉 ∈ 𝔤∗, 𝑣 ∈ 𝑉 ,
where 𝜚 ∶ (𝑉) 8→ Λ(𝔤∗ ⊗ 𝑉) ⊗ 𝔤 is the universal representation (2.2).

Proof. Since 𝔞𝑋 is a semi-free (hence, cofibrant) DG Lie algebra, HR∗(𝔞𝑋, 𝔤) ≅ H∗[(𝔞𝑋)𝔤].
The first assertion is then immediate from Theorem 3.1. The algebra isomorphism (𝔞𝑋)𝔤 ≅

Λ𝑘(𝔤
∗ ⊗ 𝑉) follows easily from formula (2.1). The formula for the differential 𝜕 can follows

easily from the fact that the universal representation 𝜌 ∶ 𝔞𝑋 8→ (𝔞𝑋)𝔤 ⊗ 𝔤 is a DG Lie algebra
homomorphism. □

Example 1. Recall (see Example 5, [23, chapter 24]) that the minimal Lie model for the complex
projective space ℂℙ𝑟, 𝑟 ⩾ 1 is given by the free Lie algebra 𝔞𝑟 ∶= (𝑣1, 𝑣2, … , 𝑣𝑟) generated by
𝑣1, … , 𝑣𝑟, where the degree of 𝑣𝑖 is 2𝑖 − 1, and the differential is defined on generators by 𝑑𝑣1 = 0,
𝑑𝑣𝑖 =

1

2

∑
𝑗+𝑘=𝑖[𝑣𝑗, 𝑣𝑘] for all 𝑖 ⩾ 2. By Corollary 3.1, we have

HR∗(ℂℙ
𝑟, 𝐺) ≅ H∗[(𝔞𝑟)𝔤] ≅ H∗

[
Λ

(
𝑟⨁
𝑖=1

𝔤∗ ⋅ 𝑣𝑖

)
, 𝜕

]
,

where 𝔤∗ ⋅ 𝑣𝑖 denotes a copy of 𝔤∗ in degree 2𝑖 − 1 indexed by 𝑣𝑖 and where the differential 𝑑 is
given on generators by

𝜕(𝜉∗ ⋅ 𝑣𝑖) =
∑
𝑗+𝑘=𝑖

(𝜉∗1 ⋅ 𝑣𝑗)(𝜉
∗
2 ⋅ 𝑣𝑘) .

Here, the cobracket on 𝔤∗ is given by 𝜉∗ ↦ 𝜉∗
1
∧ 𝜉∗

2
in Sweedler notation.

Example 2. As another application of Corollary 3.1, we can compute the representation homol-
ogy of highly connected spaces in low homological degrees. To be precise, let𝑋 be an 𝑛-connected
space for some 𝑛 ⩾ 1. Consider the minimal Quillen model 𝔞𝑋 = ((𝑉), 𝜕) of 𝑋. Then 𝑉𝑖 ≅
H𝑖+1(𝑋;ℚ) for all 𝑖 ⩾ 0. By the Rational Hurewicz Theorem, H𝑖(𝑋,ℚ) ≅ 𝜋𝑖(𝑋)ℚ for all 1 ⩽ 𝑖 ⩽
2𝑛. Hence, 𝑉𝑖 = 0 for 𝑖 ⩽ 𝑛 − 1. Then the (nonzero) elements of [𝑉, 𝑉] must have homological
degree ⩾ 2𝑛, and therefore, by minimality of 𝔞𝑋 , 𝑑(𝑉𝑖) = 0 for 𝑛 ⩽ 𝑖 ⩽ 2𝑛. The differential 𝜕 on
(𝔞𝑋)𝔤 = Λ(𝔤∗ ⊗ 𝑉) then vanishes on chains of degree ⩽ 2𝑛, and Corollary 3.1 implies

HR𝑖(𝑋, 𝐺) =

⎧⎪⎨⎪⎩
𝑘 for 𝑖 = 0

0 for 1 ⩽ 𝑖 < 𝑛

H𝑖+1(𝑋; 𝔤
∗) for 𝑛 ⩽ 𝑖 ⩽ 2𝑛 − 1.

The above isomorphisms were found by a different method in [5] (see [5, Proposition 4.3]).

Remark. In geometric terms, Theorem 3.1 can be restated by saying that there is an equivalence
between the derived moduli space 𝐑Loc𝐺(𝑋) of (framed) 𝐺-local systems on a pointed simply
connected space 𝑋 (or equivalently, the moduli space of representations of the∞-group 𝔾𝑋 cor-
responding to 𝑋 in the algebraic group 𝐺) and the derived moduli space DRep𝔤(𝔞𝑋) of represen-
tations of the (∞-)Lie algebra 𝔞𝑋 of 𝑋 in the Lie algebra 𝔤 of 𝐺. It would be interesting to give
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a geometric proof of this equivalence by constructing an explicit (‘tangent’) map that identifies
these moduli spaces.

Remark. One might expect that the result of Comparison Theorem — at least, in the form of
Theorem 1.1—holds for all nilpotent spaces (not just for simply connected ones). This is, however,
not the case: already in the simplest example:𝑋 = 𝕊1, the representation homologyHR∗(𝕊1, 𝐺) ≅
(𝐺) depends on the whole algebraic group 𝐺, not only its Lie algebra 𝔤 (as it happens, according
to Theorem 1.1, in the case of simply connected spaces).

3.2 Proof of Comparison Theorem

3.2.1 Outline of the proof

The proof of Theorem 3.1 is based on several technical results. Recall that one can associate to a
(simply connected) space𝑋 a semi-free simplicial Lie algebramodel 𝐿𝑋 and a semi-free simplicial
group model 𝔾𝑋. We let 𝑅 ∶= 𝑈𝐿𝑋 denote the universal enveloping algebra of 𝐿𝑋 , and ℚ𝔾𝑋 the
rational group algebra of 𝔾𝑋: both are simplicial cocommutative Hopf algebras defined over ℚ.
We write 𝑅 and ℚ̂𝔾𝑋 for the completions of these Hopf algebras with respect to their canonical
augmentation ideals. Quillen’s rational homotopy theory provides a zig-zag of maps

where the first and the last arrows are the natural (completion)maps,which induce isomorphisms
on all homotopy groups (see [50, part I, section 3]), while g — which is by no means a unique
map — is a weak equivalence in the model category of complete simplicial cocommutative Hopf
algebras (sCHA). Our first step is to prove Theorem3.2,which states that the above zig-zag ofmaps
of simplicial Hopf algebras enriches to a zig-zag of weak equivalences of associated simplicial𝔊-
modules:

This is verified in a series of propositions in Subsection 3.2.2, using a relatively straightforward
extension of the arguments of [50]. The subtlety here is that the notion of weak equivalence in
sCHA is a priori different from that of a map inducing an isomorphism on all homotopy groups
(see [50, part II, section 4]). This makes it necessary to argue that the map on simplicial right
𝔊-modules induced by g indeed induces isomorphisms on all homotopy groups. We conclude
Subsection 3.2.2 by noting that Theorem 3.2 and [5, Theorem 4.2] together imply that HR∗(𝑋, 𝐺)
is isomorphic to the homology of the derived tensor product 𝑁(𝑅) ⊗𝑳

𝔊
(𝐺) (Corollary 3.2).

In our second step, starting with Corollary 3.2, we proceed to argue in Subsection 3.2.3 that
HR∗(𝑋, 𝐺) ≅ HR∗(𝔞𝑋, 𝔤) as graded vector spaces. Our argument is a minor modification of the
proof of Theorem 2.1. For this, we first observe that HR∗(𝔞𝑋, 𝔤) ≅ H∗[𝑁(𝐿𝔤)] ≅ H∗[C(𝐿𝔤)],
where C stands for associated chain complex. Now, 𝐿𝔤 = 𝑅 ⊗𝔊 (𝐺). Hence, C(𝐿𝔤) ≅ C(𝑅) ⊗𝔊
(𝐺). By Corollary 3.2, it suffices to verify that the map C(𝑅) ⊗𝑳

𝔊
(𝐺) 8→ C(𝑅) ⊗𝔊 (𝐺) induces

an isomorphism on homology. The crucial ingredient in this verification is Proposition 2.1 (stated
and proved in Subsection 2.2), which implies that the 𝑛-simplices of 𝑅 are right𝔊-modules whose
higher Tor’s with (𝐺) vanish.
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Our third and final step is carried out in Subsection 3.2.4, where we show that the isomorphism
of graded vector spaces, HR∗(𝑋, 𝐺) ≅ HR∗(𝔞𝑋, 𝔤), constructed in Subsection 3.2.3 is indeed an
isomorphism of graded commutative algebras.We do this by exhibiting for any 𝑞 ∈ ℕ amorphism
of simplicial commutative algebras inducing the isomorphismHR𝑖(𝑋, 𝐺) ≅ H𝑖[𝑁(𝐿𝔤)] for 𝑖 ⩽ 𝑞.
To show this, we first note that the canonical filtration (by powers of the augmentation ideal) on
𝑅 induces a filtration on the right𝔊-module 𝑅. Then we use a generic connectivity argument due
to Curtis [15, section 4] to show that 𝜋𝑞(𝐹𝑟𝑅) = 0 for 𝑟 > 𝑞 (Proposition 3.4). This allows us to
replace 𝑅 with 𝑅∕𝐹𝑟𝑅 , 𝑟 ≫ 0 when computing homologies in degree ⩽ 𝑞 of 𝑁(𝑅) ⊗𝑳

𝔊
(𝐺) (i.e,

HR𝑖(𝑋, 𝐺) for 𝑖 ⩽ 𝑞). Again as a consequence of Proposition 2.1, the 𝑛-simplices of𝑅∕𝐹𝑟𝑅 are right
𝔊-modules whose higher Tor’s with (𝐺) vanish. It follows from these facts that the composite
map

induces the isomorphism HR𝑖(𝑋, 𝐺) ≅ 𝜋𝑖[𝐿𝔤] for 𝑖 ⩽ 𝑞 (on functions 𝜋𝑖). It is not difficult to
check that the maps above are morphisms of simplicial commutative algebras. This concludes
our argument.

3.2.2 Step I

By Theorem A.1, there are Quillen equivalences refining the Dold–Kan correspondence

𝑁∗ ∶ 𝙳𝙶𝙻𝙰ℚ ⇄ 𝚜𝙻𝚒𝚎ℚ ∶ 𝑁 , 𝑁∗ ∶ 𝙳𝙶𝙰ℚ ⇄ 𝚜𝙰𝚕𝚐ℚ ∶ 𝑁 𝑁∗ ∶ 𝙳𝙶𝙲𝙰ℚ ⇄ 𝚜𝚌𝙰𝚕𝚐ℚ ∶ 𝑁 ,

where 𝚜C denotes the category of simplicial objects in a category C . By Proposition A.2, applying
the functor𝑁∗ to a semi-free Quillenmodel of𝑋 gives a reduced semi-free simplicial Lie model of
𝑋. Let 𝐿 ∶= 𝐿𝑋 be a reduced semi-free simplicial Lie model of 𝑋. Consider the simplicial cocom-
mutative Hopf algebra 𝑅 ∶= 𝑈(𝐿) as well as the simplicial complete cocommutative Hopf algebra
𝑅 ≅ 𝑈(𝐿) (where the completion is with respect to the canonical augmentation). These corre-
spond to the right 𝔊-modules 𝑅 and 𝑅, which assign to ⟨𝑚⟩ the the tensor product 𝑅⊗𝑚 and the
completed tensor product 𝑅⊗̂𝑚, respectively. Similarly, the simplicial cocommutative Hopf alge-
bra ℚ𝔾𝑋 and the simplicial complete cocommutative Hopf algebra ℚ̂𝔾𝑋 correspond to the right
𝔊-modules ℚ𝔾𝑋 and ℚ̂𝔾𝑋 which assign to ⟨𝑚⟩ the tensor product ℚ𝔾𝑋⊗𝑚 and the completed
tensor product ℚ̂𝔾𝑋⊗̂𝑚, respectively. Recall that themain result fromQuillen’s rational homotopy
theory [50] is about the existence of a zig-zag of maps

of simplicial commutative Hopf algebras such that the first and last arrows induce isomorphisms
on all homotopy groups while themap g is a weak-equivalence in themodel category of simplicial
complete cocommutative Hopf algebras. First, we prove the following extension of this result.

Theorem 3.2. There is a zig-zag of weak-equivalences of simplicial right𝔊-modules
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Proof. The desired result is an immediate consequence of Propositions 3.1, 3.2 and 3.3 which we
state and prove below. The proofs of these propositions are exercises in Quillen’s rational homo-
topy theory. □

The propositions leading to Theorem 3.2 are in turn based on the following lemma. Let 𝑉 be
a filtered reduced simplicial vector space. Let 𝑉 denote the completion of 𝑉 with respect to the
given filtration. More generally, for any 𝑚 ∈ ℕ, one has the simplicial vector spaces 𝑉⊗𝑚,𝑉⊗𝑚
and𝑉⊗̂𝑚 = 𝑉⊗̂𝑚, where𝑉⊗̂𝑚 denotes the completed tensor product lim

←88𝑟
(𝑉∕𝐹𝑟𝑉)⊗𝑚. Let Λ̂𝑚(𝑉)

denote the image in 𝑉⊗̂𝑚 of the symmetrization idempotent 𝑒𝑚 ∶=
1

𝑛!

∑
𝜎∈𝑆𝑚

𝜎. Let Λ̂(𝑉) ∶=∏∞
𝑚=0 Λ̂

𝑚(𝑉). Recall that a 𝜋∗-equivalence (see [41]) is a morphism inducing isomorphisms on
all homotopy groups.

Lemma 3.1. Suppose that for each 𝑞 > 0, 𝜋𝑞(𝐹𝑟𝑉) = 0 for 𝑟 sufficiently large. Then,

(i) for each 𝑞 > 0, 𝜋𝑞(𝐹𝑟𝑉) = 0 for 𝑟 sufficiently large;
(ii) the map 𝑉⊗𝑚 8→ 𝑉⊗̂𝑚 is a 𝜋∗-equivalences for all𝑚;
(iii) the map Λ(𝑉) 8→ Λ̂(𝑉) is a 𝜋∗-equivalence.

Proof. By a long exact sequence of homotopy groups (LESH) argument, the natural map 𝜋𝑞(𝑉) 8→
𝜋𝑞(𝑉∕𝐹

𝑟𝑉) is an isomorphism for 𝑟 sufficiently large. Thus, the inverse system {𝜋𝑞(𝑉∕𝐹
𝑟𝑉)}

is eventually constant. Thus, lim1{𝜋𝑞(𝑉∕𝐹𝑟𝑉)} = 0. It follows from [50, Part I, Proposition 3.8]
that 𝜋𝑞(𝑉) ≅ 𝜋𝑞(𝑉∕𝐹𝑟𝑉) for 𝑟 sufficiently large. Since 𝑉∕𝐹𝑟𝑉 ≅ 𝑉∕𝐹𝑘𝑉, we see that 𝜋𝑞(𝑉) ≅
𝜋𝑞(𝑉∕𝐹

𝑟𝑉) for 𝑟 sufficiently large. Again by a LESH argument, 𝜋𝑞(𝐹𝑟𝑉) = 0 for 𝑟 sufficiently
large. This proves (𝑖).
Moreover, by the Eilenberg–Zilber and Künneth theorems, 𝜋𝑞(𝑉⊗𝑚) ≅ 𝜋𝑞[(𝑉∕𝐹𝑟𝑉)⊗𝑚] for

𝑟 sufficiently large (since the same is true for 𝑚 = 1). It follows that the inverse system
{𝜋𝑞[(𝑉∕𝐹

𝑟𝑉)⊗𝑚]} is eventually constant. Arguing as for the case when 𝑚 = 1, we see that
𝜋𝑞(𝑉

⊗̂𝑚) ≅ 𝜋𝑞[(𝑉∕𝐹
𝑟𝑉)⊗𝑚] for 𝑟 sufficiently large. This proves that the natural map 𝑉⊗𝑚 8→

𝑉⊗̂𝑚 induces an isomorphism on 𝜋𝑞 for any fixed 𝑞. This proves (𝑖𝑖).
Since the map 𝑉⊗𝑚 8→ 𝑉⊗̂𝑚 is 𝑆𝑚-equivariant and since Λ𝑚(𝑉) and Λ̂𝑚(𝑉) are the images

of the symmetrization idempotent 𝑒𝑚 acting on 𝑉⊗𝑚 and 𝑉⊗̂𝑚 respectively, the natural map
Λ𝑚(𝑉) 8→ Λ̂𝑚(𝑉) is a𝜋∗-equivalence. Thus, themapΛ(𝑉) 8→ ⊕𝑚Λ̂

𝑚(𝑉) is a𝜋∗-equivalence. Since
𝑉 is reduced andby (𝑖𝑖),𝜋𝑞(𝑉⊗̂𝑟) = 0 for 𝑟 > 𝑞 (by theEilenberg–Zilber andKünneth theorems). It
follows that 𝜋𝑞(⊕𝑚⩾𝑟Λ̂𝑚(𝑉) = 0 for 𝑟 > 𝑞. Applying (𝑖𝑖) to𝑊 ∶= ⊕𝑚Λ̂

𝑚(𝑉)with filtration given
by 𝐹𝑟𝑊 ∶= ⊕𝑚⩾𝑟Λ̂

𝑚(𝑉), we see that the map⊕𝑚Λ̂𝑚(𝑉) 8→ Λ̂(𝑉) is a 𝜋∗-equivalence. This proves
(𝑖𝑖𝑖). □

Proposition 3.1. The canonical map of𝔊-modules 𝑅 8→ 𝑅 is a 𝜋∗-equivalence.

