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ABSTRACT. In this paper, we establish a new algebraic charac-
terization of sectional curvature bounds sec ≥ k and sec ≤ k us-
ing only curvature terms in the Weitzenböck formulae for sym-
metric p-tensors. By introducing a symmetric analogue of the
KulkarniNomizu product, we provide a simple formula for such
curvature terms. We also give an application of the Bochner tech-
nique to closed 4-manifolds with indefinite intersection form and
sec > 0 or sec ≥ 0, obtaining new insight into the Hopf Conjec-
ture, without any symmetry assumptions.

1. INTRODUCTION

In geometric terms, the sectional curvature of a Riemannian manifold (M, g) is
the most natural generalization to higher dimensions of the Gaussian curvature of
a surface, given that it controls the behavior of geodesics. However, its algebraic
features render its study much more complicated. A substantial part of this com-
plication arises from the fact that, even at a pointwise level, sec : Gr2(TpM)→ R is
a nonlinear function defined on the Grassmannian of 2-planes in TpM , a quadric
variety inside the unit sphere of ∧2TpM , defined by the Plücker relations. The
main goal of this paper is to shed further light on the algebraic nature of sectional
curvature by relating it to the curvature terms in Weitzenböck formulae, which
are linear endomorphisms and hence computationally more accessible.

Given a Riemannian n-manifold (M, g), consider the vector bundle E → M
associated with the frame bundle of M via a representation ρ : O(n) → O(E)
of the orthogonal group. Geometrically relevant Laplacians ∆ on sections of
E, as the Hodge Laplacian for E = ∧pTM and the Lichnerowicz Laplacian for
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E = Symp TM , are related to the connection Laplacian ∇∗∇ via the Weitzenböck
formula

∆ = ∇∗∇+ tK(R, ρ),

where t ∈ R is a constant and K(R, ρ) is a linear endomorphism of E deter-
mined by the curvature operator R of (M, g) and the orthogonal representation
ρ (see (2.2) and Section 2 for details). As observed by Hitchin [Hit15], an alge-
braic curvature operator R : ∧2 Rn → ∧2Rn is positive semidefinite if and only if
the endomorphism K(R, ρ) is positive semidefinite for all irreducible representa-
tions ρ : O(n) → O(E). Our first result is a similar algebraic characterization of
sectional curvature bounds using traceless symmetric p-tensors, that is, represen-
tations ρ : O(n) → O(Symp

0 Rn).

Theorem A. An algebraic curvature operator R : ∧2 Rn → ∧2Rn has secR ≥ k,
respectively secR ≤ k, if and only if K(R − k Id,Symp

0 Rn) is positive semidefinite,
respectively negative semidefinite, for all p ≥ 2.

The fact that secR ≤ 0 implies negative-semidefiniteness of K(R,Symp
0 Rn)

for all p ≥ 2 was previously obtained in [HMS16] (see also [DS10]).
An algebraic characterization of secR ≥ 0 is arguably more relevant than the

analogous characterization of R being positive semidefinite for two key reasons.
First, pointwise, R is a linear endomorphism, so its positive-semidefiniteness is al-
ready characterized by Sylvester’s criterion. Second, globally, closed manifolds that
admit metrics with positive-semidefinite R have been classified (see Theorem 1.13
in [Wil07]; see also [BW08]), while several questions about manifolds that admit
metrics with sec ≥ 0 remain unanswered (see [Wil07, Zil07, Zil14] for surveys).

In order to exploit Theorem A and gain a deeper algebraic understanding
of sectional curvature bounds, it is crucial to (effectively) compute the curvature
terms K(R,Symp

0 Rn). Our second result offers a procedure that relies on a sym-
metric version > of the Kulkarni-Nomizu product, which we introduce in Section
4, and the decomposition into O(n)-irreducible components of arbitrary elements
R ∈ Sym2(∧2Rn), which are called algebraic modified curvature operators. Specifi-
cally,

R = RU + RL + RW + R∧4 ∈ Sym2(∧2
R
n),

where RU is the scalar curvature part, RL is the traceless Ricci part, RW is the Weyl
tensor part, and R∧4 , which vanishes if and only if R satisfies the first Bianchi
identity. For completeness and comparison, we also state how curvature terms
K(R,∧pRn) for the representations

ρ : O(n) → O(∧pRn)

can be computed by using the classical Kulkarni-Nomizu product ?, a result ob-
tained by Labbi [Lab15, Proposition 4.2] in the unmodified case R∧4 = 0.
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Theorem B. If R ∈ Sym2(∧2Rn) is an algebraic modified curvature operator,
then

K(R,Symp
0 R

n)

=
(
n+ p − 2
n(p − 1)

K(RU, π)+
n+ 2p − 4
n(p − 1)

K(RL, π)+K(RW , π)
)

>
g>(p−2)

(p − 2)!
,

K(R,∧pRn) =
(

2(n− p)
p − 1

RU + n− 2p
p − 1

RL − 2RW + 4R∧4

)
?

g?(p−2)

(p − 2)!
,

for all p ≥ 2 and 2 ≤ p ≤ n−2 respectively, where π is the representation Sym2
0 R

n.

