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Dedicated to the memory of Marcel Berger

ABSTRACT. In this paper, we establish a new algebraic charac-
terization of sectional curvature bounds sec > k and sec < k us-
ing only curvature terms in the Weitzenbock formulae for sym-
metric p-tensors. By introducing a symmetric analogue of the
KulkarniNomizu product, we provide a simple formula for such
curvature terms. We also give an application of the Bochner tech-
nique to closed 4-manifolds with indefinite intersection form and
sec > 0 or sec = 0, obtaining new insight into the Hopf Conjec-
ture, without any symmetry assumptions.

1. INTRODUCTION

In geometric terms, the sectional curvature of a Riemannian manifold (M, g) is
the most natural generalization to higher dimensions of the Gaussian curvature of
a surface, given that it controls the behavior of geodesics. However, its algebraic
features render its study much more complicated. A substantial part of this com-
plication arises from the fact that, even at a pointwise level, sec: Gr(T,M) — R is
a nonlinear function defined on the Grassmannian of 2-planes in T, M, a quadric
variety inside the unit sphere of AT, M, defined by the Pliicker relations. The
main goal of this paper is to shed further light on the algebraic nature of sectional
curvature by relating it to the curvature terms in Weitzenbock formulae, which
are linear endomorphisms and hence computationally more accessible.

Given a Riemannian n-manifold (M, g), consider the vector bundle E — M
associated with the frame bundle of M via a representation p: O(n) — O(E)
of the orthogonal group. Geometrically relevant Laplacians A on sections of
E, as the Hodge Laplacian for E = APTM and the Lichnerowicz Laplacian for
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E = Sym” TM, are related to the connection Laplacian V*V via the Weitzenbick
Sformula

A=V*V +tK(R,p),

where t € R is a constant and K (R, p) is a linear endomorphism of E deter-
mined by the curvature operator R of (M,g) and the orthogonal representation
p (see (2.2) and Section 2 for details). As observed by Hitchin [Hit15], an alge-
braic curvature operator R: A2 R™ — A2R™ is positive semidefinite if and only if
the endomorphism KX (R, p) is positive semidefinite for 2// irreducible representa-
tions p: O(n) — O(E). Our first result is a similar algebraic characterization of
sectional curvature bounds using traceless symmetric p-tensors, that is, represen-
tations p: O(n) — O(Symg R"™).

Theorem A. An algebraic curvature operator R: A* R"™ — A2R™ has secg = k,
respectively secg < k, if and only if K(R — k1d, Sym! R™) is positive semidefinite,
respectively negative semidefinite, for all p = 2.

The fact that secg < 0 implies negative-semidefiniteness of K (R, Sym! R")
for all p = 2 was previously obtained in [HMS16] (see also [DS10]).

An algebraic characterization of secg = 0 is arguably more relevant than the
analogous characterization of R being positive semidefinite for two key reasons.
First, pointwise, R is a linear endomorphism, so its positive-semidefiniteness is al-
ready characterized by Sylvester’s criterion. Second, globally, closed manifolds that
admit metrics with positive-semidefinite R have been classified (see Theorem 1.13
in [Wil07]; see also [BW08]), while several questions about manifolds that admit
metrics with sec > 0 remain unanswered (see [Wil07, Zil07, Zil14] for surveys).

In order to exploit Theorem A and gain a deeper algebraic understanding
of sectional curvature bounds, it is crucial to (effectively) compute the curvature
terms K (R, Sym}] R™). Our second result offers a procedure that relies on a sym-
metric version @ of the Kulkarni-Nomizu product, which we introduce in Section
4, and the decomposition into O(n)-irreducible components of arbitrary elements
R € Sym*(A2R™), which are called algebraic modified curvature operators. Specifi-
cally,

R =Ry + Ry + Ry + R, € Sym*(A*R"),
where Ry, is the scalar curvature part, Ry is the traceless Ricci part, Ry is the Weyl
tensor part, and R,s, which vanishes if and only if R satisfies the first Bianchi

identity. For completeness and comparison, we also state how curvature terms
K (R, APR") for the representations

p:0(n) - O(APRM)

can be computed by using the classical Kulkarni-Nomizu product @, a result ob-
tained by Labbi [Lab15, Proposition 4.2] in the unmodified case R ,s = 0.
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Theorem B. IfR € Sym”(A2R™) is an algebraic modified curvature operator,
then
K (R, Symf R™)

_(n+p-2 n+2p-4
= <7n(p—1)K(RU’ )+7n(p—l)

g@(p—z)
KRz, ) + K (R, n)) L
2(n-p)

K(R,APR") = <
p—-1

_ o(p-2)
Ru+=2PR, — 2Ry + 4RA4) O (gpi

-1 -2)

forallp =2 and2 < p < n— 2 respectively, where T is the representation Symg R™.

The ranges of p not covered in Theorem B correspond to trivial cases (see Re-
mark 2.3). For instance, if p = 1, then K (R, A'R") = K (R, Sym(l) R™) = Ricg is
the Ricci tensor of R (see Example 2.2); this is the context where the Weitzenbock
formula was used by Bochner [Boc46, YB53] to prove vanishing theorems for har-
monic 1-forms and Killing vector fields on closed manifolds whose Ricci curvature
has a sign. A new application of the Bochner technique, which relies on a detailed
analysis of positive-definiteness of K (R, APRR™), was recently found in [PW].

It was observed by Berger that positive-semidefiniteness of K (R, SymO R™)
is an intermediate condition between Ric = 0 and sec = 0 (see Remark 3.2).
Thus, by Theorem A, positive-semidefiniteness of K (R, Syml R") for all 1 <
p < q provides a family parametrized by q € IN of interpolating curvature con-
ditions between Ric > 0 (corresponding to ¢ = 1) and sec > 0 (corresponding
to q = ). The convex sets that form this family are spectrahedra, for which
there are efficient algorithms to check membership of a given curvature opera-
tor (see [BKM]). Moreover, since ®-products and @-products with the metric g
preserve positive-semidefiniteness, Theorem B provides a sufficient condition for
positive-semidefiniteness of K (R, APR™) and K (R, Sym R™) in terms of the
components of R. This is also suggestive of other potential relations between
positive-semidefiniteness of the endomorphisms K (R, Sym} R"™) for higher val-
ues of p = 2, which could lead to algebraic characterizations of sectional curvature
bounds more powerful than Theorem A.

Our third result concerns simply connected closed 4-manifolds that have
sec > 0, which are conjecturally diffeomorphic to S4 or CP2, and hence have
definite intersection form. It is an application of our extension of Labbi [Lab15]
to the modified case, that is, the formula K (R4, A2R*) = 4R 4 in Theorem B,
together with the Bochner technique and the Finsler-Thorpe trick [Tho71, Tho72]
(see also [BKM]).

Theorem C. Let (M,g) be a closed simply connected Riemannian 4-manifold
with sec > 0 whose intersection form is indefinite. Then, the set of points where the
curvature operator is not positive definite has at least two connected components with
nonempty interior.
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The question of whether $? x $2, which has indefinite intersection form,
admits metrics with sec > 0 is a famous unsolved problem, known as the Hopf
conjecture. By Theorem C, if any such metric g existed, then there would be
a region which disconnects (52 x §2,g) where its curvature operator is positive
definite. Recall that closed n-manifolds whose curvature operator is everywhere
positive definite are diffeomorphic to a space form $™/T (see [BW08]).

Another direct consequence of Theorem C is that a closed simply connected
Kihler 4-manifold with sec > 0 has definite intersection form. Indeed, the curva-
ture operator of a Kihler 4-manifold is not positive definite at any point. Recall
that a classical result of Andreotti and Frankel [Fra61], using methods from com-
plex and algebraic geometry, shows that the only Kihler 4-manifold as above is
CP2.

Relaxing the condition sec > 0 to sec = 0 on closed simply connected 4-
manifolds, the conjectured list of possible diffeomorphism types grows to include
S2x §2, CP?#CP2, and CP?#CP2. Apart from CP2#CP?, these 4-manifolds have
indefinite intersection form. In this context, we have a rigidity counterpart to
Theorem C, as follows.

Theorem D. Let (M,g) be a closed simply connected Riemannian 4-manifold
with sec = 0 whose intersection form is indefinite. Then, one of the following holds:

(i) The set of points where the curvature operator is not positive semidefinite has
at least two connected components.

(i) (M,g) is isometric to the Riemannian product (S* X S%,g1 ® g2) where
(52,21) and (S%,22) have sec > 0.

As mentioned above, closed manifolds with everywhere positive-semidefinite
curvature operator are classified [Wil07, Theorem 1.13].

