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Abstract

We provide explicit formulae for the first eigenvalue of the Laplace—Beltrami operator
on a compact rank one symmetric space (CROSS) endowed with any homogeneous
metric. As consequences, we prove that homogeneous metrics on CROSSes are
isospectral if and only if they are isometric, and also discuss their stability (or lack
thereof) as solutions to the Yamabe problem.
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1 Introduction

The underlying manifold of many compact symmetric spaces admits families of homo-
geneous Riemannian metrics that include, but are strictly larger than, their symmetric
space metric. For instance, all odd-dimensional spheres $”, n > 3, carry a continuum
of pairwise non-isometric homogeneous metrics, and only some among them—the
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round metrics—give $" the structure of a symmetric space. Surprisingly, despite the
extensive literature on the spectrum of the Laplace—Beltrami operator, the computation
of its first eigenvalue A1 (M, g) for every homogeneous metric g on (the underlying
manifold of a) compact rank one symmetric space (CROSS) M was, to the best of
our knowledge, still incomplete. In this paper, we rectify this by computing X1 (M, g)
in all the remaining cases. For simplicity, we henceforth refer to these metrics g as
homogeneous metrics on a CROSS. Out of many possible applications, we focus on
two geometrically relevant consequences: the spectral uniqueness of homogeneous
metrics on CROSSes, and their classification according to stability in the Yamabe
problem.

It is well-known that the complete list of CROSSes consists of $", RP", CP",
HP", and CaP?, see e.g. [8, Ch. 3]. Homogeneous metrics on a CROSS were classi-
fied by Ziller [47], see also [1, Examples 6.16, 6.21]. Up to homotheties, in addition
to the canonical (symmetric space) metrics, that is, the round metric groung of con-
stant sectional curvature 1 on $” and R P", and the Fubini—Study metrics grs on the
projective spaces CP", HP", and CaP?, they are as follows:

(i) A 1-parameter family g(¢) of SU(n + 1)-invariant metrics on $2*+1;

(ii) A 3-parameter family h(¢{, 12, 13) of Sp(n + 1)-invariant metrics on $#*13;
(iii) A 1-parameter family k(¢) of Spin(9)-invariant metrics on ghs,
(iv) A l-parameter family ﬁ(t) of Sp(n + 1)-invariant metrics on CP2"+1;

and all metrics in (i), (ii), and (iii) above are invariant under the antipodal (right) Z-
action, and hence descend to homogeneous metrics invariant under the same groups
on RP?"+!1 RP#+3 and RP', respectively, that we denote by the same symbols.
Throughout this paper, as above, ¢ and #; denote positive real numbers.

Geometrically, the first three families above are obtained by rescaling the unit round
metric groung in the vertical directions of the Hopf bundles

gl — g2+l ¢pn, §3 5 g3 Hpn, g7 - g5 $8(%). (1.1)

As it turns out, this procedure keeps the corresponding G-actions isometric. More
precisely, decomposing ground = Zhor + Zver into horizontal and vertical components,

3
g(1) = ghor + tzgvera h(t, 1, 13) = ghor + Z t,'2 dxiza K(t) = ghor + tzgver,
i=1

i=

where dx;, 1 < i < 3, are dual to a basis of groung-orthonormal vertical (Killing)
vector fields on $#"13, so that Sver = dx]2 + dx% + dx32. In particular, the round
metric is recovered by setting the parameters ¢ (or #;) equal to 1 in any of the above.
Since permuting (#1, t2, t3) does not change the isometry class of h(z1, 2, #3), we shall
assume that 0 < #; < 1, < 13 without any loss of generality.

The first eigenvalue of the Laplacian was previously known on (SQ”“,g(t)),
($'5,k(1)), and also on the subfamily ($*'*3, h(t,,)), which is invariant under
the larger isometry group Sp(n + 1)Sp(1). At the heart of these computations, which
are carried out in [12,38,39], building on work of [5,10,40], is the fact that these
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metrics are canonical variations of the round metric with respect to Riemannian sub-
mersions with minimal fibers (1.1). That is no longer the case on ($*'3, h(t1, 12, 13))
and (]RP4”+3, h(t, 1, t3)) when one chooses distinct values for the parameters ¢;,
and these metrics are also not normal homogeneous, which renders the computation
of their first eigenvalue substantially more challenging. This was recently achieved in
[24] in the lowest dimensional case ($°, h(#1, 12, 13)) and (RP3, h(t1, 12, 13)), i.e., that
of left-invariant metrics on SU(2) = $3 and SO(3) = RP3, laying the groundwork
for the cases n > 1, which are settled in our first main result.

Theorem A The first eigenvalue of the Laplacian on (S4"+3,h(t1,t2,t3)) and
(RP4H+3,h(I1, 1, t3)), withn > 1 and 0 < t; < tp < t3, are respectively given
by

. 111 4 4
MYk, 0, 6) =min {dn+ 5 + 5+ 5, 8n4+ =+ =, 8+ 1)y,
S O & ty 1

4 4
M (RPY3 h(t1, 12, 13)) = min {Sn +5+ 5, 8+ 1)} :
I

In the special case t; = t, = 13 = t, the (right) Hopf S!-action on ($4”+3, h(z, t, t))
is isometric and commutes with the transitive (left) Sp(n + 1)-action. Thus, the orbit
space CP2"+! = 4143 /51 i5 also a homogeneous space with an action of Sp(n + 1).
The induced horgogeneous metrics B(t) form the fourth (and last) family listed above.
Geometrically, h(t) = (grs)hor + 12(ZFs)ver» Where grs = (gFs)hor + (ZFS)ver 1S
the decomposition into horizontal and vertical components with respect to the Hopf
bundle CP! — CP?+! — HP". These are the last homogeneous CROSSes whose
first eigenvalue of the Laplacian had not been explicitly computed.

Theorem B The first eigenvalue of the Laplacian on (C p2ntl lvt(t)) is given by
2n+l g : 8
M((DP ,h(t)) = min { 8n + ok 8mn+1)¢.

More detailed versions of Theorems A and B are found in Theorems 3.5 and 3.7,
where the multiplicity of these first eigenvalues is also provided. For the convenience
of the reader, formulae for the first eigenvalue of the Laplacian on all homogeneous
CROSSes are given in Table 1. Moreover, formulae for all eigenvalues of the Laplacian
on $*'*3 and R P*'*3 endowed with the metrics g(r) orh(z, ¢, 1), and (CP?" 1, fl(t))
are given in Theorems 3.8 and 3.9; see also [11].

Although Theorem B could have been obtained from the techniques in [5], Theo-
rem A requires more general methods that might be of independent interest. In fact,
these methods (described in Sect. 2) can be used for spectral computations in any com-
pact homogeneous space G/K endowed with any homogeneous metric g. Recall that if
g is normal homogeneous, then the Laplacian on (G/K, g) acts as the Casimir element.
Since it is in the center of the universal enveloping algebra of g, the Casimir element
acts via multiplication by a scalar in each irreducible G-module that constitutes the
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Peter—Weyl decomposition (2.1) of L%(G/K). These scalars, which are the eigenvalues
of the Laplacian on (G/K, g), can then be computed using Freudenthal’s formula (2.4)
in terms of a root system. However, when the normality assumption on g is dropped,
the Laplacian no longer coincides with the Casimir element, and does not necessarily
act via multiplication by a scalar in every irreducible G-module in (2.1). Instead, its
action is represented by (typically non-diagonal) self-adjoint endomorphisms on each
of these G-modules. Our approach is to compute the Laplace spectrum as the union of
the spectra of these endomorphisms. Although a closed formula analogous to Freuden-
thal’s formula (2.4) is probably unfeasible in this level of generality, sufficiently fine
algebraic estimates allow us to identify in which G-modules the smallest eigenvalue
is attained. In this way, at least the first few eigenvalues can be explicitly computed.

As a first application, we show in our next main result that the Laplace spectrum
distinguishes homogeneous metrics on a CROSS up to isometries.

Theorem C Two CROSSes endowed with homogeneous metrics are isospectral if and
only if they are isometric.

In dimension 3, a partial result was obtained independently in [28, Theorem 1.3]
and [24, Theorem 1.5], in terms of left-invariant metrics on SU(2) and SO(3).

Although the hypotheses of Theorem C may seem rather stringent, one should
keep in mind that establishing spectral uniqueness of a given Riemannian manifold
in complete generality can be extremely challenging. For instance, it remains an open
problem whether or not there exist closed Riemannian manifolds that are isospectral
but not isometric to a round sphere (3", ground), # > 7. However, as in Theorem C,
such questions can sometimes be tackled in the presence of symmetries. Similar spec-
tral uniqueness results among certain families of homogeneous metrics were recently
obtained in [20,21,24,25,27,28,37,45,46]. In contrast, there are also several construc-
tions of (non-isometric) isospectral homogeneous Riemannian manifolds, including
curves of left-invariant metrics on several compact Lie groups [33,34], and normal
homogeneous metrics on distinct homogeneous spaces [2,36].

As a second application, we finalize the classification of homogeneous metrics on
a CROSS that are stable solutions to the Yamabe problem. Since they have constant
scalar curvature, homogeneous metrics are trivial solutions to the Yamabe problem,
i.e., critical points of the normalized total scalar curvature functional (5.1) in their con-
formal class. However, they need not be stable critical points (i.e., local minimizers),
depending on the relative values of their scalar curvature and first Laplace eigenvalue.
These are instances where optimality in a geometric variational problem is not nec-
essarily achieved with the most symmetries, since a global minimizer exists in every
conformal class, and a conformal class contains at most one homogeneous metric (up
to homotheties). Stable homogeneous spheres among canonical variations of the round
metric were classified in [12], and among (S, h(t1, 2, 13)) and (RP3, h(11, 12, 13))
in [24]. Thus, the only families left to consider are (CP2”+1,ﬁ(t)), for which the
stability classification follows easily from Theorem B, see Remark 6.3, as well as
($*1+3, h(t1, 1, 13)) and (RP**3, h(t1, 12, 13)), which are settled in our next main
result.
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Theorem D The metric h(t, 1, 13), (t1, t2, t3) # (1,1, 1), is a stable nondegenerate
solution to the Yamabe problem on $*"13, and RP*+3, n > 1, if and only if

o+ + 1+ 2Qnat + 15 +13) + 8 +n + D) (titat3)? > 20815 + 1715 + 1313).

The parameters (t1, ta, t3) corresponding to these metrics form an unbounded and
connected open subset S,, C ]Rio = {([1, nh,t3) € R 5 > 0}, whose boundary

39S, in ]R3>O is a smooth, connected, and bounded surface.

For completeness, recall that h(1, 1, 1) is the metric of constant sectional curvature
1, and it is stable, but degenerate on §41+3 and nondegenerate on RP**3. For the
convenience of the reader, the complete list of homogeneous metrics on CROSSes that
are stable solutions to the Yamabe problem is provided in Table 3, in Appendix A,
combining Theorem D and Remark 6.3 with [12,24].

The polynomial inequality in Theorem D that defines S, has some interesting
algebraic features. Namely, the locus of (11, 12, 13) € R? where this inequality becomes
an equality is an irreducible real algebraic variety V, C R3 of dimension 2, such that
S, =V, N ]R3>O. However, V), contains (and is singular along) each diagonal line
t; = t; in the coordinate plane #; = 0, where (7, j, k) is any permutation of (1, 2, 3),
cf. (6.1). Thus, V), ﬂRiO is noncompact, which substantially complicates the proof that
the (topological) closure of 95, in IR3>0 is compact. This is achieved through careful
estimates in terms of elementary symmetric polynomials in the variables (x, y, z) =
(t12, tzz, t32). As a consequence, the subset IR3>0 ~\ S, of parameters corresponding to
unstable homogeneous solutions is bounded (but not compact).

Combining the above classification of stable solutions to the Yamabe problem and
classical results in Bifurcation Theory, it is possible to detect the existence of branches
of solutions issuing from paths of homogeneous metrics when they lose stability, i.e.,
when (11, 1, 13) leaves the set S,,. By uniqueness of homogeneous metrics in their
conformal class, these bifurcating solutions must be inhomogeneous, fitting a wider
context of symmetry-breaking bifurcations [12—14].

Corollary E Branches of inhomogeneous solutions to the Yamabe problem on $*"+3
and Rp*+3 bifurcate from any continuous curve h(t1 (), (s), 13 (s)) of homoge-
neous metrics such that o (s) = (t1 (5),0(s), 13 (s)) crosses the surface 0S,,.

Further bifurcations occur if the Morse index of a path of solutions keeps growing,
which happens if higher eigenvalues of the Laplace—Beltrami operator become small
compared to the scalar curvature. For instance, it is known that iporse (h(t, t, t)) S
400 as 1 \ 0, hence there are infinitely many bifurcation instants as $*'*3 collapses
to H P" along this path of metrics [12]. In Sect. 6, we characterize some ways in which
the Morse index blows up, without the need to explicitly compute Laplace eigenvalues.
In particular, we prove the converse statement to a recent bifurcation criterion for the
Yamabe problem on canonical variations of Otoba and Petean [30, Theorem 1.1], see
Proposition 6.9. Finally, we also use Theorem D to analyze the stability of h(#1, 2, #3)
as it degenerates, i.e., as some #; \ 0, see Proposition 6.4.

This paper is organized as follows. The main Lie-theoretic tools used in our spectral
computations are presented in Sect. 2. In Sect. 3, we fix convenient parametrizations
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for the families of homogeneous metrics on CROSSes and prove Theorems A and B.
Section 4 contains the proof of Theorem C. The applications related to stability and
bifurcation in the Yamabe problem are given in Sects. 5 and 6 respectively, including
the proofs of Theorem D and Corollary E. Tables with the first eigenvalue, volume,
scalar curvature, and Yamabe stability classification of all homogeneous metrics on
CROSSes are given in the Appendix A.

2 Spectrum of the Laplacian on a Homogeneous Space

In this section, we briefly recall some elementary facts about the spectrum of the
Laplacian on a compact homogeneous space. Although this material is classical, usu-
ally only the case of normal homogeneous metrics is discussed in the literature (see
e.g. [43, pp. 123-125]), with the notable exception [29]. We shall treat the general
case of G-invariant metrics, which is needed to prove Theorems A and B.

Let G be a compact Lie group and K C G a closed subgroup, with Lie algebras g
and £, and fix an Ad(K)-invariant complement p of £ in g. It is well-known that the
space of G-invariant metrics g on the homogeneous space G/K is identified with the
space of Ad(K)-invariant inner products (-, -) on p, see e.g. [9, p. 182].

Let v be an irreducible representation of G, thatis, w : G — GL(V}) is a continuous
homomorphism of groups, and the (complex) vector space V, does not have any
proper G-invariant subspaces. Abusing notation, we also denote by 7 the induced
representations of the Lie algebra g, of its complexification go:=g ®pr C, and of its
universal enveloping algebra U (g¢). Denote by V,TK the subspace of V; consisting of
elements fixed by K; and by (-, -); an inner product on V, for which 7 (g) is unitary
for all g € G, which exists since G is compact. The linear map

Ve ® (VK — € (G/K)
VR @ > fuggs with fv®¢,(xK)::<p(n(x)*lv),

is well-defined and G-equivariant, where G acts on the first factor of V; ® (V;)K, i.e.,
g-v®¢=7(g)v®¢,andon C¥(G/K) as (g - )(xK) = f(g~'xK).

Given a G-invariant metric g, denote by A, the Laplace-Beltrami operator of the
Riemannian manifold (G/K, g). It is well-known that, for all f € C*°(G/K),

n d2
(Agf)(xK) = — Z @f(x exp(1X;) - eK)

i=1

t=0

where {X1, ..., X, } is an orthonormal basis of p, with respect to the inner product
(-, -) that induces the metric g on G/K, see e.g. [29, Theorem 1]. Consider the element
Co = Y !, X? € U(g), and observe that

(B o) @K) = =Y — ¢ (wlexp(X)m(x~v)

i=1

t=0
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= i(p (n(—Xiz)rr(x_l)v)

i=1

= Z (n*(—Xiz) . (p) (n(x_l)v>
i=1

= (T*(=Cy) - ) (n(x*‘)v)

= foa@*(—Cpp) (xK).

Note that C; depends only on the inner product (-, -) on p that induces the metric g,
and not on the choice of orthonormal basis {X, ..., X,}.

It is a simple matter to check that 7*(—Cy) : V — V] is self-adjoint with respect
to (-, )+ and preserves (V;‘)K ~ V;(*. Ifo e Vf* is an eigenvector of ﬂ*(—Cg)|VK*
with eigenvalue A, then i

Ag fowp = foa@ (—Coe) = footw) =2 fuap

that is, fyg, is an eigenvector of A, with eigenvalue A, for every v € V. By the
Peter—Weyl Theorem, there exists a basis of L(G/K, g) consisting of eigenfunctions as
above. More precisely, the left regular representation of G on L2(G/K, g) decomposes
as (the closure of) the direct sum of G-modules

L*(G/K. g) ~ EP Vz ® V.. (2.1)

JTEGK

where G is the unitary dual of G, i.e., the set of (equivalence classes of) irreducible
unitary representations of G, and Gx:={mr € G : dim V; = dim V;* > 0} is the set of
spherical representations of the pair (G, K). Therefore, we have the following:

Proposition 2.1 The spectrum of the Laplacian Ag of a compact homogeneous space
G/K, endowed with an arbitrary G-invariant metric g, is given by

Spec(G/K, g):=Spec(Ag) = | J [Ay(g),...,)\y(g) << djj}, 2.2)
—_—

7€G ,
K dy -times

where, for eachw € GK, we write dy = dim V, dj’T( = dim V;(, and A7 (g), ..., AZK (2)

are the eigenvalues of the self-adjoint linear endomorphism ﬂ*(—Cg)|VK* of V7TK*.

Note that if G/K is connected, the trivial representation is the only irreducible
representation of G contributing the eigenvalue 0 € Spec(G/K, g). Consequently, if
7w € Gk is nontrivial, then ﬂ*(—Cg)IVK* is positive-definite, i.e., )J/T (g) > 0.
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2.1 Normal Homogeneous Case

Let us now specialize to the situation in which G is semisimple and connected, and
(-, -)o is abi-invariant (i.e., Ad(G)-invariant) inner product on g; for instance, a negative
multiple of its Killing form. The corresponding metric gy on G/K s then called normal
homogeneous.