The ranges of p not covered in Theorem B correspond to trivial cases (see Re-

mark 2.3). For instance, if p = 1, then K(R,∧1Rn) = K(R,Sym1
0 R

n) = RicR is
the Ricci tensor of R (see Example 2.2); this is the context where the Weitzenböck
formula was used by Bochner [Boc46,YB53] to prove vanishing theorems for har-
monic 1-forms and Killing vector fields on closed manifolds whose Ricci curvature
has a sign. A new application of the Bochner technique, which relies on a detailed
analysis of positive-definiteness of K(R,∧pRn), was recently found in [PW].

It was observed by Berger that positive-semidefiniteness of K(R,Sym2
0 R

n)
is an intermediate condition between Ric ≥ 0 and sec ≥ 0 (see Remark 3.2).
Thus, by Theorem A, positive-semidefiniteness of K(R,Symp

0 Rn) for all 1 ≤
p ≤ q provides a family parametrized by q ∈ N of interpolating curvature con-
ditions between Ric ≥ 0 (corresponding to q = 1) and sec ≥ 0 (corresponding
to q = ∞). The convex sets that form this family are spectrahedra, for which
there are efficient algorithms to check membership of a given curvature opera-
tor (see [BKM]). Moreover, since ?-products and >-products with the metric g

preserve positive-semidefiniteness, Theorem B provides a sufficient condition for
positive-semidefiniteness of K(R,∧pRn) and K(R,Symp

0 Rn) in terms of the
components of R. This is also suggestive of other potential relations between
positive-semidefiniteness of the endomorphisms K(R,Symp

0 Rn) for higher val-
ues of p ≥ 2, which could lead to algebraic characterizations of sectional curvature
bounds more powerful than Theorem A.

Our third result concerns simply connected closed 4-manifolds that have
sec > 0, which are conjecturally diffeomorphic to S4 or CP2, and hence have
definite intersection form. It is an application of our extension of Labbi [Lab15]
to the modified case, that is, the formula K(R∧4 ,∧2R4) = 4R∧4 in Theorem B,
together with the Bochner technique and the Finsler-Thorpe trick [Tho71,Tho72]
(see also [BKM]).

Theorem C. Let (M, g) be a closed simply connected Riemannian 4-manifold
with sec > 0 whose intersection form is indefinite. Then, the set of points where the
curvature operator is not positive definite has at least two connected components with
nonempty interior.
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The question of whether S2 × S2, which has indefinite intersection form,
admits metrics with sec > 0 is a famous unsolved problem, known as the Hopf
conjecture. By Theorem C, if any such metric g existed, then there would be
a region which disconnects (S2 × S2, g) where its curvature operator is positive
definite. Recall that closed n-manifolds whose curvature operator is everywhere
positive definite are diffeomorphic to a space form Sn/Γ (see [BW08]).

Another direct consequence of Theorem C is that a closed simply connected
Kähler 4-manifold with sec > 0 has definite intersection form. Indeed, the curva-
ture operator of a Kähler 4-manifold is not positive definite at any point. Recall
that a classical result of Andreotti and Frankel [Fra61], using methods from com-
plex and algebraic geometry, shows that the only Kähler 4-manifold as above is
CP2.

Relaxing the condition sec > 0 to sec ≥ 0 on closed simply connected 4-
manifolds, the conjectured list of possible diffeomorphism types grows to include
S2×S2, CP2#CP2, and CP2#CP2. Apart from CP2#CP2, these 4-manifolds have
indefinite intersection form. In this context, we have a rigidity counterpart to
Theorem C, as follows.

Theorem D. Let (M, g) be a closed simply connected Riemannian 4-manifold
with sec ≥ 0 whose intersection form is indefinite. Then, one of the following holds:

(i) The set of points where the curvature operator is not positive semidefinite has
at least two connected components.

(ii) (M, g) is isometric to the Riemannian product
(
S2 × S2, g1 ⊕ g2

)
where

(S2, g1) and (S2, g2) have sec ≥ 0.

As mentioned above, closed manifolds with everywhere positive-semidefinite
curvature operator are classified [Wil07, Theorem 1.13].

The use of symmetries led to substantial advances towards the Hopf conjec-
ture, notably with [HK89] and [GW14], and more generally towards understand-
ing manifolds with sec > 0 or sec ≥ 0 via the Grove Symmetry Program [Gro02].
However, as these methods reach their exhaustion, it seems very important to
make new progress without relying on symmetries, as is achieved in Theorems C
and D.

Finally, Theorems C and D also yield the following global obstruction to
the existence of curvature-homogeneous metrics, that is, metrics whose curvature
operator is the same at every point (cf. [KP94]; see [KTV92] and Section 1.4 in
[Gil07] for surveys).

Corollary E. Let (M, g) be a closed simply connected Riemannian 4-manifold
with indefinite intersection form. If (M, g) has sec > 0, then it is not curvature
homogeneous. If (M, g) has sec ≥ 0, then it can only be curvature homogeneous if it is
isometric to the product of two round spheres of possibly different radii.

This paper is organized as follows. In Section 2, we recall the abstract frame-
work for Weitzenböck formulae, the definition and basic properties of its curva-
ture term K(R, ρ), and some aspects of exterior and symmetric powers (of the
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defining O(n)-representation); we also provide a general overview of the Bochner
technique. Section 3 contains the proof of Theorem A. After recalling the clas-
sical Kulkarni-Nomizu product ? for symmetric tensors on exterior powers, we
introduce the product > for symmetric tensors on symmetric powers in Section 4.
Furthermore, some important representation theoretic aspects of these Kulkarni-
Nomizu algebras are discussed in Subsection 4.2. Building on this material, The-
orem B is proved in Section 5. Finally, Section 6 contains the proofs of Theorems
C and D.

