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Abstract
We provide explicit formulae for the first eigenvalue of the Laplace–Beltrami operator
on a compact rank one symmetric space (CROSS) endowed with any homogeneous
metric. As consequences, we prove that homogeneous metrics on CROSSes are
isospectral if and only if they are isometric, and also discuss their stability (or lack
thereof) as solutions to the Yamabe problem.

Keywords First eigenvalue · Laplace eigenvalue · Hopf fibration · Compact rank one
symmetric space · Yamabe problem · Spectral uniqueness · Homogeneous space

Mathematics Subject Classification 53C30 · 58J50 · 58J53 · 35P15 · 35B35 · 58J55 ·
53C18

1 Introduction

The underlyingmanifold ofmany compact symmetric spaces admits families of homo-
geneous Riemannian metrics that include, but are strictly larger than, their symmetric
space metric. For instance, all odd-dimensional spheres Sn , n ≥ 3, carry a continuum
of pairwise non-isometric homogeneous metrics, and only some among them—the
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round metrics—give Sn the structure of a symmetric space. Surprisingly, despite the
extensive literature on the spectrumof the Laplace–Beltrami operator, the computation
of its first eigenvalue λ1(M, g) for every homogeneous metric g on (the underlying
manifold of a) compact rank one symmetric space (CROSS) M was, to the best of
our knowledge, still incomplete. In this paper, we rectify this by computing λ1(M, g)
in all the remaining cases. For simplicity, we henceforth refer to these metrics g as
homogeneous metrics on a CROSS. Out of many possible applications, we focus on
two geometrically relevant consequences: the spectral uniqueness of homogeneous
metrics on CROSSes, and their classification according to stability in the Yamabe
problem.

It is well-known that the complete list of CROSSes consists of Sn , RPn , CPn ,
HPn , and CaP2, see e.g. [8, Ch. 3]. Homogeneous metrics on a CROSS were classi-
fied by Ziller [47], see also [1, Examples 6.16, 6.21]. Up to homotheties, in addition
to the canonical (symmetric space) metrics, that is, the round metric ground of con-
stant sectional curvature 1 on Sn and RPn , and the Fubini–Study metrics gFS on the
projective spaces CPn ,HPn , and CaP2, they are as follows:

(i) A 1-parameter family g(t) of SU(n + 1)-invariant metrics on S2n+1;
(ii) A 3-parameter family h(t1, t2, t3) of Sp(n + 1)-invariant metrics on S4n+3;
(iii) A 1-parameter family k(t) of Spin(9)-invariant metrics on S15;
(iv) A 1-parameter family ȟ(t) of Sp(n + 1)-invariant metrics on CP2n+1;

and all metrics in (i), (ii), and (iii) above are invariant under the antipodal (right) Z2-
action, and hence descend to homogeneous metrics invariant under the same groups
on RP2n+1, RP4n+3, and RP15, respectively, that we denote by the same symbols.
Throughout this paper, as above, t and ti denote positive real numbers.

Geometrically, the first three families above are obtained by rescaling the unit round
metric ground in the vertical directions of the Hopf bundles

S1 → S2n+1 → CPn, S3 → S4n+3 → HPn, S7 → S15 → S8
( 1
2

)
. (1.1)

As it turns out, this procedure keeps the corresponding G-actions isometric. More
precisely, decomposing ground = ghor + gver into horizontal and vertical components,

g(t) = ghor + t2gver, h(t1, t2, t3) = ghor +
3∑

i=1
t2i dx

2
i , k(t) = ghor + t2gver,

where dxi , 1 ≤ i ≤ 3, are dual to a basis of ground-orthonormal vertical (Killing)
vector fields on S4n+3, so that gver = dx21 + dx22 + dx23 . In particular, the round
metric is recovered by setting the parameters t (or ti ) equal to 1 in any of the above.
Since permuting (t1, t2, t3) does not change the isometry class of h(t1, t2, t3), we shall
assume that 0 < t1 ≤ t2 ≤ t3 without any loss of generality.

The first eigenvalue of the Laplacian was previously known on
(
S2n+1, g(t)

)
,(

S15,k(t)
)
, and also on the subfamily

(
S4n+3,h(t, t, t)

)
, which is invariant under

the larger isometry group Sp(n + 1)Sp(1). At the heart of these computations, which
are carried out in [12,38,39], building on work of [5,10,40], is the fact that these

123



The First Eigenvalue of a Homogeneous CROSS Page 3 of 63    76 

metrics are canonical variations of the round metric with respect to Riemannian sub-
mersions with minimal fibers (1.1). That is no longer the case on

(
S4n+3,h(t1, t2, t3)

)

and
(
RP4n+3,h(t1, t2, t3)

)
when one chooses distinct values for the parameters ti ,

and these metrics are also not normal homogeneous, which renders the computation
of their first eigenvalue substantially more challenging. This was recently achieved in
[24] in the lowest dimensional case

(
S3,h(t1, t2, t3)

)
and

(
RP3,h(t1, t2, t3)

)
, i.e., that

of left-invariant metrics on SU(2) ∼= S3 and SO(3) ∼= RP3, laying the groundwork
for the cases n ≥ 1, which are settled in our first main result.

Theorem A The first eigenvalue of the Laplacian on
(
S4n+3,h(t1, t2, t3)

)
and(

RP4n+3,h(t1, t2, t3)
)
, with n ≥ 1 and 0 < t1 ≤ t2 ≤ t3, are respectively given

by

λ1
(
S4n+3,h(t1, t2, t3)

) = min

{

4n + 1

t21
+ 1

t22
+ 1

t23
, 8n + 4

t22
+ 4

t23
, 8(n + 1)

}

,

λ1
(
RP4n+3,h(t1, t2, t3)

) = min

{

8n + 4

t22
+ 4

t23
, 8(n + 1)

}

.

In the special case t1 = t2 = t3 = t , the (right) Hopf S1-action on
(
S4n+3,h(t, t, t)

)

is isometric and commutes with the transitive (left) Sp(n + 1)-action. Thus, the orbit
space CP2n+1 = S4n+3/S1 is also a homogeneous space with an action of Sp(n + 1).
The induced homogeneous metrics ȟ(t) form the fourth (and last) family listed above.
Geometrically, ȟ(t) = (gFS)hor + t2(gFS)ver, where gFS = (gFS)hor + (gFS)ver is
the decomposition into horizontal and vertical components with respect to the Hopf
bundle CP1 → CP2n+1 → HPn . These are the last homogeneous CROSSes whose
first eigenvalue of the Laplacian had not been explicitly computed.

Theorem B The first eigenvalue of the Laplacian on
(
CP2n+1, ȟ(t)

)
is given by

λ1
(
CP2n+1, ȟ(t)

) = min

{
8n + 8

t2
, 8(n + 1)

}
.

More detailed versions of Theorems A and B are found in Theorems 3.5 and 3.7,
where the multiplicity of these first eigenvalues is also provided. For the convenience
of the reader, formulae for the first eigenvalue of the Laplacian on all homogeneous
CROSSes are given in Table 1.Moreover, formulae for all eigenvalues of the Laplacian
on S4n+3 andRP4n+3 endowed with the metrics g(t) or h(t, t, t), and

(
CP2n+1, ȟ(t)

)

are given in Theorems 3.8 and 3.9; see also [11].
Although Theorem B could have been obtained from the techniques in [5], Theo-

rem A requires more general methods that might be of independent interest. In fact,
these methods (described in Sect. 2) can be used for spectral computations in any com-
pact homogeneous space G/K endowed with any homogeneous metric g. Recall that if
g is normal homogeneous, then the Laplacian on (G/K, g) acts as theCasimir element.
Since it is in the center of the universal enveloping algebra of g, the Casimir element
acts via multiplication by a scalar in each irreducible G-module that constitutes the
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Peter–Weyl decomposition (2.1) of L2(G/K). These scalars, which are the eigenvalues
of the Laplacian on (G/K, g), can then be computed using Freudenthal’s formula (2.4)
in terms of a root system. However, when the normality assumption on g is dropped,
the Laplacian no longer coincides with the Casimir element, and does not necessarily
act via multiplication by a scalar in every irreducible G-module in (2.1). Instead, its
action is represented by (typically non-diagonal) self-adjoint endomorphisms on each
of these G-modules. Our approach is to compute the Laplace spectrum as the union of
the spectra of these endomorphisms. Although a closed formula analogous to Freuden-
thal’s formula (2.4) is probably unfeasible in this level of generality, sufficiently fine
algebraic estimates allow us to identify in which G-modules the smallest eigenvalue
is attained. In this way, at least the first few eigenvalues can be explicitly computed.

As a first application, we show in our next main result that the Laplace spectrum
distinguishes homogeneous metrics on a CROSS up to isometries.

Theorem C Two CROSSes endowed with homogeneous metrics are isospectral if and
only if they are isometric.

In dimension 3, a partial result was obtained independently in [28, Theorem 1.3]
and [24, Theorem 1.5], in terms of left-invariant metrics on SU(2) and SO(3).

Although the hypotheses of Theorem C may seem rather stringent, one should
keep in mind that establishing spectral uniqueness of a given Riemannian manifold
in complete generality can be extremely challenging. For instance, it remains an open
problem whether or not there exist closed Riemannian manifolds that are isospectral
but not isometric to a round sphere (Sn, ground), n ≥ 7. However, as in Theorem C,
such questions can sometimes be tackled in the presence of symmetries. Similar spec-
tral uniqueness results among certain families of homogeneous metrics were recently
obtained in [20,21,24,25,27,28,37,45,46]. In contrast, there are also several construc-
tions of (non-isometric) isospectral homogeneous Riemannian manifolds, including
curves of left-invariant metrics on several compact Lie groups [33,34], and normal
homogeneous metrics on distinct homogeneous spaces [2,36].

As a second application, we finalize the classification of homogeneous metrics on
a CROSS that are stable solutions to the Yamabe problem. Since they have constant
scalar curvature, homogeneous metrics are trivial solutions to the Yamabe problem,
i.e., critical points of the normalized total scalar curvature functional (5.1) in their con-
formal class. However, they need not be stable critical points (i.e., local minimizers),
depending on the relative values of their scalar curvature and first Laplace eigenvalue.
These are instances where optimality in a geometric variational problem is not nec-
essarily achieved with the most symmetries, since a global minimizer exists in every
conformal class, and a conformal class contains at most one homogeneous metric (up
to homotheties). Stable homogeneous spheres among canonical variations of the round
metric were classified in [12], and among

(
S3,h(t1, t2, t3)

)
and

(
RP3,h(t1, t2, t3)

)

in [24]. Thus, the only families left to consider are
(
CP2n+1, ȟ(t)

)
, for which the

stability classification follows easily from Theorem B, see Remark 6.3, as well as(
S4n+3,h(t1, t2, t3)

)
and

(
RP4n+3,h(t1, t2, t3)

)
, which are settled in our next main

result.
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Theorem D The metric h(t1, t2, t3), (t1, t2, t3) �= (1, 1, 1), is a stable nondegenerate
solution to the Yamabe problem on S4n+3, and RP4n+3, n ≥ 1, if and only if

t41 + t42 + t43 + (2n(t21 + t22 + t23 ) + 8(n2 + n + 1)
)
(t1t2t3)

2 > 2(t21 t
2
2 + t21 t

2
3 + t22 t

2
3 ).

The parameters (t1, t2, t3) corresponding to these metrics form an unbounded and
connected open subset Sn ⊂ R3

>0 = {
(t1, t2, t3) ∈ R3 : ti > 0

}
, whose boundary

∂Sn in R3
>0 is a smooth, connected, and bounded surface.

For completeness, recall that h(1, 1, 1) is the metric of constant sectional curvature
1, and it is stable, but degenerate on S4n+3 and nondegenerate on RP4n+3. For the
convenience of the reader, the complete list of homogeneous metrics on CROSSes that
are stable solutions to the Yamabe problem is provided in Table 3, in Appendix A,
combining Theorem D and Remark 6.3 with [12,24].

The polynomial inequality in Theorem D that defines Sn has some interesting
algebraic features. Namely, the locus of (t1, t2, t3) ∈ R3 where this inequality becomes
an equality is an irreducible real algebraic variety Vn ⊂ R3 of dimension 2, such that
∂Sn = Vn ∩ R3

>0. However, Vn contains (and is singular along) each diagonal line
ti = t j in the coordinate plane tk = 0, where (i, j, k) is any permutation of (1, 2, 3),
cf. (6.1). Thus,Vn∩R3≥0 is noncompact, which substantially complicates the proof that
the (topological) closure of ∂Sn in R3≥0 is compact. This is achieved through careful
estimates in terms of elementary symmetric polynomials in the variables (x, y, z) =
(t21 , t22 , t23 ). As a consequence, the subset R3

>0 � Sn of parameters corresponding to
unstable homogeneous solutions is bounded (but not compact).

Combining the above classification of stable solutions to the Yamabe problem and
classical results in Bifurcation Theory, it is possible to detect the existence of branches
of solutions issuing from paths of homogeneous metrics when they lose stability, i.e.,
when (t1, t2, t3) leaves the set Sn . By uniqueness of homogeneous metrics in their
conformal class, these bifurcating solutions must be inhomogeneous, fitting a wider
context of symmetry-breaking bifurcations [12–14].

Corollary E Branches of inhomogeneous solutions to the Yamabe problem on S4n+3

and RP4n+3 bifurcate from any continuous curve h
(
t1(s), t2(s), t3(s)

)
of homoge-

neous metrics such that α(s) = (t1(s), t2(s), t3(s)
)
crosses the surface ∂Sn.

Further bifurcations occur if the Morse index of a path of solutions keeps growing,
which happens if higher eigenvalues of the Laplace–Beltrami operator become small
compared to the scalar curvature. For instance, it is known that iMorse

(
h(t, t, t)

) ↗
+∞ as t ↘ 0, hence there are infinitely many bifurcation instants as S4n+3 collapses
toHPn along this path of metrics [12]. In Sect. 6, we characterize someways in which
theMorse index blows up, without the need to explicitly compute Laplace eigenvalues.
In particular, we prove the converse statement to a recent bifurcation criterion for the
Yamabe problem on canonical variations of Otoba and Petean [30, Theorem 1.1], see
Proposition 6.9. Finally, we also use Theorem D to analyze the stability of h(t1, t2, t3)
as it degenerates, i.e., as some ti ↘ 0, see Proposition 6.4.

This paper is organized as follows. Themain Lie-theoretic tools used in our spectral
computations are presented in Sect. 2. In Sect. 3, we fix convenient parametrizations
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for the families of homogeneous metrics on CROSSes and prove Theorems A and B.
Section 4 contains the proof of Theorem C. The applications related to stability and
bifurcation in the Yamabe problem are given in Sects. 5 and 6 respectively, including
the proofs of Theorem D and Corollary E. Tables with the first eigenvalue, volume,
scalar curvature, and Yamabe stability classification of all homogeneous metrics on
CROSSes are given in the Appendix A.

2 Spectrum of the Laplacian on a Homogeneous Space

In this section, we briefly recall some elementary facts about the spectrum of the
Laplacian on a compact homogeneous space. Although this material is classical, usu-
ally only the case of normal homogeneous metrics is discussed in the literature (see
e.g. [43, pp. 123–125]), with the notable exception [29]. We shall treat the general
case of G-invariant metrics, which is needed to prove Theorems A and B.

Let G be a compact Lie group and K ⊂ G a closed subgroup, with Lie algebras g
and k, and fix an Ad(K)-invariant complement p of k in g. It is well-known that the
space of G-invariant metrics g on the homogeneous space G/K is identified with the
space of Ad(K)-invariant inner products 〈·, ·〉 on p, see e.g. [9, p. 182].

Let π be an irreducible representation ofG, that is, π : G → GL(Vπ ) is a continuous
homomorphism of groups, and the (complex) vector space Vπ does not have any
proper G-invariant subspaces. Abusing notation, we also denote by π the induced
representations of the Lie algebra g, of its complexification gC:=g ⊗R C, and of its
universal enveloping algebra U(gC). Denote by V K

π the subspace of Vπ consisting of
elements fixed by K; and by 〈·, ·〉π an inner product on Vπ for which π(g) is unitary
for all g ∈ G, which exists since G is compact. The linear map

Vπ ⊗ (V ∗
π )K −→ C∞(G/K)

v ⊗ ϕ �−→ fv⊗ϕ, with fv⊗ϕ(xK):=ϕ
(
π(x)−1v

)
,

is well-defined and G-equivariant, where G acts on the first factor of Vπ ⊗ (V ∗
π )K, i.e.,

g · v ⊗ ϕ = π(g)v ⊗ ϕ, and on C∞(G/K) as (g · f )(xK) = f (g−1xK).
Given a G-invariant metric g, denote by �g the Laplace–Beltrami operator of the

Riemannian manifold (G/K, g). It is well-known that, for all f ∈ C∞(G/K),

(�g f )(xK) = −
n∑

i=1

d2

dt2
f
(
x exp(t Xi ) · eK)

∣∣
∣∣
t=0

,

where {X1, . . . , Xn} is an orthonormal basis of p, with respect to the inner product
〈·, ·〉 that induces the metric g on G/K, see e.g. [29, Theorem 1]. Consider the element
Cg =∑n

i=1 X
2
i ∈ U(g), and observe that

(�g fv⊗ϕ)(xK) = −
n∑

i=1

d2

dt2
ϕ
(
π(exp(t Xi ))π(x−1)v

)∣∣∣∣
t=0
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=
n∑

i=1

ϕ
(
π(−X2

i ) π(x−1)v
)

=
n∑

i=1

(
π∗(−X2

i ) · ϕ
) (

π(x−1)v
)

= (π∗(−Cg) · ϕ
) (

π(x−1)v
)

= fv⊗(π∗(−Cg)ϕ)(xK).

Note that Cg depends only on the inner product 〈·, ·〉 on p that induces the metric g,
and not on the choice of orthonormal basis {X1, . . . , Xn}.

It is a simple matter to check that π∗(−Cg) : V ∗
π → V ∗

π is self-adjoint with respect
to 〈·, ·〉π∗ and preserves (V ∗

π )K � V K
π∗ . If ϕ ∈ V K

π∗ is an eigenvector of π∗(−Cg)|V K
π∗

with eigenvalue λ, then

�g fv⊗ϕ = fv⊗(π∗(−Cg)ϕ) = fv⊗(λϕ) = λ fv⊗ϕ,

that is, fv⊗ϕ is an eigenvector of �g with eigenvalue λ, for every v ∈ Vπ . By the
Peter–Weyl Theorem, there exists a basis of L2(G/K, g) consisting of eigenfunctions as
above. More precisely, the left regular representation of G on L2(G/K, g) decomposes
as (the closure of) the direct sum of G-modules

L2(G/K, g) �
⊕̂

π∈ĜK

Vπ ⊗ V K
π∗ , (2.1)

where Ĝ is the unitary dual of G, i.e., the set of (equivalence classes of) irreducible
unitary representations of G, and ĜK:={π ∈ Ĝ : dim V K

π = dim V K
π∗ > 0} is the set of

spherical representations of the pair (G, K). Therefore, we have the following:

Proposition 2.1 The spectrum of the Laplacian �g of a compact homogeneous space
G/K, endowed with an arbitrary G-invariant metric g, is given by

Spec(G/K, g):=Spec(�g) =
⋃

π∈ĜK

{
λπ
j (g), . . . , λ

π
j (g)︸ ︷︷ ︸

dπ -times

: 1 ≤ j ≤ dKπ
}
, (2.2)

where, for eachπ ∈ ĜK, we write dπ = dim Vπ , dKπ = dim V K
π , and λπ

1 (g), . . . , λπ
dKπ

(g)

are the eigenvalues of the self-adjoint linear endomorphism π∗(−Cg)|V K
π∗ of V K

π∗ .

Note that if G/K is connected, the trivial representation is the only irreducible
representation of G contributing the eigenvalue 0 ∈ Spec(G/K, g). Consequently, if
π ∈ ĜK is nontrivial, then π∗(−Cg)|V K

π∗ is positive-definite, i.e., λπ
j (g) > 0.
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2.1 Normal Homogeneous Case

Let us now specialize to the situation in which G is semisimple and connected, and
〈·, ·〉0 is a bi-invariant (i.e., Ad(G)-invariant) inner product on g; for instance, a negative
multiple of its Killing form. The corresponding metric g0 onG/K is then called normal
homogeneous.

Set m = dim G and let {X1, . . . , Xm} be an orthonormal basis of g with respect
to 〈·, ·〉0 such that Xi ∈ p for all 1 ≤ i ≤ n, and Xi ∈ k for all n + 1 ≤ i ≤ m.
Given π ∈ ĜK, since π(X) · v = 0 for all X ∈ k and v ∈ V K

π , it follows that
π(Cg0)|V K

π
= π(Cas0)|V K

π
, where Cas0 = ∑m

i=1 X
2
i is the Casimir element of g with

respect to 〈·, ·〉0. If the Killing form of g is equal to −〈·, ·〉0, then Cas0 is the standard
Casimir element in U(gC) associated to the complex semisimple Lie algebra gC.
Since Cas0 lies in the center of U(g), by Schur’s Lemma, π(−Cas0) acts on Vπ as
multiplication by a scalar λπ . Therefore, in this special case, (2.2) simplifies to

Spec(G/K, g0) = Spec(�g0) =
⋃

π∈ĜK

{
λπ , . . . , λπ

︸ ︷︷ ︸
(dπ×dKπ )-times

}
. (2.3)

The above scalars λπ can be computed using Freudenthal’s formula, see [43,
Lemma 5.6.4] or [22, Proposition 10.6]. Namely, fixing a maximal torus T in G, and
a positive system in the induced root system �(gC, tC),

λπ = 〈	π,	π + 2ρg〉0, (2.4)

where 	π is the highest weight of the representation π , ρg is half of the sum of
positive roots in �(gC, tC), and 〈·, ·〉0 is the Hermitian extension to t∗C of 〈·, ·〉0|t. For
a general homogeneous metric g which is not normal, no analogous formula to (2.4)
that explicitly computes the scalars λπ

j (g) in Proposition 2.1 seems to exist.

3 Eigenvalues of the Laplacian on S4n+3,RP4n+3, andCP2n+1

In this section, we provide explicit formulae for the smallest positive eigenvalue of
the Laplace–Beltrami operator on

(
S4n+3,h(t1, t2, t3)

)
,
(
RP4n+3,h(t1, t2, t3)

)
, and

on
(
CP2n+1, ȟ(t)

)
, proving Theorems A and B in the Introduction. The full spectrum

of the latter and of the subfamily g(t) on S4n+3 and RP4n+3 are also computed, see
Theorem 3.8 and 3.9, and also [11].