Set m = dim G and let {X1, ..., X,;} be an orthonormal basis of g with respect
to (-, Yo suc}l\that X, epforalll <i <n,and X; € tforalln+1 <i < m.
Given w1 € Gk, since w(X) -v = O forall X € tand v € V7TK, it follows that
ﬂ(Cgo)|VﬂK = n(Caso)|VﬂK, where Casg = Z;"zl Xl2 is the Casimir element of g with
respect to (-, -)o. If the Killing form of g is equal to —(, -)o, then Casy is the standard
Casimir element in U/ (g¢) associated to the complex semisimple Lie algebra gc.
Since Casy lies in the center of U/ (g), by Schur’s Lemma, 7 (— Casg) acts on V; as
multiplication by a scalar A™. Therefore, in this special case, (2.2) simplifies to

Spec(G/K. g0) = Spec(Ag) = | {A”,...,A”}. 2.3)

TeCK (g, xd¥)-times

The above scalars A" can be computed using Freudenthal’s formula, see [43,
Lemma 5.6.4] or [22, Proposition 10.6]. Namely, fixing a maximal torus T in G, and
a positive system in the induced root system ®(gc¢, t¢),

AT = (Az, Az +2pg)o, 2.4

where Ay is the highest weight of the representation 7, pg is half of the sum of
positive roots in ®(g¢, t¢), and (-, -)o is the Hermitian extension to tg, of (-, -)o[¢. For
a general homogeneous metric g which is not normal, no analogous formula to (2.4)
that explicitly computes the scalars )»’j’ (g) in Proposition 2.1 seems to exist.

3 Eigenvalues of the Laplacian on $#"+3, RP#7+3, and CP2"+1

In this section, we provide explicit formulae for the smallest positive eigenvalue of
the Laplace-Beltrami operator on ($*' 3, h(t1, 12, 3)), (RP*3, h(t1, 12, 13)), and
on (CP?"*+! h(r)), proving Theorems A and B in the Introduction. The full spectrum

of the latter and of the subfamily g(¢) on $*'*3 and RP*"*3 are also computed, see
Theorem 3.8 and 3.9, and also [11].

3.1 Homogeneous Structures

Consider the quaternionic unitary group
G=Sp(n+1) = {geGL(n—i—l,IH):g*g:Id},
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whose Lie algebrais g = sp(n + 1) = {X € gl(n + 1, H) : X* + X = 0}. The defin-
ing representation of G on JH"*! restricts to an isometric transitive G-action on the unit
sphere $*"13  H"*!, whose isotropy at (0, ..., 0, 1) € H**! is the Lie subgroup

K = {diag(A, 1) € G: A € Sp(n)} ~ Sp(n),

so that $*"13 = G/K. Clearly, the corresponding Lie subalgebra is ¢ = {diag(X, 0) €
g: X € sp(n)} =~ sp(n). Consider the reductive decomposition g = € & p, where
P = po @ p; splits as the vertical space pp >~ Im H and horizontal space p; >~ H”
for the Hopf fibration $° — $*"*3 — THP”. Recall the isotropy representation of K
is trivial on pg, and irreducible on p;. Note that pg >~ sp(1) is a Lie subalgebra of g,
spanned by the unit imaginary quaternions

X1 =diag(0,...,0,1), X, =diag(0,...,0,j), X3 =diag(,...,0,k), (3.1)
and the corresponding Lie subgroup is
H = {diag(Id, ¢) € G : |¢|*> = g = 1} ~ Sp(1) ~ SU(2). (3.2)

The above (left) G-action on $**t3 ¢ H"*! commutes with the (right) actions of
7. via the antipodal map, and of S'-action by complex unit multiplication. Thus, it
descends to transitive G-actions on the quotients R P*"*+3 = §*%3 /7, and C P2+ =
§*1+3 /51 respectively. These G-actions have isotropy (conjugate to)

K-Z, = {diag(A, £1) € G: A € Sp(n)} >~ Sp(n)Z>,
K = {diag(A, ) € G: A € Sp(n), ¢ € S} ~ Sp(mU(1),

respectively, so that RP#"+3 = G/(K-Z,) and CP?"*! = G/K. Note that the S'-action
extends the Z»-action, so K- Z» C k; and, as U(1)/Z, = Sl, we have C P2 t! =
RP4H+3/S] )

The Lie algebra of K - Z is the same as that of its identity connected component
K, that is, £. The isotropy representation of K - Z on g = ¢ @ p extends that of K,
with the element diag(Id, —1) acting trivially on p; @ spang{X1} and nontrivially,
i.e., as multiplication by —1, on po:= spanp { X2, X3}. Meanwhile, the Lie algebra of
Kist =t spanp {X1}, and the corresponding reductive decomposition is g = to P,
where p = po @ p1. Both pg and p; are irreducible for the isotropy representation of
K, with the Sp(n) factor acting trivially on pg and via the defining representation on
p1, and the U(1) factor acting by rotation on p¢ and trivially on pj.

@ Springer



76  Page 10 of 63 R. G. Bettiol et al.

Geometrically, the inclusions K C K- Z, C K correspond to successive quotients
of the Hopf fibration (top row) by the (right) actions of Z, and S, as follows:

SS S4n+3 HP"
RP?} ——=RP"H3 — s HP" (3.3)

]

CP! ——cpt! ——=HP".

The arrows from top to middle row are double covers, while the arrows from middle
to bottom row are projections of S'-bundles. Note that po and p; are the vertical and
horizontal spaces for the bundle in the bottom row.

3.2 Homogeneous Metrics

We now parametrize (up to isometries) the spaces of G-invariant metrics on $#*+3,
RP*+3, and CP?"+!, with respect to the above homogeneous structures. For more
details, see [1, Examples 6.16, 6.21] and [47].

We begin with G-invariant metrics on %3 and R P3, that is, left-invariant metrics
on Sp(1) >~ SUQ2) = $3 and SO(3) = RP3. Every such metric is isometric to one
induced by a diagonal inner product with respect to the basis {i, j, k} of the Lie algebra
sp(1), i.e., of the form

J®]+C—2k®k, a,b,c e Roy,

where {i, J, k} is the basis of sp(1)* dual to {i, j, k}. Note that {ai, bj, cK} is (-, -)(a.p.c)-
orthonormal. Denote by g, ) the corresponding G-invariant metric on $°, and
observe that (S3, S(a,a,a)) 1s around sphere of constant sectional curvature a?. Clearly,
permuting (a, b, ¢) € IR3>O gives rise to metrics g(q,»,¢) that are isometric, and it is not
difficult to see that there are no other isometries among them (this follows, e.g., by
inspecting their Ricci endomorphisms). Moreover, all g, 5 ) descend to G-invariant
metrics on R P3, that we shall denote by the same symbol. Similarly, the only isome-
tries among these metrics on R P arise from permuting (a, b, c). Altogether, we have
the following spaces of isometry classes of G-invariant metrics:

Met?PD ($%) = Met?™ (RP?) = {gupe) 1a > b > c > 0}.

For n > 1, fix the Ad(G)-invariant inner product (X, Y)p = —% Retr(XY) on the
Lie algebra g = sp(n + 1). Identify pp = sp(1) via the isomorphism that associates
each diagonal matrix in (3.1) to their unique nonzero entry, and define an Ad(K)-
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invariant inner product on p = po @ p; as follows:

1

1
(- ')(a,b,c,s):zi('s ')(a,b,c)|po + S_Z(’ ')0|p1 , a,b,c,s € Roop.

Denote by g4, p,c,5) the corresponding G-invariant metric on §41+3 = G/K, and observe
that (-, -)olp = (. -)(1,1,1,1) hence ($*"*3, g1 1.1,1)) is normal homogeneous. Once
again, it is not difficult to see that the only isometries among g4, ¢ 5) arise from
permuting (a, b, ¢) € IR3>0, and all such G-invariant metrics on $**13 descend to G-
invariant metrics on R P43, that we shall denote by the same symbol. (Endowing both
spaces With g(4.p.c.5), the vertical arrow $#' 3 — RP**3 in (3.3) is a Riemannian
double cover.) Altogether, we have the following spaces of isometry classes of G-
invariant metrics:

MetP D (8417%) = MetP™ D (RPY ) = fg by 1a = b= ¢ > 0,5 > 0.

Furthermore, the restriction of (-, -)(4.p.c.5) t0 P is Ad(k)-invariant if and only if
b = ¢, in which case it defines a G-invariant metric g, ;) on CP>**! = G/K. In this
situation, the quotient maps from §4+3 and R P**3 endowed with S(a,b,b,s) ONto
(CPZ”‘H, g, S)) corresponding to (right) S!'-actions, i.e., the vertical arrows in (3.3),
are Riemannian submersions. Similarly to the previous cases, it is not hard to check
that the metrics g5 ) are pairwise non-isometric, so the space of isometry classes of
G-invariant metrics on C P>+ is

MetPOD (@ P2ty = {5, b > 0, 5 > 0},

Remark 3.1 The above parameterizations g b.¢)> &(a.b,c.s)» and g, s) of G-invariant
metrics on $3, $#+3 RP3, RP**3 and CP>**! are convenient for the spectral
calculations. In fact, the first eigenvalues of their respective Laplacians are homoge-
neous quadratic polynomials in the parameters a, b, ¢, s. However, from a geometric
viewpoint, these metrics are more naturally parametrized in terms of the lengths #; of
vertical Killing vector fields in the Hopf bundles (1.1), compared to those in the round
or Fubini—-Study metric, with horizontal directions unchanged. These parametriza-
tions, used in the Introduction and in subsequent sections, are related to the above via
the isometries (recall that n > 1 throughout)

)

On $® and RP? : h(t, 1. 13) = St
> "3
4n+3 4n+3 . ~
On §™* and RPH: b1, 12, 19) & g((ﬁt;)",(«/ftz)—l,(«/fm)—l,l)’ (3.4)

2n+1 . I ~
OnCP : h(t) = g<(ﬁt)_,’]),

@ Springer



76  Page 12 of 63 R. G. Bettiol et al.

or, equivalently,

On S3 and ]RP3 . g(a,b,c) = h(%, %a l)’
On$* 3 and RPY 3 1 giupes = % (fa \/%b, ﬁ) , 3.5)
On CP?"t! . Sib.s) = S%ﬁ(ﬁ)-

In particular, note that the normal homogeneous metrics on $#'*3 and R P4 +3,
n > 1, induced by (-, -)o are h(%@ %, %) = ga1,1,1,1) = ghor t+ %gver, where
Sround = LZhor 1 Lver 1S the decomposition of the metric of constant sectional curvature
1 with respect to the bundle in the top (respectively, middle) row in (3.3). Similarly, the
normalhomogeneous metricon CP?"+1, n > 1,inducedby (-, -)o is h(f) =gun =

Shor + 5 Sver>» Where grs = Zhor + Zver 1S the decomposition of the Fubini—Study metric
with respect to the bottom row in (3.3).

3.3 Implicit Spectra
We now describe the spectra

Spec($**3, g b.e.s))s SPec(RPY3 g4 p e ),
and Spec(CP**! 54.5), n=>1,

implicitly in terms of Spec($*, g(.5.0))-

For any integer k > 0, let (i, V7, ) denote the (unique, up to equivalence) irre-
ducible representation of H ~ SU(2) of dimension k + 1. For a,b,c > 0, let
vfk) (a,b,c), .. k +] (a, b, c) denote the eigenvalues of the positive-definite self-
adjoint operator

(= a’X] — b X3 — *X3): Vg — Vi, (3.6)

where X; are as in (3.1). From Proposition 2.1, we conclude that

k .
Spec(S3,g(a’h,c)) = U { vﬁ.k)(a, b,o),..., v; )(a,b, o):1<j<k+ 1}.
k>0

(k+1)-times

This spectrum is studied in detail in [24], where it is shown that

(@, b, ) =0, v (a, b, ) = 4% + ),
(l)(a b,c) = a’ +b* + c2 véz)(a, b,c) = 4(012 + cz), 3.7
vV, b, ¢c) = d® +b* + 2, v (a, b, ¢) = 4(a> + b?),

and 11 (83, S(a,b,c)) 18 the smallest among the above, 1eav1ng out vlo) (a,b,c) = 0.
More precisely, if a > b > ¢ > 0, then v, )(a,b,c) <v, )(a, b,c) < vy )(a, b, c),
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and
2 (8%, gab.e) = minfa® + b + *, 4(b* + ).

The main tool to prove this result is [24, Lem. 3.4], namely, given integers 1 < j <
k + 1, we have:

2kb? + k*c? if k >0,
WO, b= {57 T BEED (338)
J a® + 2k — 1)b* + k*c if K > 01is odd.
Furthermore, for any integers k > 0 and 1 < j < k + 1, it is easy to see that
v;k)(a, a,a) = k(k + 2)a>. (3.9)

In order to apply Proposition 2.1 to describe the spectra Spec($#'+3, S(a.b.c.5))
Spec(RPHH3 e, b c.5)), and Spec(CP?*1 5, o)) for n > 1, we need to introduce
some Lie-theoretic objects. Fix the maximal torus of G given by

Ti={diag(e”, ..., &%) 101, ..., 0,41 € R},

whose Lie algebra t (respectively, its complexification tg:=t ® g C) consists of ele-
ments of the form ¥ = diag(iy, ..., i0,1), with §; € R (respectively, 0; € C), for
alll < j<n+1 Letg;: t¢c — C be given by €;(Y) =10}, where Y is as above, so
that {eq, ..., &y41} is a basis of tg,.

Denote the Hermitian extension of (-, -)o to g¢ and tg, by the same symbol (-, -)o.
One easily checks that (g;,&;)0 = 2§;; forall 1 < i, j < n + 1. Indeed, setting

Y; = diag(0,...,0,1,0, ..., 0), where the nonzero coordinate is in the jth entry, one
has that {ﬁYl, e, «/§Yn+1} is an orthonormal basis of t¢ with respect to (-, -)g, so
. . . 1 1 . .

its corresponding dual basis {\—58 Lo wnns 7§8n+1 } is an orthonormal basis of t:fy

The root system of g¢ with respect to the Cartan subalgebra t¢ is given by
®(go, te) = {£& ¢ i # j} U {£2¢}. Consider the standard positive sys-
tem, which has positive roots ®T (g¢, tg) = {& £ gj 11 < j}U{2¢}. In particular,
half of the sum of positive roots is pg = Z'}i}(n +2— jej.

Since G is simply-connected, the set of dominant G-integral weights coincides with
the set of dominant algebraically integral weights of g¢, which is given by elements
of the form Z;’:ll ajej with a; € 7Z satisfyinga; > -+ > ay41 > 0. If Aisa
dominant G-integral weight, we denote by m the irreducible G-representation having
highest weight A, which exists and is unique (up to equivalence) by the Highest Weight
Theorem, see e.g. Hall [22, Thm 9.4, 9.5].

Lemma 3.2 Let n > 1 be an integer. For positive real numbers a, b, ¢, s and integers
p > q > 0, we have that

Spec($* 3, gapes) = | {Aﬁ”"”(a, boe.s). .. V@ b.c.s) }

p=q=0
I<j<p—g+1 dpq
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Spec(RPY 3, g4 pcs)) = U {A;p’q)(a, b,c,s), ..., )»;.p’q)(a, b,c,s) },

p—q even dp g
l=j=p—q+1

Spec(C P>+, Eb.s) = U [)V»(”’q)(b, $), .. APD @} s) },

p=q>0 d
p—q even P4

where

,\;P*’J)(a, b,e,s) = (4pn+4q(p +n+1))s> + 2uj(.”‘q>(a, b, c), (3.10)
WD (b, s) = (dpn+4g(p+n+1D)s>+2(p — ) (p — g +2)b*, (3.11)

P (p+q+2n+1)(p—q+1)<p+2n)<q+2n—1)
pa Cn+D(p+1) p q :

(3.12)

Proof We begin by identifying the corresponding spherical representations. It is well-
known that (see for instance [23, Problem IX.11])

Gk = {p,q:=Tpei4qer : P = q > 0}.

We henceforth abbreviate V), ; = Vr, . Since Kand H commute, the subspace V; q 18
H-invariant. From Lepowsky’s classical branching law from G to K x H, or as a direct
consequence of [44, Theorem 3.3], we have that

Vzlf,q ~ prfq as H-modules. (3.13)

: K _ gim vK — di -
In particular, an =dimV;, =dmV,,_ =p—qg+1
Since K € K- 7Z, C K, we have Gk C Gk.z, C Gg. First, we determine Gk-
An element 7, , € Gk is in G if there is a nonzero vector in V; o fixed by the

U(1) factor in K or, equivalently, annihilated by X in (3.1). As an H-module, Vlf q is
irreducible with highest weight p — g by (3.13). By the standard representation theory
of 5[(2, C)-modules, we have the (weight) decomposition

P=q
K K
Voa =D Vigr —a—2D.
1=0

where dim V['iq(p—q—Zl) = 1forall0 v§ Il < p—q,andm), 4(X)v = (p—qg—2Div
forallv € Vl}f, q (p — g — 21). Hence, Vl'f’ q= V['f’ q (0), which is nontrivial if and only
if p — ¢ is even. Thus, we conclude that

Gy={mpg:Pp>q=0, p=g mod 2}
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and dim Vﬂk = Iforallmw € GR, i.e., the branching from G to Kis multiplicity-free. We

now determine GK.ZZ. Multiplication by diag(Id, —1) maps the identity connected

component (identified with K) to the other connected component of K - Z,, and

diag(Id, —1) lies in the maximal torus T. In fact, diag(Id, —1) = exp(0, ..., 0, i).

Its action on a weight space Vl’f) ¢(P —¢q — 21) is thus given by multiplication by

eP—4=2Dmi — (_1)P=4 j.e., the action on Vl'fq is by (—1)?791dy« . Consequently,
’ p.q

Gkz, ={pq: P >q >0, p—qeven}.