Conventions. Throughout the paper we make frequent use of the following
conventions. Every finite-dimensional vector space V with an inner product is
identified with the dual vector space V∗, and we often regard the exterior power
∧pV and the symmetric power Symp V as vector subspaces of the tensor power
V⊗p. The canonical orthonormal basis of Rn is denoted {ei}. The corresponding
orthonormal basis of the pth exterior power ∧pRn is {ei1 ∧ ei2 ∧ · · · ∧ eip , i1 <
i2 < · · · < ip}. For p = 2, there is a canonical identification ∧2Rn ≅ so(n) with
the Lie algebra of SO(n), given by ei ∧ ej ≅ Eij, where Eij is the matrix whose
(i, j) entry is +1, (j, i) entry is −1, and all other entries are zero.

The pth symmetric power Symp
Rn is spanned by {ei1 ∨ ei2 ∨ · · · ∨ eip , i1 ≤

i2 ≤ · · · ≤ ip}. Moreover, we identify Symp
Rn with the space of homogeneous

polynomials of degree p on Rn, by means of ei1 ∨ei2 ∨· · ·∨eip ≅ xi1xi2 . . . xip ,
where xi denote the canonical coordinates of Rn. We also denote the product of
two polynomialsϕ ∈ Symp

Rn and ψ ∈ Symq
Rn byϕ∨ψ ∈ Symp+q

Rn. The
inner product of two elements ϕ,ψ ∈ Symp

Rn is defined to be 〈ϕ,ψ〉 = ϕ̂(ψ),
where ϕ̂ is the differential operator of order p dual to ϕ, obtained by replacing
each xi with ∂/∂xi. For example, ‖ei∨ej‖ = 1 if i ≠ j; however, ‖ei∨ei‖ =

√
2.

The space of traceless symmetric p-tensors Symp
0 Rn is the subspace of Symp

Rn

consisting of harmonic polynomials. Its orthogonal complement is isomorphic

to Symp−2
Rn via multiplication by r 2 = ∑n

i=1x
2
i . Given ϕ ∈ Symp

Rn, we
shall denote by ϕ0 its orthogonal projection onto Symp

0 Rn. The above element

r 2 ∈ Sym2
Rn is often called g, which also stands for Riemannian metrics.

Finally, our sign convention for the curvature operator R:∧2TpM→∧2TpM of
a Riemannian manifold (M, g) is given by 〈R(X∧Y), Z∧W〉 = 〈R(X,Y)Z,W〉 =
〈∇[X,Y]Z −∇X∇YZ +∇Y∇XZ,W〉, so that sec(X ∧ Y) = R(X ∧ Y,X ∧ Y) if X
and Y are orthonormal vectors.

2. WEITZENBÖCK FORMULAE

In this section, we recall the abstract framework for Weitzenböck formulae follow-
ing [Bes08,Hit15], discuss the basic algebraic properties of its curvature term, and
give a quick account of the so-called Bochner technique.

Let (M, g) be an n-dimensional Riemannian manifold, and let Fr(TM) de-
note the principal O(n)-bundle of orthonormal frames on (M, g). The structure
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group O(n) is replaced accordingly if (M, g) has additional structures, for exam-
ple, with SO(n) if (M, g) has an orientation, and with Spin(n) if it has a spin
structure. Every orthogonal representation ρ : O(n) → O(E) gives rise to a Rie-
mannian vector bundle E → M , associated with Fr(TM) via ρ, which we also
denote by E or ρ. Moreover, E has a linear connection induced by the Levi-
Civita connection of (M, g), and both connections are denoted ∇. The connection
Laplacian, or rough Laplacian, is the differential operator ∇∗∇ on sections of E,

where ∇∗ is the L2-adjoint of ∇; or, in local coordinates, ∇∗∇ = −∑ki=1∇Ei∇Ei
where {Ei} is an orthonormal frame for TM . Note that a section σ of E satisfies
∇∗∇σ = 0 if and only if σ is parallel.

The Weitzenböck formula relates the connection Laplacian and other geomet-
rically relevant Laplacians on sections of E, collectively denoted by ∆, via

(2.1) ∆ = ∇∗∇+ tK(R, ρ),

where t ∈ R is an appropriately chosen constant. The curvature term K(R, ρ) is
the fiberwise linear endomorphism of E defined by

(2.2) K(R, ρ) = −
∑

a,b

Rab dρ(Xa)dρ(Xb),

where {Xa} is an orthonormal basis of the Lie algebra so(n) ≅ ∧2Rn, such that
the curvature operator of (M, g) is identified with

R =
∑

a,b

RabXa ⊗Xb

by using an orthonormal frame on M (cf. [Bes08, (1.142)], [Hit15]). Note that
K(R, ρ) is self-adjoint, since R is self-adjoint and dρ(X) are skew-adjoint, as ρ is
orthogonal.

A fundamental observation is that (2.2), as a pointwise definition, can be un-
derstood abstractly as an algebraic construction associating K(R, ρ) ∈ Sym2(E)

with each modified algebraic curvature operator R ∈ Sym2(∧2Rn). In other words,
there is no need for R to satisfy the first Bianchi identity. The following properties
of (2.2) are straightforward to verify.