Proof. It needs to be shown that themap 𝑅⊗𝑚 8→ 𝑅⊗̂𝑚 is a 𝜋∗-equivalence. By [50, Part I, Theorem
3.7], for any fixed 𝑞, 𝜋𝑞(𝐹𝑟𝑅) vanishes for 𝑟 sufficiently large. Lemma 3.1 (𝑖𝑖) then implies that the
map 𝑅⊗𝑚 8→ 𝑅⊗̂𝑚 is a 𝜋∗-equivalence, as desired. □

Recall that 𝔾𝑋 denotes the Kan loop group functor applied to a reduced simplicial/cellular
model of 𝑋. Then, ℚ𝔾𝑋 is a simplicial cocommutative Hopf algebra equipped with a canoni-
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cal augmentation. The completion ℚ̂𝔾𝑋 of ℚ𝔾𝑋 with respect to its canonical augmentation is
a simplicial complete cocommutative Hopf algebra (sCHA). ℚ𝔾𝑋 as well as ℚ̂𝔾𝑋 correspond to
simplicial right𝔊-modules, which we denote by ℚ𝔾𝑋 and ℚ̂𝔾𝑋, respectively.

Proposition 3.2. The map ℚ𝔾𝑋 8→ ℚ̂𝔾𝑋 is a 𝜋∗-equivalence.

Proof. We need to show that for each 𝑚, the map ℚ𝔾𝑋⊗𝑚 8→ ℚ̂𝔾𝑋⊗̂𝑚 is a 𝜋∗-equivalence. By
Lemma 3.1 (𝑖𝑖), this follows one we verify that for any fixed 𝑞, 𝜋𝑞(𝐹𝑟ℚ𝔾𝑋) = 0 for 𝑟 sufficiently
large. This is immediate from [41, Theorem 4.72]. □

We recall that the category 𝚜𝙲𝙷𝙰 of reduced sCHA’s is amodel category, whose cofibrant objects
are retracts of semi-free sCHA’s. The definition of semi-free sCHA is the obvious extension to
the simplicial setting of the definition of a free complete cocommutative Hopf algebra: the free
complete cocommutative Hopf algebra generated by a vector space 𝑉 is 𝑇𝑉, where 𝑉 is prim-
itive. We now apply Quillen’s rational homotopy theory: in [50], Quillen proves several equiv-
alences of homotopy categories (see [50, p. 211, fig. 2) from which it follows that there is an
isomorphism in 𝙷𝚘(𝚜𝙲𝙷𝙰) ℚ̂𝔾𝑋 ≅ 𝑅. By [50, Theorem 4.7], there is a morphism g ∶ ℚ̂𝔾𝑋 8→ 𝑅

that is a simplicial homotopy equivalence. Denote the corresponding map of right𝔊-modules by
g ∶ ℚ̂𝔾𝑋 8→ 𝑅.

Proposition 3.3. g is a 𝜋∗-equivalence.

Proof. By [50, Part I, Theorem 3.7] and Lemma 3.1, the completion map 𝑅⊗𝑚 8→ 𝑅⊗̂𝑚 is a 𝜋∗-
equivalence. Similarly, it can be shown that the map ℚ̂𝔾𝑋⊗𝑚 8→ ℚ̂𝔾𝑋⊗̂𝑚 is a 𝜋∗ equivalence. To
prove the desired lemma, we need to show that g⊗̂𝑚 ∶ ℚ̂𝔾𝑋⊗̂𝑚 8→ 𝑅⊗𝑚 is a 𝜋∗ equivalence for
each𝑚. Since the diagram

commutes, it suffices (by the Eilenberg–Zilber and Künneth theorems) to show that g is a 𝜋∗-
equivalence. Let  denote the functor of primitive elements. By [50, Appendix A, Corollary 2.16],
there is an isomorphism of simplicial vector spaces Λ̂(𝑅)

∼
8→ 𝑅. For the same reason, ℚ̂𝔾𝑋 is iso-

morphic to Λ̂(ℚ̂𝔾𝑋) as simplicial vector spaces. Since𝑅 is a canonical retract of𝑅,𝜋𝑞(𝐹𝑟𝑅) =
0 for 𝑟 large enough (since the same holds for 𝑅) and for the same reason, 𝜋𝑞(𝐹𝑟ℚ̂𝔾𝑋) = 0 for
𝑟 sufficiently large. By Lemma 3.1 (𝑖𝑖𝑖), the horizontal arrows in the commutative diagram below
are 𝜋∗-equivalences.
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By [50, Part II, Theorem 4.7], g is a 𝜋∗-equivalence. Thus, the left vertical arrow in the above
diagram is a 𝜋∗-equivalence. It follows that g is a 𝜋∗-equivalence, as desired. □

The following corollary of Theorem 3.2 completes the first step towards proving Theorem 3.1.

Corollary 3.2. There is an isomorphism of graded vector spacesHR∗(𝑋, 𝐺) ≅ H∗[𝑁(𝑅) ⊗𝑳𝔊 (𝐺)].

Proof. ByTheorem3.2,𝑁(ℚ𝔾𝑋) ≅ 𝑁(𝑅) in the derived category of right𝔊-modules. Hence, there
is an isomorphism in the derived category(ℚ) of complexes of ℚ-vector spaces

𝑁(ℚ𝔾𝑋) ⊗𝑳
𝔊
(𝐺) ≅ 𝑁(𝑅) ⊗𝑳

𝔊
(𝐺) .

The desired result now follows from [5, Theorem 4.2]. □

3.2.3 Step II

We now show thatHR∗(𝑋, 𝐺) ≅ HR∗(𝔞𝑋, 𝔤) as graded vector spaces. This step is a minor modifi-
cation of the proof of Theorem 2.1. Without loss of generality, wemay assume that 𝔞𝑋 is semi-free.
Since the representation functor ( – )𝔤 is left adjoint, it commutes with𝑁∗, that is, there is a com-
mutative diagram of functors

Since 𝑁∗ ∶ 𝙳𝙶𝙲𝙰ℚ ⇄ 𝚜𝚌𝙰𝚕𝚐ℚ ∶ 𝑁 is a Quillen equivalence, the above commutative diagram
implies thatHR∗(𝔞𝑋, 𝔤) ≅ H∗[𝑁(𝐿𝔤)] as graded algebras, where 𝐿 ∶= 𝑁∗𝔞𝑋 . By Lemma 2.1, 𝐿𝔤 ≅
𝑅 ⊗𝔊 (𝐺), where 𝑅 ∶= 𝑈𝐿. Thus, HR∗(𝔞𝑋, 𝔤) ≅ H∗[C(𝑅 ⊗𝔊 (𝐺))] ≅ H∗[C(𝑅) ⊗𝔊 (𝐺)],
where C stands for associated chain complex (indeed, the inclusion 𝑁(𝐿𝔤) ↪ 𝐶(𝐿𝔤) is a quasi-
isomorphism). Since 𝐿 is a semi-free simplicial Lie algebra by Proposition A.2, the right𝔊-module
of 𝑛-simplices in the simplicial right 𝔊-module 𝑅 is of the form 𝑇𝑉 for some vector space 𝑉. It
follows from Proposition 2.1 that C(𝑅) is a complex of right 𝔊-modules whose higher Tor’s with
(𝐺) vanish. Thus, the map C(𝑅) ⊗𝑳

𝔊
(𝐺) 8→ C(𝑅) ⊗𝔊 (𝐺) is a quasi-isomorphism. Since there

is a quasi-isomorphism of complexes of right 𝔊-modules 𝑁(𝑅) ↪ C(𝑅), there are isomorphisms
of graded vector spaces

HR∗(𝑋, 𝐺) ≅ H∗[𝑁(𝑅) ⊗
𝑳
𝔊
(𝐺)] ≅ H∗[C(𝑅) ⊗

𝑳
𝔊
(𝐺)] ≅ H∗[C(𝑅) ⊗𝔊 (𝐺)] ≅ HR∗(𝔞𝑋, 𝔤) ,

where the first isomorphism above is by Corollary 3.2. This completes the second step in the proof
of Theorem 3.1. However, we do not see a resolution of 𝑃

∼
8→ C(𝑅) by projective right 𝔊-modules

such that the functor 𝑃 ∶ 𝔊op 8→ 𝙲𝚘𝚖𝑘 is monoidal. As a result, we are unable to see the alge-
bra structure on H∗[C(𝑅) ⊗𝑳𝔊 (𝐺)] independently of Corollary 3.2. We therefore require further
work in Subsection 3.2.4 to show that the isomorphismHR∗(𝑋, 𝐺) ≅ HR∗(𝔞𝑋, 𝔤) of graded vector
spaces is indeed an isomorphism of graded algebras.
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3.2.4 Step III

To complete the proof of Theorem 3.1, it remains to show thatHR∗(𝑋, 𝐺) ≅ HR∗(𝔞𝑋, 𝔤) as graded
ℚ-algebras. For this, given any 𝑟 ∈ ℕ, we shall produce a morphism of simplicial commutative
algebras that induces the isomorphism HR𝑞(𝑋, 𝐺) ≅ H𝑞[𝑁(𝐿𝔤)] for 𝑞 < 𝑟.
Recall that 𝑅 ∶= 𝑈𝐿 is a semi-free simplicial associative algebra filtered by powers of its aug-

mentation ideal. This filtration induces a filtration on the simplicial right 𝔊-module 𝑅: if the
algebra of 𝑛-simplices of 𝑅 is 𝑇𝑉 for some vector space 𝑉, then the right𝔊-module of 𝑛-simplices
of 𝐹𝑟𝑅 is⊕𝑞⩾𝑟(𝑇𝑉)𝑞. The following connectivity result holds for the filtered right𝔊-module 𝑅.

Proposition 3.4. For 𝑟 > 𝑞, we have 𝜋𝑞(𝐹𝑟𝑅) = 0.

Proof. It needs to be shown that for all ⟨𝑚⟩, 𝜋𝑞(𝐹𝑟𝑅(⟨𝑚⟩)) = 0 for 𝑟 > 𝑞. For 𝑚 = 0, this is obvi-
ous. For 𝑚 = 1, this is [50, part I, Theorem 3.7]. For arbitrary 𝑚, we generalize the argument in
[50]. The functor 𝙻𝚒𝚎ℚ 8→ 𝚅𝚎𝚌𝚝ℚ , 𝐿 ↦ 𝐹𝑟𝑈𝐿(⟨𝑚⟩) takes 0 to 0 and commutes with direct limits.
By [15, Remark 4.10], the arguments in [15, section 4] proving Lemma (2.5) therein apply to this
functor as well. It therefore, suffices to verify the desired proposition for 𝑅 = 𝑈𝔩, where 𝔩 is the
free simplicial Lie algebra generated by 𝑉 ∶= ℚ𝐾, where 𝐾 is a finite wedge sum of simplicial
circles. Note that in this case, 𝑅 = 𝑇𝑉, and 𝑉 is a connected simplicial vector space. In this case,
𝐹𝑟𝑅(⟨𝑚⟩) = ⊕𝑟1+⋯+𝑟𝑚⩾𝑟𝑉⊗𝑟1 ⊗ …⊗ 𝑉⊗𝑟𝑚 . That 𝜋𝑞 of each summand vanishes for 𝑞 < 𝑟 follows
from the Eilenberg–Zilber and Künneth theorems. This proves the desired proposition. □

Proposition 3.5. For 𝑟 sufficiently large, all arrows in the following commutative diagram induce
isomorphisms on the homology groupsH𝑖[ – ] , 𝑖 ⩽ 𝑞.

Proof. Both C(𝑅) and C(𝑅∕𝐹𝑟𝑅) are complexes of right𝔊-modules whose higher Tors with (𝐺)

vanish by Proposition 2.1. It follows that the vertical arrows induce isomorphisms on all homology
groups. It therefore, suffices to show that the horizontal arrowon top of the above diagram induces
isomorphisms on H𝑖[ – ] , 𝑖 ⩽ 𝑞 for 𝑟 sufficiently large.
Consider the good truncation 𝜏⩾𝑞+1C (see [60, section 1.2.7]) of a chain complex C of right

𝔊-modules. The exact sequence 0 8→ 𝜏⩾𝑞+1C 8→ C 8→ 𝜏<𝑞+1C 8→ 0 of complexes of right𝔊-modules
gives a distinguished triangle in(ℚ) for any right𝔊-module 𝑁.

𝜏⩾𝑞+1C ⊗
𝑳
𝔊
𝑁 8→ C⊗𝑳

𝔊
𝑁 8→ 𝜏<𝑞+1C ⊗

𝑳
𝔊
𝑁 8→ 𝜏⩾𝑞+1C ⊗

𝑳
𝔊
𝑁[1].

It is easy to see thatH𝑖(𝜏⩾𝑞+1C ⊗𝑳𝔊 𝑁) = 0 for 𝑖 < 𝑞 + 1. The long exact sequence of homologies
associated with the above distinguished triangle then implies that

H𝑖(C ⊗
𝑳
𝔊
𝑁) ≅ H𝑖(𝜏<𝑞+1C ⊗

𝑳
𝔊
𝑁) for 𝑖 ⩽ 𝑞 . (3.2)

By Proposition 3.4, the map 𝜏<𝑞+1C(𝑅) 8→ 𝜏<𝑞+1C(𝑅∕𝐹
𝑟𝑅) is a quasi-isomorphism for 𝑟 > 𝑞.

Thus, the map H∗[𝜏<𝑞+1C(𝑅) ⊗𝐿𝔊 (𝐺)] 8→ H∗[𝜏<𝑞+1C(𝑅∕𝐹
𝑟𝑅) ⊗𝐿

𝔊
(𝐺)] is an isomorphism of

graded ℚ-vector spaces. The desired proposition now follows from (3.2). □
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Note that the filtration on 𝑅 induces a filtration on the right 𝔊-module 𝑅. Clearly, 𝑅∕𝐹𝑟𝑅 ≅
𝑅∕𝐹𝑟𝑅. The following corollary is immediate from Propositions 3.1 and 3.5.

Corollary 3.3. For 𝑟 sufficiently large, all arrows in the following commutative diagram induce
isomorphisms on the homology groupsH𝑖[ – ] , 𝑖 ⩽ 𝑞.

Recall that there is a weak equivalence between cofibrant objects in 𝚜𝙲𝙷𝙰 g ∶ ℚ̂𝔾𝑋 8→ 𝑅 induc-
ing a map of simplicial right 𝔊-modules g (see Proposition 3.3). Consider the following commu-
tative diagram, where the second arrow on the top and bottom rows is induced by g .

(3.3)

By [5, Theorem 4.2], the left vertical arrow in (3.3) induces isomorphisms on all homologies.
The two arrows on the top row of (3.3) induce isomorphisms on all homologies by Propositions 3.2
and 3.3, respectively. The diagonal arrow induces isomorphisms onH𝑖[ – ] , 𝑖 ⩽ 𝑞 for 𝑟 sufficiently
large by Proposition 3.5 andCorollary 3.3. An isomorphismHR𝑖(𝑋, 𝐺) ≅ H𝑖[𝑁(𝐿𝔤)] , 𝑖 ⩽ 𝑞 is thus
induced on homologies (for sufficiently large 𝑟) by the composition of themaps on the bottom row
of (3.3). That the composition of maps in the bottom row is a map of DG commutative algebras
follows from the fact that each of the maps

ℚ𝔾𝑋 ⊗𝔊 (𝐺) 8→ ℚ̂𝔾𝑋 ⊗𝔊 (𝐺) 8→ 𝑅 ⊗𝔊 (𝐺) 8→ 𝑅∕𝐹𝑟𝑅 ⊗𝔊 (𝐺)

is a morphism of simplicial commutative algebras. Indeed, this last fact follows from [37,
Proposition 3.4] and the facts that (𝐺) is a lax-monoidal left 𝔊-module, the 𝑛-simplices
of the right 𝔊-modules ℚ𝔾𝑋, ℚ̂𝔾𝑋, 𝑅 and 𝑅∕𝐹𝑟𝑅 are lax-monoidal for each 𝑛, and the
morphisms

ℚ𝔾𝑋 8→ ℚ̂𝔾𝑋 8→ 𝑅 8→ 𝑅∕𝐹𝑟𝑅

are natural transformations of lax-monoidal functors on 𝑛-simplices for each 𝑛. This completes
the proof of Theorem 3.1.