3.1 Homogeneous Structures

Consider the quaternionic unitary group

G = Sp(n + 1) = {g ∈ GL(n + 1,H) : g∗g = Id
}
,
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whose Lie algebra is g = sp(n + 1) = {X ∈ gl(n + 1,H) : X∗ + X = 0}. The defin-
ing representation ofG onHn+1 restricts to an isometric transitiveG-action on the unit
sphere S4n+3 ⊂ Hn+1, whose isotropy at (0, . . . , 0, 1) ∈ Hn+1 is the Lie subgroup

K = {diag(A, 1) ∈ G : A ∈ Sp(n)} � Sp(n),

so that S4n+3 = G/K. Clearly, the corresponding Lie subalgebra is k = {diag(X , 0) ∈
g : X ∈ sp(n)} � sp(n). Consider the reductive decomposition g = k ⊕ p, where
p = p0 ⊕ p1 splits as the vertical space p0 � ImH and horizontal space p1 � Hn

for the Hopf fibration S3 → S4n+3 → HPn . Recall the isotropy representation of K
is trivial on p0, and irreducible on p1. Note that p0 � sp(1) is a Lie subalgebra of g,
spanned by the unit imaginary quaternions

X1 = diag(0, . . . , 0, i), X2 = diag(0, . . . , 0, j), X3 = diag(0, . . . , 0, k), (3.1)

and the corresponding Lie subgroup is

H = {diag(Id, q) ∈ G : |q|2 = qq̄ = 1} � Sp(1) � SU(2). (3.2)

The above (left) G-action on S4n+3 ⊂ Hn+1 commutes with the (right) actions of
Z2 via the antipodal map, and of S1-action by complex unit multiplication. Thus, it
descends to transitiveG-actions on the quotientsRP4n+3 = S4n+3/Z2 andCP2n+1 =
S4n+3/S1, respectively. These G-actions have isotropy (conjugate to)

K · Z2 = {diag(A,±1) ∈ G : A ∈ Sp(n)} � Sp(n)Z2,

Ǩ = {diag(A, eiθ ) ∈ G : A ∈ Sp(n), eiθ ∈ S1} � Sp(n)U(1),

respectively, so thatRP4n+3 = G/(K·Z2) andCP2n+1 = G/Ǩ. Note that the S1-action
extends the Z2-action, so K · Z2 ⊂ Ǩ; and, as U(1)/Z2 ∼= S1, we have CP2n+1 =
RP4n+3/S1.

The Lie algebra of K · Z2 is the same as that of its identity connected component
K, that is, k. The isotropy representation of K · Z2 on g = k ⊕ p extends that of K,
with the element diag(Id,−1) acting trivially on p1 ⊕ spanR{X1} and nontrivially,
i.e., as multiplication by −1, on p̌0:= spanR{X2, X3}. Meanwhile, the Lie algebra of
Ǩ is ǩ = k⊕ spanR{X1}, and the corresponding reductive decomposition is g = ǩ⊕ p̌,
where p̌ = p̌0 ⊕ p1. Both p̌0 and p1 are irreducible for the isotropy representation of
Ǩ, with the Sp(n) factor acting trivially on p̌0 and via the defining representation on
p1, and the U(1) factor acting by rotation on p̌0 and trivially on p1.
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Geometrically, the inclusions K ⊂ K · Z2 ⊂ Ǩ correspond to successive quotients
of the Hopf fibration (top row) by the (right) actions of Z2 and S1, as follows:

S3 S4n+3 HPn

RP3 RP4n+3 HPn

CP1 CP2n+1 HPn .

(3.3)

The arrows from top to middle row are double covers, while the arrows from middle
to bottom row are projections of S1-bundles. Note that p̌0 and p1 are the vertical and
horizontal spaces for the bundle in the bottom row.

3.2 Homogeneous Metrics

We now parametrize (up to isometries) the spaces of G-invariant metrics on S4n+3,
RP4n+3, and CP2n+1, with respect to the above homogeneous structures. For more
details, see [1, Examples 6.16, 6.21] and [47].

We begin with G-invariant metrics on S3 and RP3, that is, left-invariant metrics
on Sp(1) � SU(2) ∼= S3 and SO(3) ∼= RP3. Every such metric is isometric to one
induced by a diagonal inner product with respect to the basis {i, j, k} of the Lie algebra
sp(1), i.e., of the form

〈·, ·〉(a,b,c):= 1

a2
î ⊗ î + 1

b2
ĵ ⊗ ĵ + 1

c2
k̂ ⊗ k̂, a, b, c ∈ R>0,

where {̂i, ĵ, k̂} is the basis of sp(1)∗ dual to {i, j, k}. Note that {ai, bj, ck} is 〈·, ·〉(a,b,c)-
orthonormal. Denote by g(a,b,c) the corresponding G-invariant metric on S3, and
observe that (S3, g(a,a,a)) is a round sphere of constant sectional curvature a2. Clearly,
permuting (a, b, c) ∈ R3

>0 gives rise to metrics g(a,b,c) that are isometric, and it is not
difficult to see that there are no other isometries among them (this follows, e.g., by
inspecting their Ricci endomorphisms). Moreover, all g(a,b,c) descend to G-invariant
metrics on RP3, that we shall denote by the same symbol. Similarly, the only isome-
tries among these metrics onRP3 arise from permuting (a, b, c). Altogether, we have
the following spaces of isometry classes of G-invariant metrics:

MetSp(1)(S3) ∼= MetSp(1)(RP3) ∼= {g(a,b,c) : a ≥ b ≥ c > 0
}
.

For n ≥ 1, fix the Ad(G)-invariant inner product 〈X ,Y 〉0 = − 1
2 Re tr(XY ) on the

Lie algebra g = sp(n + 1). Identify p0 ∼= sp(1) via the isomorphism that associates
each diagonal matrix in (3.1) to their unique nonzero entry, and define an Ad(K)-
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invariant inner product on p = p0 ⊕ p1 as follows:

〈·, ·〉(a,b,c,s):=1

2
〈·, ·〉(a,b,c)|p0 + 1

s2
〈·, ·〉0|p1 , a, b, c, s ∈ R>0.

Denote byg(a,b,c,s) the correspondingG-invariantmetric onS4n+3 = G/K, and observe
that 〈·, ·〉0|p = 〈·, ·〉(1,1,1,1), hence

(
S4n+3, g(1,1,1,1)

)
is normal homogeneous. Once

again, it is not difficult to see that the only isometries among g(a,b,c,s) arise from
permuting (a, b, c) ∈ R3

>0, and all such G-invariant metrics on S4n+3 descend to G-
invariantmetrics onRP4n+3, thatwe shall denote by the same symbol. (Endowingboth
spaces with g(a,b,c,s), the vertical arrow S4n+3 → RP4n+3 in (3.3) is a Riemannian
double cover.) Altogether, we have the following spaces of isometry classes of G-
invariant metrics:

MetSp(n+1)(S4n+3) ∼= MetSp(n+1)(RP4n+3) ∼= {g(a,b,c,s) : a ≥ b ≥ c > 0, s > 0
}
.

Furthermore, the restriction of 〈·, ·〉(a,b,c,s) to p̌ is Ad(Ǩ)-invariant if and only if
b = c, in which case it defines a G-invariant metric ǧ(b,s) on CP2n+1 = G/Ǩ. In this
situation, the quotient maps from S4n+3 and RP4n+3 endowed with g(a,b,b,s) onto(
CP2n+1, ǧ(b,s)

)
corresponding to (right) S1-actions, i.e., the vertical arrows in (3.3),

are Riemannian submersions. Similarly to the previous cases, it is not hard to check
that the metrics ǧ(b,s) are pairwise non-isometric, so the space of isometry classes of
G-invariant metrics on CP2n+1 is

MetSp(n+1)(CP2n+1) ∼= {ǧ(b,s) : b > 0, s > 0
}
.

Remark 3.1 The above parameterizations g(a,b,c), g(a,b,c,s), and ǧ(b,s) of G-invariant
metrics on S3, S4n+3, RP3, RP4n+3, and CP2n+1 are convenient for the spectral
calculations. In fact, the first eigenvalues of their respective Laplacians are homoge-
neous quadratic polynomials in the parameters a, b, c, s. However, from a geometric
viewpoint, these metrics are more naturally parametrized in terms of the lengths ti of
vertical Killing vector fields in the Hopf bundles (1.1), compared to those in the round
or Fubini–Study metric, with horizontal directions unchanged. These parametriza-
tions, used in the Introduction and in subsequent sections, are related to the above via
the isometries (recall that n ≥ 1 throughout)

On S3 and RP3 : h(t1, t2, t3) ∼= g(
t−1
1 ,t−1

2 ,t−1
3

),

On S4n+3 and RP4n+3 : h(t1, t2, t3) ∼= g(
(
√
2t1)−1,(

√
2t2)−1,(

√
2t3)−1,1

),

On CP2n+1 : ȟ(t) ∼= ǧ(
(
√
2t)−1,1

),

(3.4)
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or, equivalently,

On S3 and RP3 : g(a,b,c) ∼= h( 1a , 1
b , 1

c ),

On S4n+3 and RP4n+3 : g(a,b,c,s) ∼= 1
s2
h
(

s√
2a

, s√
2b

, s√
2c

)
,

On CP2n+1 : ǧ(b,s) ∼= 1
s2
ȟ( s√

2b
).

(3.5)

In particular, note that the normal homogeneous metrics on S4n+3 and RP4n+3,
n ≥ 1, induced by 〈·, ·〉0 are h

( 1√
2
, 1√

2
, 1√

2

) = g(1,1,1,1) = ghor + 1
2gver, where

ground = ghor +gver is the decomposition of the metric of constant sectional curvature
1 with respect to the bundle in the top (respectively, middle) row in (3.3). Similarly, the
normal homogeneousmetric onCP2n+1, n ≥ 1, induced by 〈·, ·〉0 is ȟ

( 1√
2

) = g(1,1) =
ghor + 1

2gver, where gFS = ghor +gver is the decomposition of the Fubini–Study metric
with respect to the bottom row in (3.3).

3.3 Implicit Spectra

We now describe the spectra

Spec(S4n+3, g(a,b,c,s)), Spec(RP4n+3, g(a,b,c,s)),

and Spec(CP2n+1, ǧ(b,s)), n ≥ 1,

implicitly in terms of Spec(S3, g(a,b,c)).
For any integer k ≥ 0, let (τk, Vτk ) denote the (unique, up to equivalence) irre-

ducible representation of H � SU(2) of dimension k + 1. For a, b, c > 0, let
ν

(k)
1 (a, b, c), . . . , ν(k)

k+1(a, b, c) denote the eigenvalues of the positive-definite self-
adjoint operator

τk
(− a2X2

1 − b2X2
2 − c2X2

3

) : Vτk → Vτk , (3.6)

where Xi are as in (3.1). From Proposition 2.1, we conclude that

Spec(S3, g(a,b,c)) =
⋃

k≥0

{
ν

(k)
j (a, b, c), . . . , ν(k)

j (a, b, c)
︸ ︷︷ ︸

(k+1)-times

: 1 ≤ j ≤ k + 1
}
.

This spectrum is studied in detail in [24], where it is shown that

ν
(0)
1 (a, b, c) = 0, ν

(2)
1 (a, b, c) = 4(b2 + c2),

ν
(1)
1 (a, b, c) = a2 + b2 + c2, ν

(2)
2 (a, b, c) = 4(a2 + c2),

ν
(1)
2 (a, b, c) = a2 + b2 + c2, ν

(2)
3 (a, b, c) = 4(a2 + b2),

(3.7)

and λ1(S
3, g(a,b,c)) is the smallest among the above, leaving out ν

(0)
1 (a, b, c) = 0.

More precisely, if a ≥ b ≥ c > 0, then ν
(2)
1 (a, b, c) ≤ ν

(2)
2 (a, b, c) ≤ ν

(2)
3 (a, b, c),
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and
λ1(S

3, g(a,b,c)) = min
{
a2 + b2 + c2, 4(b2 + c2)

}
.

The main tool to prove this result is [24, Lem. 3.4], namely, given integers 1 ≤ j ≤
k + 1, we have:

ν
(k)
j (a, b, c) ≥

{
2kb2 + k2c2 if k ≥ 0,

a2 + (2k − 1)b2 + k2c2 if k ≥ 0 is odd.
(3.8)

Furthermore, for any integers k ≥ 0 and 1 ≤ j ≤ k + 1, it is easy to see that

ν
(k)
j (a, a, a) = k(k + 2)a2. (3.9)

In order to apply Proposition 2.1 to describe the spectra Spec(S4n+3, g(a,b,c,s)),
Spec(RP4n+3, g(a,b,c,s)), and Spec(CP2n+1, ǧ(b,s)) for n ≥ 1, we need to introduce
some Lie-theoretic objects. Fix the maximal torus of G given by

T:={diag(eiθ1 , . . . , eiθn+1) : θ1, . . . , θn+1 ∈ R
}
,

whose Lie algebra t (respectively, its complexification tC:=t ⊗R C) consists of ele-
ments of the form Y = diag(iθ1, . . . , iθn+1), with θ j ∈ R (respectively, θ j ∈ C), for
all 1 ≤ j ≤ n + 1. Let ε j : tC → C be given by ε j (Y ) = iθ j , where Y is as above, so
that {ε1, . . . , εn+1} is a basis of t∗C.

Denote the Hermitian extension of 〈·, ·〉0 to gC and t∗C by the same symbol 〈·, ·〉0.
One easily checks that 〈εi , ε j 〉0 = 2δi j for all 1 ≤ i, j ≤ n + 1. Indeed, setting
Y j = diag(0, . . . , 0, i, 0, . . . , 0), where the nonzero coordinate is in the j th entry, one
has that

{√
2Y1, . . . ,

√
2Yn+1

}
is an orthonormal basis of tC with respect to 〈·, ·〉0, so

its corresponding dual basis
{ 1√

2
ε1, . . . ,

1√
2
εn+1

}
is an orthonormal basis of t∗C.

The root system of gC with respect to the Cartan subalgebra tC is given by
�(gC, tC) = {±εi ± ε j : i �= j} ∪ {±2εi }. Consider the standard positive sys-
tem, which has positive roots �+(gC, tC) = {εi ± ε j : i < j} ∪ {2εi }. In particular,
half of the sum of positive roots is ρg =∑n+1

j=1(n + 2 − j)ε j .
Since G is simply-connected, the set of dominant G-integral weights coincides with

the set of dominant algebraically integral weights of gC, which is given by elements
of the form

∑n+1
i=1 aiεi with ai ∈ Z satisfying a1 ≥ · · · ≥ an+1 ≥ 0. If 	 is a

dominant G-integral weight, we denote by π	 the irreducible G-representation having
highest weight	, which exists and is unique (up to equivalence) by theHighestWeight
Theorem, see e.g. Hall [22, Thm 9.4, 9.5].

Lemma 3.2 Let n ≥ 1 be an integer. For positive real numbers a, b, c, s and integers
p ≥ q ≥ 0, we have that

Spec(S4n+3, g(a,b,c,s)) =
⋃

p≥q≥0
1≤ j≤p−q+1

{
λ

(p,q)
j (a, b, c, s), ..., λ(p,q)

j (a, b, c, s)
︸ ︷︷ ︸

dp,q

}
,
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Spec(RP4n+3, g(a,b,c,s)) =
⋃

p≥q≥0
p−q even

1≤ j≤p−q+1

{
λ

(p,q)
j (a, b, c, s), ..., λ(p,q)

j (a, b, c, s)
︸ ︷︷ ︸

dp,q

}
,

Spec(CP2n+1, ǧ(b,s)) =
⋃

p≥q≥0
p−q even

{
λ̌(p,q)(b, s), . . . , λ̌(p,q)(b, s)︸ ︷︷ ︸

dp,q

}
,

where

λ
(p,q)
j (a, b, c, s) = (4pn + 4q(p + n + 1)

)
s2 + 2ν(p−q)

j (a, b, c), (3.10)

λ̌(p,q)(b, s) = (4pn + 4q(p + n + 1)
)
s2 + 2(p − q)(p − q + 2)b2, (3.11)

dp,q = (p + q + 2n + 1)(p − q + 1)

(2n + 1)(p + 1)

(
p + 2n

p

)(
q + 2n − 1

q

)
.

(3.12)

Proof We begin by identifying the corresponding spherical representations. It is well-
known that (see for instance [23, Problem IX.11])

ĜK = {πp,q :=πpε1+qε2 : p ≥ q ≥ 0}.

We henceforth abbreviate Vp,q = Vπp,q . Since K and H commute, the subspace V K
p,q is

H-invariant. From Lepowsky’s classical branching law from G to K×H, or as a direct
consequence of [44, Theorem 3.3], we have that

V K
p,q � Vτp−q as H-modules. (3.13)

In particular, dKπp,q
= dim V K

p,q = dim Vτp−q = p − q + 1.

Since K ⊂ K · Z2 ⊂ Ǩ, we have ĜǨ ⊂ ĜK·Z2 ⊂ ĜK. First, we determine ĜǨ.
An element πp,q ∈ ĜK is in ĜǨ if there is a nonzero vector in V K

p,q fixed by the

U(1) factor in Ǩ or, equivalently, annihilated by X1 in (3.1). As an H-module, V K
p,q is

irreducible with highest weight p−q by (3.13). By the standard representation theory
of sl(2,C)-modules, we have the (weight) decomposition

V K
p,q =

p−q⊕

l=0

V K
p,q(p − q − 2l),

where dim V K
p,q(p−q−2l) = 1 for all 0 ≤ l ≤ p−q, andπp,q(X1)v = (p−q−2l)i v

for all v ∈ V K
p,q(p − q − 2l). Hence, V Ǩ

p,q = V K
p,q(0), which is nontrivial if and only

if p − q is even. Thus, we conclude that

ĜǨ = {πp,q : p ≥ q ≥ 0, p ≡ q mod 2}
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and dim V Ǩ
π = 1 for all π ∈ ĜǨ, i.e., the branching from G to Ǩ is multiplicity-free. We

now determine ĜK·Z2 . Multiplication by diag(Id,−1) maps the identity connected
component (identified with K) to the other connected component of K · Z2, and
diag(Id,−1) lies in the maximal torus T. In fact, diag(Id,−1) = exp(0, . . . , 0, π i).
Its action on a weight space V K

p,q(p − q − 2l) is thus given by multiplication by

e(p−q−2l)π i = (−1)p−q , i.e., the action on V K
p,q is by (−1)p−q IdV K

p,q
. Consequently,

ĜK·Z2 = {πp,q : p ≥ q ≥ 0, p − q even}.

It is a simple matter to check that dim Vp,q = dp,q as in (3.12) by using the Weyl
Dimension Formula, see e.g. [23, Theorem 5.84].

From Proposition 2.1, it just remains to show that, for every p ≥ q ≥ 0, the
eigenvalues of πp,q(−C(a,b,c,s))|V K

p,q
are λ

(p,q)
j (a, b, c, s), 1 ≤ j ≤ p − q + 1, as

in (3.10), and the (only) eigenvalue of πp,q(−Č(b,s))|V Ǩ
p,q

is λ̌(p,q)(b, s) if p ≡ q

mod 2, as in (3.11). Here, we abbreviate C(a,b,c,s) = Cg(a,b,c,s) and Č(b,s) = Cǧ(b,s)
.

Note that this includes the case of Spec(RP4n+3, g(a,b,c,s)), since the Laplace operator
of (RP4n+3, g(a,b,c,s)) has the same spectrum as the restriction to

⊕̂

p≥q≥0
p−q even

Vp,q ⊗ V K
π∗
p,q

� L2(G/(K · Z2), g(a,b,c,s)
)

(3.14)

of the Laplace operator of (S4n+3, g(a,b,c,s)).
Let {X4, . . . , Xm} be an orthonormal basis of p1 with respect to 〈·, ·〉0. Then{√
2aX1,

√
2bX2,

√
2cX3, sX4, . . . , sXm

}
and

{√
2bX2,

√
2bX3, sX4, . . . , sXm

}

are orthonormal bases of (p, 〈·, ·〉(a,b,c,s)) and (p̌, 〈·, ·〉(a,b,b,s)|p̌) respectively. Hence

C(a,b,c,s) = 2a2X2
1 + 2b2X2

2 + 2c2X2
3 + s2(X2

4 + · · · + X2
m)

= s2 Cas0 +2(a2X2
1 + b2X2

2 + c2X2
3) − 2s2(X2

1 + X2
2 + X2

3) − s2 Cask,

Č(b,s) = 2b2X2
2 + 2b2X2

3 + s2(X2
4 + · · · + X2

m)

= s2 Cas0 +2(b2 − s2)(X2
2 + X2

3) − s2 Cask,

where Cask denotes the Casimir element of k with respect to 〈·, ·〉0|k, that is,
Cask =∑dim k

i=1 Y 2
i , where {Y1, . . . ,Ydim k} is a 〈·, ·〉0-orthonormal basis of k. Clearly,

πp,q(Cask) acts trivially on V K
p,q . From (2.4), we have that πp,q(−Cas0) acts on Vp,q

by multiplication by the scalar

λπp,q = 〈pε1 + qε2 + 2ρg, pε1 + qε2〉0 = 2p(p + 2n + 2) + 2q(q + 2n),

and πp,q
(− (X2

1 + X2
2 + X2

3)
)|V K

p,q
= τp−q

(− (X2
1 + X2

2 + X2
3)
)
by multiplication by

(p− q)(p− q + 2). Since the eigenvalues of πp,q
(− (a2X2

1 + b2X2
2 + c2X2

3)
)|V K

p,q
=

τp−q
(− (a2X2

1 +b2X2
2 + c2X2

3)
)
are precisely ν

(p−q)
j (a, b, c) for 1 ≤ j ≤ p−q +1,
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the claim regarding (3.10) follows. Furthermore, πp,q
(− (X2

2 + X2
3)
)|
V Ǩ
p,q

= πp,q
(−

(X2
1+X2

2+X2
3)
)|
V Ǩ
p,q

because X1 acts trivially on V Ǩ
p,q , thusπp,q

(−(X2
2+X2

3)
)|
V Ǩ
p,q

=
(p − q)(p − q + 2) Id

V Ǩ
p,q
. We conclude that the eigenvalue of π(−Č(b,s))|V Ǩ

p,q
is

λ̌(p,q)(b, s) = (2p(p + 2n + 2) + 2q(q + 2n)) s2 + 2(p − q)(p − q + 2) (b2 − s2)

= (4pn + 4q(p + n + 1)
)
s2 + 2(p − q)(p − q + 2)b2,

as claimed in (3.11), concluding the proof.