Proposition 2.1. The map K(·, ρ) : Sym2(∧2Rn) → Sym2(E) satisfies the
following:

(i) K(·, ρ) is linear and O(n)-equivariant.
(ii) K(R, ρ) = 0 if ρ is the trivial representation (or, more generally, if dρ = 0).
(iii) For any two O(n)-representations ρi : O(n) → O(Ei),

K(R, ρ1⊕ρ2) = K(R, ρ1)⊕K(R, ρ2) ∈ Sym2(E1)⊕Sym2(E2) ⊂ Sym2(E1⊕E2).
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(iv) If ρ has no trivial factors and R is positive definite, then K(R, ρ) is also pos-
itive definite. In particular, if R is positive semidefinite, then so is K(R, ρ).

Example 2.2. Let ρ be the defining O(n)-representation on Rn, and recall
that the corresponding associated bundle is the tangent bundle TM . Set {Xa} to
be the basis of so(n) consisting of matrices Eij, 1 ≤ i < j ≤ n, defined in the

conventions in the Introduction. Given R ∈ Sym2(∧2Rn), write Rijkℓ for the
coefficient Rab, where Xa = Eij and Xb = Ekℓ. Since dρ(X) = X, we have that,
for all p ≤ q,

〈K(R, ρ)ep , eq〉
= −

∑

i<j

∑

k<ℓ

Rijkℓ〈EijEkℓep, eq〉

=
∑

i<j

∑

k<ℓ

Rijkℓ〈δℓpek − δkpeℓ, δjqei − δiqej〉

=
∑

i<j

∑

k<ℓ

Rijkℓ(δℓpδjqδki − δℓpδiqδkj − δkpδjqδℓi + δkpδiqδℓj)

=
∑

i<p

Riqip −
∑

p<i<q

Riqpi +
∑

q<j

Rqjpj

=
∑

i

Rpiqi

= RicR(ep , eq).

Thus, the curvature term K(R, ρ) ∈ Sym2(Rn) is the Ricci tensor of R.

2.1. Exterior and Symmetric Powers. The representations ρ of O(n) that
are most relevant for this paper are the exterior powers ∧pRn and symmetric powers
Symp

Rn of the defining representation of O(n) in Rn, respectively, given by

(2.3)
ρ(A)(v1 ∧ · · · ∧ vp) = Av1 ∧ · · · ∧Avp ,
ρ(A)(v1 ∨ · · · ∨ vp) = Av1 ∨ · · · ∨Avp ,

for all A ∈ O(n), vi ∈ Rn. The linearizations of (2.3) are given by the Leibniz
rule:

dρ(X)(v1 ∧ · · · ∧ vp) =(2.4)

= (Xv1)∧ · · · ∧ vp + · · · + v1 ∧ · · · ∧ vp−1 ∧ (Xvp),
dρ(X)(v1 ∨ · · · ∨ vp) =(2.5)

= (Xv1)∨ · · · ∨ vp + · · · + v1 ∨ · · · ∨ vp−1 ∨ (Xvp),

for all X ∈ so(n). Identifying ϕ ∈ Symp
Rn with a homogeneous polynomial

ϕ : Rn → R, as explained in the end of the Introduction, the action of O(n)
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becomes
ρ(A)(ϕ) =ϕ ◦A−1,

where A ∈ O(n) is identified with the orthogonal transformation A : Rn → Rn.
In this language, the linearization of ρ at a matrix X = Eij ∈ so(n) becomes

(2.6) dρ(Eij)ϕ = d

dt
(ϕ ◦ e−tEij )

∣∣∣∣
t=0

=
(
xi

∂

∂xj
− xj ∂

∂xi

)
ϕ.

Remark 2.3. Although the O(n)-representations ∧n−1Rn and ∧1Rn are not
isomorphic, their linearizations agree (by identifying ∧n−1Rn ≅ ∧1Rn ≅ Rn

as vector spaces), and hence, by Example 2.2, we have that K(R,∧n−1Rn) =
K(R,∧1Rn) = K(R,Rn) = RicR. Moreover, ∧0Rn, ∧nRn, and Sym0

Rn have
trivial linearization and hence the corresponding curvature terms K(R, ρ) vanish
(see Proposition 2.1).

It is a well-known fact in Representation Theory that ∧pRn is an irreducible
O(n)-representation of real type, that is, its algebra of equivariant endomorphisms
is isomorphic to R. On the other hand, for p ≥ 2, the representation Symp

Rn

decomposes as a sum of ⌈(p+ 1)/2⌉ irreducible O(n)-representations of real type

(2.7) Symp
R
n ≅ Symp

0 R
n ⊕ Symp−2

0 R
n ⊕ · · · ,

where the last factor is either Sym1
0 R

n ≅ Rn or Sym0
0 R

n ≅ R, according to

the parity of p. The isomorphism between each irreducible Symk
0 R

n and the
corresponding subspace of Symp

Rn is given by (polynomial) multiplication by

the (p − k)/2 power of r 2 =∑ni=1x
2
i ∈ Sym2

Rn (see [FH91, Example 19.21]).
The vector bundles over a Riemannian manifold (M, g) associated with the

O(n)-representations ∧pRn and Symp
Rn are clearly the bundles ∧pTM and

Symp TM , whose sections are, respectively, p-forms and symmetric p-tensors on
M . In both of these cases, there are geometrically canonical Laplacians that sat-
isfy the Weitzenböck formula (2.1) as follows (see Besse, (1.144) and (1.154) in
[Bes08]).