It is a simple matter to check that dim V), , = d, 4 as in (3.12) by using the Weyl
Dimension Formula, see e.g. [23, Theorem 5.84].
From Proposition 2.1, it just remains to show that, for every p > g > 0, the

eigenvalues of Tp.g(=Clab.cs)lyk, are )»E.p’q)(a, b,c,s),1 <j<p—qg+1,as
in (3.10), and the (only) eigenvalue of np,q(—Cv'(b,s))|Vk is X(p*q)(b, s)yif p=gq
p.q

mod 2, as in (3.11). Here, we abbreviate C(y p,c,s) = Cg(a.b,c.” and Cv‘(b,s) = Cé(b,s)-

Note that this includes the case of Spec(RP4”+3, S(a.b,c.5)), since the Laplace operator
of (RP*+3, S(a,b,c,s)) has the same spectrum as the restriction to

@ VP’q ® VJTK;;q = LZ(G/(K' ZZ), g(a,b,c,s)) (314)

r=9>0
p—q even

of the Laplace operator of (S4"+3, Sa.b.e.s))-

Let {X4,..., X;,} be an orthonormal basis of p; with respect to (-, -)o. Then
(V2aX 1, vV2bX>,v2cX3,5X4, ..., 5Xn} and {V2bX2, v2bX3,5X4, ..., 5Xp)
are orthonormal bases of (p, (-, *)(4,b,c,5)) and ®, (- Ya.b,b,s) |'§,) respectively. Hence

Clabes) =20 X3 420 X3 422 X3 +52(X3 4+ -+ X2)
= 52 Caso +2(a* X} 4+ b*X3 + ¢*X3) — 252 (X} + X3 + X3) — 5% Casg,
Cips) =20 X3 +20° X2 + 52 (X3 +--- + X2)
= 52 Casg +2(b* — s2)(X3 4 X3) — 5> Casy,
where Casg denotes the Casimir element of £ with respect to (-, -)ole, that is,
Casg = Z?f}é Yl.z, where {Y1, ..., Yaime} is a (-, -)o-orthonormal basis of €. Clearly,

7,4 (Case) acts trivially on V['iq. From (2.4), we have that 7, ,(— Casp) actson V), 4
by multiplication by the scalar

ATra = (pey 4 qex + 2pg, pe1 + qeado = 2p(p +2n +2) + 2q(q + 2n),

and np,q(— (X12 + X% + X_%))|V§q = rp,q(— (X12 + X% + X%)) by multiplication by
(p —q)(p — q +2). Since the eigenvalues ofrrp,q(— (azX% + bng + chg))|V1L<q =
Tp—q(— @ X7 +b*X3 + ¢ X3)) are precisely v;pfq)(a, be)yforl <j<p—q+1,
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the claim regarding (3.10) follows. Furthermore, 77, 4 (— (X3 + X3))| vk =Tpg (-
pq
(X}+X3+XD) &k because X acts trivially on V}iq, thus 77, 4 (— (X3+X3))| vk =
p.q p.q
p—q@)(p—q+2) Idvk . We conclude that the eigenvalue of JT(—C(b,s))|Vk is
P49 P.q

XD (b, s) = p(p+2n+2) +2q(q +2n) s> +2(p — @) (p — g +2) B* — 57)
= (4pn +4q(p+n+ D)s> +2(p — q)(p — q + 2)b*,

as claimed in (3.11), concluding the proof. O

Remark 3.3 The eigenvalue A(jp’q)(a, b, c, s), respectively (79 (b, s), is basic, in
terms of the Riemannian submersions (S4n+3, (a.b.c. S)) — (IHP", %2 ng), respec-
tively (CP"™,g45) — (HP, Slngs), if and only if p = g¢. Recall that if
w:(M,g) —> (M, §) isva Riemannian submersion with minimal fibers, there is a
natural inclusion Spec(M, g) C Spec(M, g) of so-called basic eigenvalues, since

lifts of Laplace eigenfunctions on (M, g) are Laplace eigenfunctions on (M, g)
with the same eigenvalue, see e.g. [5,10]. Note that, from (3.7), (3.10), and (3.11),

)»E.p’p) (a,b,c,s) = 1pp) (b,s) =4p(p+2n+ 1)s2, p > 0, are precisely the eigen-
values of the Laplacian on (IHP", Siz ng). In representation-theoretic terms, basic
eigenvalues on $**3 = G/K arise from G-modules V; o thatare fixed by H, see (3.13).

3.4 First Eigenvalues

We now use algebraic estimates to extract formulae for the first eigenvalue of the
Laplacian on ($**3, g(; p.c.0)s (RPY 3 g4 pc.5)), and (CPP' T g, 1)) from the
description of their spectra given in Lemma 3.2. Through the isometries (3.4), Theo-
rems 3.5 and 3.7 below imply Theorems A and B in the Introduction.

Lemma3.4 Letn > 1. Fora>b>c > 0,5 >0, and p > q > 0 satisfying

0,0), (1,0), (1, 1), (2, 0), ifn>2,
0,0),(1,0), (1, 1), (2,0),(3,0), ifn=1,

v

(p.q) ¢

we have that kgl’l)(a, b,c,5) < A(/.p’q)(a, b,c,s)foralll < j<p—q+1.

Proof We repeatedly use formula (3.10) for )»Ep 4 (a, b, c, s); in particular, recall that
MY, b, e, ) =8(n+1)s2 Forallp > 1,k > 0and 1 < j <k + 1, we have

WP @, b e s) = @(p+hn+4p(p +k + 1+ n))s?
> (4n +4Q2 +n))s* = 8(n + 1)s?,
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with strict inequalities in both estimates if kK > 1. Furthermore, for k& = 0, the second
inequality is strict for p > 2. Similarly, forany 1 < j <k +1,

2%, b e s) > 4kns? = 8(n + 1)s?

for all k > 4, and also for k = 3 and n > 2. This concludes the proof. O

Theorem3.5 Letn >1,a>b >c > 0, and s > 0. We abbreviate

)Lgl,O) = AEI’O)(a, b,c,s5) = dns® + 2(a2 +b>+ cz),
xiz’o) = )»52’0) (@,b,c,s) =8(ns* +b* +c?), (.15)
W =" @, b, e, 5) =800+ 15

The smallest positive eigenvalue of the Laplace—Beltrami operator on the homoge-
neous space (S4"+3, g(a,b,c,s)) is given by

. 1,0 2,0 1,1
M (S gpes) =minfalh?, A0 A0 (3.16)

and its multiplicity is

4n+1) if A(ll’o) < min{)\(lz’o), kﬁl’l)},

n(2n +3) if 2" <min[a ", A0,
m+Dn+3) i AP <min{a?, 2"V,

22+ +4 i AP0 =D B0 (3.17)
22 +on+7  if A =aP? <t

4n? 4 8n +3 if )L(ll,l) _ )»52’0) - )\(11,0)7

4n? 4+ 120 +7 if /\gl,O) _ A§2,0) _ /\51,1)_

Furthermore, the smallest positive eigenvalue of the Laplace—Beltrami operator on
the homogeneous space (]RP4"+3, g(a)b,c)s)) is given by

. 2,0 1,1
Al(]RP4”+3, g(a,b,m)) = mm{)x(1 ), )»E )}, (3.18)
and its multiplicity is

n(2n + 3) if AD <20,

n+1Cn+3)  if A2 <2V anda > b,

2+ 1)2n+3)  if AP <"V anda=b>e,

3n+ 12 +3)  if AP? <"V anda=b=c, (3.19)
Cn+12n+3)  if M =23 anda > b,

Bn+2)2n+3) if Agl’l) = Aiz’o) anda =b > c,
@n+3)2n+3)  if M=V anda=b=c.
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Proof We begin with the case of (§4+3, Sa.b.c.s))- Let Amin(a, b, c,s) denote
the right-hand side of (3.16). Since the three quantities in (3.15) are eigen-
values of Ag(mb,m) by Lemma 3.2 and (3.7), it follows that Amyin(a, b, c,s) >

)‘al (S4n+31 g(a,b,c,s))-
To establish (3.16), it remains to show that

> g > 0 with (p, 0,0),
)L(p’q)(a, b,c,s) > Anin(a, b, c,s) for p=q=0with (p, ) #(0,0)
! l<j<p—-q+1.

(3.20)
The case (p, g) = (0, 0) is excluded because it corresponds to the trivial representa-
tion, which only contributes the eigenvalue 0 € Spec(S4"+3, S(a,b,c,5))- Lemma 3.4

shows the above claim (3.20) forn > 2, and also forn = 1 provided A(/.3’0) (a,b,c,s) >
Amin(a, b, c, s). The last fact holds since, for n = 1, (3.8) gives '

29V, b, s) = 1257 + 201 (@, b, ¢) = 1257 + 2(a* + 5b* + 9¢?)
> 452 + 2(a2 + b2+ cz) = A(II’O) (a,b,c,s) > Anin(a, b, c,s).

Regarding the multiplicity of this eigenvalue, from Lemma 3.2 we have that

e 1 o contributes the eigenvalue )\21‘0) to Spec(S4"+3, 8(a,b,c,s)) With multiplicity
210 = 4(n + 1), since 2" (a, b, ¢, 5) = 1"V (a, b, ¢, ).

e 1) o contributes with the eigenvalue AEZ’O) to SpeC(S4"+3, E(a.b,c.s)) With multi-
plicity dr o = (n+1)(2n+3) ifa > b, since kgz,O) (a,b,c,s) < kgz,O) (a,b,c,s).
(Note that )\iz’o)(a, b,c,s) < Aﬁl’o)(a, b,c,s) forcesa > b.)

e 1 1 contributes with the eigenvalue Agl’l) to Spec($*13, S(a,b,c,s)) With multi-
plicity di,1 = n(2n + 3).

Thus, we obtain the values in the first three rows in (3.17). The remaining rows follow
by summing the multiplicities of eigenvalues when they coincide.

Next, we consider the case of (RP*13, S(a,b,c,5))- Since its spectrum is the same
as that of the restriction to (3.14) of the Laplace operator of (8§43, S(a,b,c,s5)), Clearly
(3.18) follows from (3.16). Concerning multiplicities, by Lemma 3.2,

e 13 o contributes the eigenvalue )L(lz,()) to SpeC(IRP4"+3, S(a,b,c,s)) With multiplicity

drg it AP <280 e ifa > b,
20 it AP =280 <2 ie, ifa=b > c,
3drg  if AP0 =230 =230 e, ifa=b=c.

(Note that the equivalent condition at the right on each of the rows holds since
2P0 = 8(ns? 4+ a® 4 ) and 157Y = 8(ns? + 4 + b?) by (3.7) and (3.10).)
e 1) 1 contributes the eigenvalue )\51’1) to Spec (RP4+3, S(a,b,c,s)) Withmultiplicity

d1,1 =n2n + 3).

This implies (3.19), by adding the multiplicities of eigenvalues when if coincide. O
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Remark 3.6 The largest possible multiplicity of 1| (§4+3, Z(a.b.c.s)) 18 A2 +12n+7,
and it is attained when b2 +¢2 = s2 and a®> = (2n+3)s2. For generica > b > cand s
in this situation, the full isometry group is Iso($*+3, S(a,bc,s)) = Sp(n+1)xz,5p(1),
see [35]. Meanwhile, the multiplicity of A1 ($*'*3, g ounq) is only 4n + 4, although the
full isometry group Iso($***3, grouna) = O(4n +4) is much larger. This is yet another
counterexample to the fact that larger isometry groups do not necessarily correspond
to larger multiplicities for the first eigenvalue, cf. [5, p. 181]. The first counterexample
was obtained by Urakawa [40], who noticed that the multiplicity of A; (%3, (/6b.b. b)),

b > 0, is 7, while that of A (S3, Sround) 18 only 4.

Theorem3.7 Letn > 1, b > 0, and s > 0. The smallest positive eigenvalue of the
Laplace—Beltrami operator on the homogeneous space (CP>*+1, Eb.s)) is

M(CPPH g ) = min[sns2 1662, 8(n + 1)s2} , (3.21)
and its multiplicity is

Qu+3)(n+1)  if 2b* < 52,
(2n +3)n if 2b* > 52, (3.22)
Qn+3)2n+1) if 2b* =52,

Proof Let Amin (b, s) denote the right-hand side of (3.21). Since, by Lemma 3.2,
1200, s) =8ns?> +16b>  and ALV (b, s) = 8(n + 1)s?

are eigenvalues of Aé(b,sy it follows that imin(b, s) > Al (CP2”+1, E(b.s))-

Conversely, let us show that X(P’q)(b, s) > Xmin(b, s) forevery p > g > 0 satisfy-
ing p=¢q mod 2 and (p, g) # (0, 0). This follows since

AP () = (4(p + 2k)n +4p(p + 2k + 1 + n))s> + 8k(k + 1)b?

clearly satisfies 1(P+25:2) (b, 5) > XP' 2P0 (b, ) for p > p/, and A PTEP (b, 5) >
L(PH2K.0) (p_ 5) for k > k'. This leaves only 21D (b, 5) and 129 (b, s) as candidates
for non-zero minimizers, concluding the proof of (3.21).

Regarding the multiplicity of this eigenvalue, from Lemma 3.2, we have that

e 7, contributes the eigenvalue 129 (b, s) to Spec(CP¥"+!, g, ) with multi-
plicity do.o = (n 4+ 1)(2n 4 3).

e 71,1 contributes the eigenvalue i(l’l)(b, s) to Spec(CPz”*l,g(bJ)) with multi-
plicity d1,1 = n(2n + 3).

This gives the values in the first two rows of (3.22), and the third row follows by
summing them. O
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3.5 Full Spectra

We conclude this section providing an explicit description of the full spectrum in some
particular cases, as a direct consequence of Lemma 3.2.

Theorem 3.8 Forn > 1, we have that

Spec(S* 3, h(t, 1, 1) = U {Mk,l(t)v ooy Mk (1) } (3.23)
k;(l)SlnSlgd 2 I+ Dmy g
Spec®PY bt .0y = | [Mk,l(t), o g (1) } (3.24)
ki eod 2 U+
Spec(CPP Rty = | {Mk,,(t), e s (0 } (3.25)
0<I<k
k=I=0 mod 2 Mkl
where
1
pid (1) = k(k +4n +2) + 10 +2) (72 _ 1), (3.26)
My = > dpg- (3.27)

(p.q)€Z*: p>4>0,
p+q=k, p—q=l

Proof From (3.4), we have the isometries h(z, ¢, 1) = g((ﬁz)*l (313! 1) for

metrics on $**3 and RP**3, and h(r) = g((ﬁt)—l 1) for metrics on CP21+1

Lemma 3.2 ensures that any eigenvalue in Spec(S4”+3, h(z,t, 1)) is asin (3.10), i.e.,

Py (L ] P11
A ([ T [f ) 4pn+4Q(P+”+1)+2Vj (ﬁt’ﬁt’ﬁt)
=4pn+4g(p+n+ D+ P - —q+2 %

=(p+q)(p+q+4n+2)+(p—q)(p—q+2)(,%—1)

for integers p, g with p > g > 0. We have used that v;k)(a, a,a) = k(k + 2)a’> by
(3.9). The same holds for Spec (RP4”+3, h(, ¢, t)), if we further assume p —q is even.
Similarly, Lemma 3.2 glves that Spec(CP 2n+1 ﬁ(t)) is the collection of eigenvalues
A q)(— 1) = AP q)( fz fz )formtegersp gwithp >qg >0and p—gq
even. Wntlng p+q= k and p—q =1, weobtainthat 0 <[/ <k, k =1 mod 2,
N2 q)(ft \ét, ﬁ, 1) = pr(t),and k =1 =0 mod 2 if p and ¢ are both even,
proving (3.23) and (3.25). The claimed multiplicity contribution (3.27) of uy ;(¢) to
both spectra follows also from Lemma 3.2, concluding the proof. i

Differently from the above situation, the full spectrum of ($**13, h(z1, 12, 13)),
or (§¥+3, 8(a,b,c,5s)) by means of the isometries in Remark 3.1, cannot be explicitly
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described with our methods, since the eigenvalues k(/.p 4) (a, b, c, s) are only computed
in terms of the eigenvalues v;.k) (a, b, c¢) of the Laplacian on (83, g(a,b,¢))» cf. (3.10)

and (3.11). A closed formula for all v;.k) (a, b, ¢), hence for all A;p’q) (a, b, c,s), would
be highly desirable, but seems to remain out of the reach of current techniques.

Nevertheless, with the aid of further symmetries, we can describe the full Laplace
spectrum in some special cases. For instance, we may enlarge the symmetry group
from Sp(n + 1) to Sp(n + 1)U(1). This corresponds to requiring that at least two of
the parameters a, b, ¢ coincide, say b = ¢, which, by [24, Lem. 3.1], implies that

v @, b, by = (k=20 — D)’ a® +2(@j — Dk =20 = D} b2, (3.28)

This yields an explicit expression for all APD (q b, b, s) via (3.10), that can be used
to determine the full Laplace spectrum of the SU(2n + 2)-invariant metrics

(5" 0) = "2 b L) = (8" g1 4 y)).
VATV (3.29)
RPY3, g0) = RP" e, 1 1) = (BP0 1 ).
V2tV
for any ¢t > 0.
Theorem 3.9 Ford = 4n + 3 withn > 1, we have that
spee8” g = |J {ma@. oo ], (3.30)
0<I<k, ~
k=l mod 2 M.l
spec®P g = |J i@ mo}, (3:31)
0<I<k, ~
k=I=0 mod 2 Mkl
where
1
() = k(k+d — 1) + 17 (72 - 1), (3.32)
ik = > dpg- (3.33)

(.4, )EZ’: p=4=0,
l<j=p—q+1, p+q=k,
p—q—2(j—D==l

Proof From (3.10), (3.28), and (3.29), see also Remark 3.1, the eigenvalues in
Spec($?, g(1)) are of the form

(p.q) ( )
M5 J5e 5 1) = (dpn+aq(p+n+ D) + 207 (5 550 )
=d-3)p+qédp+d+1)+22j—-D(p—q)

4 - D2+ (p—g -2 - D)}
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=(p+pd-1+p++(p—q-20-D) (k-1),

which coincides with 1,44 |p—g—2(j—1)|(¢). For integers 0 < [ < k with k — [ even,
Lemma 3.2 implies that 5y ;(¢) contributes to SpeC(Sd, g(t)) with multiplicity (3.33).
The statements regarding R P? follow by the same arguments, with p — ¢ even. O

Remark 3.10 Although the full spectrum of the Laplacian on (87, (1)) had not been
previously described in odd dimensions d > 5, partial results by Tanno [38, Lem. 4.1],
see also [12, §5], were sufficient to explicitly compute X (%4, g(1)).

We only analyze dimensions d = 3 mod 4 in Theorem 3.9 for simplicity, as the
description of the entire Spec(Sd , &(1)) for such d follows directly from Lemma 3.2
and (3.28). The same methods in Sect. 2 can be used to compute Spec(Sd , g(1)) in the
remaining cases, using G = SU(4!) and K = SU(451), see [11].

Example 3.11 The kth eigenvalue of the Laplacian on (CP>"*!, ggs) and ($¢, ground)
can be read from Theorems 3.8 and 3.9 respectively, by setting + = 1 in (3.26) and
(3.33), recovering the well-known formulae

(89, ground) = k(k +d — 1) and A (CP*! gpg) = 4k(k +2n + 1).

Recall that, since these are symmetric spaces, the above Laplace eigenvalues can be
computed with Freudenthal’s formula (2.4). Moreover, it can be checked combinato-
rially that the multiplicity of the kth eigenvalue Az ($¢, ground) is equal to

k+d k+d—2
Z(p—q+1)dp,q=<2)—<+d ) (3.34)

ptq=k
p=q=0

where we use the convention that (Z) =0ifa <b.

4 Spectral Uniqueness

In this section, we prove that the spectrum of the Laplace—Beltrami operator dis-
tinguishes homogeneous CROSSes up to isometries, proving Theorem C in the
Introduction. We begin showing that two isospectral Sp(n + 1)-invariant metrics on
$41+3 or RP#+3 must be isometric.

4.1 Spectral Uniqueness of Homogeneous Metrics on $47+3

Given real numbers a > b > ¢ > 0, consider the elementary symmetric polynomials
in their squares,
01:=0] (a2, bz, c2) —a>+ b+ cz,

0'2:20'2(612, bz, Cz) = a2b2 + a2C2 + bzcz, (41)

03:=03 (az, bz, cz) = a?b*c2.
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In the sequel, we repeatedly use the elementary fact that
(01,02,03) determines (a, b, ¢). “4.2)

Indeed, x° — 01x2 4+ o9x — 03 = (x — a?)(x — b?)(x — ¢?) determines a2, b2, ¢2 up
to permutations, hence (a, b, c) are completely determined sincea > b > ¢ > 0.
Recall that, by Lemma 3.2, eigenvalues in Spec(S4"+3, E(a,b,c,s)) are of the form

2PV (a,b,c,5) = 4((p+ n +q(p + D)s” + 20" (a, b, )

for some p > g > 0and 1 SjSp—q—l—l,where{v;k)(a,b,c) 1 <j<k+41}is

the spectrum of the operator (3.6). We assume that v](k) <... < v,ﬁljr)l , thus )»gp‘q) <

(p.q)
TS Al

Lemma 4.1 The smallest eigenvalue 0f1'4(—a2X% — bZX% — C2X§) on Vy,, see (3.6),
is given by

1)}4) (a,b,c) = 8(a®> +b* + %) — 8Va* + b* + ¢4 — a2h? — a2c? — b2c2.
Moreover, the multiplicity of this eigenvalue is 1 if and only ifa > b.