Remark 3.3 The eigenvalue λ
(p,q)
j (a, b, c, s), respectively λ̌(p,q)(b, s), is basic, in

terms of the Riemannian submersions
(
S4n+3, g(a,b,c,s)

) → (
HPn, 1

s2
gFS
)
, respec-

tively
(
CP2n+1, ǧ(b,s)

) → (
HPn, 1

s2
gFS
)
, if and only if p = q. Recall that if

π : (M, g) → (M̌, ǧ) is a Riemannian submersion with minimal fibers, there is a
natural inclusion Spec(M̌, ǧ) ⊂ Spec(M, g) of so-called basic eigenvalues, since
lifts of Laplace eigenfunctions on (M̌, ǧ) are Laplace eigenfunctions on (M, g)
with the same eigenvalue, see e.g. [5,10]. Note that, from (3.7), (3.10), and (3.11),
λ

(p,p)
j (a, b, c, s) = λ̌(p,p)(b, s) = 4p(p + 2n + 1)s2, p ≥ 0, are precisely the eigen-

values of the Laplacian on
(
HPn, 1

s2
gFS
)
. In representation-theoretic terms, basic

eigenvalues on S4n+3 = G/K arise fromG-modules V K
p,q that are fixed byH, see (3.13).

3.4 First Eigenvalues

We now use algebraic estimates to extract formulae for the first eigenvalue of the
Laplacian on (S4n+3, g(a,b,c,s)), (RP4n+3, g(a,b,c,s)), and (CP2n+1, ǧ(b,s)) from the
description of their spectra given in Lemma 3.2. Through the isometries (3.4), Theo-
rems 3.5 and 3.7 below imply Theorems A and B in the Introduction.

Lemma 3.4 Let n ≥ 1. For a ≥ b ≥ c > 0, s > 0, and p ≥ q ≥ 0 satisfying

(p, q) /∈
{

(0, 0), (1, 0), (1, 1), (2, 0), if n ≥ 2,

(0, 0), (1, 0), (1, 1), (2, 0), (3, 0), if n = 1,

we have that λ(1,1)
1 (a, b, c, s) < λ

(p,q)
j (a, b, c, s) for all 1 ≤ j ≤ p − q + 1.

Proof We repeatedly use formula (3.10) for λ
(p,q)
1 (a, b, c, s); in particular, recall that

λ
(1,1)
1 (a, b, c, s) = 8(n + 1)s2. For all p ≥ 1, k ≥ 0 and 1 ≤ j ≤ k + 1, we have

λ
(p+k,p)
j (a, b, c, s) ≥ (4(p + k)n + 4p(p + k + 1 + n))s2

≥ (4n + 4(2 + n))s2 = 8(n + 1)s2,
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with strict inequalities in both estimates if k ≥ 1. Furthermore, for k = 0, the second
inequality is strict for p ≥ 2. Similarly, for any 1 ≤ j ≤ k + 1,

λ
(k,0)
j (a, b, c, s) > 4kns2 ≥ 8(n + 1)s2

for all k ≥ 4, and also for k = 3 and n ≥ 2. This concludes the proof.

Theorem 3.5 Let n ≥ 1, a ≥ b ≥ c > 0, and s > 0. We abbreviate

λ
(1,0)
1 = λ

(1,0)
1 (a, b, c, s) = 4ns2 + 2(a2 + b2 + c2),

λ
(2,0)
1 = λ

(2,0)
1 (a, b, c, s) = 8(ns2 + b2 + c2),

λ
(1,1)
1 = λ

(1,1)
1 (a, b, c, s) = 8(n + 1)s2.

(3.15)

The smallest positive eigenvalue of the Laplace–Beltrami operator on the homoge-
neous space

(
S4n+3, g(a,b,c,s)

)
is given by

λ1
(
S4n+3, g(a,b,c,s)

) = min
{
λ

(1,0)
1 , λ

(2,0)
1 , λ

(1,1)
1

}
, (3.16)

and its multiplicity is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4(n + 1) if λ
(1,0)
1 < min

{
λ

(2,0)
1 , λ

(1,1)
1

}
,

n(2n + 3) if λ
(1,1)
1 < min

{
λ

(1,0)
1 , λ

(2,0)
1

}
,

(n + 1)(2n + 3) if λ
(2,0)
1 < min

{
λ

(1,0)
1 , λ

(1,1)
1

}
,

2n2 + 7n + 4 if λ
(1,0)
1 = λ

(1,1)
1 < λ

(2,0)
1 ,

2n2 + 9n + 7 if λ
(1,0)
1 = λ

(2,0)
1 < λ

(1,1)
1 ,

4n2 + 8n + 3 if λ
(1,1)
1 = λ

(2,0)
1 < λ

(1,0)
1 ,

4n2 + 12n + 7 if λ
(1,0)
1 = λ

(2,0)
1 = λ

(1,1)
1 .

(3.17)

Furthermore, the smallest positive eigenvalue of the Laplace–Beltrami operator on
the homogeneous space

(
RP4n+3, g(a,b,c,s)

)
is given by

λ1
(
RP4n+3, g(a,b,c,s)

) = min
{
λ

(2,0)
1 , λ

(1,1)
1

}
, (3.18)

and its multiplicity is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n(2n + 3) if λ
(1,1)
1 < λ

(2,0)
1 ,

(n + 1)(2n + 3) if λ
(2,0)
1 < λ

(1,1)
1 and a > b,

2(n + 1)(2n + 3) if λ
(2,0)
1 < λ

(1,1)
1 and a = b > c,

3(n + 1)(2n + 3) if λ
(2,0)
1 < λ

(1,1)
1 and a = b = c,

(2n + 1)(2n + 3) if λ
(1,1)
1 = λ

(2,0)
1 and a > b,

(3n + 2)(2n + 3) if λ
(1,1)
1 = λ

(2,0)
1 and a = b > c,

(4n + 3)(2n + 3) if λ
(1,1)
1 = λ

(2,0)
1 and a = b = c.

(3.19)
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Proof We begin with the case of (S4n+3, g(a,b,c,s)). Let λmin(a, b, c, s) denote
the right-hand side of (3.16). Since the three quantities in (3.15) are eigen-
values of �g(a,b,c,s) by Lemma 3.2 and (3.7), it follows that λmin(a, b, c, s) ≥
λ1(S

4n+3, g(a,b,c,s)).
To establish (3.16), it remains to show that

λ
(p,q)
j (a, b, c, s) ≥ λmin(a, b, c, s) for

{
p ≥ q ≥ 0 with (p, q) �= (0, 0),

1 ≤ j ≤ p − q + 1.
(3.20)

The case (p, q) = (0, 0) is excluded because it corresponds to the trivial representa-
tion, which only contributes the eigenvalue 0 ∈ Spec(S4n+3, g(a,b,c,s)). Lemma 3.4

shows the above claim (3.20) forn ≥ 2, and also forn = 1providedλ
(3,0)
j (a, b, c, s) ≥

λmin(a, b, c, s). The last fact holds since, for n = 1, (3.8) gives

λ
(3,0)
j (a, b, c, s) = 12s2 + 2ν(3)

j (a, b, c) ≥ 12s2 + 2(a2 + 5b2 + 9c2)

> 4s2 + 2(a2 + b2 + c2) = λ
(1,0)
1 (a, b, c, s) ≥ λmin(a, b, c, s).

Regarding the multiplicity of this eigenvalue, from Lemma 3.2 we have that

• π1,0 contributes the eigenvalue λ
(1,0)
1 to Spec(S4n+3, g(a,b,c,s)) with multiplicity

2d1,0 = 4(n + 1), since λ
(1,0)
1 (a, b, c, s) = λ

(1,0)
2 (a, b, c, s).

• π2,0 contributes with the eigenvalue λ
(2,0)
1 to Spec(S4n+3, g(a,b,c,s)) with multi-

plicity d2,0 = (n+1)(2n+3) if a > b, since λ
(2,0)
1 (a, b, c, s) < λ

(2,0)
2 (a, b, c, s).

(Note that λ(2,0)
1 (a, b, c, s) ≤ λ

(1,0)
1 (a, b, c, s) forces a > b.)

• π1,1 contributes with the eigenvalue λ
(1,1)
1 to Spec(S4n+3, g(a,b,c,s)) with multi-

plicity d1,1 = n(2n + 3).

Thus, we obtain the values in the first three rows in (3.17). The remaining rows follow
by summing the multiplicities of eigenvalues when they coincide.

Next, we consider the case of (RP4n+3, g(a,b,c,s)). Since its spectrum is the same
as that of the restriction to (3.14) of the Laplace operator of (S4n+3, g(a,b,c,s)), clearly
(3.18) follows from (3.16). Concerning multiplicities, by Lemma 3.2,

• π2,0 contributes the eigenvalue λ
(2,0)
1 to Spec(RP4n+3, g(a,b,c,s))withmultiplicity

⎧
⎪⎨

⎪⎩

d2,0 if λ
(2,0)
1 < λ

(2,0)
2 , i.e., if a > b,

2d2,0 if λ
(2,0)
1 = λ

(2,0)
2 < λ

(2,0)
3 , i.e., if a = b > c,

3d2,0 if λ
(2,0)
1 = λ

(2,0)
2 = λ

(2,0)
3 , i.e., if a = b = c.

(Note that the equivalent condition at the right on each of the rows holds since
λ

(2,0)
2 = 8(ns2 + a2 + c2) and λ

(2,0)
3 = 8(ns2 + a2 + b2) by (3.7) and (3.10).)

• π1,1 contributes the eigenvalue λ
(1,1)
1 to Spec(RP4n+3, g(a,b,c,s))withmultiplicity

d1,1 = n(2n + 3).

This implies (3.19), by adding the multiplicities of eigenvalues when if coincide.
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Remark 3.6 The largest possible multiplicity of λ1(S
4n+3, g(a,b,c,s)) is 4n2 +12n+7,

and it is attained when b2+c2 = s2 and a2 = (2n+3)s2. For generic a > b > c and s
in this situation, the full isometry group is Iso(S4n+3, g(a,b,c,s)) = Sp(n+1)×Z2Sp(1),
see [35]. Meanwhile, the multiplicity of λ1(S4n+3, ground) is only 4n+4, although the
full isometry group Iso(S4n+3, ground) = O(4n+4) is much larger. This is yet another
counterexample to the fact that larger isometry groups do not necessarily correspond
to larger multiplicities for the first eigenvalue, cf. [5, p. 181]. The first counterexample
was obtained by Urakawa [40], who noticed that the multiplicity of λ1(S3, g(

√
6b,b,b)),

b > 0, is 7, while that of λ1(S
3, ground) is only 4.

Theorem 3.7 Let n ≥ 1, b > 0, and s > 0. The smallest positive eigenvalue of the
Laplace–Beltrami operator on the homogeneous space (CP2n+1, ǧ(b,s)) is

λ1(CP2n+1, ǧ(b,s)) = min
{
8ns2 + 16b2, 8(n + 1)s2

}
, (3.21)

and its multiplicity is

⎧
⎪⎨

⎪⎩

(2n + 3)(n + 1) if 2b2 < s2,

(2n + 3)n if 2b2 > s2,

(2n + 3)(2n + 1) if 2b2 = s2.

(3.22)

Proof Let λ̌min(b, s) denote the right-hand side of (3.21). Since, by Lemma 3.2,

λ̌(2,0)(b, s) = 8ns2 + 16b2 and λ̌(1,1)(b, s) = 8(n + 1)s2

are eigenvalues of �ǧ(b,s)
, it follows that λ̌min(b, s) ≥ λ1(CP2n+1, ǧ(b,s)).

Conversely, let us show that λ̌(p,q)(b, s) ≥ λ̌min(b, s) for every p ≥ q ≥ 0 satisfy-
ing p ≡ q mod 2 and (p, q) �= (0, 0). This follows since

λ̌(p+2k,p)(b, s) = (4(p + 2k)n + 4p(p + 2k + 1 + n))s2 + 8k(k + 1)b2

clearly satisfies λ̌(p+2k,p)(b, s) > λ̌(p′+2k,p′)(b, s) for p > p′, and λ̌(p+2k,p)(b, s) >

λ̌(p+2k′,p)(b, s) for k > k′. This leaves only λ̌(1,1)(b, s) and λ̌(2,0)(b, s) as candidates
for non-zero minimizers, concluding the proof of (3.21).

Regarding the multiplicity of this eigenvalue, from Lemma 3.2, we have that

• π2,0 contributes the eigenvalue λ̌(2,0)(b, s) to Spec(CP2n+1, ǧ(b,s)) with multi-
plicity d2,0 = (n + 1)(2n + 3).

• π1,1 contributes the eigenvalue λ̌(1,1)(b, s) to Spec(CP2n+1, ǧ(b,s)) with multi-
plicity d1,1 = n(2n + 3).

This gives the values in the first two rows of (3.22), and the third row follows by
summing them.
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3.5 Full Spectra

We conclude this section providing an explicit description of the full spectrum in some
particular cases, as a direct consequence of Lemma 3.2.

Theorem 3.8 For n ≥ 1, we have that

Spec(S4n+3,h(t, t, t)) =
⋃

0≤l≤k
k≡l mod 2

{
μk,l(t), . . . , μk,l(t)︸ ︷︷ ︸

(l+1)mk,l

}
, (3.23)

Spec(RP4n+3,h(t, t, t)) =
⋃

0≤l≤k
k≡l≡0 mod 2

{
μk,l(t), . . . , μk,l(t)︸ ︷︷ ︸

(l+1)mk,l

}
, (3.24)

Spec(CP2n+1, ȟ(t)) =
⋃

0≤l≤k
k≡l≡0 mod 2

{
μk,l(t), . . . , μk,l(t)︸ ︷︷ ︸

mk,l

}
, (3.25)

where

μk,l(t) = k(k + 4n + 2) + l(l + 2)

(
1

t2
− 1

)
, (3.26)

mk,l =
∑

(p,q)∈Z2: p≥q≥0,
p+q=k, p−q=l

dp,q . (3.27)

Proof From (3.4), we have the isometries h(t, t, t) ∼= g(
(
√
2t)−1,(

√
2t)−1,(

√
2t)−1,1

) for

metrics on S4n+3 and RP4n+3, and ȟ(t) ∼= ǧ(
(
√
2t)−1,1

) for metrics on CP2n+1.

Lemma 3.2 ensures that any eigenvalue in Spec(S4n+3,h(t, t, t)) is as in (3.10), i.e.,

λ(p,q)
( 1√

2t
, 1√

2t
, 1√

2t
, 1
):=4pn + 4q(p + n + 1) + 2ν(p−q)

j ( 1√
2t

, 1√
2t

, 1√
2t

)

= 4pn + 4q(p + n + 1) + (p − q)(p − q + 2) 1
t2

= (p + q)(p + q + 4n + 2) + (p − q)(p − q + 2)
(

1
t2

− 1
)

for integers p, q with p ≥ q ≥ 0. We have used that ν
(k)
j (a, a, a) = k(k + 2)a2 by

(3.9). The same holds for Spec
(
RP4n+3,h(t, t, t)

)
, if we further assume p−q is even.

Similarly, Lemma 3.2 gives that Spec(CP2n+1, ȟ(t)) is the collection of eigenvalues
λ̌(p,q)( 1√

2t
, 1) = λ(p,q)

( 1√
2t

, 1√
2t

, 1√
2t

, 1
)
for integers p, q with p ≥ q ≥ 0 and p−q

even. Writing p + q = k and p − q = l, we obtain that 0 ≤ l ≤ k, k ≡ l mod 2,
λ(p,q)

( 1√
2t

, 1√
2t

, 1√
2t

, 1
) = μk,l(t), and k ≡ l ≡ 0 mod 2 if p and q are both even,

proving (3.23) and (3.25). The claimed multiplicity contribution (3.27) of μk,l(t) to
both spectra follows also from Lemma 3.2, concluding the proof.

Differently from the above situation, the full spectrum of (S4n+3,h(t1, t2, t3)),
or (S4n+3, g(a,b,c,s)) by means of the isometries in Remark 3.1, cannot be explicitly
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described with our methods, since the eigenvalues λ
(p,q)
j (a, b, c, s) are only computed

in terms of the eigenvalues ν
(k)
j (a, b, c) of the Laplacian on (S3, g(a,b,c)), cf. (3.10)

and (3.11). A closed formula for all ν(k)
j (a, b, c), hence for all λ(p,q)

j (a, b, c, s), would
be highly desirable, but seems to remain out of the reach of current techniques.

Nevertheless, with the aid of further symmetries, we can describe the full Laplace
spectrum in some special cases. For instance, we may enlarge the symmetry group
from Sp(n + 1) to Sp(n + 1)U(1). This corresponds to requiring that at least two of
the parameters a, b, c coincide, say b = c, which, by [24, Lem. 3.1], implies that

ν
(k)
j (a, b, b) = (k − 2( j − 1)

)2
a2 + 2

(
(2 j − 1)k − 2( j − 1)2

)
b2. (3.28)

This yields an explicit expression for all λ(p,q)
j (a, b, b, s) via (3.10), that can be used

to determine the full Laplace spectrum of the SU(2n + 2)-invariant metrics

(S4n+3, g(t)) ∼= (S4n+3,h(t, 1, 1)) ∼=
(
S4n+3, g( 1√

2t
, 1√

2
, 1√

2
,1
)
)
,

(RP4n+3, g(t)) ∼= (RP4n+3,h(t, 1, 1)) ∼=
(
RP4n+3, g( 1√

2t
, 1√

2
, 1√

2
,1
)
)
,

(3.29)

for any t > 0.

Theorem 3.9 For d = 4n + 3 with n ≥ 1, we have that

Spec(Sd , g(t)) =
⋃

0≤l≤k,
k≡l mod 2

{
ηk,l(t), . . . , ηk,l(t)︸ ︷︷ ︸

m̃k,l

}
, (3.30)

Spec(RPd , g(t)) =
⋃

0≤l≤k,
k≡l≡0 mod 2

{
ηk,l(t), . . . , ηk,l(t)︸ ︷︷ ︸

m̃k,l

}
, (3.31)

where

ηk,l(t) = k(k + d − 1) + l2
(
1

t2
− 1

)
, (3.32)

m̃k,l =
∑

(p,q, j)∈Z3: p≥q≥0,
1≤ j≤p−q+1, p+q=k,

p−q−2( j−1)=±l

dp,q . (3.33)

Proof From (3.10), (3.28), and (3.29), see also Remark 3.1, the eigenvalues in
Spec(Sd , g(t)) are of the form

λ
(p,q)
j

( 1√
2t

, 1√
2
, 1√

2
, 1
) = (4pn + 4q(p + n + 1)

)+ 2ν(p−q)
j

( 1√
2t

, 1√
2
, 1√

2

)

= (d − 3)p + q(4p + d + 1) + 2(2 j − 1)(p − q)

− 4( j − 1)2 + (p − q − 2( j − 1)
)2 1

t2
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= (p + q)(d − 1 + p + q) + (p − q − 2( j − 1)
)2 ( 1

t2
− 1
)

,

which coincides with ηp+q,|p−q−2( j−1)|(t). For integers 0 ≤ l ≤ k with k − l even,
Lemma 3.2 implies that ηk,l(t) contributes to Spec(Sd , g(t)) with multiplicity (3.33).
The statements regarding RPd follow by the same arguments, with p − q even.

Remark 3.10 Although the full spectrum of the Laplacian on (Sd , g(t)) had not been
previously described in odd dimensions d ≥ 5, partial results by Tanno [38, Lem. 4.1],
see also [12, §5], were sufficient to explicitly compute λ1(S

d , g(t)).
We only analyze dimensions d ≡ 3 mod 4 in Theorem 3.9 for simplicity, as the

description of the entire Spec(Sd , g(t)) for such d follows directly from Lemma 3.2
and (3.28). The same methods in Sect. 2 can be used to compute Spec(Sd , g(t)) in the
remaining cases, using G = SU

( d+1
2

)
and K = SU

( d−1
2

)
, see [11].

Example 3.11 The kth eigenvalue of the Laplacian on (CP2n+1, gFS) and (Sd , ground)
can be read from Theorems 3.8 and 3.9 respectively, by setting t = 1 in (3.26) and
(3.33), recovering the well-known formulae

λk(S
d , ground) = k(k + d − 1) and λk(CP2n+1, gFS) = 4k(k + 2n + 1).

Recall that, since these are symmetric spaces, the above Laplace eigenvalues can be
computed with Freudenthal’s formula (2.4). Moreover, it can be checked combinato-
rially that the multiplicity of the kth eigenvalue λk(S

d , ground) is equal to

∑

p+q=k
p≥q≥0

(p − q + 1) dp,q =
(
k + d

d

)
−
(
k + d − 2

d

)
, (3.34)

where we use the convention that
(a
b

) = 0 if a < b.

4 Spectral Uniqueness

In this section, we prove that the spectrum of the Laplace–Beltrami operator dis-
tinguishes homogeneous CROSSes up to isometries, proving Theorem C in the
Introduction. We begin showing that two isospectral Sp(n + 1)-invariant metrics on
S4n+3 or RP4n+3 must be isometric.

4.1 Spectral Uniqueness of Homogeneous Metrics on S4n+3

Given real numbers a ≥ b ≥ c > 0, consider the elementary symmetric polynomials
in their squares,

σ1:=σ1
(
a2, b2, c2

) = a2 + b2 + c2,

σ2:=σ2
(
a2, b2, c2

) = a2b2 + a2c2 + b2c2,

σ3:=σ3
(
a2, b2, c2

) = a2b2c2.

(4.1)
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In the sequel, we repeatedly use the elementary fact that

(σ1, σ2, σ3) determines (a, b, c). (4.2)

Indeed, x3 − σ1x2 + σ2x − σ3 = (x − a2)(x − b2)(x − c2) determines a2, b2, c2 up
to permutations, hence (a, b, c) are completely determined since a ≥ b ≥ c > 0.

Recall that, by Lemma 3.2, eigenvalues in Spec(S4n+3, g(a,b,c,s)) are of the form

λ
(p,q)
j (a, b, c, s) = 4

(
(p + q)n + q(p + 1)

)
s2 + 2ν(p−q)

j (a, b, c)

for some p ≥ q ≥ 0 and 1 ≤ j ≤ p − q + 1, where {ν(k)
j (a, b, c) : 1 ≤ j ≤ k + 1} is

the spectrum of the operator (3.6). We assume that ν
(k)
1 ≤ · · · ≤ ν

(k)
k+1, thus λ

(p,q)
1 ≤

· · · ≤ λ
(p,q)
p−q+1.

Lemma 4.1 The smallest eigenvalue of τ4(−a2X2
1 − b2X2

2 − c2X2
3) on Vτ4 , see (3.6),

is given by

ν
(4)
1 (a, b, c) = 8(a2 + b2 + c2) − 8

√
a4 + b4 + c4 − a2b2 − a2c2 − b2c2.

Moreover, the multiplicity of this eigenvalue is 1 if and only if a > b.