In the case of ∧pTM , setting t = 2 in (2.1), one obtains the Hodge Laplacian
∆ = dd∗ + d∗d. A p-form α ∈ ∧pTM is harmonic, that is, ∆α = 0, if and only
if it is closed (dα = 0) and co-closed (d∗α = 0). Moreover, by Hodge Theory,
the pth Betti number of a closed manifold M is precisely bp(M) = dim ker∆,
the dimension of the space of harmonic p-forms on (M, g), for any Riemannian
metric g.

In the case of Symp TM , setting t = −2 in (2.1), one obtains the Lichnerowicz
Laplacian ∆. A symmetric p-tensor ϕ ∈ Symp TM is harmonic, that is, ∆ϕ = 0,
if and only if it is Killing, that is, its symmetrized covariant derivative vanishes.

In particular, if p = 1, the space of Killing vector fields ker∆ ⊂ Sym1 TM is
identified with the Lie algebra of the isometry group Iso(M, g), provided (M, g) is
complete.
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2.2. The Bochner technique. If (M, g) is closed, the classical vanishing the-
orems of Bochner [Boc46, YB53] follow by exploiting the positivity of tK(R, ρ)
to force the vanishing of harmonic sections α ∈ ker∆, by integrating (2.1) as
follows:

(2.8) 0 =
∫

M
〈∆α,α〉 vol =

∫

M
‖∇α‖2 + t〈K(R, ρ)α,α〉 vol .

For instance, in the cases of ∧1TM and Sym1 TM , using t = ±2 as appropriate
and Example 2.2, the second term in the above integrand is strictly positive for
nonzero harmonic 1-forms if Ric > 0, and for nonzero Killing vector fields if
Ric < 0. This would lead to a contradiction if such harmonic sections did not
vanish. Thus, if a closed manifold (M, g) satisfies Ric > 0, then b1(M) = 0; while
if it satisfies Ric < 0, then Iso(M, g) is finite. Clearly, such conclusions remain
true if Ric ≥ 0 and Ric > 0 at some point; or, respectively, Ric ≤ 0 and Ric < 0 at
some point.

The identity (2.8) also yields strong results if tK(R, ρ) is only nonnegative,
without the strict inequality at any points of M . In this case, harmonic sections
α ∈ ker∆ are parallel and satisfy K(R, ρ)α = 0. In the above examples, this
proves that if a closed manifold (M, g) satisfies Ric ≥ 0, then b1(M) ≤ b1(Tn) =
n; while if it satisfies Ric ≤ 0, then dim Iso(M, g) ≤ n. Rigidity results charac-
terizing the equality cases in the previous statements can also be easily obtained.
(For more details and applications, including on noncompact manifolds, see Wu
[Wu88].)

3. ALGEBRAIC CHARACTERIZATION OF SECTIONAL CURVATURE

BOUNDS

The goal of this section is to algebraically characterize secR ≥ k and secR ≤ k in
terms of the curvature terms of Weitzenböck formulae for (traceless) symmetric
tensors, proving Theorem A. The starting point is to obtain an explicit formula
for K(R,Symp

0 Rn) (cf. [HMS16, Proposition 6.6] and [DS10, Theorem 1.6]).

Proposition 3.1. There is a cp,n > 0 such that, for all ϕ,ψ ∈ Symp
0 Rn,

(3.1) 〈K(R,Symp
0 R

n)ϕ,ψ〉 = cp,n
∫

Sn−1
R(x,∇ϕ(x),x,∇ψ(x))dx.

Proof. By Schur’s lemma, as Symp
0 Rn is an irreducible O(n)-representation

of real type, all O(n)-equivariant inner products on Symp
0 Rn are (positive) real

multiples of each other. Thus, there exists a constant cp,n > 0 such that for all
ϕ,ψ ∈ Symp

0 Rn,

(3.2) 〈ϕ,ψ〉 = cp,n
∫

Sn−1
ϕ(x)ψ(x)dx.
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Evaluating the linearization (2.6) at some x = (x1, . . . , xn) ∈ Rn, we have

(ρ(Eij)ϕ)(x) = xi ∂ϕ
∂xj

(x)− xj ∂ϕ
∂xi

(x)

= 〈x, ei〉〈∇ϕ(x), ej〉 − 〈x, ej〉〈∇ϕ(x), ei〉
= 〈x ∧∇ϕ(x), ei ∧ ej〉
= 〈x ∧∇ϕ(x), Eij〉.

