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Abstract—Decentralized paradigm in the field of cybersecu-
rity and machine learning (ML) for the emerging Internet of
Things (IoT) has gained a lot of attention from the government,
academia, and industries in recent years. Federated cybersecurity
(FC) is regarded as a revolutionary concept to make the IoT safer
and more efficient in the future. This emerging concept has the
potential of detecting security threats, taking countermeasures,
and limiting the spreading of threats over the IoT network system
efficiently. An objective of cybersecurity is achieved by forming
the federation of the learned and shared model on top of various
participants. Federated learning (FL), which is regarded as a
privacy-aware machine learning ML model, is particularly useful
to secure vulnerable IoT environment. In this paper, we start with
background and comparison of centralized learning, distributed
on-site learning, and FL which is then followed by a survey of the
application of FL to cybersecurity for IoT. This survey primarily
focuses on the security aspect but it also discusses several
approaches that address the performance issues (e.g. accuracy,
latency, resource constraint and others) associated with FL. which
may impact the security and overall performance of the IoT. To
anticipate the future evolution of this new paradigm, we discuss
the main ongoing research efforts, challenges, and research trends
in this area. With this paper, readers can have a more thorough
understanding of FL for cybersecurity as well as cybersecurity
for FL, different security attacks, and countermeasures.

Index Terms—Machine learning, Cybersecurity, Federated
learning, Federated cybersecurity, Data offloading

I. INTRODUCTION

With the explosive rise of connected devices like personal
digital assistants (PDAs), 10T, wearable medical devices, and
others, an unprecedented amount of data is being generated
every fraction of time. The immense volume of data has
provided a better opportunity to utilize the machine learning
(ML) model in general and deep learning (DL) in numerous
domains [1]. Today ML has made its way even to our everyday
lives. From the small hand-held devices, IoT sensors, and
cyber-physical systems (CPS) to big companies like Facebook,
Google, Amazon, Netfilx have been applying ML for their
applications and services. Amazon Web Services, Google
Cloud, and Microsoft Azure just to name but a few are some
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popular ML services [2], where models can be deployed and
used at scale. ML has been inevitable not only to improve
user experience, business modeling but also to detect cyber
threats and cyber-attacks and prevent them. Today’s world
heavily exists on data and maintaining its integrity and privacy
is of utmost priority. Sensitive data related to individuals,
organizations, and governments needs to travel from one point
to another through a communication link. Traditional methods
of combating cybersecurity issues mostly protect devices only
after the occurrence of specific types of attacks. However,
the types and patterns of attacks in today’s cyberspace have
changed drastically. Attacks using polymorphic viruses keep
on changing their signature and are difficult to detect and
predict. So, the ML approach of detecting and predicting
threats, anomalies, or any kind of security breach in cyberspace
and taking corresponding countermeasures is gaining so much
attention in recent years. Forming a centralized learning model
by sharing local training data has already proven to improve
the learning model’s performance [3].

There are multiple models in practice for ML based cyber-
security each with its advantages and disadvantages namely
centralized, decentralized and federated [1]. FL model for
cybersecurity is a recent addition among these models. We
discuss all these models in the subsequent sections. Moreover,
FL has been explored for its applicability in several areas
such as smart city [4], healthcare [5], recommender system
[6], wireless communication [7], edge network [8], electric
grid [9], vehicular ad-hoc network [10] and many more. FL
framework inherently supports security and privacy (compared
to the centralized learning framework) as data generated in
an end device does not leave the device. The useful device
data is used locally to train the learning model running on the
device in a distributed manner. Only the updated parameters
are exchanged between an end device and the cloud server.
However, this approach still exposes several security threats.
So, this survey primarily focuses on the security aspect of the
application of FL. FL framework offers promising potential
to improve security and privacy, but for the success of it, the
issues that hinder the performance of FL must be addressed.
In this regard, we also discuss existing works that address
such issues such as the accuracy of FL model, latency of
communication, data distribution, and resource constraint of
distributed devices.

Due to the increasing complexity of software and com-
munication interfaces, IoT and cyber-physical devices are
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more vulnerable to various kinds of attacks. Cybersecurity
breaches in such systems are likely to incur several privacy and
security issues. Appropriate safety measures and effective and
robust cybersecurity solutions are mandatory to combat any
threats or attacks. Below, we outline some common security
risks associated with IoT and CPS where machine learning
algorithms rely on data collected from such IoT/CPS systems.

Attacks on IoT/CPS devices: Hackers can easily crack the
passcode of devices with a brute force attack and manipulate
bluetooth connectivity of such devices to leak private infor-
mation, manipulate data and/or gain control.

Attacks on Cloud-Based Networks: 10T and cyber-physical
systems need to process a huge volume of data stored in
the cloud frequently. These devices use different mediums of
communication such as Wi-Fi, cellular network, etc. to send
and receive data to and from the cloud. These communication
mediums are vulnerable to attackers and attackers in the
middle might intercept and forge the data being exchanged.

Malware: Like any other connected device, IoT and cyber-
physical devices are also susceptible to malware attacks.

Vulnerable sensors: 10T and CPS devices are equipped
with a wide range of sensors to monitor and support the
systems. These sensors are vulnerable enough to be attacked
by adversaries to cause security and safety threats. Even major
sensors like global positioning system (GPS) signal, Light
Detection and Ranging (LiDAR) signal, Inertial Measurement
Unit (IMU) data, and so on can be compromised cause serious
threats to the devices.

Network attacks: Every device or endpoint in IoT and
cyber-physical systems is a part of the network attack sur-
face. Attackers can target the endpoints of the network and
gain access to the network to control and compromise the
whole system. Protocols like WiFi, Bluetooth, and GSM allow
external devices to connect and communicate with various
sensors. These protocols contain bugs and are vulnerable to
be exploited by attackers.

Firmware attacks: In this form of attack, an attacker
provides a malicious firmware update to a device by which
he/she can get direct access to the whole system.

There are already several surveys (e.g. [1], [11]-[15])
which reviewed FL and highlighted its taxonomies, methods,
advances, applications, challenges, and more. However, our
work is different from others since it presents the study about
FL for cybersecurity and cybersecurity for FL in CPS/IoT
environment. Successful adoption of FL for IoT environment
hugely depends on several performance metrics which are also
reviewed and presented in this paper. To combat various kinds
of cyberthreats, an intrusion detection system (IDS) and intru-
sion prevention system (IPS) should be in place. Such systems
must learn about the existing cyberthreats globally and even
need to be proactive to detect and predict new and emerging
threats. Collaborative learning framework of FL is suitable
for such tasks. To evaluate security solutions properly, there
have been significant efforts to create real datasets for more
than two decades. This survey also highlights such works and
discusses most of the datasets used by the research presented
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in this survey. We also discuss some popular datasets used in
federated setting to evaluate federated model’s performance. A
shift in this new architecture of learning, has introduced some
novel attacks such as poisoning and reverse engineering and
we also discuss research works that address these attacks. In
this survey, in addition to discussing several recent research
works in the field of FL, we also present ML algorithms and
technologies applied by those works. The aim of this survey
is to assist readers to choose a particular research direction
with overall information. Specifically, the main contributions
of this paper include:

e We present a detailed study on federated models for
machine learning and cybersecurity by categorizing them
into two parts. The first part discusses the FL and its
application in cybersecurity and the second part dis-
cusses cybersecurity for FL. Our study mainly focuses
on [oT/CPS environment.

o As successful adoption of federated models for IoT envi-
ronment hugely depends on several performance metrics.
We also present those metrics, challenges associated with
them and the potential solutions in this paper.

« We also present and discuss datasets used by the surveyed
articles to evaluate their model’s performance.

o We have also presented cyberattacks such as parameter
poisoning and reverse engineering in FL.

« We summarize security attacks and countermeasures and
the addressed performance issues in federated models
for IoT networks in a tabular form for a side-by-side
comparison.

o« We present a discussion of research challenges, open
problems, and recommendations for federated models that
are needed to be addressed to realize their full potential.

The remainder of this article is organized as follows. In
Section II, we discuss and compare different types of machine
learning models. Existing recent works related to using FL as a
tool to secure IoT environments and that related to making FL
framework secure are discussed in Section III. Some research
efforts to address the issues that affects the performance of
FL are presented in Section IV In Section V we highlight ML
algorithms, technologies, frameworks and and in Section VI,
we discuss datasets used by the surveyed research respectively.
Some open challenges and future research directions in FL
for the IoT domain are presented in Section VII. Finally,
we conclude our survey work in Section VIII. Full forms of
various abbreviations are given in Table I.

II. OVERVIEW OF FEDERATED LEARNING AND
FEDERATED CYBERSECURITY MODEL

In this section, we first present a brief overview of different
types of learning models and then elaborate more on FL
along with its challenges. Finally, we present a federated
cybersecurity model useful to protect the FL. framework.

A. Typical Types of Learning Models

Approaches to combating cybersecurity issues have been
changing continuously with the needs. To cope with the
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TABLE I
ABBREVIATIONS AND FULL FORMS

Symbol Full Form

CNN Convolution Neural Network

GRU Gated Recurrent Unit

SAE Stacked Autoencoders

AWID Aegean Wi-Fi Intrusion Dataset
MNIST | Modified National Institute of Standards and Tech.
Cifarl0 | Canadian Institute For Advanced Research dataset
LSTM Long Short-Term Memory Networks

SVM Support Vector Machine
VGG11 Visual Geometry Group

KWS keyword spotting

NS3 Network simulator 3

DNN Deep Neural Networks

DRL Double Deep Q Learning

EV Electric Vehicle

MLP Multilayer Perceptron
KNN K-Nearest Neighbor
SOHO Small Office or Home Office
ADS Anomaly Detection System
BC Blockchain
RF Random Forest
ECC Elliptic Curve Cryptographic
IDS Intrusion Detection System
SDN Software Defined Network
NFV Network Function Virtualization
WAN Wide Area Network
DTN Delay Tolerant Networking
IIoT Industrial Internet of Things

unprecedented growth of heterogeneous connected devices
and a tremendous volume of data and traffic generated by
them and the development of sophisticated tools to create
polymorphic malware and other threats, ML has been an
integral part of cyber defense mechanism in recent times. This
section discusses three different ML enabled models with their
advantages and disadvantages.