Proof From [24, Lem. 3.1], the matrix representing 14(—a2X12 — b2X§ — chg) is
similar to a block diagonal matrix diag(r41, rf), with blocks given by

16a% + 4(b* + ¢?) 2(b* — ¢?) 0
T = 120> =% 120+ 12(b* —3) ,
0 2(b% — ¢?) 16a% + 4(b* + ¢?)

2 _ (41007 + %) 6k —c?)
4= 6(b%2—c% 4a2+ 102+ )

Note that, although (3.6) is self-adjoint, the above ‘L’J is not symmetric because the
basis we used to represent it as a matrix is only orthogonal, and not orthonormal. The
eigenvalues of tf are 4a> + 16b° +4c¢* and 4a® +4b* + 16¢2, while the eigenvalues of
7, are 16a%+4b%+4c?, and 8(a® +b*+c?)£8vVa* + b* + ¢* — a2b? — a2c? — b2c2.

The minimum 1)}4) (a, b, c¢) of these five numbers is as claimed in the statement, since

8(a® +b* + %) — 8Va* + b* + ¢4 — a2b? — a2c? — b2c2 < 4a® + 4b% + 16¢2,

as easily shown with routine computations. Since equality in the above holds if and
only if a = b, the assertion regarding multiplicity also follows. O

B(a,b,c) = oy —Joi —30n. 4.3)
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Lemma 4.1 tells us that v{4) (a,b,c) = 8B(a, b, c) via (4.1). The next estimates will
be useful later.

Lemma4.2 Fora > b > ¢ > 0, we have that
b*+c? < B(a,b,c) < %(b2 + c2).
Furthermore, the second inequality above is an equality if and only if b = c.

Proof From (3.8), we get that f(a, b, ¢) = svi¥ > L@8b% + 16¢%) > b + %
We next prove the inequality at the right. By (4 3), the assertion is equivalent to

o] — %(b2 +c%) </ 012 — 3073. Since the left-hand side is nonnegative, squaring both
sides, this becomes equivalent to

—301(b* + ¢ + 2(b* + H)? < —30n.
By replacing o1 and o7 as in (4.1) and simple manipulations, one has that the above
condition is equivalent to 4b%c> < (b> + ¢?)?, which clearly holds, with equality if

and only if b = c. O

Lemma 4.3 The volume and scalar curvature of (S4”+3, E(a.b,c,5)) are given by

VOl(S4n+3 ground) 222 1
Vol S4n+37 — ’ 44
ol ( g(a,b,c,s)) stM (zn + 1)! 2 4n 4.4
2 4
scal(S4"+3, g(a,b,c,s)) = l6n(n + 2)S2 + 1601 — nazs — & 4.5)

03 03

Proof. The proof of (4.4) is left to the reader. (In this article, we will only use the fact
that Vol($* 13, Z(a.b.c,s)) depends only on s and o3, which is well-known.) We next
prove (4.5) using the Gray—O’Neill formula (5.6). Recalling the isometries (3.5), and
Newton’s identity 07 — 20103 = a*b* + a*c* + b*c*, we have

scal($4"+3, S(a,b,c,s) = Scal(SMH’ ih(\/s‘ ’ ﬁ’ %))
=5 sc:al(S“"+3 h(—=

V2a’ fb fc))
:16n(n+2)s +8<a +b2+c)

bEcr %t aPb? a1 1 1
-4 2 T Tz 2 2TeEta

— 20103 lop)
—2ns* ==

2
= 16n(n +2)s® + 807 — 422
03 03

2 4 4 2
= l6n(n + 2)s2 + 1601 — noas &'

03 03

@ Springer



The First Eigenvalue of a Homogeneous CROSS Page250f63 76

Lemma 4.4 Positive real numbers a, b, c, s satisfying a > b > c are determined by
the volume (4.4), the scalar curvature (4.5), and either

(i) the quantities AEI,O) (a,b,c,s) and Agl’l)(a, b,c,s);
(i1) the quantities Agl’l)(a, b,c,s), AEZ’O) (a,b,c,s), and )»54’0) (a,b,c,s).

Proof Let us begin with (i). Since )»51’1) = 8(n + 1)s2, the value of s > 0 is easily

determined. The volume then determines o3, and Aﬁl’o) = 4ns? + 20 determines o7.
Moreover, o, is determined by the scalar curvature, since (4.5) gives

4 2ns*
—a} + —Zs 2 + (scal($*"F3, ga p.e)) — 16n(n +2)5% — 16071) =0,
3 3

and at most one of the roots of this quadratic polynomial in o7 is positive, because the
coefficients of 022 and oy are both positive. Thus, (o1, 02, 03, s) are determined, and
hence so are (a, b, c, s) by (4.2).

Let us now turn to (ii). Just like in the previous case, Vol($#*13, S(a.b.c,s)) and Agl’ D
determine s and o3. Furthermore, )\52’0) = 8ns? + 8(b% + ¢?) determines b2 + 2.
From (3.10) and Lemma 4.1, we have A*? = 16052 420" = 16ns2+168(a, b, ¢),
so :=pB(a, b, ¢) is also determined.

Thus far, we know the (positive) values of the quantities s, 03 = a’b?c?, b? + 2,
and B, and wish to use them to uniquely determine the values of a > b > ¢ > 0. We
will see that there are two possible options for (a, b, ¢, s), and one of them will be
excluded using the value of the scalar curvature. From (4.3), we have that

300 — 2018 + B> = 0.

Substituting or = a®(b?> + ¢%) + Z—%, this equation can be written as
Ad* —Ba* +C =0, (4.6)
where
A=30*+c?) —28, B=§8 (2(b2 +e)— ,6) . C=305. &7

Note that A, B, and C are already determined, since they can be written in terms of
the known values b> + ¢2, 3, and 8. Clearly, C > 0. Lemma 4.2 implies that B > 0
and A > 0, with equality if and only if b = c. Let us assume A > 0, otherwise all
parameters can be easily (uniquely) determined using that b = c.

We know that the equation Ax> — Bx 4+ C = 0 must have at least one real root, so
its discriminant is nonnegative, that is,

B? —4AC > 0. (4.8)
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Moreover, since A, B, C are all positive, the equation in (4.6) with respect to the
variable a has two positive solutions a; < aj satisfying

, B—+BZ—4AC 4 2o BryB2-4AC
al == N an az - .
2A 2A

Settinga = a; > 0,i = 1, 2, since we know the values of b? + ¢% and b%c? = 03/a2,
it follows that b > 0 and ¢ > 0, satisfying b > ¢, become determined. Denote their
values by b; and ¢;, i = 1,2, according to the choice a = a;, i = 1,2. If one of
these choices i = 1, 2 violates the inequalities @; > b; > ¢; > 0, then (a, b, c, 5)
is determined, since (a, b, ¢) must then be equal to (a;, b;, c¢;) for the other choice
i = 1, 2. Thus, suppose that a; > b; > ¢; > 0 for both i = 1, 2. We will show that
scal ($*"3, gay b1.c1.9)) > scal($*F3, g(ay.0:.c1.5))» Which implies that only one of
(a;, b;, ci, s) fori = 1, 2 matches all five known quantities from the statement.
From (4.5), using that s, b2 + 2, 03, A, B and C are determined, we compute

F'_scal(S4”+3, g(az,bz,vz.S)) - scal(S4”+3, g(“lJ’lﬁlw‘))
' a3 —a?
2ns* 1 1 1
—16- @+ st (5 - 5 | 5
o3 a; ay) a;—aj

4 1 1 1 1
- — (b2+c2)+% S -5 )@ +ah@* + ) +o3 | = + =
o3 (@ —ap)\ay a3 a4

2ns* (b + 2 1
=16 — ns +C)+2ns422
o3 aya;
4 (2, 2 03 2, 2302, 2 ai +a;
—— b+ = 55 || @+a)®+c) +o3—5
03 aja; ajay
6ns* (b + 2 A 12 3B
—16— % + 2052 — 5 (B + D) - 4) (7(192 +ed)+ B) .
In the last step, we used that C = 3073 and the relations a 4+ a3 = 2 and a?a? = €
> = 203 1 27 A 172 7 A

between roots and coefficients of a quadratic equation. Basic manipulations give

F= —2'1Ts4(3;(1a2 +ed)— A) - %( (9(192 + - A2) B — 12AC>
_ _4”?54 — %(2,3(6(192 +c?) —28)B — 12Ac),

where the last step uses (4.7). To prove that F' < 0, since s, 8, A, B, and C are all
positive, it remains to show that G:=2p (6(172 +c?)— 2/3) B —12AC is positive. Since
B = B (2(b*> + ¢*) — B) by (4.7), we have that
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G =2B(6(b* +c*) —3B+B)B—12AC = 6(B+ %) B—12AC > 6(B*—2AC),
so the proof is complete by (4.8). O
Theorem 4.5 Two isospectral Sp(n + 1)-invariant metrics on §41+3 are isometric.

Proof In order to show that Spec($**+3, Z(a,b,c,s)) determines (a, b, c, s), we first
recall that since (84’”‘3, S(a,b,c,5)) 1s homogeneous, the first two heat invariants deter-
mine Vol($**3, g, p.c.5)) and scal($**+3, g, 1 c.5)), see e.g. [7, Chap. III, EIV].
Furthermore, by Lemma 4.4, it suffices to show that either XE]’O) (a,b,c,s) and
Agl’l)(a, b, c, s) are also determined by the spectrum.

From Theorem 3.5, there are 7 distinct possible values for the multiplicity of the first
eigenvalue Al(S4”+3, S(a.b.c.5))> see (3.17), thus the spectrum reveals which among
Agl ’O), AEZ’O), or A(ll ‘D realizes the minimum in (3.16). The proof is therefore naturally
divided in 7 cases, corresponding to the 7 rows in (3.17). We proceed with a case-by-
case analysis.

Row 1: A(ll’o) < min{)»iz’o), )\51’1)}. The quantity A(ll’o) is determined, since it is
equal to A (8443, Z(a.b.c.s))» SO it suffices to determine )»51’1) by Lemma 4.4. This is
achieved searching for it among larger eigenvalues in the spectrum.

Let us determine the second eigenvalue A,($*"*3, S(a,b,c,5)) under the current
assumptions. Note that A ($*13, E(ab.e.s)) = )»51’0) = Agl’o), thus the second eigen-
value must come from 7, 4, with (p, g) ¢ {(0,0), (1, 0)}, that is,

da (843 Z(ab.c.s)) = min )»gp'q)(a, b,c,s).
.b.c, R
(p,q)#{(0,0),(1,0)}

Lemma 3.4 implies that 12 ($*' 3, g(4.p.c.5)) = min {A(12,0)7 Agl‘l)}

(3,0) when n = 1 is excluded, since, by (3.8),

.Notethat (p, g) =

230 = 12052 + 200 (a, b, 0)

> 12ns” + 2(a2 +5b% + 9c2)

> 8ns? + 8(b* + ¢?)
)

\

(2,0)

In order to determine its multiplicity, we must take into account that A, and A§2’0)

may also contribute if they coincide with XEZ’O) . Analyzing each possibility, one obtains
the following table:
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2(S* 3 g pesy)  multiplicity  condition

D n@n +3) 250 > (D

x(z 0 n+1D2n+3) A7 < min(a{"P, 25"

AQ 0 2+ 1)@ +3) 177 =257V < min( gy o)
x(z 0 3+ D@n+3) 270 =280 =280 <Aty '
A(z D= enrpEn+3)aP” =24 < A(z 0

A(Z 0= k(l ” Gn+2)2n +3) A0 =20 = /\§1 D a0

A? 0 = xﬁl D @n+3)@n +3) AP0 =280 =80 =AY

As the multiplicities in the rows of (4.9) are all distinct, we hear the expression for
A2($4”+3, 8(a,b,c,s))- Thus, the cases in rows 1 and 5-7 are settled, since )\gl’l) is
. . el (2,0) (2,0) (2,0 1,1

determined. In row 4, i.e., if A} =X =23 < Ay, then, by (3.7), we have
a=>b=c,so k(l’o) and A(z ) determine (a, b, c, s), settling this case as well.

In row 3, i.e., if k(2 0 k§2,0) < mm{)n(1 D A(z 0)} thena = b > ¢ by (3.7),
since )L(12,0) = )Léz 0), and b2 + ¢% < 2, since )\52 0) Agl 1). Again from Lemma 3.4,
the third eigenvalue is given as follows:

23(8* 3 g pesy)  multiplicity  condition

A(l D n(2n + 3) A(z 0 /\il’l) 410
(2 0) (2 0) (1,1) (4.10)

A3 (n+1)Q2n+3) 13" < A

)\(2 0 — D 2n+1)(2n +3) )\(2 0 — D

Asin (4.9), the quantity )\53‘0) does not appear, since, using thata = b < s,

200 = 1205 + 20 (a, b, )
12ns% + 2(a* + 5b* + 9¢%)
= 12ns2 + 12b% + 18¢>

> 8ns’ + 16b>
)L(Z 0

v

Since the multiplicities in the rows of (4.10) are all distinct, the expression for
A3 (S 3, 8(a,b,c,s)) can be heard from the spectrum. The value Agl’l) is determined
in rows 1 and 3 of (4.10), hence these cases are settled by Lemma 4.4.

Suppose now that A(z 0 kgl’l), as indicated in row 2 of (4.10). At this point,
the strategy is to keep searching for the next eigenvalue until we find Agl’]), which
settles this case by Lemma 4.4. Since )\21‘0) = Agl,O)’ )»52‘0), )ng,O)’ and )ng,()) are all
strictly smaller than Aﬁl’ b , Lemma 3.4 ensures that the next eigenvalue is k§1 ’ 1), unless

n = 1, in which case 189 for 1 < j < 4 are the remaining candidates that might be

smaller than )»gl D Assumen = 1. As /\gl "D and X;S’O) contribute to the spectrum with
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multiplicities d1,1 = 5 and d3 9 = 20 respectively, Agl’l) is determined since it is the

next occurring eigenvalue (after the third eigenvalue) with odd multiplicity, no matter

where it is located among )\§3,0) < )L?’O) < A?’O) < )\23,()). It is worth mentioning

that the situation )»El’l) > )Lf’o) may in fact occur, provided s is sufficiently large.
It only remains to analyze row 2 of (4.9), i.e., the case )\?’0) < min{)»il’l), )\f’o) 5
which is only possible if @ > b. Suppose, for now, that n > 2. Then, by Lemma 3.4,

the third eigenvalue is given as follows:

A3(8*H3 g pesy)  multiplicity  condition

D n@n+3) 250 > 2D

250 (n+1D2n+3) 257 < min(a{"Y, 2%
250 20+ D@2n +3) 150 =250 <Y
W0 =2 an nEn+3) 250 =) <a$?
AP0 =D Gn+2)2n +3) 1570 =230 =LY

As above, since none of the multiplicities coincide, the spectrum determines the
expression for A3 (843, S(a.b.c.s)). We are done (by Lemma 4.4) whenever Agl’ Dis
determined, which does not happen with A3 (S4”+3, E(a.b,c.5)) only if A(22’0) < )»51’1).
In that case, the next two eigenvalues need to be analyzed, in a totally analogous
way, to show that Agl’l) is eventually determined by the spectrum because the possi-

ble multiplicities are again all distinct. The case n = 1 is slightly longer, as any of
)»33’0) e, )\f’o) may occur as the next distinct eigenvalue. However, since this is also
completely analogous to the above cases, the proof is omitted.

Row 2: )»51’1) < min{kgl’o), )»22’0)}. Since )\51’1) = 8(n + 1)s? is determined, so are
s > 0 and o3, the latter through (4.4). Moreover, since )qu’q) = 4(2qn +q(q+ 1))s2
for any ¢ > 0, the value of s determines the following infinite subset of the spectrum:

BO::[ Aiq’q), o qu’q) ig > 0} C Spec(S4”+3, Sabers))-
—_—_————
dg q-times

In fact, By = Spec (]HP”, Yiz ng) are precisely the basic eigenvalues, see Remark 3.3.
Consider the smallest eigenvalue in Spec(S4"+3, Z(a.b.c.s))  Bo, which is given
by the minimum of )Lgp’q), p > q > 0. Since )\51’0) < )L(I(H]’q) forall g > 0, and

)»52’0) < )»Ep’q) forall p > g > 0 with p —qg > 2 and (p, q) # (2, 0), this eigenvalue
is
min(Spec (84’”'3, g(a,b,c,s)) \Bo) multiplicity  condition
0 4+ 1) 240 <230 Al
(2.0) (1,0) (2,0) (4.1D)
A n+1DQ2n+3) 177 > A
A0 n+12n+7) A0 =220

For the multiplicity computation in the last two rows, we used that Aﬁz’o) < )Léz’o)

whenever A<11 0 > )»52’0), since a > b, and hence 7 o contributes to the spectrum with
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multiplicity d 0 = (n+1)(2n+3). Since none of the multiplicities in (4.11) coincide,

the spectrum determines the expression for the smallest nonbasic eigenvalue. In rows

1 and 3 of (4.11), the value of )»51’0) is determined, so we are done, by Lemma 4.4.
We now deal with the remaining row 2 as a particular case of the following setup:

A and A3 are known, and max{a{"", 27} < A0 (4.12)

In other words, we will not use the fact that, in row 2, Ail’l) < AEZ’O), since proving
the result under these weaker assumptions will simplify later parts of the proof.
Given that, under these assumptions, both s and A(z 0 — gns? + 8(b2 + cz) are

known, so is b2 + ¢2. Then, since A<q+2 @) — 4((2q +2)n+q(qg+3))s? +8(b* +c?),
the following infinite subset of the spectrum is also determined:

Bl::{ A§q+2’q), e, A(IQ+2’Q) iq > 0}.

dgy2,4-times

The smallest eigenvalue in Spec($**+3, Z(a,b,c,s))  (BoUBy) is the minimum among
the following union of sets:

(AT g = 0,k = ToddJufaf™? 1 g = OJU[AITT ) - g > 0, k > 4 even).