In particular, (dρ(X)ϕ)(x) = 〈x ∧ ∇ϕ(x),X〉 for all X ∈ so(n). Altogether,
combining this with (2.2) and (3.2), we have that for any R =∑a,b RabXa ⊗Xb,

〈K(R,Symp
0 R

n)ϕ,ψ〉 =
∑

a,b

Rab〈dρ(Xa)ϕ,dρ(Xb)ψ〉

= cp,n
∑

a,b

Rab

∫

Sn−1
(dρ(Xa)ϕ)(x)(dρ(Xb)ψ)(x)dx

= cp,n
∑

a,b

Rab

∫

Sn−1
〈x ∧∇ϕ(x),Xa〉〈x ∧∇ψ(x),Xb〉dx

= cp,n
∫

Sn−1
〈R, (x ∧∇ϕ(x))⊗ (x ∧∇ψ(x))〉dx

= cp,n
∫

Sn−1
R(x,∇ϕ(x),x,∇ψ(x))dx. ❐

An interesting consequence of Proposition 3.1 is thatK(R,Symp
0 Rn) = 0 for

every R ∈ ∧4Rn ⊂ Sym2(∧2Rn), a fact that also follows from Theorem B.
Although Theorem A is stated using curvature termsK(R,Symp

0 Rn), p ≥ 2,
note that it can be alternatively stated using K(R,Symp

Rn), p ≥ 2. Indeed,
by Schur’s lemma and (2.7), the self-adjoint O(n)-equivariant endomorphism
K(R,Symp

Rn) is block diagonal, with blocks corresponding to the endomor-

phisms K(R,Symk
0 R

n), k = p, p − 2, . . . . Thus, positive-semidefiniteness for
all p ≥ 2 of the endomorphisms K(R,Symp

0 Rn) or K(R,Symp
Rn) is clearly

equivalent.

Proof of Theorem A. Since secR depends linearly on R, it suffices to prove that
secR ≥ 0 if and only if K(R,Symp

0 Rn) is positive semidefinite for all p ≥ 2.
Setting ϕ = ψ in (3.1), the integrand in the righthand side becomes a sec-

tional curvature of R. Thus, it follows that K(R,Symp
0 Rn), p ≥ 2, is positive

semidefinite if secR ≥ 0.
In order to prove the converse, let R : ∧2Rn → ∧2Rn be an algebraic curvature

operator such that K(R,Symp
0 Rn) is positive semidefinite for all p ≥ 2. Given

any polynomial ϕ : Rn → R, consider its decomposition ϕ = ϕeven +ϕodd into
parts of even and odd degree. After replacing ϕ with a polynomial with the same
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restriction to the unit sphere Sn−1 ⊂ Rn, we may assume that ϕeven and ϕodd are
homogeneous. Since the function x ֏ R(x,∇ϕeven(x),x,∇ϕodd(x)) is odd, its
integral over Sn−1 vanishes, and hence

∫

Sn−1
R(x,∇ϕ(x),x,∇ϕ(x))dx

=
∫

Sn−1
R(x,∇ϕeven(x),x,∇ϕeven(x))dx

+
∫

Sn−1
R(x,∇ϕodd(x),x,∇ϕodd(x))dx.

Denoting byϕeven = ϕp+ϕp−2+· · ·+ϕ2+ϕ0 the O(n)-irreducible components
of ϕ ∈ Symp

Rn according to the decomposition (2.7), we claim that the mixed
terms in the bilinear expansion of

∫

Sn−1
R(x,∇ϕeven(x),x,∇ϕeven(x))dx

vanish. Indeed, if k ≠ ℓ and X,Y ∈ so(n), then

dρ(X)ϕ2k,dρ(Y)ϕ2ℓ ∈ Symp(Rn)

are in different O(n)-irreducible factors. A computation similar to that in the
proof of Proposition 3.1 implies that, for any R =∑a,b RabXa ⊗ Xb,

∫

Sn−1
R(x,∇ϕ2k(x),x,∇ϕ2ℓ(x))dx

=
∑

a,b

Rab

∫

Sn−1
(dρ(Xa)ϕ2k)(x)(dρ(Xb)ϕ2ℓ)(x)dx = 0,

where the last equality holds since each of the integrals vanishes due to Schur’s
lemma. Therefore, by (3.1), we have

∫

Sn−1
R(x,∇ϕeven(x),x,∇ϕeven(x))dx

=
p/2∑

k=0

1
c2k,n

〈K(R,Sym2k
0 R

n)ϕ2k,ϕ2k〉.

A similar argument applies to ϕodd, so we conclude that for every polynomial ϕ,

(3.3)
∫

Sn−1
R(x,∇ϕ(x),x,∇ϕ(x))dx ≥ 0.
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Moreover, (3.3) holds for anyϕ ∈ C∞(Rn) by density of polynomials in C∞(Rn),
for example, with respect to uniform C1-convergence on compact sets.

In this situation, suppose R does not satisfy secR ≥ 0. Up to changing the
orthonormal basis {ei} of Rn and rescaling R, this is clearly equivalent to assuming
that secR(e1 ∧ e2) = R(e1, e2, e1, e2) = −1. Given ε > 0, define the test function

fε : Rn → R, fε(x) = max{0, ε2 − |x2| − ‖x − e1‖2}.

Note that the support of fε is contained in the ε-ball around e1 ∈ Rn. Moreover,
for any open neighborhood U ⊂ suppfε of e1, we have that

fε ∈ W 1,2(Rn)∩ C
∞(U \ {x2 = 0}),

that is, fε has square-integrable weak first derivatives in Rn, and is smooth at all
x = (x1, x2, . . . , xn) ∈ U away from the hyperplane x2 = 0. Moreover, at such
points, its gradient can be computed as

∇fε(x) = x2

|x2|
e2 − 2(x − e1).