1) Centralized Learning Model: This model uses cloud-
centric architecture (e.g. [16]-[19]) where data sent from end
devices is centrally stored and processed in the cloud. In the
cloud, data is analyzed, features are extracted and then models
are built on top of the stored data. Models are accessed by the
end devices sending requests through an API. This approach
offers significant advantages but carries some serious issues.
One big advantage of this approach is that the cloud offers
a huge repository so that storing huge volumes of data sent
by all the clients will not be problematic. Another advantage
is that the cloud is mostly equipped with high-performance
servers. These benefits facilitate the building of better-trained
models. Moreover, cloud services are best protected by service
providers for any security breaches or attacks. Offering such
great advantages, this approach has serious concerns over
privacy, security, and latency. All the data needs to travel
to the cloud through insecure communication links makes
the data vulnerable to being hacked by adversaries. All the
private data generated by the devices are stored in the cloud
raises big privacy concerns. Further, the central authority or
the cloud service provider has all the control over the model
and data. Additionally, as data needs to travel to and from
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the cloud, latency and bandwidth costs could be big issues if
the communication distance between device and cloud is high.
The working model of centralized learning is shown in Fig. 1.

Fig. 1. Centralized learning model for Internet of Things

2) Distributed on-site Learning Model: In this approach of
learning model, a generic or pre-trained model is distributed
by the server to all the devices or clients beforehand. After
this, each device personalizes the model with training and
testing with local data and learns the data generation process.
Such a learned model enables predictions and inferences
from live-streaming data generated by the device [1]. The
big advantage here is data generated by the device stays
locally thus eliminating security, privacy, and latency concerns.
The main downside of this approach is that IoT devices
are relatively heterogeneous and weak in terms of memory,
computation, and battery power. These devices are not suitable
for the intensive computation required while using the model
[20]. Further, the locally running model lacks global updates
or knowledge about new and emerging security threats. The
working model of distributed on-site learning is shown in Fig.
2.

Fig. 2. Distributed on-site learning model for the Internet of Things

3) Federated Learning Model: 1t is a kind of distributed
model but with the facilitation of global knowledge collected
from all the distributed clients. Same as a distributed setting, a
general or pre-trained model is distributed to clients initially.
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All the clients personalize the model locally with its local
raw data. Clients perform ML tasks locally and send their
parameters to the server. The server then aggregates all the
updates received from the clients and performs ML tasks and
finally distributes the updated model to the clients [11]. This
is an ongoing process by which the clients are constantly
provided with all the new and emerging global knowledge.
The working model of FL is shown in Fig. 3. This learning
model first formulated by [21] is as follows:

K
fw) =" "2 F(w) Where Fy (w) = nik 3 filw) (1)

1€ Py

In equation 1, f;(w) represents a loss function of prediction
for input x; to an expected output y; with weight vectors w.
K is the number of participants in the current learning round
and Fj(w) is the local objective function of k;, participant.
For total number of samples n, ny is the number of samples
present locally in ky, participant. Similarly, P, with n; =
| Py |, is the partitioned assigned to ki, participant from whole
dataset P.

In a typical FL setting, when a device downloads the current
model parameters (weight) from the server first, it initializes
the local model with the downloaded parameters, and then the
local dataset is used to train the model. The parameters are
optimized by minimizing the local objective function that uses
stochastic gradient descent (SGD). The optimized parameters
from all such devices are sent to the server where they are
aggregated using FederatedAveraging algorithm [21]. This
way the global model is updated and the learning takes place.

As raw data resides locally on the device and only ML
parameters are sent to the server, FL ensures privacy of
the raw data of clients and complies with privacy policies
and/or regulations e.g. The European Data Protection Reg-
ulation “General Data Protection Regulation (GDPR)” [22].
Additionally, FL. frameworks are also enriched with privacy-
preserving techniques like differential privacy [23], secure
multi-party computation (SMC) [24], homographic encryption
(HE) [25] to send the ML parameters from clients to server
securely. Despite presenting propitious potential, FL. brings
several challenges when it is applied with IoT. Here, we
highlight some major challenges associated with FL for IoT.

1) Limited Device Memory: IoT devices constantly gen-
erate data during their operation. Due to their limited
memory, when the batch size of data increases, training
the federated model locally is not feasible. In a FL
scenario, these devices might be dropped out or are
forced to use a simple model to work with small batch
sizes in the training phase [1].

2) Limited battery power: If the learning model is complex
and the training data size is huge, IoT devices might be
run out of battery power during the training phase.

3) Limited computing power: IoT devices, in particular,
are limited to computing power. Due to this constraint,
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Fig. 3. Federated learning model for Internet of Things

training the model locally by such devices may not be
a feasible approach.

Vulnerability: We have seen an unprecedented growth
of diverse sets of IoT devices in recent times. Some
categories of IoT devices are vulnerable enough to be
gain controlled by hackers. Such devices might produce
malicious data and when such data is used to train
the model, it might even affect the global or federated
model.

Unreliable and limited availability: In FL, clients can
drop out anytime. Clients might be dropped out by sev-
eral factors like unreliable network connection, limited
storage, computation power, and more. Moreover, the
availability of clients depends on time and location.
More clients might be available during day time com-
pared to night time. Day and night time also differ by
geographical location.

Stateless: Availability of clients depends on several
factors and so the client does not guarantee repeated
computation.

Anonymity and poisoning: Clients in FL are anonymous
which makes it hard to differentiate between genuine or
malicious clients. So, there might be a chance that the
federated model might get poisoned by the involvement
of malicious clients.

Non-Independent and Non-Identically Distributed (Non-
[ID) Data: The nature of local data on a device depends
on its unique behavior and usage pattern and so the
distribution of clients and data is non-uniform. The data
of the same device might differ because of the change
in location, time, and users.

Local training: Each client is limited to its local data.
Non-enough data on a device might not be able to train
and produce a good model.

Accuracy: Due to characteristics of FL like Non-IID
data, stateless, local training, and resource constraint,
the aggregated global model might not be as accurate as
compared to centralized learning. Non-accurate global
model in turn might affect the local model and as the
chain reaction, the global model is again getting more
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affected.

Communication overhead: The frequency of commu-
nication for a client with a server not only depends
on factors like its characteristics, size, and quality of
local data but also might be heavily influenced by other
clients. Frequent communication with servers to keep the
local model consistent with the global model increases
communication overhead.

11)

Since the first proposal of FL in [21], there have been
several research to address challenges that existed in FL. For
example, to reduce communication overhead by aggregating
global model only when the global model’s weight differs by
some empirically selected threshold is proposed [26]. For a
similar issue, a control algorithm to find global aggregation
frequency was proposed in [27]. To mitigate the effect of
non-IID data and improve the accuracy, a feature fusion
approach by aggregating local and global model is presented
[28]. To address a similar issue, [29] designed a federated
multitask learning (FMTL) framework to forms clusters of
clients based on the geometric properties of the FL surface
with jointly trainable data distribution. Combining FL and
data offloading, resource constraint issue other challenges of
IoTs are addressed in [20]. Detecting sybil based parameter
poisoning from the diversity of client updates in the distributed
learning process and taking corrective measures is proposed
in [30]. Several works [31]-[33] have proposed IDSs in FL
setting that learn from global knowledge of threats and detect
new and emerging cyberthreats. We discuss several recent
works that address challenges and issues that existed in FL
in section III.

B. Typical Types of Cybersecurity Models

Security is the fundamental requirement of today’s digital
world. An exponential rise of vulnerable heterogeneous IoT
devices and furthermore communicating through a wireless
medium, has widened the attack surface significantly. Wireless
communication networks’ standards and protocols are different
but more vulnerable than wired communication networks. The
mobile and distributed nature of the IoT devices exaggerates
the security challenges even more. So, the security solutions
designed for wired networks can not be directly applied to the
wireless network. Similar to learning models, cybersecurity
models for IoT environments can be categorized into three
types as isolated devices level cybersecurity model, distributed
cybersecurity model, and federated cybersecurity model (as
shown in 4). We can think of these as cybersecurity models
that provide security services working at different levels.
Adopting one specific type of security model is insufficient
so, an effective cyberdefence mechanism is likely to require
the combination of such models working in place.

1) Isolated Devices Level Cybersecurity Model: This cy-
bersecurity model works at the lowest level and concerns with
providing security services to the end devices. Due to the
heterogeneous nature of IoT devices, each category of devices
might have specific vulnerabilities and security requirements.
So, the device-level cybersecurity model needs to take care
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Fig. 4. Federated Cybersecurity Models for Federated Learning in the Internet
of Things

of safeguarding the device against any malicious activity.
From the basic security measures such as password setting,
validating authentication, access control, it aims to validate
each connection request and establish secure communication
to the outside world. Device-level security also aims to validate
the timely software updates and makes sure the update process
is completely secure. Furthermore, it also aims to safeguard
the device against malware attacks. Although device-level
cybersecurity model intends to provide all the essential se-
curity measures, it is not sufficient to fully protect the system.
Attackers use sophisticated tools and codes to generate new
and polymorphic malware to attack the connected system.
So, it necessitates the device-level security to be backed by
machine learning models to learn and adapt based on the
dynamic scenarios. It should be capable of taking defense
mechanisms on any attacked or anomalous situations and
allowing smooth device operations. However, most of the IoT
devices are resource constraint which makes them incapable
of running machine learning models. To deal with it, in an IoT
network, a gateway node or edge node is typically employed
for running ML-backed cybersecurity model and providing
necessary security to all the end devices connected in the
network.

2) Distributed Cybersecurity Model: A significant number
of new cyber threats are being introduced every day. Learning
from cyber attacks/threats from one IoT network is not suffi-
cient. In a distributed network, edge nodes are geographically
dispersed and are closest to the end devices or users. So, a
distributed cybersecurity model aims to enable collaboration
and cooperation among geographically distributed edge nodes
to provide better security services. Based on the characteristics
of the underlying IoT network, edge nodes among themselves
may be distinctive for the specific security services they
offered. If any edge node can not provide the intended service
to a nearby device or user, it collaborates with other nodes
at the same level to do so. Such collaboration facilitates to
provide appropriate security solutions to combat emerging
cyber threats/attacks in the real-time scenario.
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3) Federated Cybersecurity Model: 1t is a cybersecurity
model which provides security and other services from the
top level in the federated model based on the feedback from
the bottom/device level (e.g., [34], [35]). IoT service providers
participate in this level to provide the necessary services to
their respective users or devices. Each user can access the
respective services from its service provider. The edge node
on a particular IoT network acts in the middle to ensure the
necessary security and services are provided to its end users
or devices. Each service provider is responsible to disseminate
essential security services to all its distributed devices through
edge nodes. In this security model, each service provider
learns from all its devices and updates the security model
accordingly. Furthermore, these independent service providers
also collaborate themselves to make dynamic defense strate-
gies/solutions to combat against possible attacks/threats. In
the immediate lower level, if edge collaboration could not
provide a security solution in real-time, a particular edge node
reaches out to its service provider. The service provider then
provides the necessary security solution or collaborates with
other providers to do so.