One can check that (" < 29759 for all k odd and g > 0, with (g, k) # (0, 1), by

(3.8); A(l ” )\gﬁz’q) for all ¢ > 0 since @ > b; and A(4 0 Ai‘”k’q) forallk > 4
even and q > 0, with (¢, k) # (0,4), by (3.8). This 1mphes that this minimum is

min(Spec($*" "3, g(b.c.s)) N (Bo UB1))  multiplicity  condition

PR 4+ 1) a0 < a0
)»(4 0) 2n:—5 )L(] 0) )L(4 0)
)L(l 0) )LY&,O) 4n+1) + (2n+5) )\(1 0) )»&4 ,0)

)»(1 0)

and 4o contributes with

The computation of multiplicities is done using that A(l 0

with multiplicity 2d; o = 4(n + 1), while 2{** )\g‘ 0
multiplicity dso = (*'}).
Once more, since the above multiplicities are pairwise different, the expression for

this eigenvalue can be read from the spectrum. Furthermore, in rows 1 and 3, the proof

and 71 o contributes

follows from Lemma 4.4 since Xgl,O) is determined. In row 2, the proof follows from

)Lgl,l), )L(IZ,O)

Lemma 4.4 since , and )»54’0) are determined.
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Row 3: )»32’0) < min {Agl’o) , Aﬁl’l) } Lemma 3.4 implies that the second eigenvalue

is 12(S™3, g4p.c.s)) = min {)»51’0), )»(11’1), )»(13’0) }, and, as Agl’o) < )»53’0), we have

22(8**+3, g4 p.c.s)) multiplicity condition

0 4+ 1) a0 <l
A n@n+3) 1 >4
AP0 =2 e T a0 =Y

As before, since the possible multiplicities are all distinct, the spectrum determines
the expression for the second eigenvalue.
If )\gl’o) = Agl’l), then both quantities are determined, thus so is (a, b, ¢, s) by
Lemma 4.4. The case )\(11,1) < k(ll’o) satisfies (4.12), hence was settled in Row 2.
Suppose kﬁl’o) < )\51’1). Note that % > 2ns2, since )»52’0) < )\51,0). Thus, )»52’0) >
XEZ,O) = 8ns? + 8(a? + ¢?) > 8ns? + 16ns? > )L(ll’l) and A(I.B’O) > 12ns2 + 2% +
5b2 +9cz) > 12ns2+4ns? > 8(n+ l)s2 = Agl’l) by (3.8). Consequently, Lemma 3.4
implies that the third eigenvalue is )\gl’l), which settles this case.
Row 4: )»51’0) = )\51,1) < Aﬁz’o). Both )»51’0) and )»il’l) are determined by the spectrum,
as they are equal to A (§n+3, E(a,b,c,s))> S0 the result follows from Lemma 4.4.
Row 5: )»El’o) = )»?’0) < Ail’l). The condition AEI’O) = Agz,O) implies a’ > 2ns?,
which, in turn, implies that A,($*13, E(a.b.e,s)) = A(ll’l), similarly to the last case in
Row 3. The desired conclusion then follows from Lemma 4.4.
Row 6: k(ll’l) = A(12’0> < A(ll’o). Since (4.12) holds, this case was settled in Row 2.

Row 7: )\51’0) = Agz,O) = )\51’1). Similarly to Row 4, as AEI,O) and A(ll’l) are known,
the result follows from Lemma 4.4. O

We now prove spectral uniqueness of Sp(n + 1)-invariant metrics on RP#*3. The
proof strategy is very similar to that of Theorem 4.5, so many details are omitted.

Theorem 4.6 Two isospectral Sp(n + 1)-invariant metrics on RP*H3 gre isometric.

Proof Similarly to the proof of Theorem 4.5, by homogeneity, the spectrum of
(RPY+3 g4 pes)) determines VOI(RPY' 3 g4 p ) = %VOI(S4”+3, ab.cs))
and scal(RP*"3, g4 p.c.5)) = scal($*" 3, g pc.s))-

First, let us determine (a, b, c, s) from Spec(]RP‘"’+3 , 8(a.b.c.s)) assuming that:

The values of )\51’1) and )\52’0) are known. (4.13)

Additionally, suppose )»52’0) < kéz’o) < Agz,O)’ which is equivalent toa > b > c. The
special cases a = b and b = ¢ are much simpler, and left to the reader.

By Lemma 4.3, Agl’l) =8(n + l)s2 and the volume determine s > 0, 03 and

Bozz[ Aiq’q), o qu’q) 1g>0 even} C Spec(]RP4"+3, S(a.bes))- (4.14)
—— —_—
dg q-times
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Similarly, A(ll’l) together with )»52’0) determine b* + ¢2, and consequently

Bl:z{ WAt a0, 5 even}. 4.15)

dg+2,4-times

By Theorem 3.5, the smallest eigenvalue in Spec(]RP4”+3, Sa,b.e,s)) N (Bp U By) is
the minimum of

(YD g > 0even} U {279 1 g > 0, k > 4, both even).

We have )LY"O) < k§4’0) by Lemma 4.1 and the assumption a > b. For even integers
k > 6 and g > 0, the inequality (3.8) gives

A§q+k,q) > 4((k +29)n+qlk+q+ 1))S2 + 2(2kb2 + k202)
> 24ns? + 24b* + 72¢*
> 16ns> + 16 3(b% + ¢?) > 16ns” + 168(a, b, c) = A0,

The last inequality follows from Lemma 4.2. Furthermore, we have )L(lq+4’q) > 20

for all ¢ > 0 even. Similarly, one may check that )ng,O) < A;ﬁz’q) forall g > O even.
The above facts imply the following:

min(Spec(RP*3, g(4.p.c.5))~(BoUB1)) multiplicity condition

A0 (n+1D@n+3) 25" <t
)L§4,0) (2an5 )L(Z,O) > X§4’0)
)\,;2’0) = )\,54’0) the sum of both )\,;2’0) = )\,54’0)

Since the above multiplicities are pairwise different, the expression for this eigen-
value can be read from the spectrum. In rows 2 and 3, the expression for )L§4’0) is
determined, thus (a, b, c, s) is determined by Lemma 4.4. Note that the hypotheses in
Lemma 4.4 are satisfied because the volume and scalar curvature of ($*13, S(a,b,c,s))
are determined by the spectrum of (IRP4”+3, S(a.b,c.5)), as explained above.

2,0 (4,0) (2,0
A < A

We now assume ,as in row 1. Thus, is determined, and so are

a? + 2, véz)(a, b, c¢) and

Bzzz{ k§q+2’q), . ,A(2q+2’q) :q >0 even}. (4.16)

dg+2,4-times
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Reasoning before, the smallest eigenvalue in Spec(RP4”+3, Z(a.b.c.s)) N BoUB1UBL)
is given as in the next table:

min(Spec(RP*'3, g4 p.c.5)) ~(Bo U Bi UBy)) multiplicity condition

20 (n+D@n+3) 2577 < 2H0
154,0) (ZnZ»S AgZ,O) - )\(4,0)
Agz,O) = )»54’0) the sum of both )\gZ,O) = )\§4,0)

Once again, the multiplicity distinguishes the situation in each of the three rows. In
rows 2 and 3, AEA"O) is determined, so are (a, b, c, s) by Lemma 4.4. In row 1, A(32’0) is
determined, and so is aZ + b2, which together with the already known values of a’+c?
and b>+c?, determine (a, b, ¢). This completes the proof that Spec (R P43, S(a.bc,s))
determines (a, b, ¢, s) under the assumption (4.13).

It remains to show that no loss of generality is incurred by assuming (4.13);
that is, we must prove that Ail’l) and A(lz’o) are determined by the spectrum of
(RPH+3, E(a,b,c,5))- According to Theorem 3.5, the multiplicity of the first eigen-
value of (RP*13, S(a,b,c,s)) can assume 7 different values, listed in (3.19). Thus, the
proof is naturally divided in seven cases corresponding to the rows in (3.19).

Row 1: )»il’l) < )»32’0). Since the expression for kgl’l) is determined, so are s and
By, see (4.14). One can easily check that Agz,O) < )\gp’q) forall p > g > 0 with
p — q even and strictly greater than 2. It follows that the smallest eigenvalue in
Spec(RPY3, g4 b c.5) ~ B is A0 = 8ns2 4 8(b? + ¢2), and (4.13) holds.

Row 2: XEZ’O) < Aﬁl’l) and a > b. Lemma 3.4 implies that the second eigenvalue is

(1,1) ,(2,0)
AT Ay

given by min{ }. Straightforward multiplicity computations give:

M(RP¥H3 g, pesy)  multiplicity — conditions

220 n+ 12 +3) A5 <"V and b > ¢
220 200+ 1)@2n+3) AP <AV and b = ¢
! n@n+3) A2 5 30D

)»52’0) _ Agl,l) n+1D)2n +3) )éz’o) = A(ll’l) and b > ¢
20 = 51D Gn+2)2n+3) 27” =2V and b = ¢

Since none of the multiplicities coincide, the expression for this eigenvalue can be
heard. In rows 3, 4 and 5, the value )\il’l) is determined, thus the proof is complete
since (4.13) holds. The case in row 2 is simple and left to the reader.

We now assume ng,O) < A(ll’l) and b < c, as in row 1. The expression for )ng’o)
determines a2 + c2. Lemma 3.4 ensures that the next eigenvalue is min{kgl ’1), /\_%2’0) },
with distinct multiplicities given by
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A3 (RPYH3 g4 pesy)  multiplicity — conditions

30 (n+12n+3)25” <aft?
k(ll’l) n(2n + 3) )\52’0) > )\il’l)
250 = @n+D@En+3) 257 =

12" < 239 then (™Y is determined, and (4.13) holds.

Agz,O) < kgl’l). Since )»5.2’0), j = 1,2,3, are determined, so are

Suppose that
52 +a® +b%, 5%+ a® + ¢%, and 5% + b* + ¢2, which uniquely determine the positive
values of (a, b, c¢) in terms of s. Lemma 3.4 implies that the fourth eigenvalue is given
by Aﬁl’l) , which determines s, and the proof of this case is complete.

Rows 3—4: )L(12,0) < )»51’]) and @ = b. These cases are simpler than Row 2 and left to
the reader.
Rows 5-7: )»El’ D= )»52’0). Since both expressions are determined, (4.13) holds. O

4.2 Spectral Uniqueness Among Homogeneous CROSSes

We first prove that an Sp(n + 1)-invariant metric on $***3 cannot be isospectral to an
Sp(n + 1)-invariant metric on R P#**3. For this, we need the following:

Lemma 4.7 Supposea > b > c > 0.
() Ifb* < 11c2, then v (a, b, ¢) < v (a, b, ¢) for all k > 0.
i) v (@, b, ) > max {v{" @, b, 0), v (@, b, ), v (@, b, )| for all k = 2.

Proof 1Itis well-known that the (k+1)-dimensional irreducible representation (tx, Vz,)
of SU(2) can be realized as the space of complex homogeneous polynomials of degree
k in two variables, with the action given by (¢- P) () = P(g~' (3)),where g~! ()
denotes matrix multiplication.

We fix the basis {P; : 0 < j < k}, with P; () = Zwk7 Tt is important to
note that this basis is orthogonal but not orthonormal with respect to the G-invariant
inner product. Thus, the matrix My = My (a, b, ¢) of tx (—azX% — bzX% — chg) with
respect to this basis is not symmetric, but is similar to a positive-definite symmetric
matrix.

According to the proof of [24, Lem. 3.1], we have that the only non-zero coefficients

of My = [mgk/).]i,jzoy,_.,k are given by

(i) = (k= 2))%a + (2] + Dk = 2j°)0* +¢») for0 < j <k,

m©) === Djb* =) for2 < j <k,
mﬁ-".iz,,- =—(k—-1-—j)k—HB*=) for0<j<k—2.

(4.17)
(Although in the statement of [24, Lem. 3.1] a negative sign is missing in the expres-
sions for the second and third rows, as displayed above, this typo does not have any
impact because the spectra of these two matrices coincide.)
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Let Dy = diag (d, @0 déik) ), where d; @b _ 7Tk = DI 1tis easy to check
that Dy Moy D2k is symmetric and has the same spectra as Ma;. Let

uw

_ _ k
Uk:=D2k+2M2k+2D2kl+2 — DszZszkl = [M,(’])-]i,j=0,.‘.,2k+2,
w
where . = 2k(k + 1)(b* + ¢%). We claim that
hain (diag (i, Do Mot Dy 1)) = hanin (M20). (4.18)

Of course, the left-hand side is equal to min{u, Amin(M2x)}, so it is sufficient to show
that i > Amin(M2g). Clearly,

(2k)

Amin(M2g) = )\mln(DZkMZszk ) = (DZkMZszk )jj=m;

for all j, thus Amin(Mar) < m(y) = 2k(k + 1)(b* + ¢?) = p, as desired.

Now, by (4.18), (i) holds if and only if Apin(Ug) > 0. It is a simple task to check
that the only non-zero coefficients of the (2k 4+ 3) x (2k + 3)-matrix Uy are:

1y = Usper siin = 2k +2)%a = 2(k — Dk + D(B* + ),

k k k
”B; = “E)% = ”ék)2k+2 = “2k+2 2% = = —(b* = V22 + D2k +2),
u =4k + D)@* +c?), forl<j<2k+1, and

—4k 4+ D(B* = 2 —DCk+3—
(k>2 —u®_ = ( + 1)( .C)«/(.] Y2k + .j), ford<j<okil.
Y2 T - ViQk+4—-N+ /G -2DRk+2-))

By the Gershgorin Circle Theorem, see e.g. [42], all eigenvalues A of Uy satisfy

: _ k (k) o,
pz min B =l — it 1= 1, 1), (4.19)
where the coefficients with index outside the range {0, . . ., 2k+2} are 0 by convention;

e.g., u % = 0. One can easily check that g(k, 0) = B(k, 2k +2) > 0 for k > 2, and
B(k, 1) = B(k,2k + 1) > 0. Furthermore,

_ _ 2 2y 4D (B =) 32k—1)
B(k,2) = Bk, 2k) =4k + 1)(b" + ¢7) NI

— (b* — A)V202k + D2k +2)
=4+ DO+ A -k + D) (355 + 5) P =)
>4k + D(b* +c*) — 4k + DEB* = ),
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which is positive, since the hypothesis 11¢% > b? is equivalent to b>+¢> > g(b2 —c?).
For 3 < j <2k — 1, one has that

N 2,2y 4k =) JGFDREFI—))
Bk, j) =k + D" +¢) = =@ i@
_4k+D (=) JG—DCE+3—))
ViCkH=H+/G-Dk+2—))

Moreover, a direct computation gives

Bk, j) = B(k,3) = 4k + )(b* + c?)
—a(k+ D(? = ) (BB D oY)

V5Q2k—1)++/3(2k=3) V3Q2kHT)+/2k—1
2,2 2 2 V2
> 4k + DG+ D) =l + DG = D) (s + )

C g .. . 2 J2 ~ 6 . : .
which is positive, since WA + _f+1 1.021 < 2. Therefore, the right-hand side

of (4.19) is positive, and hence so is Amin (Uk), Wthh concludes the proof of (i).
We now turn to (ii). We have that v(Zk) > 4kb? + 4k2c* > 4(b* + ¢2) = vgz) for
all k > 2, by (3.8). Before proceedmg, note that (4.17) can be used to check that

. 2k 2k 2k
a2k, _])Z:mi»’j) Im 5 ;]|—| §+§]| = 4(k— j)*(a® — b?) +4kb> +4k>c? (4.20)
for all 0 < j < 2k, where, by convention, m; ; = 0if i < 0 ori > 2k; see also the
proof of [24, Lem. 3.4].

Next, let us show that v(Zk)

< v22k) for all k > 1. The matrix M»y is similar to

. 2% 2%k
diag ([mé,-,z)j]og,jgk, [mgiﬁl,zﬁl]og,jgk—l) . 4.21)

Both blocks in the above block-diagonal matrix are tridiagonal matrices; the first one
is (k + 1) x (k 4+ 1) and the second is k x k. We shall only consider the case in which
k is even, since the case of odd k is analogous and left to the reader.

Using the Gershgorin Circle Theorem again, we have that the smallest eigenvalue
of the k x k-block is greater than the minimum of « (2%, j) for 0 < j < 2k with j
odd, which is realized when j = k & 1 by (4.20); namely,

a Rk, k £ 1) = 4a* + 4k — D)b* + 4k>c. (4.22)
On the one hand, since v{m < m,(czk) Akb? + 4k%c? < o2k, k1) because a > b,

we deduce that v(Zk) coincides with the smallest eigenvalue of the (k + 1) x (k + 1)-

block, and it is strlctly smaller than every eigenvalue of the k x k-block. On the other

hand, the (k + 1) x (k 4 1)-block is a tridiagonal matrix with non-zero non-diagonal

entries, thus it has simple spectrum, and, therefore, U{Zk) is strictly smaller than the

second eigenvalue of the first block. We conclude that U(Zk) < vfk).
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It only remains to show that a + b> 4 ¢? = vfl) < vézk) for every k > 2. This has

actually already been proven, since véZk) and I){Zk) are realized in different blocks, so

the previous case shows that v§2k> > a2k, k £ 1) = 4a> + 4(k — 1)b* + 4k>c2 by
(4.22), which gives v§2k) Ssa2+b2+c2 = ”1(1)- :

Proposition 4.8 For all n > 0, an Sp(n + 1)-invariant metric on §4+3 cannot be
isospectral to an Sp(n + 1)-invariant metric on R P13,

Proof Suppose that ($*'*3, g4, py.c1.s1)) and (RP¥F3 e, 1 () ) are isospectral
for some positive real numbers a; > b; > ¢; and s;, fori = 1,2. We assume n > 1
since the case n = 0 is very similar (essentially, one has to set s; = s, = 0).

The multiplicity of the first Laplace eigenvalue in both manifolds must coincide. By
Theorem 3.5, such multiplicities are given by (3.17) and (3.19), respectively. Hence, we
have that the multiplicity is equal to either n(2n+-3), (n+1)(2n+3),or 2n+1)(2n+3).

We first assume it is n(2n 4 3). The smallest positive eigenvalues of each spectra
coincide, that is, k(ll’l)(al, bi,c1,81) = A(ll’l)(az, b>, c2, 52), which gives s1 = s».
We set By as in (4.14), which is contained simultaneously in both spectra.

We have already seen in the proof of Theorem 4.6 that the smallest eigenvalue
in Spec(RPY3, 84 by cr5)) ~ Bo is 27V (aa, ba, ¢, 1), with multiplicity (n +
D@2n+3)ifay > by, 2(n + 1)(2n 4+ 3) ifax = by > ¢y, and 3(n + 1)(2n + 3) if
ay = by = c». Similarly, an almost identical procedure to that done for Row 2 in the
proof of Theorem 4.5 gives that the smallest eigenvalue in Spec($*' 3, g4, by .c1.51))
By is given as in (4.11). Since the only common value among their multiplicities is
(n + 1)(2n + 3), we have that Aiz’o)(al, by, cy,81) = kﬁz’o)(ag, by, ¢, 82).

Let us now assume that the multiplicity is (n + 1) (2n + 3). We have that a; > b; for
i = 1,2. Since the first eigenvalues coincide, we obtain that )»52’0) (a1, by, c1,51) =

Agz,O) (az, by, c2, s2). The second eigenvalue with its corresponding multiplicity on
(Y3 g0 br.crsn) (tesp. (RPYH3 g, 1) or.5,))) has been explicitly determined
at the beginning of the case Row 3 (resp. Row 2) in the proof of Theorem 4.5
(resp. Theorem 4.6). A simple inspection shows that the only possible coinci-
dence among their multiplicities is n(2n + 3), when the corresponding eigenvalue
is Aﬁl’l)(al, by, c1,81) = )»El’l)(az, by, 2, 52). Furthermore, a; > b; fori =1, 2.

