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Periodicities in the Daily Proton Fluxes from 2011 to 2019 Measured by the Alpha
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We present the precision measurement of the daily proton fluxes in cosmic rays from May 20, 2011 to
October 29,2019 (atotal of 2824 days or 114 Bartels rotations) in the rigidity interval from 1 to 100 GV based
on 5.5 x 10° protons collected with the Alpha Magnetic Spectrometer aboard the International Space Station.
The proton fluxes exhibit variations on multiple timescales. From 2014 to 2018, we observed recurrent flux
variations with a period of 27 days. Shorter periods of 9 days and 13.5 days arc observed in 2016. The strength
of all three periodicities changes with time and rigidity. The rigidity dependence of the 27-day periodicity is
different from the rigidity dependences of 9-day and 13.5-day periods. Unexpectedly, the strength of 9-day
and 13.5-day periodicities increases with increasing rigidities up to ~10 GV and ~20 GV, respectively. Then

the strength of the periodicities decreases with increasing rigidity up to 100 GV.

DOI: 10.1103/PhysRevLett.127.271102

The temporal evolution of the interplanetary space
environment causes cosmic-ray intensity variations. This
is particularly visible at energies below 100 GeV. These

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOL.

variations correlate with solar activity at different time-
scales [1,2]. The most significant long-term scale variation
is the 11-year solar cycle during which the number of
sunspots changes from minimum to maximum and then
back to a minimum [3,4]. Shorter scale variations can be
either nonrecurrent or recurrent. The nonrecurrent varia-
tions are mainly due to the interactions of cosmic rays with
strong transient disturbances in the interplanetary magnetic
field, such as shock waves generated by interplanetary
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coronal mass ejections, especially during solar maxima,
that can last from days to weeks [5]. Recurrent variations
with a period of 27 days, corresponding to the synodic solar
rotation, and at multiples of that frequency (e.g., periods of
13.5 and 9 days) are related to the passage of corotating
interaction regions originating from one or more coronal
holes of the Sun [6-14], as first observed in 1938 [15].
Previous studies on the estimated rigidity dependence in
periodicities, for example in Ref. [11], generally concluded
that the power of the periodicity decreases with increasing
rigidity. This formed the paradigm over the AMS rigidity
range (1 to 100 GV) that the strength of the 27-day (and
13.5-day, 9-day) periodicities steadily decreases with
increasing rigidity of cosmic rays, differently in solar
maximum and minimum [16].

Previously, the Alpha Magnetic Spectrometer (AMS) has
reported the time dependence of proton and helium fluxes
on the timescale of Bartels rotations (BR: 27 days) [17].

To date, there are no direct continuous daily measure-
ments of the rigidity dependence of 9-day, 13.5-day, and
27-day periodicities over an extended period of time and a
broad range of rigidities.

In this Letter, we present the daily time evolution of the
proton flux from 1.00 to 100 GV. The measurement is
based on 5.5 x 10° protons collected by AMS during the
first 8.5 years (May 20, 2011 to October 29, 2019, a total of
2824 days or 114 BRs) of operation aboard the
International Space Station (ISS).

Detector.—The layout and description of the AMS
detector are presented in Refs. [18,19] and shown in
Fig. S1 of the Supplemental Material (SM) [20]. The
key elements used in this measurement are the permanent
magnet [21], the silicon tracker [22-24], and the four
planes of time of flight (TOF) scintillation counters [25].
Further information on the AMS layout, performance,
trigger, and the Monte Carlo (MC) simulations [26,27]
is detailed in the SM [20].

Event selection.—AMS has collected 1.5 x 10! cosmic
ray events from May 20, 2011 to October 29, 2019. Proton
events are required to be downward going and to have a
reconstructed track in the inner tracker. See Fig. S2 of the
SM [20] for a reconstructed proton event. Details of the
event selection and backgrounds are contained in
Refs. [17,28-31] and in the SM [20]. After selection,
the event sample contains 5.5 x 10° Z = 1 particles. The
sample includes a few percent of deuterons [32].

Data analysis.—The daily isotropic flux ®/ in the ith
rigidity bin (R;, R; + AR;) and jth day is given by

N/

= TR (1)
Aje[TIAR,

i

where N{ is the number of events corrected for bin-to-bin
migration, A? is the effective acceptance, €] is the trigger

efficiency, and 7Y is the daily collection time. In this Letter,
the proton flux was measured in 30 bins from 1.00 to
100 GV. Bin-to-bin migration of events was corrected using
the unfolding procedures described in Ref. [28] independ-
ently for each day.

Extensive studies were made of the systematic errors
[28]. These errors include the uncertainties in the back-
ground evaluation, the trigger efficiency, the geomagnetic
cutoff, the acceptance calculation, the rigidity resolution
function, and the absolute rigidity scale.

The systematic error on the proton fluxes associated with
the trigger efficiency measurement is < 1% over the entire
rigidity range and for all days.

