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Abstract

Let G be an affine algebraic group defined over a field
k of characteristic 0. We study the derived moduli
space of G-local systems on a pointed connected CW
complex X trivialized at the basepoint of X. This derived
moduli space is represented by an affine DG scheme
RLoc;(X, *): we call the (co)homology of the structure
sheaf of RLocg (X, *) the representation homology of X
in G and denote it by HR (X, G). The 0-dimensional
homology, HR (X, G), is isomorphic to the coordinate
ring of the G-representation variety Repg[m;(X)] of
the fundamental group of X — a well-known algebro-
geometric invariant that plays a role in many areas of
topology. The higher representation homology is much
less studied. In particular, when X is simply connected,
HR,(X,G) is trivial but HR (X, G) is still an interesting
rational invariant of X that depends on the Lie algebra
of G. In this paper, we use Quillen’s rational homotopy
theory to compute the representation homology of an
arbitrary simply connected space (of finite rational
type) in terms of its Lie and Sullivan algebraic models.
When G is reductive, we also compute HR (X, G)%, the
G-invariant part of representation homology, and study
the question when HR (X, G)" is free of locally finite
type as a graded commutative algebra. This question
turns out to be related to the so-called Strong Macdonald
Conjecture, a celebrated result in representation theory
proposed (as a conjecture) by Feigin and Hanlon in the

© 2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.

692 wileyonlinelibrary.com/journal/jtop

J. Topol. 2022;15:692-744.


mailto:berest@math.cornell.edu
http://wileyonlinelibrary.com/journal/jtop
http://crossmark.crossref.org/dialog/?doi=10.1112%2Ftopo.12231&domain=pdf&date_stamp=2022-05-09

REPRESENTATION HOMOLOGY OF SIMPLY CONNECTED SPACES | 693

1980s and proved by Fishel, Grojnowski and Teleman in
2008. Reformulating the Strong Macdonald Conjecture
in topological terms, we give a simple characterization
of spaces X for which HR (X, G) is a graded symmetric
algebra for any complex reductive group G.

MSC (2020)
14A30, 18A25, 55P62 (primary), 14D20, 14124, 17B56 (secondary)

1 | INTRODUCTION

The present paper is a sequel to our earlier work, [5, 6], where we study representation homol-
ogy of topological spaces. In [5], we established basic properties of representation homology, con-
structed natural maps and spectral sequences relating it to some well-known homology theories
associated with spaces (such as higher Hochschild homology and homology of based loop spaces).
Further, in [6], we studied the linearization of representation homology and proved some van-
ishing theorems for groups, surfaces and certain 3-dimensional manifolds of interest in geomet-
ric topology.

The main aim of this paper is to compute the representation homology for an arbitrary simply
connected space X over a field k of characteristic 0. From [5], we know that the representation
homology of such a space is a rational homotopy invariant (that is, it depends only on the homo-
topy type of the rationalization X, of X); on the other hand, by a fundamental theorem of Sullivan
[53], the homotopy type of X, is completely determined by its algebraic model: a commutative
cochain DG algebra Ay, called the Sullivan model of X. This leads us to the natural question.

Question 1. How to describe the representation homology of X in terms of Ay?

The representation homology HR (X, G) of a space X in an algebraic group G may be thought
of as a multiplicative version of ordinary (co)homology, where the commutative Hopf algebra
O(G) plays the role of coefficients (see [5]). In this regard, representation homology is analogous
to higher Hochschild homology, HH, (X, A), which can be viewed as a homology of the space X
with coefficients in a commutative algebra A (see [47]). While the two homology theories may be
defined in a similar way and are, in fact, closely related, there is one important difference: unlike
HH, (X, A), the HR (X, G) carries a natural algebraic G-action induced by the adjoint action of
G. Examples show that this action depends on the space X in a nontrivial way, which makes
representation homology a richer and more geometric theory than Hochschild homology. When
X is simply connected (so that HRy(X, G) = k) and G is reductive, it is natural to treat HR (X, G)
as an object of representation theory — or even classical invariant theory (in the spirit of [61])
— and ask basic questions about the structure of the algebra HR (X, G) as a G-module and its
subalgebra HR, (X, G)® of G-invariants. Perhaps, the following is the first natural question that
arises from this perspective.

 As shown in [5], there is a natural isomorphism HR,(2X,,G) = HH..(X, O(G)), for any space X.
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Question 2. When is the algebra HR (X, G)® free and (locally) finitely generated, that is, iso-
morphic to the graded symmetric algebra of a (locally) finite-dimensional graded vector space
over k?

Question 2 turns out to be related to some of the deeper problems in Lie theory and algebraic
representation theory. Our second aim in this paper is to shed new light on these problems link-
ing them to topology. To state our results, we first recall a few basic facts about representation
homology (referring the reader to [5] for details and proofs).

1.1 | Three definitions of representation homology

There are (at least) three different ways to define representation homology. Historically the first
and (arguably) most appealing definition comes from derived algebraic geometry (see, for exam-
ple, [36, 45, 46, 55]). Let G be an affine algebraic group defined over a field k of characteristic 0.
Given a pointed connected CW complex X consider the (framed) moduli space Loc;(X, %) of G-
local systems on X with trivialization at the basepoint of X. As shown in [36], this classical moduli
space has a natural derived extension which is represented by an affine differential graded (DG)
scheme RLoc;(X, *). The structure sheaf of RLoc;(X, ) is, by definition, a (negatively graded)
commutative cochain DG algebra whose cohomology is a homotopy invariant of X. We set

HR,(X,G) 1= H " [Ogpoc,(x,)] (L1)

and call HR (X, G) the representation homology of X in G. This terminology is motivated by
the fact that Locg (X, *) can be identified with the classical representation scheme Rep;[7; (X)],
parameterizing the representations of the fundamental group of X in G, and the HR,(X, G) is thus
naturally isomorphic to @[Rep,(7;(X))], the affine coordinate ring of Repg[7,(X)].

Another, less geometric but more general and conceptually simpler definition was proposed
in [5]. This definition rests on a fundamental result in simplicial homotopy theory, due to Kan
[35], that describes the homotopy types of pointed connected spaces in terms of simplicial groups.
More precisely, Kan’s theorem asserts that the model category sGr of simplicial groups is Quillen
equivalent to the category sSet,, of reduced simplicial sets, which is, in turn, Quillen equivalent
to the category Top, , of pointed connected (CGWH) spaces; thus, there are natural equivalences
of homotopy categories

Ho(sGr) = Ho(sSet;) = Ho(Topy ). (1.2)

Our construction of representation homology begins with the simple observation that the functor
of points G : Comm;, — Gr of any affine algebraic group (scheme) G has a left adjoint

(—)G . GI‘ i Commk (13)

which — when applied to a given group I' — gives the coordinate ring of the affine scheme
Rep;(D): thatis, T'; = O[Rep(I)]. Thus, the functor (1.3) provides an alternative (dual) descrip-
tion of the representation scheme Rep;(T') and is called the representation functor in G. Now, to
define representation homology we simply derive (1.3) following a standard procedure in homo-
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topical algebra [51]. First, we prolong the adjoint functors (-); : Gr 2 Comm; : G to the sim-
plicial categories sGr and sComm;, (by applying them degreewise to the corresponding simplicial
objects):

(-)g : sGr 2 sComm : G. 1.4)

Then, we replace the simplicial adjunction (1.4) with its universal homotopy approximation’ rep-
resented by derived functors. To be precise, Theorem 1.1 of [5] says that each of the adjoint functors
in (1.4) has a total derived functor (left and right, respectively), and these functors form an adjoint
pair at the level of homotopy categories':

L(-)g : Ho(sGr) 2 Ho(sComm;) : RG. (1.5)

We can now make the following definition which will be our main definition for the present paper
(cf. [5, Definition 3.1]).

Definition 1.1. For a space X € Top, ,, we choose a simplicial group model I'X and define the
representation homology of X in G by

HR,(X,G) := 7, L(TX); := H,[NLITX);], (1.6)
where N stands for the standard (Dold-Kan) normalization functor (see Appendix A.1).

Note that, since L(-); is a homotopy functor on simplicial groups, formula (1.6) does not
depend on the choice of a simplicial group model of X. In fact, there are several natural mod-
els that can be used in practical computations (see [6]). In this paper, we will use most exclusively
the so-called Kan loop group modelI' = GX, which is a semi-free simplicial group functorially
attached to the space X (see [28, chapter V] or [5, section 2] for a brief summary of this construc-
tion). Since semi-free simplicial groups are cofibrant objects in sGr, formula (1.6) simplifies in this
case to

HR,(X,G) = m,(GX)g. 1.7)

To compare Definition 1.1 with the algebro-geometric construction of representation homology,
(1.1), we associate to the derived representation functor (1.6) the derived representation scheme

DRepg(X) := RSpec [L(TX);].
Here ‘ RSpec,” stands for the Toén-Vezzosi derived Yoneda functor [56, 57] that assigns to a sim-
plicial commutative algebra A — a derived ring in terminology of [57] — the simplicial presheaf

(prestack)

RSpec(A) : dAfpr :=sComm;, — sSet, B — Hom(Q(A), B),

"We should warn the reader that the functors (1.4) do not form a Quillen pair between the categories sGr and sComm,
equipped with standard (projective) model structures. The existence of the derived adjunction (1.5) is a nontrivial fact that
does not follow directly from Quillen’s Adjunction Theorem for model categories [51].
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where Q(A) is a cofibrant model for A and Hom is the simplicial mapping space (function com-
plex) in sComm, . For any A € sComm,, the prestack RSpec(A) satisfies the descent condition for
étale hypercoverings and hence defines a derived stack (which is a derived affine scheme in the
sense of [57]). Now, in [6, Appendix A.2], we showed that for any pointed connected CW complex
X, there is an equivalence of derived stacks DRep;(X) =~ RLoc;(X, ). This implies that the two
definitions of representation homology — (1.1) and (1.6) — actually agree.

Our third definition of HR (X, G) — perhaps the most elementary one — is given in terms
of functor homology. Let ® denote the small category whose objects (n) are the finitely gen-
erated free groups F, (one for each n > 0) and the morphisms are arbitrary group homomor-
phisms. This category carries a natural (strict) monoidal structure, with product x: & x® - ©
being the free product (coproduct) of free groups: (n) * (m) = (n + m). It is known that every
commutative Hopf algebra defines a (strict) monoidal functor on ¢ with values in Comm;, and
conversely, every such functor corresponds to a commutative Hopf algebra (see, for example,
[48]). Following [5], for a commutative Hopf algebra H, we denote the corresponding functor

by

H: ® - Commy, (n)— H®". (1.8)

Note that (1.8) naturally extends to a functor on all groups: Gr — Comm,, by taking the left Kan
extension along the inclusion ® < Gr. To avoid complicated notation we will use the same sym-
bol H to denote the functor (1.8) and its Kan extension to Gr (moreover, we will often drop the
underline in this symbol when there is no danger of confusion). Now, to define representation
homology with coefficients in a commutative Hopf algebra H we simply precompose the corre-
sponding functor H : Gr — Comm, with the Kan loop group model of a given space X: the result
is the simplicial commutative algebra

GX H
H(GX) : A°® — Gr — Comm,,
whose homology we denote by
HR,(X,H) := 7 [H(GX)] = H,[NH(GX)].

For H = O(G), where G is an affine algebraic group scheme over k, it is easy to show that there is
a natural isomorphism (see [5, Proposition 4.1]):

HR, (X, O(G)) ~ HR,(X,G). (1.9)

Thus, we may think of the representation homology as a homology of a space with coefficients in
commutative Hopf algebras in the same way as one thinks of the ordinary homology as a homology
with coefficients in abelian groups or the higher Hochschild homology [47] as a homology with
coefficients in commutative algebras.

Now, for any (discrete) group I' € Gr, the group algebra k[I'] has a natural cocommutative Hopf
algebra structure and therefore defines a contravariant monoidal functor on :

k[T] : ®° — Comm, , (n)~ k[[']®".
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Regarding O(G) and k[T'] as linear functors on & (with values in Vect; ), we can form their ten-
sor product k[T'] ®g O(G). It turns out that there is a natural isomorphism: k[I'] ®g O(G) =
O[Rep;(I)]; more generally, it is shown in [5] that

HR, (BT, G) = Tor®(k[I], ©(G)), (1.10)

where Torf’ is the (homology of the) classical derived tensor product ®g between covariant and
contravariant linear functors on ®. The ‘Tor’-formula (1.10) is remarkable for two reasons: first,
it gives a natural interpretation of representation homology in terms of usual (abelian) homolog-
ical algebra, placing it in one row with other classical invariants, such as Hochschild and cyclic
homology (see, for example, [39]). Second — as we will see in this paper — it provides an efficient
tool for computations’.

1.2 | Main results

Throughout, k stands for a commutative base field, which is always assumed to be of characteristic
0 but (unless specified so) not necessarily algebraically closed. Our answer to Question 1 can be
encapsulated into the following theorem which is the main result of the present paper.

Theorem 1.1. Let X be a I-connected pointed space of finite rational type with Sullivan model Ax.
Let Ay denote the augmentation ideal of Ay corresponding to the basepoint of X.

(a) For any affine algebraic group G defined over k with Lie algebra g, there is an isomorphism of
graded commutative algebras

HR,(X,G) = Hj(a(Ax); k),

where g(Ay) is the current Lie algebra of g over the commutative DG algebra Ay.
(b) If G is a reductive affine algebraic group over k, then

HR,(X,G)% = Hzh(g(Ax).g; k),
where g(Ay) is the current Lie algebra over Ay and g C g(Ay) is its canonical Lie subalgebra.

Theorem 1.1 needs some explanations. First, recall that for a Lie algebra g and a commutative
DG algebra A, the current Lie algebra g(A) is defined to be the tensor product g(A) :=g¢g® A
with Lie bracket [E ® a, n ® b] := [, n] ® ab and the differential d({ ® a) ;=& ® da. If X
is a pointed 1-connected topological space of finite rational type, its Sullivan model Ay is an
augmented commutative cochain DG algebra, so we can form the current Lie algebras g(Ay)
and g(Ay), both of which are cohomologically graded. In part (a) of Theorem 1.1, HEE(Q(AX); k)
stands for the classical (Chevalley-Eilenberg) cohomology of the Lie algebra g(Ay) with trivial
coefficients; in Part (b), H.;(a(Ax), g; k), is the relative Lie algebra cohomology of the canonical
pair g C g(Ax). The ‘minus’ sign in the superscript of both cohomologies indicates that they are
considered with homological grading.

T We should also mention that, in recent years homological algebra in functor categories over & has been extensively used
in computations of stable homology of automorphism groups of free groups and the study of related questions of K-theory
and topology (see, for example, [17-19, 49, 59]) and also [5, section 7]).
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The proof of Theorem 1.1 is fairly long and technical: it occupies most of Section 3 and relies
heavily on results of Quillen [50]. For reader’s convenience, we outline the main steps of this proof
in Subsection 3.2.1. Here we mention only two key results that are of independent interest. The
first is Theorem 3.1 which describes the representation homology of a simply connected space X
in terms of its Quillen DG Lie algebra model ay:

HR,(X,G) = HR,(ay,gq). (1.11)

We call Theorem 3.1 the ‘Comparison Theorem’ as it compares two representation homology func-
tors: one with coefficients in an algebraic group G and the other with coefficients in its Lie algebra
g. The second notable result is Theorem 2.1: it provides a functor homology interpretation — a
natural counterpart of the ‘Tor’-formula (1.10) — for representation homology of Lie algebras':

HR,(a,g) = Tor*(‘j(Ua, g). (1.12)

Both isomorphisms (1.11) and (1.12) are deduced from Theorem 3.2, which is a result in rational
homotopy theory — a natural refinement of one of the main results of [50].