When the multiplicity is (2n + 1)(2n + 3), one has that Agl’l)(al, by, c1, 1) =
Agz’o)(al, by, c1,81) = Agz’o)(az, by, c2,8) = )»il’l)(ag, by, c2,82) and a; > b; for
anyi =1, 2.

Summing up, we have proved thus far that:

1.1 11
/\§ )(al,bl,ChSl):)»g (a2, ba, 2, 52),

2,0 2,0
/\§ )(al,b1761,S1)=)»§ (a2, b, ¢, 52),

a; > b;, fori =1, 2.

This implies that
si=s; =sy and b} +cl =b3 +c3. (4.23)
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By (3.10), (4.23) forces vfz) (a1, b1, c1) = vf) (az, ba, c2). Consequently, the set
B defined as in (4.15) is simultaneously contained in both spectra. From the proofs
of Theorems 4.5 and 4.6, we easily see that the only possible coincidence among
multiplicities of the smallest eigenvalues in Spec($4”+3, S(ay,br.e1,s))  (BoUByp) and
Spec(RP¥H3 . g4y by cr5)) ~ (Bo U By) is dim Vg g = (2"15), thus

)L(14’0)(a1 ,bi,c1,8) = A<14‘0)(a2, by, c2,9). (4.24)

This situation occurs only if Agl’o) (a1, b1, c1,s) > )»54’0) (a1, by, c1, s), which gives
4ns? + 2(a% + b% + c%) > 16ns? + 2\){4)(02, by, cy) > 16ns? + 2(8b§ + 16c%) >
16ns® + 16(b7 + ¢?) by (3.8) and (4.23), thus a > 6ns? + 7(b? + ¢?), and only if
A0, by, 2, 5) > 1M (az, by, 2, ), which gives 8ns2 + 84 + 8¢? > 16ns2 +
2 (az, by, ¢2) > 16052 + 16b2 + 32¢2 by (3.8), thus

a3 > ns® + 2b3 + 3c3. (4.25)
At this point, we divide the proof according to whether bi2 < llci2 holds or not.

First case: Assume that bl.2 < llcl.z, forbothi =1, 2.

From (4.24), we obtain that v1(4) (a1, b1, c1) = v](4) (ap, by, ¢2). Therefore, the fol-
lowing subset is simultaneously contained in both spectra:

Bu={ A, AT g = Oeven. (4.26)

dg+4,4-times

From Lemma 3.2, the smallest eigenvalues in Spec($¥*+3, S(ar.br.crs)) ~ Bo U
By U By) is given by

Aikﬂ’q)(a], bi,ci.s) k= 1lodd, ¢ = 0}U
2+4.

x%f"qi(al,bl,m,s) g = 0}U

A D (ay, by, ey, s) g = 0)U

Agﬁk’q)(a], bi,c1,58) k> 6even, g > 0,}

{
min {
{
{

The last equality follows from the following facts, which, in turn, rely on (3.10):

o 1%y, by, c1,5) < WD @y by, ey, 5) it k > 8 is even, by Lemma 4.7;

° AEI’O)(al,bl,cl,s) < Aékﬂ’q)(al,bl, c1,s) if k > 0 is even and ¢ > 0, by
Lemma 4.7,

o M0y by er,s) < AP by et s) if k> 1is odd and ¢ > 0 with
(k, q) # (1, 0), by (3.8).
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Likewise, the smallest eigenvalue in Spec(IRP4”+3, S(ar.ba.cr.59))  (BoU B UBy) is
given by

(A @3, b2, 00, 5) g = O} U
min {A;4+q’q)(a2,b2, c2,5)1q = 0}U
73,5y, ¢.5) 1k = Geven, ¢ 20, }

. 2,0 6.0
=mln()»§ )(az,bz,cz,S),)»g )(az,bz,cz,s))~

The last equality follows from the following facts, where, once again, (3.10) is used:

° k§6’0) (ar, by, ca,8) < A§q+k’q)(a2, b, c2,s) if k > 8 is even, by Lemma 4.7,

o 13%ay, by, c2,5) < AT @y, by, 3, 5) if k > 4 is even and ¢ > 0, by
Lemma 4.7.

The multiplicities of the first eigenvalues are clearly given by:

2dim Vi it 2" @1, by, er,5) < 2%(ay, by, er, ),
dim Vg o if k(ll’o) (ai, b1, cy,s) > k(16’0) (a1, b1, c1,s),
2dim Vi o +dim Vo it A" (a1, by, c1,8) = 20a, by, 1, 5),
dim Va0 if 2.7 (a2, by, c2,8) < 2%P(az, ba, c2,5) and by > 3,
2dim Voo if )L§2’0)(a2, by, c2,58) < X§6’0) (ap, by, ca,s) and by = ¢,
dim Vg o if Aéz’o)(az, by, cp,8) > )»56’0) (ar, by, 2, 8),

dim V9 4 dim Vg o if AEZ,O) (ay,br,co,8) = )»56’0) (ap, by, c2,s) and by > ¢,
2dim V0 +dim Vg if )»;2’0)(612, by, cp,8) = )»&6’0) (az, by, cp, s) and by = 3,

respectively. Since the only possible coincidence among multiplicities is dim Vg o, we
have that )Lgf”o) (ai, by, c1,s) = )LE(”O) (az, ba, 2, s), which occurs only if

kil’o)(al, bi,ci1,s) > kiﬁ’o)(al, bi,c1,s) = 24ns* + 2V§6) (az, by, c2)
> 24ns? +24b5 +72¢5  (by (3.8))
> 24ns® +24(bF +¢f)  (by (4.23)),

thus a% > 10ns2+1 l(b%—}—c%), because )\il’o) (a1, by, c1, ) = 4ns> +2(af —i—b%—}—c%).
Furthermore, we have that vf6) (ai, by, c1) = vf6) (an, by, ¢2).

Repeating this procedure, we deduce from the multiplicity of the smallest eigenvalue
in Spec($* 3, gy by.cr.5)) ~ (BoU- - -UBy) and Spec(R P 3, 84y 1y cr.5)) ~ (BoU
-+ U Bg), where

B = Ikﬁqui’q), LA > even},

dg+2i q-times
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that )»izk’o)(al, bi,c1,5) = Agzk’o)(az, by, c2, s), which occurs only if

4ns® + 2(a% + b% + c%) = AEI’O) (ay, b1, c1, $)
> )»52]"0) (ar, by, c1,8) = 8kns® + 2v§2k) (az, by, ¢2)
> 8kns® + 8kb3 + 8k*c3  (by (3.8))
> 8kns? + 8k(b? 4+ ¢3)  (by (4.23)).

4.27)
Hence
a? > 22k — )ns? + (4k — 1)(B? + ¢3) (4.28)
for every positive integer k, which gives the required contradiction.
Second case: Assume that either
bt > 11ci, or b3 > llc3. (4.29)

So far, we have shown that s:=s; = s> and b% + cf = b% + c% from (4.23), and
Blai, by, c1) = Blaz, b2, c2) =: B (4.30)

from k(14’0)(a1, by, c1,8) = )»54’0) (az, by, ca, s), where B(a, b, ¢) is given as in (4.3).
Furthermore, since

VoI(S™"™2, gay.by.crsn) = VOIRPY ., g0, 15 00.50)) = 5 VOIS gy .00.50)):
Lemma 4.3 implies that o3(az, ba, c2) = 4 03(ay, by, c1), that is,

asbscs = 4albicl. (4.31)
Also, the proof of Lemma 4.4 ensures that

Aa} — Bai +Cy =0,

4 5 (4.32)

Aaz - Baz + C2 - 0,
where A = 3(b?+c})—2B, B = BQR(b?+c?)—B),Ci = 303(ay, by, c1) = 3aibic,
Cy = 3o03(az, by, cn) = Sa:ﬁb%c% = 4C}, and, moreover, A > 0, and B, Cy, C;

are all positive. Actually, also A > 0 by Lemma 4.2 and (4.29). Consequently,

a? = 5+(B £ /B2 —4AC;). We claim that only the larger real root occurs if

1

b; > 1l¢;: O

Claim 1 Ifb? > 11c7, then a} = 5+ (B + v/ B2 — 4AC;).

Proof Clearly, it is sufficient to show that ai2 > %. First, note that bi2 > llci2 implies

%(bl.2 + ciz) < bl.2 — cl.z. By straightforward manipulations, one has that

B _ @i+ =i (B— b + D) i+ — b (B— b+ D) _ o

24 2067 = )2 B RO7+c))? :
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Since S > blz + ci2 by Lemma 4.2, the assertion follows. O

Since (RP*3, g4y by.cr.50)) and ($¥F3, g4 by.c1.5)) were assumed to be
isospectral, their scalar curvatures must coincide. Thus, by Lemma 4.3,

0 = scal RPY, g4y by c2,52)) = 5€al($", g0y byer.sp)
= 16(612 _ az) _ 4 a2 (b +c ) + b%C% _ a%(b% + C%) + b%c%
2 1 b2 a%b%cf

4 ( (a303 +3) +b3c3)° (a%<b% +eb) + b%cf)z) '

212 .2 212 .2
asbycy aybic

Combining (4.23) and (4.31), tedious but straightforward computations give

0= st ((4a2 — B+ D) — a3 "§>
Za%b%c% 1 2 1 1 11 a3
((b% + C%)Z . 4}7?46? (433)
4 2 2 2 2 2 2
+ (2a1 +a2)(2611 _az) — 16((1] —az).

2b2 2

The following technical (but simple) facts will be used in the sequel.
Claim 2 Ifa% < a12, then the right-hand side of (4.33) is positive.

Proof Concerning the first term, we have that

2
@a? — )b} + ) — 4P AUSE S (@2 — ad) ((b2 ) - “1). (4.34)
2

2.2
By (4.25), we get that a3 > 2(b3 + c3) = 26} + ¢}) > 4bic1, thus 5T < byey <
2

b? + ¢?, which shows that (4.34) is positive.
To prove that the remaining terms in (4.33) are positive, it suffices to show that

(a§+2a%)<(bf t ) 16a3bict.
2

4 4
We already saw that a% > 4bcy, thus (bf + cf)2 — % > (bf + cf)2 —
g(b2 + c%)2 +1 (b2 - c2)2 ;(b2 + C2)2 Using, in addition, that a% + Zaf > Zaf,
the above is Verlﬁed if % (b2 + c%)2 > 16[9261, which holds thanks to the fact that
(b +c)? = (b3 + ¢3)? > 4b3cs = 162—%19%1 > 16bic?, by (4.31). O

22
bicy
I

Claim 3 Ifa% > 7a12, then the right-hand side of (4.33) is negative.
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Proof The first term in (4.33) is negative if and only if

2 2
(a3 — 4a?)(b} 4 ¢}) > 4bict a2a;‘

b < B9 < L and b} + ¢f = 2bicy, it is sufficient to show that
2 1

2(a3 —4aj) > %‘(a% — a?), which is clearly true because a3 > 7a7.
The remaining terms in (4.33) are negative if and only if

By noting that

b4 4
(a3 — 4a}) ((b% +c)? - 4—) > 16(a3 — a})a}bic}.

dhicy
49a]
4b%c% - %b%c% = %b%c%. Consequently, it is sufficient to show that

4h?cf
a4

. 4p?
Since ag > 49af, we have that % < < ﬁb%c%, and so (b% + c%)2 —

%(ag — 4a}) > 16(a5 — a})as.

The above identity can be easily verified keeping in mind that a% > 7a%. O

We are now in position to finish the proof, seeking the desired contradiction under
the assumption (4.29), that is, b,.2 > 11c,.2 forsomei =1, 2.

We first suppose that b% > llc%, thus a% = ﬁ(B + /B2 —4AC)) by Claim 1.

Thus, a? = 55 (B £ /B2 —4AC,) = 7+(B £ /B2 — 16AC}) < a?, so Claim 2
yields the desired contradiction.
Suppose now that b% > llc%. Then Claim 1 forces

@ =k (B +VB = 4AC2) =L (B +VB = 16AC1) . (4.35)

We recall that a? = (B £ /B2 —4ACy). If a? = (B + /B2 — 4AC}), then

a% > a%, thus Claim 2 gives a contradiction. Therefore,

af =5 (B - VB2 =440). (4.36)

According to Claim 3, it is sufficient to show that a% > 7a%. From (4.35) and (4.36),

it follows that this is equivalent to 6B < /B2 — 16AC| + 7y/B%> — 4AC. Thus, it
is sufficient to show that

36B% < B2 — 16AC; +49(B> — 4AC)) = 50B” — 212AC},

which holds since B> > 16AC}. O
Finally, we are in position to prove Theorem C in the Introduction.
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Proof of Theorem C Consider two homogeneous metrics on CROSSes that are isospec-
tral. Since the dimension of a manifold is one of its spectral invariants, we may assume
that these manifolds have the same dimension d.

We divide the proofin cases according to the congruence of d modulo 4. Ineach case,
we prove that homogeneous metrics are determined (up to isometry) by the spectrum.
We will make frequent use of the classification of homogeneous metrics on CROSSes,
discussed in the Introduction, that can be found e.g. in [1, Examples 6.16, 6.21] or [47],
and of Table 1. Recall also that, just like its scalar curvature, each eigenvalue of the
Laplacian on a closed Riemannian manifold (M, g) satisfies A ; (M, a g) = %)L (M, g)
for all « > 0, and the corresponding eigenspaces are the same, so Spec(M, o g) =
é Spec(M, g).

We recall from the proof of Theorem 4.5 that the volume and the scalar curvature
of a homogeneous Riemannian manifold are spectral invariants; this fact will be also
frequently used in the sequel without explicit mention.

e Case d = 0 mod 4: The only d-dimensional CROSSes are g4 RPI, CPY2,
HP*, and, if d = 16, also CaP?. Up to homotheties and isometries, there exists a
unique homogeneous metric on each of these manifolds. According to Tables 1 and
2, we have that

scal($9) scal RPY)  d(d—1)  scal(CP?) d
aMSH T 0T M@PY) T 2d+1) a(CPIA T2
scal HP9/*)  d(d +8) scal(CaP?) .
MEPIAY T 2d 48 r(CaP?) 7

For d > 4, the above quantities are all distinct, leading to a contradiction if there were
two isospectral but non-isometric d-dimensional CROSSes. If d = 4, then the above
invariant distinguishes every possibility excepting the pair $* and HP', which indeed
are homothetic, and therefore isometric as their volumes are the same.

e Case d = 1 mod 4: The only d-dimensional CROSSes are $¢ and RP<. Up to
homotheties and isometries, the only homogeneous metrics in each of them are g(z).
It is easy to see, using the explicit formulas in Tables 1 and 2, that the volume and
scalar curvature of (Sd, a g(t1)) and (IRPd, B g)), a, B > 0, cannot coincide.

We now prove that two isospectral homogeneous metrics on $¢ are isometric.
According to [12, Proposition 5.3], cf. Table 1, the first eigenvalue of (Sd, ag(t))is

A($4, ag(r))  multiplicity  condition

2 1 -
2(d +1) gd—=Dd+3) 1< 7= (4.37)

2@+ l@+ed+1) 1=

1 1 Va3

Since the above multiplicities are all distinct, the expression for this eigenvalue can
be read from the spectrum. Clearly, in row 2 of (4.37), the values of o and ¢ are
determined. In row 1, the value of « is determined from the first eigenvalue itself, and
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then the value of ¢ can be determined by examining another spectral invariant:
2 (d+1)/2
VoI5, ag(t) = 22— 1 a2, (4.38)

&0

Now assume ¢ > ;, as in row 3. We claim the second distinct eigenvalue is:

Vd+3

(89, ag(r)) multiplicity ~ condition

2 1 ]
2d+1) ad=Dd+3) Zm <t <1 (4.39)
2d+1) $d+3) t=1

12d—2+%) jd+Dd+3)t>1

Since the above multiplicities are all distinct, the spectrum determines the expression
for this second eigenvalue. Inrow 2 of (4.39), both « and ¢ are immediately determined.
In row 1, the value of « can be read from the eigenvalue itself, and then the value of ¢
is determined by the volume (4.38). In row 3, the quantity

L agt) — 1% agt) = 2

is known, as well as 2a“ by the volume (4.38), thus 7 and « are again determined.
We now prove that (4.39) holds, using the partial description of Spec(Sd ,g(1)) in
[38, §4] and [12, §5], which states that every eigenvalue is of the form

i (1) =kk+d — 1) + (5 — DI,

for integers 0 <[ < k with k =/ mod 2. Note that 189, g(1)) = (1,1(¢) under the

assumption ¢ > \/ﬁ. It is easy to see that 12(8%, g(t)) = min {Mz,o(t), Mz,z(t)}.

In the notation of [12], its multiplicity is dim E if p20(t) < p22(t), dim E3 if
p2,0(t) > pa2(t), and dim E; = dim(EY @ E3) if 142,0(t) = p2,2(1), where Ej is the
space of complex harmonic homogeneous quadratic polynomials in d + 1 variables.
Thus, dim E» = 445 "and dim EZ = dim E, — dim EY = 1(d + 1)(d + 3), since
dim Ep o = é—lt(d — 1)(d + 3) by [38, §5(a)], concluding the proof of (4.39).

A very similar procedure shows that any isospectral homogeneous metrics on R P¢
must be isometric.
e Cased =2 mod 4: Thecased = 2iseasy and left to the reader. Assume d > 6. The
only d-dimensional CROSSes are $¢, R P4, and CP?/2. Up to homotheties, the only
homogeneous metrics are ground ON $4 and RP9, and ﬁ(t) on CPI/2, By Theorem 3.7,
the first eigenvalue of (CP2 & ﬁ(t)) is as follows, see also (3.26):

Al(CPd/ 2 ﬁ(t)) multiplicity ~ condition
2d+2) td+Hd-21<1
2(d+2) 1dd+4) t=1
2d-24+3%) §d+HE+2)1>1

(4.40)
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The multiplicities of 184, B Sround) = i 4 and A, (RP4, 8/ Zround) = 2(d+1) ared+1

and (d;rz) 1 = d(d;“ 2) respectively, which are different from each other and from

all the multiplicities in (4.40). Thus, for any positive numbers «, 8, and B’, we have
that (Sd, B Zround), (RPd, B’ ground) and ((DPd/ 2w ﬁ(t)) are pairwise non-isospectral
for any fixed ¢ > 0. It is only left to show that there are no isospectral non-isometric
members in the latter family.