The use of symmetries led to substantial advances towards the Hopf conjec-
ture, notably with [HK89] and [GW14], and more generally towards understand-
ing manifolds with sec > 0 or sec = 0 via the Grove Symmetry Program [Gro02].
However, as these methods reach their exhaustion, it seems very important to
make new progress without relying on symmetries, as is achieved in Theorems C
and D.

Finally, Theorems C and D also yield the following global obstruction to
the existence of curvature-homogeneous metrics, that is, metrics whose curvature
operator is the same at every point (cf. [KP94]; see [KTV92] and Section 1.4 in
[Gil07] for surveys).

Corollary E. Let (M,g) be a closed simply connected Riemannian 4-manifold
with indefinite intersection form. If (M,g) has sec > 0, then it is not curvature
homogeneous. If (M, g) has sec = 0, then it can only be curvature homogeneous if it is
isometric to the product of two round spheres of possibly different radi.

This paper is organized as follows. In Section 2, we recall the abstract frame-
work for Weitzenbsck formulae, the definition and basic properties of its curva-
ture term K (R, p), and some aspects of exterior and symmetric powers (of the
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defining O(n)-representation); we also provide a general overview of the Bochner
technique. Section 3 contains the proof of Theorem A. After recalling the clas-
sical Kulkarni-Nomizu product @ for symmetric tensors on exterior powers, we
introduce the product @ for symmetric tensors on symmetric powers in Section 4.
Furthermore, some important representation theoretic aspects of these Kulkarni-
Nomizu algebras are discussed in Subsection 4.2. Building on this material, The-
orem B is proved in Section 5. Finally, Section 6 contains the proofs of Theorems
Cand D.

Conventions. Throughout the paper we make frequent use of the following
conventions. Every finite-dimensional vector space V with an inner product is
identified with the dual vector space V*, and we often regard the exterior power
APV and the symmetric power Sym” V as vector subspaces of the tensor power
V®P . The canonical orthonormal basis of R™ is denoted {e;}. The corresponding
orthonormal basis of the pth exterior power APR™ is {e;, Aej, A --+ Aej,, 11 <
iy <--- <ip}. For p =2, there is a canonical identification AZRM = s0(n) with
the Lie algebra of SO(n), given by e; A e; = E;j, where E;; is the matrix whose
(i, ) entry is +1, (j, i) entry is —1, and all other entries are zero.

The pth symmetric power Sym? R™ is spanned by {e;, Ve, v -+ -V ei,, i1 <
iy < -+ <1ip}. Moreover, we identify Sym” R" with the space of homogeneous
polynomials of degree p on R™, by means of e;, Ve;, vV - --Ve;, = X Xi,...Xi,,
where x; denote the canonical coordinates of R". We also denote the product of
two polynomials @ € Sym” R"™ and ¢ € Sym? R" by ¢ v ¢ € Sym” " R™. The
inner product of two elements @, ¢ € Sym” R" is defined to be (@, @) = P (),
where @ is the differential operator of order p dual to @, obtained by replacing
each x; with 0/0x;. For example, |le; v ejll = 1ifi # j; however, |le; Vel = V2.
The space of traceless symmetric p-tensors Sym) R™ is the subspace of Sym” R"
consisting of harmonic polynomials. Its orthogonal complement is isomorphic
to Sym” 2 R" via multiplication by ¥ = S, x?. Given @ € Sym” R", we
shall denote by @y its orthogonal projection onto Sym! R". The above element
r2 € Sym” R" is often called g, which also stands for Riemannian metrics.

Finally, our sign convention for the curvature operator R: A2TpyM — A2T, M of
a Riemannian manifold (M, g) is given by (R(XAY), ZAW) = (R(X,Y)Z, W) =
(Vixy1Z — VxVyZ + VyVxZ, W), so that sec(X A Y) = R(X A Y, X A Y) if X
and Y are orthonormal vectors.

2. WEITZENBOCK FORMULAE

In this section, we recall the abstract framework for Weitzenbick formulae tollow-
ing [Bes08, Hit15], discuss the basic algebraic properties of its curvature term, and
give a quick account of the so-called Bochner technique.

Let (M,g) be an n-dimensional Riemannian manifold, and let Fr(TM) de-
note the principal O(n)-bundle of orthonormal frames on (M, g). The structure
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group O(n) is replaced accordingly if (M, g) has additional structures, for exam-
ple, with SO(n) if (M, g) has an orientation, and with Spin(n) if it has a spin
structure. Every orthogonal representation p: O(n) — O(E) gives rise to a Rie-
mannian vector bundle E — M, associated with Fr(TM) via p, which we also
denote by E or p. Moreover, E has a linear connection induced by the Levi-
Civita connection of (M, g), and both connections are denoted V. The connection
Laplacian, or rough Laplacian, is the differential operator V*V on sections of E,
where V* is the Lz—adjoint of V; or, in local coordinates, V¥V = — Zli(zl VE VE,
where {E;} is an orthonormal frame for TM. Note that a section o of E satisfies
V*Vo = 0if and only if o is parallel.

The Weitzenbick formula relates the connection Laplacian and other geomet-
rically relevant Laplacians on sections of E, collectively denoted by A, via

(2.1) A=V*V +tK(R,p),

where t € R is an appropriately chosen constant. The curvature term XK (R, p) is
the fiberwise linear endomorphism of E defined by

2.2) K(R,p) =~ > Rapdp(Xa) dp(Xp),
a,b

where {X,} is an orthonormal basis of the Lie algebra so(n) = A2R", such that
the curvature operator of (M, g) is identified with

R = > RapXa ® Xp
a,b

by using an orthonormal frame on M (cf. [Bes08, (1.142)], [Hit15]). Note that
XK (R, p) is self-adjoint, since R is self-adjoint and dp (X) are skew-adjoint, as p is
orthogonal.

A fundamental observation is that (2.2), as a pointwise definition, can be un-
derstood abstractly as an algebraic construction associating K (R, p) € Symz(E )
with each modified algebraic curvature operator R € Sym*(A*R™). In other words,
there is no need for R to satisfy the first Bianchi identity. The following properties
of (2.2) are straightforward to verify.

Proposition 2.1. The map K(-,p): Symz(/\ZIR") - Symz(E ) satisfies the
Jollowing:
(i) XK(-,p) is linear and O(n)-equivariant.
(i) K(R,p) = 0 if p is the trivial representation (or, more generally, if dp = 0).
(iii) For any two O(n)-representations p;: O(n) — O(E;),

K (R, p1@p2) = K(R, p1)®K (R, p2) € Sym*(E1) ®Sym® (E2) C Sym’*(E1®E;).
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(iv) Ifp has no trivial factors and R is positive definite, then K (R, p) is also pos-
itive definite. In particular, if R is positive semidefinite, then so is X(R, p).

Example 2.2. Let p be the defining O(n)-representation on R", and recall
that the corresponding associated bundle is the tangent bundle TM. Set {X,} to
be the basis of so(n) consisting of matrices Ejj, 1 < i < j < n, defined in the
conventions in the Introduction. Given R € Sym*(A2R"), write R; jke for the
coefhicient Rap, where X; = Ejj and Xp = Eyy. Since dp(X) = X, we have that,
forall p < q,

(K(R,pleyp,eq)
== > > Rixe(EijExpep, eq)

i<jk<fl
= > > Rijke(Sppex — Skpey, Sjqgei — Sige;)
i<jk<l
= > D> Rije(8¢p6jqSki — 50p8iqSkj — OkpSjabei + OkpigSe;)
i<jk<l
= D Rigip— 2. Rigpi+ X Rajp;
i<p p<i<q a<j
= zRviqi
i
= Ricgr(ep,eq).

Thus, the curvature term K (R, p) € Sym2 (R"™) is the Ricci tensor of R.

2.1. Exterior and Symmetric Powers. The representations p of O(n) that
are most relevant for this paper are the exterior powers A\PR™ and symmetric powers
Sym” R" of the defining representation of O(n) in R, respectively, given by

PAY(VI A+ AVUp) = AV A -+ - AN AV,

(2.3) pA) (V1 V - VUp) =AUV V - - - V AV,

forall A € O(n), v; € R". The linearizations of (2.3) are given by the Leibniz
rule:

(2.4) dp(X)(V1 A== AVp) =

=XV A AVp+ - +VUIL A= AVUp_1 A (XVp),
(2.5) dp(X)(v1 V- V) =

=XV) V- VU 4+ +UI V- VUV (XVp),

for all X € so(n). Identifying @ € Sym” R" with a homogeneous polynomial
@: R" — R, as explained in the end of the Introduction, the action of O(n)
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becomes
p(A) (@) =poATl,

where A € O(n) is identified with the orthogonal transformation A: R" — R".
In this language, the linearization of p at a matrix X = E;; € so(n) becomes

d
(2.6) dp(Eij)p = E((p o e tEif)

(2 o
t=0 h lan JaXi P-

Remark 2.3. Although the O(n)-representations A" 'R" and A'R" are not
isomorphic, their linearizations agree (by identifying A" 'R" = A'R"™ = R"
as vector spaces), and hence, by Example 2.2, we have that K (R, A" IR") =
K (R, A'R™) = K(R,R") = Ricg. Moreover, A°R"™, A"RR", and Sym0 R™ have
trivial linearization and hence the corresponding curvature terms X (R, p) vanish
(see Proposition 2.1).