Proof From [24, Lem. 3.1], the matrix representing τ4(−a2X2
1 − b2X2

2 − c2X2
3) is

similar to a block diagonal matrix diag(τ 14 , τ 24 ), with blocks given by

τ 14 =
⎛

⎝
16a2 + 4(b2 + c2) 2(b2 − c2) 0

12(b2 − c2) 12(b2 + c2) 12(b2 − c2)
0 2(b2 − c2) 16a2 + 4(b2 + c2)

⎞

⎠ ,

τ 24 =
(
4a2 + 10(b2 + c2) 6(b2 − c2)

6(b2 − c2) 4a2 + 10(b2 + c2)

)
.

Note that, although (3.6) is self-adjoint, the above τ 14 is not symmetric because the
basis we used to represent it as a matrix is only orthogonal, and not orthonormal. The
eigenvalues of τ 24 are 4a2+16b2+4c2 and 4a2+4b2+16c2, while the eigenvalues of
τ 14 are 16a

2+4b2+4c2, and 8(a2+b2+c2)±8
√
a4 + b4 + c4 − a2b2 − a2c2 − b2c2.

The minimum ν
(4)
1 (a, b, c) of these five numbers is as claimed in the statement, since

8(a2 + b2 + c2) − 8
√
a4 + b4 + c4 − a2b2 − a2c2 − b2c2 ≤ 4a2 + 4b2 + 16c2,

as easily shown with routine computations. Since equality in the above holds if and
only if a = b, the assertion regarding multiplicity also follows.

We set

β(a, b, c) = σ1 −
√

σ 2
1 − 3σ2. (4.3)
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Lemma 4.1 tells us that ν
(4)
1 (a, b, c) = 8β(a, b, c) via (4.1). The next estimates will

be useful later.

Lemma 4.2 For a ≥ b ≥ c > 0, we have that

b2 + c2 < β(a, b, c) ≤ 3
2 (b

2 + c2).

Furthermore, the second inequality above is an equality if and only if b = c.

Proof From (3.8), we get that β(a, b, c) = 1
8ν

(4)
1 ≥ 1

8 (8b
2 + 16c2) > b2 + c2.

We next prove the inequality at the right. By (4.3), the assertion is equivalent to

σ1 − 3
2 (b

2 + c2) <

√
σ 2
1 − 3σ2. Since the left-hand side is nonnegative, squaring both

sides, this becomes equivalent to

−3σ1(b
2 + c2) + 9

4 (b
2 + c2)2 ≤ −3σ2.

By replacing σ1 and σ2 as in (4.1) and simple manipulations, one has that the above
condition is equivalent to 4b2c2 ≤ (b2 + c2)2, which clearly holds, with equality if
and only if b = c.

Lemma 4.3 The volume and scalar curvature of (S4n+3, g(a,b,c,s)) are given by

Vol(S4n+3, g(a,b,c,s)) = Vol(S4n+3, ground)

2
√
2σ3 s4n

= 2π2n+2

(2n + 1)!
1

2
√
2σ3 s4n

, (4.4)

scal(S4n+3, g(a,b,c,s)) = 16n(n + 2)s2 + 16σ1 − 2nσ2s4

σ3
− 4σ 2

2

σ3
. (4.5)

Proof. The proof of (4.4) is left to the reader. (In this article, we will only use the fact
that Vol(S4n+3, g(a,b,c,s)) depends only on s and σ3, which is well-known.) We next
prove (4.5) using the Gray–O’Neill formula (5.6). Recalling the isometries (3.5), and
Newton’s identity σ 2

2 − 2σ1σ3 = a4b4 + a4c4 + b4c4, we have

scal(S4n+3, g(a,b,c,s)) = scal
(
S4n+3, 1

s2
h( s√

2a
, s√

2b
, s√

2c
)
)

= s2 scal
(
S4n+3,h( s√

2a
, s√

2b
, s√

2c
)
)

= 16n(n + 2)s2 + 8
(
a2 + b2 + c2

)

− 4

(
b2c2

a2
+ a2c2

b2
+ a2b2

c2

)
− 2ns4

(
1

a2
+ 1

b2
+ 1

c2

)

= 16n(n + 2)s2 + 8σ1 − 4
σ 2
2 − 2σ1σ3

σ3
− 2ns4

σ2

σ3

= 16n(n + 2)s2 + 16σ1 − 2nσ2s4

σ3
− 4σ 2

2

σ3
.

123



The First Eigenvalue of a Homogeneous CROSS Page 25 of 63    76 

Lemma 4.4 Positive real numbers a, b, c, s satisfying a ≥ b ≥ c are determined by
the volume (4.4), the scalar curvature (4.5), and either

(i) the quantities λ
(1,0)
1 (a, b, c, s) and λ

(1,1)
1 (a, b, c, s);

(ii) the quantities λ
(1,1)
1 (a, b, c, s), λ(2,0)

1 (a, b, c, s), and λ
(4,0)
1 (a, b, c, s).

Proof Let us begin with (i). Since λ
(1,1)
1 = 8(n + 1)s2, the value of s > 0 is easily

determined. The volume then determines σ3, and λ
(1,0)
1 = 4ns2 + 2σ1 determines σ1.

Moreover, σ2 is determined by the scalar curvature, since (4.5) gives

4

σ3
σ 2
2 + 2ns4

σ3
σ2 + (scal(S4n+3, g(a,b,c,s)) − 16n(n + 2)s2 − 16σ1

) = 0,

and at most one of the roots of this quadratic polynomial in σ2 is positive, because the
coefficients of σ 2

2 and σ2 are both positive. Thus, (σ1, σ2, σ3, s) are determined, and
hence so are (a, b, c, s) by (4.2).

Let us now turn to (ii). Just like in the previous case, Vol(S4n+3, g(a,b,c,s)) and λ
(1,1)
1

determine s and σ3. Furthermore, λ
(2,0)
1 = 8ns2 + 8(b2 + c2) determines b2 + c2.

From (3.10) and Lemma 4.1, we have λ
(4,0)
1 = 16ns2+2ν(4)

1 = 16ns2+16β(a, b, c),
so β:=β(a, b, c) is also determined.

Thus far, we know the (positive) values of the quantities s, σ3 = a2b2c2, b2 + c2,
and β, and wish to use them to uniquely determine the values of a ≥ b ≥ c > 0. We
will see that there are two possible options for (a, b, c, s), and one of them will be
excluded using the value of the scalar curvature. From (4.3), we have that

3σ2 − 2σ1β + β2 = 0.

Substituting σ2 = a2(b2 + c2) + σ3
a2
, this equation can be written as

Aa4 − Ba2 + C = 0, (4.6)

where

A = 3(b2 + c2) − 2β, B = β
(
2(b2 + c2) − β

)
, C = 3σ3. (4.7)

Note that A, B, and C are already determined, since they can be written in terms of
the known values b2 + c2, σ3, and β. Clearly, C > 0. Lemma 4.2 implies that B > 0
and A ≥ 0, with equality if and only if b = c. Let us assume A > 0, otherwise all
parameters can be easily (uniquely) determined using that b = c.

We know that the equation Ax2 − Bx +C = 0 must have at least one real root, so
its discriminant is nonnegative, that is,

B2 − 4AC ≥ 0. (4.8)

123



   76 Page 26 of 63 R. G. Bettiol et al.

Moreover, since A, B,C are all positive, the equation in (4.6) with respect to the
variable a has two positive solutions a1 < a2 satisfying

a21 = B − √
B2 − 4AC

2A
, and a22 = B + √

B2 − 4AC

2A
.

Setting a = ai > 0, i = 1, 2, since we know the values of b2 + c2 and b2c2 = σ3/a2,
it follows that b > 0 and c > 0, satisfying b > c, become determined. Denote their
values by bi and ci , i = 1, 2, according to the choice a = ai , i = 1, 2. If one of
these choices i = 1, 2 violates the inequalities ai ≥ bi > ci > 0, then (a, b, c, s)
is determined, since (a, b, c) must then be equal to (ai , bi , ci ) for the other choice
i = 1, 2. Thus, suppose that ai ≥ bi > ci > 0 for both i = 1, 2. We will show that
scal
(
S4n+3, g(a1,b1,c1,s)

)
> scal

(
S4n+3, g(a2,b2,c2,s)

)
, which implies that only one of

(ai , bi , ci , s) for i = 1, 2 matches all five known quantities from the statement.
From (4.5), using that s, b2 + c2, σ3, A, B and C are determined, we compute

F := scal
(
S4n+3, g(a2,b2,c2,s)

)− scal
(
S4n+3, g(a1,b1,c1,s)

)

a22 − a21

= 16 − 2ns4

σ3
(b2 + c2) − 2ns4

(
1

a22
− 1

a21

)
1

a22 − a21

− 4

σ3

(

(b2 + c2) + σ3

(a22 − a21)

(
1

a22
− 1

a22

))(

(a22 + a21)(b
2 + c2) + σ3

(
1

a22
+ 1

a22

))

= 16 − 2ns4(b2 + c2)

σ3
+ 2ns4

1

a21a
2
2

− 4

σ3

(

b2 + c2 − σ3

a21a
2
2

)(

(a22 + a21)(b
2 + c2) + σ3

a21 + a22
a21a

2
2

)

= 16 − 6ns4(b2 + c2)

C
+ 2ns4

A

C
− 12

C

(
3(b2 + c2) − A

) (3B
A

(b2 + c2) + B

)
.

In the last step, we used that C = 3σ3 and the relations a21 + a22 = B
A and a21a

2
2 = C

A
between roots and coefficients of a quadratic equation. Basic manipulations give

F = −2ns4

C

(
3(b2 + c2) − A

)
− 4

3AC

( (
9(b2 + c2)2 − A2

)
B − 12AC

)

= −4nβs4

C
− 4

3AC

(
2β
(
6(b2 + c2) − 2β

)
B − 12AC

)
,

where the last step uses (4.7). To prove that F < 0, since s, β, A, B, and C are all
positive, it remains to show that G:=2β

(
6(b2+c2)−2β

)
B−12AC is positive. Since

B = β
(
2(b2 + c2) − β

)
by (4.7), we have that

123



The First Eigenvalue of a Homogeneous CROSS Page 27 of 63    76 

G = 2β
(
6(b2 +c2)−3β +β

)
B−12AC = 6

(
B+ 1

3β
2)B−12AC > 6

(
B2 −2AC

)
,

so the proof is complete by (4.8).

Theorem 4.5 Two isospectral Sp(n + 1)-invariant metrics on S4n+3 are isometric.

Proof In order to show that Spec(S4n+3, g(a,b,c,s)) determines (a, b, c, s), we first
recall that since (S4n+3, g(a,b,c,s)) is homogeneous, the first two heat invariants deter-
mine Vol(S4n+3, g(a,b,c,s)) and scal(S4n+3, g(a,b,c,s)), see e.g. [7, Chap. III, E.IV].

Furthermore, by Lemma 4.4, it suffices to show that either λ
(1,0)
1 (a, b, c, s) and

λ
(1,1)
1 (a, b, c, s) are also determined by the spectrum.
FromTheorem3.5, there are 7 distinct possible values for themultiplicity of the first

eigenvalue λ1(S
4n+3, g(a,b,c,s)), see (3.17), thus the spectrum reveals which among

λ
(1,0)
1 , λ(2,0)

1 , or λ
(1,1)
1 realizes the minimum in (3.16). The proof is therefore naturally

divided in 7 cases, corresponding to the 7 rows in (3.17). We proceed with a case-by-
case analysis.
Row 1: λ

(1,0)
1 < min

{
λ

(2,0)
1 , λ

(1,1)
1

}
. The quantity λ

(1,0)
1 is determined, since it is

equal to λ1(S
4n+3, g(a,b,c,s)), so it suffices to determine λ

(1,1)
1 by Lemma 4.4. This is

achieved searching for it among larger eigenvalues in the spectrum.
Let us determine the second eigenvalue λ2(S

4n+3, g(a,b,c,s)) under the current

assumptions. Note that λ1(S4n+3, g(a,b,c,s)) = λ
(1,0)
1 = λ

(1,0)
2 , thus the second eigen-

value must come from πp,q with (p, q) /∈ {(0, 0), (1, 0)}, that is,

λ2(S
4n+3, g(a,b,c,s)) = min

p≥q≥0
(p,q)/∈{(0,0),(1,0)}

λ
(p,q)
1 (a, b, c, s).

Lemma3.4 implies thatλ2(S4n+3, g(a,b,c,s)) = min
{
λ

(2,0)
1 , λ

(1,1)
1

}
. Note that (p, q) =

(3, 0) when n = 1 is excluded, since, by (3.8),

λ
(3,0)
1 = 12ns2 + 2ν(3)

1 (a, b, c)

≥ 12ns2 + 2(a2 + 5b2 + 9c2)

> 8ns2 + 8(b2 + c2)

= λ
(2,0)
1 .

In order to determine its multiplicity, we must take into account that λ(2,0)
2 and λ

(2,0)
3

may also contribute if they coincidewithλ
(2,0)
1 . Analyzing each possibility, one obtains

the following table:
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λ2(S
4n+3, g(a,b,c,s)) multiplicity condition

λ
(1,1)
1 n(2n + 3) λ

(2,0)
1 > λ

(1,1)
1

λ
(2,0)
1 (n + 1)(2n + 3) λ

(2,0)
1 < min{λ(1,1)

1 , λ
(2,0)
2 }

λ
(2,0)
1 2(n + 1)(2n + 3) λ

(2,0)
1 = λ

(2,0)
2 < min{λ(1,1)

1 , λ
(2,0)
3 }

λ
(2,0)
1 3(n + 1)(2n + 3) λ

(2,0)
1 = λ

(2,0)
2 = λ

(2,0)
3 < λ

(1,1)
1

λ
(2,0)
1 = λ

(1,1)
1 (2n + 1)(2n + 3) λ

(2,0)
1 = λ

(1,1)
1 < λ

(2,0)
2

λ
(2,0)
1 = λ

(1,1)
1 (3n + 2)(2n + 3) λ

(2,0)
1 = λ

(2,0)
2 = λ

(1,1)
1 < λ

(2,0)
3

λ
(2,0)
1 = λ

(1,1)
1 (4n + 3)(2n + 3) λ

(2,0)
1 = λ

(2,0)
2 = λ

(2,0)
3 = λ

(1,1)
1

(4.9)

As the multiplicities in the rows of (4.9) are all distinct, we hear the expression for
λ2(S

4n+3, g(a,b,c,s)). Thus, the cases in rows 1 and 5–7 are settled, since λ
(1,1)
1 is

determined. In row 4, i.e., if λ
(2,0)
1 = λ

(2,0)
2 = λ

(2,0)
3 < λ

(1,1)
1 , then, by (3.7), we have

a = b = c, so λ
(1,0)
1 and λ

(2,0)
1 determine (a, b, c, s), settling this case as well.

In row 3, i.e., if λ
(2,0)
1 = λ

(2,0)
2 < min{λ(1,1)

1 , λ
(2,0)
3 }, then a = b > c by (3.7),

since λ
(2,0)
1 = λ

(2,0)
2 ; and b2 + c2 < s2, since λ

(2,0)
1 < λ

(1,1)
1 . Again from Lemma 3.4,

the third eigenvalue is given as follows:

λ3(S
4n+3, g(a,b,c,s)) multiplicity condition

λ
(1,1)
1 n(2n + 3) λ

(2,0)
3 > λ

(1,1)
1

λ
(2,0)
3 (n + 1)(2n + 3) λ

(2,0)
3 < λ

(1,1)
1

λ
(2,0)
3 = λ

(1,1)
1 (2n + 1)(2n + 3) λ

(2,0)
2 = λ

(1,1)
1

(4.10)

As in (4.9), the quantity λ
(3,0)
1 does not appear, since, using that a = b < s,

λ
(3,0)
1 = 12ns2 + 2ν(3)

1 (a, b, c)

≥ 12ns2 + 2(a2 + 5b2 + 9c2)

= 12ns2 + 12b2 + 18c2

> 8ns2 + 16b2

= λ
(2,0)
3 .

Since the multiplicities in the rows of (4.10) are all distinct, the expression for
λ3(S

4n+3, g(a,b,c,s)) can be heard from the spectrum. The value λ
(1,1)
1 is determined

in rows 1 and 3 of (4.10), hence these cases are settled by Lemma 4.4.
Suppose now that λ

(2,0)
3 < λ

(1,1)
1 , as indicated in row 2 of (4.10). At this point,

the strategy is to keep searching for the next eigenvalue until we find λ
(1,1)
1 , which

settles this case by Lemma 4.4. Since λ
(1,0)
1 = λ

(1,0)
2 , λ(2,0)

1 , λ(2,0)
2 , and λ

(2,0)
3 are all

strictly smaller than λ
(1,1)
1 , Lemma 3.4 ensures that the next eigenvalue is λ

(1,1)
1 , unless

n = 1, in which case λ
(3,0)
j for 1 ≤ j ≤ 4 are the remaining candidates that might be

smaller than λ
(1,1)
1 . Assume n = 1. As λ

(1,1)
1 and λ

(3,0)
j contribute to the spectrumwith
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multiplicities d1,1 = 5 and d3,0 = 20 respectively, λ(1,1)
1 is determined since it is the

next occurring eigenvalue (after the third eigenvalue) with odd multiplicity, no matter
where it is located among λ

(3,0)
1 ≤ λ

(3,0)
2 ≤ λ

(3,0)
3 ≤ λ

(3,0)
4 . It is worth mentioning

that the situation λ
(1,1)
1 > λ

(3,0)
4 may in fact occur, provided s is sufficiently large.

It only remains to analyze row 2 of (4.9), i.e., the case λ
(2,0)
1 < min

{
λ

(1,1)
1 , λ

(2,0)
2

}
,

which is only possible if a > b. Suppose, for now, that n ≥ 2. Then, by Lemma 3.4,
the third eigenvalue is given as follows:

λ3(S
4n+3, g(a,b,c,s)) multiplicity condition

λ
(1,1)
1 n(2n + 3) λ

(2,0)
2 > λ

(1,1)
1

λ
(2,0)
2 (n + 1)(2n + 3) λ

(2,0)
2 < min{λ(1,1)

1 , λ
(2,0)
3 }

λ
(2,0)
2 2(n + 1)(2n + 3) λ

(2,0)
2 = λ

(2,0)
3 < λ

(1,1)
1

λ
(2,0)
2 = λ

(1,1)
1 (2n + 1)(2n + 3) λ

(2,0)
2 = λ

(1,1)
1 < λ

(2,0)
3

λ
(2,0)
2 = λ

(1,1)
1 (3n + 2)(2n + 3) λ

(2,0)
2 = λ

(2,0)
3 = λ

(1,1)
1

As above, since none of the multiplicities coincide, the spectrum determines the
expression for λ3(S

4n+3, g(a,b,c,s)). We are done (by Lemma 4.4) whenever λ
(1,1)
1 is

determined, which does not happen with λ3(S
4n+3, g(a,b,c,s)) only if λ

(2,0)
2 < λ

(1,1)
1 .

In that case, the next two eigenvalues need to be analyzed, in a totally analogous
way, to show that λ

(1,1)
1 is eventually determined by the spectrum because the possi-

ble multiplicities are again all distinct. The case n = 1 is slightly longer, as any of
λ

(3,0)
1 , . . . , λ

(3,0)
4 may occur as the next distinct eigenvalue. However, since this is also

completely analogous to the above cases, the proof is omitted.
Row 2: λ

(1,1)
1 < min

{
λ

(1,0)
1 , λ

(2,0)
1

}
. Since λ

(1,1)
1 = 8(n + 1)s2 is determined, so are

s > 0 and σ3, the latter through (4.4). Moreover, since λ
(q,q)
1 = 4

(
2qn + q(q + 1)

)
s2

for any q ≥ 0, the value of s determines the following infinite subset of the spectrum:

B0:=
{

λ
(q,q)
1 , . . . , λ

(q,q)
1︸ ︷︷ ︸

dq,q -times

: q ≥ 0
}

⊂ Spec
(
S4n+3, g(a,b,c,s)

)
.

In fact, B0 = Spec
(
HPn, 1

s2
gFS
)
are precisely the basic eigenvalues, see Remark 3.3.

Consider the smallest eigenvalue in Spec(S4n+3, g(a,b,c,s)) � B0, which is given

by the minimum of λ
(p,q)
1 , p > q ≥ 0. Since λ

(1,0)
1 < λ

(q+1,q)
1 for all q > 0, and

λ
(2,0)
1 < λ

(p,q)
1 for all p ≥ q ≥ 0 with p − q ≥ 2 and (p, q) �= (2, 0), this eigenvalue

is
min
(
Spec

(
S4n+3, g(a,b,c,s)

)
�B0

)
multiplicity condition

λ
(1,0)
1 4(n + 1) λ

(1,0)
1 < λ

(2,0)
1

λ
(2,0)
1 (n + 1)(2n + 3) λ

(1,0)
1 > λ

(2,0)
1

λ
(1,0)
1 (n + 1)(2n + 7) λ

(1,0)
1 = λ

(2,0)
1

(4.11)

For the multiplicity computation in the last two rows, we used that λ
(2,0)
1 < λ

(2,0)
2

whenever λ(1,0)
1 ≥ λ

(2,0)
1 , since a > b, and hence π2,0 contributes to the spectrumwith
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multiplicity d2,0 = (n+1)(2n+3). Since none of the multiplicities in (4.11) coincide,
the spectrum determines the expression for the smallest nonbasic eigenvalue. In rows
1 and 3 of (4.11), the value of λ

(1,0)
1 is determined, so we are done, by Lemma 4.4.

We now deal with the remaining row 2 as a particular case of the following setup:

λ
(1,1)
1 and λ

(2,0)
1 are known, and max

{
λ

(1,1)
1 , λ

(2,0)
1

}
< λ

(1,0)
1 . (4.12)

In other words, we will not use the fact that, in row 2, λ(1,1)
1 < λ

(2,0)
1 , since proving

the result under these weaker assumptions will simplify later parts of the proof.
Given that, under these assumptions, both s and λ

(2,0)
1 = 8ns2 + 8(b2 + c2) are

known, so is b2 +c2. Then, since λ
(q+2,q)
1 = 4

(
(2q +2)n+q(q +3)

)
s2 +8(b2 +c2),

the following infinite subset of the spectrum is also determined:

B1:=
{

λ
(q+2,q)
1 , . . . , λ

(q+2,q)
1︸ ︷︷ ︸

dq+2,q -times

: q ≥ 0
}
.

The smallest eigenvalue in Spec(S4n+3, g(a,b,c,s))� (B0 ∪B1) is the minimum among
the following union of sets:

{
λ

(q+k,q)
1 : q ≥ 0, k ≥ 1 odd

}∪{λ(q+2,q)
2 : q ≥ 0

}∪{λ(q+k,q)
1 : q ≥ 0, k ≥ 4 even

}
.