3.2.5 Remark

The results of this section go through with ℚ replaced by any field 𝑘 of characteristic 0. Indeed,
the proofs of Propositions 3.1 and 3.2 work for any such field 𝑘. For Proposition 3.3, we work with
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a semi-free simplicial Lie model 𝐿 of 𝑋 over ℚ. The corresponding Lie model over 𝑘 is 𝐿 ⊗ℚ 𝑘.
The corresponding sCHA over 𝑘 is 𝑅 ⊗ℚ 𝑘. The𝜋∗-equivalence of sCHA’s (overℚ) 𝑓 ∶ 𝑅 8→ ℚ̂𝔾𝑋

extends to a 𝜋∗-equivalence of sCHA’s (over 𝑘) 𝑓 ∶ 𝑅 ⊗ℚ 𝑘 8→ 𝑘𝔾𝑋. This proves Proposition 3.3
over 𝑘. Theorem 3.2 (and hence, Corollary 3.2), Proposition 2.1, Theorem 3.1 and Proposition 2.1
can then be proven over 𝑘 as done above (over ℚ).

3.3 A conjecture for non-simply connected spaces

In a series of recent papers [9–11], Buijs, Félix, Murillo and Tanré associated a free DG Lie algebra
model (𝔏𝑋, 𝑑) to any finite simplicial complex 𝑋. Unlike Quillen models, the DG Lie algebras 𝔏𝑋
are assumed, in general, to be not connected but complete with respect to the canonical decreas-
ing filtrarion 𝔏1 ⊇ 𝔏2 ⊇ …, defined by 𝔏1 ∶= 𝔏 and 𝔏𝑛 ∶= [𝔏, 𝔏𝑛−1]. The 0-simplices of 𝑋 cor-
respond to the degree −1 generators of 𝔏𝑋 that satisfy the Maurer–Cartan equation, while the 𝑛-
simplices of𝑋 correspond to generators in degree 𝑛 − 1. For any connected, finite simplicial com-
plex𝑋, the DGLie algebra𝔏𝑋 itself is acyclic (that is,H∗(𝔏𝑋, 𝑑) = 0). The topological information
about 𝑋 is contained in a DG Lie algebra (𝔏𝑋, 𝑑𝑣) obtained from 𝔏𝑋 by twisting its differential by
Maurer–Cartan elements corresponding to the vertices of 𝑋, that is, 𝑑𝑣 ∶= 𝑑 + [𝑣 , – ] where 𝑣
denotes (the Maurer–Cartan element corresponding to) a vertex of 𝑋. Now, the main result of
[9] (see Theorem A) says that, if 𝑋 is simply connected, then (𝔏𝑋, 𝑑𝑣), is quasi-isomorphic to a
Quillen model of 𝑋. This motivates the following conjectural generalization of our Theorem 3.1.
Let (𝔏𝑋, 𝑑) be a complete free DG Lie algebra model associated to a reduced simplicial set 𝑋.

Let 𝑑𝑣 ∶= 𝑑 + [𝑣 , –] be the twisted differential on 𝔏𝑋 corresponding to the (unique) basepoint of
𝑋. Note that HR0[(𝔏𝑋, 𝑑𝑣), 𝔤] has a canonical augmentation 𝜀 corresponding to the trivial (zero)
representation. Let ĤR∗[(𝔏𝑋, 𝑑𝑣), 𝔤] denote the adic completion ofHR∗[(𝔏𝑋, 𝑑𝑣), 𝔤] with respect
to the augmentation ideal of 𝜀. Similarly, HR0(𝑋, 𝐺) has a canonical augmentation correspond-
ing to the trivial (identity) representation of 𝜋1(𝑋, 𝑣). Let ĤR∗(𝑋, 𝐺) denote the corresponding
completion of HR∗(𝑋, 𝐺).

Conjecture 1. There is an isomorphism of completed graded ℚ-algebras

ĤR∗(𝑋, 𝐺) ≅ ĤR∗[(𝔏𝑋, 𝑑𝑣), 𝔤] .

Note that Conjecture 1 holds for 𝑋 simply connected: indeed, in this case, (𝔏𝑋, 𝑑𝑣) is quasi-
isomorphic to a Quillen model 𝔞𝑋 of 𝑋 and HR0[(𝔏𝑋, 𝑑𝑣), 𝔤] ≅ ℚ. Thus, the right-hand side
of the conjectured isomorphism is HR∗(𝔞𝑋, 𝔤). Similarly, HR0(𝑋, 𝐺) = ℚ, which implies that
ĤR∗(𝑋, 𝐺) ≅ HR∗(𝑋, 𝐺). Thus, Conjecture 1 is equivalent to Theorem 3.1 for simply con-
nected spaces.

4 SPACESWITH POLYNOMIAL REPRESENTATION HOMOLOGY
AND THE STRONGMACDONALD CONJECTURE

In this section, we address Question 2 and prove our second main result — Theorem 4.5— stated
as Theorem 1.2 in the introduction. We will also work out a number of explicit examples illustrat-
ing this theorem and linking it to the Strong Macdonald Conjecture.
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4.1 Lie–Hodge decompositions

Given a Lie algebra 𝔞 ∈ 𝙻𝚒𝚎𝑘, we consider the symmetric ad-invariantmultilinear forms on 𝔞, of a
(fixed) degree 𝑑 ⩾ 1. Every such form is induced from the universal one: 𝔞 × 𝔞 × … × 𝔞 → 𝜆(𝑑)(𝔞)

which takes its values in 𝜆(𝑑)(𝔞) ∶= Sym𝑑(𝔞)∕[𝔞, Sym𝑑(𝔞)] the space of coinvariants of the adjoint
representation of 𝔞 in the 𝑑th symmetric power of 𝔞. The assignment 𝔞 ↦ 𝜆(𝑑)(𝔞) defines a (non-
additive) functor that naturally extends to the category of DG Lie algebras:

𝜆(𝑑) ∶ 𝙳𝙶𝙻𝙰𝑘 8→ 𝙲𝚘𝚖𝑘. (4.1)

The functor (4.1) is not homotopy invariant (it does not preserve quasi-isomorphisms); however,
as shown in [3], it has a well-defined left derived functor

𝑳𝜆(𝑑) ∶ 𝙷𝚘(𝙳𝙶𝙻𝙰𝑘) → 𝙷𝚘(𝙲𝚘𝚖𝑘). (4.2)

We write HC(𝑑)∗ (𝔞) for the homology of 𝑳𝜆(𝑑)(𝔞), and call it the Lie–Hodge homology† of 𝔞.
Next, we consider the (reduced) cyclic functor on associative DG algebras

(–)♮ ∶ 𝙳𝙶𝙰𝑘∕𝑘 8→ 𝙲𝚘𝚖𝑘 𝑅 ↦ 𝑅∕(𝑘 + [𝑅, 𝑅]) .

Observe that each functor 𝜆(𝑑) comes together with a natural transformation 𝜆(𝑑) → 𝑈♮ induced
by the symmetrization maps

Sym𝑑(𝔞) → 𝑈𝔞 , 𝑥1𝑥2 …𝑥𝑑 ↦
1

𝑑!

∑
𝜎∈Σ𝑑

±𝑥𝜎(1) ⋅ 𝑥𝜎(2) ⋅ … ⋅ 𝑥𝜎(𝑑) ,

where 𝑈𝔞 is the universal enveloping algebra of 𝔞, and by the Poincaré–Birkhoff–Witt theorem,
these natural transformations assemble to an isomorphism of functors

∞⨁
𝑑=1

𝜆(𝑑) ≅ 𝑈♮. (4.3)

On the other hand, by a well-known theorem of Feigin and Tsygan [22], the functor ( – )♮ has a
left derived functor 𝑳( – )♮ ∶ 𝙷𝚘(𝙳𝙶𝙰𝑘∕𝑘) → 𝙷𝚘(𝙲𝚘𝚖𝑘) that computes the reduced cyclic homology
HC∗(𝑅), of an associative algebra 𝑅 ∈ 𝙳𝙶𝙰𝑘∕𝑘. Since 𝑈 preserves quasi-isomorphisms and maps
cofibrant DG Lie algebras to cofibrant DG associative algebras, the isomorphism (4.3) induces an
isomorphism of derived functors:

∞⨁
𝑑=1

𝑳𝜆(𝑑) ≅ 𝑳( – )♮◦𝑈. (4.4)

†Observe that 𝜆(1) is just the abelianization functor on Lie algebras; hence, for 𝑑 = 1, the existence of (4.2) follows from
general results of [51], and HC(1)∗ (𝔞), coincides with the Quillen homology of 𝔞, which is known to be isomorphic (up to
shift in degree) to the classical Chevalley–Eilenberg homology of 𝔞. For 𝑑 = 2, the functor 𝜆(2) was introduced by Drinfeld
in [20]; the existence of 𝑳𝜆(2) was established by Getzler and Kapranov [27] who suggested to viewHC(2)∗ (𝔞) as an analogue
of cyclic homology for Lie algebras. For arbitrary 𝑑 ⩾ 1, the existence of (4.2) was proven in [3, section 7] using some earlier
general results of [1].
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At the level of homology, (4.4) yields a direct sum decomposition

HC∗(𝑈𝔞) ≅

∞⨁
𝑑=1

HC(𝑑)∗ (𝔞) , (4.5)

which we call the Lie–Hodge decomposition for 𝑈𝔞 (cf. [3, Theorem 7.4]).
Now, let 𝑋 be a simply connected topological space, and let L𝑋 denote the free loop space

over 𝑋, that is, the space of all continuous maps 𝑆1 → 𝑋 equipped with compact open topology.
This space carries a natural 𝑆1-action (induced by rotations of 𝑆1), hence we can consider its
equivariant homology

H𝑆
1

∗ (L𝑋, 𝑘) ∶= H∗(𝐸𝑆
1 ×𝑆1 L𝑋, 𝑘).

We will actually work with a reduced version of 𝑆1-equivariant homology of L𝑋 defined by

H
𝑆1

∗ (L𝑋, 𝑘) ∶= Ker[H𝑆
1

∗ (L𝑋, 𝑘)
𝜋∗
88→ H∗(𝐵𝑆

1, 𝑘) ] ,

where the map 𝜋∗ comes from the natural (Borel) fibration

L𝑋 → 𝐸𝑆1 ×𝑆1 L𝑋
𝜋
8→ 𝐵𝑆1. (4.6)

The following theorem is a well-known result due to Goodwillie [29] and Jones [34].

Theorem 4.1 [29, 34]. Assume that 𝑋 is a simply connected space of finite rational type, and let 𝔞𝑋
be a Quillen model of 𝑋. Then there is a natural isomorphism of graded vector spaces

HC∗(𝑈𝔞𝑋)
∼
8→ H

𝑆1

∗ (L𝑋,ℚ). (4.7)

Now, for each integer 𝑛 ⩾ 0, consider the 𝑛-fold covering of the circle:

𝜔𝑛 ∶ 𝑆1 8→ 𝑆1 , 𝑒𝑖𝜃 ↦ 𝑒𝑖𝑛𝜃 ,

and denote by 𝜑𝑛
𝑋
; L𝑋 8→ L𝑋, the induced map on L𝑋. While for 𝑛 ⩾ 1, the maps 𝜑𝑛

𝑋
are not

equivariant with respect to the 𝑆1-action on L𝑋, they give naturally a commutative diagram in
the homotopy category

(4.8)
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where columns are obtained by taking the rationalization of the Borel fibration (4.6) (see [12]).
The maps 𝜑̃𝑛

𝑋
in (4.8) induce graded endomorphisms

Φ̃𝑛𝑋 ∶ H
𝑆1

∗ (L𝑋, 𝑘) → H
𝑆1

∗ (L𝑋, 𝑘) , 𝑛 ⩾ 0 ,

defined over any field 𝑘 containingℚ. We call these endomorphisms the power or Frobenius oper-

ations onH
𝑆1

∗ (L𝑋, 𝑘) and writeH
𝑆1, (𝑝)

∗ (L𝑋, 𝑘) for their (common) eigenspaces with eigenvalues
𝑛𝑝: that is,

H
𝑆1, (𝑝)

∗ (L𝑋, 𝑘) ∶=
⋂
𝑛⩾0

Ker(Φ̃𝑛𝑋 − 𝑛
𝑝 Id). (4.9)

The next result proven in [7] provides a topological interpretation of the Lie–Hodge homology.

Theorem 4.2 [7, Theorem 4.2]. The Goodwillie-Jones isomorphism (4.7) restricts to isomorphisms

HC(𝑑)∗ (𝔞𝑋) ≅ H
𝑆1, (𝑑−1)

∗ (L𝑋,ℚ) , ∀ 𝑑 ⩾ 1.

It follows from Theorems 4.1 and 4.2 that, for a Quillen model 𝔞𝑋 of a simply connected space
𝑋, the Lie–Hodge decomposition (4.5) coincides with the topological Hodge decomposition

H
𝑆1

∗ (L𝑋, 𝑘) =

∞⨁
𝑝=0

H
𝑆1, (𝑝)

∗ (L𝑋, 𝑘).

4.2 The Drinfeld homomorphism

Our next goal is to describe certain natural trace maps with values in representation homology.
These maps were originally constructed in [3, 4] as (derived) characters of finite-dimensional Lie
representations. We will give a topological interpretation of these characters in terms of free loop
spaces. From now on, we assume that 𝐺 is a reductive affine algebraic group over 𝑘. We denote by
𝐼(𝔤) ∶= Sym(𝔤∗)𝐺 , the space of invariant polynomials on the Lie algebra 𝔤 of 𝐺, and for 𝑑 ⩾ 0,
write 𝐼𝑑(𝔤) ⊂ 𝐼(𝔤) for the subspace of homogeneous polynomials of degree 𝑑.
For any commutative algebra 𝐴, there is a natural symmetric invariant 𝑑-linear form 𝔞(𝐴) ×

𝔞(𝐴) × … × 𝔞(𝐴) → 𝜆(𝑑)(𝔞) ⊗ 𝐴 on the current Lie algebra 𝔞(𝐴). Hence, by the universal property
of 𝜆(𝑑), we have a canonical map

𝜆(𝑑)[𝔞(𝐴)] 8→ 𝜆(𝑑)(𝔞) ⊗ 𝐴 . (4.10)

Applying 𝜆(𝑑) to the universal representation (2.2) and composing with (4.10), we define

(4.11)

On the other hand, for the Lie algebra 𝔤, we have a canonical (nondegenerate) pairing

𝐼𝑑(𝔤) × 𝜆(𝑑)(𝔤) → 𝑘 (4.12)
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induced by the linear pairing between 𝔤∗ and 𝔤. Replacing the Lie algebra 𝔞 in (4.11) by its cofibrant
resolution 

∼
↠ 𝔞 and using (4.12), we define the morphism of complexes

(4.13)

For a fixed polynomial 𝑃 ∈ 𝐼𝑑(𝔤), this morphism induces a map on homology Tr𝑃𝔤 (𝔞) ∶

HC(𝑑)∗ (𝔞) 8→ HR∗(𝔞, 𝔤) which we call the Drinfeld trace associated to 𝑃. It is easy to check that
the image of (4.13) is contained in the invariant subalgebra 𝐺𝔤 of 𝔤, hence the Drinfeld trace is
actually a map

Tr𝑃𝔤 (𝔞) ∶ HC
(𝑑)
∗ (𝔞) 8→ HR∗(𝔞, 𝔤)

𝐺 . (4.14)

Now, assume that 𝑘 = ℂ and 𝐺 is a complex reductive group of rank 𝑙. In this case, the alge-
bra 𝐼(𝔤) = Sym(𝔤∗)𝐺 is freely generated by a set of homogeneous polynomials {𝑃1, … , 𝑃𝑙} whose
degrees𝑑𝑖 ∶= deg(𝑃𝑖) are called the fundamental degrees of 𝔤. Fixing such a set {𝑃1, … , 𝑃𝑙} of gener-
ators in 𝐼(𝔤), we assemble the associated trace maps (4.14) into a single homomorphism of graded
commutative algebras

ΛTr𝔤(𝔞) ∶ Λ𝑘

[
𝑙⨁
𝑖=1

HC
(𝑑𝑖)
∗ (𝔞)

]
8→ HR∗(𝔞, 𝔤)

𝐺. (4.15)

Following [3, 4], we call (4.15) the Drinfeld homomorphism for (𝔞, 𝔤). We note that the Drinfeld
homomorphism (4.15) depends on the choice of polynomials {𝑃1, … , 𝑃𝑙} ⊂ 𝐼(𝔤), but for simplicity
we suppress this in our notation.
If 𝔞 = 𝔞𝑋 is a Lie model of a simply connected space 𝑋, by Theorem 4.2, HC(𝑑)∗ (𝔞) ≅

H
𝑆1,(𝑑−1)

∗ (L𝑋,ℂ). On the other hand, by Theorem 3.1,HR∗(𝔞, 𝔤) ≅ HR∗(𝑋, 𝐺). Hence, the Drin-
feld homomorphism for 𝑋 may be rewritten in the following topological form:

Λ𝑘

[
𝑙⨁
𝑖=1

H
𝑆1,(𝑚𝑖)

∗ (L𝑋,ℂ)

]
8→ HR∗(𝑋, 𝐺)

𝐺 , (4.16)

where the𝑚𝑖 = 𝑑𝑖 − 1 are the exponents of the Lie algebra of the group 𝐺.
Our next goal is to compute the Drinfeld homomorphism (4.16) explicitly in terms of the (min-

imal) Sullivan model 𝑋 of 𝑋. Recall that  ∶= 𝑋 is Koszul dual to the Lie algebra 𝔞 ∶= 𝔞𝑋
in the sense that  ≅ ∗(𝔞; 𝑘). Then, by [3, Proposition 7.8], there is an isomorphism of graded
vector spaces for any𝑚 ⩾ 0,

HC(𝑚+1)∗ (𝔞) ≅ (HC
(𝑚)

∗ ())∗[−1] , (4.17)

where the superscript (–)∗ stands for the graded 𝑘-linear dual. In particular, we have (cf. [12, The-
orem B])

H
𝑆1,(𝑚)

∗ (L𝑋) ≅ (HC
(𝑚)

∗ ())∗[−1]. (4.18)
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On the other hand, by [3, Theorem 6.7(b)],

HR∗(𝔞, 𝔤)
𝐺 ≅ H−∗CE(𝔤(), 𝔤; ℂ). (4.19)

Now, for each𝑚 ⩾ 0, for each 𝑃 ∈ 𝐼𝑚+1(𝔤), define a linear map

Φ𝑃 ∶ ∗(𝔤(̄); ℂ) 8→ Ω𝑚()∕𝑑Ω𝑚−1()[𝑚 + 1] , (4.20)

by the following explicit formula

Φ𝑃((𝜉0 ⊗ 𝑎0) ∧ … ∧ (𝜉𝑚 ⊗ 𝑎𝑚)) =
1

(𝑚 + 1)!