4) Federated Learning and Federated Cybersecurity: The
existing approach of the federated cybersecurity model pro-
vides security solutions to IoT applications through com-
municating and collaborating at different levels as needed
(e.g., [36]-[38]). However, the traditional way of exchanging
data/information within the same level and/or between differ-
ent levels can pose privacy and security concerns (e.g., [39]-
[41]). Federated learning has been emerged as a solution to
exchange data/information in a secure and privacy-preserving
way. A Federated cybersecurity model accompanying FL to
collaborate and exchange any information at any level offers
a huge potential to make the IoT network safe and secure.
Most of the federated cybersecurity approach utilizing FL
as a cyber-defense mechanism primarily focused on securing
IoT networks considering a single global model offered by a
single service provider. However, this approach can easily be
extended to a collaborative scenario involving multiple global
models maintained by different service providers. only a few
research have worked toward creating a sense of federated
security model utilizing multiple global models. We present a
survey of several research efforts towards creating federated
cybersecurity models for IoT network using FL in the next
section.

III. RECENT ADVANCES ON FEDERATED LEARNING FOR
CYBERSECURITY AND CYBERSECURITY FOR FEDERATED
LEARNING

The focus of this work is to survey several existing works
since 2015 toward cybersecurity particularly for IoT environ-
ments. The addressed issues by those works and the environ-
ments where they are implemented or tested are given in Table
II. In recent times, a significant number of research works
for addressing security in the IoT networks have been shifted
toward applying FL. The framework of FL inherently supports
privacy, to some extent security, and latency as only updates
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are required to transmit but these are costlier to achieve
in centralized learning. Distributed learning addresses these
issues but lacks global knowledge of collaborative learning.
There are some downsides of FL in IoT networks too like
heterogeneity of devices, resource constraint, non-IID data,
accuracy, and others. Mainly, most of the FL surveyed works
address security and privacy issues but there are several works
that also address issues like latency [26], [42]-[47], resource
constraint [20], [27], [48]-[51], accuracy [28], [47], [52]
and non-IID [28], [29], [45]. All these issues are somehow
dependent on each other and improving one issue should
not affect the others. Some works have considered all these
issues while others addressed the only subset of these. We
will discuss some of the contributions made to alleviate such
issues present in FL. Although FL in the IoT environment is
our primary focus of study, some recent works we studied
are proposed and tested in the distributed learning setting. We
have also mentioned those works considering their usefulness
to secure IoT environment and are easily extensible to FL
setting.

We have summarized surveyed works into two groups. In
one group, we discuss existing works related to FL as a tool
for cybersecurity and in the next, we present works based on
cybersecurity need for FL. FL as a solution to different types
of attacks and FL as a target to different potential cyberattacks
are highlighted in Fig. 5. A collaborative approach of iden-
tifying and learning different types of attacks can be highly
effective to mitigate daunting threats like intrusion, Dos/DDos,
anomaly, and others. On the other hand, before utilizing FL
for real applications, the emerging attacks typical to FL are
required to be addressed.

| Federated Learning (FL) |

[

I

| FL as solutions for Cyberattacks

|
[ l l |

DoS/DDoS l

| Attacks in FL implementation |

Reverse
Engi ing

| Spoofing I Intrusion | Anomaly | Poisoning |

B

—

_—

I Host Based |

)
I Network Based I | Model based | | Data Based I

Fig. 5. Federated Learning (FL) as a security solution to different attacks
and novel attacks present in FL

A. Federated Learning for Cybersecurity

Security, privacy, and trust have been extensively studied
in the literature in the context of cyberspace. However, this
survey is particularly focused on cybersecurity for [oT environ-
ments in the FL setting. IoT environment is more vulnerable
to different types of cyberattacks so, a collaborative learning
framework of FL only by sharing the model update can be an
effective solution to enhance security and privacy. A timely
learned and shared global knowledge of different types of
cyberattacks like spoofing, intrusion, anomaly and DoS/DDoS
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TABLE II
ADDRESSED ISSUES BY SURVEYED WORKS
Addressed Issues References | FL Domain
Security,IDS, IPS [53] X Smart home
Security, DDoS Resiliency [54] X IoTs environment
Security, IDS [3] v ToT network
Malware classification [55] v Edge devices
Security, IDS [56] v Network environment
Security [57] X IoTs environment
Security [58] X ToTs environment
Security, IDS dataset [59] X ToT and IIoT
Security,IDS dataset [60] X -
Security [61] X IoTs environment
Security, IDS [62] X VANET
Security, IDS [63] X Network
Security, IDS [64] X Network environment
Privacy, Security, IDS [32] v CPSs
Security, ADS [65] v SOHO IoTs
Security, ADS [33] X Smart city IoT
Cyberattacks [66] X IoTs, CPSs
Cognitive cybersecurity [67] X CPS-IoT Enabled Healthcare
Privacy, integrity [68] v Edge devices
Security, Sybil based poisoning attack [30] v Edge network
ToT Mirai botnet attack [69] X ToTs devices
Reliability, Security [70] X ToTs network
Security, Audit [71] v Edge network
Security, Trust [72] X IoTs network
Security [73] X IoTs network
FL operation, Security [74] v Overall FL framework
( IoTs, Edge cloud, Regional Cloud, Core Cloud)
Privacy, Security, Latency [42] v IoT edge computing (Connected vehicles)
Jamming attack detection and defense [75] v UAV
Security, Privacy Throughput, Latency [43] X IoT network
Privacy, Security, Communication [44] X Fog-based IoT
overhead, computational cost
Gradient sparsification, Accuracy [76] v IoT edge computing
Security, Intrusion, Privacy, IDS [31] v IoT devices
Privacy, IDS [77] v Edge devices
Privacy, Latency, Non-iid [45] v IoT network
Latency [46] v 10T network
Learning speed, Accuracy [52] v Edge devices
Increased accuracy, Convergence process [28] v Edge devices
Communication, Accuracy [47] v IoT environment
Efficient communication and training [26] v IoT environment
Resource constraint, [27] v IoT environment

Global aggregation frequency

Security, Resource constraint [48] X IoTs environment
Resource constraint [20] v IoT edge computing
Resource constraint [49] v WAN
Resource constraint [50] v IoT edge computing

Privacy, Latency [78] v Edge network
Non-iid, Accuracy [29] v Edge network
Resource demand, Scarcity of relevant data, [79] v IoT Edge network
Security, Latency
Privacy, Security [80] v TloT
Privacy, Security, IDS, Accuracy [81] v IoT environment
Security, Data collaboration [82] v IoT environment
Privacy, Security, Reliability [83] v IIoT environment
Safety, Resiliency
Accuracy, Privacy, Latency [84] v IIoT environment
Security, IDS, Communication [85] v IIoT environment

facilitates building and enhancing cyberdefence models and
mechanisms accordingly. So, FL has a huge potential to secure
cyberspace effectively both in the device as well as network
level. Application of FL as a solution to mitigate possible
threats is depicted in Fig. 6.
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In recent times, cyberspace has been more vulnerable due
to the presence of unprecedented growth of heterogeneous
sensor devices. IDS and anomaly detector backed by ML
has become mandatory to detect and combat intrusions and
anomalies in today’s gigantic cyberspace. In literature, differ-
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Fig. 6. FL as a solution to mitigate possible threats in IoT network.

ent approaches (e.g. [32], [64], [65]) using varieties of ML
algorithms (e.g. CNN, NAR, Q-learning) have been examined
to design IDSsIPSs and those are tested against several bench-
marked datasets for its performance. Majority of the efforts
dedicated to designing FL based security solutions primarily
focused on the accuracy of the security model only without
considering other important performance metrics. We cover
FL works addressing performance issues in the next section.

Rahman et al. [31] proposed a FL based self-learning IDS to
secure IoT environment. A bench-marked dataset (NSL-KDD)
consisting of normal traffic and several attack types was first
distributed over the IoT devices and then ML based IDS model
was trained and tested locally. The model updates were sent
and aggregated following the conventional FL operations. The
proposed system achieved accuracy close to the centralized
learning approach. FL approach was successful to create a
self-learning IDS by which end devices were successful to
detect attacks that were not presented in their local dataset. The
advantage of such FL based IDS is that in a real application
scenario, IDS can be capable to detect intrusions not generated
previously by its own traffic. The downside of the proposed
approach is that it was experimented within a significantly
small IoT network environment and except accuracy, other
performance metrics were not considered.

In [84], a collaborative IDS is developed as smart “filters’ by
deploying at IoT gateways in each sub-network. DNN of each
filter is trained with a local database housed in sub-network
and such learned models from the filters are collected and ag-
gregated in a central server. Each filter supplemented by global
knowledge is capable of detecting and preventing real-time
cyberattacks. The performance of the proposed model was
tested with multiple benchmarked datasets and it outperformed
several baseline ML models in FL and centralized learning
settings in terms of detection accuracy, network traffic, privacy,
and learning speed. Despite the improved performances in
several aspects, this approach is useful against known attacks
only.

A robust FL based IDS using a generative model was
envisioned in [85]. FED-IIoT, a FL based architecture for de-
tecting malwares used generative adversarial network (GAN)
and Federated Generative Adversarial Network (FedGAN)
algorithms in the participant side to generate adversarial data
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and injects them into the dataset of each IIoT application.
On the server side, a robust collaboration of trained models
was ensured by incorporating a defense mechanism to detect
and avoid anomalies while aggregation. The proposed model
demonstrated higher accuracy compared to existing solutions
and allows secure participation and efficient communication
among participants in the IIoT environment.

With similar objective, work [32] designed an ML based
IDS model to detect threats in industrial CPSs environment.
The designed IDS model was further extended as a FL
framework to allow multiple industrial CPSs collaborate to
build a comprehensive IDS. Authors compared the effec-
tiveness of the proposed model with state-of-the-art schemes
through extensive experiments on real industrial CPS dataset.
For ensuring security and privacy of the federated model
parameters, authors incorporated paillier cryptosystem based
secure communication protocol for the federated IDS. The
advantage of this work is that it makes FL secure against the
man-in-the-middle type attacks.

Aiming to identify the most critical cyberattacks in a smart
home environment, [53] first highlights attack surfaces and
prepares three test cases (to test confidentiality, authentication,
and access control) to launch different types of cyber security-
based attacks. An IPS is then designed and tested against the
same attacks to verify the resiliency of the affected system.

In an effort to detect cyberattacks in a larger IoT network, a
ML based network intrusion detection system (NIDS) capable
of monitoring all the IoT traffic of a smart city in a distributed
fog layer was proposed in [33]. The proposed model performed
well to detect attacked IoT devices at distributed fog nodes and
and alert the administrator accordingly. The NIDS model was
evaluated against UNSW-NB15 dataset [86] and the model
demonstrated the classification accuracy of 99.34%. Authors
claimed their approach as unique stating that the NIDS model
learns with normal traffic and can detect malicious behavior
in the future.