It is a well-known fact in Representation Theory that APR™ is an irreducible
O(n)-representation of real type, that is, its algebra of equivariant endomorphisms
is isomorphic to R. On the other hand, for p > 2, the representation Sym” R"
decomposes as a sum of [ (p + 1) /2] irreducible O(n)-representations of real type

2.7) Sym” R" = Sym/ R" ® Sym}) *R" @ - - - ,

where the last factor is either Symy R" = R™ or Symg R" = R, according to

the parity of p. The isomorphism between each irreducible Sym§ R™ and the
corresponding subspace of Sym” R" is given by (polynomial) multiplication by
the (p — k) /2 power of ¥2 = X1 | Xi2 € Sym2 R" (see [FHI1, Example 19.21]).

The vector bundles over a Riemannian manifold (M, g) associated with the
O(n)-representations APR™ and Sym” R" are clearly the bundles APTM and
Sym” TM, whose sections are, respectively, p-forms and symmetric p-tensors on
M. In both of these cases, there are geometrically canonical Laplacians that sat-
isfy the Weitzenbdck formula (2.1) as follows (see Besse, (1.144) and (1.154) in
[Bes08]).

In the case of APTM, setting t = 2 in (2.1), one obtains the Hodge Laplacian
A =dd* +d*d. A p-form & € APTM is harmonic, that is, Ax = 0, if and only
if it is closed (dex = 0) and co-closed (d* &« = 0). Moreover, by Hodge Theory,
the pth Betti number of a closed manifold M is precisely b, (M) = dimkerA,
the dimension of the space of harmonic p-forms on (M, g), for any Riemannian
metric g.

In the case of Sym” TM, setting t = —2 in (2.1), one obtains the Lichnerowicz
Laplacian A. A symmetric p-tensor @ € Sym” TM is harmonic, that is, AQp = 0,
if and only if it is Killing, that is, its symmetrized covariant derivative vanishes.
In particular, if p = 1, the space of Killing vector fields kerA ¢ Sym' TM is
identified with the Lie algebra of the isometry group Iso(M, g), provided (M, g) is
complete.



Sectional Curvature and Weitzenbock Formulae 1217

2.2, The Bochner technique. 1f (M,g) is closed, the classical vanishing the-
orems of Bochner [Boc46, YB53] follow by exploiting the positivity of t K (R, p)
to force the vanishing of harmonic sections &« € ker A, by integrating (2.1) as
follows:

(2.8) 0= JM(AO(, ) vol = JM IVeall? + t{(K(R,p)x, ) vol.

For instance, in the cases of A!TM and Sym' TM, using t = +2 as appropriate
and Example 2.2, the second term in the above integrand is strictly positive for
nonzero harmonic 1-forms if Ric > 0, and for nonzero Killing vector fields if
Ric < 0. This would lead to a contradiction if such harmonic sections did not
vanish. Thus, if a closed manifold (M, g) satisfies Ric > 0, then b; (M) = 0; while
if it satisfies Ric < 0, then Iso(M,g) is finite. Clearly, such conclusions remain
true if Ric > 0 and Ric > 0 at some poing; or, respectively, Ric < 0 and Ric < 0 at
some point.

The identity (2.8) also yields strong results if t K (R, p) is only nonnegative,
without the strict inequality at any points of M. In this case, harmonic sections
o € kerA are parallel and satisfy K (R, p)x = 0. In the above examples, this
proves that if a closed manifold (M, g) satisfies Ric > 0, then b (M) < b;(T") =
n; while if it satisfies Ric < 0, then dimIso(M,g) < n. Rigidity results charac-
terizing the equality cases in the previous statements can also be easily obtained.
(For more details and applications, including on noncompact manifolds, see Wu
[Wu88].)

3. ALGEBRAIC CHARACTERIZATION OF SECTIONAL CURVATURE
BOUNDS

The goal of this section is to algebraically characterize secg > k and secg < k in
terms of the curvature terms of Weitzenbock formulae for (traceless) symmetric
tensors, proving Theorem A. The starting point is to obtain an explicit formula
for K (R, Sym{ R") (cf. [HMS16, Proposition 6.6] and [DS10, Theorem 1.6]).

Proposition 3.1. There is a cpn > O such that, for all @, @ € Symg R™,
B (KR Symf R, ¢) = e | R, TP ), X, V() dx,

Proof. By Schur’s lemma, as Symg R" is an irreducible O(n)-representation
of real type, all O(n)-equivariant inner products on Sym! R"™ are (positive) real
multiples of each other. Thus, there exists a constant ¢y, > 0 such that for all
Q,p e Symg R",

(5.2 @) = o | @LOWE) dx.



1218 RENATO G. BETTIOL ¢ RICARDO A. E. MENDES

Evaluating the linearization (2.6) at some x = (x1,...,X,) € R", we have
) _ .99 99
(p(Eij)@)(x) = xi ox; (x) — x;j ox; (x)

= (x,ei{(V@(x),ej) — (x,e;){(Vp(x),e;)
=(x AV@P(x),einej)
= (x A V@(x), Ejj).

In particular, (dp(X)@)(x) = (x A V@(x),X) for all X € so(n). Altogether,
combining this with (2.2) and (3.2), we have that for any R = >, , Rap Xa ® Xp,

(K(R,Symf R")@, @) = > Rap(dp(Xa)@,dp(Xp) @)
a,b

= o Y Ra | ([d0(Xa)@) () (A (X500 () dx
a,b

= o 3 Rap | (X A VO, Xa) (X A VY0, Xp) ¥
a,b

Cpn LH (R,(x AV@(x)) ® (x A Vy(x)))dx

= o |, ROV 00,%, T x)) dx. =

An interesting consequence of Proposition 3.1 is that K (R, Sym{ R™) = 0 for
every R € ARM Symz(/\zR"), a fact that also follows from Theorem B.

Although Theorem A is stated using curvature terms K (R, Symf)J R"), p = 2,
note that it can be alternatively stated using K (R, Sym” R"), p = 2. Indeed,
by Schur’s lemma and (2.7), the self-adjoint O(n)-equivariant endomorphism
K (R,Sym” R") is block diagonal, with blocks corresponding to the endomor-
phisms K (R,Symg R"), k = p, p — 2,... . Thus, positive-semidefiniteness for
all p = 2 of the endomorphisms K (R, Sym! R") or K (R, Sym” R") is clearly
equivalent.

Proof of Theorem A. Since secg depends linearly on R, it suffices to prove that
secg = 0 if and only if K (R, Sym{ R") is positive semidefinite for all p > 2.

Setting @ = ¢ in (3.1), the integrand in the righthand side becomes a sec-
tional curvature of R. Thus, it follows that K (R, Symf)J R"), p = 2, is positive
semidefinite if secg = 0.

In order to prove the converse, let R: A2R™ — A2R™ be an algebraic curvature
operator such that K (R, Sym{ R") is positive semidefinite for all p > 2. Given
any polynomial @: R" — R, consider its decomposition @ = @" + @°4 into
parts of even and odd degree. After replacing @ with a polynomial with the same
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restriction to the unit sphere S”~! C R, we may assume that @¢"" and @°dd are
homogeneous. Since the function x — R(x, V@ (x), x, Vp©dd(x)) is odd, its
integral over $™~! vanishes, and hence

L | R(x,V(x),x,Ve(x))dx
= L y R(x,Vp«"(x),x, V<" (x))dx

+J RO, VM0, x, Vo (x) dx.
S",f

Denoting by " = @p+@p_2+- - - +P2+@g the O(n)-irreducible components
of @ € Sym” R" according to the decomposition (2.7), we claim that the mixed
terms in the bilinear expansion of

J 1R(X,VQD‘TV‘T“(X),X,V(p““‘(x))dx
Sn—

vanish. Indeed, if k # £ and X, Y € so(n), then
dp (X)@ak, dp(Y) @y € Sym” (R™)

are in different O(n)-irreducible factors. A computation similar to that in the
proof of Proposition 3.1 implies that, for any R = >, , RapXaq ® Xp,

Ln-l R(x, V@ar(x), X, V@ap(x)) dx

= S Ra [ (P (Xa) @21 () (AP (X @20) () dx =,
a,b

where the last equality holds since each of the integrals vanishes due to Schur’s
lemma. Therefore, by (3.1), we have

J 1R(X,VQD‘TV‘T“(X),X,V(p““‘(x))dx
Sn—

p/2 1
=> (K (R, Symg* R™) @ak, Pax)-
k=0 C2k.n

odd

A similar argument applies to @°%¢, so we conclude that for every polynomial @,

(3.3) Ln_l R(x,Ve(x),x, Ve(x))dx = 0.
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Moreover, (3.3) holds for any @ € C*(R™) by density of polynomials in C* (R"),
for example, with respect to uniform C'!-convergence on compact sets.