One can check that λ(1,0)
1 < λ

(q+k,q)
1 for all k odd and q ≥ 0, with (q, k) �= (0, 1), by

(3.8); λ(1,0)
1 < λ

(q+2,q)
2 for all q ≥ 0 since a > b; and λ

(4,0)
1 < λ

(q+k,q)
1 for all k ≥ 4

even and q ≥ 0, with (q, k) �= (0, 4), by (3.8). This implies that this minimum is

min
(
Spec

(
S4n+3, g(a,b,c,s)

)
�(B0 ∪ B1)

)
multiplicity condition

λ
(1,0)
1 4(n + 1) λ

(1,0)
1 < λ

(4,0)
1

λ
(4,0)
1

(2n+5
4

)
λ

(1,0)
1 > λ

(4,0)
1

λ
(1,0)
1 = λ

(4,0)
1 4(n + 1) + (2n+5

4

)
λ

(1,0)
1 = λ

(4,0)
1

The computation ofmultiplicities is done using thatλ(1,0)
1 = λ

(1,0)
2 andπ1,0 contributes

with multiplicity 2d1,0 = 4(n + 1), while λ
(4,0)
1 < λ

(4,0)
2 and π4,0 contributes with

multiplicity d4,0 = (2n+5
4

)
.

Once more, since the above multiplicities are pairwise different, the expression for
this eigenvalue can be read from the spectrum. Furthermore, in rows 1 and 3, the proof
follows from Lemma 4.4 since λ

(1,0)
1 is determined. In row 2, the proof follows from

Lemma 4.4 since λ
(1,1)
1 , λ(2,0)

1 , and λ
(4,0)
1 are determined.
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Row 3: λ
(2,0)
1 < min

{
λ

(1,0)
1 , λ

(1,1)
1

}
. Lemma 3.4 implies that the second eigenvalue

is λ2(S
4n+3, g(a,b,c,s)) = min

{
λ

(1,0)
1 , λ

(1,1)
1 , λ

(3,0)
1

}
, and, as λ

(1,0)
1 < λ

(3,0)
1 , we have

λ2(S
4n+3, g(a,b,c,s)) multiplicity condition

λ
(1,0)
1 4(n + 1) λ

(1,0)
1 < λ

(1,1)
1

λ
(1,1)
1 n(2n + 3) λ

(1,0)
1 > λ

(1,1)
1

λ
(1,0)
1 = λ

(1,1)
1 2n2 + 7n + 4 λ

(1,0)
1 = λ

(1,1)
1

As before, since the possible multiplicities are all distinct, the spectrum determines
the expression for the second eigenvalue.

If λ
(1,0)
1 = λ

(1,1)
1 , then both quantities are determined, thus so is (a, b, c, s) by

Lemma 4.4. The case λ
(1,1)
1 < λ

(1,0)
1 satisfies (4.12), hence was settled in Row 2.

Suppose λ
(1,0)
1 < λ

(1,1)
1 . Note that a2 > 2ns2, since λ

(2,0)
1 < λ

(1,0)
1 . Thus, λ(2,0)

3 ≥
λ

(2,0)
2 = 8ns2 + 8(a2 + c2) > 8ns2 + 16ns2 > λ

(1,1)
1 and λ

(3,0)
j ≥ 12ns2 + 2(a2 +

5b2+9c2) > 12ns2+4ns2 ≥ 8(n+1)s2 = λ
(1,1)
1 by (3.8). Consequently, Lemma 3.4

implies that the third eigenvalue is λ
(1,1)
1 , which settles this case.

Row 4: λ(1,0)
1 = λ

(1,1)
1 < λ

(2,0)
1 . Both λ

(1,0)
1 and λ

(1,1)
1 are determined by the spectrum,

as they are equal to λ1(S
4n+3, g(a,b,c,s)), so the result follows from Lemma 4.4.

Row 5: λ
(1,0)
1 = λ

(2,0)
1 < λ

(1,1)
1 . The condition λ

(1,0)
1 = λ

(2,0)
1 implies a2 > 2ns2,

which, in turn, implies that λ2(S4n+3, g(a,b,c,s)) = λ
(1,1)
1 , similarly to the last case in

Row 3. The desired conclusion then follows from Lemma 4.4.
Row 6: λ

(1,1)
1 = λ

(2,0)
1 < λ

(1,0)
1 . Since (4.12) holds, this case was settled in Row 2.

Row 7: λ
(1,0)
1 = λ

(2,0)
1 = λ

(1,1)
1 . Similarly to Row 4, as λ

(1,0)
1 and λ

(1,1)
1 are known,

the result follows from Lemma 4.4.

We now prove spectral uniqueness of Sp(n+ 1)-invariant metrics onRP4n+3. The
proof strategy is very similar to that of Theorem 4.5, so many details are omitted.

Theorem 4.6 Two isospectral Sp(n + 1)-invariant metrics on RP4n+3 are isometric.

Proof Similarly to the proof of Theorem 4.5, by homogeneity, the spectrum of
(RP4n+3, g(a,b,c,s)) determines Vol(RP4n+3, g(a,b,c,s)) = 1

2 Vol(S
4n+3, g(a,b,c,s))

and scal(RP4n+3, g(a,b,c,s)) = scal(S4n+3, g(a,b,c,s)).
First, let us determine (a, b, c, s) from Spec(RP4n+3, g(a,b,c,s)) assuming that:

The values of λ
(1,1)
1 and λ

(2,0)
1 are known. (4.13)

Additionally, suppose λ
(2,0)
1 < λ

(2,0)
2 < λ

(2,0)
3 , which is equivalent to a > b > c. The

special cases a = b and b = c are much simpler, and left to the reader.
By Lemma 4.3, λ(1,1)

1 = 8(n + 1)s2 and the volume determine s > 0, σ3 and

B0:=
{

λ
(q,q)
1 , . . . , λ

(q,q)
1︸ ︷︷ ︸

dq,q -times

: q ≥ 0 even
}

⊂ Spec
(
RP4n+3, g(a,b,c,s)

)
. (4.14)
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Similarly, λ(1,1)
1 together with λ

(2,0)
1 determine b2 + c2, and consequently

B1:=
{

λ
(q+2,q)
1 , . . . , λ

(q+2,q)
1︸ ︷︷ ︸

dq+2,q -times

: q ≥ 0 even
}
. (4.15)

By Theorem 3.5, the smallest eigenvalue in Spec(RP4n+3, g(a,b,c,s)) � (B0 ∪ B1) is
the minimum of

{
λ

(q+2,q)
2 : q ≥ 0 even

} ∪ {λ(q+k,q)
1 : q ≥ 0, k ≥ 4, both even

}
.

We have λ
(4,0)
1 < λ

(4,0)
2 by Lemma 4.1 and the assumption a > b. For even integers

k ≥ 6 and q ≥ 0, the inequality (3.8) gives

λ
(q+k,q)
1 ≥ 4

(
(k + 2q)n + q(k + q + 1)

)
s2 + 2

(
2kb2 + k2c2

)

≥ 24ns2 + 24b2 + 72c2

> 16ns2 + 16 3
2 (b

2 + c2) ≥ 16ns2 + 16β(a, b, c) = λ
(4,0)
1 .

The last inequality follows from Lemma 4.2. Furthermore, we have λ
(q+4,q)
1 > λ

(4,0)
1

for all q > 0 even. Similarly, one may check that λ(2,0)
2 < λ

(q+2,q)
2 for all q > 0 even.

The above facts imply the following:

min
(
Spec

(
RP4n+3, g(a,b,c,s)

)
�(B0 ∪ B1)

)
multiplicity condition

λ
(2,0)
2 (n + 1)(2n + 3) λ

(2,0)
2 < λ

(4,0)
1

λ
(4,0)
1

(2n+5
4

)
λ

(2,0)
2 > λ

(4,0)
1

λ
(2,0)
2 = λ

(4,0)
1 the sum of both λ

(2,0)
2 = λ

(4,0)
1

Since the above multiplicities are pairwise different, the expression for this eigen-
value can be read from the spectrum. In rows 2 and 3, the expression for λ

(4,0)
1 is

determined, thus (a, b, c, s) is determined by Lemma 4.4. Note that the hypotheses in
Lemma 4.4 are satisfied because the volume and scalar curvature of (S4n+3, g(a,b,c,s))

are determined by the spectrum of (RP4n+3, g(a,b,c,s)), as explained above.

We now assume λ
(2,0)
2 < λ

(4,0)
1 , as in row 1. Thus, λ(2,0)

2 is determined, and so are

a2 + c2, ν(2)
2 (a, b, c) and

B2:=
{

λ
(q+2,q)
2 , . . . , λ

(q+2,q)
2︸ ︷︷ ︸

dq+2,q -times

: q ≥ 0 even
}
. (4.16)
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Reasoning before, the smallest eigenvalue in Spec(RP4n+3, g(a,b,c,s))�(B0∪B1∪B2)

is given as in the next table:

min
(
Spec

(
RP4n+3, g(a,b,c,s)

)
�(B0 ∪ B1 ∪ B2)

)
multiplicity condition

λ
(2,0)
3 (n + 1)(2n + 3) λ

(3,0)
2 < λ

(4,0)
1

λ
(4,0)
1

(2n+5
4

)
λ

(2,0)
3 > λ

(4,0)
1

λ
(2,0)
3 = λ

(4,0)
1 the sum of both λ

(2,0)
3 = λ

(4,0)
1

Once again, the multiplicity distinguishes the situation in each of the three rows. In
rows 2 and 3, λ(4,0)

1 is determined, so are (a, b, c, s) by Lemma 4.4. In row 1, λ(2,0)
3 is

determined, and so is a2+b2, which together with the already known values of a2+c2

andb2+c2, determine (a, b, c). This completes the proof that Spec(RP4n+3, g(a,b,c,s))

determines (a, b, c, s) under the assumption (4.13).
It remains to show that no loss of generality is incurred by assuming (4.13);

that is, we must prove that λ
(1,1)
1 and λ

(2,0)
1 are determined by the spectrum of

(RP4n+3, g(a,b,c,s)). According to Theorem 3.5, the multiplicity of the first eigen-
value of (RP4n+3, g(a,b,c,s)) can assume 7 different values, listed in (3.19). Thus, the
proof is naturally divided in seven cases corresponding to the rows in (3.19).
Row 1: λ

(1,1)
1 < λ

(2,0)
1 . Since the expression for λ

(1,1)
1 is determined, so are s and

B0, see (4.14). One can easily check that λ
(2,0)
1 < λ

(p,q)
1 for all p > q ≥ 0 with

p − q even and strictly greater than 2. It follows that the smallest eigenvalue in
Spec(RP4n+3, g(a,b,c,s)) � B0 is λ

(2,0)
1 = 8ns2 + 8(b2 + c2), and (4.13) holds.

Row 2: λ
(2,0)
1 < λ

(1,1)
1 and a > b. Lemma 3.4 implies that the second eigenvalue is

given by min
{
λ

(1,1)
1 , λ

(2,0)
2

}
. Straightforward multiplicity computations give:

λ2(RP4n+3, g(a,b,c,s)) multiplicity conditions

λ
(2,0)
2 (n + 1)(2n + 3) λ

(2,0)
2 < λ

(1,1)
1 and b > c

λ
(2,0)
2 2(n + 1)(2n + 3) λ

(2,0)
2 < λ

(1,1)
1 and b = c

λ
(1,1)
1 n(2n + 3) λ

(2,0)
2 > λ

(1,1)
1

λ
(2,0)
2 = λ

(1,1)
1 (2n + 1)(2n + 3) λ

(2,0)
2 = λ

(1,1)
1 and b > c

λ
(2,0)
2 = λ

(1,1)
1 (3n + 2)(2n + 3) λ

(2,0)
2 = λ

(1,1)
1 and b = c

Since none of the multiplicities coincide, the expression for this eigenvalue can be
heard. In rows 3, 4 and 5, the value λ

(1,1)
1 is determined, thus the proof is complete

since (4.13) holds. The case in row 2 is simple and left to the reader.
We now assume λ

(2,0)
2 < λ

(1,1)
1 and b < c, as in row 1. The expression for λ

(2,0)
2

determines a2 +c2. Lemma 3.4 ensures that the next eigenvalue is min
{
λ

(1,1)
1 , λ

(2,0)
3

}
,

with distinct multiplicities given by
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λ3(RP4n+3, g(a,b,c,s)) multiplicity conditions

λ
(2,0)
3 (n + 1)(2n + 3) λ

(2,0)
3 < λ

(1,1)
1

λ
(1,1)
1 n(2n + 3) λ

(2,0)
2 > λ

(1,1)
1

λ
(2,0)
2 = λ

(1,1)
1 (2n + 1)(2n + 3) λ

(2,0)
2 = λ

(1,1)
1

If λ
(1,1)
1 ≤ λ

(2,0)
3 , then λ

(1,1)
1 is determined, and (4.13) holds.

Suppose that λ
(2,0)
3 < λ

(1,1)
1 . Since λ

(2,0)
j , j = 1, 2, 3, are determined, so are

s2 + a2 + b2, s2 + a2 + c2, and s2 + b2 + c2, which uniquely determine the positive
values of (a, b, c) in terms of s. Lemma 3.4 implies that the fourth eigenvalue is given
by λ

(1,1)
1 , which determines s, and the proof of this case is complete.

Rows 3–4: λ
(2,0)
1 < λ

(1,1)
1 and a = b. These cases are simpler than Row 2 and left to

the reader.
Rows 5–7: λ

(1,1)
1 = λ

(2,0)
1 . Since both expressions are determined, (4.13) holds.

4.2 Spectral Uniqueness Among Homogeneous CROSSes

We first prove that an Sp(n + 1)-invariant metric on S4n+3 cannot be isospectral to an
Sp(n + 1)-invariant metric on RP4n+3. For this, we need the following:

Lemma 4.7 Suppose a > b ≥ c > 0.

(i) If b2 < 11c2, then ν
(2k)
1 (a, b, c) < ν

(2k+2)
1 (a, b, c) for all k ≥ 0.

(ii) ν
(2k)
2 (a, b, c) > max

{
ν

(1)
1 (a, b, c), ν(2)

2 (a, b, c), ν(2k)
1 (a, b, c)

}
for all k ≥ 2.

Proof It iswell-known that the (k+1)-dimensional irreducible representation (τk, Vτk )

of SU(2) can be realized as the space of complex homogeneous polynomials of degree
k in two variables, with the action given by (g ·P) ( z

w ) = P(g−1 ( z
w )), where g−1 ( z

w )

denotes matrix multiplication.
We fix the basis {Pj : 0 ≤ j ≤ k}, with Pj (

z
w ) = z jwk− j . It is important to

note that this basis is orthogonal but not orthonormal with respect to the G-invariant
inner product. Thus, the matrix Mk = Mk(a, b, c) of τk(−a2X2

1 −b2X2
2 −c2X2

3)with
respect to this basis is not symmetric, but is similar to a positive-definite symmetric
matrix.

According to the proof of [24, Lem. 3.1], we have that the only non-zero coefficients
of Mk = [m(k)

i, j ]i, j=0,...,k are given by

m(k)
j, j = (k − 2 j)2a2 + ((2 j + 1)k − 2 j2

)
(b2 + c2) for 0 ≤ j ≤ k,

m(k)
j−2, j = −( j − 1) j(b2 − c2) for 2 ≤ j ≤ k,

m(k)
j+2, j = −(k − 1 − j)(k − j)(b2 − c2) for 0 ≤ j ≤ k − 2.

(4.17)
(Although in the statement of [24, Lem. 3.1] a negative sign is missing in the expres-
sions for the second and third rows, as displayed above, this typo does not have any
impact because the spectra of these two matrices coincide.)
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Let D2k = diag
(
d(2k)
0 , . . . , d(2k)

2k

)
, where d(2k)

j = √
j !(2k − j)!. It is easy to check

that D2kM2k D
−1
2k is symmetric and has the same spectra as M2k . Let

Uk :=D2k+2M2k+2D
−1
2k+2 −

⎛

⎝
μ

D2kM2k D
−1
2k

μ

⎞

⎠ = [u(k)
i, j ]i, j=0,...,2k+2,

where μ = 2k(k + 1)(b2 + c2). We claim that

λmin

(
diag(μ, D2kM2k D

−1
2k , μ)

)
= λmin(M2k). (4.18)

Of course, the left-hand side is equal to min{μ, λmin(M2k)}, so it is sufficient to show
that μ ≥ λmin(M2k). Clearly,

λmin(M2k) = λmin(D2kM2k D
−1
2k ) ≤ (D2kM2k D

−1
2k ) j, j = m(2k)

j, j

for all j , thus λmin(M2k) ≤ m(2k)
k,k = 2k(k + 1)(b2 + c2) = μ, as desired.

Now, by (4.18), (i) holds if and only if λmin(Uk) > 0. It is a simple task to check
that the only non-zero coefficients of the (2k + 3) × (2k + 3)-matrix Uk are:

u(k)
0,0 = u(k)

2k+2,2k+2 = (2k + 2)2a2 − 2(k − 1)(k + 1)(b2 + c2),

u(k)
0,2 = u(k)

0,2 = u(k)
2k,2k+2 = u(k)

2k+2,2k = −(b2 − c2)
√
2(2k + 1)(2k + 2),

u(k)
j, j = 4(k + 1)(b2 + c2), for 1 ≤ j ≤ 2k + 1, and

u(k)
j−2, j = u(k)

j, j−2 = −4(k + 1)(b2 − c2)
√

( j − 1)(2k + 3 − j)√
j(2k + 4 − j) + √

( j − 2)(2k + 2 − j)
, for 3 ≤ j ≤ 2k + 1.

By the Gershgorin Circle Theorem, see e.g. [42], all eigenvalues λ of Uk satisfy

λ ≥ min
0≤ j≤2k+2

{
β(k, j):=u(k)

j, j − |u(k)
j+2, j | − |u(k)

j−2, j |
}

, (4.19)

where the coefficientswith index outside the range {0, . . . , 2k+2} are 0 by convention;
e.g., u(k)

−2,0 = 0. One can easily check that β(k, 0) = β(k, 2k + 2) > 0 for k ≥ 2, and
β(k, 1) = β(k, 2k + 1) > 0. Furthermore,

β(k, 2) = β(k, 2k) = 4(k + 1)(b2 + c2) − 4(k+1)(b2−c2)
√
3(2k−1)√

8k+√
2(2k−2)

− (b2 − c2)
√
2(2k + 1)(2k + 2)

≥ 4(k + 1)(b2 + c2) − 4(k + 1)
( √

3
2+√

2
+ 1√

2

)
(b2 − c2)

≥ 4(k + 1)(b2 + c2) − 4(k + 1) 65 (b
2 − c2),
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which is positive, since the hypothesis 11c2 > b2 is equivalent to b2+c2 > 6
5 (b

2−c2).
For 3 ≤ j ≤ 2k − 1, one has that

β(k, j) = 4(k + 1)(b2 + c2) − 4(k+1)(b2−c2)
√

( j+1)(2k+1− j)√
( j+2)(2k+2− j)+√

j(2k− j)

− 4(k+1)(b2−c2)
√

( j−1)(2k+3− j)√
j(2k+4− j)+√

( j−2)(2k+2− j)
.

Moreover, a direct computation gives

β(k, j) ≥ β(k, 3) = 4(k + 1)(b2 + c2)

−4(k + 1)(b2 − c2)
( √

4(2k−2)√
5(2k−1)+√

3(2k−3)
+

√
4k√

3(2k+1)+√
2k−1

)

> 4(k + 1)(b2 + c2) − 4(k + 1)(b2 − c2)
(

2√
5+√

3
+

√
2√

3+1

)
,

which is positive, since 2√
5+√

3
+

√
2√

3+1
≈ 1.021 < 6

5 . Therefore, the right-hand side

of (4.19) is positive, and hence so is λmin(Uk), which concludes the proof of (i).
We now turn to (ii). We have that ν

(2k)
2 ≥ 4kb2 + 4k2c2 > 4(b2 + c2) = ν

(2)
1 for

all k ≥ 2, by (3.8). Before proceeding, note that (4.17) can be used to check that

α(2k, j):=m(2k)
j, j −|m(2k)

j−2, j |−|m(2k)
j+2, j | = 4(k− j)2(a2−b2)+4kb2+4k2c2 (4.20)

for all 0 ≤ j ≤ 2k, where, by convention, mi, j = 0 if i < 0 or i > 2k; see also the
proof of [24, Lem. 3.4].

Next, let us show that ν(2k)
1 < ν

(2k)
2 for all k ≥ 1. The matrix M2k is similar to

diag
(
[m(2k)

2i,2 j ]0≤i, j≤k, [m(2k)
2i+1,2 j+1]0≤i, j≤k−1

)
. (4.21)

Both blocks in the above block-diagonal matrix are tridiagonal matrices; the first one
is (k + 1) × (k + 1) and the second is k × k. We shall only consider the case in which
k is even, since the case of odd k is analogous and left to the reader.

Using the Gershgorin Circle Theorem again, we have that the smallest eigenvalue
of the k × k-block is greater than the minimum of α(2k, j) for 0 ≤ j ≤ 2k with j
odd, which is realized when j = k ± 1 by (4.20); namely,

α(2k, k ± 1) = 4a2 + 4(k − 1)b2 + 4k2c2. (4.22)

On the one hand, since ν
(2k)
1 ≤ m(2k)

k,k = 4kb2 + 4k2c2 < α(2k, k ± 1) because a > b,

we deduce that ν(2k)
1 coincides with the smallest eigenvalue of the (k + 1) × (k + 1)-

block, and it is strictly smaller than every eigenvalue of the k × k-block. On the other
hand, the (k + 1) × (k + 1)-block is a tridiagonal matrix with non-zero non-diagonal
entries, thus it has simple spectrum, and, therefore, ν

(2k)
1 is strictly smaller than the

second eigenvalue of the first block. We conclude that ν(2k)
1 < ν

(2k)
2 .
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It only remains to show that a2 + b2 + c2 = ν
(1)
1 < ν

(2k)
2 for every k ≥ 2. This has

actually already been proven, since ν
(2k)
2 and ν

(2k)
1 are realized in different blocks, so

the previous case shows that ν
(2k)
2 ≥ α(2k, k ± 1) = 4a2 + 4(k − 1)b2 + 4k2c2 by

(4.22), which gives ν
(2k)
2 > a2 + b2 + c2 = ν

(1)
1 .

Proposition 4.8 For all n ≥ 0, an Sp(n + 1)-invariant metric on S4n+3 cannot be
isospectral to an Sp(n + 1)-invariant metric on RP4n+3.

Proof Suppose that (S4n+3, g(a1,b1,c1,s1)) and (RP4n+3, g(a2,b2,c2,s2)) are isospectral
for some positive real numbers ai ≥ bi ≥ ci and si , for i = 1, 2. We assume n ≥ 1
since the case n = 0 is very similar (essentially, one has to set s1 = s2 = 0).