Since none of the multiplicities in (4.40) coincide for d > 6, the expression for this
eigenvalue is determined by the spectrum. In row 2, there is nothing to be done, since
the values of « and ¢ are determined. In row 1, the value of « is determined by the
first eigenvalue, and then the value of 7 can be determined through another spectral
invariant, such as

. /2
Vol(CPY?, ah(t)) = — 1% a/?. 4.41)
(9)!
Now suppose ¢ > 1, as in row 3. From the description of Spec(C P4/ 2,af1(t))
in Theorem 3.8, it is straightforward to check that the second distinct eigen-
value is A2(CPY2, ah(1)) = 2(d + 2), with multiplicity £(d + 4)(d — 2), since
AP0 ((V2n71 1) > A0D((V21)71, 1) = 2(d +2) for all p, ¢ satisfying p > ¢ >
0, with p — ¢ is even, and (p, q¢) ¢ {(0,0), (2,0), (1, 1)}. Similarly to row 1, the
values of « and ¢ are uniquely determined by this expression together with (4.41).
e Case d = 3 mod 4: The only d-dimensional CROSSes are $¢ and RP¢. Up to
homotheties and isometries, the only homogeneous metrics on either $¢ or R P¢ are
h(r1, 12, 13), and also k(¢) if d = 15. Indeed, recall that (3¢, g(r)) and (RP?, g(1)) are
isometric to (Sd, h(z, 1, 1)) and (RPY, h(z, 1, 1)), respectively, so we may disregard
the family of metrics g(z).

For d = 3, the non-existence of isospectral and non-isometric pairs of Sp(n +
1)-invariant metrics on $¢ (resp. RP?) has been proved independently in [24,
Theorem 1.5] and [28, Theorem 1.3]. Furthermore, Proposition 4.8 shows that a homo-
geneous $3 cannot be isospectral to a homogeneous R P3.

Assume henceforth that d > 3. By Theorems 4.5 and 4.6, two isospectral
Sp(dztil)-invariant metrics on either $¢ or RP? are in fact isometric. Furthermore,
Proposition 4.8 implies that any Sp(%)-invariant metric on $¢ is not isospectral to
any Sp(%)—invariant metric on R P%. Consequently, the result follows for d # 15.

From now on, we work exclusively in dimension d = 15. We first show that the
spectrum of (8P, B k(1)) determines B and t. We analyze its first eigenvalue, see [12,
§71.

A1(S1, BK(t)) multiplicity condition

32 9 t<‘/274

B

0 7 (4.42)
B 25 = 24

1 7 A

3(8 + t_z) 16 > 24

Since the above multiplicities are all distinct, the spectrum determines the expression
for this first eigenvalue. In row 2, both 8 and ¢ are automatically determined. In row
1, the value of B can be read from the first eigenvalue, and then the value of ¢ can be
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determined through another spectral invariant such as
15 27" 7 al5/2
Vol($7°, BKk(1)) = Tr B . (4.43)

Now assume ¢ > 27—4, as in row 3. We claim that the second distinct eigenvalue is

A2(S1, BK(t)) multiplicity condition

32 7

== 9 Vag <t <1

31%2 24 (4.44)
% 135 r=1

B(1+5) 126 t>1

Since the above multiplicities are all distinct, the spectrum once again determines
the expression for this second eigenvalue. In row 2, both 8 and ¢ are immediately
determined. In row 1, the value of B can be read from A>($'°, BKk(z)), and then the
value of 7 is determined by the volume (4.43). In row 3, the quantity

1a(8Y, BR() — 118", BR() =

is determined, as well as #'*815 by the volume, hence ¢ and 8 are both determined.
We now prove (4.44) using the partial description of Spec(S15 ,k(t)) givenin [12,
§7.1]. According to [12, Lem. 7.1], every eigenvalue is of the form

firi(t) = k(k + 14) + (5 — DI{ + 6) (4.45)

for integers 0 < [ < k with k =/ mod 2. Note that M8 k() = L1.1(¢) under
the assumption ¢ > ./ 27—4. One easily sees that 1,($'3, k(1)) = min {ﬁz,o(t), W2.2(1) }

Moreover, with the notation of [12, §7], its multiplicity is equal to dim Eg if fo0(t) <
[22(t), dim EZ if [io0(t) > H2.2(t), and dim E> = dim(EY @ E3) if fio0(t) =
H2.2(t), where Ej is the vector space of complex harmonic homogeneous quadratic
polynomials in 16 variables. Thus, dim E» = 135, and dim E5 = dim E; —dim EY =
135 — 9 = 126, since dim E» ¢ = 9, concluding the proof of (4.44). In a very similar
way one shows that the spectrum of (RPP, B k(t)) determines S and ¢.

We next show that (S, ah(t, 12, 13)) is not isospectral to ($'°, BKk(z)), unless
t =1 =t =1t3 =a/f = 1, that is, unless both metrics have constant sectional
curvature. The only way in which the multiplicity of A1 ($'>, S k()), listed above in
(4.42), may coincide with the multiplicity of A1($'°, @ h(r1, 12, 13)), obtained setting
n = 31in (3.17), is if they are both equal to 16. Namely, this is the case inrow 3 of (4.42)
and row 1 of (3.17). In this situation, consider the second eigenvalue of both manifolds,
which for (8", Bk(z)) is given in (4.44), and for ($'°, a h(t1, 12, 13)) is given in (4.9)
by setting n = 3 and multiplying the values (in the first column) by é In particular, the
only case where the multiplicities of A>($'>, B k(7)) and A2 ($", e h(t1, 12, 13)) could
possibly coincide is if they are equal to 135, in which case t = 1 by (4.44), and t; =
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th = t3 = 1, from )\iz’o) = )»52’0) = kgz,O) = kgl’l) in (4.9). Comparing the volumes,

one easily obtains that « = 8, so (8", BK(r)) and ($'°, a h(11, 12, 13)) are isometric
round spheres. Once more, similar arguments show that (RPY, ah(s, 12, 13)) is not
isospectral to (RPB, BK(t)),unlesst =t =t =13 = o/ = 1. The last remaining
cases; namely, showing that (81, e h(1y, 12, 13)) and (IRPls, a h(ty, 1, t3)) are not
isospectral to (R P 15 BKk(r)) and (813, BKk(1)), respectively, are also analogous to the
above, and their proofs are omitted. O

5 Stability in the Yamabe Problem

As another application of Theorem A, we now analyze which homogeneous metrics on
§41+3 and R P*"*3 are stable solutions to the Yamabe problem, proving Theorem D.
Combined with results in [12,24] and Remark 6.3, this completes the classification of
Yamabe stable homogeneous CROSSes, see Table 3.

5.1 Yamabe Problem

In order to keep the paper as self-contained as possible, we now briefly recall a few
basic facts about the Yamabe problem; for more details see, e.g., [3,12,17,26].

Given a closed Riemannian manifold (M, gg) of dimension n > 3, the Yamabe
problem consists of finding metrics g in the conformal class [gg] with constant scalar
curvature, which is equivalent to finding critical points of the (normalized) total scalar
curvature functional

A:[go] — R, A(g) = Vol(M, g)zn;”/ scal(g) volg . (5.1)
M

A homogeneous metric g is clearly a solution to the Yamabe problem in its conformal
class. Moreover, homogeneous metrics (invariant under the same transitive group
action) that are conformal must be homothetic, so any other solutions to the Yamabe
problem in [go] that have the same volume as go must be inhomogeneous.

The second variation of (5.1) at a solution g € [gg] with Vol(M, g) = 11is

-2
PAQW, ) =" /M ((n = DAY — scal()y) ¥ volg,

which is hence represented by the Jacobi operator Jg: L*(M,g) — L*(M, g)

scal(g)
n—1"

Jy =g - (5.2)

Thus, g is a nondegenerate solution if ker(Jy) = {0}, that is, if 2@ is not an
eigenvalue of the Laplacian on (M", g); and g is a stable nondegenerate solution if
A1(Jg) > 0, that is, if A1(Ag) > % In this case, g is a strict local minimum for
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the functional (5.1), hence locally the unique solution to the Yamabe problem. More
generally, the Morse index of a solution g is

iMorse(2) = #{A € Spec(Ag) \ {0} : (n — 1) < scal(g)}, (5.3)

where nonzero eigenvalues A € Spec(A,) are counted with multiplicity. In particular,
stable solutions g are precisely those with iporse (g2) = 0.

5.2 Permutation Action on ]Rio

Letus collect some elementary facts that will be used in the sequel on the representation
of the permutation group &3 of three letters on the positive octant R3>o ={(x,y,2) €
R3:x>0, y > 0, z > 0}, given by permuting the coordinates (x, y, z). Consider
the open fundamental domain

D={(x,y,200eR3,:0<x<y<z)
for this orthogonal G3-action, and the polynomial map ®: D — ]R3>0 given by
d(x,y,2) = (x+y+z xy+xz+yz, xyz), (5.4)

thatis, ®(x, y, z) = (o1, 02, 03), where o; = o0;(x, y, z) istheith elementary symmet-
ric polynomial in (x, y, z). Recall that ®(x, y, z) are the coefficients, with alternating
sign, of the monic univariate polynomial m(r) = r3— 01r2 + opr — 03 whose roots
are x, y, z. In particular, the image ® (D) C IR3>0 is the subset where the discriminant
A=((x— y)z(x — z)z(y — z)2 of the cubic polynomial m (r) is positive,

®(D) = {(01,02,03) € R3,: A = of0} —40; —40i03 — 2707 + 18010203 > 0},

cf. Procesi [32], keeping in mind that a 3 x 3 Bezoutiant matrix is positive-definite if
and only if its determinant (which equals the discriminant A) is positive.

Since det(d®(x, y,2)) = (x — y)(x —z2)(y —2) < 0 on D, it follows that (5.4)
is a diffeomorphism onto its image ® (D). Finally, any closed subset C C ]R3>O with
nonempty interior and invariant under the G3-action can be decomposed as

c=J cnegm= [ scnD). (5.5)

g€G3 8€G3

5.3 Stability

Henceforth, we assume that n > 1. The Riemannian submersion (S4”+3, h(t1, 1y, t3))
— (HP", grs) has totally geodesic fibers and its A-tensor (see e.g. [9, Def. 9.20])
has square norm ||A||?> = 4n (17 + 3 + 7). Thus, by the Gray—O’Neill formula [9,
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Proposition 9.70], we have
scal (S5 h(t1, 12, 13)) = scal(HHP", ggs) + scal($*, h(t1, 12, 13)) — | A||?

1 1 1
=l6nn+2)+4 S5 +t=5+5
L5

2 2

t t

) _1+L+i)_4n(t2+12+t2). (5.6)

2.2 2,2 2,2 2T
(t2t3 nty  tjn

The scalar curvature of (RP4”+3, h(t, o, t3)) is identical, since these manifolds
are locally isometric. We are now ready to prove Theorem D in the Introduction.

Proof of Theorem D First, let us consider the case of $*'3. As discussed above,
h(t, 1, 13) is a stable nondegenerate solution to the Yamabe problem if and only if

1(S* 3 h(ty, 1, t
M S b, 1, 1)) — - +(2‘ 21) . 5.7)

Our computations are significantly simplified by making the change of variables
x,v,2) = (tf,13.43), (5.8)
which is a diffeomorphism of IR3>0. In terms of these variables, by (5.6), we have
scal(x, y, z):=scal ($4”+3, h(z, 1, t3))
- 16n(n+2)+4<xl+§+%> —2<i+xlz+§> (5.9)

—dn(x+y+2),

and, from Theorem A, we have
21 (x, v, 2):=h1 (813 (11, 12, 13)) = min {A“»O), 220, MU)} . (5.10)

where
1,0) 1 1 1
ATV (x,y, ) =4n+ — 4+ — 4+ —,
x oy 2z
4 4
/\(2,0)(x,y,z):8n+—+—, (fx <y <2 (5.11)
y Z

A8V y, ) =8+ 1).

First, we claim that scal(x, y, z) < (4n +2)11-9(x, y, z), with equality holding if
and only if (x, y, z) = (1, 1, 1). Indeed, let us find the infimum of ¢: ]R3>0 - R,

$(x.y, 2):=3(@n + 2110 (x, y, 2) — scal(x, y, 2))xyz
=x2+y2+zz+(2n —Dxy+xz+y2)+2n(x+y+z—6)xyz,
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which is clearly invariant under the permutation action of &3 on IR3>0, and extends
to a polynomial map ¢: IR3>0 — IR. Rewriting ¢ (x, y, z) in terms of elementary

symmetric polynomials o;, that is, precomposing with the inverse ®~!: ®(D) — D
of the diffeomorphism (5.4), we have

(po dfl)(al, 02,03) = 012 + 2n — 3)oy — 12n03 + 2noy03,

which clearly has no critical points in ® (D) C ]R3>0, since its partial derivative with
respect to oo never vanishes. Therefore, ¢ (x, y, z) does not have any critical points in
D, or in g(D) for any g € G3, since G3 acts by diffeomorphisms. Moreover, since

Rigv | e ={r=y>02>0Ufx=2>0,y>0}U{y=2>0, x>0},
g€6s3

it follows that any interior critical points (xg, yo, 20) € ]R3>O of ¢ (x, y, z) must have at
least two equal coordinates. Restricting ¢ to the above subsets, itis easy to see that there
are only two such critical points: the saddle point (%, %, %), and the local minimum
(1,1, 1), where ¢ (1, 1, 1) = 0. Finally, it is straightforward that ¢ (x, y, z) > 0 on the
boundary ofR‘iO, andalso¢(x, y,z) > Oforall (x, y,z) € IR3>O withx+y+z > 6,50
¢ ]R3>0 — R attains its minimum on the compact set {(x, y, z) € ]R3>0 x+y+z<
6}, namely, at (1, 1, 1). Thus, ¢(x,y,z) > 0 in R3>0’ with equality if and only if
(x,y,2) = (1, 1, 1), proving the claim above.

Second, we claim thatscal(x, y, z) < (4n+2)A%0 (x, y, z) forall (x, y, z) € R3,,.
This follows easily since ¥ (x, y, 2):=3((n + 2)A2V(x, y, z) — scal(x, y, 2))xyz
satisfies

Yy, D) =32+ (- 22 +2x(y +2)
+2n(x+y+2)xyz+8nx(y+z+ (n—1)yz) > 0.

Therefore, (5.7) is equivalent to (x, y, z) # (1, 1, 1) and
scal(x, y,2) < @n + 220V (x, y,2) = 16Q2n + DH(n + 1).
In turn, by (5.9), the above inequality is equivalent to p(x, y, z) > 0, where

px, vy, 2)i=x? + y2 + 22 = 2(xy + x2 + y2)

(5.12)
+2n(x +y 4+ 2)xyz + 8(n” +n+ Dxyz.

This algebraically characterizes which spheres (S4”+3 ,h(t, 1, t3)), n > 1, are stable
nondegenerate solutions to the Yamabe problem; after the change of variables (5.8),
this is precisely the characterization claimed in Theorem D.
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This characterization carries over verbatim to (RP4"+3, h(r,1,13)), n > 1.
Indeed, h(1, 1, 13) is stable and nondegenerate on R P#"*3 if and only if

scal (RP*'3, h(1y, 1, 13))
4n + 2

M (RPY™ 3 h(ty, 12, 13)) — >0, (5.13)

cf. (5.7); and, since (RP*"*3, h(t, 1p, 13)) is locally isometric to ($* 3, h(t1, 12, 13)),
they have the same scalar curvature. Moreover, from Theorem A,

M(RPMH, h(11, 12, 3)) = min [)»(2’0), )»(1’1)} ,

where A9 and A(LD are again as in (5.11). If A9 < min {A(2,0)7 X(l’l)},
then (5.13) holds because its left-hand side is > ¢(x,y,z)/(2n + Dxyz >
0. Meanwhile, if A9 > min {120, A0D} then A (RP*F3 h(ty, 1, 13)) =
A ($*43, h(t1, 1, 13)), so (5.13) holds if and only if (5.7) holds, i.e., if and only
if p(x,y,2) > 0.

We now analyze the (topological) boundary

Sai=p 1 (0) (5.14)

of the semialgebraic open subset {(x, y, z) € Rio : p(x,y,z) > 0}. All claims in
Theorem D about 95, will be proved in terms of %,,, since these sets are mapped to
one another by the (orientation-preserving) diffeomorphism (5.8) of R3>0'

Since p(x, y, z) is clearly invariant under the action of the permutation group G3
on ]R3>O, so is its zero set X,. Rewriting (5.12) in terms of o;, one easily sees that the
image ® (X, ND) C IR3>0 under the diffeomorphism (5.4) is the portion inside @ (D)
of the graph of a smooth function of o1 and o3, namely,

2
o n
0 =001, 03) = Tl+50103+2(n2+n+1)03, (5.15)

and hence a smooth, connected, embedded surface in the open subset ® (D) C ]R3>0,
diffeomorphic to IR2>0. Therefore, also ¥, N D, as well as £, N g(D) = g(X, N D),
for any g € &3, are smooth, connected, embedded surfaces in IR3>0, diffeomorphic to
IR2>0. Since the G3-action on IR3>O is generated by reflections across the planes x = y,
x = z,and y = z, in order to conclude that X,, itself is a smooth, connected, embedded
surface in ]R3>O, using (5.5) with C = %,,, it suffices to show the following:

(1) 2,ND=%,NDinR3;

(2) ¥, ND meets the planes x = y and y = z orthogonally;

(3) The planar curves determined by intersecting ¥, N'D with x = y and y = z arrive
orthogonally at the diagonal line x = y = z in each of these planes.

All of the above can be directly verified by elementary methods, using (5.12). In
particular, it follows that the complement Rio . X, has two connected components.
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Finally, let us prove that ¥, C ]R3>0 is bounded. Using G3-invariance once again,
it suffices to show that there exists p > 0 such that ® (3, N D) C ®(B, N D), where
B, C R3>0 is the (portion in the positive octant of the) ball of radius p around the
origin. Indeed, this implies that 3, "D C B, N'D, and hence by (5.5), since both ¥,
and B, are invariant under the G3-action, that X, C B_p. Clearly,

®(B,ND) = {(01,02,03) € Ry : 0] — 202 < p*, A > 0},
while, from (5.15), the points (o1, 02, 03) € ®(X, N D) C 1R3>0 satisfy
012 — 20y = 209 — 2no103 — 8(n2 +n+ 1)oz < 207,

in addition to A > 0. In particular, it is enough to show that there exists p > 0
so that 207 < ,02 for all (o1, 02, 03) € ®(X, N D), i.e., that the quadratic function
02(01, 03) defined in (5.15) is bounded in the region of (o1, 03) € IR2>0 such that
(01, 02(01, 03), 03) satisfies A > 0. If o3 > 0 and A > 0, then

A1, 2 343 2
. = p (01 o (o1, 03) 409 (01, 03) 40{03 — 2703 + 180102(01,03)03)

n(o) +4) +4n + 4)° 62
—9nof +4(n* +n+1) (nof +2(n* +n+1)o; —9) o1 +27) 03

Ul + 5 (n2~|—n+1)01 —%)013

49y
- (3o}
— (§n

is also positive. For all o1 > 0, the above is a concave quadratic function of o3, since

its leading coefficient is < —32. Thus, for each o7 > 0, the quantlty = can only be

positive for o3 in a bounded interval, whose endpoints depend contlnuously on oj.
Moreover, such interval is nonempty if and only if the discriminant

(9— 8(112 +n+ 1) o1 —2n012>3

of the above quadratic form in o3 is nonnegative, and, since n > 0, a necessary
condition for thisis 0 < 07 < % Therefore, the (topological) closure of the region of
(01,03) € R2 <o such that (o1, 02(01, 03), 03) satisfies A > 0 is compact, and hence
the quadratic function o7 (o1, 03) is bounded in this region, as desired. O

6 Bifurcation in the Yamabe Problem

As an application of the characterization of stable homogeneous solutions to the
Yamabe problem in the previous section, we now establish nonuniqueness results
via Bifurcation Theory, along the lines of [12-14,17]. Following these references,
solutions to the Yamabe problem are said to bifurcate from a curve g(t) of solu-
tions on M at t = t, if there exist a sequence of parameters #, converging to t,,
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and constant scalar curvature metrics g, € [g(#,)] converging to g(t.), such that
Vol(M, g,) = Vol(M, g(t;)) and g, # g(t,), forall g € IN.