Extending the traditional FL model, Sun et al. [3] proposed
a segmented FL framework to detect intrusion for large-scale
networked LANSs. This approach is different from a traditional
FL model that works on collaborative learning based on a
single global model. The proposed approach instead keeps
multiple global models where each segment of participants
performs collaborative learning separately and also rearranges
the segmentation of participants dynamically. Moreover, these
models interact with each other to update parameters as per the
various participants’ LANs. The authors employed three types
of knowledge-based methods for labeling network events and
train a convolutional neural network (CNN) using a dataset.
The model was trained and tested using a dataset consisting of
using two months’ traffic dataset of 20 participants’ LANs and
obtained a high validation accuracies. The advantage of the
segmented FL framework is that it performed better to detect
intrusion in LANs compared to the traditional FL approach of
using a single global model.

A collaborative IDS (CIDS) to detect abnormal network
behavior in the whole VANET was proposed in [62]. The
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CIDS used deep learning and SDN controller approach to train
a global IDS that can work in both IID and non-IID situations.
Instead of directly exchanging sub-network flows, multiple
SDN controllers were employed to train global IDS jointly
for the entire network. The model was built and tested using
KDD99, NSL-KDD datasets to validate the efficiency and
effectiveness of the CIDS for VANETS. The main highlighting
feature of the proposed approach is that the CIDS is effective
to detect intrusion in the entire VANET and not just limited
to the local sub-networks like other approaches.

To alleviate Wi-Fi network privacy concerns, a federated
deep learning model [77] was built and tested using AWID.
The proposed model used a specialized deep learning neu-
ral network called Stacked Autoencoders (SAE) to capture
a compressed representation of anomalous observations. To
identify the new threats, the federated model learns from the
new observations and updates the local and global models.
The result obtained was compared with the classical deep
learning model and claimed that the FL. model was more
effective in terms of classification accuracy, computation cost,
and communication cost. This work is different than others to
use a specialized DNN which facilitates compression of model
parameters which mainly benefits to reduce communication
latency.

To deal with the emerging sophisticated polymorphic
threats, a security solution needs to be proactive to identify
unforeseen and unpredictable cyberattacks. In an attempt to
design such a solution, Rege et al. [64] extend IDS to offer
temporal prediction of adversarial movement. The proposed
approach used four predictive models namely nonlinear au-
toregressive (NAR) neural network, NAR neural network with
exogenous input (NARX), NAR neural network for multi-
steps-ahead prediction, and autoregressive integrated moving
average (ARIMA) and compared the results over two dataset
collected at different locations. The research was able to
identify five advanced persistent threats’ trends - there will
be more attacks, more obfuscation, continued false attribution,
greater shifts from opportunity-based attacks to more targeted
attacks, and more damage ranging from data manipulation to
data encryption or deletion.

Motivated by the similar need, article [63] presented several
experimental approaches to identify the best algorithm to
design dynamic IDS that could effectively detect and predict
intrusions at both host level and network level. Authors first
experimented with various DNNs against publicly available
benchmark malware dataset (KDDCup 99) by choosing op-
timal network parameters and network topology for DNNs.
The well performed DNNs are then tested with other malware
datasets NSL-KDD, UNSW-NB15, Kyoto, WSN-DS and CI-
CIDS 2017 to set the benchmark. A similar approach was
followed to identify well performed classical ML classifiers
and to compare its performance with DNNs. The performance
evaluation demonstrated that DNNs outperformed classical
machine learning classifiers and finally, authors utilized the
better performed DNNs to design a highly scalable and hybrid
DNNs framework called scale-hybrid-IDS-AlertNet. The pro-

© 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

posed IDS could not only monitor real time network traffic and
host-level events effectively, but also proactively alert possible
cyberattacks.

A federated self-learning anomaly detection and prevention
system that is capable of detecting and preventing emerging
and unknown attacks in IoT network (DIoT) was proposed in
article [65]. Without human intervention, DIoT builds device-
type-specific communication profiles which are eventually
used to detect anomalies in devices’ communication behavior.
Security gateways were employed in such a way that each
gateway is assigned to monitor the traffic of one particular
device type. The collected traffic data was then used to train
the local model of each gateway and the model parameters
of the training were sent to an IoT security service for
aggregation. [oT security service had been used as a repository
of device-type-specific anomaly detection models which in the
later stage also used to aggregate all the updates received from
security gateways.

In [56], Pang et al. proposed a learning agent-based Feder-
ated Network Traffic Analysis Engine (FNTAE) for detecting
real-time network intrusion. To detect abnormal traffics as a
result of new attacks, the proposed model made use of an
analysis engine powered with an incremental learning agent to
capture attack signatures in real-time. FNTAE demonstrated
well compared to centralized analysis system however, it is
useful only to combat against the known attacks.

To secure an IoT environment, some works have followed
other approaches too. Work presented in [57] proposed Man-
In-the- Middle-IoT-Computing tool (MIMIC) which utilizes
the man-in-the-middle attack concept to deploy MIMIC as a
fog computing agent for IoT networks. MIMIC is deployed at
the edge node of the IoT network to be able to sniff, capture,
and replay all the incoming packets from IoT devices. MIMIC
then creates a virtual layer for holding the virtualization of all
the sensing devices and the remote users are allowed to query
only on the virtual space disabling the direct access to physical
devices. In [58], Zarca et al. proposed a novel approach of
utilizing SDN and NFV to deploy IoT honeynets to distract
cyberattackers and make IoT system secure. Administrators
of IoT system can deploy [oT honeynets as a service through
high-level security policies defined over SDN controller and
NFV Management and Network Orchestration by replicating
the physical IoT architecture on a virtual environment as
VNFs. The model experimented in a testbed of H2020 EU
project premises and it was successful for filtering, dropping,
and diverting the network traffic dynamically, and adapting
the network behavior according to the new deployed vlo-
THoneyNets (virtual IoT honeynet) needs.

There have been other significant research to study cyberat-
tacks and build corresponding cyberdefense mechanisms that
using different approaches, utilizing varieties of databases,
API, platforms, frameworks, and ML algorithms. For ex-
ample, a malware classification prototype accompanied by
decentralized data collection and sharing using the FL model
approach was developed in [55]. Dataset of 10,907 malwares
obtained from virustotal api was used for training and testing
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the model. Authors used SVM and LSTM machine learning
algorithms in a federated setting to achieve better results on
the classification of malwares. A framework called DRAFT
is developed in [54] by integrating other frameworks and
tools to improve the resiliency of end-to-end IoT platform
against cyberattacks. The proposed model was integrated in
IoT platform and tested against five known simulated cyberat-
tacks using Fed4FIRE+ federated testbeds and demonstrated
the increase in cyberattack resiliency for tested IoT platform.
An adaptive federated reinforcement learning was proposed in
[75] to combat jamming attack in unmanned aerial vehicles
(UAVs). The proposed model used model-free Q-learning and
CRAWDAD dataset and learned jamming defense strategy in a
newly explored environment. Paper [66] studies cybersecurity
in the context of Big Data IoT and CPS. Cybersecurity issues
and vulnerabilities associated with CPS were investigated and
analyzed to pinpoint possible cyberattacks. The authors also
presented technical approaches to mitigate those attacks. In
[67], Abie et al. proposed a four-layer architecture of cog-
nitive cybersecurity to combat against dynamic and adaptive
attacks in smart CPS-IoT enabled healthcare environments.
The presented conceptual architecture aimed to mimic the
cognition behavior of humans to anticipate and respond to new
and emerging cyber threats in the smart healthcare domain.
In another work of providing cybersecurity for IoT devices
[48], authors presented an approach of incorporating a trusted
Network edge device (NED) developed in [87] as a proxy
service for IoT communication. To protect IoT devices, users
can set up security solutions and policies easily and efficiently
for multiple IoT gateways and end devices at once via NED.
The proposed approach is experimented in corporate scenario
in VIT Oulu premises. A work presented in [73] highlights
several hardware-assisted techniques employed in the literature
that can be applied to add another layer of protection to combat
cyberattacks in the IoT domain. The paper also explored the
hardware solutions with respect to cost, performance, security,
and presented challenges to adopt in real scenarios.

To improve security and reliability in an IoT environment, a
reliable and efficient adaptation of cluster techniques (REACT)
was presented in [70]. In REACT, an effective cluster head se-
lection algorithm and energy balanced routing algorithm were
proposed and simulated with estimated parameters against
existing protocols HEED and LEACH comparing throughput,
network lifetime, energy remaining, and reliability. The paper
also presented a strategy of a cyber-hacking technique of
selecting an attack point to improve the cybersecurity design.
With the aim of facilitating the design of an effective IDS and
evaluating it properly, some works have dedicated efforts to
fill the gap of the availability of benchmarked intrusion dataset
to test IDSs-enabled IoT systems. The work presented in
[59] proposed a new data-driven IoT/IIoT (TON_IoT) dataset
containing Telemetry data of IoT/IIoT services, Operating
Systems logs, and Network traffic of IoT network, collected
from a realistic representation of a medium-scale network
at the Cyber Range and IoT Labs at the UNSW Canberra
(Australia). TON_IoT also contains label and type features
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indicating multiple classes and sub-classes suited for [oT/IIoT
applications for multi-classification problems. The features of
the dataset were compared with other existing datasets to
show its superiority. In another example, [60] produced one of
the most popular intrusion dataset named CICIDS2017 which
contains an important set of features and meets real-world
criteria. The produced dataset is fully labeled containing more
than 80 network traffic features and meets all the required
criteria with common updated attacks such as DoS, DDoS,
Brute Force, XSS, SQL Injection, Infiltration, Port scan and
Botnet.

In this section, we discussed several existing approaches
to design cybersecurity models particularly for IoT environ-
ments and in FL setting. Many ML algorithms, blockchain,
network virtualization, SDN, clustering approaches, and oth-
ers have been explored aiming to design an efficient cyber
defense mechanism to detect and prevent intrusion, anomaly,
Dos/DDoS, and other attacks in different types and sizes of
IoT networks.

B. Cybersecurity for Federated Learning

We presented several works discussing FL as an effective
solution for different kinds of security and privacy issues.
However, this new learning architecture has invited some novel
kinds of attacks. In the FL setting, although the data resides
locally in end devices and only ML parameters are exchanged
between client and servers, it is still vulnerable to different
kinds of attacks. We first discuss different types of attacks
to FL and then present the mitigating strategies proposed in
research.