The calculated geomagnetic cutoff as described in the
SM [20] was increased by 10% and the resulting systematic
error in the fluxes is < 2% at 1 GV and negligible (< 0.4%)
above 2 GV. '

The effective acceptances A] were calculated using MC
simulation and corrected for small differences between the
data and simulated events related to (a) event reconstruction
and selection, namely, in the efficiencies of velocity vector
determination, track finding, charge determination, and
tracker quality cuts and (b) the details of inelastic inter-
actions of protons in the AMS materials. The systematic
error on the fluxes associated with the reconstruction and
selection is < 1% over the entire rigidity range for all days.
The time-independent systematic error on the proton fluxes
due to uncertainties in the evaluation of the inelastic
interactions is < 1% over the entire rigidity range [28].

The time-independent rigidity resolution function for
protons has a pronounced Gaussian core and non-Gaussian
tails. The systematic error on the fluxes due to the rigidity
resolution function was obtained by repeating the unfolding
procedure while independently varying the width of the
Gaussian core by 5% and the amplitude of the non-
Gaussian tails by 20% [28]. The resulting systematic error
on the fluxes is 1.5% at 1 GV and < 1% above 2 GV.

There are two contributions to the systematic uncertainty
on the rigidity scale [28]. The first is due to residual tracker
misalignment. This error was estimated by comparing the
E/ p ratio for electrons and positrons, where F is the energy
measured with the electromagnetic calorimeter and p is the
momentum measured with the tracker. It was found to be
1/30 TV~! [33]. The error is negligible (< 0.3%) below
100 GV. The second systematic error on the rigidity scale
arises from the magnetic field map measurement and its
temperature corrections. The total time-independent error
on the fluxes due to uncertainty on the rigidity scale has
been calculated to be < 0.6% over the rigidity range
below 100 GV.

The contributions to the systematic error from the trigger
and reconstruction efficiencies are evaluated independently
each day and are added in quadrature to derive a time-
dependent systematic error, which is < 2% at 1 GV and
< 1% above 2 GV for all days. The daily total systematic
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error is obtained by adding in quadrature the individual
contributions of the time-independent systematic errors
discussed above and the time-dependent systematic errors.
At 1 GV itis < 3.4% and above 2 GV it is < 1.4% for
all days.

Most importantly, several independent analyses were
performed on the same data sample by different study
groups. The results of those analyses are consistent with
this Letter.

Results.—The measured daily proton fluxes including
statistical errors, time-dependent systematic errors, and
total systematic errors are tabulated in Tables S1-S2824
of SM [20] as functions of the rigidity at the top of the AMS
detector. For the days when AMS detected solar energetic
particles (SEPs), the fluxes below 3 GV will be included in
a future publication [34] and not here.

Figure 1 shows the daily proton fluxes for six rigidity
bins from 1.00 to 10.10 GV. In this and subsequent figures,
the error bars on the fluxes are the sum in quadrature of the
statistical and time-dependent systematic errors. As seen,
the proton fluxes exhibit variations on different timescales,
from days to years. The relative magnitude of these

500 1000 1500

.

2013

[1.92-2.15] GV [2.97-3.29] GV

[4.02-4.43] GV

FIG. 1. The daily AMS proton fluxes for six typical rigidity
bins from 1.00 to 10.10 GV measured from May 20, 2011 to
October 29, 2019 which includes a major portion of solar cycle
24 (from December 2008 to December 2019). The AMS data
cover the ascending phase, the maximum, and descending phase
to the minimum of solar cycle 24. Days with SEPs are removed
for the two lowest rigidity bins. The gaps in the fluxes are due to
detector studies and upgrades. The error bars are invisible. As
seen, the proton fluxes exhibit large variations with time, and the
relative magnitude of these variations decreases with increasing
rigidity.

variations decreases with increasing rigidity. At low rigidi-
ties, recurrent flux variations are clearly visible. An
explanation of the dip in 2017 is presented in the SM
[20]. Figures S3 and S4 of the SM [20] show the
comparison of AMS daily proton fluxes with results from
PAMELA [35].

Figure 2 shows the daily AMS proton fluxes measured in
2016 for three rigidity bins [1.00-1.16] GV, [5.90-
6.47] GV, and [16.60-22.80] GV. As seen, double-peak
and triple-peak structures are visible in different Bartels
rotations.

To study the recurrent time variations in the daily proton
fluxes, a wavelet time-frequency technique [36,37] was
used to locate the time intervals where the periodic
structures emerge. The details on the wavelet analysis
are described in the SM [20]. All the power spectra in
the subsequent figures of the text and of the SM [20] are
drawn with normalized power defined in the SM [20] to
show the strength of the periodicities. The daily proton
fluxes for the same three rigidity bins in each of the nine
years (2011-2019), together with their time-averaged
power spectra and 95% confidence levels, are shown in
Figs. S5-S13 of the SM [20]. We observed recurrent flux
variations with a period of ~27 days with significance
above the 95% confidence level from 2014 to 2018. Shorter
periods of ~13.5 days and ~9 days are significant only
in 2016.