Themultiplicity of the first Laplace eigenvalue in bothmanifolds must coincide. By
Theorem3.5, suchmultiplicities are givenby (3.17) and (3.19), respectively.Hence,we
have that themultiplicity is equal to eithern(2n+3), (n+1)(2n+3), or (2n+1)(2n+3).

We first assume it is n(2n + 3). The smallest positive eigenvalues of each spectra
coincide, that is, λ

(1,1)
1 (a1, b1, c1, s1) = λ

(1,1)
1 (a2, b2, c2, s2), which gives s1 = s2.

We set B0 as in (4.14), which is contained simultaneously in both spectra.
We have already seen in the proof of Theorem 4.6 that the smallest eigenvalue

in Spec(RP4n+3, g(a2,b2,c2,s2)) � B0 is λ
(2,0)
1 (a2, b2, c2, s2), with multiplicity (n +

1)(2n + 3) if a2 > b2, 2(n + 1)(2n + 3) if a2 = b2 > c2, and 3(n + 1)(2n + 3) if
a2 = b2 = c2. Similarly, an almost identical procedure to that done for Row 2 in the
proof of Theorem 4.5 gives that the smallest eigenvalue in Spec(S4n+3, g(a1,b1,c1,s1))�

B0 is given as in (4.11). Since the only common value among their multiplicities is
(n + 1)(2n + 3), we have that λ(2,0)

1 (a1, b1, c1, s1) = λ
(2,0)
1 (a2, b2, c2, s2).

Let us now assume that the multiplicity is (n+1)(2n+3). We have that ai > bi for
i = 1, 2. Since the first eigenvalues coincide, we obtain that λ

(2,0)
1 (a1, b1, c1, s1) =

λ
(2,0)
1 (a2, b2, c2, s2). The second eigenvalue with its corresponding multiplicity on

(S4n+3, g(a1,b1,c1,s1)) (resp. (RP4n+3, g(a2,b2,c2,s2))) has been explicitly determined
at the beginning of the case Row 3 (resp. Row 2) in the proof of Theorem 4.5
(resp. Theorem 4.6). A simple inspection shows that the only possible coinci-
dence among their multiplicities is n(2n + 3), when the corresponding eigenvalue
is λ

(1,1)
1 (a1, b1, c1, s1) = λ

(1,1)
1 (a2, b2, c2, s2). Furthermore, ai > bi for i = 1, 2.

When the multiplicity is (2n + 1)(2n + 3), one has that λ
(1,1)
1 (a1, b1, c1, s1) =

λ
(2,0)
1 (a1, b1, c1, s1) = λ

(2,0)
1 (a2, b2, c2, s2) = λ

(1,1)
1 (a2, b2, c2, s2) and ai > bi for

any i = 1, 2.
Summing up, we have proved thus far that:

λ
(1,1)
1 (a1, b1, c1, s1) = λ

(1,1)
1 (a2, b2, c2, s2),

λ
(2,0)
1 (a1, b1, c1, s1) = λ

(2,0)
1 (a2, b2, c2, s2),

ai > bi , for i = 1, 2.

This implies that
s:=s1 = s2 and b21 + c21 = b22 + c22. (4.23)
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By (3.10), (4.23) forces ν
(2)
1 (a1, b1, c1) = ν

(2)
1 (a2, b2, c2). Consequently, the set

B1 defined as in (4.15) is simultaneously contained in both spectra. From the proofs
of Theorems 4.5 and 4.6, we easily see that the only possible coincidence among
multiplicities of the smallest eigenvalues in Spec(S4n+3, g(a1,b1,c1,s))� (B0 ∪B1) and
Spec(RP4n+3, g(a2,b2,c2,s)) � (B0 ∪ B1) is dim V4,0 = (2n+5

4

)
, thus

λ
(4,0)
1 (a1, b1, c1, s) = λ

(4,0)
1 (a2, b2, c2, s). (4.24)

This situation occurs only if λ
(1,0)
1 (a1, b1, c1, s) > λ

(4,0)
1 (a1, b1, c1, s), which gives

4ns2 + 2(a21 + b21 + c21) ≥ 16ns2 + 2ν(4)
1 (a2, b2, c2) ≥ 16ns2 + 2(8b22 + 16c22) >

16ns2 + 16(b21 + c21) by (3.8) and (4.23), thus a21 > 6ns2 + 7(b21 + c21), and only if

λ
(2,0)
2 (a2, b2, c2, s) > λ

(4,0)
1 (a2, b2, c2, s), which gives 8ns2 + 8a2 + 8c2 > 16ns2 +

2ν(4)
1 (a2, b2, c2) ≥ 16ns2 + 16b2 + 32c2 by (3.8), thus

a22 ≥ ns2 + 2b22 + 3c22. (4.25)

At this point, we divide the proof according to whether b2i < 11c2i holds or not.
First case: Assume that b2i < 11c2i , for both i = 1, 2.

From (4.24), we obtain that ν
(4)
1 (a1, b1, c1) = ν

(4)
1 (a2, b2, c2). Therefore, the fol-

lowing subset is simultaneously contained in both spectra:

B2:=
{

λ
(q+4,q)
1 , . . . , λ

(q+4,q)
1︸ ︷︷ ︸

dq+4,q -times

: q ≥ 0 even
}
. (4.26)

From Lemma 3.2, the smallest eigenvalues in Spec(S4n+3, g(a1,b1,c1,s)) � (B0 ∪
B1 ∪ B2) is given by

min

⎛

⎜⎜⎜
⎝

{
λ

(k+q,q)
1 (a1, b1, c1, s) : k ≥ 1 odd, q ≥ 0

}∪{
λ

(2+q,q)
2 (a1, b1, c1, s) : q ≥ 0

}∪{
λ

(4+q,q)
2 (a1, b1, c1, s) : q ≥ 0

}∪{
λ

(q+k,q)
1 (a1, b1, c1, s) : k ≥ 6 even, q ≥ 0,

}

⎞

⎟⎟⎟
⎠

= min
(
λ

(1,0)
1 (a1, b1, c1, s), λ

(6,0)
1 (a1, b1, c1, s)

)
.

The last equality follows from the following facts, which, in turn, rely on (3.10):

• λ
(6,0)
1 (a1, b1, c1, s) < λ

(q+k,q)
1 (a1, b1, c1, s) if k ≥ 8 is even, by Lemma 4.7;

• λ
(1,0)
1 (a1, b1, c1, s) < λ

(k+q,q)
2 (a1, b1, c1, s) if k ≥ 0 is even and q ≥ 0, by

Lemma 4.7;
• λ

(1,0)
1 (a1, b1, c1, s) < λ

(k+q,q)
1 (a1, b1, c1, s) if k ≥ 1 is odd and q ≥ 0 with

(k, q) �= (1, 0), by (3.8).
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Likewise, the smallest eigenvalue in Spec(RP4n+3, g(a2,b2,c2,s2)) � (B0 ∪B1 ∪B2) is
given by

min

⎛

⎜
⎝

{
λ

(2+q,q)
2 (a2, b2, c2, s) : q ≥ 0

}∪{
λ

(4+q,q)
2 (a2, b2, c2, s) : q ≥ 0

}∪{
λ

(q+k,q)
1 (a2, b2, c2, s) : k ≥ 6 even, q ≥ 0,

}

⎞

⎟
⎠

= min
(
λ

(2,0)
2 (a2, b2, c2, s), λ

(6,0)
1 (a2, b2, c2, s)

)
.

The last equality follows from the following facts, where, once again, (3.10) is used:

• λ
(6,0)
1 (a2, b2, c2, s) < λ

(q+k,q)
1 (a2, b2, c2, s) if k ≥ 8 is even, by Lemma 4.7;

• λ
(2,0)
2 (a2, b2, c2, s) < λ

(k+q,q)
2 (a2, b2, c2, s) if k ≥ 4 is even and q ≥ 0, by

Lemma 4.7.

The multiplicities of the first eigenvalues are clearly given by:

⎧
⎪⎨

⎪⎩

2 dim V1,0 if λ
(1,0)
1 (a1, b1, c1, s) < λ

(6,0)
1 (a1, b1, c1, s),

dim V6,0 if λ
(1,0)
1 (a1, b1, c1, s) > λ

(6,0)
1 (a1, b1, c1, s),

2 dim V1,0 + dim V6,0 if λ
(1,0)
1 (a1, b1, c1, s) = λ

(6,0)
1 (a1, b1, c1, s),

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dim V2,0 if λ
(2,0)
2 (a2, b2, c2, s) < λ

(6,0)
1 (a2, b2, c2, s) and b2 > c2,

2 dim V2,0 if λ
(2,0)
2 (a2, b2, c2, s) < λ

(6,0)
1 (a2, b2, c2, s) and b2 = c2,

dim V6,0 if λ
(2,0)
2 (a2, b2, c2, s) > λ

(6,0)
1 (a2, b2, c2, s),

dim V2,0 + dim V6,0 if λ
(2,0)
2 (a2, b2, c2, s) = λ

(6,0)
1 (a2, b2, c2, s) and b2 > c2,

2 dim V2,0 + dim V6,0 if λ
(2,0)
2 (a2, b2, c2, s) = λ

(6,0)
1 (a2, b2, c2, s) and b2 = c2,

respectively. Since the only possible coincidence among multiplicities is dim V6,0, we
have that λ(6,0)

1 (a1, b1, c1, s) = λ
(6,0)
1 (a2, b2, c2, s), which occurs only if

λ
(1,0)
1 (a1, b1, c1, s) > λ

(6,0)
1 (a1, b1, c1, s) = 24ns2 + 2ν(6)

1 (a2, b2, c2)

> 24ns2 + 24b22 + 72c22 (by (3.8))

> 24ns2 + 24(b21 + c21) (by (4.23)),

thus a21 > 10ns2+11(b21+c21), because λ
(1,0)
1 (a1, b1, c1, s) = 4ns2+2(a21 +b21+c21).

Furthermore, we have that ν(6)
1 (a1, b1, c1) = ν

(6)
1 (a2, b2, c2).

Repeating this procedure,wededuce from themultiplicity of the smallest eigenvalue
in Spec(S4n+3, g(a1,b1,c1,s1))�(B0∪· · ·∪Bk) and Spec(RP4n+3, g(a2,b2,c2,s2))�(B0∪
· · · ∪ Bk), where

Bi =
{

λ
(q+2i,q)
1 , . . . , λ

(q+2i,q)
1︸ ︷︷ ︸

dq+2i,q -times

: q ≥ 0 even
}
,
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that λ(2k,0)
1 (a1, b1, c1, s) = λ

(2k,0)
1 (a2, b2, c2, s), which occurs only if

4ns2 + 2(a21 + b21 + c21) = λ
(1,0)
1 (a1, b1, c1, s)

> λ
(2k,0)
1 (a1, b1, c1, s) = 8kns2 + 2ν(2k)

1 (a2, b2, c2)

> 8kns2 + 8kb22 + 8k2c22 (by (3.8))

> 8kns2 + 8k(b21 + c21) (by (4.23)).
(4.27)

Hence
a21 > 2(2k − 1)ns2 + (4k − 1)(b21 + c21) (4.28)

for every positive integer k, which gives the required contradiction.
Second case: Assume that either

b21 ≥ 11c21, or b22 ≥ 11c22. (4.29)

So far, we have shown that s:=s1 = s2 and b21 + c21 = b22 + c22 from (4.23), and

β(a1, b1, c1) = β(a2, b2, c2) =: β (4.30)

from λ
(4,0)
1 (a1, b1, c1, s) = λ

(4,0)
1 (a2, b2, c2, s), where β(a, b, c) is given as in (4.3).

Furthermore, since

Vol(S4n+3, g(a1,b1,c1,s1)) = Vol(RP4n+3, g(a2,b2,c2,s2)) = 1
2 Vol(S

4n+3, g(a2,b2,c2,s2)),

Lemma 4.3 implies that σ3(a2, b2, c2) = 4 σ3(a1, b1, c1), that is,

a22b
2
2c

2
2 = 4 a21b

2
1c

2
1. (4.31)

Also, the proof of Lemma 4.4 ensures that

Aa41 − Ba21 + C1 = 0,

Aa42 − Ba22 + C2 = 0,
(4.32)

where A = 3(b2i +c2i )−2β, B = β(2(b2i +c2i )−β),C1 = 3σ3(a1, b1, c1) = 3 a21b
2
1c

2
1,

C2 = 3σ3(a2, b2, c2) = 3 a22b
2
2c

2
2 = 4C1, and, moreover, A ≥ 0, and B,C1,C2

are all positive. Actually, also A > 0 by Lemma 4.2 and (4.29). Consequently,
a2i = 1

2A

(
B ± √

B2 − 4ACi
)
. We claim that only the larger real root occurs if

bi ≥ 11ci :

Claim 1 If b2i ≥ 11c2i , then a
2
i = 1

2A

(
B +√B2 − 4ACi

)
.

Proof Clearly, it is sufficient to show that a2i > B
2A . First, note that b

2
i ≥ 11c2i implies

5
6 (b

2
i + c2i ) ≤ b2i − c2i . By straightforward manipulations, one has that

B

2A
= a2i (b

2
i + c2i )

2 − b2i c
2
i

(
β − (b2i + c2i )

)

2(b2i − c2i )
2

≤ a2i (b
2
i + c2i )

2 − b2i c
2
i

(
β − (b2i + c2i )

)

25
18 (b

2
i + c2i )

2
<a2i .
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Since β > b2i + c2i by Lemma 4.2, the assertion follows.

Since (RP4n+3, g(a2,b2,c2,s2)) and (S4n+3, g(a1,b1,c1,s1)) were assumed to be
isospectral, their scalar curvatures must coincide. Thus, by Lemma 4.3,

0 = scal(RP4n+3, g(a2,b2,c2,s2)) − scal(S4n+3, g(a1,b1,c1,s1))

= 16(a22 − a21) − 2ns4
(
a22(b

2
2 + c22) + b22c

2
2

a22b
2
2c

2
2

− a21(b
2
1 + c21) + b21c

2
1

a21b
2
1c

2
1

)

− 4

((
a22(b

2
2 + c22) + b22c

2
2

)2

a22b
2
2c

2
2

−
(
a21(b

2
1 + c21) + b21c

2
1

)2

a21b
2
1c

2
1

)

.

Combining (4.23) and (4.31), tedious but straightforward computations give

0 = ns4

2a21b
2
1c

2
1

(
(4a21 − a22)(b

2
1 + c21) − 4b21c

2
1
a21−a22
a22

)

+
(
(b21 + c21)

2 − 4b41c
4
1

a42

)

a21b
2
1c

2
1

(2a21 + a22)(2a
2
1 − a22) − 16(a21 − a22).

(4.33)

The following technical (but simple) facts will be used in the sequel.

Claim 2 If a22 < a21 , then the right-hand side of (4.33) is positive.

Proof Concerning the first term, we have that

(4a21 − a22)(b
2
1 + c21) − 4b21c

2
1
a21−a22
a22

> (a21 − a22)

(
(b21 + c21) − 4b21c

2
1

a22

)
. (4.34)

By (4.25), we get that a22 > 2(b22 + c22) = 2(b21 + c21) > 4b1c1, thus
4b21c

2
1

a22
< b1c1 <

b21 + c21, which shows that (4.34) is positive.
To prove that the remaining terms in (4.33) are positive, it suffices to show that

(a22 + 2a21)

(
(b21 + c21)

2 − 4b41c
4
1

a42

)
> 16 a21b

2
1c

2
1.

We already saw that a22 > 4b1c1, thus (b21 + c21)
2 − 4b41c

4
1

a42
> (b21 + c21)

2 − b21c
2
1

4 =
7
8 (b

2
1 + c21)

2 + 1
8 (b

2
1 − c21)

2 > 7
8 (b

2
1 + c21)

2. Using, in addition, that a22 + 2a21 > 2a21 ,
the above is verified if 7

4 (b
2
1 + c21)

2 > 16 b21c
2
1, which holds thanks to the fact that

(b21 + c21)
2 = (b22 + c22)

2 ≥ 4b22c
2
2 = 16

a21
a22
b21c

2
1 > 16b21c

2
1, by (4.31).

Claim 3 If a22 > 7a21 , then the right-hand side of (4.33) is negative.
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Proof The first term in (4.33) is negative if and only if

(a22 − 4a21)(b
2
1 + c21) > 4b21c

2
1
a22−a21
a22

.

By noting that b1c1
a22

< b1c1
7a21

< 1
7 and b21 + c21 ≥ 2b1c1, it is sufficient to show that

2(a22 − 4a21) > 4
7 (a

2
2 − a21), which is clearly true because a22 > 7a21 .

The remaining terms in (4.33) are negative if and only if

(a42 − 4a41)

(
(b21 + c21)

2 − 4b41c
4
1

a42

)
> 16(a22 − a21)a

2
1b

2
1c

2
1.

Since a42 > 49a41 , we have that
4b41c

4
1

a42
<

4b41c
4
1

49a41
< 1

12b
2
1c

2
1, and so (b21 + c21)

2 − 4b41c
4
1

a42
>

4b21c
2
1 − 1

12b
2
1c

2
1 = 47

12b
2
1c

2
1. Consequently, it is sufficient to show that

47
12 (a

4
2 − 4a41) > 16(a22 − a21)a

2
1 .

The above identity can be easily verified keeping in mind that a22 > 7a21 .

We are now in position to finish the proof, seeking the desired contradiction under
the assumption (4.29), that is, b2i ≥ 11c2i for some i = 1, 2.

We first suppose that b21 ≥ 11c21, thus a
2
1 = 1

2A (B + √B2 − 4AC1) by Claim 1.

Thus, a22 = 1
2A (B ± √B2 − 4AC2) = 1

2A (B ± √B2 − 16AC1) < a21 , so Claim 2
yields the desired contradiction.

Suppose now that b22 ≥ 11c22. Then Claim 1 forces

a22 = 1
2A

(
B +

√
B2 − 4AC2

)
= 1

2A

(
B +

√
B2 − 16AC1

)
. (4.35)

We recall that a21 = 1
2A

(
B ± √B2 − 4AC1

)
. If a21 = 1

2A

(
B + √B2 − 4AC1

)
, then

a21 > a22 , thus Claim 2 gives a contradiction. Therefore,

a21 = 1
2A

(
B −

√
B2 − 4AC1

)
. (4.36)

According to Claim 3, it is sufficient to show that a22 > 7a21 . From (4.35) and (4.36),

it follows that this is equivalent to 6B <
√
B2 − 16AC1 + 7

√
B2 − 4AC1. Thus, it

is sufficient to show that

36B2 < B2 − 16AC1 + 49(B2 − 4AC1) = 50B2 − 212AC1,

which holds since B2 > 16AC1.
Finally, we are in position to prove Theorem C in the Introduction.
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Proof of Theorem C Consider two homogeneousmetrics on CROSSes that are isospec-
tral. Since the dimension of a manifold is one of its spectral invariants, we may assume
that these manifolds have the same dimension d.

Wedivide the proof in cases according to the congruenceofdmodulo4. In each case,
we prove that homogeneous metrics are determined (up to isometry) by the spectrum.
We will make frequent use of the classification of homogeneous metrics on CROSSes,
discussed in the Introduction, that can be found e.g. in [1, Examples 6.16, 6.21] or [47],
and of Table 1. Recall also that, just like its scalar curvature, each eigenvalue of the
Laplacian on a closedRiemannianmanifold (M, g) satisfiesλ j (M, α g) = 1

α
λ j (M, g)

for all α > 0, and the corresponding eigenspaces are the same, so Spec(M, α g) =
1
α
Spec(M, g).
We recall from the proof of Theorem 4.5 that the volume and the scalar curvature

of a homogeneous Riemannian manifold are spectral invariants; this fact will be also
frequently used in the sequel without explicit mention.

• Case d ≡ 0 mod 4: The only d-dimensional CROSSes are Sd , RPd , CPd/2,
HPd/4, and, if d = 16, also CaP2. Up to homotheties and isometries, there exists a
unique homogeneous metric on each of these manifolds. According to Tables 1 and
2, we have that

scal(Sd)

λ1(Sd)
= d − 1,

scal(RPd)

λ1(RPd)
= d(d − 1)

2(d + 1)
,

scal(CPd/2)

λ1(CPd/2)
= d

2
,

scal(HPd/4)

λ1(HPd/4)
= d(d + 8)

2d + 8
,

scal(CaP2)

λ1(CaP2)
= 12.

For d > 4, the above quantities are all distinct, leading to a contradiction if there were
two isospectral but non-isometric d-dimensional CROSSes. If d = 4, then the above
invariant distinguishes every possibility excepting the pair S4 andHP1, which indeed
are homothetic, and therefore isometric as their volumes are the same.

• Case d ≡ 1 mod 4: The only d-dimensional CROSSes are Sd and RPd . Up to
homotheties and isometries, the only homogeneous metrics in each of them are g(t).
It is easy to see, using the explicit formulas in Tables 1 and 2, that the volume and
scalar curvature of (Sd , α g(t1)) and (RPd , β g(t2)), α, β > 0, cannot coincide.

We now prove that two isospectral homogeneous metrics on Sd are isometric.
According to [12, Proposition 5.3], cf. Table 1, the first eigenvalue of (Sd , α g(t)) is

λ1(S
d , α g(t)) multiplicity condition

2
α
(d + 1) 1

4 (d − 1)(d + 3) t < 1√
d+3

2
α
(d + 1) 1

4 (d
2 + 6d + 1) t = 1√

d+3
1
α

(
d − 1 + 1

t2
)
d + 1 t > 1√

d+3

(4.37)

Since the above multiplicities are all distinct, the expression for this eigenvalue can
be read from the spectrum. Clearly, in row 2 of (4.37), the values of α and t are
determined. In row 1, the value of α is determined from the first eigenvalue itself, and
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then the value of t can be determined by examining another spectral invariant:

Vol(Sd , α g(t)) = 2π(d+1)/2

( d−1
2

)! t αd/2. (4.38)

Now assume t > 1√
d+3

, as in row 3. We claim the second distinct eigenvalue is:

λ2(S
d , α g(t)) multiplicity condition

2
α
(d + 1) 1

4 (d − 1)(d + 3) 1√
d+3

< t < 1
2
α
(d + 1) d

2 (d + 3) t = 1
1
α

(
2d − 2 + 4

t2
) 1

4 (d + 1)(d + 3) t > 1

(4.39)

Since the above multiplicities are all distinct, the spectrum determines the expression
for this second eigenvalue. In row2of (4.39), bothα and t are immediately determined.
In row 1, the value of α can be read from the eigenvalue itself, and then the value of t
is determined by the volume (4.38). In row 3, the quantity

1
2λ2(S

d , α g(t)) − λ1(S
d , α g(t)) = 2

αt2

is known, as well as t2αd by the volume (4.38), thus t and α are again determined.
We now prove that (4.39) holds, using the partial description of Spec(Sd , g(t)) in

[38, §4] and [12, §5], which states that every eigenvalue is of the form

μk,l(t) = k(k + d − 1) + ( 1
t2

− 1)l2,

for integers 0 ≤ l ≤ k with k ≡ l mod 2. Note that λ1(Sd , g(t)) = μ1,1(t) under the
assumption t > 1√

d+3
. It is easy to see that λ2(S

d , g(t)) = min
{
μ2,0(t), μ2,2(t)

}
.