Parameter poisoning (or model poisoning) and reverse en-
gineering ML attacks are some serious threats in FL and are
an active area of research [e.g. [30], [88], [89] [90], [80]].
The typical attacks in FL can be data based or model based
(as shown in Fig. 5) which can be performed by forging local
data of end device(s) or the model parameters on client or
server side. How an attacker may perform different attacks in
FL is shown in Fig. 7. As depicted, an attacker may control
IoT device/network to compromise local data and/or local
ML tasks to generate poisoned model. In other scenarios, an
attacker may perform man-in-the-middle attack to forge the
model update in transit or just to overhear communication to
reveal the privacy of a user.

Attacks in FL can not only degrade the quality of the
learning model but also expose the privacy of users. An
adversary can reveal the privacy of a user by spoofing on
model updates sent by the user’s device. Moreover, if the
adversary gains control of the aggregating server, he/she
can get comprehensive knowledge of the history of update
parameters of devices and the structure of the global model.
With these information, adversaries can reveal the privacy of
devices through reverse engineering.

With access to the model updates, some works demonstrated
generating pictures that look similar to the training images us-
ing generative adversarial network (e.g. [91], [92]). Extending
the leakage of private information to the next level, Zhu et
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al. [93] demonstrated that an attacker can completely steal
the private training data from the shared model updates in a
few iterations. To achieve this, authors first generated a pair
of dummy inputs and labels and which were used to gener-
ate dummy gradient following the common training process.
Rather than optimizing weights, they optimized dummy inputs
and labels so as to minimize the distance between dummy
gradients and real gradients and were successful to reveal
the training data completely. Further, with the full control
of central server, adversaries might forge the global model
which in turns might affect the local model of the end devices.
In effect, aggregating local updates of such models might
degrade the quality of the global model significantly. Even
if adversaries do not have control over end device or server,
the model parameters might still be forged while in transit
between client and server.

On the other side, FL is also vulnerable to data poisoning
and model poisoning attacks performed through end device(s).
If an adversary gains control over an end device, he/she may
forge the local data and/or forge the model update during
local model training process with intention of creating a biased
model. The parameters of the biased model in turn might affect
the quality of global model. This problem gets even worse
in case of byzantine problem [94] and sybil attack [95]. A
survey presented in [14] categorizes and discusses threats to
FL and presents future research directions to create robust FL
framework.

Label flipping attack is one of the most common data
poisoning attack where the labels of training examples of
one class are changed to another class (keeping features of
the examples unchanged) to force the model predict incorrect
label. Fung et al. [30] demonstrated label flipping attack by
flipping the label 1s in the training dataset to label 7s and
making the model incorrectly classify 1s as 7s. In other form
of data poisoning attack, an attacker may change individual
features of the original training dataset to plant backdoors into
the model [14]. The general approach behind the backdoor
attack is to replace the global model with the attacker’s
model and force it to mis-predict on a specific sub-task, e.g.,
compelling an image classifier to misclasify green cars as frogs
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[96]. Once the estimate of global model’s state is perceived, an
attacker can replace the model with simple weight re-scaling
operation [97]. Bagdasaryan et al. [96] exhibited backdoor
attack by injecting certain pattern to the data and altering the
label to the desired target so as to mislead the global model.
The the attack scenario consisted of one or more malicious
participants which train on the backdoor data and then share
the model update to the server for aggregation.

Data poisoning ultimately poisons the model update how-
ever, an attacker may directly manipulate training process
without poisoning training data and it is to be noted that this
form of model poisoning is regarded as more effective than
data poisoning. In [88], Bhagoji et al. demonstrated using
model poisoning attacks considering a single, non-colluding
malicious agent with the adversarial objective of causing the
FL model to misclassify a set of chosen inputs with high
confidence. To make the targeted misclassification effective,
authors employed malicious agent’s update boosting as well
as alternating minimization strategy to alternately optimize the
training loss and the adversarial objective. In another example,
Blanchard et al. [98] exhibited model poisoning considering
omniscient attack (adversaries with aware of good estimate of
gradient) where adversaries send opposite update vector by
multiplying with negative constant to reverse the direction of
gradient descent and degrade the model performance. Further-
more, Baruch et al. [99] demonstrated that model poisoning
through Byzantine-attack is still possible in non-omniscient
attack scenario by introducing even a small but well crafted
changes on gradient.

Byzantine-tolerant learning in the distributed setting has
been addressed in some works (e.g. [100], [101], [102],
[92], [103]) where most of them assume participant’s data
is i.i.d, unmodified and equally distributed. However, in FL,
data distribution is different and there solutions is not fully
applicable. Bagdasaryan et al. [96] exploited the solutions
presented in [101], [92] and [103] and was able to partially
mitigate the attack but that is also at the cost of global
model’s accuracy. To address model poisoning, Fung et al.
[30] first demonstrates the FL’s vulnerability against sybil
based poisoning attack through experiment and presented a
FL model FoolsGold that identifies such attack based on the
diversity of client updates in the distributed learning process.
This model even works effectively in case sybils compromised
honest users. The advantages of this system compared to prior
approaches are it is not bounded by the expected number of
attackers, it does not require extra information outside of the
learning process and it works with fewer assumptions about
clients and their data. However, combating against a single
client adversary, improving the model against informed attack
are some limitations of this model.

Blanchard et al. [98] first confirmed that federated averaging
does not resist Byzantine attacks and then proposed Byzantine-
tolerant aggregation rule called krum to address the model
poisoning attack. Considering f byzantine attackers out of n
participants in a communication round, krum first calculates
the pairwise euclidean distance of n-f-2 updates that are closest
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to a model update ¢; and then computes the sum of squared
distances between J; and its closest n-f-2 updates. Finally, the
algorithm updates the global parameter by the model update
with the lowest sum. The idea behind this is to choose a vector
that is somehow the closest to n f workers and guarantee
convergence regardless of f Byzantine attackers.

A work presented in [104] proposed an aggregation rule
considering no bound on the number of Byzantine workers but
still demonstrated better convergence. The proposed approach
computes a score for each worker using a stochastic first-order
oracle to determine its trustworthiness. The server ranks each
candidate gradient estimator as per the estimated descent of
the loss function, and the magnitudes. It then calculates the
averaged gradient over the several candidates with the highest
score. The server compares the true value of the gradient with
the average gradient to identify whether the update is harmful
or not.

Sun et al. 2020 [105] study the vulnerability of FL for data
poisoning and devise a bi-level optimization framework adap-
tive to the arbitrary choice of target nodes and source attacking
nodes to compute optimal poisoning attacks. Exploiting data
collection process, an attacker can directly inject poisoned
data to all the target nodes. The authors also considered an
indirect way of poisoning data to target nodes by exploiting
communication protocol in case direct attack is not possible.
This work highlights challenges associated with FL. where
attackers can exploit the communication protocol to open a
backdoor to lunch data poisoning attacks. To adopt FL as
probable cybersecurity solution, a cybersecurity mechanism to
combat possible threats in FL should be in place. So, we also
discuss some research works that present the cybersecurity
solutions to the potential threats existed in FL.

To address backdoor attacks in [106], authors presented
defense approaches using norm clipping and differential pri-
vacy. Norm clipping was considered to combat boosted attacks
which are likely to generate updates with large norms. This
approach was used to put a bound on the sensitivity of the
gradient update by ignoring updates if its norm is above some
threshold norm. Furthermore, authors also used differential
privacy to supplement norm clipping by adding Gaussian noise
to the updates to mitigate the effects of adversaries beyond
norm clipping.

In FL, if an attacker does not have a control over the
clients, it is still quite possible to lunch man-in-the-middle
attacks. He/she can overhear model updates to reveal the
privacy of clients and even can forge model updates in transit.
To address this attack scenario, techniques like differential
privacy [83] homomorphic encryption ( [107], [108]) secure
function evaluation or multiparty computation [109] and other
cryptographic approaches have also been applied on top of FL.
Differential privacy is effective to preserve privacy of clients
due to added noise on shared model updates and thus miti-
gates reverse engineering attack while other approaches even
mitigate any chance of manipulation of model updates while
in transit. However, these approaches adds up computation
and communication burden compared to differential privacy
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approach. Geyer et al. [110] proposed an algorithm for client
sided differential privacy preserving federated optimization.
It demonstrated that client’s participation can be hidden at
the cost of minor loss in model performance when sufficient
client participates. Article [111] also used differential privacy
approach to protect patients’ privacy against possible reverse
engineering attack.

In [93], Zhu et al. first demonstrated reverse engineering at-
tacks and then presented some defense strategies. Approaches
like adding noise on gradients before sharing, gradient com-
pression and sparsification and others were experimented
to observe its performance against information leakage. To
address reverse engineering attacks by preserving the privacy
of end-users, [81] adopted mimic learning approach [112] to
work in federated learning scenario. Mimic learning used two
kinds of learning models named as a student and a teacher.
The student model is trained with public dataset whereas the
teacher model is trained with sensitive user data. Then the
teacher model is used to label the public dataset which is later
used to create a student model and sent to the centralized
server for generating a new global model. The approach of
transferring knowledge from the teacher model to the student
model without revealing any sensitive information was used to
protect the student model against reverse engineering attacks.

To strengthen privacy by securing the parameters exchange
between client and aggregating server, homomorphic encryp-
tion! is one of the techniques in which aggregation can be
performed directly on the encrypted parameters. This ap-
proach allows aggregation without revealing model updates
which secures FL from any kind of spoofing or manipulation
of model updates. . Taking the computation and commu-
nication overhead of this approach into account, Zhang et
al. [107] proposed an efficient homomorphic solution called
BatchCrypt. To apply this solution, first a new quantization and
encoding schemes together with a gradient clipping technique
were developed. After this, instead of applying homomorphic
encryption on individual gradients, BatchCrypt was used to
encrypt an encoded batch of quantized gradients. BatchCrypt
demonstrated significant speedup in training and reduction
in communication overhead (compared to encrypting each
gradient) with negligible loss in accuracy.

Moreover, in recent times, blockchain technology (BC 2
has been extensively applied for many applications due to
its decentralized, auditable, secure, and privacy-preserving
features. . So, some research works (eg. [82], [83]) have in-
corporated blockchain in FL setting too. To mitigate the effect
of revealing sensitive information while sharing gradient and
chance of forging aggregated gradients by a malicious server,

"Homomorphic encryption is a special form of encryption that allows
specific types of operations to be done directly on encrypted data without
requiring a decryption key. The encrypted result when decrypted, confirms
the result of operations performed on the plaintexts [113]

2Blockchain Technology is a decentralized distributed network that uses
public key cryptography, distributed digital ledger and consensus algorithms
as core components for creating a secure, transparent, and auditable network to
allow people/devices to communicate in a trust-less manner without presence
of any intermediaries [114]
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a verifiable federated learning (VFL) is proposed in [80]. This
approach used Lagrange interpolation and set interpolation
points to verify the integrity of the aggregated gradient. The
main advantage of VFL is it enables each participant to
verify the aggregated parameters. Moreover, the verification
overhead also remains constant regardless of the number of
participants. Taking operation and security into account, Zhao
et al. [74] designed a generic framework of the FL platform by
adding a security domain and a cryptographic infrastructure to
make trusted connections and interactions among the federated
communicating parties. For similar objectives, [115] highlights
the most common issues in FL like convergence, data poi-
soning, scaling, model aggregation with security and privacy
perspective and presents potential solutions with simulation
results.