The bifurcating solutions g, typically have less symmetries than g(z,) and are
harder to find by direct methods. Standard variational bifurcation results applied to
the functional (5.1) imply that bifurcation of solutions along g(¢) can be detected by
jumps in the Morse index (5.3) of g(¢), see [17, Theorem 3.3].

6.1 Bifurcations

Let us now prove Corollary E in the Introduction.

Proof of Corollary E We use the notation from the proof of Theorem D, in terms of the
variables (5.8). Let a: [—¢, ] — ]R3>0, a(s) = (x(s), y(s), z(s)), be a continuous
curve that crosses the surface X,, C IR3>O, see (5.14), and assume it does so only once.
By Theorem D, the Morse index of h(a (s)) jumps as s goes from —e to &; namely

intorse (h(@(—2))) — iMme(h(a(e)))} > 202 +3n > 5,

is at least as large as the multiplicity of the eigenvalue A1) — scal /(4n + 2) of
Jh(a(s)) that changes sign when a(s) crosses X,, see (3.17) or (3.19), and the proof of
Theorem D. Furthermore, we may assume without loss of generality that h(a(:l:e))
are nondegenerate, as this corresponds to a(+¢) € ]R3>0 belonging to an open and
dense subset (contained in the complement of X,,) and iporse (+) 1S locally constant on
this set. Under these conditions, bifurcation of solutions from h(a (s)) follows from
[17, Theorem 3.3]. Finally, the solutions bifurcating from h(ot (s)) are inhomogeneous
since conformal homogeneous metrics are homothetic, see Subsection 5.1.

Remark 6.1 Earlier results in [13,30] imply that if ¢1, #5, #3 are positive numbers satis-
fying that scal(S3, h(t, 1, t3)) > (, then there exists a sequence of sufficiently small
ex > 0, that converges to 0, such that inhomogeneous solutions to the Yamabe prob-
lem bifurcate from ($4”+3, h(erty, ertr, skt3)) for all k € IN. However, this collapsing
bifurcation result does not imply Corollary E.

Regarding homogeneous metrics on C P>, we have the following result:

Proposition 6.2 There are infinitely many branches of inhomogeneous solutions to the
Yamabe problem on CP>"*1 n > 1, that bifurcate from h(t) as t \ 0.

Proof This is an instance of a general result of Otoba and Petean [30, Thm 1.1],
see Proposition 6.9. Alternatively, it can be proven using [17, Theorem 3.3] and The-
orem 3.8, to directly show that inorse (R(2)) 7 00 as \ 0, as in [12]. O

Remark 6.3 There is usually considerable interest in the first bifurcation instant, which
corresponds to the transition between stability and instability, such as crossing the
surface 3S, in Corollary E about $*'*3. In the case of (CP*'*! h(t)), since the

equality (47 + 1)i(CP¥"* h(t)) = scal (CP?"*! h(r)) is only possible if the
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minimum in the formula for A (CP?"+1, ﬁ(t)) in Theorem B is achieved at 8(n + 1),
this transition happens when ¢ crosses the (first bifurcation) value

VCn2+n+ 12 +4n— 2n2 +n+1)
2n '

ly =

More precisely, h(7) is a stable nondegenerate solution if and only if 7 > ¢,.

6.2 Degenerations

In this subsection, we analyze the (Yamabe) stability of h(z, 13, £3) as it degenerates,
i.e., as some t; converge to either 0 or co. Note that degenerations where some #; /' 0o
are stable, since the subset ]R3>O N S, of parameters corresponding to unstable metrics
is bounded, as a consequence of Theorem D. Thus, we restrict ourselves to the case in
which all #; remain finite, and call the number of #; that converge to 0 the codimension
of the degeneration.

Proposition 6.4 The following hold about degenerations along 1-parameter subfam-
ilies of homogeneous metrics h(t1, t, 13) on $* 13 and RP*" 13 n > 1:

(1) Degenerations of codimension 1 or 3 may occur through degenerate, stable, and
unstable solutions, or through a combination of these;
(2) Degenerations of codimension 2 occur only through stable solutions.

Proof Once again, we use the notation from the proof of Theorem D, in terms of
variables (5.8). We claim that the (topological) closure of ¥, inside R3>0, see (5.14),
consists of the union of X,, with a diagonal line segment inside each of the 3 coordinate
hyperplanes that form the boundary BIR3>0. Given the G3-symmetries, without loss of

generality, we consider only the part of BIRSEO where z = 0. From (5.12), we have that

p(x,,0) = (x — )%, (6.1)

however, the accumulation points of ¥, only lie in a finite segment along the diagonal
x = y, since ¥, C IE{3>0 is bounded. Solving for z in the polynomial equation
p(x, x, z) = 0, and then finding its zeroes in x, one sees that the accumulation points
of %, on the plane z = 0 are precisely L = {(x,x,0) € R}, : 0 < x < ¢,}, where

_ Va3 +n24+2n+Dn+1)— @02 +n+1)
n

Ly

Thus, the accumulation points of X, on 8R3>0 are the 3 diagonal line segments of
length ¢£,, starting at the origin, i.e., the G3-orbit of L, proving the above claim.
Claim (2) now follows, as the coordinate axes only intersect this accumulation set
at the origin. Claim (1) also follows, since X, and both connected components of its
complement in IR3>0 have accumulation points in the complement of the coordinate
axes in BIR3>O, as well as at the origin. O

@ Springer



The First Eigenvalue of a Homogeneous CROSS Page550f63 76

Remark 6.5 Degenerations do not always correspond to collapse, in the sense of
Gromov—Hausdorff convergence to limit metric space with lower Hausdorff dimen-
sion. As an illustration, consider ($°, h(t1, 72, 13)), with 0 < #; < £, < t3. Since
this is a class of uniformly doubling metric spaces [18], any sequence along which
the diameter remains bounded has a Gromov—Hausdorff convergent subsequence [31,
Proposition 11.1.12]. It can be shown that diam($*, h(#1, 2, £3)) remains bounded if
and only if 7, remains bounded, see [18, Proposition 7.1] or [24, Cor. 4.4]. If 1 \ O,
then also diam(S°, h(t1, 72, #3)) \, 0 and hence the Gromov-Hausdorff limit is a
point. On the one hand, if #, remains away from 0 and #; \ O, then the limit is a
round sphere g2 () of radius 1, in which case there is collapse. Note that, unless
t, = t3, there is no uniform lower bound on the Ricci curvature as #; N\ 0. On the
other hand, if #; and #; remain bounded and 73 oo, then the limit is $3 endowed
with a (homogeneous) sub-Riemannian distance function, which is a metric space of
larger Hausdorff dimension, equal to 4.

6.3 Bifurcations Versus Degenerations

Based on the literature about bifurcation of homogeneous solutions to the Yamabe
problem cited above, one intuitively expects close relations between degenerations
and accumulating bifurcations, manifested through the Morse index blowing up. We
now discuss a few such relations.

Proposition 6.6 Let M be a closed manifold and ;. (M, g(t)) — B,dim B > 1, bea
1-parameter family of Riemannian submersions with totally geodesic fibers isometric
to Fy, such that scal(g(t)) is constant for all t € (0, 1], diam(F;) \( O ast \ 0, and
lim\ o inf Ric(F};) > « for some k € R. Then, as t 0,

iMorse (&(1)) /1 00 = scal(F;) /" +o0. (6.2)

Proof Suppose that scal(F;) < C as ¢ N\ 0. The scalar curvature of g(¢) is given by
(see [9, Proposition 9.70])

scal(g(t)) = scal(F;) + scal(B) o m; — ||At||2,

and hence is also bounded from above as ¢ \ 0. On the other hand, all eigenvalues of
the Laplacian Ag(;) on (M, g(t)) are of the form

A1) = xj(Fy) + 1 (B), (6.3)

forsome A ; (Fy) € Spec(Af,)and Ay (B) € Spec(Ap),see[5, Theorem 3.6]. Although
not all combinations (6.3) of eigenvalues of F; and B occur, there is an inclusion
Spec(Ap) C Spec(Ag(r)), since lifting an eigenfunction of A g with eigenvalue A, (B)
gives an eigenfunction of Ay () with same eigenvalue. These eigenvalues of A, are
called basic and are independent of 7. Since diam(F;) N\ 0 as r \( 0 and F; have a
uniform lower bound on Ricci curvature, the Lévy-Gromov isoperimetric inequality
[6, Cor. 17] implies that 11 (F;) * co. Thus, by (6.3), all non-basic eigenvalues satisfy
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A(t) /oo ast N\ 0. Therefore, if # > 0 is sufficiently small, only basic eigenvalues
contribute to the Morse index of g(7), because scal(g(¢)) is bounded, cf. (5.3). For
the same reason, there are at most finitely many basic eigenvalues Ax(B) that satisfy
(n — 1)Ax(B) < scal(g(t)), which implies that iporse (2(2)) is bounded as t N\ 0.
The converse implication follows from Otoba and Petean [30, Theorem 4.1]. O

Remark 6.7 In Proposition 6.6, the hypothesis diam(F;) N\, 0 as ¢ \, 0 cannot be
relaxed to Vol(F;) N\ 0, as exemplified by letting F; be the Berger sphere ($°, g(7))
or a flat torus $'(r) x $!. In these examples, A1(F;) remains bounded as r \, 0,
Ric(F;) > 0, and Vol(F;) N\ 0, but diam(F;) — diam(Fp) > 0. Roughly speaking,
this corresponds to the fact that diam(F;) N\ O detects whether F; collapses in all
directions, while Vol(F;) N\, O only detects if F; collapses in some direction. If the
collapse F; — Fj is sufficiently controlled (e.g., with upper and lower bounds on the
sectional curvature), then A (F;) — A1 (Fp), see [19].

Remark 6.8 A compact homogeneous space M = G/H admits G-invariant metrics
g with scal > 0 if and only if M is not a torus. In this case, M also admits many
I-parameter families g(z), + € (0, 1] of G-invariant metrics such that, as ¢t \ 0,
scal(g(t)) /' oo and Vol(M, g(t)) = 1, e.g., by considering (normalized) Cheeger
deformations with respect to any subaction by a non-Abelian subgroup, such as
SU(2) C G. In this situation, it seems natural to expect that iporse (g(2)) /1 00.
In principle, confirming this would solely rely on a careful analysis of the spec-
trum of homogeneous spaces. Nevertheless, a proof seems currently elusive, except
if (G/H, g(t)) admits nontrivial Riemannian submersions, in which case one may use
Proposition 6.6, see also [13, Theorem 4.1].

Consider the canonical variation g(¢) = 12 Zver + Ehor Of a Riemannian submersion
F — M — B with totally geodesic fibers, where all manifolds are closed. In this
situation, concerning the setting of Proposition 6.6, scal(g()) is constant for all ¢ €
(0, 1] if and only if scal(B), scal(F'), and | A||? are constant. Moreover, scal(F;) =
tlz scal(F), diam(F;) = tdiam(F), and lim\ o inf Ric(F;) > « for some x € R if
and only if Ric(F) > 0; however, since 11 (F;) = tiz)q (F), the latter is not necessary
to prove the following adaptation of Proposition 6.6 along the same lines:

Proposition 6.9 Let F — M — B be a Riemannian submersion with totally geodesic
fibers, and dim B > 1. Suppose F and B are closed manifolds with constant scalar
curvature. Then the canonical variation g(t) satisfies, ast \ 0,

iMorse(g(2)) /o0 <<= scal(F) > 0. (6.4)

Note this proves that the converse statement to [30, Theorem 1.1] holds.

Let us briefly revisit the possible degenerations of ($4”+3, h(t, 1, t3)), n>1,
under the light of Propositions 6.6 and 6.9. For all codimension 1 degenerations #; ~\ O,
direct inspection shows the Morse index remains bounded. Note that Propositions 6.6
and 6.9 do not apply, since the diameter of F; = ($3, h(t, 1, t3)) does not converge
to 0, see Remarks 6.7 and 6.5, and unless t» = f3, there is no uniform lower bound

on the Ricci curvature. All codimension 2 degenerations are stable, and although
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diam(F;) \ O, there is no uniform lower bound on the Ricci curvature; in fact,
scal N\, —oo. Finally, codimension 3 degenerations may or may not have unbounded
Morse index, depending on how the #;’s go to zero.

Infinitely many bifurcations due to unboundedness of the Morse index are only
known to occur accompanied by collapse of codimension > 2, cf. Proposition 6.2;
and Propositions 6.6 and 6.9 provide further evidence that this should always be the
case. It would be interesting to confirm this, that is, show that if a family of Riemannian
submersions 7; : (M, g(t)) — B with totally geodesic fibers and scal(g(z)) constant
for all + € (0, 1] satisfies imorse(2(¢)) /' 0o and the Gromov—Hausdorff limit of
(M, g(t)) as t N\ O exists and has finite diameter, then its Hausdorff dimension must
be <dimM — 2.
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Appendix A. First Eigenvalue and Yamabe Stability in the Remaining
Homogeneous CROSSes

For the convenience of the reader, we now provide formulae (with references) for
the first eigenvalue Aj(M, g) of the Laplacian on all CROSSes M, endowed with a
homogeneous G-invariant metric g, as presented in Table 1 below.

The (complete) spectrum of a CROSS, endowed with its canonical symmetric space
metric, can be found in [8, p. 202]. Detailed spectral computations for $"”, RP",
and CP" are given in [7]; for HP" and CaP?, see [15]. Regarding the remaining
homogeneous metrics, we have that:

(i) The first eigenvalue of g(r) on $2"*! is computed in [38], and an inspection of
which eigenfunctions are Z,-invariant yields its first eigenvalue on R P21,

(i) The first eigenvalue of h(#, #2, 13) on $3 and RP3 are computed in [24], and the
special cases where two of #1, t2, 13 coincide done previously in [40];

(iii) The first eigenvalue of h(t1, 2, 13) on $**3 and R P*"*3 are computed in The-
orem A, and the special case ] = t, = t3 done previously in [39];

(iv) The first eigenvalue of k(¢) on $!3 is computed in [12, Proposition 7.3], and an
inspection of which eigenfunctions are Z-invariant yields its first eigenvalue on
RP3;

(v) The first eigenvalue of ﬁ(t) on CP¥+1 s computed in Theorem B.

As an alternative reference for (i) and the special case 1; = f, = 3 in (iii) one may use,
respectively, [ 12, Propositions 5.3 and 6.3]. These homogeneous metrics, together with
those in (iv), account for all isometry classes of distance spheres in rank one symmetric
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space. A unified and explicit description of their full spectrum was recently obtained
by the authors [11, Theorem A].

The above computations are carried out in one of two possible ways. The first, and
more general, is the Lie-theoretic approach described in Sect. 2, whichis used in (ii) and
(iii), and generalizes the classical approach developed for canonical symmetric space
metrics (see e.g. [41,43]). The second, which relies on the existence of Riemannian
submersions with minimal fibers, is explained in detail in [5] and [10], building on
the earlier works [38—40], and is used in (i), in the special case t; = f, = #3 in (iii), as
well as in (iv) and (v).

We also include in Table 1 formulae for the scalar curvature of these CROSSes.
The computation for the symmetric space metric on $”, RP", CP", HP", and CaP?
follows from the computation of their Einstein constants, which are, respectively,
n—1,n—1,2(n+ 1), 4(n 4+ 2), and 36, under the normalization convention that
these metrics have sec = 1 for $” and RP", and 1 < sec < 4 in the remaining cases.
The computation for the other homogeneous metrics uses the Gray—O’Neill formula
[9, Proposition 9.70], see also (5.6) and [12, Proposition 4.2]. In Table 3, by solving
the inequality

scal(M, g) < (dimM — 1)A (M, g), (A1)

we present the range of parameters for which these metrics are stable solutions to the
Yamabe problem. If equality holds in (A.1), g is labeled as degenerate stable.

Remark A.1 For the convenience of the reader, we also identify some small impreci-
sions and typos in the literature. First, the multiplicity of the kth eigenvalue of the
round sphere, 2 (89, Sround) = k(k +d — 1), is given by (3.34). Unfortunately, this
formula appears with (the same) typos in [7, p. 162] and [16, p. 35].

Second, the computation of some heat invariants of CaP? carried out in [15] is
incorrect. For instance, the ratio aj/ag of the first two heat invariants, which is equal
to &al evaluates to a negative number according to the formulae in [15, §13]. The
correct values for these invariants are given in [4, Theorem 2.1]. More precisely, in
the notation of [15, §12], the values of 5; are correct, except for ng = —175/4,

= 2864323/256, and 11 = 18445239/4096. Furthermore, the second row of

¢p2(Cay) 10 [15, p. 20] should be replaced with

3!
Ep2(cay) (1) = Mo ml/n)tZU (—1)/ g¥( 15) +0(1),
=0

which gives, forany 0 <m <7,

121 T—m+k! girm
m—m, )Z( )n7m+k—k! 18 :

Using the above, one obtains the correct value aj /ag = 4/3, according to the normal-
ization used in [15], for which the scalar curvature of CaP? is scal = 8.
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Table 3 Classification of homogeneous metrics on CROSSes that are stable solutions to the Yamabe prob-
lem, with same conventions as in Table 1

M g Stability as solution to the Yamabe problem
" Zround degenerate stable
SZ}H-I g(t) t£1
(2:1(532 + 222 + zﬁ) +8(n +n + 1) (10213)>
gin+3 h(t1, 12, 13) o 15 + 1] > 2033 + 42 +1343), and
(1,2, 13) #(1, 1, 1)
3 h(t1, 12, 13) (1.1, 13) # (1,1, 1)
§1s k(1) t> /319 —4) = 04236, and 1 # 1
RP" Zround stable
RP2+] g(t) stable
20t} + 13 +12) + 8% +n + D)) (111213)?
Rp4n+3 h(ty, 1o, t (
(1. 2.13) +t{e+ t§+ tf > 2043 + 133 +1313)
RP? h(t1. 1. 13) stable

RPIS k(1) t> /319 —4)=0.4236

cpn 2FS stable if n > 2, degenerate stable if n = 1
cput] B . \/\/(2;12 +n+1)24+4n—2n2+n+1)
2n
HpP" 2FS stable if n > 2, degenerate stable if n = 1
CaP? 2FS stable
Metrics are labeled degenerate stable if their Jacobi operator (5.2) is positive-semidefinite with nontrivial
kernel
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