We now turn to Question 2. We will approach this question topologically by constructing
some natural maps with values in HR,(X, G)® whose images — in good cases — will generate
HR, (X, G)C as an algebra. Given a simply connected space X, we consider the space .#X of all
continuous maps S' — X from the topological circle S! to X equipped with compact open topol-
ogy. This classical space, called the free loop space of X, carries a natural S'-action induced by
the action of S! on itself by rotations: thus, we can define the (reduced) S!'-equivariant homol-

—s1
ogy H, (ZX, k). It is well-known that, when k = Q (or more generally, when k is any field of
characteristic 0), there is a natural direct sum decomposition

—s1 _ql
0 (x, =@ P n, (L13)

_ <l
which is usually called the Hodge decomposition of HS (ZX, k). The pth direct summand in (1.13)
— the Hodge component of degree p - is defined topologlcally as the comrnon eigenspace of the

degree p Frobenius operations, that is, the graded endomorphisms of H (.,SfX k) induced by
the finite coverings of the circle: S — S?, e — ¢, corresponding to the elgenvalues nP, nz0,
(see Subsection 4.1). A theorem of Burghelea, Fiedorowicz and Gajda (see [12, Theorem Al]) asserts

that, if all (rational) Betti numbers of X are finite, then each Hodge component of H (.ZX k)is
locally finite: that is,

dlmk (.ZX k) < oo foralli>Oandall p > (1.14)

Now, assume that k = C and G is a complex reductive group of rank I > 1. Let g be the Lie
algebra of G with classical exponents {m,, m,, ..., m;} and let I(g) := Sym(g*)® be the ring of
G-invariant polynomials on g. It is well-known that I(g) is generated by [ algebraically indepen-
dent homogeneous polynomials {P;, P,, ..., P;}, with deg(P;) = m; + 1 for i = 1,2,...,1. In Sub-

T 'We briefly review the definition of representation homology of Lie algebras in Section 2.
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section 4.1, for each such generator P;, we construct a natural linear map

ﬁsla (m;)

*

(ZX, C) - HR,(X,G)°

defined on the m;th Hodge component of (1.13). Assembling these maps (forall i = 1,2, ..., 1,), we
get a graded algebra homomorphism

L 1
Al@ﬁs D ox, c)] - HR,(X,G)°, (1.15)

i=1

which we call a Drinfeld homomorphism for (X, G).

Note that if G is an algebraic torus, then m; =0 for all i =1,2,...,], and HR_ (X, G)° =
HR,(X,G) because G is commutative. On the other hand, for any simply connected space X,
we have

—51,(0)
H,  (ZX,0)=H, X, 0,

—s1 —
where the isomorphism is given by the classical Gysin map H, (¥X, C) — H,,,(ZX, C) com-
bined with the natural projection H, n(&ZX, ) - H, 41X, €) induced by evaluation of loops at
the origin. Thus, for an algebraic torus, the Drinfeld homomorphism becomes

A[H, (X, 0%] - HR,(X,0).

A simple calculation with a minimal Quillen model shows that the above map is an isomorphism
for any simply connected space X and, in fact, for any commutative — not necessarily diagonal-
izable — algebraic group G (see Theorem 4.4). Thus, we get an answer to Question 2, though in a
very special and somewhat trivial case.

Suppose now that G is an arbitrary complex reductive group. Then we can ask:

Question 3. For which spaces X is the Drinfeld homomorphism (1.15) an isomorphism?

The following theorem, which is our second main result in this paper, specifies simple con-
ditions on cohomology of the space X that are sufficient for (1.15) to be an isomorphism for all
reductive groups G.

Theorem 1.2 (see Theorem 4.5). Assume that the rational cohomology algebra H*(X; Q) of a simply
connected space X is either generated by one element (in any dimension) or freely generated by two
elements: one in even and one in odd dimensions. Then, the Drinfeld homomorphism (1.15) is an
isomorphism for X and any complex reductive algebraic group G.

Note that any space X satisfying the assumptions of Theorem 1.2 obviously satisfies the assump-
tions of the Burghelea-Fiedorowicz-Gajda theorem [12], which ensures the (local) finiteness of all
Hodge components of .ZX: see (1.14). Thus, Theorem 1.2 combined with [12] provides an answer
to Question 2.
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Corollary 1.1. If X satisfies the conditions of Theorem 1.2, then for any complex reductive group G,
HR (X, G)° is a free graded commutative algebra of locally finite type over C.

Theorem 1.2 relies on (part (b) of) Theorem 1.1 and a certain (minor) refinement of the main
result of the paper [24] by Fishel, Grojnowski and Teleman. This last paper settles the so-called
Strong Macdonald Conjecture — a deep and celebrated result in representation theory proposed as
a conjecture by Macdonald [40], Feigin [21] and Hanlon [30, 31] in the early 1980s and proved (in
full generality) in [24]. The Strong Macdonald Conjecture comprises two cases: the first describes
the structure of cohomology of the nilpotent Lie algebras g[z]/(z" ') (see [31] for the case g = gl,,
and [24, Theorem A] for an arbitrary reductive g) and the second describes the cohomology of the
Lie superalgebra g[z, s (see [21; 24, Theorem B]). These two cases roughly correspond to the two
cases of Theorem 1.2. Thus, Theorem 1.2 gives a topological meaning to the full Strong Macdonald
Conjecture. The proof of [24] is an algebraic tour de force. Given the simplicity of our topological
reformulation, it is tempting to expect that topology might also lead to a new simpler proof. We
leave this as a project for the future.

We would like to conclude this introduction with a few nice examples illustrating Corollary 1.1.
Let us consider the spaces X with rational cohomology algebra H*(X, Q) ~ Q[z]/(z" ') where
the generator z is in even dimension d > 2. The most familiar examples of such spaces are the
even-dimensional spheres S?” (r = 1, d = 2n) and the classical projective spaces: the complex
ones, CP" (r > 1, d = 2), the quaternionic HP" (r > 1, d = 4) and the octonionic (Cayley) plane
OP? (r = 2, d = 8). For these spaces, we have (see Corollary 4.3):

HR,(X,G)® = A[EP, £0, &9 s i=12,..,1],

> 59 0 r

where the generators §;i) have homological degrees
deg §§f'> = (dr+1)—2)m; +dj—1.

Note that, in this case, the algebra HR,(X,G)C is generated by finitely many elements of odd
degrees: hence, it is finite-dimensional (as a vector space) and concentrated in finitely many
homological degrees. In fact, knowing the exact degrees of generators, it is easy to calculate the
exact upper bound for the vanishing of HR,(X, G)®:

l r
Y Y dege = %r(d(r+1)—2) dim G.

i=1 j=1

Somewhat miraculously, this allows one to determine the exact upper bound for the full repre-
sentation homology of X (see Lemma 4.5):

HR,(X,G) = 0 forall n > %r(d(r+ 1)—2) dim G.

Now, the weighted Euler—Poincaré series of HR,.(X, G)C is given by the polynomial

I r .
i ()
PX,G(‘LZ) = HH(I + q]+mi(r+1) Zdeg ;’J_ )

i=1 j=1
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which specializes (at z = —1) to the following (weighted) Euler characteristic

1

xxe@ = [[T]a - ¢+,

i=1 j=1

The latter can be also computed — by Theorem 1.1(b) — as the Euler characteristic of the
Chevalley-Eilenberg complex C*(g(Ax), g; C), where Ay is the (minimal) Sullivan model of the
corresponding space X. The resulting equality of Euler characteristics gives the following combi-
natorial formula

1 r ) Lrq_ gi+mir+1)
WCT{H H(l - qjea)} HJII 1— g/

Jj=0 a€R i=1

which is Macdonald’s famous Constant Term Identity [40]. For more examples and explicit cal-
culations we refer the reader to Subsection 4.4.

Appendix

In the Appendix, we describe an abstract monoidal version of the classical Dold-Kan corre-
spondence relating the category of (non-negatively graded) DG P-algebras and the category of
simplicial P-algebras for an arbitrary k-linear operad P. This is needed for our proof of Com-
parison Theorem in Section 3. The main result of the Appendix is Theorem A.1, which states
that when k is a field of characteristic 0, there is a Quillen equivalence between the category of
(non-negatively graded) DG P-algebras and the category of simplicial P-algebras. Various spe-
cial cases of this theorem have appeared in the literature. First of all, when P is the Lie operad, a
slightly weaker version (namely, a Quillen equivalence between the category of positively graded
DG Lie algebras and reduced simplicial Lie algebras) was proved in [50, part I, Theorem 4.6].
In [50], Quillen also outlines a proof for the commutative operad (that controls commutative
unital k-algebras) under the same reducedness assumptions. For general (non-reduced) com-
mutative algebras, the proof of the Dold-Kan correspondence is given in [58, Proposition A.1].
The case of the associative operad is treated in greater generality (for any commutative ring
k) in [52], where the DG associative algebras and simplicial associative algebras are viewed as
monoids in the (symmetric) monoidal model categories of chain complexes and simplicial k-
modules, respectively. In this case, the Dold-Kan correspondence follows from an abstract com-
parison theorem between monoids in different (symmetric) monoidal model categories. The
arguments that establish each of these special cases seem to apply only to the case in hand.
To the best of our knowledge, a unified proof for any linear operad is missing in the literature.
Our Theorem A.l fills in this gap’. Theorem A.1 is crucial for the proof of our Theorem 1.1.
While Quillen’s original result for reduced DG Lie algebras is sufficient for this proof, the full
strength of Theorem A.1 is needed to prove Proposition 2.1, which is an interesting result on
its own.

TWe should mention, however, that one of the key arguments that we use in our proof of Theorem A.1 is sketched in [25,
Remark 6.4.5] in the special case of the commutative operad.
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Outline of the paper

In Section 2, we recall the definition of representation homology of Lie algebras from [3] and prove
our first result, Theorem 2.1, which gives a realization of this kind of representation homology
as functor homology, see (1.12). In Section 3, we prove our main result, Theorem 1.1, answering
Question 1 stated in the beginning of the introduction. We deduce this result from Theorem 3.1
— the Comparison Theorem — which expresses representation homology of a simply connected
space in terms of its Quillen Lie model. The Comparison Theorem is technically the most involved
result of this paper: its proof occupies the whole of Subsection 3.2 (with a brief outline given in
Subsection 3.2.1). We close Section 3 with a conjectural generalization of Theorem 3.1 to non-
simply connected spaces (see Conjecture 1). Our conjecture is inspired by the recent work [9-11]
of Buijs, Félix, Murillo and Tanré who proposed a natural generalization of Quillen models to
non-simply connected spaces. In Section 4, after some necessary preliminaries we construct the
Drinfeld homomorphism (1.15) and prove our second main result, Theorem 1.2, that gives (partial)
answers to Question 2 and Question 3. We also describe explicitly the algebra HR (X, G)° for all
spaces X satisfying the conditions of Theorem 1.2 and give many concrete examples of such spaces.
Finally, we show how the classical root systems identities — the original q- and (q, t)-Macdonald
Conjectures proposed in [40] and proved in [14] — arise from our examples. The last section is an
appendix on the Dold-Kan correspondence that can be read independently of the rest of the paper.

NOTATION AND CONVENTIONS

Throughout this paper, k denotes a field of characteristic 0. All vector spaces as well as unadorned
multilinear operations, such as ®, Hom, A, and so on, are defined over k. The categories of asso-
ciative, commutative and Lie algebras are denoted Alg;, Comm;, and Lie,, respectively. Unless
stated otherwise, all DG objects (chain complexes, DG algebras, DG Lie algebras and DG coal-
gebras) are assumed to be non-negatively graded. The categories of associative DG algebras,
commutative DG algebras, DG Lie algebras and (conilpotent) DG coalgebras are denoted DG4,
DGCA,;, DGLA, and DGC,, respectively. The corresponding categories of augmented algebras and
co-augmented coalgebras are denoted Algy /., Commy i, DGAy /., DGCA /) and DGCy /.. The Koszul
sign rule is tacitly used throughout the paper.

2 | REPRESENTATION HOMOLOGY OF LIE ALGEBRAS

The goal of this section is to prove Theorem 2.1 which gives a functor homology interpretation —
a counterpart of formula (1.10) — for the representation homology of Lie algebras. This result is
a key step in the proof of our main theorem in Section 3. We begin by recalling the construction
of representation homology in the form it first appeared in [3].

2.1 | The representation functor for Lie algebras

Let g be a finite-dimensional Lie algebra over k. Given an (arbitrary) Lie algebra a € Lie,, the
moduli scheme Rep,(a) classifying the k-linear representations of a in g is defined by the functor
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on the category of commutative algebras
Rep,(a) : Commy — Sets, A~ Homp;c(a, g(A)),

that assigns to an algebra A the set of families of representations of a in g parameterized by the k-
scheme Spec(A). It is easy to show that this functor is representable, and the commutative algebra
a, representing Rep,(a) has the following canonical presentation (cf. [3, Proposition 6.4]):

A(a ®g¥)

% = (((x®§f)(y®§§)—(y®§f)(x®§;)_[x,y]®§* » 2.1

Here x ® &* are elements of a ® g*, where g* : = Hom, (g, k) is the vector space dual to g, and
§* = & A &S, is the linear map ¢* — A%g* dual to the Lie bracket on g. The tautological (univer-
sal) representation ¢, : a — g(a,) is given by the natural Lie algebra map

15003 ®g > A(a®eI®a > ¢, ®g=49(a), x— ) [xQEIQE, (22

where {{;} and {{} are dual bases in g and g*. The k-algebra a, has a canonical augmentation
€ : ag — k induced by the zero map a ® g* — 0. The assignment a ~ (a, ¢) defines a functor
with values in the category of augmented commutative algebras

(—)g . Liek d Commk/k , (23)

which is left adjoint to the current Lie algebra functor ¢ : Comm /, — Lie,, A~ g(A). We call
(2.3) the representation functor in g. Geometrically, one can think of (a4, £) as the coordinate ring
k[Repg(a)] of the based affine scheme Repg(a), with the basepoint corresponding to the triv-
ial representation.

The adjoint functors ((-),, ¢) extend naturally to the categories of DG algebras:

(-)g : DGLA, 2 DGCA./; : @ (2.4)

Itis well-known [51] that the categories DGLA, and DGCA /, carry natural (projective) model struc-
tures, where the weak equivalences (respectively, fibrations) are the quasi-isomorphisms (respec-
tively, degreewise surjective maps) of DG algebras. It is shown in [3] that (2.4) is a Quillen adjunc-
tion with respect to these model structures. Hence, although the representation functor (-), is
not homotopy invariant (it does not preserve quasi-isomorphisms), it is left Quillen and therefore
has a well-behaved left derived functor

L( - )g . HO(DGLAk) i HO(DGCAk/k) (25)
For a given DG Lie algebra a, we now define the representation homology of a in g by
HR,(a,8) := L.(a),,

where L*(—)g = H*[L(—)g] denotes the composition of (2.5) with the homology functor on
DGCAy - By definition, HR,(a, g) is a graded commutative k-algebra, which depends on g and
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(the homotopy type of) the DG Lie algebra a. If a € Liey is an ordinary Lie algebra, there is a
natural isomorphism Hy(a, ) = a, which justifies our definition for the derived representation
scheme of Rep,(a):

DRep,(a) := RSpec[L,(a)y].

Now, let G be an affine algebraic group over k associated with the Lie algebra g. Observe that for
any a € Liey, G acts naturally on a, by automorphisms: this action is algebraic and functorial in a.
We write (- )g : Liey — Commy . for the subfunctor of (- ), defined by taking the G-invariants:

ag :=<{x€ag cgx)=x,VgE€GL

The algebra ag represents the affine quotient scheme Rep,(a)//G, parameterizing the closed
orbits of G in Repg(a),. Although it is not, in general, left Quillen, the functor (- )g also admits
the (total) left derived functor

L(—)g : Ho(DGLA,)— Ho(DGCAy /1) ,

and we can consider the associated homology functor L, (- )g :=H,[L(- )g] (cf. [1, Theo-
rem 2.6]). Then, if the algebraic group G is reductive over k, there is a natural isomorphism

L,(a)] = HR,(a,9)",

where HR, (a, )¢ denotes the invariant part of the representation homology of a in g.

2.2 | A functor homology interpretation

Recall from the introduction that ® denotes the full subcategory of Gr whose objects are the free
groups (n) based on thesetsn :={1,2,...,n}, n > 0. We write $-Mod (respectively, Mod-®) for the
categories of all covariant (respectively, contravariant) functors on & with values in the category
of k-vector spaces. Since ® is a small category, the categories ®-Mod and Mod-® are both abelian
with sufficiently many injective and projective objects. We view (and refer to) the objects of $-Mod
and Mod-® as left and right @-modules, respectively.

There is a natural bifunctor called the functor tensor product (see, for example, [39,
Appendix CJ):

- Qg — : Mod-G X B-Mod — Vect,.