In this situation, suppose R does not satisfy secg = 0. Up to changing the
orthonormal basis {e;} of R" and rescaling R, this is clearly equivalent to assuming
that secg (e1 A e2) = R(ey, ez,e1,e3) = —1. Given € > 0, define the test function

ferR" =R,  fe(x) = max{0, & — |x2] — llx — e1]I?}.

Note that the support of f; is contained in the &-ball around e; € R™. Moreover,
for any open neighborhood U C supp f¢ of e;, we have that

fe € WL(RM) nC®(U \ {x; = 0}),

that is, f¢ has square-integrable weak first derivatives in R", and is smooth at all
X = (X1,X2,...,Xn) € U away from the hyperplane x, = 0. Moreover, at such
points, its gradient can be computed as

_ X _
st(X)—|X2|€2 2(x —ey).

In particular, if x € U \ {x; = 0} is sufliciently close to e;, then V f¢(x) can be
made arbitrarily close to =e,. By continuity of the sectional curvature function
of R, this means that R(x, V fs(x), x, V fe(x)) is arbitrarily close to —1. Up to
choosing a smaller € > 0, we may hence assume that

L R, Vfe(x), x, Vfe(x)) dx < 0.

By the density of C®(R") in W'2(IR"), there is a sequence of smooth functions
converging to fz in W12(R"). Elements in this sequence that are sufficiently close
to fe in WIH2(R™) must hence violate (3.3), giving the desired contradiction. O

Remark 3.2. According to M. Gursky, it was observed by M. Berger (cf.
[Bes08, Theorem 16.9]) that if & (R, Symg R™) is positive semidefinite, then so
is K(R, Sym1 R™). Specifically, since the latter is precisely the Ricci tensor of R
(see Example 2.2), it can be diagonalized with an orthonormal basis {v;} of R",
that is, K (R, Sym1 R™)(vi) = Ricg(vi) = A;jvi. By (2.6), the linearization of the
O(n)-representation Sym% R™actson @ = Um V U — (1/n)g € Sym% R™ as

dp(v; A Vi)( ) = X‘L—X‘i (XZ _lix2>
p (v iNNPm) = 18Xj I ox; m n< i
= 25ijiXm —25ikxjxk1
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where we denote by (x1,...,x,) the coordinate system in R" defined by {v;}.
Combining (2.2) with the above, we obtain

(K (R, Symg R") (@), @m)
= > > Rijie{dp (Vi A V)@, dp(Vk A V) @)

i<jk<fl
=4 Z Z Rijk€<5jmxixm - 5iijXm, OpmXkXm — OkmXpXm)
i<jk<{l
=4 Z Z Rijk#(éjméé’méik - 6jm5km6i€ - 5im5£m5jk + 5im6km6j—€)
i<jk<{l
=4 Z Rimim + 4 Z Rmimi = 4 Ricg (Vimn, Vm) = 4Am.
I<i<m m<isn

Thus, positive-semidefiniteness of K (R, Symg R™) clearly implies positive-semi-
definiteness of K (R, Sym1 R™) = Ricg. Given the above, it is natural to investi-
gate whether positive-semidefiniteness of K (R, Sym} "1 R") and K (R, Sym! R")
can also be related for p = 2. In principle, this could shed light on further alge-
braic characterizations of sec > 0 that are more powerful than the one stated in

Theorem A.

4. KULKARNI-NOMIZU ALGEBRAS

In this section, we recall the classical Kulkarni-Nomizu product of symmetric ten-
sors on exterior powers, and develop an analogous product for symmetric tensors
on symmetric powers. We then analyze representation theoretic aspects of the
corresponding algebras, in preparation for proving Theorem B.

4.1. Kulkarni-Nomizu products. The classical Kulkarni-Nomizu product
is the map ® that, with each h,k € Symz(R"), associates h ® k € Symz(/\zR")
defined by

4.1) (hok)(x Ay, zArw) =h(x,2)k(y,w) + h(y,w)k(x, z)
- hix,w)k(y,z) — h(y,2)k(x,w)

on decomposable 2-forms, and extended by linearity. This operation simplifies the
algebraic manipulation of curvature operators; for example, the curvature operator
of a manifold with constant curvature k is simply (k/2)g ® g. Moreover, it can
be used to decompose the space of modified algebraic curvature operators into its
O(n)-irreducible components Sym*(A2R™) = U ® L ® W & A*R" via successive
“divisions” by g; specifically, R = Ry + Rz + Rw + R4, where

scal 1 scal
R . Rr=——go(Ri ——),
u )g®g £ n—2g@( “TTh

- 2nin -1
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and Rw and R, do not have g factors (see [Bes08, (1.116)]). In this context,
the curvature operator R is respectively scalar flat, Einstein, conformally flat, or
satisfies the first Bianchi identity if and only if Ry, Ry, Rw, or Ry« vanishes.

As observed by Kulkarni [Kul72], the Kulkarni-Nomizu product (4.1) is a
special case of the product ® in the commutative graded algebra

n
C:= @ Symz(/\’”R")
p=0

induced from the exterior algebra @;‘:0 APR" as follows. For &, B € APR™ and
y,0 € AR, let

(x®@B)B(y®d5) :=(xny)® (BAS).

Extend the above by linearity to a product on @;ZO(A”R”)M, and note that C is
invariant under this product. Henceforth, this product ® on C will also be called
the (classical) Kulkarni-Nomizu product.

A convenient way to express the curvature term in Weitzenbdck formulae for
symmetric tensors (used, for example, in Theorem B) involves a symmetric ana-
logue of the above Kulkarni-Nomizu product. Consider the commutative graded
algebra

A := P Sym*(Sym” R™)
p=0

endowed with the product © induced from the symmetric algebra @, _, Sym” R"
as follows. For &, B € Sym” R™ and y, § € Sym? R™, let

(x®B)@(y®d):=(xVvy) e (Bv5).

Extend the above by linearity to a product on @;;;O(Sym’” R"™)®2, and note that
the subspace A is invariant under this product. Because of the reducibility of
Sym” R", p > 2, as an O(n)-representation, it is useful to study the subspace

Ay = @ Symz(Symg R"™).
p=0
Consider the projection 11: A — A, obtained by extending by linearity the map
(4.2) T(@eY):=@® Y @,PcSym”’R",

to all of A. Then, define a product on Ay, also denoted by ©, by setting for all
a, b e Ao

(4.3) aob:=magb).
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Proposition 4.1. In the above notation, (Aq, Q) is a commutative graded alge-
bra.

Proof- Since A is a commutative graded algebra, it suffices to show that @ is
well defined on Ay, that is, that ker 7 is a graded ideal. Since, for each p,

Sym” R" = Sym/ R" & (> v Sym? > R"),

it follows that

ker = P Sym*(#? v Sym” 2 R™) @ (Sym/ R" ® (¥ v Sym” > R™))
p=0
=span{(r’vVE) ® T+ L ® (r2VvE), E€Sym” *R", L e Sym” R", p = 2}.

Given a € A and b € ker 1, we claim that a © b € ker . By linearity, we may
assume that

Aa=QeyY+yYeQ, @,y € Sym” R",
b=02vEeC+Ce®(?VvE), EeSym’ *R", C e Sym” R™

Then,

aob=0*veviHe (v +@ve @ vy veE)
+PVvyYvE (Vv +Wwvle@?veve ckem O

A simple (yet important) observation is that the operation (-) @ g of multiply-
ing by g is O(n)-equivariant and preserves positive-semidefiniteness of endomor-

phisms.

Example 4.2. The metricg = >/' ei®e; € Sym2 (R"™) is simultaneously an
element of the algebras (C,®), (A, @), and (Ao, @), and its pth power is exactly
p!lId.