A cryptographic approach has been widely adopted as a
method of exchanging information and certification to provide
security and trust. With the objective of facilitating trusted
sharing of cybersecurity certification information following
the EU cybersecurity act, work in [61] proposed generic
blockchain platform enriched with smart contract acting as
a registry for authoritative device information. The smart con-
tract stores information like the manufacturer name, contact
information, identity certificate, device type, device id, last
firmware version and hash/fingerprint, and a Manufacturer Us-
age Description (MUD) file describing the typical network in-
teractions and which is published in an off-chain database and
others. The proposed blockchain provides a trusted exchange
of cybersecurity certification information for any electronic
product, service, or process. The authors validated the pro-
posed work by presenting a case study where they used SDN
controller to retrieve a MUD file from the device registry smart
contract. To secure communication and data transmission be-
tween IoT devices and edge node, article [51] proposed Elliptic
Curve Cryptography (ECC) based lightweight cryptographic
solution embedded in IoT and edge device. The presented
approach consisted of three layers consisting of sensors and
actuators (layer I), IoT edge (layer II), and cloud (layer II)
where most of the computation including key generation takes
place in layer II to reduce computation overhead to the IoT-
edge. loT-edge layer extracts the public key sent by the server
and updates to IoT devices when required. The proposed
approach was simulated by configuring IoT edge and docker
and the observed results demonstrated reduced running time
of encryption as well as reduced resource demands. VerifyNet
[68] utilizes a key sharing strategy and encryption to protect
the privacy of the user’s local gradients in the workflow.
Further, this model used CNN network with MNIST database
to test the classification accuracy of the model. The model
classifies the correctness of the results returned by the server.
Additionally, it also allows users to be offline during the
training process.

Cloud service based architecture is the necessary as well as
dominant computing services in today’s world. The operations
and communications associated with the service provider
must be secure and trustworthy. To assess the security and
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reputation of cloud service-based architecture for IoT, Li
et al. [72] proposed a novel trust assessment framework.
The proposed framework integrated security and reputation-
based trust assessment methods to evaluate the trust of cloud
services. Customers’ feedback rating for the cloud service’s
trustworthiness or quality of service of cloud service was
incorporated in the framework. For the performance eval-
uation, the assessment framework was built and tested in
two parts namely security-based test assessment (SeTA) and
reputation-based test assessment (ReTA). SeTA was tested
using a synthesized dataset encapsulating security metrics
whereas ReTA was tested against WSDream dataset2; a real-
world web service dataset and the results demonstrated that
the proposed framework efficiently and effectively assesses the
trustworthiness of a cloud service while outperforming other
trust assessment methods.

A secure data collaboration framework (FDC) consisting
of a private data center, public data center, and blockchain
technology for IoT environment was presented in [82]. The
role of the private data center is to handle data governance,
data registration, and data management where that of the
public data center is to facilitate multiparty secure compu-
tation. Blockchain technology was used to provide auditable
multiparty interactions. The framework was implemented in
FL setting to address issues like secure and confidential
storage, secure sharing and efficient management, traceability
and audit of data behaviors, efficient authorization, and others.
In another example, PriModChain [83] combined differential
privacy enabled FL, blockchain, and smart contract to ensure
privacy, security, reliability, safety, and resiliency in the IIoT
environment.

To fully protect the privacy of end-users, secure multiparty
computation(MPC)? approach has also been utilized in FL.
[117] used MPC to perform secure FL. aggregation where the
aggregating server(s) can not access clients’ model updates as
well as any intermediate global model. To exchange the model
update securely, clients use a multi-party encryption scheme
to encrypt their updates. Further, to access the global model,
the clients decrypt global updates using its secret share of key.
After training, clients encrypt their local updates and send it
to the server for aggregation.

Despite the several research efforts to make FL secure
from attackers controlling end devices and/or acting in the
middle, FL can still be vulnerable to centralized server’s
malfunctioning. Attackers may compromise the aggregating
server or server itself may act maliciously. A biased server may
manipulate the aggregation process and favor some clients.
Considering these possibility, some research (e.g. [118], [119])
have suggested to use the blockchain technology and delegate
all the FL operations to end devices so as to remove centralized
server. By this approach, end devices acting as the miners of
blockchain network collect the model updates, verifies it and
finally perform aggregation. This approach addresses several

3Secure multiparty computation is a cryptographic protocol that enables
distrusting parties to interact and compute a joint function where no individual
party can see others’ data [116].



This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2022.3150363

security concerns but still fails to address the scenario when
the client itself can be malicious. Furthermore, the blockchain
approach associates high computation and communication
requirements and so, it may not be applicable if the end devices
are resource constraint.

Securing FL fully is a huge challenge and it is still an
open research topic. Cryptographic approaches are quite useful
to exchange model updates securely and preserve privacy
however, if the privacy of clients is fully preserved (even to
the aggregating server), it is hard to detect malicious model
updates and take appropriate measures against colluding at-
tacks. One approach is not sufficient to address all the security
concerns associated with FL. Exploring the combination of
different approaches discussed above is likely to be a potential
solution to address the security issues present in FL.

IV. RESOURCE CONSTRAINT, COMMUNICATION LATENCY
AND MODEL ACCURACY

We have already witnessed the success of blockchain in re-
cent times due to its decentralized model of secure computing.
In a similar sense, FL research is growing enormously due to
its privacy-preserving decentralized learning model. However,
the true success of FL depends on its core challenges, and
these need to be addressed for its applicability. FL. framework
not only needs to be secure but also should be efficient
and accurate enough. The core challenges that hinder the
performance of FL are expensive communication, systems
heterogeneity, and statistical heterogeneity. In this section, we
discuss several research that have addressed such challenges.

In FL setting, updated model parameters are exchanged
regularly between end-devices and a central server and it
causes a major bottleneck in the performance of federated
networks. To alleviate such communication overhead and
reduce latency, approaches like compression e.g. [45], cluster-
ing e.g. [46], optimizing global federating learning e.g. [26]
time and others have been examined in the literature. The
approach to reduce latency might affect the accuracy of the
learning model. Several works have also addressed preserving
or improving accuracy and in most cases, the accuracy of the
proposed solutions has been verified by comparing them with
the centralized model.

To alleviate communication overhead in FL, [45] envisioned
a compression approach and proposes a new sparse ternary
compression (STC) framework. This framework is created by
extending the existing compression technique of top-k gradient
sparsification. The authors employed a mechanism to enable
downstream compression as ternarization and optimal Golomb
encoding. The authors conducted experiments on the proposed
framework by applying four different learning tasks observed
that STC performed well in common FL learning scenarios of
high-frequency and low-bandwidth communication. Improving
communication efficiency by compressing thus reducing the
communicated message size, [78] designed and improved
gradient compression algorithm and achieved 8.77% of the
original communication time with just 0.03% reduction in the
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accuracy. This Privacy-Preserving Asynchronous FL. Mecha-
nism for Edge, employed collaborative learning of discrete
nodes in edge networking with ensuring the privacy of local
information. This work also investigated asynchronous FL
to better work with diverse characteristics of edge nodes.
Preserving accuracy while applying high ratio sparsification
in FL, [76] proposes a General Gradient Sparsification (GGS)
framework for adaptive optimizers. The framework consists
of gradient correction and batch normalization up-to-date with
local gradients (BN-LG) to keep convergence to a large extent
and to minimize the impact of delayed gradients on the training
respectively. Some researchers have addressed communication
overhead by tuning the aggregation of the global model.
Whereas in [26], Hsieh et al. used the approach of aggregating
global model only when the global model’s weight differs by
some empirically selected threshold. With a similar objective
and approach as defined in [26], a control algorithm to
find global aggregation frequency was proposed in [27]. The
control algorithm devised from theoretical analysis learns the
system and data characteristics dynamically in real-time to find
the appropriate aggregation frequency that results in enhancing
learning accuracy based on the resource available.

Non-IID data distribution in the FL network is likely to
affect the quality of the global model. To address such issue,
[28] used, a feature fusion approach of aggregating local and
global model. The proposed model outperformed baselines
FL models and demonstrated better accuracy, initialization for
new incoming clients, speeding up the convergence process.
Wang et al. [S0] propose a control algorithm to work with
best trade-off between local update and global parameter
aggregation in FL to minimize the loss function under a
given resource budget. Considering the effect of statistical
heterogeneity, work [29] proposed a novel federated multitask
learning (FMTL) framework that forms clusters of clients
based on the geometric properties of the FL surface with
jointly trainable data distribution. This clustering approach
provided better results in FL scenario where clients’ local data
is distributed and non-IID. The advantages of this approach
compared to the existing methods are that it works with the
existing FL. communication protocol and is also applicable
to general non-convex objectives. Furthermore, information
about a number of clusters does not require to be known in
advance.

Clustering approach has also been sought as a solution to
address some FL issues. A work presented in [46] proposes
a clustering approach to form a cluster among the densely
populated devices. A cluster head is then selected and is
responsible for enabling self-organizing FL. Battery life, com-
putation resources, and better connectivity (with other devices)
parameters were considered for the selection of cluster head.
The cluster head then acts as a central server and carries out
aggregation task for FL. The authors also presented a heuristic
algorithm to optimize global FL time. For quick convergence
of the model, work [52] uses a blockchain-based approach to
choose a subset of nodes for updating two types of weights in
the global model. One subset updates weight based on its local
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learning accuracy and the other on its participation frequency.

In [42], a federated CLONE model is proposed to work
on the edges for connected vehicles network. A parameter
EdgeServer was used to coordinate distributed participating
vehicles. Each vehicle locally trains its learning model with
its own private training data. After one epoch, each vehicle
pushes the current value of parameters to the parameter
EdgeServer and the EdgeServer aggregates all such parameters
from distributed vehicles by computing the weighted average
value. For the next epoch, each vehicle pulls the updated
parameters as the current parameter from the EdgeServer and
repeats the process. In case a new vehicle joins the network,
it pulls the current aggregated parameters from the parame-
ter EdgeServer to use as its initial parameters for training.
Following asynchronous communication without stopping and
waiting for other vehicles to complete an epoch reduces the
latency.