This bifunctor is right exact with respect to each argument, preserves sums, and is left balanced. By
classical homological algebra [13]), the derived functors of — ® — with respect to each argument
are thus isomorphic, and we denote their common value by Torf?( -, —). Now, as explained in the
introduction, every commutative Hopf algebra H defines a left ®-module H : (n) — H®", and
dually, every cocommutative Hopf algebra U defines a right ®-module U : (n) — U®". Abusing
the notation we will often omit the ‘underline’ in the above formulae, identifying the $-modules
H and U with the corresponding Hopf algebras H and U.
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Theorem 2.1. Let G be an affine algebraic group with coordinate ring O(G) and the associated Lie
algebra g. Then, for any Lie algebra a € LieAlg,, there is a natural isomorphism

HR,(a,g) = Tor®Ua, OG)),

where O(G) and Ua are equipped with the standard Hopf algebra structures (commutative and
cocommutative, respectively).

Theorem 2.1 follows from Lemma 2.1, which is a simple formal result (probably well-known
to experts: see, for example, [37]), and Proposition 2.1 — an apparently deeper result on functor
homology — whose proof involves topological arguments.

Lemma 2.1. Forany a € Lie,, there is a natural isomorphism of commutative algebras
Ua ®(§j O(G) &= ag ,
where a is the representation algebra defined in (2.1).

Proof. Let B € Comm,. From the left &-module O(G), we form the right ®-module
Hom, (O(G), B), which assigns Hom,(O(G)®™, B) to (m). Since B is a commutative k-algebra
and since O(G) is a strictly monoidal left ®-module, Hom; (O(G), B) acquires the structure of a
lax monoidal right ®-module. This structure is given by the maps

Hom,(0(G)®", B) ® Hom,(0(G)®", B) 222

Hom, (O(G)®"+", B),
where uy is the product on B. By the standard Hom — ® adjunction, there is a natural isomor-
phism of k-vector spaces

Hom; (Ua ®g O(G), B) = Homy,4(Ua, Hom; (O(G), B)).

It is routine to check that under this isomorphism, the k-algebra homomorphisms from Ua ®
O(G) to B correspond to the right $-module homomorphisms from Ua to Hom, (O(G), B) that
respect the (lax) monoidal structure. Since O(G) is a coalgebra and B is an algebra, Hom,; (O(G), B)
has an algebra structure (with product given by convolution). Another routine verification shows
that the set of right ®-module homomorphisms from Ua to Hom,; (O(G), B) that respect the (lax)
monoidal structure is in (natural) bijection with the set of k-algebra homomorphisms ¢ from Ua
to Hom, (O(G), B) that satisfy the following additional conditions:

e()(f9) = (NP9, p()pc) = eX)1p, PSX(S) = p(x)(Sf)

forallx € Uaand f,g € O(G). Here, ¢ and S stand for the counit and antipode of Ua, respec-
tively, the coproduct in Ua is given by x -~ x® ® x® in Sweedler notation. It is not difficult to
verify that the third condition above follows from the first two. As shown in [42, Example 3.4], the
algebra homomorphisms from Ua to Hom, (O(G), B) satisfying the above conditions are in natu-
ral bijection with Lie algebra homomorphisms from a to g(B). Indeed, ¢ satisfies these conditions
forall x in Ua if and only if it satisfies these conditions for x € a.For x € a, these conditions are
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equivalent to the assertion that ¢(x) is a k-linear derivation on (O(G) with respect to the homo-
morphism 150¢G), Where g4 denotes the canonical augmentation on O(G). Such derivations
are indeed in bijection with elements of Hom, (g*, B) = g(B). We thus have a natural bijection

Homg,y,, (Ua ®g O(G),B) = Homy; (a,g(B)).
The desired lemma now follows from the Yoneda lemma. O

Proposition 2.1. Let V be a k-vector space, and let TV be the right &-module associated to the tensor
algebra of V equipped with the standard cocommutative Hopf algebra structure. Then

Tor®(TV, O(G)) = {A(g* ®V) ifi=0

ifi > 0.
In particular, Tor?[(ﬂ)q, O(G)] =0foralli>0andq > 0.

Our proof of Proposition 2.1 is based on topological arguments: specifically, it uses Theorem 3.2
(and its Corollary 3.2) as well as our earlier computations of the representation homology of
wedges of spheres ([5, Proposition 5.3]). We do not know a completely algebraic proof of this result.

Proof of Proposition 2.1. Note that the cocommutative Hopf algebra TV can be viewed as the
universal enveloping algebra U(LV) of the free Lie algebra generated by V. The corresponding
module TV has a weight grading induced by the weight grading on TV in which V has weight
1. Let (TV), denote the component of TV of weight g. For example, V := TV is the §-module
defined by linz ® V, where 1ing, is the linearization functor (cf. [5, Example 3.1])

ling : © - Vect,, (n)m (n),, @z k=k"
Since TV Qg O(G) = U(LV) ®g O(G), the required isomorphism for i =0 follows from

Lemma 2.1. To prove the vanishing of Tori@ (TV, O(G))fori > 0, we assign V (homological) degree
2. Then TV is a graded right ®-module, whose component in degree 2q is (TV),. Thus,

H,[TV & 0(0)] = D Tory[(TV),, 0(G)].
2g+i=n

The desired proposition will follow once we show that
H,[TV ®g O(G)] = A" ®V). 2.6)
By Theorem A.1, there are Quillen equivalences refining the Dold-Kan correspondence
N* : DGLA; 2 slieg I N, N* : DGA; 2 sAlg, : N,
where s% denotes the category of simplicial objects in a category . Equip N*TV =~ T(N~1V)

(see formula A.4 in the Appendix ) with the simplicial cocommutative Hopf algebra structure
given by its identification with UL(N~1V). This gives N*TV the structure of a simplicial right
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®-module (which we denote by N*TV). This module assigns to the free group (m) the simplicial
vector space N*TV®™, Since V has degree 2, N*LV =~ L(N~'V)isasemi-free simplicial Lie model
for the space X given by the wedge of (dim;, V) copies of the 3-spheres S3. By Theorem 3.2 (in
particular, Corollary 3.2 thereof) and [5, Proposition 5.3], we then conclude

H,[N(N*TV) Qg O(G)] = HR,(X,G) = A(g*® V).

To complete the proof it remains to note that the natural map ¢ : TV — N(N*TV) (induced by
the unit of the adjunction between the functors N and N*) is a quasi-isomorphism of right ®-
modules. Indeed, ¢, is defined by the family of maps

Q@m
e(m)) : TV®™ s N(N*TV)®" — N(N*TV®™)

where the last arrow is the Eilenberg-Zilber map (which is well-defined for m > 2 because of the
associativity of the Eilenberg—Zilber map for m = 2). That this is a quasi-isomorphism follows
from the Kiinneth theorem and the fact thate : TV — N(N*TV) is a quasi-isomorphism of alge-
bras. The associativity of the Eilenberg-Zilber map implies that the maps ¢((m)) indeed assemble
into a morphism of right $-modules. [l

Remark. The result of Proposition 2.1 extends to (homologically) graded vector spaces. To be pre-
cise,if V =V, be a DG k-module with trivial differential, such that V; = 0 for all i <« 0, then there
is an isomorphism in the derived category of k-modules:

L ~ %
TV ®g OG)=Ag" ®V).
As a result, there is a homology spectral sequence of the form
E}, = Tory(H LTV), 06) > Ag*®V), (2.7)

where H q(TV) stands for the component of the right ®-module TV in homological degree g (note

that this module is in general different from (ﬂ)q). Now, if we take V = ﬁ*(X , k), the (reduced)
homology of some pointed space X, then the spectral sequence (2.7) has a topological meaning: it
isisomorphic to the fundamental spectral sequence of [ 5, Theorem 4.3] for the reduced suspension
2X:

Ef)q = Torg(gq(gzx), O(G)) = HR,(ZX,G).
Indeed, by [5, Proposition 5.3], HR,(ZX,G) = A(g* ® V). On the other hand, by the classical
Bott-Samelson theorem [8], we have an isomorphism of graded Hopf algebras: H,(QXX, k) =

TV the latter gives isomorphisms of right &-modules: Hq(QEX, k) = Eq(TV) forall g > 0.

Proof of Theorem 2.1. By Theorem A.1 (see the Appendix), there are Quillen equivalences refining
the classical Dold-Kan correspondence

N* : DGLA, = sLie; : N, N* : DGCA; 2 schlg, : N,
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where s% denotes the category of simplicial objects in a category €. Let £ > a be a semi-free DG
resolution of a. Let L := N*(L). By Theorem A.1, L = a is a cofibrant resolution in sLiey. Since
the representation functor (- )g is left adjoint, it commutes with N*, i.e, there is a commutative
diagram of functors

DGLA, v sLie,

(_)QJ J(_)g'

DGCA, ~> scAlg,

Thus, HR,(a,¢) = H,[L,] = 7,[L;]. By Lemma 2.1, L, = UL ®g O(G). Since L is semi-free by
Proposition A.2, the right &-module of n-simplices in the simplicial right ®-module UL is of the
form TV for some vector space V. It follows from Proposition 2.1 that the map C(UL) ®f§ oG)-
C(UL) ®g O(G) is a quasi-isomorphism, where C(-) stands for associated chain complex. The
desired result then follows once we establish that UL is a simplicial resolution of Ua. For this, we
need to check that for any m, UL®™ resolves Ua®™. This follows from the Eilenberg-Zilber and
Kiinneth theorems. O

3 | THE MAIN THEOREM

In this section, we prove Theorem 1.1 stated in the introduction. We deduce this result from Theo-
rem 3.1 which we call the Comparison Theorem. Despite its modest appearance, this theorem is a
nontrivial result, the proof of which relies heavily on Quillen’s theory [50] and requires a number
of technical refinements thereof. As these refinements may be useful for other applications, we
state them carefully and prove in a detailed manner.

3.1 | Comparison theorem

In this section for simplicity, we assume that k = Q to use directly the results of [50]. However, as
explained in Remark 3.2.5, the results of this section extend to an arbitrary field of characteristic
0 by a universal coefficient argument.

Let X be al-connected topological space of finite rational type. Recall (cf. [23]) that one can asso-
ciate to X a commutative cochain DG algebra Ay, called a Sullivan model of X, and a connected
(chain) DG Lie algebra ay, called a Quillen model of X. Each of these algebras is uniquely deter-
mined up to homotopy and each encodes the rational homotopy type of X. The relation between
them is given by a DG algebra quasi-isomorphism

C*(ay;Q) > Ay, (1)

where C*(ay;Q) is the Chevalley-Eilenberg cochain complex of ay. The homology of ay is the
homotopy Lie algebra Ly = 7,(QX)q, while the cohomology of Ay is the rational cohomology
algebra H*(X; Q) of X. Among Quillen models of X there is a minimal one given by a semi-free DG
Lie algebra (£(V), d) generated by a graded Q-vector space V with differential d satisfying d(V') C
[ £(V), L(V)]. Such a minimal model is determined uniquely up to (noncanonical) isomorphism.
In particular, V = H, (X; Q)[—1] (see [23, p. 326]).
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Now, given an algebraic group G, one can associate to a 1-connected space X two kinds of repre-
sentation homology: the representation homology HR (X, G) of X with coefficients in G and the
representation homology HR , (ay, g) of a Lie model ay of X with coefficients in the Lie algebra of
G (in the sense of Section 2). A priori, these two homology groups are defined in a very different
way, but the following Comparison Theorem shows that they actually agree.

Theorem 3.1 (Comparison Theorem). For any affine algebraic group G with Lie algebra g, there is
an isomorphism of graded commutative Q-algebras

HR,.(X,G) = HR,(ayx,g).

Theorem 1.1 follows from Theorem 3.1 modulo some general algebraic results on representation
homology of Lie algebras proved in [3].

Proof of Theorem 1.1. Since the Sullivan model of X is uniquely determined up to homotopy,
it suffices to prove the desired theorem for a particular choice of Sullivan model of X. Let
ay = (L£(V),d) be the minimal Quillen model of X. Then, ay is connected, i.e, concentrated
in positive homological degree and finite-dimensional in each homological degree. Hence, C :=
C,(ay; @)is2-connected (i.e, its coaugmentation coideal is concentrated in degrees > 2) and finite-
dimensional in each homological degree. The graded Q-linear dual of C is Ay := C*(ay;Q),
which is a Sullivan model of X. Moreover, C is Koszul dual® to ay. It follows from Theorem 3.1
and [3, Theorem 6.7(b)] (also see [3, Theorem 6.3] and the subsequent remark) that

HR,(X,G) = HR,(ax,9) = Hep(g(Ax); Q).
If, moreover, G is reductive, we have
HR,(X,G)% = Hgj(a(Ax); @) = Hep(a(Ax); @) = Hep(a(Ax), 6; Q).
The first isomorphism above follows from the fact that all (quasi-)isomorphisms in the proof of
Theorem 3.1 are G-equivariant. Indeed, every G-action involved is induced by the G-action on the
left &-module O(G) coming from the conjugation action of G on itself. This finishes the proof of

the theorem. m

Before proving Theorem 3.1, we record one useful consequence that gives an explicit DG algebra
model for the representation homology of X in terms of the minimal Quillen model of X.

Corollary 3.1. Let ay = (L(V),d) be the minimal Quillen model of X. Then, (aX)g is a canonical
DG Q-algebra whose homology is isomorphic to HR (X, G). Thus, as graded algebras,

HR.(X,G) = H,[A(¢" ® V), 0],

T Recall that there is a Quillen equivalence Q. : DGCC,:/k 2 DGLA; : C.(-;k) between the category DGLA; of (non-
1

1 /k of coaugmented, conilpotent, cocommutative DG coalgebras

whose coaugmentation coideals are concentrated in homological degree > 1. We say that a DG coalgebra C € DGCC

negatively graded) DG Lie algebras and the category DGCC
1 .
ok 18
Koszul dual to a DG Lie algebra a € DGLA, if there is a quasi-isomorphism of DG Lie algebras Q.. (C) — a.
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where the differential 0 is given on generators by
¢ ®v) = (§%,e(dv)), VE€g" , vEV,

whereg : L(V)— A(g* ® V) ® g is the universal representation (2.2).

Proof. Since ay is a semi-free (hence, cofibrant) DG Lie algebra, HR (ay,g) = H*[(aX)g].
The first assertion is then immediate from Theorem 3.1. The algebra isomorphism (ay), =
A (g* ® V) follows easily from formula (2.1). The formula for the differential d can follows
easily from the fact that the universal representation p : ay— (ax), ® ¢ is a DG Lie algebra
homomorphism. O

Example 1. Recall (see Example 5, [23, chapter 24]) that the minimal Lie model for the complex
projective space CP',r > 1 is given by the free Lie algebra a, := L(v;,0,,...,V,) generated by
vy, ..., U, Where the degree of v; is 2i — 1, and the differential is defined on generators by dv; = 0,
dv; = 1 Zj+k:i[vj, v, ] for all i > 2. By Corollary 3.1, we have

2
HR,(CP",G) = H,[(q,),] = H, lA(@ q - vi>,5] ,
i=1

where g* - v; denotes a copy of g* in degree 2i — 1 indexed by v; and where the differential d is
given on generators by

AE* - v) = D (&0 v

k=i
Here, the cobracket on g* is given by §* = &7 A & in Sweedler notation.

Example 2. As another application of Corollary 3.1, we can compute the representation homol-
ogy of highly connected spaces in low homological degrees. To be precise, let X be an n-connected
space for some n > 1. Consider the minimal Quillen model ay = (£(V),0) of X. Then V; =
H;,,(X;Q) for all i > 0. By the Rational Hurewicz Theorem, H;(X, Q) = 7;(X)g for all 1 <i <
2n. Hence, V; = 0 for i < n — 1. Then the (nonzero) elements of [V, V] must have homological
degree > 2n, and therefore, by minimality of ay, d(V;) = 0 for n < i < 2n. The differential d on
(ax)y = A(g" ® V) then vanishes on chains of degree < 2n, and Corollary 3.1 implies

k for i
HR;(X,G) = 0 for

1< n
H;,,(X;g") for n<i<2n-1

0

l

The above isomorphisms were found by a different method in [5] (see [5, Proposition 4.3]).