More precisely, in the algebra (C, ®) (cf. [Kul72, Lab15]),

(4.4) gfP = > (e A nep) ® (e A Aeq)

=p! D> (e A---Aei,)® (e A Ae,)



1224 RENATO G. BETTIOL ¢ RICARDO A. E. MENDES

To deal with the case of (A, @), we must introduce multi-idices € = (£1,...,4n),

{; = 0, and we therefore write £! := £;!...4n), 14| = €1 + --- + ¥, and
xt = Xfl Lxb e Symw R". Note that [|x?||2 = £!, and therefore we have

the analogous result
(4.5) g% = > (e V---Vey)®(e, V- --Vey)

1

= > %x%@xe
Kl=p "

= p'IdSymp R" -

Finally, (4.2), (4.3), and (4.5) imply that, in (Ao, @), we also have
(4.6) g% = plr(Idsynr gn) = pHdgyp go -

Henceforth, to simplify notation, we denote the above powers (4.4), (4.5), and
(4.6) by g” when it is clear from the context which of the algebras A, Ay, or C is
meant.

4.2. Representation theory. One of the steps in proving Theorem B is to
analyze the decomposition of Sym2 (APR™) and Symz(Symg R™) into irreducible
O(n)-representations. Specifically, we show that they contain at most one factor
isomorphic to each of the irreducible factors U, £, W, and AR of the O(n)-
representation Symz(/\ZIR"). Indeed, if p = 0, then

Sym?*(A’R™) = Sym*(Symg R™) = U
is the trivial representation; and if p = 1, then
Sym*(A'R™) = Sym*(Sym) R") = Sym*(R™) = U & L.
Moreover, it is also easy to see that
Sym* (A" 'R") = U@ L and Sym*(A"R"™) = U.

However, this analysis is substantially more involved if p > 2 in the case of
Sym” R", and 2 < p < n — 2 in the case of APR", and it is carried out us-
ing the so-called Weyl’s construction (see Lemmas 4.3 and 4.4). We now give a
brief summary of this method (for details see [FHI1]).

Irreducible GL(n, C)-representations are labeled in terms of integer partitions

A of k € IN by applying their Schur functor Sy to the defining representation C".
Each such partition A determines an idempotent element ¢, in the group algebra
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CGSy called its Young symmetrizer, where G denotes the group of permutations in
k letters. Using the natural action of C&y on the kth tensor power (C")®k, define
SAC™ := ¢y - (C")®k c (C")®X. For instance, the partition A = (1,1,...,1) of k,
thatis, k =1+ 1+ --- + 1, gives rise to the exterior power SHC" = AKC™, while
the trivial partition p = (k), that is, k = k, gives rise to the symmetric power
S,C" = Sym* C".

The restriction of the irreducible GL(#, C)-representation SAC" to O(n, C) is,
in general, reducible. Intersecting SxC™ with the kernels of all contraction maps
(gn)®k — (gn)ek-2) yields an O(n, C)-irreducible factor, denoted by Spa;C™.
Much as in the case of GL(n, C), this gives a one-to-one correspondence between
integer partitions A and irreducible O(n, C)-representations. For instance, we have
that S;1,1,..,1)C" = Sai,.nC"h = AKQ" and Sty C"* = Symg cn,

It is well known that the irreducible factors ‘U, £, W, and A4R" of the O(n)-
representation Sym*(A2R™) are of real type; that is, the algebra of equivariant
automorphisms consists of all real scalar multiples of the identity. In particu-
lar, their complexifications are O(n, C)-irreducible and hence of the form S;a;C"
for some integer partition A. Specifically, U = C is the trivial representation
(corresponding to the empty partition), L¢ = Si(2))C" corresponds to the par-
tition 2 = 2, Wg = Sy(2,2)]C" corresponds to the partition 4 = 2 + 2, and
(AR™) ¢ = A%C™ = S[(1,1,1,1)]C" corresponds to the partition 4 = 1+ 1+ 1 + 1.

The tensor product of two Schur functors decomposes into a sum of Schur
functors according to the Littlewood-Richardson Rule (see [FHI1, (6.7)]):

(4.7) SA ® Sy = EP Nayw Sv.
v

The multiplicities Nayy (collectively called Littlewood-Richardson numbers) are de-
fined combinatorially from the partitions A, u, and v, as the number of ways
one may achieve the Young diagram of v by performing a strict p-expansion to
the Young diagram of A (see [FH91, p. 456]). Furthermore, in order to decom-
pose the restriction of an irreducible GL(#n, C)-representation to O(n, C), we use
Littlewoods restriction formula (see [FH91, (25.37)] and [Lit44]):

(4.8) Resgk;%“f)(SvC") = @NMS[)—\]C"’
A

where N,; = >.s Nsi, is the sum of the corresponding Littlewood-Richardson
numbers over the partitions 6 with even parts.

Lemma 4.3. The O(n)-representation Symz(Symg R"™) has exactly one irre-
ducible factor isomorphic to each of U, L, and W, and no irreducible factors isomor-
phicto NR™, forallp > 2, n > 4.

Proof. Since their complexifications are O(n, C)-irreducible, the number of
factors isomorphic to U, £, W, and A*R" that appear in Sym®(Sym} R™) is
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equal to the number of factors isomorphic to U, L¢, We, and A4C™ that appear
in Symz(Symg cn) = Symz(S[(p)]C”), respectively.

To simplify notation, we henceforth drop the symbol C" and only write Sym”
for Sym” C", Sy for SAC", etc. Furthermore, we use the formalism of virtual
representations, that is, sums @ as well as differences © of representations.

First, recall Sym” = S{p)] ® S{(p-2] ® - - - = S(py] ® Sym” > (cf. (2.7)).
Therefore,

Sym?(S{(p)]) = Sym?*(Sym”) e Sym?(Sym” %) & (S{(»)] ® Sym” 2.
Since the last term equals Sym” ® Sym” 2 & Sym” % ® Sym” 2, we have that
(4.9)  Sym*(Si(p)) = Sym*(Sym”) & Sym*(Sym” ?)
e (Sym” ® Symp_z) ® (Sym’g_2 ® Symp_z).
All the terms in the righthand side of the above equation are restrictions to O(n, C)
of GL(n, €)-representations, so that (4.7) and (4.8) can be used to count the num-
ber of copies of the desired representations in each term. More precisely, it fol-

lows from the Littlewood-Richardson rule (4.7) (see Exercise 6.16 on page 81 of
[FH91]) that

2
Sym®(Sym”) = @ Sp+a,p-a),
O<a<p
p+aeven

2 -2
Sym (SymrJ ) = @ §(p+a—2,p—a—2)’
O<a<p-2
p+aeven

p-2
-2
Sym” & Sym” P Sp+rap-a-2)»
a=0

p-2
-2 -2
Symp ® Symp = @ S(p+a—2,p—a—2)-

a=0

In order to count factors isomorphic to L¢ = Sy(2)] in the restriction of terms
ofth_e form S(k+a,k-a) to O(n, C), apply (4.8) with partitions v = (k + a,k — a)
and A = (2). There are several cases to be analyzed, as follows:

(i) If k + a is even and a = 0 or a = k, there is a unique strict A-
expansion starting from a partition § with even parts arriving at v:
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(ii) Ifk + a is even and 0 < a < k, there are awo strict A-expansions:

-

HEEN

(iii) Ifk + a is odd and 0 < a < k, there is a unique strict A-expansion:

HJ

(iv) Ifk+a is odd and a = 0, there are 70 strict A-expansions by the Pieri
rule.

Analogously, the restriction of S(k+a,k—a—2) to O(n,C) contains two factors
isomorphic to S(2)] if k + a is even and a < k — 2, one factor if a = k — 2, and
one factor if k + a is odd.

Altogether, some elementary counting yields that the number of factors iso-
morphic to Sp(2)] in each term of (4.9) is given according to the following table.

Term in (4.9) Number of factors isomorphic to Sy(2)]

peven: 1 +2(p/2-1)+1=p

podd: 2(p-1)/2+1=p

Symz(Sympfz) p — 2 (analogous to the above)

peven: 1+2(p/2—1) + (p/2—1) = Gp —4)/2
podd: 1+2(p-3)/2)+(p-1)/2=3p -5)/2
peven: 1+2(p/2-2)+1+ (p/2—1) = Gp - 6)/2
podd: 1+2(p-3)/2+(p-3)/2=0Bp-7)/2

Sym2 (Sym”)

Sym” ® Sym” 2

Sym” ? ® Sym”

Therefore, combining the quantities in the above table according to (4.9), we
have

p_(p_z)_3p2—4+3p2—6:1, if p is even,
p—(p—Z)—3p2_5 +3’92_7=1, if p is odd.