In the notation of [12], its multiplicity is dim E0
2 if μ2,0(t) < μ2,2(t), dim E2

2 if
μ2,0(t) > μ2,2(t), and dim E2 = dim(E0

2 ⊕ E2
2) ifμ2,0(t) = μ2,2(t), where E2 is the

space of complex harmonic homogeneous quadratic polynomials in d + 1 variables.
Thus, dim E2 = d(d+3)

2 , and dim E2
2 = dim E2 − dim E0

2 = 1
4 (d + 1)(d + 3), since

dim E2,0 = 1
4 (d − 1)(d + 3) by [38, §5(a)], concluding the proof of (4.39).

A very similar procedure shows that any isospectral homogeneous metrics onRPd

must be isometric.
•Case d ≡ 2 mod 4: The case d = 2 is easy and left to the reader.Assume d ≥ 6. The
only d-dimensional CROSSes are Sd , RPd , and CPd/2. Up to homotheties, the only
homogeneous metrics are ground on Sd andRPd , and ȟ(t) onCPd/2. By Theorem 3.7,
the first eigenvalue of (CPd/2, α ȟ(t)) is as follows, see also (3.26):

λ1(CPd/2, α ȟ(t)) multiplicity condition
2
α
(d + 2) 1

8 (d + 4)(d − 2) t < 1
2
α
(d + 2) 1

4d(d + 4) t = 1
2
α

(
d − 2 + 4

t2
) 1

8 (d + 4)(d + 2) t > 1

(4.40)
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The multiplicities of λ1(Sd , β ground) = d
β
and λ1(RPd , β ′ ground) = 2(d+1)

β
are d+1

and
(d+2

2

) − 1 = d(d+2)
2 respectively, which are different from each other and from

all the multiplicities in (4.40). Thus, for any positive numbers α, β, and β ′, we have
that (Sd , β ground), (RPd , β ′ ground) and (CPd/2, α ȟ(t)) are pairwise non-isospectral
for any fixed t > 0. It is only left to show that there are no isospectral non-isometric
members in the latter family.

Since none of the multiplicities in (4.40) coincide for d ≥ 6, the expression for this
eigenvalue is determined by the spectrum. In row 2, there is nothing to be done, since
the values of α and t are determined. In row 1, the value of α is determined by the
first eigenvalue, and then the value of t can be determined through another spectral
invariant, such as

Vol(CPd/2, α ȟ(t)) = πd/2

( d
2

)! t
2 αd/2. (4.41)

Now suppose t > 1, as in row 3. From the description of Spec(CPd/2, α ȟ(t))
in Theorem 3.8, it is straightforward to check that the second distinct eigen-
value is λ2(CPd/2, α ȟ(t)) = 2

α
(d + 2), with multiplicity 1

8 (d + 4)(d − 2), since

λ̌(p,q)
(
(
√
2t)−1, 1

)
> λ̌(1,1)

(
(
√
2t)−1, 1

) = 2(d + 2) for all p, q satisfying p ≥ q ≥
0, with p − q is even, and (p, q) /∈ {(0, 0), (2, 0), (1, 1)}. Similarly to row 1, the
values of α and t are uniquely determined by this expression together with (4.41).
• Case d ≡ 3 mod 4: The only d-dimensional CROSSes are Sd and RPd . Up to
homotheties and isometries, the only homogeneous metrics on either Sd or RPd are
h(t1, t2, t3), and also k(t) if d = 15. Indeed, recall that (Sd , g(t)) and (RPd , g(t)) are
isometric to (Sd ,h(t, 1, 1)) and (RPd ,h(t, 1, 1)), respectively, so we may disregard
the family of metrics g(t).

For d = 3, the non-existence of isospectral and non-isometric pairs of Sp(n +
1)-invariant metrics on Sd (resp. RPd ) has been proved independently in [24,
Theorem 1.5] and [28, Theorem 1.3]. Furthermore, Proposition 4.8 shows that a homo-
geneous S3 cannot be isospectral to a homogeneous RP3.

Assume henceforth that d > 3. By Theorems 4.5 and 4.6, two isospectral
Sp( d+1

4 )-invariant metrics on either Sd or RPd are in fact isometric. Furthermore,
Proposition 4.8 implies that any Sp( d+1

4 )-invariant metric on Sd is not isospectral to
any Sp( d+1

4 )-invariant metric on RPd . Consequently, the result follows for d �= 15.
From now on, we work exclusively in dimension d = 15. We first show that the

spectrum of (S15, β k(t)) determines β and t . We analyze its first eigenvalue, see [12,
§7].

λ1(S
15, β k(t)) multiplicity condition

32
β

9 t <

√
7
24

32
β

25 t =
√

7
24

1
β

(
8 + 7

t2
)

16 t >

√
7
24

(4.42)

Since the above multiplicities are all distinct, the spectrum determines the expression
for this first eigenvalue. In row 2, both β and t are automatically determined. In row
1, the value of β can be read from the first eigenvalue, and then the value of t can be
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determined through another spectral invariant such as

Vol(S15, β k(t)) = 2π8

7! t7 β15/2. (4.43)

Now assume t >

√
7
24 , as in row 3. We claim that the second distinct eigenvalue is

λ2(S
15, β k(t)) multiplicity condition

32
β

9
√

7
24 < t < 1

32
β

135 t = 1
16
β

(
1 + 1

t2
)

126 t > 1

(4.44)

Since the above multiplicities are all distinct, the spectrum once again determines
the expression for this second eigenvalue. In row 2, both β and t are immediately
determined. In row 1, the value of β can be read from λ2(S

15, β k(t)), and then the
value of t is determined by the volume (4.43). In row 3, the quantity

1
2λ2(S

15, β k(t)) − λ1(S
15, β k(t)) = 1

βt2

is determined, as well as t14β15 by the volume, hence t and β are both determined.
We now prove (4.44) using the partial description of Spec(S15,k(t)) given in [12,

§7.1]. According to [12, Lem. 7.1], every eigenvalue is of the form

μ̃k,l(t) = k(k + 14) + ( 1
t2

− 1)l(l + 6) (4.45)

for integers 0 ≤ l ≤ k with k ≡ l mod 2. Note that λ1(S
15,k(t)) = μ̃1,1(t) under

the assumption t >

√
7
24 . One easily sees that λ2(S

15,k(t)) = min
{
μ̃2,0(t), μ̃2,2(t)

}
.

Moreover, with the notation of [12, §7], its multiplicity is equal to dim E0
2 if μ̃2,0(t) <

μ̃2,2(t), dim E2
2 if μ̃2,0(t) > μ̃2,2(t), and dim E2 = dim(E0

2 ⊕ E2
2) if μ̃2,0(t) =

μ̃2,2(t), where E2 is the vector space of complex harmonic homogeneous quadratic
polynomials in 16 variables. Thus, dim E2 = 135, and dim E2

2 = dim E2−dim E0
2 =

135− 9 = 126, since dim E2,0 = 9, concluding the proof of (4.44). In a very similar
way one shows that the spectrum of (RP15, β k(t)) determines β and t .

We next show that (S15, α h(t1, t2, t3)) is not isospectral to (S15, β k(t)), unless
t = t1 = t2 = t3 = α/β = 1; that is, unless both metrics have constant sectional
curvature. The only way in which the multiplicity of λ1(S

15, β k(t)), listed above in
(4.42), may coincide with the multiplicity of λ1(S

15, α h(t1, t2, t3)), obtained setting
n = 3 in (3.17), is if they are both equal to 16. Namely, this is the case in row 3 of (4.42)
and row 1 of (3.17). In this situation, consider the second eigenvalue of bothmanifolds,
which for (S15, β k(t)) is given in (4.44), and for (S15, α h(t1, t2, t3)) is given in (4.9)
by setting n = 3 andmultiplying the values (in the first column) by 1

α
. In particular, the

only case where the multiplicities of λ2(S
15, β k(t)) and λ2(S

15, α h(t1, t2, t3)) could
possibly coincide is if they are equal to 135, in which case t = 1 by (4.44), and t1 =
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t2 = t3 = 1, from λ
(2,0)
1 = λ

(2,0)
2 = λ

(2,0)
3 = λ

(1,1)
1 in (4.9). Comparing the volumes,

one easily obtains that α = β, so (S15, β k(t)) and (S15, α h(t1, t2, t3)) are isometric
round spheres. Once more, similar arguments show that (RP15, α h(t1, t2, t3)) is not
isospectral to (RP15, β k(t)), unless t = t1 = t2 = t3 = α/β = 1. The last remaining
cases; namely, showing that (S15, α h(t1, t2, t3)) and (RP15, α h(t1, t2, t3)) are not
isospectral to (RP15, β k(t)) and (S15, β k(t)), respectively, are also analogous to the
above, and their proofs are omitted.

5 Stability in the Yamabe Problem

As another application of TheoremA,we now analyzewhich homogeneousmetrics on
S4n+3 and RP4n+3 are stable solutions to the Yamabe problem, proving Theorem D.
Combined with results in [12,24] and Remark 6.3, this completes the classification of
Yamabe stable homogeneous CROSSes, see Table 3.

5.1 Yamabe Problem

In order to keep the paper as self-contained as possible, we now briefly recall a few
basic facts about the Yamabe problem; for more details see, e.g., [3,12,17,26].

Given a closed Riemannian manifold (M, g0) of dimension n ≥ 3, the Yamabe
problem consists of finding metrics g in the conformal class [g0] with constant scalar
curvature, which is equivalent to finding critical points of the (normalized) total scalar
curvature functional

A : [g0] → R, A(g) = Vol(M, g)
2−n
n

∫

M
scal(g) volg . (5.1)

A homogeneous metric g0 is clearly a solution to the Yamabe problem in its conformal
class. Moreover, homogeneous metrics (invariant under the same transitive group
action) that are conformal must be homothetic, so any other solutions to the Yamabe
problem in [g0] that have the same volume as g0 must be inhomogeneous.

The second variation of (5.1) at a solution g ∈ [g0] with Vol(M, g) = 1 is

d2A(g)(ψ,ψ) = n − 2

2

∫

M

(
(n − 1)�gψ − scal(g)ψ

)
ψ volg,

which is hence represented by the Jacobi operator Jg : L2(M, g) → L2(M, g)

Jg = �g − scal(g)

n − 1
. (5.2)

Thus, g is a nondegenerate solution if ker(Jg) = {0}, that is, if scal(g)
n−1 is not an

eigenvalue of the Laplacian on (Mn, g); and g is a stable nondegenerate solution if
λ1(Jg) > 0, that is, if λ1(�g) >

scal(g)
n−1 . In this case, g is a strict local minimum for
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the functional (5.1), hence locally the unique solution to the Yamabe problem. More
generally, the Morse index of a solution g is

iMorse(g) = #
{
λ ∈ Spec(�g) � {0} : (n − 1)λ < scal(g)

}
, (5.3)

where nonzero eigenvalues λ ∈ Spec(�g) are counted with multiplicity. In particular,
stable solutions g are precisely those with iMorse(g) = 0.

5.2 Permutation Action onR3
>0

Let us collect some elementary facts thatwill be used in the sequel on the representation
of the permutation groupS3 of three letters on the positive octantR3

>0 = {(x, y, z) ∈
R3 : x > 0, y > 0, z > 0}, given by permuting the coordinates (x, y, z). Consider
the open fundamental domain

D = {(x, y, z) ∈ R3
>0 : 0 < x < y < z}

for this orthogonal S3-action, and the polynomial map � : D → R3
>0 given by

�(x, y, z) = (x + y + z, xy + xz + yz, xyz
)
, (5.4)

that is,�(x, y, z) = (σ1, σ2, σ3),whereσi = σi (x, y, z) is the i th elementary symmet-
ric polynomial in (x, y, z). Recall that �(x, y, z) are the coefficients, with alternating
sign, of the monic univariate polynomial m(r) = r3 − σ1r2 + σ2r − σ3 whose roots
are x, y, z. In particular, the image �(D) ⊂ R3

>0 is the subset where the discriminant
� = (x − y)2(x − z)2(y − z)2 of the cubic polynomial m(r) is positive,

�(D) = {(σ1, σ2, σ3) ∈ R3
>0 : � = σ 2

1 σ 2
2 −4σ 3

2 −4σ 3
1 σ3−27σ 2

3 +18σ1σ2σ3 > 0
}
,

cf. Procesi [32], keeping in mind that a 3× 3 Bezoutiant matrix is positive-definite if
and only if its determinant (which equals the discriminant �) is positive.

Since det(d�(x, y, z)) = (x − y)(x − z)(y − z) < 0 on D, it follows that (5.4)
is a diffeomorphism onto its image �(D). Finally, any closed subset C ⊂ R3

>0 with
nonempty interior and invariant under the S3-action can be decomposed as

C =
⋃

g∈S3

C ∩ g(D) =
⋃

g∈S3

g(C ∩ D). (5.5)

5.3 Stability

Henceforth, we assume that n ≥ 1. The Riemannian submersion
(
S4n+3,h(t1, t2, t3)

)

→ (HPn, gFS) has totally geodesic fibers and its A-tensor (see e.g. [9, Def. 9.20])
has square norm ‖A‖2 = 4n

(
t21 + t22 + t23

)
. Thus, by the Gray–O’Neill formula [9,
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Proposition 9.70], we have

scal
(
S4n+3,h(t1, t2, t3)

) = scal(HPn, gFS) + scal
(
S3,h(t1, t2, t3)

)− ‖A‖2

= 16n(n + 2) + 4

(
1

t21
+ 1

t22
+ 1

t23

)

− 2

(
t21
t22 t

2
3

+ t22
t21 t

2
3

+ t23
t21 t

2
2

)

− 4n
(
t21 + t22 + t23

)
. (5.6)

The scalar curvature of
(
RP4n+3,h(t1, t2, t3)

)
is identical, since these manifolds

are locally isometric. We are now ready to prove Theorem D in the Introduction.

Proof of TheoremD First, let us consider the case of S4n+3. As discussed above,
h(t1, t2, t3) is a stable nondegenerate solution to the Yamabe problem if and only if

λ1(S
4n+3,h(t1, t2, t3)) − scal(S4n+3,h(t1, t2, t3))

4n + 2
> 0. (5.7)

Our computations are significantly simplified by making the change of variables

(x, y, z) = (t21 , t22 , t23
)
, (5.8)

which is a diffeomorphism of R3
>0. In terms of these variables, by (5.6), we have

scal(x, y, z):= scal
(
S4n+3,h(t1, t2, t3)

)

= 16n(n + 2) + 4

(
1

x
+ 1

y
+ 1

z

)
− 2

(
x

yz
+ y

xz
+ z

xy

)

− 4n (x + y + z) ,

(5.9)

and, from Theorem A, we have

λ1(x, y, z):=λ1
(
S4n+3,h(t1, t2, t3)

) = min
{
λ(1,0), λ(2,0), λ(1,1)

}
, (5.10)

where

λ(1,0)(x, y, z) = 4n + 1

x
+ 1

y
+ 1

z
,

λ(2,0)(x, y, z) = 8n + 4

y
+ 4

z
, (if x < y < z)

λ(1,1)(x, y, z) = 8(n + 1).

(5.11)

First, we claim that scal(x, y, z) ≤ (4n+ 2)λ(1,0)(x, y, z), with equality holding if
and only if (x, y, z) = (1, 1, 1). Indeed, let us find the infimum of φ : R3

>0 → R,

φ(x, y, z):= 1
2

(
(4n + 2)λ(1,0)(x, y, z) − scal(x, y, z)

)
xyz

= x2 + y2 + z2 + (2n − 1)(xy + xz + yz) + 2n(x + y + z − 6)xyz,
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which is clearly invariant under the permutation action of S3 on R3
>0, and extends

to a polynomial map φ : R3≥0 → R. Rewriting φ(x, y, z) in terms of elementary
symmetric polynomials σi , that is, precomposing with the inverse �−1 : �(D) → D
of the diffeomorphism (5.4), we have

(φ ◦ �−1)(σ1, σ2, σ3) = σ 2
1 + (2n − 3)σ2 − 12nσ3 + 2nσ1σ3,

which clearly has no critical points in �(D) ⊂ R3
>0, since its partial derivative with

respect to σ2 never vanishes. Therefore, φ(x, y, z) does not have any critical points in
D, or in g(D) for any g ∈ S3, since S3 acts by diffeomorphisms. Moreover, since

R3
>0�

⋃

g∈S3

g(D) = {x = y > 0, z > 0}∪{x = z > 0, y > 0}∪{y = z > 0, x > 0},

it follows that any interior critical points (x0, y0, z0) ∈ R3
>0 of φ(x, y, z)must have at

least two equal coordinates. Restrictingφ to the above subsets, it is easy to see that there
are only two such critical points: the saddle point ( 12 ,

1
2 ,

1
2 ), and the local minimum

(1, 1, 1), where φ(1, 1, 1) = 0. Finally, it is straightforward that φ(x, y, z) ≥ 0 on the
boundary ofR3≥0, and alsoφ(x, y, z) ≥ 0 for all (x, y, z) ∈ R3≥0 with x+y+z ≥ 6, so
φ : R3≥0 → R attains its minimum on the compact set {(x, y, z) ∈ R3≥0 : x + y + z ≤
6}, namely, at (1, 1, 1). Thus, φ(x, y, z) ≥ 0 in R3

>0, with equality if and only if
(x, y, z) = (1, 1, 1), proving the claim above.

Second,we claim that scal(x, y, z) < (4n+2)λ(2,0)(x, y, z) for all (x, y, z) ∈ R3
>0.

This follows easily since ψ(x, y, z):= 1
2

(
(4n + 2)λ(2,0)(x, y, z) − scal(x, y, z)

)
xyz

satisfies

ψ(x, y, z) = x2 + (y − z)2 + 2x(y + z)

+ 2n(x + y + z)xyz + 8nx(y + z + (n − 1)yz) > 0.

Therefore, (5.7) is equivalent to (x, y, z) �= (1, 1, 1) and

scal(x, y, z) < (4n + 2)λ(1,1)(x, y, z) = 16(2n + 1)(n + 1).

In turn, by (5.9), the above inequality is equivalent to p(x, y, z) > 0, where

p(x, y, z):=x2 + y2 + z2 − 2(xy + xz + yz)

+ 2n(x + y + z)xyz + 8(n2 + n + 1)xyz.
(5.12)

This algebraically characterizes which spheres
(
S4n+3,h(t1, t2, t3)

)
, n ≥ 1, are stable

nondegenerate solutions to the Yamabe problem; after the change of variables (5.8),
this is precisely the characterization claimed in Theorem D.
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This characterization carries over verbatim to
(
RP4n+3,h(t1, t2, t3)

)
, n ≥ 1.

Indeed, h(t1, t2, t3) is stable and nondegenerate on RP4n+3 if and only if

λ1
(
RP4n+3,h(t1, t2, t3)

)− scal
(
RP4n+3,h(t1, t2, t3)

)

4n + 2
> 0, (5.13)

cf. (5.7); and, since
(
RP4n+3,h(t1, t2, t3)

)
is locally isometric to

(
S4n+3,h(t1, t2, t3)

)
,

they have the same scalar curvature. Moreover, from Theorem A,

λ1
(
RP4n+3,h(t1, t2, t3)

) = min
{
λ(2,0), λ(1,1)

}
,

where λ(2,0) and λ(1,1) are again as in (5.11). If λ(1,0) < min
{
λ(2,0), λ(1,1)

}
,

then (5.13) holds because its left-hand side is > φ(x, y, z)/(2n + 1)xyz ≥
0. Meanwhile, if λ(1,0) ≥ min

{
λ(2,0), λ(1,1)

}
, then λ1

(
RP4n+3,h(t1, t2, t3)

) =
λ1
(
S4n+3,h(t1, t2, t3)

)
, so (5.13) holds if and only if (5.7) holds, i.e., if and only

if p(x, y, z) > 0.
We now analyze the (topological) boundary

�n :=p−1(0) (5.14)

of the semialgebraic open subset {(x, y, z) ∈ R3
>0 : p(x, y, z) > 0}. All claims in

Theorem D about ∂Sn will be proved in terms of �n , since these sets are mapped to
one another by the (orientation-preserving) diffeomorphism (5.8) of R3

>0.
Since p(x, y, z) is clearly invariant under the action of the permutation group S3

on R3
>0, so is its zero set �n . Rewriting (5.12) in terms of σi , one easily sees that the

image �(�n ∩D) ⊂ R3
>0 under the diffeomorphism (5.4) is the portion inside �(D)

of the graph of a smooth function of σ1 and σ3, namely,

σ2 = σ2(σ1, σ3) = σ 2
1

4
+ n

2
σ1σ3 + 2(n2 + n + 1)σ3, (5.15)

and hence a smooth, connected, embedded surface in the open subset �(D) ⊂ R3
>0,

diffeomorphic to R2
>0. Therefore, also �n ∩ D, as well as �n ∩ g(D) = g(�n ∩ D),

for any g ∈ S3, are smooth, connected, embedded surfaces inR3
>0, diffeomorphic to

R2
>0. Since theS3-action onR3

>0 is generated by reflections across the planes x = y,
x = z, and y = z, in order to conclude that�n itself is a smooth, connected, embedded
surface in R3

>0, using (5.5) with C = �n , it suffices to show the following:

(1) �n ∩ D = �n ∩ D in R3
>0;

(2) �n ∩ D meets the planes x = y and y = z orthogonally;
(3) The planar curves determined by intersecting�n ∩D with x = y and y = z arrive

orthogonally at the diagonal line x = y = z in each of these planes.