In particular, if x ∈ U \ {x2 = 0} is sufficiently close to e1, then ∇fε(x) can be
made arbitrarily close to ±e2. By continuity of the sectional curvature function
of R, this means that R(x,∇fε(x),x,∇fε(x)) is arbitrarily close to −1. Up to
choosing a smaller ε > 0, we may hence assume that

∫

Sn−1
R(x,∇fε(x),x,∇fε(x))dx < 0.

By the density of C∞(Rn) in W 1,2(Rn), there is a sequence of smooth functions
converging to fε inW 1,2(Rn). Elements in this sequence that are sufficiently close
to fε in W 1,2(Rn) must hence violate (3.3), giving the desired contradiction. ❐

Remark 3.2. According to M. Gursky, it was observed by M. Berger (cf.

[Bes08, Theorem 16.9]) that if K(R,Sym2
0 R

n) is positive semidefinite, then so

is K(R,Sym1
Rn). Specifically, since the latter is precisely the Ricci tensor of R

(see Example 2.2), it can be diagonalized with an orthonormal basis {vi} of Rn,

that is, K(R,Sym1
Rn)(vi) = RicR(vi) = λivi. By (2.6), the linearization of the

O(n)-representation Sym2
0 R

n acts on ϕm = vm ∨ vm − (1/n)g ∈ Sym2
0 R

n as

dρ(vi ∧ vj)(ϕm) =
(
xi

∂

∂xj
− xj ∂

∂xi

)(
x2
m −

1
n

n∑

i=1

x2
i

)

= 2δjmxixm − 2δikxjxk,
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where we denote by (x1, . . . , xn) the coordinate system in Rn defined by {vi}.
Combining (2.2) with the above, we obtain

〈K(R,Sym2
0 R

n)(ϕm),ϕm〉
=
∑

i<j

∑

k<ℓ

Rijkℓ〈dρ(vi ∧ vj)ϕm,dρ(vk ∧ vℓ)ϕm〉

= 4
∑

i<j

∑

k<ℓ

Rijkℓ〈δjmxixm − δimxjxm, δℓmxkxm − δkmxℓxm〉

= 4
∑

i<j

∑

k<ℓ

Rijkℓ(δjmδℓmδik − δjmδkmδiℓ − δimδℓmδjk + δimδkmδjℓ)

= 4
∑

1≤i<m
Rimim + 4

∑

m<i≤n
Rmimi = 4 RicR(vm, vm) = 4λm.

Thus, positive-semidefiniteness of K(R,Sym2
0 R

n) clearly implies positive-semi-

definiteness of K(R,Sym1
Rn) = RicR. Given the above, it is natural to investi-

gate whether positive-semidefiniteness ofK(R,Symp+1
0 Rn) andK(R,Symp

0 Rn)
can also be related for p ≥ 2. In principle, this could shed light on further alge-
braic characterizations of sec ≥ 0 that are more powerful than the one stated in
Theorem A.

4. KULKARNI-NOMIZU ALGEBRAS

In this section, we recall the classical Kulkarni-Nomizu product of symmetric ten-
sors on exterior powers, and develop an analogous product for symmetric tensors
on symmetric powers. We then analyze representation theoretic aspects of the
corresponding algebras, in preparation for proving Theorem B.

4.1. Kulkarni-Nomizu products. The classical Kulkarni-Nomizu product

is the map ? that, with each h,k ∈ Sym2(Rn), associates h? k ∈ Sym2(∧2Rn)
defined by

(h? k)(x ∧y,z ∧w) = h(x, z)k(y,w)+ h(y,w)k(x, z)(4.1)

− h(x,w)k(y, z)− h(y, z)k(x,w)

on decomposable 2-forms, and extended by linearity. This operation simplifies the
algebraic manipulation of curvature operators; for example, the curvature operator
of a manifold with constant curvature k is simply (k/2)g ? g. Moreover, it can
be used to decompose the space of modified algebraic curvature operators into its

O(n)-irreducible components Sym2(∧2Rn) = U⊕L⊕W ⊕∧4Rn via successive
“divisions” by g; specifically, R = RU + RL + RW + R∧4 , where

RU = scal
2n(n− 1)

g ? g, RL = 1
n− 2

g ?

(
Ric− scal

n

)
,
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and RW and R∧4 do not have g factors (see [Bes08, (1.116)]). In this context,
the curvature operator R is respectively scalar flat, Einstein, conformally flat, or
satisfies the first Bianchi identity if and only if RU, RL, RW , or R∧4 vanishes.

As observed by Kulkarni [Kul72], the Kulkarni-Nomizu product (4.1) is a
special case of the product ? in the commutative graded algebra

C :=
n⊕

p=0

Sym2(∧pRn)

induced from the exterior algebra
⊕n
p=0∧pRn as follows. For α,β ∈ ∧pRn and

γ,δ ∈ ∧qRn, let

(α⊗ β)? (γ ⊗ δ) := (α∧ γ)⊗ (β∧ δ).

Extend the above by linearity to a product on
⊕n
p=0(∧pRn)⊗2, and note that C is

invariant under this product. Henceforth, this product ? on C will also be called
the (classical) Kulkarni-Nomizu product.