System heterogeneity is one of the big issues in the fed-
erated network which can not be ignored. Ren et al. [20]
combined the idea of FL and data offloading to alleviate the
constraints and challenges of IoT devices. For intensive com-
putation tasks, IoT devices offload data to the edge nodes so
that such devices can conserve energy and provide the required
quality of service. Multiple deep reinforcement learning (DRL)
agents were deployed on IoT devices to assist in offloading
decisions as per the dynamic workload and radio environment
of the IoT system. DRL agents were trained in a distributed
setting using FL and an experiment was conducted to confirm
the effectiveness of edge computing-supported IoT system
using data offloading and FL.

Some works incorporated blockchain-based federated model
architecture consisting of edge nodes. “FLchain” [71] stores
local parameters used for each global aggregation in a block
on the channel-specific ledger to enhance security and audit
trails. In FLchain, for each new global learning model, a new
channel is created. However, the limitations in this model are
the blockchain model does not use a reward mechanism for
participating nodes, and end devices do not directly participate
in BC, in fact, edge devices do all the transactions on behalf
of these devices. Moreover, latency of communication, the
computing and storage capability of end devices are not taken
into account in the proposed model. In [79], authors proposed
iFLBC:FL and Blockchain-based ML to bring edge-Al to end
devices. To alleviate the scarcity of data, a trained federated
shared model is stored in the blockchain that works using
the mechanism called Proof of Common Interest (PoCI) to
separate relevant and non-relevant data.

V. MACHINE LEARNING MODELS, ALGORITHMS, AND
TECHNOLOGY

In this section, we highlight all the machine learning mod-
els, algorithms, and technologies used by surveyed research
in Table III. Along with this information, we also present
information about the tools and environment under which sim-
ulation has been carried out. Our survey is primarily focused
on cybersecurity for the IoT environment and importantly
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using FL. Based on the nature and complexity of the proposed
works, authors have adopted a variety of ML models. The only
purpose of this section is to give readers information about the
trends on kinds of ML models, algorithms, and technologies
that have been used by the surveyed works along with the
tools and environment under which the proposed works have
been evaluated.

For all the proposed works, authors have adopted varieties
of machine learning models like a neural network, SVM, linear
regression, Q-learning, and so on. FL inherently supports
privacy and security (compared to centralized learning) but
to strengthen these, some works have also used elliptic-curve
cryptography, differential privacy, blockchain and others. The
majority of the works have considered CNNs as their machine
learning models. Different variations of CNNs like LeNet,
AlexNet, GoogleNet, VGGNet, and others have been used.
LSTM (a recurrent neural network) and MLPs (a feed-forward
neural network) also have been used by several works. Several
works have adopted multiple of the ML models and compared
the results to verify their proposed models.

VI. POPULAR DATASETS ADOPTED TO EVALUATE
LEARNING MODELS

Due to the several challenges associated with IoT and
cyberphysical systems as outlined inl, these systems have been
a primary target of various kinds of cyberattacks in recent
times. Because of the huge volume of data flows through
the IoT network, data-driven sophisticated anomaly detection
systems are necessary for detecting such attacks. A better
system needs sufficient high-quality network data to learn
the pattern of the compromised network. There have been
several works to produce real dataset which can be used to
train and test IDS. Moreover, significant efforts also have been
devoted to creating datasets to evaluate the performance of FL
models. So, in this section, we classify research works based
on the dataset it uses for their proposed work in table IV. This
classification gives an idea about the most common datasets
that have been utilized by several works considered in this
paper. We also discuss what these datasets are and what they
contain so that it might be useful for researchers to choose the
dataset based on their needs.

KDDCup99 [132] and NSL-KDD [121] are popular intru-
sion detection datasets, both containing five major intrusion
categories as listed below:

o Normal: No intrusion in the network.

o Denial of service (DoS): Making network resource un-
available by overwhelming it with information and re-
quests

« Remote to user (R2L): An attack involving unauthorized
access to a user machine from a remote machine

e User to root attacks (U2R) : Intruder gain access to a
network as a legitimate user

e Probe: Scanning the network to identify weaknesses

KDDCup99 is an intrusion dataset created in 1999 with the
objective of improving the capability of IDSs. The training set
of KDDCup99 contains 3,925,650 attack records and in which
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TABLE III
MACHINE LEARNING MODELS, ALGORITHMS AND TECHNIQUES USED IN STATE OF HE ART RESEARCH WORKS

Model ML Models, Algorithms, Technology Tools and Environment
[49] SVM CORE/EMANE Network emulator, TensorFlow
FoolsGold [30] Softmax classifier, SqueezeNetl.1, FL prototype using python, VGGNetl11
[50] Squared-SVM, linear regression, K-means, DCNN Raspberry Pi, Laptops
[55] SVM, LSTM virustotal api
PAFLM [78] three-layer MLP, threshold gradient compression GPU server,PCs
[31] IDS Simulated using Raspberry Pi devices
DeepFed [32] CNN-GRU,IDS, Paillier cryptosystem CPU,GPU Keras API, Flask
FNTAE [56] KNN Simulated on workstations
DIoT [65] DNN,GRU,IDS Simulated using [oTs and Gateways
VerityNet [68] CNN, Elliptic-Curve PCs
VEL [80] Lagrange interpolation, MLP, CNN Simulated using PCs and Alibaba cloud
[81] MLPs Tensorflow, Keras
FDC [82] DNN, blockchain Libra, Tensorflow

PriModChain [83]

DNN, Blockchain,Smart contract, Differential privacy

Python, Ethereum, Ganache, Kovan, Scyther

FED-IIoT [85] GAN Tensorflow, Keras
[3] CNN Simulated at LAN-security Monitoring Project
“Gaia [26] GoogLeNet-CNN, Amazon-EC2, Emulation-EC2
[27] SVM, CNN, linear regression, Simulated using Raspberry Pi and laptops
K-means
[58] [115] CNN X
[75] Q-learning Ns-3 for mobility
[77] SAE LEAF [120]
[28] CNN v
ASTW_FedAVG [47] CNN,LSTM Simulated with designed framework
FLchain [71] Linear regression X

SN ENENEN RS ENENENENENENENENENENENEN AN ENENENENENENENENENENENENENENENENEN e

[84] DNN Simulated with designed framework
STC [45] sparse ternary compression, LSTM, LR, VGG11 Simulated with designed framework
CLONE [42] LSTM Intel FogNode and Jetson TX?2
[20] DRL IoTs
iFLBC [79] ML, Blockchain Simulated with designed framework
[52] MLP Simulated with designed framework
DRAFT [54] - Fed4FIRE+federated testbeds
[74] X Theoretical concept only
[46] clustering algorithm v
CFL [29] DCNN, DRNN, clustering Simulated with designed framework
[76] CNNs-LeNet-5, DenseNet-121, CifarNet, AlexNet Simulated with designed framework

only 262,178 records are distinct whereas the test set includes
250,436 attack records and in which only 29,378 records are
distinct. In the case of normal traffic data, the training set con-
tains a total of 972,781 records with 812,814 distinct records,
and similarly, in the test set, 47,911 records are distinct among
60,591 total records. NSL-KDD is the subset of KDDCup99
created in 2009 to rectify the inefficiencies associated with
KDDCup99. The main issue with the KDDCup99 is that it
contains significant redundant records which tend the learning
model to be biased toward the more frequent records [121].

Kyoto 2006+ [133] is another NIDS evaluation dataset
that was produced by processing the data collected from
348 honeypots deployed in 5 different networks (inside and
outside) of Kyoto University. Real as well as virtual machines
including two black hole sensors with 318 unused IP addresses
were implemented as honeypots to capture the real network
traffic data over the 3 years of span(2006-2009). During this
time span 50,033,015 normal sessions, 42,617,536 known
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attack sessions, and 425,719 unknown attack sessions were
gathered and which were processed further to extract 24
features including 14 derived from the KDDCup99 dataset.
VirusTotal API [134] is a cyberthreats scanning service
allowing users to analyze files or URL address online. It
consists of a large set of analyzers including antivirus ap-
plication engines and website scanners from more than 60
security vendors. With the VirtusTotal service, users can get
a thorough analysis report for submitted files or URLs and
if needed, previous analysis reports can also be obtained. The
VirusTotal API provides scanning results as a JSON object and
with that, an evaluation dataset can be developed as required.
Aegean Wi-Fi Intrusion Dataset (AWID) [122] is another
intrusion dataset that comprises real incidents of both normal
and anomalous activities that occurred in the 802.11 Wi-Fi
networks. Each record in the dataset contains 155 attributes
with a class attribute for specifying whether the record repre-
sents normal or attack traffic. As per the class distribution,
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TABLE IV
LIST OF DATASET USED BY VARIOUS RESEARCH WORKS IN THE FIELD OF CYBERSECURITY

Dataset Dataset used in References Federated Learning
NSL-KDD [121] [31], [81] v
AWID [122] [77] v
MNIST [123] [27], [49], [52], [68], [80], [115] v
MNIST, Cifar-10 [124] [78] [29] [28] v
MNIST,HAR [125] [47] v
ImageNet [26] v
CIFAR,KWS [126],MNIST [45] v
MNIST, VGGFace2 [127], KDDCup , Amazon reviews [128] [30] Ve
MNIST, MNIST-F, CIFAR-10 [50] v
MNIST, CIFAR-10,ImageNet [129] [76] v
KDD99 [128] [56] v
KDD99 , NSL-KDD [62] X
Mirai [130] [65] v
KDDCup 99 ,NSL-KDD, UNSW-NBI5 [86], Kyoto, WSN-DS, CICIDS 2017 [63] X
Drebin, Genome, Contagio [85] v
Wearable sensor data collected at kindergarten [82] v
Fed4FIRE+federated testbeds [131] [54] X
KDD, NSLKDD, UNSW-NB15, N-BaloT [84] v
virustotal api [55] v

AWID has been divided into two major types as a high-
level labeled dataset (AWID-CLS) and a finer-grained labeled
dataset (AWID-ATK). AWID-CLS is created from a large set
of packets whereas the other is from the smaller subset. These
two sets of the dataset are formed by capturing packets at
different times, in different environment, and with different
types of equipment and contains their own set of training and
test set. Each record in AWID is classified as either normal
or a particular intrusion type. The intrusion types in AWID-
CLS are categorized into 4 major classes named as Flooding,
Impersonation, Injection, and Normal whereas AWID-ATK
specifies more detailed class labeling. The training set of
AWID-ATK comprises 10 classes whereas a test set contains
additional 7 classes. The large dataset contains 162,375,247
records for training and 48,524,866 records for testing while
the reduced dataset contains 1,795,575 and 575,643 records
for training and testing respectively [122].