Remark. In geometric terms, Theorem 3.1 can be restated by saying that there is an equivalence
between the derived moduli space RLoc;(X) of (framed) G-local systems on a pointed simply
connected space X (or equivalently, the moduli space of representations of the co-group GX cor-
responding to X in the algebraic group G) and the derived moduli space DRep,(ay) of represen-
tations of the (co-)Lie algebra ay of X in the Lie algebra g of G. It would be interesting to give
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a geometric proof of this equivalence by constructing an explicit (‘tangent’) map that identifies
these moduli spaces.

Remark. One might expect that the result of Comparison Theorem — at least, in the form of
Theorem 1.1 — holds for all nilpotent spaces (not just for simply connected ones). This is, however,
not the case: already in the simplest example: X = S!, the representation homology HR .(S!, G) =
O(G) depends on the whole algebraic group G, not only its Lie algebra g (as it happens, according
to Theorem 1.1, in the case of simply connected spaces).

3.2 | Proof of Comparison Theorem
3.21 | Outline of the proof

The proof of Theorem 3.1 is based on several technical results. Recall that one can associate to a
(simply connected) space X a semi-free simplicial Lie algebra model Ly and a semi-free simplicial
group model GX. We let R := ULy denote the universal enveloping algebra of Ly, and QGX the
rational group algebra of GX: both are simplicial cocommutative Hopf algebras defined over Q.
We write R and @GX for the completions of these Hopf algebras with respect to their canonical
augmentation ideals. Quillen’s rational homotopy theory provides a zig-zag of maps

~

QGX oGx —2 R R,

where the first and the last arrows are the natural (completion) maps, which induce isomorphisms
on all homotopy groups (see [50, part I, section 3]), while ¢ — which is by no means a unique
map — is a weak equivalence in the model category of complete simplicial cocommutative Hopf
algebras (sSCHA). Our first step is to prove Theorem 3.2, which states that the above zig-zag of maps
of simplicial Hopf algebras enriches to a zig-zag of weak equivalences of associated simplicial &-
modules:

QGX dex —=

| =y

R.

This is verified in a series of propositions in Subsection 3.2.2, using a relatively straightforward
extension of the arguments of [50]. The subtlety here is that the notion of weak equivalence in
sCHA is a priori different from that of a map inducing an isomorphism on all homotopy groups
(see [50, part II, section 4]). This makes it necessary to argue that the map on simplicial right
®-modules induced by ¢ indeed induces isomorphisms on all homotopy groups. We conclude
Subsection 3.2.2 by noting that Theorem 3.2 and [5, Theorem 4.2] together imply that HR (X, G)
is isomorphic to the homology of the derived tensor product N(R) ®f§ O(G) (Corollary 3.2).

In our second step, starting with Corollary 3.2, we proceed to argue in Subsection 3.2.3 that
HR,(X,G) = HR (ay, g) as graded vector spaces. Our argument is a minor modification of the
proof of Theorem 2.1. For this, we first observe that HR,(ay,q) = H,[N(L,)] = H,[C(L,)],
where C stands for associated chain complex. Now, L; = R ® ¢ O(G). Hence, C(L,) = C(R) ®gy
O(G). By Corollary 3.2, it suffices to verify that the map C(R) ®f§ O(G)— C(R) ®g O(G) induces
an isomorphism on homology. The crucial ingredient in this verification is Proposition 2.1 (stated
and proved in Subsection 2.2), which implies that the n-simplices of R are right $-modules whose
higher Tor’s with O(G) vanish.
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Our third and final step is carried out in Subsection 3.2.4, where we show that the isomorphism
of graded vector spaces, HR, (X, G) = HR,(ay, g), constructed in Subsection 3.2.3 is indeed an
isomorphism of graded commutative algebras. We do this by exhibiting for any g € N a morphism
of simplicial commutative algebras inducing the isomorphism HR;(X, G) = H;[N(L,)] fori < g.
To show this, we first note that the canonical filtration (by powers of the augmentation ideal) on
R induces a filtration on the right ®-module R. Then we use a generic connectivity argument due
to Curtis [15, section 4] to show that 7, (F"R) = 0 for r > g (Proposition 3.4). This allows us to
replace R with R/F"R,r > 0 when computing homologies in degree < q of N(R) ®Ié O(G) (i.e,
HR;(X, G)fori < gq). Again as a consequence of Proposition 2.1, the n-simplices of R /F'R are right
®-modules whose higher Tor’s with O(G) vanish. It follows from these facts that the composite
map

QGX ®y O(G) — QGX @y O(G) — R Qg O(G) — R/F'R @ O(G)

induces the isomorphism HR;(X,G) = m;[L,] for i < q (on functions 7;). It is not difficult to
check that the maps above are morphisms of simplicial commutative algebras. This concludes
our argument.
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By Theorem A.1, there are Quillen equivalences refining the Dold-Kan correspondence
N* : DGLAg 2 sLieg : N, N* : DGAy 2 sAlg, : N N* : DGCAgy 2 scAlg, : N,

where s% denotes the category of simplicial objects in a category ¢ . By Proposition A.2, applying
the functor N* to a semi-free Quillen model of X gives a reduced semi-free simplicial Lie model of
X.Let L := Ly be a reduced semi-free simplicial Lie model of X. Consider the simplicial cocom-
mutative Hopf algebra R : = U(L) as well as the simplicial complete cocommutative Hopf algebra
R =~ U(L) (where the completion is with respect to the canonical augmentation). These corre-
spond to the right ®-modules R and BA, which assign to (m) the the tensor product R®™ and the
completed tensor product 1/2\@9’”, respectively. Similarly, the simplicial cocommutative Hopf alge-
bra QGX and the simplicial complete cocommutative Hopf algebra QGX correspond to the right
®-modules QGX and @LX which assign to (m) the tensor product QGX®™ and the completed

tensor product QGX &m, respectively. Recall that the main result from Quillen’s rational homotopy
theory [50] is about the existence of a zig-zag of maps

QGX — OGX £+~ R«—R

of simplicial commutative Hopf algebras such that the first and last arrows induce isomorphisms
on all homotopy groups while the map g is a weak-equivalence in the model category of simplicial
complete cocommutative Hopf algebras. First, we prove the following extension of this result.

Theorem 3.2. There is a zig-zag of weak-equivalences of simplicial right &-modules

06X — 06X 2+ R« R.
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Proof. The desired result is an immediate consequence of Propositions 3.1, 3.2 and 3.3 which we
state and prove below. The proofs of these propositions are exercises in Quillen’s rational homo-
topy theory. O

The propositions leading to Theorem 3.2 are in turn based on the following lemma. Let V' be
a filtered reduced simplicial vector space. Let V denote the completion of V with respect to the
given filtration. More generally, for any m € N, one has the simplicial vector spaces yem yem
and VO™ = P®m where VO™ denotes the completed tensor product lim (V JFTV)®™M Let Am(V)

denote the image in V&M of the symmetrization idempotent e,, := %Zoesm o. Let A(V) :=
anc’zo A™(V). Recall that a 7.-equivalence (see [41]) is a morphism inducing isomorphisms on

all homotopy groups.

Lemma 3.1. Suppose that for each q > 0, 7, (F"V') = 0 for r sufficiently large. Then,

(i) foreach q > 0, nq(lj’ V) = 0 for r sufficiently large;
(ii) the map V®™" — V" isq 1 -equivalences for all m;
(iii) the map A(V)— A(WV)isa 7 .-equivalence.

Proof. By along exact sequence of homotopy groups (LESH) argument, the natural map 7,(V) -
7 (V/F'V) is an isomorphism for r sufficiently large. Thus, the inverse system {z,(V /F"V)}
is eventually constant. Thus, liml{n’q(V/F "V)} = 0. It follows from [50, Part I, Proposition 3.8]
that ﬂq(f/\) = nq(V/F "V) for r sufficiently large. Since V/F'V I7/F k¥ we see that nq(ﬁ) =
ﬂq(‘//\/F V) for r sufficiently large. Again by a LESH argument, 7y (F" V) = 0 for r sufficiently
large. This proves (i).

Moreover, by the Eilenberg-Zilber and Kiinneth theorems, 7,(V®™) = 7 [(V /F'V)®™] for
r sufficiently large (since the same is true for m = 1). It follows that the inverse system
{my[(V/F" V)®™M1} is eventually constant. Arguing as for the case when m =1, we see that
ﬂq(f/\@’\”) = 7 [(V/F "V)®"] for r sufficiently large. This proves that the natural map V& —
7®m induces an isomorphism on 7, for any fixed q. This proves (ii).

Since the map V®" — vem is S,,-equivariant and since A™(V') and A™(V) are the images
of the symmetrization idempotent e, acting on V& and yem respectively, the natural map
A™(V)— A"M(V)isa 7,-equivalence. Thus, the map A(V)— EBm/A\m(V) isa -equivalence. Since
V isreduced and by (ii), ﬂq(V®’ ) = 0forr > g (bythe Eilenberg-Zilber and Kiinneth theorems). It
follows that ﬂq(eam;,/A\m(V) = 0forr > q. Applying (ii)to W := @ml/im(V) with filtration given
by F'W := @mzrﬂm(V), we see that the map eam?\m(V) - A(V)isa 7 ,.-equivalence. This proves
(iii). [l

Proposition 3.1. The canonical map of ®-modules R — IE is a ,-equivalence.

Proof. It needs to be shown that the map R®™ — R®misa 7 .~equivalence. By [50, Part I, Theorem
3.7], for any fixed g, 7, (F'R) vanishes for r sufficiently large. Lemma 3.1 (ii) then implies that the

map R®" — R®" is a 7r_-equivalence, as desired. O

Recall that GX denotes the Kan loop group functor applied to a reduced simplicial/cellular
model of X. Then, QGX is a simplicial cocommutative Hopf algebra equipped with a canoni-
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cal augmentation. The completion @GX of QGX with respect to its canonical augmentation is
a simplicial complete cocommutative Hopf algebra (sSCHA). QGX as well as @GX correspond to
simplicial right &-modules, which we denote by QGX and QGX, respectively.

Proposition 3.2. The map QGX — QGX is a 7, -equivalence.

Proof. We need to show that for each m, the map QGX®" — QGX &m is a 7.-equivalence. By
Lemma 3.1 (i), this follows one we verify that for any fixed g, 7,(F"QGX) = 0 for r sufficiently
large. This is immediate from [41, Theorem 4.72]. O

We recall that the category sCHA of reduced sCHA'’s is a model category, whose cofibrant objects
are retracts of semi-free SCHA’s. The definition of semi-free SCHA is the obvious extension to
the simplicial setting of the definition of a free complete cocommutative Hopf algebra: the free
complete cocommutative Hopf algebra generated by a vector space V is TV, where V is prim-
itive. We now apply Quillen’s rational homotopy theory: in [50], Quillen proves several equiv-
alences of homotopy categories (see [50, p. 211, fig. 2) from which it follows that there is an
isomorphism in Ho(sCHA) @GX = R. By [50, Theorem 4.7], there is a morphism ¢ : QGX — R
that is a simplicial homotopy equivalence. Denote the corresponding map of right -modules by
g - Q6X—R

Proposition 3.3. g is a 7, -equivalence.

Proof. By [50, Part I, Theorem 3.7] and Lemma 3.1, the compleuon map R R®™ s R®M s a T,-
equivalence. Similarly, it can be shown that the map QGX®" - QGX®M isa 7, equivalence. To
prove the desired lemma, we need to show that g®m QGX®" — R®™M is 3 7, equivalence for
each m. Since the diagram B

AGX®" — QGX®™

l gom ] g®m

Rem Rém

commutes, it suffices (by the Eilenberg-Zilber and Kiinneth theorems) to show that g is a 7 -
equivalence. Let P denote the functor of primitive elements. By [50, Appendix A, Corollary 2.16],
there is an isomorphism of simplicial vector spaces A(PR) = R. For the same reason, QGX is iso-
morphic to K(P@GX ) as simplicial vector spaces. Since PRisacanonical retract of R, g (F'PR) =
0 for r large enough (since the same holds for R) and for the same reason, 7rq(F "PAGX) = 0 for
r sufficiently large. By Lemma 3.1 (iii), the horizontal arrows in the commutative diagram below
are 7 -equivalences.

APOGX) — A(POGX) ~ OGX

lA(Pg) lg

A(PR) A(PR) = R
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By [50, Part II, Theorem 4.7], Pg is a 7 -equivalence. Thus, the left vertical arrow in the above
diagram is a 77 -equivalence. It follows that g is a 7, -equivalence, as desired. O

The following corollary of Theorem 3.2 completes the first step towards proving Theorem 3.1.
Corollary 3.2. There is an isomorphism of graded vector spaces HR (X, G) = H, [N(R) ®é, O(G)].

Proof. By Theorem 3.2, N(QGX) = N(R)in the derived category of right $-modules. Hence, there
is an isomorphism in the derived category D(Q) of complexes of Q-vector spaces

N(QGX) ®, O(G) = N(R) ® O(G).

The desired result now follows from [5, Theorem 4.2]. O
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We now show that HR (X, G) =~ HR,(ay, g) as graded vector spaces. This step is a minor modifi-
cation of the proof of Theorem 2.1. Without loss of generality, we may assume that ay is semi-free.
Since the representation functor (- )g is left adjoint, it commutes with N*, that is, there is a com-
mutative diagram of functors

DGLAg ~ sLieg

(—)QJ l(—)g

DGCAq —» scAlg,,.

Since N* : DGCAy 2 scAlg, : N is a Quillen equivalence, the above commutative diagram
implies that HR , (ax, g) = H,[N(L,)] as graded algebras, where L := N*ay.By Lemma2.1,L, =
R ®g O(G), where R := UL. Thus, HR,(ay,g) = H,[C(R ®g O(G))] = H,[C(R) ®y O(G)],
where C stands for associated chain complex (indeed, the inclusion N (Lg) < C(Lg) is a quasi-
isomorphism). Since L is a semi-free simplicial Lie algebra by Proposition A.2, the right &-module
of n-simplices in the simplicial right ®-module R is of the form TV for some vector space V. It
follows from Proposition 2.1 that C(R) is a complex of right ®-modules whose higher Tor’s with
O(G) vanish. Thus, the map C(R) ®é O(G)— C(R) ®g O(G) is a quasi-isomorphism. Since there
is a quasi-isomorphism of complexes of right ®-modules N(R) < C(R), there are isomorphisms
of graded vector spaces

HR,(X,G) = H,[N(R) ®F O(G)] = H,[C(R) ® O(G)] = H,[C(R) ®y O(G)] = HR,(ay,9),

where the first isomorphism above is by Corollary 3.2. This completes the second step in the proof
of Theorem 3.1. However, we do not see a resolution of P— C(R) by projective right -modules
such that the functor P : °° — Com, is monoidal. As a result, we are unable to see the alge-
bra structure on H,[C(R) ®I(;) O(G)] independently of Corollary 3.2. We therefore require further
work in Subsection 3.2.4 to show that the isomorphism HR (X, G) =~ HR,(ay, g) of graded vector
spaces is indeed an isomorphism of graded algebras.
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To complete the proof of Theorem 3.1, it remains to show that HR (X, G) = HR,(ay, g) as graded
Q-algebras. For this, given any r € N, we shall produce a morphism of simplicial commutative
algebras that induces the isomorphism HR (X, G) = Hy[N(L,)] forg <r.

Recall that R := UL is a semi-free simplicial associative algebra filtered by powers of its aug-
mentation ideal. This filtration induces a filtration on the simplicial right ®-module R: if the
algebra of n-simplices of R is TV for some vector space V, then the right ®-module of n-simplices
of F'Ri8 @45, (TV),. The following connectivity result holds for the filtered right ®-module R.

qzr

Proposition 3.4. Forr > g, we have 7,(F'R) = 0.

Proof. 1t needs to be shown that for all (m), ,(F"R({m))) = 0 for r > q. For m = 0, this is obvi-
ous. For m = 1, this is [50, part I, Theorem 3.7]. For arbitrary m, we generalize the argument in
[50]. The functor Lieg— Vecty, L — F'UL({m)) takes O to 0 and commutes with direct limits.
By [15, Remark 4.10], the arguments in [15, section 4] proving Lemma (2.5) therein apply to this
functor as well. It therefore, suffices to verify the desired proposition for R = U, where I is the
free simplicial Lie algebra generated by V := QK, where K is a finite wedge sum of simplicial
circles. Note that in this case, R = TV, and V is a connected simplicial vector space. In this case,
F'R((m)) = @,1+,,,+rm>,V®’1 ® ... ® V®'m_ That Ty of each summand vanishes for g < r follows
from the Eilenberg-Zilber and Kiinneth theorems. This proves the desired proposition. O

Proposition 3.5. For r sufficiently large, all arrows in the following commutative diagram induce
isomorphisms on the homology groups H;[ -], i < g.