∑
𝜎∈Σ𝑚+1

±𝑎𝜎(0)𝑑𝑎𝜎(1) … 𝑑𝑎𝜎(𝑚)𝑃(𝜉𝜎(0), … , 𝜉𝜎(𝑚)) ,

(4.21)
where 𝑎0, … , 𝑎𝑚 ∈ ̄ and 𝜉0, … , 𝜉𝑚 ∈ 𝔤, and let Ψ𝑃 denote the composition

Lemma 4.1.

(i) The map Ψ𝑃 is a well-defined chain map whose graded linear dual induces on cohomology

Ψ∗𝑃 ∶
(
HC

(𝑚)

∗ ()
)∗
[−1] 8→ H∗CE(𝔤(), 𝔤; ℂ).

(ii) The following diagram commutes:

Proof. We first recall from [4] a construction of the Drinfeld traces via the Chern–Simons formal-
ism. Let DR() ∶= Λ(Ω

1[−1]) equipped with the differential 𝑑 + 𝜕, where 𝑑 is the de Rham
differential and 𝜕 is the internal differential induced by the differential on. LetDR⩾𝑛() denote
the two sided DG ideal in DR() generated by Ω𝑛[−𝑛], and let 𝜏𝑛DR() denote the quotient
DR()∕DR⩾(𝑛+1)(). Note that since  is augmented, so is 𝜏𝑛DR() for each 𝑛. Let 𝜏𝑛DR()
denote the corresponding augmentation ideal. Since is smooth as a graded commutative alge-
bra, [39, Theorem 5.4.7], there is a canonical isomorphism for each𝑚 ⩾ 0

HC
(𝑚)

∗ () ≅ H∗

(
𝜏𝑚DR()[2𝑚]

)
.

Further, since is a graded symmetric algebra equipped with an extra differential, the canonical
projection

𝜏𝑚DR() ↠
(
Ω𝑚()∕𝑑Ω𝑚−1()

)
[−𝑚] (4.22)
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is a quasi-isomorphism (see [39, Theorem 5.4.12]). Hence,

HC
(𝑚)

∗ () ≅ H∗
[(
Ω𝑚()∕𝑑Ω𝑚−1()

)
[𝑚]
]
.

Next, note that the Chevalley–Eilenberg chain complex ∗(𝔤(̄); ℂ) is a cocommutative DG coal-
gebra. Hence, the Hom complex  ∶= Hom(∗(𝔤(̄); 𝑘), 𝜏𝑚DR()) has the structure of a com-
mutative DG algebra with convolution product. There is a 𝔤-valued one form 𝜃 ∈ 1 ⊗ 𝔤 on 

such that the restriction of 𝜃 to ∧𝑘(𝔤(̄)) vanishes for 𝑘 ≠ 1 and 𝜃|𝔤(̄) coincides with the com-
posite map

where the first arrow is the obvious swapmap. For𝑃 ∈ 𝐼𝑚+1(𝔤), the Chern-Simons form𝑇𝑃(𝜃) ∈
2𝑚+1 satisfies 𝛿(𝑇𝑃(𝜃)) = 𝑃(Ω𝑚+1), where Ω ∈ 2 ⊗ 𝔤 is the curvature of 𝜃. Since Ω𝑚+1 = 0
by [4, Proposition A.2], 𝑇𝑃(𝜃) ∈ 2𝑚+1 is a cocycle. It follows that 𝑠2𝑚𝑇𝑃(𝜃) defines a map of
complexes

1

(𝑚 + 1)!
𝑠𝑚𝑇𝑃(𝜃) ∶ ∗(𝔤(̄); ℂ) 8→ 𝜏𝑚DR()[1]. (4.23)

An explicit formula for the map (4.23) has been given in [21] (also see [4, Proposition A.3; 54,
Equation 2.2]). By [4, Proposition A.5], the composition of the canonical projection (4.22) with
(4.23) coincides with Φ𝑃 (see (4.20)). This implies (𝑖). (𝑖𝑖) is then an immediate consequence of
the main result of [4] (see Theorem 3.2). □

As a consequence of Lemma 4.1, we obtain the following description of the Drinfeld homomor-
phism in terms of the (minimal) Sullivan model.

Theorem4.3. For a simply connected space𝑋withminimal Sullivanmodel𝑋 , theDrinfeld homo-
morphism (4.16) is given by the map

Ψ∗(𝑋) ∶ Λ

(
𝑙⨁
𝑖=1

(
HC

(𝑚𝑖)

∗ (𝑋)
)∗
[−1]

)
8→ H−∗CE(𝔤(𝑋), 𝔤; ℂ) (4.24)

obtained by assembling the maps Ψ∗
𝑃𝑖
for a set {𝑃1, … , 𝑃𝑙} of homogeneous generators of 𝐼(𝔤).

4.3 Spaces with polynomial representation homology

We now address Question 2 stated in the introduction. Recall that this question is asking for a
characterization of spaces𝑋 and groups𝐺 forwhich the algebraHR∗(𝑋, 𝐺)𝐺 is free of locally finite
type over 𝑘. At the moment, a complete characterization of such pairs (𝑋, 𝐺) seems to be out of
reach. In what follows, we will consider two — in some sense extreme — cases: we first describe
a class of algebraic groups 𝐺 such that HR∗(𝑋, 𝐺)𝐺 is free for all spaces 𝑋 (see Theorem 4.4) and
then characterize a class of spaces𝑋 such thatHR∗(𝑋, 𝐺)𝐺 is free for all complex reductive groups
𝐺 (see Theorem 4.5).
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Theorem 4.4. If 𝐺 is a commutative affine algebraic group of dimension 𝑙, then, for any simply
connected space 𝑋 of finite rational type, there is an algebra isomorphism

HR∗(𝑋, 𝐺) ≅ Λ𝑘
[
H∗+1(𝑋; 𝑘)

⊕𝑙
]
.

Proof. We first prove the desired result in the case when dim𝑘 𝐺 = 1. Let 𝔞 = (𝔞(𝑉), 𝜕) be a
minimal Quillen model of 𝑋 freely generated by a graded vector space 𝑉 with differential 𝜕.
Then, 𝔞𝔤 = Λ(𝑉) with 0 differential. On the other hand, HC

(1)
∗ (𝔞) ≅ 𝔞∕[𝔞, 𝔞] ≅ 𝑉 , with 0 dif-

ferential. It is easy to see that the Drinfeld trace† corresponding to the generator of Λ(𝔤∗) is the
map

𝔞∕[𝔞, 𝔞] ≅ 𝑉 ↪ Λ(𝑉) ≅ 𝔞𝔤.

The corresponding Drinfeld homomorphism is therefore identified with the identity on Λ(𝑉).
Finally, note that if 𝔤 is abelian of dimension 𝑙, the Drinfeld homomorphism for 𝔤 becomes the
map

Λ(𝔞∕[𝔞, 𝔞])⊗𝑙
𝜏⊗𝑙

⟶ Λ(𝑉)⊗𝑙 ,

where 𝜏 is the Drinfeld homomorphism for a 1-dimensional Lie algebra. Hence, it is an iso-
morphism. Since H∗[𝔞∕[𝔞, 𝔞]] ≅ H∗+1(𝑋; 𝑘), and since 𝐺 is abelian, the desired formula for
HR∗(𝑋, 𝐺) follows as well. □

Remark. It is well-known (see, for example, [16, chapter IV]) that over an algebraically closed
field of characteristic 0, any finite-dimensional commutative affine algebraic group is isomorphic
to the product of an algebraic torus and a vector group over 𝑘: i.e, 𝐺 ≅ 𝔾𝑟𝑚 × 𝔾

𝑠
𝑎. If 𝐺 ≅ 𝔾𝑠𝑎, then

the result of Theorem 4.4 actually holds for an arbitrary — not necessarily simply connected —
space 𝑋 (see [5, Example 3.1]).

The next theorem (stated as Theorem 1.2 in the introduction) provides a (partial) answer to
Question 3, characterizing in simple cohomological terms spaces for which the Drinfeld homo-
morphism is an isomorphism for all reductive groups 𝐺. As explained in the introduction, the
proof of this theorem relies on a theoremof Fishel, Grojnowski andTeleman [24] (formerly known
as the Strong Macdonald Conjecture).

Theorem4.5. Let𝑋 be a simply connected space such that its rational cohomology algebraH∗(𝑋;ℚ)
is either generated by one element (in any dimension) or freely generated by two elements: one in even
and one in odd dimensions. Then, the Drinfeld homomorphism (4.16) is an isomorphism for every
complex reductive algebraic group 𝐺.

The proof of Theorem 4.5 is based on the following refinement of [24, Theorem B].

†We remark that the construction of the Drinfeld trace (4.14) goes through even when 𝐺 is not reductive for 𝑃 ∈
Sym(𝔤∗)ad 𝔤. Hence, when 𝐺 (and therefore, 𝔤) is abelian, one has the Drinfeld trace Tr𝑃𝔤 (𝔞) ∶ HC

(1)
∗ (𝔞) 8→ HR∗(𝔞, 𝔤) for

every 𝑃 ∈ 𝔤∗ ↪ Sym(𝔤∗). Fixing a basis of 𝔤∗, we assemble the associated traces into the Drinfeld homomorphism as in
(4.15).
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Proposition 4.1. Let ≅ ℂ[𝑧, 𝑠]with 0 differential, where |𝑧| ⩾ 2 is even and |𝑠| ⩾ 3 is odd. Then,
the map Ψ∗() (see (4.24)) is an isomorphism.

Proof. Viewing all (DG) algebras as homologically graded by inverting degrees, we note that

ΛΩ
1()[1] = ℂ[𝑧, 𝑠, 𝑑𝑧, 𝑑𝑠] ,

where deg 𝑑𝑧 = 1 − 𝑑 and deg 𝑑𝑠 = 1 − 𝑙. Here, 𝑑 ∶= |𝑧| and 𝑙 ∶= |𝑠| denote the coho-
mological degrees of 𝑧 and 𝑠, respectively, whence deg 𝑧 = −𝑑 and deg 𝑠 = −𝑙. Hence, for
𝑚 ⩾ 1,

Ω𝑚() = ℂ[𝑧]𝑑𝑧(𝑑𝑠)𝑚−1 ⊕ ℂ[𝑧](𝑑𝑠)𝑚 ⊕ ℂ[𝑧]𝑑𝑧𝑠(𝑑𝑠)𝑚−1 ⊕ ℂ[𝑧]𝑠(𝑑𝑠)𝑚 ,

and it is easy to verify that for 𝑓(𝑧) ∈ ℂ[𝑧],

𝑓(𝑧)(𝑑𝑠)𝑚 ≡ −𝑓′(𝑧)𝑑𝑧𝑠(𝑑𝑠)𝑚−1 , 𝑓(𝑧)𝑑𝑧(𝑑𝑠)𝑚−1 ≡ 0 (4.25)

modulo Ω𝑚−1(). For𝑚 = 0,

DR
0
() = ̄ = 𝑧ℂ[𝑧] ⊕ ℂ[𝑧]𝑠.

Since the differential on is trivial, there are isomorphisms of graded vector spaces for𝑚 ⩾ 0

HC
(𝑚)

∗ () ≅ Ω𝑚()∕𝑑Ω𝑚−1()[𝑚] ≅ ℂ[𝑧]𝑠(𝑑𝑠)𝑚 ⊕ ℂ[𝑧]𝑑𝑧 ⋅ 𝑠(𝑑𝑠)𝑚−1 , (4.26)

where for𝑚 = 0, the formal summand ℂ[𝑧]𝑑𝑧𝑠(𝑑𝑠)−1 ofHC0() is identified with the summand
𝑧ℂ[𝑧] of ̄ by the isomorphism 𝑓(𝑧) ↦ 𝑑𝑓(𝑧) = 𝑓′(𝑧)𝑑𝑧. The restriction of the inverse of the iso-
morphism (4.26) to each summand is given by the obvious inclusion intoΩ𝑚()[𝑚] followed by
the canonical projection. Composing the isomorphism (4.26) with projection to each factor on the
right-hand side yields two linear maps

𝑆 ∶ HC
(𝑚)

∗ () 8→ ℂ[𝑧] , 𝐸 ∶ HC
(𝑚)

∗ () 8→ ℂ[𝑧]𝑑𝑧. (4.27)

As in [24, section 1.8], there is an isomorphism of DG coalgebras

∗(𝔤[𝑧], 𝔤; Λ
𝑐(𝑠𝔤[𝑧][1])) ≅ ∗(𝔤(), 𝔤; ℂ) ,

𝑝⋀
𝑖=1

𝜉𝑖(𝑓𝑖) ⊗

𝑞⋀
𝑗=1

𝜉𝑝+𝑗(𝑠𝑓𝑝+𝑗) ↦

𝑝⋀
𝑖=1

𝜉𝑖(𝑓𝑖) ∧

𝑞⋀
𝑗=1

𝜉𝑝+𝑗(𝑠𝑓𝑝+𝑗) ,

where 𝜉𝑖 ∈ g , 𝑓𝑖 ∈ ℂ[𝑧] for all 𝑖 and for 𝑓 ∈ , 𝜉(𝑓) ∶= 𝜉 ⊗ 𝑓 for 𝜉 ∈ 𝔤. Identifying
∗(𝔤(𝐴), 𝔤; ℂ) with ∗(𝔤[𝑧], 𝔤; Λ

𝑐(𝑠𝔤[𝑧][1])) via the above isomorphism, we note that for 𝑃 ∈
𝐼𝑚+1(𝔤), the restriction of Ψ𝑃 to Λ𝑟(𝔤[𝑧]∕𝔤) ⊗ Λ𝑞(𝑠𝔤[𝑧][1]) vanishes for 𝑟 ⩾ 2. Indeed, for 𝑟 ⩾ 3
this vanishing is obvious since every summand contributing to the right-hand side of (4.21)
has two factors of the form 𝑓′(𝑧)𝑑𝑧. For 𝑟 = 2 the only summands on the right-hand side of



REPRESENTATION HOMOLOGY OF SIMPLY CONNECTED SPACES 727

(4.21) not having two factors of the form 𝑓′(𝑧)𝑑𝑧 are of the form 𝑓(𝑧)𝑑𝑧(𝑑𝑠)𝑚−1, which lies in
𝑑Ω𝑚−1().
Now, note that for 𝑓0, … , 𝑓𝑚 ∈ ℂ[𝑧],

Ψ𝑃

(
𝑚⋀
𝑖=0

𝜉𝑖(𝑠𝑓𝑖)

)
=

1

(𝑚 + 1)!

∑
𝜎 ∈Σ𝑚+1

±𝑠𝑓𝜎(0)𝑑(𝑠𝑓𝜎(1)) … 𝑑(𝑠𝑓𝜎(𝑚))𝑃(𝜉𝜎(0), … , 𝜉𝜎(𝑚)). (4.28)

Since 𝑑(𝑠𝑓𝑖) = (𝑑𝑠)𝑓𝑖 − 𝑠𝑓′𝑖 (𝑧)𝑑𝑧 and since 𝑠
2 = 0, the right-hand side of (4.28) equals

1

(𝑚 + 1)!