UNSW-NBI15 [86] is another intrusion dataset to evaluate
network intrusion detection systems (NIDSs). The motive
behind creating this dataset is to mitigate the deficiencies of
past intrusion dataset and help to identify new and emerging
cyberattacks and including low footprint attacks. UNSW-NB15
dataset was created by Australian Centre for Cyber Security
(ACCS) that includes real modern as well as synthesized
network traffic. A synthesized dataset containing both normal
and abnormal traffic was created in lab setup using IXIA
PerfectStorm tool [135]. This tool contains all the updated
publicly known attack information and was used to simulate
nine families of attacks named as normal, fuzzers, analysis,
backdoors, DoS, exploits, generic, reconnaissance, shellcode,
and worms Further, other sets of tools and algorithms were
also utilized to generate 49 features to covers characteristics
of network packets.

WSN-DS [136] is an intrusion dataset created for wireless
sensor network (WSN) to train and evaluate IDSs to effec-
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tively identify four classes of DoS attacks namely blackhole,
grayhole, flooding, and scheduling attacks. To collect data for
creating WSN-DS, a WSN environment was simulated using
Network Simulator 2 (NS-2) where LEACH [137] protocol
was applied as a routing protocol. The collected dataset was
then processed and 23 features were produced. The useful-
ness of the dataset was evaluated by training and testing an
Artificial Neural Network (ANN).

In another attempt to develop an intrusion dataset having the
latest threats information and features, the Canadian Institute
of Cybersecurity created CICIDS 2017 [60] by collecting five
days’ network data containing normal and attack traffic in the
network environment of the Canadian Institute of Cybersecu-
rity over eight different files. All the files were processed and
merged and finally, a single dataset fulfilling all the criteria of
true intrusion dataset was produced. The resultant dataset has
2830540 records and each record has 83 features including a
class label that represents either normal traffic or one of the
14 attack classes.

Mirai actually is not a dataset rather, is a worm-like mal-
ware that was launched in 2016 [130]. The malware infected
distributed IoT devices and transformed them into a botnet
which finally caused one of the most popular DDoS attacks
in history. The source of the Mirai attack is publicly available
and it is popular among the research community. The source
code is launched in an IoT network environment and network
traffic is collected and analyzed to create an intrusion dataset
and moreover, it is also used to evaluate the performance of
the developed IDS model.

Fed4FIRE+ [131], a successor of Fed4FIRE, is a project
under the European Union’s Programme Horizon 2020 started
in 2017 with the aim of providing open, accessible, and
reliable facilities for supporting experimentally driven re-
search. It provides the largest federation worldwide of Next
Generation Internet (NGI) testbeds. It aims to support re-
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search and innovation communities and initiatives in Europe,
including the 5G PPP projects and initiatives. Fed4FIRE+
enables various innovative experiments through the federation
of the infrastructures. Moreover, it offers federated hardware
and software testbed resources by which an emulation of
network environment can be easily created and cyberattacks
experimentation can be conducted efficiently and effectively.

FL research substantially utilizes several machine learning
and deep learning models and the availability of accessible
benchmark datasets allows better training and testing of these
models. There have been ample works to create such standard
realistic datasets and those have been significantly used in
literature. MNIST (Modified National Institute of Standards
and Technology ) dataset [123] is one of the most popular
and frequently used of such datasets. It is a simple and most
beginner-friendly labeled dataset containing 70,000 images of
handwritten digits from 0 to 9. There are different variations of
MNIST named as MNIST-F and MNIST-O. MNIST-F which is
fashion MNIST contains a more sophisticated alternative im-
age dataset related to 10 categories of fashion items. MNIST-F
is widely adopted for CNN because of its simplicity to use.

CIFAR-10 (Canadian Institute For Advanced Research))
[138] is another image dataset consisting of 50,000 training
and 10,000 test images categorized over 10 classes. MNIST-F
contains grayscale images whereas CIFAR-10 is a dataset con-
taining color images and is one of the widely used computer-
vision datasets for object recognition.

The rapid rise in the availability of multimedia data and
enhancement of computing capabilities has assisted on the
advancement of building sophisticated and robust machine
learning models. Simple datasets on those sophisticated ML
techniques have been no longer useful to identify the true
potential of these algorithms. A need for a complex dataset
is inherent to achieve better results and such necessity led
to create ImageNet [129] dataset. It is a large-scale dataset
with high diversity and accuracy compared to most of the
existing benchmarked image datasets and is useful mostly for
image classification, object localization, and object detection.
The dataset is a repository of 80,000 synsets of WordNet with
an average of 500-1000 clean and full resolution images. The
dataset has 12 subtrees 3.2 million cleanly annotated images
spread over 5247 categories.

VGGFace2 [127] is a large-scale face dataset consisting of
3.31 million images of 9131 subjects ranging from a wide
range of ethnicities, professions, poses, ages, illuminations.
Google image search was used to download images for all
the subjects keeping approximate gender balance. The dataset
contains images with human-verified bounding boxes around
faces and five fiducial keypoints predicted by cascaded CNN.
The dataset has been partitioned into a training set consisting
of 8631 classes and a test set of 500 classes.

HAR (Human activity recognition) [125] dataset is a collec-
tion of records gathered from activities of daily living (ADL)
of 30 subjects where subjects were equipped with a waist-
mounted smartphone with embedded inertial sensors. This
dataset is also publicly available and has been widely used
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by researchers for activity recognition tasks.

KWS (keyword spotting) is an activity of identifying key-
words from text images, voice commands and others, however,
in this paper we discuss audio dataset [126] used in the
research presented in [45]. The dataset contains a collection
of 105,829 utterances of 35 words of 2168 speakers. Each
utterance is stored in WAVE format file with a length of a
maximum of one second. The dataset is useful widely used
for the training and evaluation of speech recognition models.

Amazon reviews [128] dataset is produced from a corpus
of text in the form of the product reviews by customers on the
Amazon commerce website for authorship identification. The
recordset contains 1500 instances with 10,000 attributes and
50 classes. Each record contains attributes related to authors’
linguistic style like usage of the digit, punctuation, words and
sentences’ length, usage frequency of words, and so on.

VII. OPEN CHALLENGES AND FUTURE RESEARCH
DIRECTIONS

Data is a crucial asset for an individual and company
that should be protected to ensure the CIA (confidentiality,
integrity, and availability) triad. Legislations like Consumer
Data Protection Act and the Data Care Act in the USA, Gen-
eral Data Protection Regulation (GDPR) in Europe have been
already rolled out to strengthen data protection. However, due
to the rapidly growing flood of data, ML has been inevitable
to analyze and learn from the data. However, the traditional
learning model (centralized) poses a lot of concerns due to the
insecure digital highway, limited bandwidth, and sole control
of the service provider. In this regard, FL offers an innovative
framework to facilitate learning by keeping data locally and
training locally. However, it is still in the early stage to
be fully applicable particularly for the IoTs environment.
In recent times, FL has gained significant attention in the
research community. Many works have already proposed their
models making use of different ML algorithms, frameworks,
and technologies. However, in our survey, we found most
of the proposed models use neural networks. NN is mostly
preferred in FL setting however, it increases the complexity
which might increase the overhead in real heterogeneous IoT
environments. Moreover, most of the proposed models are
simulated in an environment consisting of few devices and that
are tested against only a few datasets. To develop an efficient
and robust FLL model, research works need to consider different
permutations and combinations of ML algorithms, datasets,
and working dynamics and measure the true efficacy of the
developed system.

Considering the limited resources and communication band-
width in the IoT network, a significant number of research
works have proposed a FL scenario where the edge server
aggregates the updates from end devices and passes them on to
the central server. Such an approach might not work in general
as all IoT networks may not have such an ideal configuration.
Additionally, the baseline algorithm, federated averaging (Fe-
dAvg) has been mostly applied to aggregate and weigh the
updated model. Due to the system and statistical heterogeneous
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characteristics of IoTs environment, the convergence in real
federated networks may not occur as expected. So, it will be
valuable to seek other methods that address such issues and
result in quick convergence.

Differential privacy e.g [23], homomorphic encryption e.g.
[25] , secure function evaluation or multiparty computation
e.g. [24] have been utilized in FL for privacy-preserving
learning. FL using these approaches have been implemented
and experimented in small-scale distributed network only. So,
it may bring novel challenges in the large-scale network sce-
narios due to the additional communication and computation
burdens.

In literature, gradient compression schemes [e.g. [76], [45]]
have been popularly applied to compress the communicated
messages to thus reducing latency. Although this reduces the
size of data to be transmitted, it may result in data loss and
affect the accuracy of the learning model.

In surveyed works, the ML learning parameters have been
aggregated in a single centralized server. This approach in-
duces the risk of a single point of failure due to a cyberattack
or any other reason. Moreover, In this setting, communication
efficiency is also likely to be affected by the geographical
location of the centralized server. A new approach to design
multi-tier distributed aggregating servers can make FL com-
munication efficient and robust.

Several methods have been proposed to address expensive
communication in FL, however, those approaches have been
tested only in the small scale federated networks. Such ap-
proaches may perform inefficiently in large-scale federated
networks consists of millions of devices with system hetero-
geneity and statistical heterogeneity. In a large-scale network
setting exacerbated by devices sampling and drop out due to
network connectivity and limited resources, current approaches
are limited to measure the level of system heterogeneity as
well as statistical heterogeneity. This deficiency might directly
hinder the accuracy of the learning model. large-scale FL have
been highlighted in many articles. These issues have been
addressed mostly under the assumptions of i.i.d., non-modified
and equal data distribution. Identifying and mitigating attacks
on true FL stetting without degrading performance and accu-
racy is still an open area of research.

VIII. CONCLUSION

In this survey, we first highlighted the risks and threats
associated with IoT systems. Motivated by the role of ML
to learn from the flood of data and keep the IoT network
safe and secure, we talked about different models of learning
and pinpointed the merits and demerits of each model. We
then extended our study to the application of FL, a new
and innovative learning model; for the security of IoT net-
works. Several recent works addressing the security aspect of
IoT environments were discussed. We also discussed several
research efforts carried out to mitigate attacks in the FL
paradigm. Despite the inherent data protection framework
of FL, it bears several challenges to be addressed for its
successful adoption. So, we discussed several existing research
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addressing such performance issues. To assist readers for a
research direction with overall information, we presented most
of the surveyed works along with the issues addressed and all
the ML algorithms, frameworks, technologies, datasets used
by the proposed works. Finally, some open challenges in FL
research were presented for future research directions.
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