C(R) ®E, O(G) — C(R/F'R) ®% OG)

l l

C(R) ®¢ OG) — C(R/F'R) ®s O(G).

Proof. Both C(R) and C(R/F'R) are complexes of right @-modules whose higher Tors with O(G)
vanish by Proposition 2.1. It follows that the vertical arrows induce isomorphisms on all homology
groups. It therefore, suffices to show that the horizontal arrow on top of the above diagram induces
isomorphisms on H;[ -], i < g for r sufficiently large.

Consider the good truncation 7,,,,C (see [60, section 1.2.7]) of a chain complex C of right
®-modules. The exact sequence 0— 7,,,,C— C— 7,,,C— 0 of complexes of right -modules
gives a distinguished triangle in D(Q) for any right &-module N.

T,y1C®G N> C®L N—>7_,,,C®L N 1,,,,C ®F NI[1].

Itis easy to see that H;(7,44,C ®Ié§ N) =0fori < q + 1. The long exact sequence of homologies
associated with the above distinguished triangle then implies that

H;(C ®g N) = H;(t,4,C ®g N)fori<q. (3.2)

By Proposition 3.4, the map 74, C(R)— 7441 C(R/F'R) is a quasi-isomorphism for r > g.
Thus, the map H,[7;,,C(R) ®é} 0(G)] - H,[t.411C(R/F'R) ®I(;5 O(G)] is an isomorphism of
graded Q-vector spaces. The desired proposition now follows from (3.2). O
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Note that the filtration on R induces a filtration on the right -module R. Clearly, R/F'R =
IE /F ’E. The following corollary is immediate from Propositions 3.1 and 3.5.

Corollary 3.3. For r sufficiently large, all arrows in the following commutative diagram induce
isomorphisms on the homology groups H;[ -], i < q.

C(R) ® 0(G) — C(R) ®; O(G)

L

C(R/F'R) ®L O(G).

Recall that there is a weak equivalence between cofibrant objects in sCHA g : QGX - Rinduc-
ing a map of simplicial right $-modules g (see Proposition 3.3). Consider the following commu-
tative diagram, where the second arrow on the top and bottom rows is induced by g.

C(QGX) ®% O(G) — C(@GX) ®% O(G) — C(R) L O(G)

| | | \ (33)

ClAGX ®¢ O(G)] — C[AGX ®y O(G)] — C[R®¢ O(G)] — C[R/F'R ® O(G)]

By [5, Theorem 4.2], the left vertical arrow in (3.3) induces isomorphisms on all homologies.
The two arrows on the top row of (3.3) induce isomorphisms on all homologies by Propositions 3.2
and 3.3, respectively. The diagonal arrow induces isomorphisms on H;[ - ], i < g for r sufficiently
large by Proposition 3.5 and Corollary 3.3. An isomorphism HR;(X, G) = H;[N(L,)], i < g isthus
induced on homologies (for sufficiently large r) by the composition of the maps on the bottom row
of (3.3). That the composition of maps in the bottom row is a map of DG commutative algebras
follows from the fact that each of the maps

QGX ®g O(G)— Q6X ®y O(G)— R @ O(G)— R/F'R ®y O(G)
is a morphism of simplicial commutative algebras. Indeed, this last fact follows from [37,
Proposition 3.4] and the facts that O(G) is a lax-monoidal left ®-module, the n-simplices
of the right &-modules QGX, @GX,E and R/F'R are lax-monoidal for each n, and the
morphisms
Q6X — 86X — R~ R/F'R
are natural transformations of lax-monoidal functors on n-simplices for each n. This completes

the proof of Theorem 3.1.

3.2.5 | Remark

The results of this section go through with Q replaced by any field k of characteristic 0. Indeed,
the proofs of Propositions 3.1 and 3.2 work for any such field k. For Proposition 3.3, we work with
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a semi-free simplicial Lie model L of X over Q. The corresponding Lie model over k is L ® k.
The corresponding SCHA over k is R@Ek. The 7,-equivalence of sSCHA’s (over Q) f : R— QGX
extends to a ,-equivalence of sCHA’s (over k) f : RTX)CTk — kGX. This proves Proposition 3.3
over k. Theorem 3.2 (and hence, Corollary 3.2), Proposition 2.1, Theorem 3.1 and Proposition 2.1
can then be proven over k as done above (over Q).

3.3 | A conjecture for non-simply connected spaces

In a series of recent papers [9-11], Buijs, Félix, Murillo and Tanré associated a free DG Lie algebra
model (Ry, d) to any finite simplicial complex X. Unlike Quillen models, the DG Lie algebras &y
are assumed, in general, to be not connected but complete with respect to the canonical decreas-
ing filtrarion ! D 2 D ..., defined by ' := R and 2" := [, 2""!]. The 0-simplices of X cor-
respond to the degree —1 generators of 8y that satisfy the Maurer-Cartan equation, while the n-
simplices of X correspond to generators in degree n — 1. For any connected, finite simplicial com-
plex X, the DG Lie algebra & itselfis acyclic (that is, H, (2y, d) = 0). The topological information
about X is contained in a DG Lie algebra (2, d,,) obtained from 2y by twisting its differential by
Maurer-Cartan elements corresponding to the vertices of X, that is, d, :=d + [v, -] where v
denotes (the Maurer-Cartan element corresponding to) a vertex of X. Now, the main result of
[9] (see Theorem A) says that, if X is simply connected, then (8y,d,), is quasi-isomorphic to a
Quillen model of X. This motivates the following conjectural generalization of our Theorem 3.1.

Let (8y, d) be a complete free DG Lie algebra model associated to a reduced simplicial set X.
Letd, :=d + [v, -] be the twisted differential on 8y corresponding to the (unique) basepoint of
X. Note that HR([(Ry, d,), g] has a canonical augmentation ¢ corresponding to the trivial (zero)
representation. Let }/IR* [(Ry,d,), g] denote the adic completion of HR [(R, d,,), ¢] with respect
to the augmentation ideal of ¢. Similarly, HR(X, G) has a canonical augmentation correspond-
ing to the trivial (identity) representation of 7,(X, v). Let HR, (X, G) denote the corresponding
completion of HR (X, G).

Conjecture 1. There is an isomorphism of completed graded Q-algebras

Note that Conjecture 1 holds for X simply connected: indeed, in this case, (2y,d,,) is quasi-
isomorphic to a Quillen model ay of X and HR,[(Ry,d,),g] = Q. Thus, the right-hand side
of the conjectured isomorphism is HR (ayx, g). Similarly, HR,(X, G) = Q, which implies that
HR,(X,G) = HR,(X,G). Thus, Conjecture 1 is equivalent to Theorem 3.1 for simply con-
nected spaces.

4 | SPACES WITH POLYNOMIAL REPRESENTATION HOMOLOGY
AND THE STRONG MACDONALD CONJECTURE

In this section, we address Question 2 and prove our second main result — Theorem 4.5 — stated
as Theorem 1.2 in the introduction. We will also work out a number of explicit examples illustrat-
ing this theorem and linking it to the Strong Macdonald Conjecture.
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4.1 | Lie-Hodge decompositions

Given a Lie algebra a € Lie;, we consider the symmetric ad-invariant multilinear forms on a, of a
(fixed) degree d > 1. Every such form is induced from the universal one: a X a X ... X a = 1@ (a)
which takes its values in 1@ (a) : = Sym%(a)/[a, Sym?(a)] the space of coinvariants of the adjoint
representation of a in the dth symmetric power of a. The assignment a — A(?(a) defines a (non-
additive) functor that naturally extends to the category of DG Lie algebras:

A@D : DGLA, — Com,. (4.1)

The functor (4.1) is not homotopy invariant (it does not preserve quasi-isomorphisms); however,
as shown in [3], it has a well-defined left derived functor

LAY : Ho(DGLA,) — Ho(Comy). 4.2)

We write HCid)(a) for the homology of LA9(a), and call it the Lie-Hodge homology' of a.
Next, we consider the (reduced) cyclic functor on associative DG algebras

(—)u . DGAk/k—) Comk R R/(k + [R,R]) .

Observe that each functor (¥ comes together with a natural transformation (¥ — Uy induced
by the symmetrization maps

d 1
Sym (C[) —Ua, X1Xp e Xg P —' ZZ ixa(l) *Xg(2) e Xo(d)
S

where Ua is the universal enveloping algebra of a, and by the Poincaré-Birkhoff-Witt theorem,
these natural transformations assemble to an isomorphism of functors

P = v, (4.3)
d=1

On the other hand, by a well-known theorem of Feigin and Tsygan [22], the functor (-); has a
left derived functor L(-); : Ho(DGA; /k) — Ho(Com; ) that computes the reduced cyclic homology
HC,(R), of an associative algebra R € DGA; ;.. Since U preserves quasi-isomorphisms and maps
cofibrant DG Lie algebras to cofibrant DG associative algebras, the isomorphism (4.3) induces an
isomorphism of derived functors:

P LAY = L(-)oU. (4.4)
d=1

T Observe that AV is just the abelianization functor on Lie algebras; hence, for d = 1, the existence of (4.2) follows from
general results of [51], and HCS)(a), coincides with the Quillen homology of a, which is known to be isomorphic (up to
shift in degree) to the classical Chevalley-Eilenberg homology of a. For d = 2, the functor A®) was introduced by Drinfeld
in [20]; the existence of L1 was established by Getzler and Kapranov [27] who suggested to view HCiz)(a) as an analogue
of cyclic homology for Lie algebras. For arbitrary d > 1, the existence of (4.2) was proven in [3, section 7] using some earlier
general results of [1].
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At the level of homology, (4.4) yields a direct sum decomposition

HC,(Ua) = @ HC(a), (4.5)
d=1

which we call the Lie—-Hodge decomposition for Ua (cf. [3, Theorem 7.4]).

Now, let X be a simply connected topological space, and let X denote the free loop space
over X, that is, the space of all continuous maps S' — X equipped with compact open topology.
This space carries a natural S'-action (induced by rotations of S!), hence we can consider its
equivariant homology

HY (£X, k) := H,(ES" xg1 ZX, k).

We will actually work with a reduced version of S*-equivariant homology of .#X defined by
ﬁil(,,s,ﬂx, k) := Ker[HS' (£X, k) = H,(BS', k)],
where the map 7, comes from the natural (Borel) fibration
ZX — ES' xg .2X = BS™. (4.6)
The following theorem is a well-known result due to Goodwillie [29] and Jones [34].

Theorem 4.1 [29, 34]. Assume that X is a simply connected space of finite rational type, and let ay
be a Quillen model of X. Then there is a natural isomorphism of graded vector spaces

N ~ —g!
HC,(Uay) — H, (£X,Q). 4.7
Now, for each integer n > 0, consider the n-fold covering of the circle:
o’ : Sl N Sl ei@ — eins
and denote by ¢y ; £X - £X, the induced map on £X. While for n > 1, the maps ¢ are not

equivariant with respect to the S'-action on .ZX, they give naturally a commutative diagram in
the homotopy category

ZX ZX
(BS' g LX) 2o (BS! g £X)q 4.8)
(BS)g —— (BS")q
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where columns are obtained by taking the rationalization of the Borel fibration (4.6) (see [12]).
The maps @Y in (4.8) induce graded endomorphisms

- —s! —s!
Y H, (X, k) - H, (£X,k), n>0,
defined over any field k containing Q. We call these endomorphisms the power or Frobenius oper-
—s! =S, . . . .
ationson H_ (£X, k)and write H_ (p)(.i”X , k) for their (common) eigenspaces with eigenvalues

nP: that is,

_al
0 Pex k) =) Ker(@), - n? 1d). (4.9)

n=0

The next result proven in [7] provides a topological interpretation of the Lie-Hodge homology.

Theorem 4.2 [7, Theorem 4.2]. The Goodwillie-Jones isomorphism (4.7) restricts to isomorphisms

—St,(d-1
HCD(ay) =T @7

%

(£X,Q), Vd=1.

It follows from Theorems 4.1 and 4.2 that, for a Quillen model ay of a simply connected space
X, the Lie-Hodge decomposition (4.5) coincides with the topological Hodge decomposition

_gl1 © g
H (zx.0 = @H k.
p=0

4.2 | The Drinfeld homomorphism

Our next goal is to describe certain natural trace maps with values in representation homology.
These maps were originally constructed in [3, 4] as (derived) characters of finite-dimensional Lie
representations. We will give a topological interpretation of these characters in terms of free loop
spaces. From now on, we assume that G is a reductive affine algebraic group over k. We denote by
I(g) := Sym(g*)C, the space of invariant polynomials on the Lie algebra g of G, and for d > 0,
write I9(g) C I(g) for the subspace of homogeneous polynomials of degree d.

For any commutative algebra A, there is a natural symmetric invariant d-linear form a(A) X
a(A) x ... x a(A) = A9(a) ® A on the current Lie algebra a(A). Hence, by the universal property
of A9, we have a canonical map

ADlaA)]- 1D @ A. (4.10)
Applying 1@ to the universal representation (2.2) and composing with (4.10), we define
2D (a) — 1D[g(a)] — 19(g) ® a,. (4.11)
On the other hand, for the Lie algebra g, we have a canonical (nondegenerate) pairing

I1%g) x A 9(g) - k (4.12)
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induced by the linear pairing between g* and g. Replacing the Lie algebra a in (4.11) by its cofibrant
resolution £ - a and using (4.12), we define the morphism of complexes

(@) @ AV(L) — I(g9) @ A V(g) ® L, — L,. (4.13)

For a fixed polynomial P € I%(g), this morphism induces a map on homology Trg(a) :

HCid)(a)—> HR(a, g) which we call the Drinfeld trace associated to P. It is easy to check that
the image of (4.13) is contained in the invariant subalgebra £§ of L4, hence the Drinfeld trace is
actually a map

Trf(a) : HC"(a)— HR,(a,8)°. (4.14)

Now, assume that k = C and G is a complex reductive group of rank [. In this case, the alge-
bra I(g) = Sym(g*)C is freely generated by a set of homogeneous polynomials {P;, ..., P;} whose
degreesd; := deg(P;) are called the fundamental degrees of g. Fixing such aset{P,, ..., P;} of gener-
ators in I(g), we assemble the associated trace maps (4.14) into a single homomorphism of graded
commutative algebras

l

ATry(a) : Ay l@ Hcff”(a)] — HR,(a,4)°. (4.15)
i=1

Following [3, 4], we call (4.15) the Drinfeld homomorphism for (a, g). We note that the Drinfeld
homomorphism (4.15) depends on the choice of polynomials {P,, ..., P;} C I(g), but for simplicity
we suppress this in our notation.

If a =ay is a Lie model of a simply connected space X, by Theorem 4.2, HCid)(a) =]

—St(d-1 .
H, ( )(.,S,”X, C). On the other hand, by Theorem 3.1, HR .(a, g) = HR,(X, G). Hence, the Drin-

feld homomorphism for X may be rewritten in the following topological form:

l .
Ay lEB m,"ex, cr:)] — HR.(X,G)", (4.16)

i=1

where the m; = d; — 1 are the exponents of the Lie algebra of the group G.

Our next goal is to compute the Drinfeld homomorphism (4.16) explicitly in terms of the (min-
imal) Sullivan model Ay of X. Recall that A := Ay is Koszul dual to the Lie algebra a := ay
in the sense that A = C*(a; k). Then, by [3, Proposition 7.8], there is an isomorphism of graded
vector spaces for any m > 0,

HC" D (a) = HC(A)*[-1], @17

where the superscript (-)* stands for the graded k-linear dual. In particular, we have (cf. [12, The-
orem B])

ﬁil’(m)(-f X) = (ﬁim)(ft))*[—ll- (4.18)
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On the other hand, by [3, Theorem 6.7(b)],
HR,(a,9)° = Hgi(a(A), 6:0). (419)
Now, for each m > 0, for each P € I"*1(q), define a linear map
Dp 1 C,(g(A);C)— Q"(A)/dQ™ () [m +1], (4.20)

by the following explicit formula

1
(m+1)!