∑
𝜎 ∈Σ𝑚+1

±

𝑚∏
𝑖=0

𝑓𝜎(𝑖) ⋅ 𝑠(𝑑𝑠)
𝑚𝑃(𝜉𝜎(0), … , 𝜉𝜎(𝑚)) = 𝑃(𝜉0(𝑓0), … , 𝜉𝑚(𝑓𝑚))𝑠(𝑑𝑠)

𝑚. (4.29)

Next, note that

Ψ𝑃

(
𝜉0(𝑓0) ⊗

𝑚⋀
𝑖=1

𝜉𝑖(𝑠𝑓𝑖)

)
=

1

(𝑚 + 1)!

∑
𝜎 ∈Σ2𝑚+1
𝜎(0)=0

±𝑓0

𝑚∏
𝑖=1

𝑑(𝑠𝑓𝜎(𝑖))𝑃(𝜉0, … , 𝜉𝑚) (4.30)

+
1

(𝑚 + 1)!

∑
𝜎 ∈Σ𝑚+1
𝜎(0)≠0

±𝑠𝑓𝜎(0)

𝑛∏
𝑖=1
𝜎(𝑖)≠0

𝑑(𝑠𝑓𝜎(𝑖))𝑓
′
0(𝑧)𝑑𝑧𝑃(𝜉𝜎(0), … , 𝜉𝜎(𝑚)).

Since 𝑑(𝑠𝑓𝑖) = (𝑑𝑠)𝑓𝑖 − 𝑠𝑓′𝑖 (𝑧)𝑑𝑧 and since 𝑠
2 = 0, the second summand on the right-hand side

of (4.30) equals

−
𝑚

(𝑚 + 1)
𝑓′0(𝑧)

𝑚∏
𝑖=1

𝑓𝑖(𝑧)𝑑𝑧𝑠(𝑑𝑠)
𝑚−1.

On the other hand, the first summand coincides with

1

(𝑚 + 1)

(
𝑓0(𝑧)

(
𝑚∏
𝑖=1

𝑓𝑖

)′
(𝑧)𝑑𝑧𝑠(𝑑𝑠)𝑚−1 +

𝑚∏
𝑖=0

𝑓𝑖(𝑧)(𝑑𝑠)
𝑚

)
=−

1

(𝑚 + 1)
𝑓′0(𝑧)

𝑚∏
𝑖=1

𝑓𝑖(𝑧)𝑑𝑧𝑠(𝑑𝑠)
𝑚−1.

The last equality above is by (4.25). Hence,

Ψ𝑃

(
𝜉0(𝑓0) ⊗

𝑚⋀
𝑖=1

𝜉𝑖(𝑠𝑓𝑖)

)
= −

[
𝑓0(𝑧)

𝑚∏
𝑖=1

𝑓𝑖(𝑧)𝑑𝑧𝑠(𝑑𝑠)
𝑚−1

]
, (4.31)

where [–] stands for the class in HC
(𝑚)

∗ ()[1]. It follows from (4.28), (4.29) and (4.31)
that 𝑆◦Ψ𝑃 (respectively, 𝐸◦Ψ𝑃), viewed as a map of complexes ∗(𝔤[𝑧], 𝔤, Λ

𝑐(𝑠𝔤[𝑧][1])) 8→

Ω𝑚()∕𝑑Ω𝑚−1()[𝑚 + 1] coincides with themap 𝑆𝑃 (respectively,−𝐸𝑃) defined in [24, Theorem
B] as a map of ℤ2-graded vector spaces (though they differ as maps of ℤ-graded vector spaces). It
follows from [24] that themapΨ∗() (see (4.24)) andhence, theDrinfeld homomorphism (4.15), is
an isomorphism of ℤ2-graded vector spaces (and therefore, of ℤ-graded vector spaces) as desired.
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Note that in our case, the restricted dual of ∗(𝔤(), 𝔤; ℂ) in the sense of [24] coincides with all
of ∗(𝔤(), 𝔤; ℂ) since the fact that ̄ is concentrated in cohomological degree ⩾ 2 ensures that
∗(𝔤(), 𝔤; ℂ) is finite-dimensional in each homological degree. □

Proof of Theorem 4.5. First, we consider the case when H∗(𝑋;ℚ) ≅ ℚ[𝑧], where 𝑧 is a generator
of even dimension ⩾ 2. By [44, Proposition 5.1], the (complexified) minimal Sullivan model of
𝑋 is given by  = ℂ[𝑧] (with zero differential). Since the Drinfeld homomorphism is identified
with the map Ψ∗() (see (4.24)) by Theorem 4.3, the desired result follows in this case from the
classical fact that Ψ∗() is an isomorphism for = ℂ[𝑧] (see [54, section 3]; also see [21]). Next,
we consider the case whenH∗(𝑋;ℚ) ≅ ℚ[𝑠], where 𝑠 is a generator of odd cohomological degree
𝑟 ⩾ 3. Thus, 𝑋 has the rational homotopy type of an odd sphere. It follows that the Quillen model
𝔞 of𝑋 is a free Lie algebra on a single generator 𝑢 of (even) homological degree 𝑟 − 1. The Drinfeld
homomorphism for 𝑋 becomes the map

Λ

(
𝑙⨁
𝑖=1

ℂ ⋅ 𝑢𝑑𝑖

)
8→ Λ(𝔤∗[𝑟 − 1])𝐺 , 𝑢𝑑𝑖 ↦ 𝑃𝑖.

That this is an isomorphism then amounts to the classical fact that 𝐼(𝔤) is generated by the set of
homogeneous polynomials {𝑃1, … , 𝑃𝑙}.
It therefore remains to consider the possibilities that H∗(𝑋;ℚ) is a truncated polynomial alge-

bra on a single generator of even dimension, or that H∗(𝑋;ℚ) is a polynomial algebra in two
homogeneous generators, one of even dimension. In the latter case, by [44, Proposition 5.1], the
(complexified) minimal Sullivan model of 𝑋 is  = ℂ[𝑧, 𝑠] with zero differential; in the former
case, the (complexified) minimal Sullivan model is given by𝑟 = ℂ[𝑧, 𝑠], 𝜕𝑠 = 𝑧

𝑟+1 where 𝑧 and
𝑠 are of cohomological degree 𝑑 and 𝑑(𝑟 + 1) − 1, respectively, where 𝑑 is even (see [44, section
5.3]). If (with zero differential) is the minimal Sullivan model of 𝑋, the desired result is imme-
diate from Proposition 4.1, since the Drinfeld homomorphism is identified with the map Ψ∗()
by Theorem 4.3. Now, assume that the minimal Sullivan model of 𝑋 is 𝑟. Let C𝑟 (respectively,
C) denote the graded linear dual of𝑟 (respectively,)). Note that 𝔞𝑟 ∶= 𝛀𝙲𝚘𝚖𝚖(C𝑟) is a Quillen
model of 𝑋, where 𝛀𝙲𝚘𝚖𝚖 ∶ 𝙳𝙶𝙲𝙲𝑘∕𝑘 8→ 𝙳𝙶𝙻𝙰𝑘 is the cobar functor (see [3, section 6.2.1]). Explic-
itly, 𝔞𝑟 = (𝔞(C̄𝑟[−1]), 𝑑1 + 𝑑2), the graded free Lie algebra generated by C̄𝑟[−1] with differential
given by the sum of two derivations 𝑑1 (induced by the differential on C𝑟) and 𝑑2 (induced by the
coproduct on C𝑟). Equip 𝔞𝑟 with an (increasing) filtration by ‘internal degree’ by letting

𝐹𝑝𝑟 =
∑
𝑠⩾1

∑
𝑑1+⋯+𝑑𝑠⩽𝑝+𝑠

[(𝐶𝑟[−1])𝑑1 , [(𝐶𝑟[−1])𝑑2 , [… , [(𝐶𝑟[−1])𝑑𝑠−1 , (𝐶𝑟[−1])𝑑𝑠 ] …]]].

Then 𝐹∗𝔞𝑟 is a bounded below exhaustive filtration on 𝔞𝑟, and induces (bounded below, exhaus-
tive) filtrations on 𝜆(𝑝)(𝔞𝑟) for all 𝑝 as well as on (𝔞𝑟)𝔤 for any (reductive) 𝔤. For a set {𝑃1, … , 𝑃𝑙}
of homogeneous generators of 𝐼(𝔤), the Drinfeld homomorphism (4.15) is induced on homologies
by the homomorphism of commutative DG algebras

Λ

[
𝑙⨁
𝑖=1

Tr
𝑃𝑖
g

]
∶ Λ

[
𝑙⨁
𝑖=1

𝜆(𝑑𝑖)(𝔞𝑟)

]
8→ (𝔞𝑟)

𝐺
𝔤 . (4.32)
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The filtrations induced by 𝐹∗ make (4.32) a homomorphism of filtered commutative DG algebras,
where the filtrations are bounded below and exhaustive. Let 𝔞 ∶= 𝛀𝙲𝚘𝚖𝚖(C). Since gr𝐹∗(𝔞𝑟) = 𝔞,
the induced map on the 𝐸1-page of the corresponding spectral sequences is the map induced on
homologies by the DG algebra homomorphism

Λ

[
𝑙⨁
𝑖=1

Tr
𝑃𝑖
g

]
∶ Λ

[
𝑙⨁
𝑖=1

𝜆(𝑑𝑖)(𝔞)

]
8→ (𝔞)𝐺𝔤 .

By Theorem 4.3, the above map is identified with the map Ψ∗(). Therefore, it is a quasi-
isomorphism. The desired theorem is now immediate from Proposition 4.1 and the classical con-
vergence theorem [60, Theorem 5.5.1]. □

4.4 Examples

Wewill now illustrate Theorem 4.5 with explicit examples. Because of simplicity of cohomological
conditions of Theorem 4.5, the spaces satisfying these conditions are easy to construct (in fact,
many of these spaces appear as basic examples in classical textbooks in algebraic topology, see,
for example, [32]). We divide them into three natural classes depending on the structure of their
cohomology ring.

(I) H∗(𝑋,ℚ) ≅ ℚ[𝑧], where |𝑧| is either odd or even.
(II) H∗(𝑋,ℚ) ≅ ℚ[𝑧, 𝑠], where |𝑧| is even and |𝑠| is odd.
(III) H∗(𝑋,ℚ) ≅ ℚ[𝑧]∕(𝑧𝑟+1), where |𝑧| is even.
Throughout this section, as in Theorem 4.5, 𝐺 stands for a complex reductive Lie group of rank

𝑙 ⩾ 1, 𝔤 is the Lie algebra 𝐺, and {𝑚1,𝑚2, … ,𝑚𝑙} are the classical exponents of 𝔤.

4.4.1 Case I

First, as already observed at the beginning of our proof of Theorem 4.5,

HR∗(𝕊
2𝑟+1, 𝐺)𝐺 ≅ Λ(𝔤∗[2𝑟])𝐺 ≅ ℂ[𝑃1, … , 𝑃𝑙] , deg 𝑃𝑖 = 2𝑟(𝑚𝑖 + 1) , 1 ⩽ 𝑖 ⩽ 𝑙. (4.33)

Here, 𝑃1, … , 𝑃𝑙 are the homogeneous generators of 𝐼(𝔤) viewed as elements ofΛ(𝔤∗[2𝑟])𝐺 , whence
deg 𝑃𝑖 = 2𝑟(𝑚𝑖 + 1). This computes the (𝐺-invariant part of the) representation homology of𝑋 for
the case whenH∗(𝑋,ℚ) ≅ ℚ[𝑧], where deg 𝑧 = 2𝑟 + 1 (in which case 𝑋 is rationally equivalent
to 𝑆2𝑟+1). Next, we have the following.

Lemma 4.2. IfH∗(𝑋,ℚ) ≅ ℚ[𝑧], where 𝑧 is of even dimension 𝑑 ⩾ 2, then

H
𝑆1,(0)

∗ (L𝑋) ≅

∞⨁
𝑗=1

ℂ ⋅ 𝜉𝑗 , H
𝑆1,(𝑖)

∗ (L𝑋) = 0 , 𝑖 > 0 ,

where 𝜉𝑗 has homological degree 𝑑𝑗 − 1.
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Proof. By [44, Proposition 5.1], the (complexified) minimal Sullivan model of 𝑋 is given by  =

ℂ[𝑧], where 𝑧 is of (even) cohomological degree 𝑑. Hence, HC
(0)

∗ () ≅ 𝑧ℂ[𝑧] and HC
(𝑖)

∗ () = 0

for 𝑖 > 0. The desired lemmanow follows from [3, Proposition 7.8; 7, Theorem4.2], which together
imply

H
𝑆1,(𝑚)

∗ (L𝑋) ≅
(
HC

(𝑚)

∗ ()
)∗
[−1]. □

The following result is a consequence of Theorem 4.5 and Lemma 4.2.

Corollary 4.1. Let 𝑋 be a simply connected space with H∗(𝑋,ℚ) ≅ ℚ[𝑧], where 𝑑 ∶= |𝑧| is even.
Then, there is an isomorphism of graded commutative algebras

HR∗(𝑋, 𝐺)
𝐺 ≅ Λ

[
H∗+1(𝑋, ℂ)

⊕𝑙0
]
,

where 𝑙0 is the number vanishing exponent of 𝐺. More explicitly,

HR∗(𝑋, 𝐺)
𝐺 ≅ Λ

(
𝜉(𝑖)
𝑗
∶ 1 ⩽ 𝑖 ⩽ 𝑙0 , 𝑗 ∈ ℕ

)
,

where the generators 𝜉(𝑖)
𝑗
have homological degree 𝑑𝑗 − 1, for all 𝑖 = 1, 2, … , 𝑙0. In particular, if 𝑙0 =

0, (for example, if 𝐺 is complex semisimple), then HR∗(𝑋, 𝐺)𝐺 ≅ ℂ.

The condition H∗(𝑋,ℚ) ≅ ℚ[𝑧] holds, for example, for the following spaces (see [32]).

∙ The spheres 𝕊2𝑛+1, 𝑛 ⩾ 1 (|𝑧| = 2𝑛 + 1).
∙ The Eilenberg–MacLane spaces 𝐾(ℤ, 𝑑), for even 𝑑 ⩾ 2 (|𝑧| = 𝑑).
∙ ℂℙ∞ (rationally equivalent to 𝐾(ℤ, 2)).
∙ ℍℙ∞ (rationally equivalent to 𝐾(ℤ, 4)).

Hence, by Corollary 4.1, we have

HR∗(ℂℙ
∞,𝐺)𝐺 ≅ Λ

(
𝜉(𝑖)
𝑗
∶ 1 ⩽ 𝑖 ⩽ 𝑙0 , 𝑗 ∈ ℕ

)
, deg 𝜉(𝑖)

𝑗
= 2𝑗 − 1 ,

HR∗(ℍℙ
∞,𝐺)𝐺 ≅ Λ

(
𝜉(𝑖)
𝑗
∶ 1 ⩽ 𝑖 ⩽ 𝑙0 , 𝑗 ∈ ℕ

)
, deg 𝜉(𝑖)

𝑗
= 4𝑗 − 1 ,

where 𝑙0 is the number of vanishing exponents of 𝐺.

4.4.2 Case II

In this case, we have 𝑑 ∶= |𝑧| is even and 𝑝 ∶= |𝑠| is odd.
Lemma 4.3. If 𝑋 is a simply connected space such that H∗(𝑋;ℚ) ≅ ℚ[𝑧, 𝑠], then there is an iso-
morphism of graded vector spaces

H
𝑆1,(𝑚)

∗ (L𝑋) ≅

∞⨁
𝑗=1

(ℂ ⋅ 𝜈𝑗 ⊕ ℂ ⋅ 𝜂𝑗) ,
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where the homological degrees of the basis elements are given by

deg 𝜈𝑗 = (𝑝 − 1)𝑚 + 𝑑𝑗 − 1 , deg 𝜂𝑗 = (𝑝 − 1)(𝑚 + 1) + 𝑑(𝑗 − 1).

Proof. Let = ℂ[𝑧, 𝑠] denote the (complexified) minimal Sullivan model of 𝑋 (see [44, Proposi-
tion 5.1]). Recall the computation ofHC

(𝑚)

∗ () in (4.26) and (4.27). For 𝑗 ∈ ℕ and𝜔 ∈ HC
(𝑚)

∗ (),
the coefficient of 𝑧𝑗−1 (respectively, 𝑧𝑗−1𝑑𝑧) in 𝑆(𝜔) (respectively, 𝐸(𝜔)) determines a homoge-
neous linear functional 𝜂𝑗 (respectively, 𝜈𝑗) on HC

(𝑚)

∗ () of homological degree 𝑝 +𝑚(𝑝 − 1) +
𝑑(𝑗 − 1) (respectively, 𝑚(𝑝 − 1) + 𝑑𝑗). The desired lemma now follows from [3, Proposition 7.8;
7, Theorem 4.2], which together imply

H
𝑆1,(𝑚)

∗ (L𝑋) ≅
(
HC

(𝑚)

∗ ()
)∗
[−1].