To study the details of periodicity in 2016, Fig. 3 shows
the wavelet time-frequency power spectra of daily proton
fluxes for the same three rigidity bins. As seen, periods of 9,
13.5, and 27 days are observed at different time intervals.
The strength of all three periodicities changes with time and
rigidity. In particular, shorter periods of 9 and 13.5 days,
when present, are more visible at 6 GV and 20 GV
compared to 1 GV. We define two time intervals of interest
marked on the top of Fig. 3: the first time interval (BRs
2489-2495) is when the 9-day period is visible; the second
time interval (BRs 2496-2502) is when the 9-day period is
not visible.

Figure 4 shows the normalized power as a function of
rigidity and period for the two time intervals. As seen, the
strength of all three periodicities is rigidity dependent. In
particular, the strength of 9-day and 13.5-day periodicities
increases with increasing rigidity up to ~10 GV and
~20 GV, respectively, and then decreases with increasing
rigidity up to 100 GV. Thus, the AMS results do not support
the general conclusion that the strength of the periodicities
steadily decreases with increasing rigidity. The projections
of the normalized power on the period and on the rigidity
together with the 95% confidence levels are included in
Fig. S14 and Fig. S15 of the SM [20], respectively. As seen
in Fig. S15 of the SM [20], the three periodicities are
significant up to at least 20 GV. Note that both the
unnormalized power of these periodicities and the flux
variance in the two time intervals decrease with increasing
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FIG. 2. The daily proton fluxes measured in 2016 for three rigidity bins. Vertical dashed lines separate Bartels rotations. As seen,
double-peak and triple-peak structures are visible in different Bartels rotations.
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FIG. 3. The wavelet time-frequency power spectrum of daily
AMS proton fluxes from January 10, 2016 to January 21, 2017
for three rigidity bins (a) [1.00-1.16] GV, (b) [5.90-6.47] GV, and
(¢) [16.60-22.80] GV. The color code indicates the normalized
power. The vertical scales are in decreasing period (increasing
frequency). As seen, periods of 9, 13.5, and 27 days are observed.
The strength of all three periodicities changes with time and
rigidity. In particular, shorter periods of 9 and 13.5 days, when
present, are more visible at 6 GV and 20 GV compared to 1 GV.
The horizontal dashed lines indicate the locations of 9-day, 13.5-
day, and 27-day periods shown on the right scale. The vertical
solid line indicates the boundary of the two time intervals marked
on the top. Above 5.90 GV, the first time interval (BRs 2489—
2495) is when the 9-day period is visible; the second time interval
(BRs 2496-2502) is when the 9-day period is not visible.

rigidity as shown in Fig. S16 of the SM [20]. The peak
values of the normalized power around 27 days as a
function of rigidity for each year are shown in Fig. S17
of the SM [20]. As seen, the 27-day periodicity only
becomes significant from 2014, and its rigidity dependence
varies in different time intervals and is different from the
rigidity dependences of 9-day and 13.5-day periods.

The intensity variations of cosmic rays are caused by the
temporal evolution of the interplanetary space environment.
In particular, the solar wind speed is related to cosmic-ray
advection, the variation of solar wind proton density is
related to cosmic-ray adiabatic energy changes, and the
interplanetary magnetic field is related to cosmic-ray
diffusion and drifts [1]. Figure S18 of the SM [20] shows
the wavelet time-frequency power spectra of the daily
averages of these interplanetary space environment proper-
ties [38] in 2016. To investigate their relations with the
observed periodicities in the proton fluxes, the cross
wavelet transform [37] as described in SM [20] is per-
formed as shown in Fig. S19 of the SM [20]. The proton
fluxes are observed to be related to the interplanetary space
environment properties for all periodicities, such as the
radial component (along the Sun-Earth direction) of the
interplanetary magnetic field for the 9-day periodicity and
the solar wind speed for the 13.5-day periodicity.

In conclusion, we have presented the precision mea-
surements of the daily proton fluxes in cosmic rays from
1 GV to 100 GV between May 20, 2011 and October 29,
2019 based on 5.5 x 10° protons. The proton fluxes exhibit
variations on different timescales, in days, months, and
years. From 2014 to 2018, we observed recurrent flux
variations with a period of 27 days. Shorter periods of
9 days and 13.5 days are observed in 2016. The strength of
all three periodicities changes with both time and rigidity.
Unexpectedly, the strength of 9-day and 13.5-day perio-
dicities increases with increasing rigidities up to ~10 GV
and ~20 GV respectively. Then the strength of the perio-
dicities decreases with increasing rigidity up to 100 GV.
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FIG. 4. The normalized power as a function of rigidity and period for (a) the first and (b) the second half of 2016 from 1 to 20 GV and
from 20 to 100 GV. As seen, the strength of 9-day, 13.5-day, and 27-day periodicities is rigidity dependent. In particular, the strength of
9-day and 13.5-day periodicities increases with increasing rigidity up to ~10 GV and ~20 GV, respectively, and then decreases with

increasing rigidity up to 100 GV.

These new precision measurements provide unique inputs
to the understanding of cosmic rays in the heliosphere.
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