‘I)P((go ® aO) A A (gm ® am)) = z ia'cr(o)dacr(l) dacr(m)P(ga(O)’ e ga(m)) s

Uezm+l

(4.21)
where a, ...,a,, € Aand¢,...,&,, € g,and let ¥, denote the composition

Wy o Cu(a(A),6:C) — C,(g(A):C) =+ Q™(A)/dQ™ (A)[m +1].

Lemma 4.1.

(i) The map ¥p is a well-defined chain map whose graded linear dual induces on cohomology

wy ¢ () 1]~ Hipa(4), 6:0)

(ii) The following diagram commutes:
(m+1) Trg G
HC™" () —— HR.(a,9)
@17) | = 419) =
—(m) * v

Proof. We first recall from [4] a construction of the Drinfeld traces via the Chern-Simons formal-
ism. Let DR(A) := A 4(Q'A[-1]) equipped with the differential d + 8, where d is the de Rham
differential and 9 is the internal differential induced by the differential on 4. Let DR>"(.A) denote
the two sided DG ideal in DR(.A) generated by Q".A[—n], and let 7"DR(A) denote the quotient
DR(A)/DR>"*D( 4). Note that since A is augmented, so is 7"DR(A) for each n. Let 7"DR(A)
denote the corresponding augmentation ideal. Since A is smooth as a graded commutative alge-
bra, [39, Theorem 5.4.7], there is a canonical isomorphism for each m > 0

HC,"(4) = H,("DR(A)2m]).

Further, since A is a graded symmetric algebra equipped with an extra differential, the canonical
projection

T"DR(A) » (Q"™(A)/dQ™ 1 (A))[-m] (4.22)
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is a quasi-isomorphism (see [39, Theorem 5.4.12]). Hence,

HC " (A) = H,[(Q7(A)/dQ"1(4))[m])].

Next, note that the Chevalley-Eilenberg chain complex C,(g(.A); C) is a cocommutative DG coal-
gebra. Hence, the Hom complex B := Hom(C,(g(.A); k), "DR(A)) has the structure of a com-
mutative DG algebra with convolution product. There is a g-valued one form 6 € B' ® g on B
such that the restriction of 8 to AK(g(.4)) vanishes for k # 1 and Ol4¢4) coincides with the com-
posite map

g A —— A®g—> t"DR(A),

where the first arrow is the obvious swap map. For P € I"*1(g), the Chern-Simons form TP(0) €
B2+ satisfies S(TP(0)) = P(Q™+1), where Q € B? ® g is the curvature of 8. Since Q™+ =0
by [4, Proposition A.2], TP(0) € B*"*1 is a cocycle. It follows that s>"TP(0) defines a map of
complexes

1

msmTP(e) : C,(g(A);C)— T DR(A)1]. (4.23)

An explicit formula for the map (4.23) has been given in [21] (also see [4, Proposition A.3; 54,
Equation 2.2]). By [4, Proposition A.5], the composition of the canonical projection (4.22) with
(4.23) coincides with @, (see (4.20)). This implies (i). (ii) is then an immediate consequence of
the main result of [4] (see Theorem 3.2). O

As a consequence of Lemma 4.1, we obtain the following description of the Drinfeld homomor-
phism in terms of the (minimal) Sullivan model.

Theorem 4.3. For a simply connected space X with minimal Sullivan model Ay, the Drinfeld homo-
morphism (4.16) is given by the map

! 3k
Py A(EB (Fc™ ) [—1]>—>HEE(9(AX),Q;C) (424)

i=1

obtained by assembling the maps W, for a set {Py, ..., P} of homogeneous generators of 1(g).

4.3 | Spaces with polynomial representation homology

We now address Question 2 stated in the introduction. Recall that this question is asking for a
characterization of spaces X and groups G for which the algebra HR (X, G)° is free of locally finite
type over k. At the moment, a complete characterization of such pairs (X, G) seems to be out of
reach. In what follows, we will consider two — in some sense extreme — cases: we first describe
a class of algebraic groups G such that HR (X, G)C is free for all spaces X (see Theorem 4.4) and
then characterize a class of spaces X such that HR (X, G)? is free for all complex reductive groups
G (see Theorem 4.5).
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Theorem 4.4. If G is a commutative affine algebraic group of dimension 1, then, for any simply
connected space X of finite rational type, there is an algebra isomorphism

HR,(X,G) = A [H,,,(GK)®.

Proof. We first prove the desired result in the case when dim; G = 1. Let a = (a(V),0) be a
minimal Quillen model of X freely generated by a graded vector space V with differential 3.
Then, ag = A(V) with 0 differential. On the other hand, HCS)(a) = a/[a,a] =@ V, with 0 dif-
ferential. It is easy to see that the Drinfeld trace” corresponding to the generator of A(g*) is the
map

a/la,al 2 Vo AV) = ag.

The corresponding Drinfeld homomorphism is therefore identified with the identity on A(V).
Finally, note that if g is abelian of dimension [, the Drinfeld homomorphism for g becomes the
map

Ala/la,a® o A2,

where 7 is the Drinfeld homomorphism for a 1-dimensional Lie algebra. Hence, it is an iso-
morphism. Since H,[a/[a,a]] = H,,,(X;k), and since G is abelian, the desired formula for
HR (X, G) follows as well. O

Remark. 1t is well-known (see, for example, [16, chapter IV]) that over an algebraically closed
field of characteristic 0, any finite-dimensional commutative affine algebraic group is isomorphic
to the product of an algebraic torus and a vector group over k: i.e, G = G, X G;.If G = G, then
the result of Theorem 4.4 actually holds for an arbitrary — not necessarily simply connected —
space X (see [5, Example 3.1]).

The next theorem (stated as Theorem 1.2 in the introduction) provides a (partial) answer to
Question 3, characterizing in simple cohomological terms spaces for which the Drinfeld homo-
morphism is an isomorphism for all reductive groups G. As explained in the introduction, the
proof of this theorem relies on a theorem of Fishel, Grojnowski and Teleman [24] (formerly known
as the Strong Macdonald Conjecture).

Theorem 4.5. Let X be a simply connected space such that its rational cohomology algebra H*(X; Q)
is either generated by one element (in any dimension) or freely generated by two elements: one in even
and one in odd dimensions. Then, the Drinfeld homomorphism (4.16) is an isomorphism for every
complex reductive algebraic group G.

The proof of Theorem 4.5 is based on the following refinement of [24, Theorem B].

TWe remark that the construction of the Drinfeld trace (4.14) goes through even when G is not reductive for P €
Sym(g*)248. Hence, when G (and therefore, g) is abelian, one has the Drinfeld trace Trg(a) : HCS)(a)—> HR,(a, g) for
every P € ¢g* < Sym(g™*). Fixing a basis of g*, we assemble the associated traces into the Drinfeld homomorphism as in
(4.15).
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Proposition 4.1. Let A = C[z, s] with O differential, where |z| > 2 iseven and |s| > 3 is odd. Then,
the map W*(A) (see (4.24)) is an isomorphism.

Proof. Viewing all (DG) algebras as homologically graded by inverting degrees, we note that
AL Q' (A)[1] = Clz,s,dz,ds],
where deg dz = 1—d and degds = 1—1. Here, d := |z| and | := |s| denote the coho-
mological degrees of z and s, respectively, whence deg z = —d and deg s = —I. Hence, for
m>=1,
Q™(A) = Clz]dz(ds)™ ! @ C[z](ds)™ & C[z]dzs(ds)" ' & C[z]s(ds)™,
and it is easy to verify that for f(z) € C[z],
f@)(ds)™ = —f'(z)dzs(ds)™ !, f(z)dz(ds)™ ! = 0 (4.25)
modulo Q"™ 1(A). For m = 0,
DR(A) = A = zC[z] ® C[z]s.
Since the differential on A is trivial, there are isomorphisms of graded vector spaces for m > 0
HC(A) & Q"(A)/dQ™ (A)m] = Clz]s(ds)” ® Clzldz - s(ds)™™",  (4.26)
where for m = 0, the formal summand C[z]dzs(ds)™! of H_CO(A) is identified with the summand
zC[z] of A by the isomorphism f(z) = df(z) = f’(z)dz. The restriction of the inverse of the iso-
morphism (4.26) to each summand is given by the obvious inclusion into Q" (.A)[m] followed by

the canonical projection. Composing the isomorphism (4.26) with projection to each factor on the
right-hand side yields two linear maps

s :AC(W-clz], E : HC(A)— Clzldz. (4.27)
As in [24, section 1.8], there is an isomorphism of DG coalgebras

C.(glz], g; A°(sg[z][1])) = C.(g(A),g;C),
p q p q
NESD® N Epijspi)) = NEGDA N EpriFpi))
i=1 Jj=1 i=1 j=1

where &, € g, f; € C[z] for all i and for f € A, &(f) :=¢Q f for & € g. Identifying
C.(g(A),g;C) with C,(g[z],g; A°(sg[z][1])) via the above isomorphism, we note that for P €
I'"*1(g), the restriction of ¥, to A’(g[z]/g) ® A4(sg[z][1]) vanishes for r > 2. Indeed, for r > 3
this vanishing is obvious since every summand contributing to the right-hand side of (4.21)
has two factors of the form f’(z)dz. For r = 2 the only summands on the right-hand side of
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(4.21) not having two factors of the form f’(z)dz are of the form f(z)dz(ds)™~!, which lies in
dQm1(A).
Now, note that for f, ..., f,,, € C[z],

@y </\§i<sf,->> =1 D £5f0d6 o) o AL on)PEo(oy > Eoimy)- (4.28)
i=0

!
(m+ 1) e,

Since d(sf;) = (ds)f; — sf l’ (z)dz and since s*> = 0, the right-hand side of (4.28) equals

(m+1)' Z gfa@-s(ds)’"P@a(m,...,&a(m)) = P(§(fo)s o Em(fr))s(ds)™.  (4.29)

cEZ,

Next, note that

%(fo(fo)@/\fi(sfi)) - > xfo [T o@)PEos s &) (4.30)
i=1

i=1 (m+1!, &~
a(0)=0

1
AP ; =5 a(0) H A(s o) S §@AZPEg(oys e Eotm):
cEZ,+
a(o)qéo 0(!)#0

Since d(sf;) = (ds)f; — sf l’ (z)dz and since s> = 0, the second summand on the right-hand side
of (4.30) equals

(m D fo(z)H fi(z)dzs(ds)™ 1.

On the other hand, the first summand coincides with

(m + 1) <f0( )(Hf) (Z)dZS(dS)m 1 +Hfl(Z)(ds)m> =— ( " 1)f0(Z)Hfl(Z)dZS(dS)m 1

The last equality above is by (4.25). Hence,

%(%(fo)@ /\a(sfl-)) = lf()(z)]‘[fi(z)dzs(ds)m-l] , (431)

i=1 i=1

where [-] stands for the class in H_Cim)(A)[l]. It follows from (4.28), (4.29) and (4.31)
that SoW¥, (respectively, EoWp), viewed as a map of complexes C,(g[z], g, A°(sg[z][1]))—
Q"™(A)/dQ™1(A)[m + 1] coincides with the map S;, (respectively, —Ep) defined in [24, Theorem
B] as a map of Z,-graded vector spaces (though they differ as maps of Z-graded vector spaces). It
follows from [24] that the map $*(.A) (see (4.24)) and hence, the Drinfeld homomorphism (4.15), is
an isomorphism of Z,-graded vector spaces (and therefore, of Z-graded vector spaces) as desired.
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Note that in our case, the restricted dual of C,(g(A), g; C) in the sense of [24] coincides with all
of C*(g(A), g; C) since the fact that A is concentrated in cohomological degree > 2 ensures that
C.(g(A), g; C) is finite-dimensional in each homological degree. O

Proof of Theorem 4.5. First, we consider the case when H*(X; Q) = Q[z], where z is a generator
of even dimension > 2. By [44, Proposition 5.1], the (complexified) minimal Sullivan model of
X is given by A = C[z] (with zero differential). Since the Drinfeld homomorphism is identified
with the map ¥*(.A) (see (4.24)) by Theorem 4.3, the desired result follows in this case from the
classical fact that ¥*(.A) is an isomorphism for .A = C[z] (see [54, section 3]; also see [21]). Next,
we consider the case when H*(X; Q) = Q[s], where s is a generator of odd cohomological degree
r > 3. Thus, X has the rational homotopy type of an odd sphere. It follows that the Quillen model
a of X is a free Lie algebra on a single generator u of (even) homological degree r — 1. The Drinfeld
homomorphism for X becomes the map

l
A<€B - “di> ~A@Tr =107, uh P
i=1

That this is an isomorphism then amounts to the classical fact that I(g) is generated by the set of
homogeneous polynomials {P,, ..., P;}.

It therefore remains to consider the possibilities that H*(X; Q) is a truncated polynomial alge-
bra on a single generator of even dimension, or that H*(X; Q) is a polynomial algebra in two
homogeneous generators, one of even dimension. In the latter case, by [44, Proposition 5.1], the
(complexified) minimal Sullivan model of X is A = C[z, s] with zero differential; in the former
case, the (complexified) minimal Sullivan model is given by A, = C[z,s], s = z'*! where z and
s are of cohomological degree d and d(r + 1) — 1, respectively, where d is even (see [44, section
5.3]). If A (with zero differential) is the minimal Sullivan model of X, the desired result is imme-
diate from Proposition 4.1, since the Drinfeld homomorphism is identified with the map ¥*(.A)
by Theorem 4.3. Now, assume that the minimal Sullivan model of X is A,. Let C, (respectively,
C) denote the graded linear dual of A, (respectively, .A)). Note that a, := Q¢,.(C,) is a Quillen
model of X, where Qg @ DGCCy , — DGLA, is the cobar functor (see [3, section 6.2.1]). Explic-
itly, a, = (a(C,[-1]),d, + d,), the graded free Lie algebra generated by C,[—1] with differential
given by the sum of two derivations d; (induced by the differential on C,) and d, (induced by the
coproduct on C,). Equip a, with an (increasing) filtration by ‘internal degree’ by letting

For, =% Y [(Cl=1Da, [(C =11, [, [(C[=1D)g,_,» (C[=1D)g,] 111

521 dy+--+d<p+s

Then Fa, is a bounded below exhaustive filtration on a,, and induces (bounded below, exhaus-
tive) filtrations on l(p)(a,) for all p as well as on (ar)g for any (reductive) g. For a set {P, ..., P;}
of homogeneous generators of I(g), the Drinfeld homomorphism (4.15) is induced on homologies
by the homomorphism of commutative DG algebras

1 l
A l@ Trj’l DA l@ A(di)(ar)] - (a,)¢. (4.32)
i=1 i=1
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The filtrations induced by F, make (4.32) a homomorphism of filtered commutative DG algebras,
where the filtrations are bounded below and exhaustive. Let a := Q¢ (C). Since gr (a,) = a,
the induced map on the E'-page of the corresponding spectral sequences is the map induced on
homologies by the DG algebra homomorphism

1 l
A l@ Trﬁf] : Al@ A(df)(a)] - ().
i=1 i=1

By Theorem 4.3, the above map is identified with the map ¥*(.A). Therefore, it is a quasi-
isomorphism. The desired theorem is now immediate from Proposition 4.1 and the classical con-
vergence theorem [60, Theorem 5.5.1]. O

4.4 | Examples

We will now illustrate Theorem 4.5 with explicit examples. Because of simplicity of cohomological
conditions of Theorem 4.5, the spaces satisfying these conditions are easy to construct (in fact,
many of these spaces appear as basic examples in classical textbooks in algebraic topology, see,
for example, [32]). We divide them into three natural classes depending on the structure of their
cohomology ring.

(I) H*(X,Q) =~ Q[z], where |z| is either odd or even.
(Il H*(X,Q) =~ Q[z,s], where |z| is even and |s| is odd.
(1) H*(X,Q) =~ Q[z]/(z"*!), where |z| is even.

Throughout this section, as in Theorem 4.5, G stands for a complex reductive Lie group of rank
I > 1, gisthe Lie algebra G, and {m, m,, ..., m;} are the classical exponents of g.