Observe that if𝑋 is as in Lemma 4.3, then the (complexified) minimal Sullivanmodel of𝑋, which
is given by  = ℂ[𝑧, 𝑠] has a ℤ2-weight grading, with 𝑧 having weight (1,0) and 𝑠 having weight
(0,1). The ℤ2-grading on  induces a ℤ2-grading on the Chevalley–Eilenberg cochain complex
−∗(𝔤(̄); 𝑘) (where the graded linear dual of a space of weight (𝑝, 𝑞) in homological degree 𝑖
has weight (𝑝, 𝑞) in homological degree −𝑖) that is compatible with its homological grading, dif-
ferential, as well as with the natural 𝔤-action. By Theorem 1.1, HR∗(𝑋, 𝐺) acquires a ℤ2-grading
compatiblewith the𝐺-action. Let𝑃𝑋,𝐺(𝑞, 𝑡, 𝑧) denote the Euler-Poincaré series of the (𝐺-invariant
part of the) representation homology of 𝑋:

𝑃𝑋,𝐺(𝑞, 𝑡, 𝑧) ∶=

∞∑
𝑛=0

∑
(𝑟,𝑠) ∈ℤ2

dim𝑘[HR𝑛(𝑋, 𝐺)
𝐺
(𝑟,𝑠)

] 𝑞𝑟 𝑡𝑠 𝑧𝑛.

Here, HR𝑛(𝑋, 𝐺)𝐺(𝑟,𝑠) denotes the component of HR𝑛(𝑋, 𝐺)
𝐺 with ℤ2-weight (𝑟, 𝑠). Note that

the specialization of 𝑃𝑋,𝐺(𝑞, 𝑡, 𝑧) at 𝑧 = −1 gives the weighted Euler characteristic 𝜒𝑋,𝐺(𝑞, 𝑡) of
HR∗(𝑋, 𝐺)

𝐺 : 𝑃𝑋,𝐺(𝑞, 𝑡, −1) = 𝜒𝑋,𝐺(𝑞, 𝑡). The following result is a consequence of Theorem 4.5
and Lemma 4.3. □

Corollary 4.2. Let 𝑋 be a simply connected space such that H∗(𝑋;ℚ) ≅ ℚ[𝑧, 𝑠], where 𝑑 = |𝑧| is
even and 𝑝 = |𝑠| is odd. Then, there is an isomorphism of graded commutative algebras

HR∗(𝑋, 𝐺)
𝐺 ≅ Λ

(
𝜈(𝑖)
𝑗
, 𝜂(𝑖)
𝑗
∶ 𝑖 = 1, 2, … , 𝑙 , 𝑗 ∈ ℕ

)
,

where the generators 𝜈(𝑖)
𝑗
have homological degree deg 𝜈(𝑖)

𝑗
= (𝑝 − 1)𝑚𝑖 + 𝑑𝑗 − 1 and the generators

𝜂(𝑖)
𝑗
have homological degree deg 𝜂(𝑖)

𝑗
= (𝑝 − 1)(𝑚𝑖 + 1) + 𝑑(𝑗 − 1). Further,

𝑃𝑋,𝐺(𝑞, 𝑡, 𝑧) =

𝑙∏
𝑖=1

∞∏
𝑗=1

1 + 𝑞𝑗 𝑡𝑚𝑖 𝑧
deg 𝜈(𝑖)

𝑗

1 − 𝑞𝑗−1 𝑡𝑚𝑖+1 𝑧
deg 𝜂(𝑖)

𝑗

.

In particular, by letting 𝑧 = −1 in the above formula, we obtain:

𝜒𝑋,𝐺(𝑞, 𝑡) =

𝑙∏
𝑖=1

∞∏
𝑗=1

1 − 𝑞𝑗 𝑡𝑚𝑖

1 − 𝑞𝑗−1 𝑡𝑚𝑖+1
(4.34)
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since deg 𝜈(𝑖)
𝑗
are always odd numbers and deg 𝜂(𝑖)

𝑗
are always even numbers. On the other hand,

with Theorem 1.1, the Euler characteristic 𝜒𝑋,𝐺(𝑞, 𝑡) can be computed in a different way, from the
chain complex −∗(𝔤(̄); 𝑘)𝐺 , using standard Lie theoretic methods (see, for example, [3, section
9.3], in particular Corollary 9.8 therein):

𝜒𝑋,𝐺(𝑞, 𝑡) =
1|𝑊| ∞∏

𝑗=1

(
1 − 𝑞𝑗

1 − 𝑞𝑗−1 𝑡

)𝑙
CT

{
∞∏
𝑗=1

∏
𝛼 ∈𝑅

1 − 𝑞𝑗−1 𝑒𝛼

1 − 𝑞𝑗−1 𝑡 𝑒𝛼

}
. (4.35)

Here,𝑊 is the Weyl group, 𝑅 the associated root system of 𝔤, and CT ∶ ℤ[𝑄] 8→ ℤ is the classical
constant term map defined on the group ring of the root lattice 𝑄 = 𝑄(𝑅) of 𝑅. Comparing the
right-hand sides of (4.34) and (4.35), we obtain the celebrated Macdonald’s (𝑞, 𝑡)-constant term
identity (see [40]):

1|𝑊| CT
{

∞∏
𝑗=1

∏
𝛼 ∈𝑅

1 − 𝑞𝑗−1 𝑒𝛼

1 − 𝑞𝑗−1 𝑡 𝑒𝛼

}
=

𝑙∏
𝑖=1

∞∏
𝑗=1

(1 − 𝑞𝑗−1 𝑡) (1 − 𝑞𝑗 𝑡𝑚𝑖 )

(1 − 𝑞𝑗) (1 − 𝑞𝑗−1 𝑡𝑚𝑖+1)
. (4.36)

We close this section by listing some spaces to which Corollary 4.2 applies:

∙ 𝐾(ℤ, 𝑑) × 𝕊𝑝, where 𝑑 ⩾ 2 is even and 𝑝 ⩾ 3 is odd (|𝑧| = 𝑑 , |𝑠| = 𝑝);
∙ ℂℙ∞ × 𝕊2𝑟+1 (rationally equivalent to 𝐾(ℤ, 2) × 𝕊2𝑟+1);
∙ ℍℙ∞ × 𝕊4𝑟+3 (rationally equivalent to 𝐾(ℤ, 4) × 𝕊4𝑟+3);
∙ Ω(ℍℙ𝑟) (rationally equivalent to 𝐾(ℤ, 4𝑟 + 2) × 𝕊3).
In particular, by Corollary 4.2, we have

HR∗(ℂℙ
∞ × 𝕊2𝑟+1, 𝐺)𝐺 ≅ Λ

(
𝜈(𝑖)
𝑗
, 𝜂(𝑖)
𝑗

)
, deg 𝜈(𝑖)

𝑗
= 2𝑟𝑚𝑖 + 2𝑗 − 1 ,

deg 𝜂(𝑖)
𝑗
= 2𝑟(𝑚𝑖 + 1) + 2(𝑗 − 1) ,

HR∗(ℍℙ
∞ × 𝕊4𝑟+3, 𝐺)𝐺 ≅ Λ

(
𝜈(𝑖)
𝑗
, 𝜂(𝑖)
𝑗

)
, deg 𝜈(𝑖)

𝑗
= (4𝑟 + 2)𝑚𝑖 + 4𝑗 − 1 ,

deg 𝜂(𝑖)
𝑗
= (4𝑟 + 2)(𝑚𝑖 + 1) + 4(𝑗 − 1) ,

HR∗(Ω(ℍℙ
𝑟), 𝐺)𝐺 ≅ Λ

(
𝜈(𝑖)
𝑗
, 𝜂(𝑖)
𝑗

)
, deg 𝜈(𝑖)

𝑗
= 2𝑚𝑖 + (4𝑟 + 2)𝑗 − 1 ,

deg 𝜂(𝑖)
𝑗
= 2(𝑚𝑖 + 1) + (4𝑟 + 2)(𝑗 − 1),

where 𝑖 ∈ {1, 2, . … , 𝑙} and 𝑗 ∈ ℕ.

4.4.3 Case III

In this case, we have 𝑑 ∶= |𝑧| is even.
Lemma 4.4. If 𝑋 is a simply connected space such that H∗(𝑋;ℚ) ≅ ℚ[𝑧]∕(𝑧𝑟+1), then there is an
isomorphism of graded vector spaces

H
𝑆1,(𝑚)

∗ (L𝑋) ≅

𝑟⨁
𝑗=1

ℂ ⋅ 𝜉𝑗 ,
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where the homological degrees of the basis elements are given by

deg 𝜉𝑗 = (𝑑(𝑟 + 1) − 2)𝑚 + 𝑑𝑗 − 1.

Proof. Recall that the minimal Sullivan model of 𝑋 is given by 𝑟 = ℂ[𝑧, 𝑠] , 𝜕𝑠 = 𝑧
𝑟+1 (see [44,

Proposition 5.1]) where 𝑧 and 𝑠 have dimensions 𝑑 and 𝑑(𝑟 + 1) − 1, respectively. As in (4.26), for
any𝑚 ⩾ 0,

HC
(𝑚)

∗ (𝑟) ≅ H∗
[
Ω𝑚(𝑟)∕𝑑Ω

𝑚−1(𝑟

]
≅ H∗[ℂ[𝑧]𝑠(𝑑𝑠)

𝑚 ⊕ ℂ[𝑧]𝑑𝑧 ⋅ 𝑠(𝑑𝑠)𝑚−1, 𝜕] ,

where the differential 𝜕 is induced by the differential on𝑟. A direct computation shows that

𝜕([𝑧𝑘𝑠(𝑑𝑠)𝑚]) = −(𝑘 + (𝑚 + 1)(𝑟 + 1))[𝑧𝑘+𝑟𝑑𝑧 ⋅ 𝑠(𝑑𝑠)𝑚−1] , 𝜕([𝑧𝑘𝑑𝑧 ⋅ 𝑠(𝑑𝑠)𝑚−1]) = 0.

Hence,

HC
(𝑚)

∗ (𝑟) = Spanℂ{[𝑧
𝑘𝑑𝑧 ⋅ 𝑠(𝑑𝑠)𝑚−1] , 0 ⩽ 𝑘 < 𝑟}.

Choose a basis {𝜉𝑗 , 1 ⩽ 𝑖 ⩽ 𝑙 , 1 ⩽ 𝑗 ⩽ 𝑟} ofHC
(𝑚)
(𝑟)

∗[−1] dual to the basis {[𝑧𝑗−1𝑑𝑧 ⋅ 𝑠(𝑑𝑠)𝑚−1]

of HC
(𝑚)

∗ (𝑟)[1]. Clearly, |𝜉𝑗| = (𝑑(𝑟 + 1) − 2)𝑚 + 𝑑𝑗 − 1. Since
H
𝑆1,(𝑚)

∗ (L𝑋) ≅
(
HC

(𝑚)

∗ ()
)∗
[−1]

by [3, Proposition 7.8; 7, Theorem 4.2], the desired lemma follows. □

Observe that if 𝑋 is as in Lemma 4.4, then (complexified) minimal Sullivan model of 𝑋, which
is given by  = ℂ[𝑧, 𝑠], 𝜕 𝑠 = 𝑧𝑟+1, has a ℤ-weight grading with 𝑧 having weight 1 and 𝑠 having
weight 𝑟 + 1. The ℤ-grading on induces a ℤ-grading on the Chevalley–Eilenberg cochain com-
plex −∗(𝔤(̄); 𝑘) (where the graded linear dual of a space of weight 𝑝 in homological degree 𝑖 has
weight 𝑝 in homological degree −𝑖) that is compatible with its homological grading, differential,
as well as with the natural 𝔤-action. By Theorem 1.1, HR∗(𝑋, 𝐺) acquires a ℤ-grading compatible
with the 𝐺-action. Let 𝑃𝑋,𝐺(𝑞, 𝑧) denote the Euler–Poincaré series of the (𝐺-invariant part of the)
representation homology of 𝑋:

𝑃𝑋,𝐺(𝑞, 𝑧) ∶=

∞∑
𝑛=0

∑
𝑝∈ℤ

dim𝑘[HR𝑛(𝑋, 𝐺)
𝐺
𝑝 ] 𝑞

𝑝 𝑧𝑛 ,

whereHR𝑛(𝑋, 𝐺)𝐺𝑝 denotes the component ofHR𝑛(𝑋, 𝐺)
𝐺 withℤ-weight 𝑝. Note that 𝑃𝑋,𝐺(𝑞, −1)

is the weighted Euler characteristic 𝜒𝑋,𝐺(𝑞) ofHR∗(𝑋, 𝐺)𝐺 . The following result is a consequence
of Theorem 4.5 and Lemma 4.4.

Corollary 4.3. Let 𝑋 be a simply connected space such thatH∗(𝑋;ℚ) ≅ ℚ[𝑧]∕(𝑧𝑟+1), where 𝑧 is of
(even) dimension 𝑑. Then there is an isomorphism of graded commutative algebras

HR∗(𝑋, 𝐺)
𝐺 ≅ Λ (𝜉(𝑖)

1
, 𝜉(𝑖)
2
, … , 𝜉(𝑖)𝑟 ∶ 𝑖 = 1, 2, … , 𝑙) ,
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where the generators 𝜉(𝑖)
𝑗
have homological degree deg 𝜉(𝑖)

𝑗
= (𝑑(𝑟 + 1) − 2)𝑚𝑖 + 𝑑𝑗 − 1. Further,

𝑃𝑋,𝐺(𝑞, 𝑧) =

𝑙∏
𝑖=1

𝑟∏
𝑗=1

(1 + 𝑞𝑗+𝑚𝑖(𝑟+1) 𝑧
deg 𝜉(𝑖)

𝑗 ).

In particular, specializing the above formula at 𝑧 = −1, we obtain

𝜒𝑋,𝐺(𝑞) =

𝑙∏
𝑖=1

𝑟∏
𝑗=1

(1 − 𝑞𝑗+𝑚𝑖(𝑟+1)). (4.37)

As in Subsection 4.4.2, by Theorem 1.1, 𝜒𝑋,𝐺(𝑞, 𝑡) can also be computed as the weighted Euler
characteristic of −∗(𝔤(̄); 𝑘)𝐺 , using standard Lie theoretic methods. The calculations similar to
those in [3, section 9.3.1] give

𝜒𝑋,𝐺(𝑞) =
1|𝑊| 𝑟∏

𝑗=1

(1 − 𝑞𝑗)𝑙 CT

{
𝑟∏
𝑗=0

∏
𝛼 ∈𝑅

(1 − 𝑞𝑗 𝑒𝛼)

}
. (4.38)

Equating the right-hand sides of Equations (4.37) and (4.38) (and dividing both expressions by∏𝑟
𝑗=1(1 − 𝑞

𝑗)𝑙), we obtain the Macdonald’s 𝑞-constant term identity (see [40])

1|𝑊|CT
{

𝑟∏
𝑗=0

∏
𝛼 ∈𝑅

(1 − 𝑞𝑗 𝑒𝛼)

}
=

𝑙∏
𝑖=1

𝑟∏
𝑗=1

1 − 𝑞𝑗+𝑚𝑖(𝑟+1)

1 − 𝑞𝑗
. (4.39)

The classical spaces satisfying the conditions of Corollary 4.3 are:

∙ the even-dimensional spheres 𝕊2𝑛 (𝑟 = 1, 𝑑 = 2𝑛) ,
∙ the complex projective spaces ℂℙ𝑟 (𝑟 ⩾ 1, 𝑑 = 2) ,
∙ the quaternionic projective spaces ℍℙ𝑟 (𝑟 ⩾ 1, 𝑑 = 4) ,
∙ the Cayley projective plane 𝕆ℙ2 (𝑟 = 2, 𝑑 = 8) .

For these spaces, Corollary 4.3 gives

HR∗(𝕊
𝑑, 𝐺)𝐺 ≅ Λ [ 𝜉(𝑖) ∶ 1 ⩽ 𝑖 ⩽ 𝑙 ] , deg 𝜉(𝑖) = (𝑑 − 1)(2𝑚𝑖 + 1) ,

HR∗(ℂℙ
𝑟, 𝐺)𝐺 ≅ Λ [ 𝜉(𝑖)

𝑗
∶ 1 ⩽ 𝑖 ⩽ 𝑙 , 1 ⩽ 𝑗 ⩽ 𝑟 ] , deg 𝜉(𝑖)

𝑗
= 2𝑟𝑚𝑖 + 2𝑗 − 1 ,

HR∗(ℍℙ
𝑟, 𝐺)𝐺 ≅ Λ [ 𝜉(𝑖)

𝑗
∶ 1 ⩽ 𝑖 ⩽ 𝑙 , 1 ⩽ 𝑗 ⩽ 𝑟 ] , deg 𝜉(𝑖)

𝑗
= (4𝑟 + 2)𝑚𝑖 + 4𝑗 − 1 ,

HR∗(𝕆ℙ
2, 𝐺)𝐺 ≅ Λ [ 𝜉(𝑖)

1
, 𝜉(𝑖)
2
∶ 1 ⩽ 𝑖 ⩽ 𝑙 ] , deg 𝜉(𝑖)

𝑗
= 22𝑚𝑖 + 8𝑗 − 1.