That is, there is exactly one factor isomorphic to L¢ = Sy(2)) in Sym*(S{(p)7)-

We proceed in a similar fashion to count factors isomorphic to We = Sy(2,2)7.
Specifically, we apply (4.8) with v = (k + a,k — a) and A= (2,2). Again, there
are different cases to be analyzed:

(i) If k + a is even and 0 < a < k, there is a unigue strict A-expansion
starting from a partition 6 with even parts arriving at v:
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W p

(a=0) (a>0)
(ii) If k + a is even and @ = k, or k + a is odd, then there are 7o strict
A-expansions.

Analogously, the restriction of S(k+a,k-a-2) to O(n,C) contains one factor
isomorphic to Sy(2,2)] if k + @ is even and @ < k — 2, and no factors otherwise.

Thus, the number of factors isomorphic to Si(2,2)] in each term of (4.9) is
given according to the following table.

Number of

T in (4.9
erm in (4.9) factors Sp(2,2)]

p even: p/2

podd: (p—1)/2
peven: (p —2)/2
podd: (p—3)/2

Sym?(Sym”)

Sym?(Sym”2), Sym” ® Sym” 2, Sym” ? ® Sym”*

Thus, by combining the quantities in the above table according to (4.9), it fol-
lows that there is exactly one factor isomorphic to W¢ = Sp(2.2)7 in Sym? (Sg(p)7).

To tackle the case A“C™ = Sy(1.1,1.1)], set A=(1,1,1,1) in (4.8). Any strict
A-expansion has at least four parts, and therefore Ng3,, = 0 for any partition v
with less than four parts. Hence, there are no factors isomorphic to ACM in
Sym® (Si(p)))-

Finally, since Sp(p)] is irreducible, we see that Sym?(Sy(,)]) contains exactly
one copy of the trivial representation U¢ = C, corresponding to multiples of
Ide Sym2(§[(p)]). O

Lemma 4.4. The O(n)-representation Sym2 (APR™) has exactly one irreducible
factor isomorphic to each of U, L, W, and N*R™, forall2 <p <n -2, n > 4.

Proof. As in the proof of Lemma 4.3, it suffices to count O(n, C)-irreducible
factors isomorphic to Ug, Lo, We, and ALCM in

Sym*(APC™) = Sym*(Si11

By the Littlewood-Richardson rule (4.7) (see [FHI1, Exercise 6.16, p.81]), we
have

(4.10) Sym*(AP) = P Sv.,

O<a<p
aeven
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where vq = (2,2,...,2,1,1,...,1) is the partition of 2p into (p — a) factors 2
and 2a factors 1.

Applying the Littlewood restriction rule (4.8) with v = v, and A= (2),
respectively, A = (2,2), it follows that Sy, contains a unique factor isomorphic to
St2)1, respectively Sp(2,2)1, if @ = 0; and no such factors if a > 0.

A=(2) A=(2,2)

Setting A= (1,1,1,1) in (4.8), it follows that Sy, contains a unique factor
isomorphic to Sg(1,1,1,1)] if @ = 2 and no such factors otherwise.

Indeed, note that Nsiy, =0 unless a = 2 and 6 = (2,...,2) is the partition of
2p — 4 into p — 2 equal terms, in which case N, siv, = 1. Here, we have used the
fact that a strict A-expansion of § has precisely 4 odd parts.

Thus, according to (4.10), it follows that Symz(/\p ) contains exactly one fac-
tor isomorphic to each of L¢, W, and adom, Finally, since Sy(1,1,...,1) is irre-

.....

U = C, corresponding to multiples of Id € Symz(S[(l,l ,,,,, n1)- O

5. CURVATURE TERMS FOR ALTERNATING AND SYMMETRIC TENSORS

In this section, we give a proof of Theorem B by computing the curvature terms
K(R,APR™) and K (R, Symg R") of the Weitzenbock formulae for alternating
and symmetric tensors using the Kulkarni-Nomizu algebras studied in the previous
section. As mentioned in the Introduction, the formula for K (R, APR") under
the assumption that R, = 0 was previously obtained by Labbi [Lab15, Proposi-
tion 4.2]; however, we provide here a new and independent proof for the sake of
completeness.
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Proof of Theorem B. We begin by analyzing the case of the O(n)-representa-
tions p of the form Sym{ R", p > 2. It follows from Proposition 2.1 and O(n)-
equivariance of (-) @ g: Ag — Ay that the linear maps

K (-, Symf) R™): Sym*(AR™) — Sym?*(Sym} R™),

5.1
G- K(-,Symé R") @ gP2: Symz(/\Z]R") - Symz(Symg R")

are O(n)-equivariant. Thus, their restrictions to the O(n)-irreducible factors in
the decomposition Sym*(A2R") = U & L & W & AR are themselves O(n)-
equivariant, and their images are contained in the corresponding O(n)-irreducible

factors of Sym*(Sym/ R"). According to Lemma 4.3, there are no O(n)-irreduc-
ible factors isomorphic to AR in Symz(Symg R™), and hence the restrictions
of the maps (5.1) to A“R™ C Sym?*(A2R™) vanish identically by Schur’s lemma.
Moreover, by Lemma 4.3, there is a unique O(n)-irreducible factor isomorphic
to each of U, £, and W in Sym*(Symf R"). Provided that the restrictions of

X(-, Symg R"™) @ g?~2 to such irreducibles do not vanish, it follows from Schur’s
lemma that, since they are of real type, there exist real constants Ay, Bpn, and
Cyp ., such that

K (R,Sym¥ R™) = Ap n K (Ry, Symi R™) @ gP >
+ BpnK (R, Symi R™) @ gP 2
+ Cpn K (Ry, Symg R"™) @ gP 2

where R = Ry + Ry + Rw + R4 are the components of R. By evaluating the
maps in (5.1) at convenient choices of R € Symz(/\Z]R”) and @, € Symg R™, we
simultaneously show that K (-, Symé R"™) @ gP~2 restricted to each of U, £, and
‘W is nonzero, and compute Ap n, By n, and Cp n, proving the desired formula.
In what follows, using the conventions established in the Introduction, we fix

@p(x) := Re(x] + V—-1x2)" € Sym{ R".
To simplify computations, we use complex coordinates

z=x1+V-1x2, Z=x1-+v-1x,

with respect to which @, (x) = RezF = (z? + z¥)/2. Recall that, according to
our conventions, the inner product on Symg R" is computed as (@, @) = @ (),
where @ is the dual differential operator to @. In complex coordinates, note that
the duals to z and Z are, respectively, Z = 20/0Z and Z =20/0z. For example,
we may compute

o p >p
(5.2) l@pll> = Bplepp) = Z2 (
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First, we consider the irreducible factor U = R. Setting

1

(5.3) Ry = 5808= > Eij®Eyj,
I<i<j<n
it follows from (2.2) that
(5.4) (K(Ry, Sym) R, @) =— > (dp(Eij)*@, @)
1<i<j<n
= > ldpEipel*
I<i<j<n

Note that dp(Eij)@p = 0 for 3 < i < j < n, while

0 0\ zP +2zF 0 _0\zP+2zP
dp(Enn)@pp = (Xla—xz —Xza—Xl> 2 =+-1 (za—z —Z£> 3
=—-plmz?,
oy = (1l L) AT (2, 2y
PPy =\ Moy, "Mox, ) T2 T T\az T ez) T 2
= —px;jRezF!,
0 0 \ zP +2zF ) o\ z¥ + 3P
=pxjlmzP!,

for 3 < j < n. Hence, the square norms of the above can be computed as

/_\_ P _ 5p
(5.5) ||dp(E12)(pp”2 _ pz (zp — zP) (Z z )

2+/—1 2/-1
o\” o0\’ /zp -2zP
— _./_ p-1,2 il _ = - =
=12ty <(az'> (az> )(w—_l)
=2""Tp?pl,
5.6)  Idp(Erj)@pl® = lldp(E2j)@pll> = 27 2ppl, 3<j<n,
(5.7) ldp(Eij)@pl* =0, 3=<i<j=<mn.

Altogether, by (5.4), we have that

(5.8) (K (R, Sym) RM)@p, @p) = 2P 1p2p! + 2(n - 2) (2P 2pp))
=n+p-2)2"1p2(p-1.



1232 RENATO G. BETTIOL ¢ RICARDO A. E. MENDES

In particular, (X (R, Symé R")@p, p) = 8n. Combining this with (5.2), Ex-
ample 4.2, and O(n)-equivariance, we have that K (R, Symg R") =ng©g, and
hence

(5.9) (K (Ry, Symg R™) @ g7 2)@p, @p) = n2P 71 (p))2.