441 | Casel
First, as already observed at the beginning of our proof of Theorem 4.5,

HR,(S**1,G)° =~ A(g*[2r])® = C[P,,..,P;]],  degP; = 2r(m;+1), 1<i<l (4.33)
Here, P,, ..., P, are the homogeneous generators of I(g) viewed as elements of A(g*[2r])®, whence
deg P; = 2r(m; + 1). This computes the (G-invariant part of the) representation homology of X for
the case when H*(X, Q) = Q[z], where deg z = 2r + 1 (in which case X is rationally equivalent

to S2+1). Next, we have the following.

Lemma 4.2. I[fH*(X,Q) = Q[z], where z is of even dimension d > 2, then
—s1(0 = —SL(3 .
H, O ex) = @Pc-¢. = Dzxy=0, i>o,
j=1

where & j has homological degree d j — 1.
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Proof. By [44, Proposition 5.1], the (complexified) minimal Sullivan model of X is given by A =
C[z], where z is of (even) cohomological degree d. Hence, ﬁf’)u) =~ zC[z] and RS)(A) =0
fori > 0. The desired lemma now follows from [3, Proposition 7.8; 7, Theorem 4.2], which together
imply

7 "ex) o (ﬁi’")(ft))*[—l]. 0

The following result is a consequence of Theorem 4.5 and Lemma 4.2.

Corollary 4.1. Let X be a simply connected space with H*(X, Q) = Q[z], whered := |z| is even.
Then, there is an isomorphism of graded commutative algebras

HR.(X,6)° = A[H...(x, 0%,
where |, is the number vanishing exponent of G. More explicitly,
HR,(X,G)C = A(§§.") D1<i<ly,je N),

where the generators §§i) have homological degree dj — 1, forall i = 1,2, ..., 1. In particular, if |, =
0, (for example, if G is complex semisimple), then HR ,(X,G)® =~ C.
The condition H*(X, Q) = Q[z] holds, for example, for the following spaces (see [32]).

* The spheres S***!, n > 1(|z| = 2n +1).

* The Eilenberg-MacLane spaces K(Z, d), forevend > 2 (|z| = d).
* CP (rationally equivalent to K(Z, 2)).

* HP (rationally equivalent to K(Z, 4)).

Hence, by Corollary 4.1, we have

HR,(CP®,G)° gA(é’;i) D1<igly,j e N), deg £ = 2j -1,
HR,(HP*, G)® gA(gﬁ.” D1<i<ly,j€ N), deg gﬁi) =4j-1,

where [ is the number of vanishing exponents of G.

442 | Casell
In this case, we have d := |z| iseven and p := |s| is odd.

Lemma 4.3. IfX is a simply connected space such that H*(X; Q) = Q|[z, s], then there is an iso-
morphism of graded vector spaces

—s1, ha
0 "zx) = @ v;ec-n).

j=1
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where the homological degrees of the basis elements are given by
degv; = (p—Dm+dj—1, degn; = (p—D(m+1)+d(j—1).

Proof. Let A = C[z,s] denote the (complexiﬁed) minimal Sullivan model of X (see [44, Proposi-

tion 5.1]). Recall the computation of HC (A) in(4.26)and (4.27).For j € Nandw € HC( )(.A)

the coefficient of z/~! (respectively, z/~ 1dz) in S(w) (respectively, E(w)) determines a homoge-
neous linear functional 7; (respectively, v;) on ﬁim)(/l) of homological degree p + m(p — 1) +
d(j — 1) (respectively, m(p — 1) + dj). The desired lemma now follows from [3, Proposition 7.8;
7, Theorem 4.2], which together imply

. "zx) = (7E W) -1

Observe that if X is as in Lemma 4.3, then the (complexified) minimal Sullivan model of X, which
is given by A = C[z, s] has a Z>-weight grading, with z having weight (1,0) and s having weight
(0,1). The Z2-grading on A induces a Z2-grading on the Chevalley-Eilenberg cochain complex
C~*(g(A); k) (where the graded linear dual of a space of weight (p, q) in homological degree i
has weight (p, q) in homological degree —i) that is compatible with its homological grading, dif-
ferential, as well as with the natural g-action. By Theorem 1.1, HR, (X, G) acquires a Z>-grading
compatible with the G-action. Let Py (g, t, z) denote the Euler-Poincaré series of the (G-invariant
part of the) representation homology of X:

Px(q.t,2) 1= Z Z dim; [ HR (X, G)(r ol

n=0 (r;s)e 72

Here, HR (X, G)G denotes the component of HR,(X,G)¢ with Z?-weight (r,s). Note that
the spemahzatlon of Px (q,t,z) at z = —1 gives the weighted Euler characteristic yy (g, t) of
HR,(X,G)C: Py c(q,t,—1) = xx (q,t). The following result is a consequence of Theorem 4.5
and Lemma 4.3. Cl

Corollary 4.2. Let X be a simply connected space such that H*(X; Q) = Q[z,s], whered = |z| is
even and p = |s| is odd. Then, there is an isomorphism of graded commutative algebras

HR,(X,G)° = A( v =120, ) € N) ,
where the generators vﬁi) have homological degree deg vﬁ.i) = (p — 1)m; + dj — 1 and the generators
775.0 have homological degree deg n;i) = (p—1)(m; + 1)+ d(j — 1). Further,
deg ‘ll(l)

I o
1+ ¢g/thiz
Pro(a.t:2) = [1]1 X

i=1j=1 1 — gi~ 1 pmi+1 ;987

In particular, by letting z = —1 in the above formula, we obtain:

o)

2x0(@.0) = HH L g/ (4.34)

1 ¢m;+1
i=1 j= qj t
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since deg vi.i) are always odd numbers and deg 775.” are always even numbers. On the other hand,
with Theorem 1.1, the Euler characteristic yx (g, t) can be computed in a different way, from the
chain complex C~*(g(A); k)°, using standard Lie theoretic methods (see, for example, |3, section
9.3], in particular Corollary 9.8 therein):

11 1 1-—g e
Xxc(q.t) = |W| H <—Jlt> {H H 1= g T o ltex } (4.35)

j=1 a€R

Here, W is the Weyl group, R the associated root system of g, and CT : Z[Q]— Z is the classical
constant term map defined on the group ring of the root lattice Q = Q(R) of R. Comparing the
right-hand sides of (4.34) and (4.35), we obtain the celebrated Macdonald’s (g, t)-constant term
identity (see [40]):

l_qj _ L1 —qg o — g/ em)

j=1 a€R i=1 j=1

We close this section by listing some spaces to which Corollary 4.2 applies:

K(Z,d) x SP,whered > 2isevenand p > 3isodd (|z| = d, |s| = p);
« CP*® x S¥*! (rationally equivalent to K(Z,2) x S¥*1);

« HP® x S**3 (rationally equivalent to K(Z,4) x S¥+3);

« Q(HP") (rationally equivalent to K(Z, 4r + 2) X S%).

In particular, by Corollary 4.2, we have
HR,(CP® x $¥+1,G)¢ ~ A( @ n“)) , degv =2rm; +2j -1
deg 775.0 =2r(m; +1)+2(j — 1),
HR, (HP® x S¥+3,G)C ~ A( v, n(”) , deg v\ = (4r+2)m; +4j -1
deg 775.1') =@r+2)(m+1)+4(-1),
HR,(QHP"),G)° =~ A( 9, n(l)) , deg vSi) =2m; +@r+2)j-1,
deg nﬁ.” =2(m; + 1)+ @4r +2)(j — 1),
wherei € {1,2,....,1}and j € N.
443 | Caselll

In this case, we have d := |z| is even.

Lemma 4.4. If X is a simply connected space such that H*(X; Q) = Q[z]/(z"*'), then there is an
isomorphism of graded vector spaces

i "ex) = Pe-g,
j=1
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where the homological degrees of the basis elements are given by
deg §; = (d(r+1)—-2)ym+dj—1.

Proof. Recall that the minimal Sullivan model of X is given by A, = C[z,s], ds = z"*! (see [44,
Proposition 5.1]) where z and s have dimensions d and d(r + 1) — 1, respectively. As in (4.26), for
any m > 0,

HC(A,) = H,[Q"(4,)/d0" 7 (A,] = H,[Clz]s(ds)" & Clzldz - s(ds)™, ],
where the differential d is induced by the differential on .A4,. A direct computation shows that

3([z"s(ds)™]) = —(k + (m + D(r + D)2 dz - s(ds)™ '],  3([zFdz - s(ds)™1]) = 0.
Hence,

ﬁim)(Ar) = Spanc{[zkdz -s(ds)™ 1], 0<k <k

Choose abasis {§;, 1 <i<l,1<j<r} ofm(m)(./t,)*[—l] dual to the basis {[z/"1dz - s(ds)™ 1]
ofH_Cim)(A,)[l]. Clearly, |§j| =(d(r+1)—2)m+dj— 1. Since

T "ex) = (H_cf:")(A))*[—l]

by [3, Proposition 7.8; 7, Theorem 4.2], the desired lemma follows. O

Observe that if X is as in Lemma 4.4, then (complexified) minimal Sullivan model of X, which
is given by A = C[z,s],ds = z'*1, has a Z-weight grading with z having weight 1 and s having
weight r + 1. The Z-grading on A induces a Z-grading on the Chevalley-Eilenberg cochain com-
plex C~*(g(.A); k) (where the graded linear dual of a space of weight p in homological degree i has
weight p in homological degree —i) that is compatible with its homological grading, differential,
as well as with the natural g-action. By Theorem 1.1, HR (X, G) acquires a Z-grading compatible
with the G-action. Let Py ;(q, z) denote the Euler-Poincaré series of the (G-invariant part of the)
representation homology of X:

o]

Pyg(q,2) i= ), Y dim[HR,(X,G)1q" 2",
n=0 pez

where HR (X, G)g denotes the component of HR ,(X, G)° with Z-weight p. Note that Py c(q,-1)

is the weighted Euler characteristic yy ;(q) of HR (X, G)C. The following result is a consequence
of Theorem 4.5 and Lemma 4.4.

Corollary 4.3. Let X be a simply connected space such that H*(X; Q) = Q[z]/(z"*'), where z is of
(even) dimension d. Then there is an isomorphism of graded commutative algebras

HR,(X,6)¢ = A€W, &0, .., &P 1 i=12,..,D),

r



734 | BEREST ET AL.

where the generators §§i) have homological degree deg 55.0 = (d(r +1) — 2)m; + dj — 1. Further,

I r

PX,G(q’Z) = HH(l + q]+m i(r+1) deg§ .

i=1 j=
In particular, specializing the above formula at z = —1, we obtain
[
xxo@ = [T[Ja - ¢*+). (4.37)
i=1 j=1

As in Subsection 4.4.2, by Theorem 1.1, yx (g, t) can also be computed as the weighted Euler
characteristic of C™*(g(A); k)°, using standard Lie theoretic methods. The calculations similar to
those in [3, section 9.3.1] give

220 = H(l - ¢) CT{H [Ta-4¢ “)} (4.38)

j=0 a€R

Equating the right-hand sides of Equations (4.37) and (4.38) (and dividing both expressions by
H;zl(l — g/)h), we obtain the Macdonald’s g-constant term identity (see [40])

1 — q]+m {(r+1)

WCT{H H(1 - qjea)} HH T (4.39)

j=0 a€R i=1 j=

The classical spaces satisfying the conditions of Corollary 4.3 are:

« the even-dimensional spheres S (r = 1, d = 2n),

* the complex projective spaces CP" (r > 1, d = 2),

* the quaternionic projective spaces HP' (r > 1, d = 4),
« the Cayley projective plane OP? (r =2, d = 8).

For these spaces, Corollary 4.3 gives

HR,(S%,G)C = A[ED :1<ikl], deg £D = (d-1)2m; +1),
HR,(CP',G)® gA[gji) c1<igl,1<j<r], deg gﬁi) =2rm +2j—1,
HR,(HP', G)® gA[{-’E” c1<gigl,1<j<r],  deg g;i) = (4r+2)m +4j—1,
HR,(0P%,G)° = A[EP, €0 1 1<ikl], deg gﬁ"’ = 22m, +8j — 1.

We close this section with one curious consequence of Corollary 4.3: it shows how knowing the
exact structure of the G-invariant part of representation homology allows one (sometimes) to get
information about the full representation homology.
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Lemma 4.5. Let X be a simply connected space such that H*(X; Q) =~ Q[z]/(z"*!) where |z| =
d > 2is even. Put

N = %r(d(r +1)—2) dimG.
Then, HR ,(X,G) = 0 forall n > N. Moreover, HRy(X,G) = C.

Proof. By a classical theorem of Kostant [38], we have Zle(Zmi + 1) = dim G, for any complex
reductive group G. This implies that

l r
deg & = 2r(dr+1)=2) dimG =: N,
= =1

1

1

where deg §§.i) are the degrees of the free generators of HR (X, G)® given in Corollary 4.3. By

Corollary 4.3, we then conclude that HR (X, G)® = Oforalln > N while dime HRy(X,G)¢ = 1.

On the other hand, the (complexified) minimal Sullivan model Ay of X is formal (indeed,
the map of DG algebras (C|[z, s],ds = z/*1)— C[z]/(z"*") given on generators by z = z, s = 0
is obviously a quasi-isomorphism). Hence, by part (a) of Theorem 1.1, the HR (X, G) is isomor-
phic the homology of the Chevalley-Eilenberg complex C _*(g(ﬁ*(X ; C)); C). By definition, this
last complex is a graded exterior algebra on r - dim g generators of homological degree dj — 1
where j =1,2,...,r. Therefore, its homology HR (X, G) is a fortiori concentrated in homologi-
cal degrees n < N’ where

.
N’ := Y (dj—1) dimg.
j=1

Moreover, dime HR/(X,G) < 1. A trivial calculation shows that N’ = N. Since HR (X, G)® C
HR, (X, G), this numerical coincidence implies the result of the lemma. O

APPENDIX A: MONOIDAL DOLD-KAN CORRESPONDENCE

The Dold-Kan correspondence is a classical result that establishes an equivalence between the
category Ch, (/) of non-negatively graded chain complexes in an abelian category </ and the
category s.o/ of simplicial objects in «7. In this appendix, we will describe a monoidal enrich-
ment of this correspondence relating the category of (non-negatively graded) DG P-algebras to
the category of simplicial P-algebras for an arbitrary k-linear operad P. For simplicity, we will fix
a commutative ring k with unit, and consider only the abelian category &/ = Mod,.

A.1 | The Dold-Kan correspondence
To any simplicial k-module X € sMod,, we can associate the chain complex

NG = [ . = N(X), > N,y = -]
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with N(X),, := ., Ker(d; : X, - X,,_;)for n > 0 and the differential 3 given by d,,. The assign-
ment X — N(X) deflnes a functor N : sMod; — Ch,(k) from the category of simplicial k-
modules to the category of connective chain complexes of k-modules. The functor N is called the
normalization functor. A classical theorem due to Dold and Kan (see [60, Theorem 8.4.1]) asserts
that N is an equivalence of categories.

For any simplicial k-module X € sMod,, the homology groups of the chain complex N(X)
are naturally isomorphic to the homotopy groups 7, (|X|) of the geometric realization of X (see
[43, Theorem 22.1]). This justifies the notation 7,(X) := H,[N(X)], which we used throughout
the paper.

The inverse N~! : Ch, (k) — sMod, of the normalization functor is defined as follows. For any
chain complex V' € Ch,,(k), the degree n part of the simplicial k-module N (V) is given by

N7V, = @ @ V.. (A.D)

r20 o:[n]»[r]

We think of N~1(V) as adjoining to V the degeneracies of all elements in V. We write an element
X € V, in the summand corresponding to o as o*(x). When o = Id, we simply write this as x, or
n(x) if we want to emphasize that we consider x to be an element in N~'(V) rather than V. As
suggested by the notation, this determines the degeneracy maps in N~!(V): namely, s g (o*(x)) :=
(c0a’)*(x) (recall that s o= [o/]%). The face maps in N~!(V') are determined by the requirement
that d;(n(x)) = 0 for all i > 0, and the canonical map

n : V= NIN"YV)], x - nx)=x

commutes with differentials, that is, d,(7(x)) = 5(d(x)). Since all elements of N~!(V) other than
7(x) are sums of degenerations of 7(x), specifying the face maps on these elements determines
all the face maps in N~'(V). This defines a simplicial k-module N~!(V) and hence the functor
-1 Ch,(k)— sMod,, (see [28] for more details). It is easy to check that this functor is indeed
the inverse of the normalization functor N.
There is an alternative way to define the normalization functor. For each simplicial k-module
X € sMod,, we can take the chain complex N(X) defined by

_ X 1 . _ _
NX), 1= ———— d=3(-1'd; : NX),~ NX),y. (A2)

Z] =0 ](Xn 1)

Then one can show (see [28]) that the canonical map N(X)— N(X) of chain complexes given by
the composition N(X), < X,, » N(X),, is an isomorphism.