We close this section with one curious consequence of Corollary 4.3: it shows how knowing the
exact structure of the 𝐺-invariant part of representation homology allows one (sometimes) to get
information about the full representation homology.



REPRESENTATION HOMOLOGY OF SIMPLY CONNECTED SPACES 735

Lemma 4.5. Let 𝑋 be a simply connected space such that H∗(𝑋;ℚ) ≅ ℚ[𝑧]∕(𝑧𝑟+1) where |𝑧| =
𝑑 ⩾ 2 is even. Put

𝑁 ∶=
1

2
𝑟 (𝑑(𝑟 + 1) − 2) dim𝐺.

Then, HR𝑛(𝑋, 𝐺) = 0 for all 𝑛 > 𝑁. Moreover, HR𝑁(𝑋, 𝐺) ≅ ℂ.

Proof. By a classical theorem of Kostant [38], we have
∑𝑙
𝑖=1(2𝑚𝑖 + 1) = dim 𝐺, for any complex

reductive group 𝐺. This implies that

𝑙∑
𝑖=1

𝑟∑
𝑗=1

deg 𝜉(𝑖)
𝑗
=
1

2
𝑟 (𝑑(𝑟 + 1) − 2) dim𝐺 =∶ 𝑁 ,

where deg 𝜉(𝑖)
𝑗
are the degrees of the free generators of HR∗(𝑋, 𝐺)𝐺 given in Corollary 4.3. By

Corollary 4.3, we then conclude that HR𝑁(𝑋, 𝐺)𝐺 = 0 for all𝑛 > 𝑁while dimℂ HR𝑁(𝑋, 𝐺)𝐺 = 1.
On the other hand, the (complexified) minimal Sullivan model 𝑋 of 𝑋 is formal (indeed,

the map of DG algebras (ℂ[𝑧, 𝑠], 𝜕𝑠 = 𝑧𝑟+1) 8→ ℂ[𝑧]∕(𝑧𝑟+1) given on generators by 𝑧 ↦ 𝑧, 𝑠 ↦ 0

is obviously a quasi-isomorphism). Hence, by part (𝑎) of Theorem 1.1, the HR∗(𝑋, 𝐺) is isomor-
phic the homology of the Chevalley–Eilenberg complex −∗(𝔤(H

∗
(𝑋; ℂ)); ℂ). By definition, this

last complex is a graded exterior algebra on 𝑟 ⋅ dim𝔤 generators of homological degree 𝑑𝑗 − 1
where 𝑗 = 1, 2, … , 𝑟. Therefore, its homology HR𝑛(𝑋, 𝐺) is a fortiori concentrated in homologi-
cal degrees 𝑛 ⩽ 𝑁′ where

𝑁′ ∶=

𝑟∑
𝑗=1

(𝑑𝑗 − 1) dim𝔤.

Moreover, dimℂ HR𝑁′(𝑋, 𝐺) ⩽ 1. A trivial calculation shows that 𝑁′ = 𝑁. Since HR∗(𝑋, 𝐺)𝐺 ⊆
HR∗(𝑋, 𝐺), this numerical coincidence implies the result of the lemma. □

APPENDIX A: MONOIDAL DOLD–KAN CORRESPONDENCE

The Dold–Kan correspondence is a classical result that establishes an equivalence between the
category 𝙲𝚑⩾0(A ) of non-negatively graded chain complexes in an abelian category A and the
category 𝑠A of simplicial objects in A . In this appendix, we will describe a monoidal enrich-
ment of this correspondence relating the category of (non-negatively graded) DG -algebras to
the category of simplicial -algebras for an arbitrary 𝑘-linear operad  . For simplicity, we will fix
a commutative ring 𝑘 with unit, and consider only the abelian categoryA = 𝙼𝚘𝚍𝑘.

A.1 The Dold–Kan correspondence
To any simplicial 𝑘-module 𝑋 ∈ 𝚜𝙼𝚘𝚍𝑘, we can associate the chain complex

𝑁(𝑋) = [… → 𝑁(𝑋)𝑛
𝜕
8→ 𝑁(𝑋)𝑛−1 → … ]
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with𝑁(𝑋)𝑛 ∶=
⋂𝑛
𝑖=1 Ker(𝑑𝑖 ∶ 𝑋𝑛 8→ 𝑋𝑛−1) for 𝑛 ⩾ 0 and the differential 𝜕 given by 𝑑0. The assign-

ment 𝑋 ↦ 𝑁(𝑋) defines a functor 𝑁 ∶ 𝚜𝙼𝚘𝚍𝑘 → 𝙲𝚑⩾0(𝑘) from the category of simplicial 𝑘-
modules to the category of connective chain complexes of 𝑘-modules. The functor𝑁 is called the
normalization functor. A classical theorem due to Dold and Kan (see [60, Theorem 8.4.1]) asserts
that 𝑁 is an equivalence of categories.
For any simplicial 𝑘-module 𝑋 ∈ 𝚜𝙼𝚘𝚍𝑘, the homology groups of the chain complex 𝑁(𝑋)

are naturally isomorphic to the homotopy groups 𝜋∗(|𝑋|) of the geometric realization of 𝑋 (see
[43, Theorem 22.1]). This justifies the notation 𝜋∗(𝑋) ∶= H∗[𝑁(𝑋)], which we used throughout
the paper.
The inverse𝑁−1 ∶ 𝙲𝚑⩾0(𝑘) 8→ 𝚜𝙼𝚘𝚍𝑘 of the normalization functor is defined as follows. For any

chain complex 𝑉 ∈ 𝙲𝚑⩾0(𝑘), the degree 𝑛 part of the simplicial 𝑘-module 𝑁−1(𝑉) is given by

𝑁−1(𝑉)𝑛 =
⨁
𝑟⩾0

⨁
𝜎∶[𝑛]↠[𝑟]

𝑉𝑟. (A.1)

We think of𝑁−1(𝑉) as adjoining to𝑉 the degeneracies of all elements in𝑉.Wewrite an element
𝑥 ∈ 𝑉𝑟 in the summand corresponding to 𝜎 as 𝜎∗(𝑥). When 𝜎 = Id, we simply write this as 𝑥, or
𝜂(𝑥) if we want to emphasize that we consider 𝑥 to be an element in 𝑁−1(𝑉) rather than 𝑉. As
suggested by the notation, this determines the degeneracy maps in𝑁−1(𝑉): namely, 𝑠𝑗(𝜎∗(𝑥)) ∶=
(𝜎◦𝜎𝑗)∗(𝑥) (recall that 𝑠𝑗 ∶= [𝜎𝑗]∗). The face maps in𝑁−1(𝑉) are determined by the requirement
that 𝑑𝑖(𝜂(𝑥)) = 0 for all 𝑖 > 0, and the canonical map

𝜂 ∶ 𝑉 8→ 𝑁[𝑁−1(𝑉)], 𝑥 ↦ 𝜂(𝑥) = 𝑥

commutes with differentials, that is, 𝑑0(𝜂(𝑥)) = 𝜂(𝑑(𝑥)). Since all elements of𝑁−1(𝑉) other than
𝜂(𝑥) are sums of degenerations of 𝜂(𝑥), specifying the face maps on these elements determines
all the face maps in 𝑁−1(𝑉). This defines a simplicial 𝑘-module 𝑁−1(𝑉) and hence the functor
𝑁−1 ∶ 𝙲𝚑⩾0(𝑘) 8→ 𝚜𝙼𝚘𝚍𝑘 (see [28] for more details). It is easy to check that this functor is indeed
the inverse of the normalization functor 𝑁.
There is an alternative way to define the normalization functor. For each simplicial 𝑘-module

𝑋 ∈ 𝚜𝙼𝚘𝚍𝑘, we can take the chain complex 𝑁(𝑋) defined by

𝑁(𝑋)𝑛 ∶=
𝑋𝑛∑𝑛−1

𝑗=0 𝑠𝑗(𝑋𝑛−1)
𝑑 =

𝑛∑
𝑖=0

(−1)𝑖𝑑𝑖 ∶ 𝑁(𝑋)𝑛 8→ 𝑁(𝑋)𝑛−1. (A.2)

Then one can show (see [28]) that the canonical map 𝑁(𝑋) 8→ 𝑁(𝑋) of chain complexes given by
the composition 𝑁(𝑋)𝑛 ↪ 𝑋𝑛 ↠ 𝑁(𝑋)𝑛 is an isomorphism.
Note that the inverse (A.1) of the normalization functor has an important feature: the collection

of 𝑘-modules𝑁−1(𝑉)𝑛, as well as the degeneracymaps between them, depends only on the graded
module 𝑉 and not on its differential. In other words, (A.1) defines a functor 𝑁−1 ∶ 𝚐𝚛𝙼𝚘𝚍𝑘 8→

𝙼𝚘𝚍
Δ
op
surj

𝑘
from the category 𝚐𝚛𝙼𝚘𝚍𝑘 of graded 𝑘-modules to the category 𝙼𝚘𝚍

Δ
op
surj

𝑘
of Δop

surj
-systems

of 𝑘-modules. Similarly, (A.2) gives a functor 𝑁 ∶ 𝙼𝚘𝚍
Δ
op
surj

𝑘
8→ 𝚐𝚛𝙼𝚘𝚍𝑘. This will play a role in our

construction of the monoidal Dold–Kan correspondence in the next section.
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A.2 Monoidal Dold–Kan correspondence

It is a classical fact that the Dold–Kan normalization functor 𝑁 ∶ 𝚜𝙼𝚘𝚍𝑘 8→ 𝙲𝚑⩾0(𝑘) can be
endowed with a symmetric lax monoidal structure. To describe it, we first introduce some nota-
tions. Given two simplicial modules 𝑋,𝑌 ∈ 𝚜𝙼𝚘𝚍𝑘 over a commutative ring 𝑘, we denote by
𝑋 ⊗̄𝑌 ∈ 𝚜𝙼𝚘𝚍𝑘 the result of applying the tensor product levelwise, that is, (𝑋 ⊗̄𝑌)𝑛 ∶= 𝑋𝑛 ⊗𝑘
𝑌𝑛. Then, there is a quasi-isomorphism of chain complexes

sh ∶ 𝑁(𝑋) ⊗ 𝑁(𝑌)
∼
8→ 𝑁(𝑋 ⊗̄𝑌)

called the Eilenberg–Zilber shuffle map, which is natural (in𝑋 and 𝑌), symmetric, associative and
unital in the obvious sense (see, for example, [43, 52] for details).
This shuffle map allows one to transfer algebraic structures from a simplicial module 𝐴 to its

normalization𝑁(𝐴). For instance, if𝐴 is a simplicial associative algebra, then𝑁(𝐴) is a DG alge-
bra; if𝐴 is a simplicial commutative algebra, then𝑁(𝐴) is a commutativeDGalgebra, and so on. In
general, for any 𝑘-linear operad , one can consider the category 𝚜𝙰𝚕𝚐() of simplicial-algebras
as well as the category 𝚍𝚐𝙰𝚕𝚐() of non-negatively graded DG -algebras. If 𝐴 ∈ 𝚜𝙰𝚕𝚐() is a
simplicial -algebra, then each 𝑛-ary operation 𝜇 ∈ (𝑛) gives a map

𝛼𝐴(𝜇) ∶ 𝐴 ⊗̄
𝑛… ⊗̄ 𝐴 8→ 𝐴.

One can then use the Eilenberg–Zilber shuffle maps to construct the maps

𝛼𝑁(𝐴)(𝜇) ∶ 𝑁(𝐴)⊗
𝑛… ⊗𝑁(𝐴)

sh
88→ 𝑁(𝐴 ⊗̄ 𝑛… ⊗̄ 𝐴 )

𝑁(𝛼𝐴(𝜇))
88888888→ 𝑁(𝐴)

which form the structure maps for a DG -algebra on 𝑁(𝐴). This defines a functor

𝑁 ∶ 𝚜𝙰𝚕𝚐() 8→ 𝚍𝚐𝙰𝚕𝚐(). (A.3)

In the special case when is the Lie operad, this last functor has already appeared in [50]. Quillen
showed that it has a left adjoint in that case. His proof generalizes directly to an arbitrary operad.

Proposition A.1. The functor (A.3) has a left adjoint𝑁∗ ∶ 𝚍𝚐𝙰𝚕𝚐() 8→ 𝚜𝙰𝚕𝚐().

Proof. As in [50], for any 𝐴 ∈ 𝚍𝚐𝙰𝚕𝚐(), we define𝑁∗(𝐴) as the following (degreewise) coequal-
izer of simplicial -algebras

where 𝛼∗ and sh∗ are induced by 𝑁−1(𝛼) ∶ 𝑁−1(𝑇 (𝐴)) 8→ 𝑁−1(𝐴) and the Eilenberg–Zilber
maps sh ∶ 𝑁−1(𝑇 (𝐴)) 8→ 𝑇 (𝑁

−1(𝐴)), respectively. □

Note that the proof shows that the underlyingΔop
surj

-system of -algebra of𝑁∗(𝐴) depends only
on the graded algebra structure of 𝐴 (see the discussion at the end of the previous subsection).
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This observation will allow us to describe the simplicial -algebra 𝑁∗(𝐴) in the case when 𝐴
is semi-free.
We first consider the commutative diagrams of functors

where we denote by 𝑇 the free algebra functors in both simplicial and DG contexts. The square
(1) obviously commutes up to isomorphism of functors. The square (2) is obtained by replacing
every functor on the square (1) by its left adjoint. Therefore, it also commutes up to isomorphism
of functors. The commutativity (up to isomorphism) of the square (2) can be written as

𝑁∗(𝑇 (𝑉)) ≅ 𝑇 (𝑁
−1(𝑉)). (A.4)

In other words, 𝑁∗ of a free DG -algebra is free. The same is true for semi-free algebras. Recall
that a DG-algebra is said to be semi-free if its underlying graded algebra is free over a degreewise
free graded 𝑘-module𝑉. Similarly, a simplicial-algebra𝐴 is said to be semi-free† if its underlying
Δ
op
surj

-system of -algebras is of the form 𝐴 = 𝑇 (𝑁−1(𝑉)) for a degreewise free graded 𝑘-module
𝑉.
The above discussion leads to the following.

Proposition A.2. The functor𝑁∗ ∶ 𝚍𝚐𝙰𝚕𝚐() 8→ 𝚜𝙰𝚕𝚐() sends semi-free DG -algebras to semi-
free simplicial -algebras.

Proof. Wehave seen that𝑁∗ sends free algebras to free algebras. Since the underlyingΔop
surj

-system
of 𝑁∗(𝐴) depends only on the graded algebra structure of 𝐴, the result follows. □

Next, we consider the adjunction map 𝐴 8→ 𝑁(𝑁∗(𝐴)) in the case when 𝐴 = 𝑇 (𝑉) is semi-
free over a graded complex 𝑉. To describe this map, we first give a different interpretation of the
Eilenberg–Zilber shuffle map. Namely, we view it a collection of maps that connect two sym-
metric monoidal structures on the category 𝙲𝚑⩾0(𝑘) of chain complexes on 𝑘. We will use the
‘quotient’ form (A.2) of the normalization functor. Thus, we consider the equivalence of cate-
gories 𝑁 ∶ 𝚜𝙼𝚘𝚍𝑘 8→ 𝙲𝚑⩾0(𝑘). One can use this equivalence to transport the symmetric monoidal
structure ⊗̄, on 𝚜𝙼𝚘𝚍𝑘 to a symmetric monoidal structure ⊗, on 𝙲𝚑⩾0(𝑘). Precisely, we define
𝑉⊗𝑊 ∶= 𝑁(𝑁−1(𝑉) ⊗̄𝑁−1(𝑊)) for 𝑉,𝑊 ∈ 𝙲𝚑⩾0(𝑘). Then the Eilenberg–Zilber shuffle maps
can be written as

sh ∶ 𝑉 ⊗𝑊 8→ 𝑉⊗𝑊, 𝑥 ⊗ 𝑦 ↦ 𝑥 × 𝑦 ∶= sh(𝑥, 𝑦). (A.5)

† By standard definition (cf. [28]), a simplicial -algebra is called semi-free if there is a collection of subsets 𝐵𝑛 ⊂ 𝐴𝑛 ,
called a basis, that is closed under degeneracies and that 𝐴𝑛 = 𝑇 (𝐵𝑛) for each 𝑛. It is clear that our definition implies
this. To see the converse, note that any basis element that is not the degeneracy of any other basis element is in fact non-
degenerate in the underlying simplicial set of𝐴. Let𝑉 be the graded 𝑘-module with a basis given by these non-degenerate
basis elements. Then an application of [26, Lemma I.2.11] shows that 𝐴 = 𝑇 (𝑁−1(𝑉)) as a Δ

op
surj

-system of -algebras.
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Now, suppose that a DG -algebra 𝐴 ∈ 𝚍𝚐𝙰𝚕𝚐() is semi-free over a graded 𝑘-module 𝑉, that
is,

𝐴 = 𝑇 (𝑉) ∶=
⨁
𝑛⩾0

(𝑛) ⊗𝑆𝑛 𝑉
⊗𝑛

then by (A.4) as well as the discussion that follows, the DG -algebra𝑁(𝑁∗(𝐴)) ∈ 𝚍𝚐𝙰𝚕𝚐() has
a similar description

𝑁(𝑁∗(𝐴)) =
⨁
𝑛⩾0

(𝑛)⊗ 𝑆𝑛
𝑉⊗𝑛.