Therefore, by (5.8) and (5.9), we conclude that Ay , = (n+p —2)/(n(p — 1)}).
Second, consider the irreducible factor £ = Sym% R™. Setting

(5.10) R, = diag(1,0,...,0,-1)® g
= Z Elj®E1]’— Z Ein ® Ein,
2<j<n-1 2<i<n-1

it follows from (2.2) and (5.5)—(5.7) that

(5.11) (K (Rg, Symg Rn)(pp; ®p)
= > dpEpepl?- > ldpEm)@pll?
2<j<n-1 2<i<n-1

=27 1p2pl + (n - 3) (2P 2pp!) - 2P 2pp!
= (m+2p—4)2P2p(p - 1)

On the other hand, to compute ((K (R, Symg R™ @ gp_z)(pp, @p), we need to
recognize

dp(Eij)?: Sym®R" — Sym* R"
as an element of Sym?(Sym”R™). Applying (2.6) twice to each element of the
orthonormal basis of Sym® R", we obtain
n
(5.12)  dp(Eij)*=x7® xJZ. + xJZ. ® X} — D (XiXk ® XiXk + XjXk ® XjXk)
k=1
— 2xin ® XiXj.

Combining (5.10), (5.12), Example 4.2, and the fact that @, (x) depends only
on X1 and X, we have that

(K (R, Symg R™) @ gP2)@p, Pp) = (F Q G)Pp, Pp),
where

F=-xtox}-x}ex?+nxix;0x1x;)+(n-2)x®x?,

(5.13) P (p - e ke
G=> (p 2>x’fx§’ k2 @ xkxb k2,
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Expanding F @ G according to the definition of @ yields

p72 p _ 2
(5.14) FOG= ) H,
k
k=0
where
k-2 —k k-2
Hy = —x¥2xY & xkxl K _ xkxP* @ xkr2xk
k-1 k-1
+ nx{<+lxp ® Xk+lxll7
—k-2 k-2
+(n = 2)xk P 2x T @ a2 TR,

Using complex coordinates, the first term of Hy acts on @ as

(5.15) (—xk2x8 7 @ ) o, p)
- a2 p—k—2( 0 i)"( — 0 i)pk(zl’+z'v>
_< Xy < 5z) V15 -V-1g ’

0z 2
zP + z"”>
2

~ pk (1+(=1)Pk 2\
=il ( 2 )(a +az>

(g ()

2
_1)P-k
= (_1)V—k(p!)2 <%> .

Analogously, the second, third, and fourth terms of Hy act on @, as, respectively,

(5.16) (=xkx?* @ xk 2P K 1 @)
_ 1+ (=1)rk
_ (_1\pr-k 202"~ 7
= (=P (pY ( 2 ),
(nxkeixk =k 1®x’f“x§’7k71)<)9p,<¥9p>
1yp—k-1
_ n(_l)p—k—l(p!)z <%>,
((n = 2)xK 2 2 @ xk 2l K2y )
= (n—2)(=1)PK(p1)? (%W) .
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Altogether, summing over k according to (5.14), we obtain

(5.17) (K (R, Sym R™) @ g2 @y, p) = n2P2(p!)2.
Therefore, by (5.11) and (5.17), we conclude that

B _n+2p-4
PR np -1)!

Third, consider the irreducible factor W. It can be checked that
(5.18) Ry = (E1x + E34) ® (E12 + E34) — (E13 — Ez4) ® (E13 — Ep4)

is orthogonal to U & £ ® A“R™ and hence belongs to W. It follows from (2.2)
and the fact that @, (x) depends only on X1 and x; that

= ldp(En2)@pll> = ldp(E13) @p [dp (E24) @p
— ldp(E24) @p 17 + 2(dp (E13) @p, dp (E24) Pp).

17— | 12

The last term above vanishes because dp(E;3)@, is divisible by x3, while
dp (E24) @p does not depend on x3. From (5.5)—(5.7), we have

(5.19) (K (Rw,Symfl R")@p, @p) = 2P~ p*p! - 22" 2pp!)
= (2p - 2)2P2p*(p - 1)\.

The computation of ((!K(Rw,Symé R™) @ gpfz)(l)p,(pp) is analogous to the
above case pertaining to L. Specifically,

(K (Rw,Symg R™) @ g" )Py, Pp) = ((F' @ G)Pp, Pp),

where G is defined in (5.13), and F' = x? ® x2 + X3 ® x? — 2x1X2 ® X1X).
Expanding F” @ G according to the definition of @ yields

p-2

’ _2 ’

FoG=Y (”k )Hk,
k=0

where

—k—2 K K k-2
Hj, = —x{2xY ®@ xkal TN — xka T @ xk2xF

k-1 —k-1
+ 2x kXY ® xKHIxF
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Thus, from (5.15) and (5.16), summing over k, we obtain

(5.20) (K (Rw, Sym; R™) © g" 2 @y, @p) = 2P 1(p)H2.

Therefore, by (5.19) and (5.17), we conclude that Cp ., = 1/(p — 2)!.
We now turn to the case of the O(n)-representations p of the form APR",
2 < p < n— 2. It follows from Proposition 2.1 and from O(n)-equivariance of
() ®g: C — C that the linear maps
K, APR™): Symz(/\z]R") - Symz(/\p]R"),

5.21
620 () ®gP~%: Sym*(A*R"™) — Sym*(APR™),

are O(n)-equivariant. By using Lemma 4.4 and reasoning as in the previous case,
it follows that there exist real constants A}, ,,, By, ;, C}, ,, and D, ,, such that

K(R,APR™) = A}, Ry ® g” >+ B, ,Ry © gV ?
+ Cp Ry ®gP ™2+ D), \Rui ©gP >

where R = Ry + Ry + Rw + R, are the components of R. By evaluating the
maps in (5.21) at convenient choices of R € Symz(/\le") and Bp,yp € APR",
we simultaneously show that (-) ® g? 2 restricted to each of U, £, W, and AR

is nonzero, and compute A}, ., By, ,;, C}, n, and D,, ,, proving the desired formula.
Let

Bp=eiA---nepc APR", y,=(e1 Aex+e3neq) NSy € APR™,

where 8, = es A - -+ Aepia € APTIRM.
Note that

ldp(Eij)Bpll> =1, 1<i<p<j<n,

22
622 ldp(Eij)Bpll*> =0, otherwise.

Using the curvature operator Ry in (5.3) and (5.22), we have

(KRu, APR"MBp, Bp) = >, Idp(Eij)Bpll* = p(n—p).

I<i<j<n
Using the definition of ® and Example 4.2, we have that

(Ru© 8”218y, Bp) = 5((8")Bps By) = 371

Thus, we conclude that A, =2m—-p)/(p -1
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Using the curvature operator Ry in (5.10), by (2.2) and (5.22), we have

(K (Rg, APR™)Bp, Bp) > lldpEi)Bpl* = D lldp(Ein)Bpll?

2<j<n-1 2<i<n-1
m-p-1-(p-1
=n-2p.

A straightforward computation using the definition of ® and Example 4.2 gives

(Re®g" ) Bp,Bp) = (p — 1)L

Thus, we conclude that B;,,n =(n-2p)/(p-1.
Using the curvature operator Ry in (5.18), by (2.2) and (2.4)—(2.5), we have

that
(KRw, APR™M)yp, yp) = —lldp(E13) ypll* — lldp (E24) yp I

+ 2(dp(E13)Yp,dp(E24) yp)
= -8.

On the other hand, using the definition of ® and Example 4.2, we have that

((Rw ®gP ) yp,yp) =4(p -2)!.

Thus, we conclude that C;,’n =-2/(p—-2)\.
Finally, consider the irreducible factor A4R™. It can be checked that

Ryi =E1p®E34+E34®E1p —E13®Ey —Exy ®Ej3+Ei4®Ey;+Ep;®E;

is orthogonal to U & £ ® W and hence belongs to A*R™. Applying (2.2) and
(2.4)-(2.5),

<~7<(R/\41 /\pRn)}’p;Yp)
—2(dp(E13)yp,dp(E24) yp) + 2{(dp(E14) Yp,dp (E23) Yp)
—2((—esney+er Aes) Ay, (—er Aes+e3Aer) Adp)

+2{(—esnex+e3Aep) Ay, (—er Aes+ex Aes) Adyp)
= 8.

On the other hand, from the definition of ® and Example 4.2, we have

((Ras®P ) yp, ¥p) =2(p—2)e1 Aea ASp, yp)(esnesAdp, yp) = 2(p—2)!.