Note that the inverse (A.1) of the normalization functor has an important feature: the collection
of k-modules N~1(V),,, as well as the degeneracy maps between them, depends only on the graded

module V and not on its differential. In other words, (A.1) defines a functor N~ : grMod, —
op OP

Mod, " from the category grMod, of graded k-modules to the category Mod, S of A j-systems
op

of k-modules. Similarly, (A.2) gives a functor N : ModkSurJ — grMod,,. This will play a role in our

construction of the monoidal Dold-Kan correspondence in the next section.
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A.2 | Monoidal Dold-Kan correspondence

It is a classical fact that the Dold-Kan normalization functor N : sMod, — Ch,,(k) can be
endowed with a symmetric lax monoidal structure. To describe it, we first introduce some nota-
tions. Given two simplicial modules X,Y € sMod, over a commutative ring k, we denote by
X ®Y € sMod,, the result of applying the tensor product levelwise, that is, X ® Y),, := X, ®;
Y. Then, there is a quasi-isomorphism of chain complexes

sh: NX)®N(Y) — N(X®Y)

called the Eilenberg-Zilber shuffle map, which is natural (in X and Y'), symmetric, associative and
unital in the obvious sense (see, for example, [43, 52] for details).

This shuffle map allows one to transfer algebraic structures from a simplicial module A to its
normalization N(A). For instance, if A is a simplicial associative algebra, then N(A) is a DG alge-
bra; if A is a simplicial commutative algebra, then N(A) is acommutative DG algebra, and so on. In
general, for any k-linear operad P, one can consider the category sA1g(P) of simplicial P-algebras
as well as the category dgAlg(P) of non-negatively graded DG P-algebras. If A € sAlg(P)is a
simplicial P-algebra, then each n-ary operation u € P(n) gives a map

a,(u) t AQ L ®A- A
One can then use the Eilenberg-Zilber shuffle maps to construct the maps

n sh - . = N(ay(1))
aneny®) 1 N(A® . @N(A) — N(A® . @ A) — = N(A)

which form the structure maps for a DG P-algebra on N(A). This defines a functor
N : sAlg(P)— dghAlg(P). (A.3)

In the special case when P is the Lie operad, this last functor has already appeared in [50]. Quillen
showed that it has a left adjoint in that case. His proof generalizes directly to an arbitrary operad.

Proposition A.1. The functor (A.3) has a left adjoint N* : dgAlg(P)— sAlg(P).

Proof. Asin [50], for any A € dgAlg(P), we define N*(A) as the following (degreewise) coequal-
izer of simplicial P-algebras

a,
N*(A) = coeq | Tp(N"H(Tp(A))) T; Tp(N~'(A)) |,
sh,
where a, and sh, are induced by N~}(a) : N~!(Tp(A))— N~1(A) and the Eilenberg-Zilber
maps sh : N~Y(Tp(A))— Tp(N~1(A)), respectively. O

Note that the proof shows that the underlying A;)Erj-system of P-algebra of N*(A) depends only
on the graded algebra structure of A (see the discussion at the end of the previous subsection).
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This observation will allow us to describe the simplicial P-algebra N*(A) in the case when A
is semi-free.
We first consider the commutative diagrams of functors

f
sAlg(P) BN sMod, sAlg(P) . sMod,,
Ni ® lN N*T ® TN-I
f P
dgALg(P) — =5 Chyy(k) dgAlg(P) < Chyy(k),

where we denote by T, the free algebra functors in both simplicial and DG contexts. The square
(1) obviously commutes up to isomorphism of functors. The square (2) is obtained by replacing
every functor on the square (1) by its left adjoint. Therefore, it also commutes up to isomorphism
of functors. The commutativity (up to isomorphism) of the square (2) can be written as

N*(Tp(V) = Tp(N~'(V)). (A.4)

In other words, N* of a free DG P-algebra is free. The same is true for semi-free algebras. Recall
that a DG P-algebra is said to be semi-free if its underlying graded algebra is free over a degreewise
free graded k-module V. Similarly, a simplicial P-algebra A is said to be semi-free' if its underlying
A:Erj-system of P-algebras is of the form A = Tp(N~1(V)) for a degreewise free graded k-module
|4

The above discussion leads to the following.

Proposition A.2. The functor N* : dgAlg(P)— sAlg(P) sends semi-free DG P-algebras to semi-
free simplicial P-algebras.

Proof. We have seen that N* sends free algebras to free algebras. Since the underlying A:Erj-system
of N*(A) depends only on the graded algebra structure of A, the result follows. O

Next, we consider the adjunction map A— N(N*(A)) in the case when A = T(V) is semi-
free over a graded complex V. To describe this map, we first give a different interpretation of the
Eilenberg-Zilber shuffle map. Namely, we view it a collection of maps that connect two sym-
metric monoidal structures on the category Ch,,(k) of chain complexes on k. We will use the
‘quotient’ form (A.2) of the normalization functor. Thus, we consider the equivalence of cate-
gories N : sMod; — Ch,(k). One can use this equivalence to transport the symmetric monoidal
structure ®, on sMod, to a symmetric monoidal structure ®, on Ch,(k). Precisely, we define
VW :=NIN"YV)QN-L(W)) for V,W € Ch,(k). Then the Eilenberg-Zilber shuffle maps
can be written as

sh:V®W—>V@W, X®yr xXxy :=sh(x,y). (A.5)

By standard definition (cf. [28]), a simplicial 7-algebra is called semi-free if there is a collection of subsets B, C A,
called a basis, that is closed under degeneracies and that A, = T»(B,,) for each n. It is clear that our definition implies
this. To see the converse, note that any basis element that is not the degeneracy of any other basis element is in fact non-
degenerate in the underlying simplicial set of A. Let V be the graded k-module with a basis given by these non-degenerate
basis elements. Then an application of [26, Lemma .2.11] shows that A = T,(N~'(V)) asa Assrj—system of P-algebras.
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Now, suppose that a DG P-algebra A € dgAlg(P) is semi-free over a graded k-module V, that
is,

A =Ty(V) := PP @, VE"

n=0

then by (A.4) as well as the discussion that follows, the DG P-algebra N(N*(A)) € dgAlg(P) has
a similar description

NN*(A) = PPy es Ve

n=0
Moreover, the adjunction map A — N(N*(A)) is given by

Proes V' - P05, VE", (. x®..®x,) = (1, X; X XX,). (A6)

n=0 n=0

This description of the adjunction map will be useful in the next subsection when we compare
the model structures on simplicial P-algebras and DG P-algebras.

A.3 | Quillen equivalence

By [51, section I1.4, Theorem 4], there is a model structure on the category sAlg(P) of simplicial
P-algebras, where a map f : A— B is a weak equivalence (respectively, fibration) if and only if
the map of the underlying simplicial sets is a weak equivalence (respectively, fibration). More-
over, it is shown in [33] that if k is a field of characteristic 0, then the category dgAlg(P) of DG
P-algebras also has a model structure, where a map f : A— B is a weak equivalence (respec-
tively, fibration) if and only if the map of the underlying (connective) chain complexes is a weak
equivalence (respectively, fibration).

From now on, we assume that k is a field of characteristic 0, and the categories sAlg(P) and
dgAlg(P) are equipped with the model structures described above. Then, the normalization func-
tor N : sAlg(P)— dgAlg(P) preserves fibrations and weak equivalences, and therefore the asso-
ciated adjunction

N* . dghlg(P) ——=sAlg(P) : N (A7)
is a Quillen pair. In fact, we have the following theorem, which is the main result of this appendix.
Theorem A.1. The Quillen pair (A.7) is a Quillen equivalence.

Proof. 1t suffices to show that, for any semi-free DG P-algebra A = Tp(V), the unit of the
adjunction (A.7) is a weak equivalence. Composing this adjunction map with the isomorphism
N(N*(A)) » N(N*(A)), we can consider the map A— N(N*(A)), which depends only on the
underlying graded P-algebra structure of A, and is described explicitly by (A.6).

If A is free, that is, when the differential on A = T(V) is induced by the differential on a chain
complex V, then for each n > 0, the map

sh: P(n)@V®" - P(n)@Ve"
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is a quasi-isomorphism as it is induced by the Eilenberg-Zilber shuffle map (which is always a
quasi-isomorphism). Since k is a field of characteristic 0, the same is true when we pass to S,,-
coinvariants

sh: P(n) @5 VE" - P(n) @ VE".

This shows that the map (A.6) is a quasi-isomorphism in the case when A is free.

In the general case, when A = T (V) is semi-free over a graded k-module V, choose a homo-
geneous basis of V, and assign a weight grading wt(x) € N for each such basis element x. This
induces a grading on A, where an element (1, x; ® ... ® x,,) € P(n) Qg V®" has weight grading
Wt(xy) + -+ + wt(x,).

The underlying A(S)Erj-system of N*(A) is given by N*(A) = Tp(N~1(V)). Therefore, its elements
in degree m are sums of elements of the form (u, 07(x;) ® ... ® 0,,(x,,)) where ¢; : [m] - [r;]
and x; € V.. Assign the weight grading wt(x;) + --- + wt(x,) to this element. Then it is clear
that all the degeneracy maps preserve this weight grading. This induces a weight grading in the
normalization N(N*(A)). Moreover, the map (A.6) preserves this grading. We write this grading
as

A=@PAa”, N@W=@PNW", NNA)=PNN @)™ (A.8)

n=0 n=0 n=0

In general, the differentials on both sides of (A.6) do not preserve the grading. However, if we let
F,(A) =@ SnA(i) be the filtration on A induced by the weight grading, then we can always choose
the weight grading on a homogeneous basis of V inductively so that d(F,(A)) C F,_;(A). More-
over, if welet G, = Gn(N(N “(A) = B <nN(N *(A4))D be the filtration on N(N*(A)) induced by
the weight grading on N(N*(A)), then we claim that d(G,) c G, for all n.

Indeed, consider the filtration G, = @, N *(A)®W on N*(A) induced by the weight grading. As
we have seen, each graded piece N *(A)Disa A(S)Erj-system of k-modules such that N(N*(A)D) =

N(N*(A)D). Therefore, to show that d(G,) C G,,, it suffices to show that d;(G,) ¢ G,, for all face
maps d;. We will in fact show a more refined statement. To express this statement, we recall that
the face maps of N*(A) are determined by the fact that the adjunction map 5 : A - N(N*(A))
commutes with the differential. Indeed, for each homogeneous basis element x € V, considered
as an element in Tp(V) = A, the requirements d,(n(x)) = d(n(x)) = n(d(x)) and d;(n(x)) =0
specify the values of face maps on the non-degenerate generators 7(x) of N*(A) = Tpo(N~1(V)).
This in turn specifies the face maps on every other elements by simplicial identities. Thus, one
can write the face maps as d; = d;[d4] to show its dependence on the differential d, on A. In
Lemma A.1, we will show that, for any differential d = d, on A such that d(F,) C F,,_,, the
face maps d; when restricted to homogeneous elements z € N*(A)™, can be decomposed as
d[d,4](z) = d/(2) + d!'[d](2), where d] : N*(A)™ — N*(A)W andd/[d,] : N*(A™ - G,_,.
Moreover, d! does not depend on the differential d, and d’[d4] = 0if d 4, = 0. In particular, we
have d| = d;[0].

Assuming this lemma, then we have d;(G,) C G,, and hence d(G,) C G,. Therefore, both
the domain and target of the map of chain complexes (A.6) admit filtrations by subcomplexes,
such that (A.6) preserves these subcomplexes. Since these filtrations are induced by gradings, the
graded k-modules associated to these filtrations can be canonically identified with the original
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graded k-modules, that is, we have

gp(d) = @A™ = A, g(NIN*(A) = PNN* (AW = NIN*(4))  (A9)

n=0 n=0

as graded k-modules. While passing to the associated graded modules does not change the under-
lying graded k-modules, it changes the differentials by discarding the part that strictly decrease the
grading. Since we have chosen the differential d on A such that d(F,) C F,_;, the induced differ-
ential on gry(A) is zero. In other words, (A.9) actually identifies gr(A) with the free DG P algebra
A’ = Tp(V) with trivial differential. On the other hand, by the above discussion, Lemma A.1 gives
a description of the differential on the associated graded k-module ng(ﬁ(N *(A))). Namely, by
discarding the part of the differential on N(N*(A)) that strictly decreases the grading, one retains
precisely the differential in N(N*(A’)) where A’ is again the free DG P algebra A’ = T (V) with
trivial differential. In other words, (A.9) actually identifies gr (N(N*(A))) with N(N*(A")).
Therefore, the induced map grp(A4) — ng(N(N ~1(A))) on the associated graded chain com-
plexes coincides with the adjunction map A’ — N(N*(A")) for the free algebra A’ = T,,(V) with
zero differential. This map is a quasi-isomorphism by our previous argument in the free case.
Since the filtrations F, and G, are bounded below and exhaustive, the map (A.6) induces an iso-
morphism on homology by the Eilenberg-Moore comparison theorem [60, Theorem 5.5.11]. []

Lemma A.1. For any differential d = d4 on A such that d(F,) C F,,_;, let d; = d;[d 4] be the ith
face maps on N*(A). Then its restriction d;| - 4yn to each homogeneous component N “(A)™ can
be decomposed as d;[d,](z) = d/(z) + d'[d4](2), where d] : N*(A)™ - N*(A)™ and d'[d4] :
N*(A)™ - G,_,. Moreover, d does not depend on the differential d 4, and d!'[d 4] = 0ifd, = 0.

Proof. In simplicial degree m, the k-module N* (A)E,f) consists of sums of elements of the form
z=(u, 0,(x]) ® ... ® 7;(xx))

withwt(x;) + - + wt(x;) = n,where x; € Vrj and o are surjective maps [m] - [r;]. The image
under the face map d; of this element is given by

di(z) = (u, di(97(x)) @ ... ® d;(0; (x;.))) (A.10)

Now, for each j =1, ..., k, the element di(o;.‘(x ;7)) reduces by simplicial identities to either of the
two cases:

0)) di(a;*.'(xj)) = a;.*(xj) for some surjective map a;. D [m—=1] > [r;]inA,
(Im) di(a;.‘(x j)) = c;.*(di,(xj))) for some surjective map o;. cm—-1] » [rj —1] in A, and some

0<i’<rj.

In case (1), di(o}‘.‘ (x j )) has the same weight grading as the term o;f (x j). We split the case (IT) in two
subcases:

(ITa) Ifi’ > 0, then we have d; (x j) = 0 because by definition x; = 7(x j) isin N(N*(A)),
(Ilb) Ifi" = 0, then we claim that dy(x;) € G, _;, and dy(x;) = 0ifd4 = 0.
J
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Indeed, the Oth face dy(x;) of x; = n(x;) is uniquely determined by the corresponding differential
d(x;) in the DG P-algebra A. Namely, since the adjunction map 7 : A - N(N*(A)) commutes
with differentials, we have dy(n(x;)) = n(d(x;)). Since we have chosen the weight grading on the
generators x; in such a way that d(x;) is sum of terms of weight grading strictly less than x;, we
see thatd(x;) € G,j_l in this case. The equation d(1(x;)) = n(d(x;)) also shows that dy(x;) = 0
ifd, =0.

Thus, to compute d;(z), one combines the equation (A.10) with the above consideration. If we
are in case (I) or (ITa) foreach 1 < j < k, then d;(z) isstillin N *(A)" . Thus, we have di(z) = dl.’ (2)
in this case. Moreover, our explicit description shows that dl.’ does not depend on d 4. If we are in
case (ITb) for some 1 < j < k, then we have d;(z) € G,,_,. Thus, we have d;(z) = dl.” (2) in this case.
Moreover, our description shows that d;(z) = 0 in this case if d, = 0. This completes the proof of
the lemma. N
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