Moreover, the adjunction map 𝐴 8→ 𝑁(𝑁∗(𝐴)) is given by⨁
𝑛⩾0

(𝑛) ⊗𝑆𝑛 𝑉
⊗𝑛 8→

⨁
𝑛⩾0

(𝑛)⊗ 𝑆𝑛
𝑉⊗𝑛, (𝜇 , 𝑥1 ⊗ …⊗ 𝑥𝑛) ↦ (𝜇 , 𝑥1 × … × 𝑥𝑛). (A.6)

This description of the adjunction map will be useful in the next subsection when we compare
the model structures on simplicial -algebras and DG -algebras.

A.3 Quillen equivalence
By [51, section II.4, Theorem 4], there is a model structure on the category 𝚜𝙰𝚕𝚐() of simplicial
-algebras, where a map 𝑓 ∶ 𝐴 8→ 𝐵 is a weak equivalence (respectively, fibration) if and only if
the map of the underlying simplicial sets is a weak equivalence (respectively, fibration). More-
over, it is shown in [33] that if 𝑘 is a field of characteristic 0, then the category 𝚍𝚐𝙰𝚕𝚐() of DG
-algebras also has a model structure, where a map 𝑓 ∶ 𝐴 8→ 𝐵 is a weak equivalence (respec-
tively, fibration) if and only if the map of the underlying (connective) chain complexes is a weak
equivalence (respectively, fibration).
From now on, we assume that 𝑘 is a field of characteristic 0, and the categories 𝚜𝙰𝚕𝚐() and

𝚍𝚐𝙰𝚕𝚐() are equippedwith themodel structures described above. Then, the normalization func-
tor𝑁 ∶ 𝚜𝙰𝚕𝚐() 8→ 𝚍𝚐𝙰𝚕𝚐() preserves fibrations and weak equivalences, and therefore the asso-
ciated adjunction

(A.7)

is a Quillen pair. In fact, we have the following theorem, which is themain result of this appendix.

Theorem A.1. The Quillen pair (A.7) is a Quillen equivalence.

Proof. It suffices to show that, for any semi-free DG -algebra 𝐴 = 𝑇 (𝑉), the unit of the
adjunction (A.7) is a weak equivalence. Composing this adjunction map with the isomorphism
𝑁(𝑁∗(𝐴)) 8→ 𝑁(𝑁∗(𝐴)), we can consider the map 𝐴 8→ 𝑁(𝑁∗(𝐴)), which depends only on the
underlying graded -algebra structure of 𝐴, and is described explicitly by (A.6).
If𝐴 is free, that is, when the differential on𝐴 = 𝑇 (𝑉) is induced by the differential on a chain

complex 𝑉, then for each 𝑛 ⩾ 0, the map

sh ∶ (𝑛) ⊗ 𝑉⊗𝑛 → (𝑛)⊗𝑉⊗𝑛
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is a quasi-isomorphism as it is induced by the Eilenberg–Zilber shuffle map (which is always a
quasi-isomorphism). Since 𝑘 is a field of characteristic 0, the same is true when we pass to 𝑆𝑛-
coinvariants

sh ∶ (𝑛) ⊗𝑆𝑛 𝑉
⊗𝑛 → (𝑛)⊗ 𝑆𝑛

𝑉⊗𝑛.

This shows that the map (A.6) is a quasi-isomorphism in the case when 𝐴 is free.
In the general case, when 𝐴 = 𝑇 (𝑉) is semi-free over a graded 𝑘-module 𝑉, choose a homo-

geneous basis of 𝑉, and assign a weight grading wt(𝑥) ∈ ℕ for each such basis element 𝑥. This
induces a grading on𝐴, where an element (𝜇 , 𝑥1 ⊗ …⊗ 𝑥𝑛) ∈ (𝑛) ⊗𝑆𝑛 𝑉

⊗𝑛 has weight grading
wt(𝑥1) +⋯ + wt(𝑥𝑛).
The underlyingΔop

surj
-system of𝑁∗(𝐴) is given by𝑁∗(𝐴) = 𝑇 (𝑁−1(𝑉)). Therefore, its elements

in degree 𝑚 are sums of elements of the form (𝜇 , 𝜎∗
1
(𝑥1) ⊗ …⊗ 𝜎

∗
𝑛(𝑥𝑛)) where 𝜙𝑖 ∶ [𝑚] ↠ [𝑟𝑖]

and 𝑥𝑖 ∈ 𝑉𝑟𝑖 . Assign the weight grading wt(𝑥1) +⋯ + wt(𝑥𝑛) to this element. Then it is clear
that all the degeneracy maps preserve this weight grading. This induces a weight grading in the
normalization 𝑁(𝑁∗(𝐴)). Moreover, the map (A.6) preserves this grading. We write this grading
as

𝐴 =
⨁
𝑛⩾0

𝐴(𝑛) , 𝑁∗(𝐴) =
⨁
𝑛⩾0

𝑁∗(𝐴)(𝑛) , 𝑁(𝑁∗(𝐴)) =
⨁
𝑛⩾0

𝑁(𝑁∗(𝐴))(𝑛). (A.8)

In general, the differentials on both sides of (A.6) do not preserve the grading. However, if we let
𝐹𝑛(𝐴) =

⨁
𝑖⩽𝑛𝐴

(𝑖) be the filtration on𝐴 induced by theweight grading, thenwe can always choose
the weight grading on a homogeneous basis of 𝑉 inductively so that 𝑑(𝐹𝑛(𝐴)) ⊂ 𝐹𝑛−1(𝐴). More-
over, if we let 𝐺𝑛 = 𝐺𝑛(𝑁(𝑁∗(𝐴))) =

⨁
𝑖⩽𝑛𝑁(𝑁

∗(𝐴))(𝑖) be the filtration on 𝑁(𝑁∗(𝐴)) induced by
the weight grading on 𝑁(𝑁∗(𝐴)), then we claim that 𝑑(𝐺𝑛) ⊂ 𝐺𝑛 for all 𝑛.
Indeed, consider the filtration 𝐺̃𝑛 =

⨁
𝑖⩽𝑛𝑁

∗(𝐴)(𝑖) on𝑁∗(𝐴) induced by the weight grading. As
we have seen, each graded piece 𝑁∗(𝐴)(𝑖) is a Δop

surj
-system of 𝑘-modules such that 𝑁(𝑁∗(𝐴)(𝑖)) =

𝑁(𝑁∗(𝐴)(𝑖)). Therefore, to show that 𝑑(𝐺𝑛) ⊂ 𝐺𝑛, it suffices to show that 𝑑𝑖(𝐺̃𝑛) ⊂ 𝐺̃𝑛 for all face
maps 𝑑𝑖 . We will in fact show a more refined statement. To express this statement, we recall that
the face maps of 𝑁∗(𝐴) are determined by the fact that the adjunction map 𝜂 ∶ 𝐴 → 𝑁(𝑁∗(𝐴))

commutes with the differential. Indeed, for each homogeneous basis element 𝑥 ∈ 𝑉, considered
as an element in 𝑇 (𝑉) = 𝐴, the requirements 𝑑0(𝜂(𝑥)) = 𝑑(𝜂(𝑥)) = 𝜂(𝑑(𝑥)) and 𝑑𝑖(𝜂(𝑥)) = 0
specify the values of face maps on the non-degenerate generators 𝜂(𝑥) of 𝑁∗(𝐴) = 𝑇 (𝑁−1(𝑉)).
This in turn specifies the face maps on every other elements by simplicial identities. Thus, one
can write the face maps as 𝑑𝑖 = 𝑑𝑖[𝑑𝐴] to show its dependence on the differential 𝑑𝐴 on 𝐴. In
Lemma A.1, we will show that, for any differential 𝑑 = 𝑑𝐴 on 𝐴 such that 𝑑(𝐹𝑛) ⊂ 𝐹𝑛−1, the
face maps 𝑑𝑖 when restricted to homogeneous elements 𝑧 ∈ 𝑁∗(𝐴)(𝑛), can be decomposed as
𝑑𝑖[𝑑𝐴](𝑧) = 𝑑

′
𝑖
(𝑧) + 𝑑′′

𝑖
[𝑑𝐴](𝑧), where 𝑑′𝑖 ∶ 𝑁

∗(𝐴)(𝑛) → 𝑁∗(𝐴)(𝑛) and 𝑑′′
𝑖
[𝑑𝐴] ∶ 𝑁

∗(𝐴)(𝑛) → 𝐺̃𝑛−1.
Moreover, 𝑑′

𝑖
does not depend on the differential 𝑑𝐴, and 𝑑′′𝑖 [𝑑𝐴] = 0 if 𝑑𝐴 = 0. In particular, we

have 𝑑′
𝑖
= 𝑑𝑖[0].

Assuming this lemma, then we have 𝑑𝑖(𝐺̃𝑛) ⊂ 𝐺̃𝑛, and hence 𝑑(𝐺𝑛) ⊂ 𝐺𝑛. Therefore, both
the domain and target of the map of chain complexes (A.6) admit filtrations by subcomplexes,
such that (A.6) preserves these subcomplexes. Since these filtrations are induced by gradings, the
graded 𝑘-modules associated to these filtrations can be canonically identified with the original
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graded 𝑘-modules, that is, we have

gr𝐹(𝐴) ≅
⨁
𝑛⩾0

𝐴(𝑛) = 𝐴 , gr𝐺(𝑁(𝑁
∗(𝐴))) ≅

⨁
𝑛⩾0

𝑁(𝑁∗(𝐴))(𝑛) = 𝑁(𝑁∗(𝐴)) (A.9)

as graded 𝑘-modules. While passing to the associated gradedmodules does not change the under-
lying graded 𝑘-modules, it changes the differentials by discarding the part that strictly decrease the
grading. Since we have chosen the differential 𝑑 on𝐴 such that 𝑑(𝐹𝑛) ⊂ 𝐹𝑛−1, the induced differ-
ential on gr𝐹(𝐴) is zero. In otherwords, (A.9) actually identifies gr𝐹(𝐴)with the free DG algebra
𝐴′ = 𝑇 (𝑉)with trivial differential. On the other hand, by the above discussion, LemmaA.1 gives
a description of the differential on the associated graded 𝑘-module gr𝐺(𝑁(𝑁∗(𝐴))). Namely, by
discarding the part of the differential on𝑁(𝑁∗(𝐴)) that strictly decreases the grading, one retains
precisely the differential in 𝑁(𝑁∗(𝐴′)) where 𝐴′ is again the free DG  algebra 𝐴′ = 𝑇 (𝑉) with
trivial differential. In other words, (A.9) actually identifies gr𝐺(𝑁(𝑁∗(𝐴))) with 𝑁(𝑁∗(𝐴′)).
Therefore, the induced map gr𝐹(𝐴) → gr𝐺(𝑁(𝑁

−1(𝐴))) on the associated graded chain com-
plexes coincides with the adjunction map 𝐴′ → 𝑁(𝑁∗(𝐴′)) for the free algebra 𝐴′ = 𝑇 (𝑉) with
zero differential. This map is a quasi-isomorphism by our previous argument in the free case.
Since the filtrations 𝐹∙ and 𝐺∙ are bounded below and exhaustive, the map (A.6) induces an iso-
morphism on homology by the Eilenberg–Moore comparison theorem [60, Theorem 5.5.11]. □

Lemma A.1. For any differential 𝑑 = 𝑑𝐴 on 𝐴 such that 𝑑(𝐹𝑛) ⊂ 𝐹𝑛−1, let 𝑑𝑖 = 𝑑𝑖[𝑑𝐴] be the 𝑖th
face maps on 𝑁∗(𝐴). Then its restriction 𝑑𝑖|𝑁∗(𝐴)(𝑛) to each homogeneous component 𝑁∗(𝐴)(𝑛) can
be decomposed as 𝑑𝑖[𝑑𝐴](𝑧) = 𝑑′𝑖 (𝑧) + 𝑑

′′
𝑖
[𝑑𝐴](𝑧), where 𝑑′𝑖 ∶ 𝑁

∗(𝐴)(𝑛) → 𝑁∗(𝐴)(𝑛) and 𝑑′′
𝑖
[𝑑𝐴] ∶

𝑁∗(𝐴)(𝑛) → 𝐺̃𝑛−1. Moreover, 𝑑′𝑖 does not depend on the differential 𝑑𝐴, and 𝑑
′′
𝑖
[𝑑𝐴] = 0 if 𝑑𝐴 = 0.

Proof. In simplicial degree𝑚, the 𝑘-module 𝑁∗(𝐴)(𝑛)𝑚 consists of sums of elements of the form

𝑧 = (𝜇 , 𝜎∗1(𝑥1) ⊗ …⊗ 𝜎
∗
𝑘
(𝑥𝑘))

withwt(𝑥1) +⋯ + wt(𝑥𝑘) = 𝑛, where 𝑥𝑗 ∈ 𝑉𝑟𝑗 and 𝜎𝑗 are surjectivemaps [𝑚] ↠ [𝑟𝑗]. The image
under the face map 𝑑𝑖 of this element is given by

𝑑𝑖(𝑧) = (𝜇 , 𝑑𝑖(𝜎
∗
1(𝑥1)) ⊗ …⊗ 𝑑𝑖(𝜎

∗
𝑘
(𝑥𝑘))) (A.10)

Now, for each 𝑗 = 1,… , 𝑘, the element 𝑑𝑖(𝜎∗𝑗 (𝑥𝑗)) reduces by simplicial identities to either of the
two cases:

(I) 𝑑𝑖(𝜎∗𝑗 (𝑥𝑗)) = 𝜎
′∗
𝑗
(𝑥𝑗) for some surjective map 𝜎′𝑗 ∶ [𝑚 − 1] ↠ [𝑟𝑗] in Δ,

(II) 𝑑𝑖(𝜎∗𝑗 (𝑥𝑗)) = 𝜎
′∗
𝑗
(𝑑𝑖′ (𝑥𝑗))) for some surjective map 𝜎′𝑗 ∶ [𝑚 − 1] ↠ [𝑟𝑗 − 1] in Δ, and some

0 ⩽ 𝑖′ ⩽ 𝑟𝑗 .

In case (I), 𝑑𝑖(𝜎∗𝑗 (𝑥𝑗)) has the same weight grading as the term 𝜎
∗
𝑗
(𝑥𝑗). We split the case (II) in two

subcases:

(IIa) If 𝑖′ > 0, then we have 𝑑𝑖′ (𝑥𝑗) = 0 because by definition 𝑥𝑗 = 𝜂(𝑥𝑗) is in 𝑁(𝑁∗(𝐴)),
(IIb) If 𝑖′ = 0, then we claim that 𝑑0(𝑥𝑗) ∈ 𝐺̃𝑟𝑗−1, and 𝑑0(𝑥𝑗) = 0 if 𝑑𝐴 = 0.
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Indeed, the 0th face 𝑑0(𝑥𝑗) of 𝑥𝑗 = 𝜂(𝑥𝑗) is uniquely determined by the corresponding differential
𝑑(𝑥𝑗) in the DG -algebra 𝐴. Namely, since the adjunction map 𝜂 ∶ 𝐴 → 𝑁(𝑁∗(𝐴)) commutes
with differentials, we have 𝑑0(𝜂(𝑥𝑗)) = 𝜂(𝑑(𝑥𝑗)). Since we have chosen the weight grading on the
generators 𝑥𝑗 in such a way that 𝑑(𝑥𝑗) is sum of terms of weight grading strictly less than 𝑥𝑗 , we
see that 𝑑0(𝑥𝑗) ∈ 𝐺̃𝑟𝑗−1 in this case. The equation 𝑑0(𝜂(𝑥𝑗)) = 𝜂(𝑑(𝑥𝑗)) also shows that 𝑑0(𝑥𝑗) = 0
if 𝑑𝐴 = 0.
Thus, to compute 𝑑𝑖(𝑧), one combines the equation (A.10) with the above consideration. If we

are in case (I) or (IIa) for each 1 ⩽ 𝑗 ⩽ 𝑘, then 𝑑𝑖(𝑧) is still in𝑁∗(𝐴)(𝑛). Thus, we have 𝑑𝑖(𝑧) = 𝑑′𝑖 (𝑧)
in this case. Moreover, our explicit description shows that 𝑑′

𝑖
does not depend on 𝑑𝐴. If we are in

case (IIb) for some 1 ⩽ 𝑗 ⩽ 𝑘, thenwe have 𝑑𝑖(𝑧) ∈ 𝐺̃𝑛−1. Thus, we have 𝑑𝑖(𝑧) = 𝑑′′𝑖 (𝑧) in this case.
Moreover, our description shows that 𝑑𝑖(𝑧) = 0 in this case if 𝑑𝐴 = 0. This completes the proof of
the lemma. □
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