Therefore, we conclude that D}, , = 4/(p — 2)!. |



Sectional Curvature and Weitzenbock Formulae 1237

6. BOCHNER TECHNIQUE IN DIMENSION FOUR

In this section, we combine the Bochner technique and the Finsler-Thorpe trick to
prove Theorems C and D regarding closed 4-manifolds with sec > 0 and sec > 0.
The first of these tools is explained in Subsection 2.2, so we proceed to briefly
discussing the second (see [BKM,BM18,Tho71,Tho72,5T69,Z0l79] for details).

Recall that the (oriented) Grassmannian Gr;(R") of 2-planes in R" is the
quadratic subvariety of the unit sphere in A2R" given by the Pliicker relations
& A & = 0, which characterize decomposable elements « € AZR™. In this con-
text, the sectional curvature function secg: Gry(R") — R of a modified algebraic
curvature operator R € Sym*(A2R") is simply the restriction of the quadratic
form associated with R:

secg(0) = (R(0), 0).

It is easy to see that the above is independent of the component of R in the
subspace AR" C Symz(/\Z]R”). In particular, if there exists w € AR such
that the operator (R + w) € Sym*(A2R") is positive definite, then seck > 0.
Remarkably, the converse statement is true in dimensions < 4, as observed by
Thorpe [Tho71, Tho72], rediscovering a result that was known to Finsler (see
[BKM, BM18] for details).

Proposition 6.1. An oriented 4-manifold (M, g) has sec > 0 (respectively, it has
sec = 0), if and only if there exists a continuous function f: M — R such that the
operator (R + f*) € Sym*> (A2TM) is positive definite (respectively, positive semidef-
inite).

In the above statement, we are using the fact that, in dimension 4, the sub-
space R = AR Symz(/\ZIR4) is spanned by the Hodge star * AZRY - AZRY,
the unique self-adjoint operator such that for all o« € A2R4,

6.1) & Ak = || a]|? vol,

where vol = e A e3 A ez A es € A*RY is the volume form of R%. Moreover, we
are using a routine barycenter argument to globalize to M the pointwise statement
from each T, M (see [BM18, Remark 2.3]). Manifolds (of any dimension) whose
curvature operator R admits a positive-definite or positive-semidefinite modifi-
cation (R + w) € Symz(/\zTM ), w € AYTM, were systematically studied in
[BM18,BM17,BM15].

Finally, we need some elementary facts regarding self-duality in dimension 4
(see [Bes08, Chapter 13] or [DK90] for details). A closed oriented Riemannian 4-
manifold (M, g) also has a Hodge star, which is defined as the self-adjoint operator
*: A2TM — A2TM for which (6.1) holds for all x € A2TM, where vol € A‘TM
is its volume form. Since %? = Id, there is an orthogonal direct sum splitting
A?TM = AZTM ® A2TM, where A2TM are rank-3 vector bundles of se/f-dual
and anti-self-dual 2-forms, corresponding to the +1 and —1 eigenspaces of *. A
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standard fact in Hodge Theory is that there exists an analogous decomposition of
the second cohomology H>(M,R) = H{* & 3 ~ as the direct sum of the spaces
H* of harmonic self-dual and harmonic anti-self-dual 2-forms. Writing b+ (M) =
dim H *, we have that the second Betti number of M is b,(M) = b (M)+b_(M),
the signature of M is T(M) = b (M) — b_(M), and M has indefinite intersection
form if and only if b, (M) > 0 and b_(M) > 0. For instance, $? X S? and
CP2#CP? have indefinite intersection form, as b (S2 x S2) = b, (CP2#CP2) = 1;
while §4 and CP? have definite intersection form, as b, (S%) = b_(S%) = 0,
b, (CP?) =1, and b_(CP?) = 0.
We now turn to the proof of Theorem C, using the above facts.

Proof of Theorem C. According to Proposition 6.1, there exists a continuous
function f: M — R such that (R + f*): A2TM — A’TM is positive definite.
We claim that f has a zero. Since b.(M) > 0, there exist nonzero harmonic
self-dual and anti-self-dual 2-forms & € A2TM. In particular, by Theorem B,

6.2) (K, AR o, 0 ) = 4k ote, ) = 4] o |)%

Applying the Bochner technique (see Subsection 2.2), we integrate over M the
Weitzenbock formula (2.1) corresponding to the representation A*R%, obtaining

(6.3) 0= JM@a, &) vol
= [M V| + 2(K (R, A’R*) &, &) vol
= [M IVal? + 2(K (R + f*, A’RY«, &) — 2{K(f*, AR «, ) vol
= JM V]2 + 2(K (R + fx, PR, &) T 8f | x]|? vol,

for & = . € A2TM, where the last equality follows from (6.2). Since the
operator K (R + f*, A2RY) is positive definite, ¥f > 0 would imply that .
vanishes identically, a contradiction. Thus, f has a zero.

The curvature operator R of (M, g) is positive definite along f~1(0) c M,
so the statement of the theorem follows from the existence of p. € M such that
f(p-) <0< f(ps)and Ry: A2 TyM — A2T,M is not positive definite for all p
in an open neighborhood of p. € M.

Suppose no such p. € M exists, so that the curvature operator R is posi-
tive semidefinite at all p € M such that f(p) > 0. Thus, the function fy =
min{0, f} < 0 is such that R + fo is positive semidefinite. Moreover, since f has
a zero, R + fo* is positive definite at some point, hence on an open set. Setting
& = oy in (6.3), it follows that &, vanishes on this open set, and hence globally
on M, a contradiction. Thus, there exists p. € M with f(p+) > 0 and R), not
positive definite for all p in a neighborhood of p.. The existence of p—- € M is
completely analogous. O
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Remark 6.2. A consequence of Theorem C is that if a closed 4-manifold with
indefinite intersection form, such as S2 x §2 or CP2#CP2, admits a metric with
sec > 0, then there exists a (nonempty) open subset in M where the curvature op-
erator is positive definite. It is worth stressing that this conclusion is much weaker
than Theorem C, and indeed can always be achieved up to a small deformation.
Specifically, given any manifold (M, g) with sec = k and a neighborhood U of
p € M, forall € > 0, there exists a Riemannian metric g¢ on M with secg, > k- ¢,
which agrees with g on M \ U, and has constant curvature k in a smaller neigh-
borhood of p € U ¢ M (see Spindeler, Corollary 1.6 of [Spil4]). On the other
hand, Theorem C ensures that azy metric with sec > 0 on 4-manifolds as above
has positive-definite curvature operator on a subset whose complement has at least
two connected components.

As explained in Subsection 2.2, the Bochner technique often yields rigidity
results under curvature assumptions that are not strict. This is precisely the case

when relaxing the condition sec > 0 to sec = 0 in the above proof, leading to
Theorem D.

Proof of Theorem D. According to Proposition 6.1, there exists a continuous
function f: M — R such that R + f is a positive-semidefinite operator. If the
analogous situation to that of Theorem C holds, that is, there exist p» € M such
that f(p-) <0 < f(p+) and Ry, is not positive semidefinite, then (i) holds.

Thus, assume, for all p € M such that f(p) < 0, that R, is positive semidef-
inite, or, for all p € M such that f(p) > 0, that R, is positive semidefinite. Since
both cases are analogous, suppose the latter holds. Setting fy := min{0, f}, this
implies R + fo* is positive semidefinite. Since b, (M) > 0, there exists a nonzero
harmonic self-dual 2-form &, € A2TM. Then, by (6.3), it follows that & is par-
allel, and hence | ¢, || is a positive constant. Using (6.3) once more, we conclude
that f; vanishes identically, so R: A2 TM — A2TM is positive semidefinite.

Since b_(M) > 0, a nonzero harmonic anti-self-dual 2-form «x_ € A2TM
exists, which must be parallel by the Weitzenbsck formula. Thus, [|x_| is a
positive constant, so we may assume ||| = [|&]l. We claim that the parallel
2-form & = o4 + &_ is pointwise decomposable, that is, for all p € M there are
v, w € TpM such that &y = v A w. Indeed,

KA =04 A4 +2004 A+ 0 A -
=0 A kO — 2000 A kO — O A ko
= (o 11 = 2(ety, 02} = [lee-[1?) vol
=0,
so the Pliicker relations are satisfied. Thus, « is a parallel field of 2-planes on
the simply connected manifold M, which hence splits isometrically as a product
(M,g) = (M} X M3, g1 ® g2) of surfaces (M, g1) and (M3, g2) by the de Rham

splitting theorem. Since sec = 0 and M is simply connected, it follows that (M;, g;)
are isometric to (S2, g;) where g; have sec > 0; that is, (ii) holds. O
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