All of the above can be directly verified by elementary methods, using (5.12). In
particular, it follows that the complement R3

>0 � �n has two connected components.
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Finally, let us prove that �n ⊂ R3
>0 is bounded. Using S3-invariance once again,

it suffices to show that there exists ρ > 0 such that �(�n ∩D) ⊂ �(Bρ ∩D), where
Bρ ⊂ R3

>0 is the (portion in the positive octant of the) ball of radius ρ around the
origin. Indeed, this implies that �n ∩D ⊂ Bρ ∩D, and hence by (5.5), since both �n

and Bρ are invariant under the S3-action, that �n ⊂ Bρ . Clearly,

�(Bρ ∩ D) = {(σ1, σ2, σ3) ∈ R3
>0 : σ 2

1 − 2σ2 < ρ2, � > 0
}
,

while, from (5.15), the points (σ1, σ2, σ3) ∈ �(�n ∩ D) ⊂ R3
>0 satisfy

σ 2
1 − 2σ2 = 2σ2 − 2nσ1σ3 − 8(n2 + n + 1)σ3 < 2σ2,

in addition to � > 0. In particular, it is enough to show that there exists ρ > 0
so that 2σ2 ≤ ρ2 for all (σ1, σ2, σ3) ∈ �(�n ∩ D), i.e., that the quadratic function
σ2(σ1, σ3) defined in (5.15) is bounded in the region of (σ1, σ3) ∈ R2

>0 such that
(σ1, σ2(σ1, σ3), σ3) satisfies � > 0. If σ3 > 0 and � > 0, then

�

σ3
= 1

σ3

(
σ 2
1 σ2(σ1, σ3)

2 − 4σ2(σ1, σ3)
3 − 4σ 3

1 σ3 − 27σ 2
3 + 18σ1σ2(σ1, σ3)σ3

)

(5.15)= − 1
2

(
n(σ1 + 4) + 4n2 + 4

)3
σ 2
3

− ( 12n2σ 4
1 − 9nσ 2

1 + 4
(
n2 + n + 1

) (
nσ 2

1 + 2
(
n2 + n + 1

)
σ1 − 9

)
σ1 + 27

)
σ3

− ( 18nσ 2
1 + 1

2

(
n2 + n + 1

)
σ1 − 1

2

)
σ 3
1

is also positive. For all σ1 > 0, the above is a concave quadratic function of σ3, since
its leading coefficient is < −32. Thus, for each σ1 > 0, the quantity �

σ3
can only be

positive for σ3 in a bounded interval, whose endpoints depend continuously on σ1.
Moreover, such interval is nonempty if and only if the discriminant

(
9 − 8

(
n2 + n + 1

)
σ1 − 2nσ 2

1

)3

of the above quadratic form in σ3 is nonnegative, and, since n > 0, a necessary
condition for this is 0 < σ1 < 9

8 . Therefore, the (topological) closure of the region of
(σ1, σ3) ∈ R2

>0 such that (σ1, σ2(σ1, σ3), σ3) satisfies � > 0 is compact, and hence
the quadratic function σ2(σ1, σ3) is bounded in this region, as desired.

6 Bifurcation in the Yamabe Problem

As an application of the characterization of stable homogeneous solutions to the
Yamabe problem in the previous section, we now establish nonuniqueness results
via Bifurcation Theory, along the lines of [12–14,17]. Following these references,
solutions to the Yamabe problem are said to bifurcate from a curve g(t) of solu-
tions on M at t = t∗ if there exist a sequence of parameters tq converging to t∗,
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and constant scalar curvature metrics gq ∈ [g(tq)] converging to g(t∗), such that
Vol(M, gq) = Vol(M, g(tq)) and gq �= g(tq), for all q ∈ N.

The bifurcating solutions gq typically have less symmetries than g(tq) and are
harder to find by direct methods. Standard variational bifurcation results applied to
the functional (5.1) imply that bifurcation of solutions along g(t) can be detected by
jumps in the Morse index (5.3) of g(t), see [17, Theorem 3.3].

6.1 Bifurcations

Let us now prove Corollary E in the Introduction.

Proof of Corollary E We use the notation from the proof of Theorem D, in terms of the
variables (5.8). Let α : [−ε, ε] → R3

>0, α(s) = (
x(s), y(s), z(s)

)
, be a continuous

curve that crosses the surface �n ⊂ R3
>0, see (5.14), and assume it does so only once.

By Theorem D, the Morse index of h
(
α(s)

)
jumps as s goes from −ε to ε; namely

∣∣∣iMorse
(
h(α(−ε))

)− iMorse
(
h(α(ε))

)∣∣∣ ≥ 2n2 + 3n ≥ 5,

is at least as large as the multiplicity of the eigenvalue λ(1,1) − scal /(4n + 2) of
Jh(α(s)) that changes sign when α(s) crosses �n , see (3.17) or (3.19), and the proof of
Theorem D. Furthermore, we may assume without loss of generality that h

(
α(±ε)

)

are nondegenerate, as this corresponds to α(±ε) ∈ R3
>0 belonging to an open and

dense subset (contained in the complement of �n) and iMorse(·) is locally constant on
this set. Under these conditions, bifurcation of solutions from h

(
α(s)

)
follows from

[17, Theorem 3.3]. Finally, the solutions bifurcating from h
(
α(s)

)
are inhomogeneous

since conformal homogeneous metrics are homothetic, see Subsection 5.1.

Remark 6.1 Earlier results in [13,30] imply that if t1, t2, t3 are positive numbers satis-
fying that scal

(
S3,h(t1, t2, t3)

)
> 0, then there exists a sequence of sufficiently small

εk > 0, that converges to 0, such that inhomogeneous solutions to the Yamabe prob-
lem bifurcate from

(
S4n+3,h(εk t1, εk t2, εk t3)

)
for all k ∈ N. However, this collapsing

bifurcation result does not imply Corollary E.

Regarding homogeneous metrics on CP2n+1, we have the following result:

Proposition 6.2 There are infinitely many branches of inhomogeneous solutions to the
Yamabe problem on CP2n+1, n ≥ 1, that bifurcate from ȟ(t) as t ↘ 0.

Proof This is an instance of a general result of Otoba and Petean [30, Thm 1.1],
see Proposition 6.9. Alternatively, it can be proven using [17, Theorem 3.3] and The-
orem 3.8, to directly show that iMorse

(
ȟ(t)

)↗ ∞ as t ↘ 0, as in [12].

Remark 6.3 There is usually considerable interest in the first bifurcation instant, which
corresponds to the transition between stability and instability, such as crossing the
surface ∂Sn in Corollary E about S4n+3. In the case of

(
CP2n+1, ȟ(t)

)
, since the

equality (4n + 1)λ1
(
CP2n+1, ȟ(t)

) = scal
(
CP2n+1, ȟ(t)

)
is only possible if the
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minimum in the formula for λ1
(
CP2n+1, ȟ(t)

)
in Theorem B is achieved at 8(n + 1),

this transition happens when t crosses the (first bifurcation) value

t∗ =
√√

(2n2 + n + 1)2 + 4n − (2n2 + n + 1)

2n
.

More precisely, ȟ(t) is a stable nondegenerate solution if and only if t > t∗.

6.2 Degenerations

In this subsection, we analyze the (Yamabe) stability of h(t1, t2, t3) as it degenerates,
i.e., as some ti converge to either 0 or∞. Note that degenerations where some ti ↗ ∞
are stable, since the subsetR3

>0 �Sn of parameters corresponding to unstable metrics
is bounded, as a consequence of Theorem D. Thus, we restrict ourselves to the case in
which all ti remain finite, and call the number of ti that converge to 0 the codimension
of the degeneration.

Proposition 6.4 The following hold about degenerations along 1-parameter subfam-
ilies of homogeneous metrics h(t1, t2, t3) on S4n+3 and RP4n+3, n ≥ 1:

(1) Degenerations of codimension 1 or 3 may occur through degenerate, stable, and
unstable solutions, or through a combination of these;

(2) Degenerations of codimension 2 occur only through stable solutions.

Proof Once again, we use the notation from the proof of Theorem D, in terms of
variables (5.8). We claim that the (topological) closure of �n inside R3≥0, see (5.14),
consists of the union of�n with a diagonal line segment inside each of the 3 coordinate
hyperplanes that form the boundary ∂R3≥0. Given theS3-symmetries, without loss of
generality, we consider only the part of ∂R3≥0 where z = 0. From (5.12), we have that

p(x, y, 0) = (x − y)2, (6.1)

however, the accumulation points of�n only lie in a finite segment along the diagonal
x = y, since �n ⊂ R3

>0 is bounded. Solving for z in the polynomial equation
p(x, x, z) = 0, and then finding its zeroes in x , one sees that the accumulation points
of �n on the plane z = 0 are precisely L = {(x, x, 0) ∈ R3≥0 : 0 ≤ x ≤ �n

}
, where

�n =
√

(n3 + n2 + 2n + 1)(n + 1) − (n2 + n + 1)

n
.

Thus, the accumulation points of �n on ∂R3≥0 are the 3 diagonal line segments of
length �n starting at the origin, i.e., the S3-orbit of L , proving the above claim.

Claim (2) now follows, as the coordinate axes only intersect this accumulation set
at the origin. Claim (1) also follows, since �n and both connected components of its
complement in R3

>0 have accumulation points in the complement of the coordinate
axes in ∂R3≥0, as well as at the origin.
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Remark 6.5 Degenerations do not always correspond to collapse, in the sense of
Gromov–Hausdorff convergence to limit metric space with lower Hausdorff dimen-
sion. As an illustration, consider

(
S3,h(t1, t2, t3)

)
, with 0 < t1 ≤ t2 ≤ t3. Since

this is a class of uniformly doubling metric spaces [18], any sequence along which
the diameter remains bounded has a Gromov–Hausdorff convergent subsequence [31,
Proposition 11.1.12]. It can be shown that diam

(
S3,h(t1, t2, t3)

)
remains bounded if

and only if t2 remains bounded, see [18, Proposition 7.1] or [24, Cor. 4.4]. If t2 ↘ 0,
then also diam

(
S3,h(t1, t2, t3)

) ↘ 0 and hence the Gromov–Hausdorff limit is a
point. On the one hand, if t2 remains away from 0 and t1 ↘ 0, then the limit is a
round sphere S2(t2) of radius t2, in which case there is collapse. Note that, unless
t2 = t3, there is no uniform lower bound on the Ricci curvature as t1 ↘ 0. On the
other hand, if t1 and t2 remain bounded and t3 ↗ ∞, then the limit is S3 endowed
with a (homogeneous) sub-Riemannian distance function, which is a metric space of
larger Hausdorff dimension, equal to 4.

6.3 Bifurcations Versus Degenerations

Based on the literature about bifurcation of homogeneous solutions to the Yamabe
problem cited above, one intuitively expects close relations between degenerations
and accumulating bifurcations, manifested through the Morse index blowing up. We
now discuss a few such relations.

Proposition 6.6 Let M be a closed manifold and πt : (M, g(t)) → B, dim B ≥ 1, be a
1-parameter family of Riemannian submersions with totally geodesic fibers isometric
to Ft , such that scal(g(t)) is constant for all t ∈ (0, 1], diam(Ft ) ↘ 0 as t ↘ 0, and
limt↘0 inf Ric(Ft ) ≥ κ for some κ ∈ R. Then, as t ↘ 0,

iMorse(g(t)) ↗ ∞ ⇐⇒ scal(Ft ) ↗ +∞. (6.2)

Proof Suppose that scal(Ft ) ≤ C as t ↘ 0. The scalar curvature of g(t) is given by
(see [9, Proposition 9.70])

scal(g(t)) = scal(Ft ) + scal(B) ◦ πt − ‖At‖2,

and hence is also bounded from above as t ↘ 0. On the other hand, all eigenvalues of
the Laplacian �g(t) on (M, g(t)) are of the form

λ(t) = λ j (Ft ) + λk(B), (6.3)

for someλ j (Ft ) ∈ Spec(�Ft ) andλk(B) ∈ Spec(�B), see [5, Theorem3.6].Although
not all combinations (6.3) of eigenvalues of Ft and B occur, there is an inclusion
Spec(�B) ⊂ Spec(�g(t)), since lifting an eigenfunction of�B with eigenvalue λk(B)

gives an eigenfunction of �g(t) with same eigenvalue. These eigenvalues of �g(t) are
called basic and are independent of t . Since diam(Ft ) ↘ 0 as t ↘ 0 and Ft have a
uniform lower bound on Ricci curvature, the Lévy-Gromov isoperimetric inequality
[6, Cor. 17] implies that λ1(Ft ) ↗ ∞. Thus, by (6.3), all non-basic eigenvalues satisfy
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λ(t) ↗ ∞ as t ↘ 0. Therefore, if t > 0 is sufficiently small, only basic eigenvalues
contribute to the Morse index of g(t), because scal(g(t)) is bounded, cf. (5.3). For
the same reason, there are at most finitely many basic eigenvalues λk(B) that satisfy
(n − 1)λk(B) < scal(g(t)), which implies that iMorse(g(t)) is bounded as t ↘ 0.

The converse implication follows from Otoba and Petean [30, Theorem 4.1].

Remark 6.7 In Proposition 6.6, the hypothesis diam(Ft ) ↘ 0 as t ↘ 0 cannot be
relaxed to Vol(Ft ) ↘ 0, as exemplified by letting Ft be the Berger sphere (S3, g(t))
or a flat torus S1(t) × S1. In these examples, λ1(Ft ) remains bounded as t ↘ 0,
Ric(Ft ) ≥ 0, and Vol(Ft ) ↘ 0, but diam(Ft ) → diam(F0) > 0. Roughly speaking,
this corresponds to the fact that diam(Ft ) ↘ 0 detects whether Ft collapses in all
directions, while Vol(Ft ) ↘ 0 only detects if Ft collapses in some direction. If the
collapse Ft → F0 is sufficiently controlled (e.g., with upper and lower bounds on the
sectional curvature), then λ1(Ft ) → λ1(F0), see [19].

Remark 6.8 A compact homogeneous space M = G/H admits G-invariant metrics
g with scal > 0 if and only if M is not a torus. In this case, M also admits many
1-parameter families g(t), t ∈ (0, 1] of G-invariant metrics such that, as t ↘ 0,
scal(g(t)) ↗ ∞ and Vol(M, g(t)) = 1, e.g., by considering (normalized) Cheeger
deformations with respect to any subaction by a non-Abelian subgroup, such as
SU(2) ⊂ G. In this situation, it seems natural to expect that iMorse(g(t)) ↗ ∞.
In principle, confirming this would solely rely on a careful analysis of the spec-
trum of homogeneous spaces. Nevertheless, a proof seems currently elusive, except
if (G/H, g(t)) admits nontrivial Riemannian submersions, in which case one may use
Proposition 6.6, see also [13, Theorem 4.1].

Consider the canonical variation g(t) = t2gver + ghor of a Riemannian submersion
F → M → B with totally geodesic fibers, where all manifolds are closed. In this
situation, concerning the setting of Proposition 6.6, scal(g(t)) is constant for all t ∈
(0, 1] if and only if scal(B), scal(F), and ‖A‖2 are constant. Moreover, scal(Ft ) =
1
t2
scal(F), diam(Ft ) = t diam(F), and limt↘0 inf Ric(Ft ) ≥ κ for some κ ∈ R if

and only if Ric(F) ≥ 0; however, since λ1(Ft ) = 1
t2

λ1(F), the latter is not necessary
to prove the following adaptation of Proposition 6.6 along the same lines:

Proposition 6.9 Let F → M → B be a Riemannian submersion with totally geodesic
fibers, and dim B ≥ 1. Suppose F and B are closed manifolds with constant scalar
curvature. Then the canonical variation g(t) satisfies, as t ↘ 0,

iMorse(g(t)) ↗ ∞ ⇐⇒ scal(F) > 0. (6.4)

Note this proves that the converse statement to [30, Theorem 1.1] holds.
Let us briefly revisit the possible degenerations of

(
S4n+3,h(t1, t2, t3)

)
, n ≥ 1,

under the light of Propositions 6.6 and 6.9. For all codimension 1 degenerations t1 ↘ 0,
direct inspection shows the Morse index remains bounded. Note that Propositions 6.6
and 6.9 do not apply, since the diameter of Ft = (

S3,h(t, t2, t3)
)
does not converge

to 0, see Remarks 6.7 and 6.5, and unless t2 = t3, there is no uniform lower bound
on the Ricci curvature. All codimension 2 degenerations are stable, and although
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diam(Ft ) ↘ 0, there is no uniform lower bound on the Ricci curvature; in fact,
scal ↘ −∞. Finally, codimension 3 degenerations may or may not have unbounded
Morse index, depending on how the ti ’s go to zero.

Infinitely many bifurcations due to unboundedness of the Morse index are only
known to occur accompanied by collapse of codimension ≥ 2, cf. Proposition 6.2;
and Propositions 6.6 and 6.9 provide further evidence that this should always be the
case. It would be interesting to confirm this, that is, show that if a family of Riemannian
submersions πt : (M, g(t)) → B with totally geodesic fibers and scal(g(t)) constant
for all t ∈ (0, 1] satisfies iMorse(g(t)) ↗ ∞ and the Gromov–Hausdorff limit of
(M, g(t)) as t ↘ 0 exists and has finite diameter, then its Hausdorff dimension must
be ≤ dim M − 2.
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Appendix A. First Eigenvalue and Yamabe Stability in the Remaining
Homogeneous CROSSes

For the convenience of the reader, we now provide formulae (with references) for
the first eigenvalue λ1(M, g) of the Laplacian on all CROSSes M , endowed with a
homogeneous G-invariant metric g, as presented in Table 1 below.

The (complete) spectrum of a CROSS, endowedwith its canonical symmetric space
metric, can be found in [8, p. 202]. Detailed spectral computations for Sn , RPn ,
and CPn are given in [7]; for HPn and CaP2, see [15]. Regarding the remaining
homogeneous metrics, we have that:

(i) The first eigenvalue of g(t) on S2n+1 is computed in [38], and an inspection of
which eigenfunctions are Z2-invariant yields its first eigenvalue on RP2n+1;

(ii) The first eigenvalue of h(t1, t2, t3) on S3 andRP3 are computed in [24], and the
special cases where two of t1, t2, t3 coincide done previously in [40];

(iii) The first eigenvalue of h(t1, t2, t3) on S4n+3 and RP4n+3 are computed in The-
orem A, and the special case t1 = t2 = t3 done previously in [39];

(iv) The first eigenvalue of k(t) on S15 is computed in [12, Proposition 7.3], and an
inspection of which eigenfunctions areZ2-invariant yields its first eigenvalue on
RP15;

(v) The first eigenvalue of ȟ(t) on CP2n+1 is computed in Theorem B.

As an alternative reference for (i) and the special case t1 = t2 = t3 in (iii) one may use,
respectively, [12, Propositions 5.3 and 6.3]. These homogeneousmetrics, togetherwith
those in (iv), account for all isometry classes of distance spheres in rank one symmetric
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space. A unified and explicit description of their full spectrum was recently obtained
by the authors [11, Theorem A].

The above computations are carried out in one of two possible ways. The first, and
more general, is theLie-theoretic approachdescribed inSect. 2,which is used in (ii) and
(iii), and generalizes the classical approach developed for canonical symmetric space
metrics (see e.g. [41,43]). The second, which relies on the existence of Riemannian
submersions with minimal fibers, is explained in detail in [5] and [10], building on
the earlier works [38–40], and is used in (i), in the special case t1 = t2 = t3 in (iii), as
well as in (iv) and (v).

We also include in Table 1 formulae for the scalar curvature of these CROSSes.
The computation for the symmetric space metric on Sn ,RPn , CPn ,HPn , and CaP2

follows from the computation of their Einstein constants, which are, respectively,
n − 1, n − 1, 2(n + 1), 4(n + 2), and 36, under the normalization convention that
these metrics have sec = 1 for Sn and RPn , and 1 ≤ sec ≤ 4 in the remaining cases.
The computation for the other homogeneous metrics uses the Gray–O’Neill formula
[9, Proposition 9.70], see also (5.6) and [12, Proposition 4.2]. In Table 3, by solving
the inequality

scal(M, g) < (dim M − 1)λ1(M, g), (A.1)

we present the range of parameters for which these metrics are stable solutions to the
Yamabe problem. If equality holds in (A.1), g is labeled as degenerate stable.

Remark A.1 For the convenience of the reader, we also identify some small impreci-
sions and typos in the literature. First, the multiplicity of the kth eigenvalue of the
round sphere, λk(Sd , ground) = k(k + d − 1), is given by (3.34). Unfortunately, this
formula appears with (the same) typos in [7, p. 162] and [16, p. 35].

Second, the computation of some heat invariants of CaP2 carried out in [15] is
incorrect. For instance, the ratio a1/a0 of the first two heat invariants, which is equal
to scal

6 , evaluates to a negative number according to the formulae in [15, §13]. The
correct values for these invariants are given in [4, Theorem 2.1]. More precisely, in
the notation of [15, §12], the values of η j are correct, except for η6 = −175/4,
η3 = 2864323/256, and η1 = 18445239/4096. Furthermore, the second row of
ζP2(Cay) in [15, p. 20] should be replaced with

ζP2(Cay)(t) = 3!
7!11!e

(121/72)t
7∑

j=0

η j (−1) j g( j)( t
18 ) + O(1),

which gives, for any 0 ≤ m ≤ 7,

am = 3!
7!11! (4π)8

m∑

k=0

(
121

72

)k
η7−m+k

(7 − m + k)!
k! 188+k−m .

Using the above, one obtains the correct value a1/a0 = 4/3, according to the normal-
ization used in [15], for which the scalar curvature of CaP2 is scal = 8.
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Table 3 Classification of homogeneous metrics on CROSSes that are stable solutions to the Yamabe prob-
lem, with same conventions as in Table 1

M g Stability as solution to the Yamabe problem

Sn ground degenerate stable

S2n+1 g(t) t �= 1

S4n+3 h(t1, t2, t3)

(
2n(t21 + t22 + t23 ) + 8(n2 + n + 1)

)
(t1t2t3)

2

+t41 + t42 + t43 > 2(t21 t
2
2 + t21 t

2
3 + t22 t

2
3 ), and

(t1, t2, t3) �= (1, 1, 1)

S3 h(t1, t2, t3) (t1, t2, t3) �= (1, 1, 1)

S15 k(t) t >

√
1
2 (

√
19 − 4) ∼= 0.4236, and t �= 1

RPn ground stable

RP2n+1 g(t) stable

RP4n+3 h(t1, t2, t3)

(
2n(t21 + t22 + t23 ) + 8(n2 + n + 1)

)
(t1t2t3)

2

+t41 + t42 + t43 > 2(t21 t
2
2 + t21 t

2
3 + t22 t

2
3 )

RP3 h(t1, t2, t3) stable

RP15 k(t) t >

√
1
2 (

√
19 − 4) ∼= 0.4236

CPn gFS stable if n ≥ 2, degenerate stable if n = 1

CP2n+1 ȟ(t) t >

√√
(2n2 + n + 1)2 + 4n − (2n2 + n + 1)

2n
HPn gFS stable if n ≥ 2, degenerate stable if n = 1

CaP2 gFS stable

Metrics are labeled degenerate stable if their Jacobi operator (5.2) is positive-semidefinite with nontrivial
kernel
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