A convenient way to express the curvature term in Weitzenböck formulae for
symmetric tensors (used, for example, in Theorem B) involves a symmetric ana-
logue of the above Kulkarni-Nomizu product. Consider the commutative graded
algebra

A :=
∞⊕

p=0

Sym2(Symp
R
n)

endowed with the product > induced from the symmetric algebra
⊕∞
p=0 Symp

Rn

as follows. For α,β ∈ Symp
Rn and γ,δ ∈ Symq

Rn, let

(α⊗ β)> (γ ⊗ δ) := (α∨ γ)⊗ (β∨ δ).

Extend the above by linearity to a product on
⊕∞
p=0(Symp

Rn)⊗2, and note that
the subspace A is invariant under this product. Because of the reducibility of
Symp

Rn, p ≥ 2, as an O(n)-representation, it is useful to study the subspace

A0 :=
∞⊕

p=0

Sym2(Symp
0 R

n).

Consider the projection π : A→A0 obtained by extending by linearity the map

(4.2) π(ϕ⊗ψ) :=ϕ0 ⊗ψ0, ϕ,ψ ∈ Symp
R
n,

to all of A. Then, define a product on A0, also denoted by >, by setting for all
a,b ∈A0

(4.3) a> b := π(a> b).
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Proposition 4.1. In the above notation, (A0,>) is a commutative graded alge-
bra.

Proof. Since A is a commutative graded algebra, it suffices to show that > is
well defined on A0, that is, that kerπ is a graded ideal. Since, for each p,

Symp
R
n = Symp

0 R
n ⊕ (r 2 ∨ Symp−2

R
n),

it follows that

kerπ =
∞⊕

p=0

Sym2(r 2 ∨ Symp−2
R
n)⊕ (Symp

0 R
n ⊗ (r 2 ∨ Symp−2

R
n))

= span{(r 2∨ξ)⊗ ζ + ζ ⊗ (r 2∨ξ), ξ∈Symp−2
R
n, ζ∈Symp

R
n, p≥2}.

Given a ∈ A and b ∈ kerπ , we claim that a> b ∈ kerπ . By linearity, we may
assume that

a = ϕ⊗ψ+ψ⊗ϕ, ϕ,ψ ∈ Symp
R
n,

b = (r 2 ∨ ξ)⊗ ζ + ζ ⊗ (r 2 ∨ ξ), ξ ∈ Symp−2
R
n, ζ ∈ Symp

R
n.

Then,

a> b = (r 2 ∨ϕ ∨ ξ)⊗ (ψ∨ ζ)+ (ϕ∨ ζ)⊗ (r 2 ∨ψ∨ ξ)
+ (r 2 ∨ψ∨ ξ)⊗ (ϕ∨ ζ)+ (ψ∨ ζ)⊗ (r 2 ∨ϕ∨ ξ) ∈ kerπ. ❐

A simple (yet important) observation is that the operation (·)>g of multiply-
ing by g is O(n)-equivariant and preserves positive-semidefiniteness of endomor-
phisms.

Example 4.2. The metric g =∑ni=1 ei⊗ei ∈ Sym2(Rn) is simultaneously an
element of the algebras (C,?), (A,>), and (A0,>), and its pth power is exactly
p! Id.

More precisely, in the algebra (C,?) (cf. [Kul72, Lab15]),

g?p =
n∑

i1,...,ip=1

(ei1 ∧ · · · ∧ eip)⊗ (ei1 ∧ · · · ∧ eip)(4.4)

= p!
∑

i1<···<ip
(ei1 ∧ · · · ∧ eip)⊗ (ei1 ∧ · · · ∧ eip)

= p! Id∧pRn .
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To deal with the case of (A,>), we must introduce multi-idices ℓ = (ℓ1, . . . , ℓn),
ℓi ≥ 0, and we therefore write ℓ! := ℓ1! . . . ℓn!, |ℓ| = ℓ1 + · · · + ℓn, and
xℓ := xℓ1

1 . . . x
ℓn
n ∈ Sym|ℓ|

Rn. Note that ‖xℓ‖2 = ℓ!, and therefore we have
the analogous result

g>p =
n∑

i1,...,ip=1

(ei1 ∨ · · · ∨ eip)⊗ (ei1 ∨ · · · ∨ eip)(4.5)

=
∑

|ℓ|=p

p!
ℓ!
xℓ ⊗ xℓ

= p! IdSymp Rn .

Finally, (4.2), (4.3), and (4.5) imply that, in (A0,>), we also have

(4.6) g>p = p!π(IdSymp Rn) = p! IdSym
p
0 Rn .

Henceforth, to simplify notation, we denote the above powers (4.4), (4.5), and
(4.6) by gp when it is clear from the context which of the algebras A, A0, or C is
meant.

4.2. Representation theory. One of the steps in proving Theorem B is to

analyze the decomposition of Sym2(∧pRn) and Sym2(Symp
0 Rn) into irreducible

O(n)-representations. Specifically, we show that they contain at most one factor
isomorphic to each of the irreducible factors U, L, W , and ∧4Rn of the O(n)-
representation Sym2(∧2Rn). Indeed, if p = 0, then

Sym2(∧0
R
n) = Sym2(Sym0

0 R
n) = U

is the trivial representation; and if p = 1, then

Sym2(∧1
R
n) = Sym2(Sym1

0 R
n) = Sym2(Rn) ≅ U⊕L.

Moreover, it is also easy to see that

Sym2(∧n−1
R
n) ≅ U⊕L and Sym2(∧nRn) ≅ U.

However, this analysis is substantially more involved if p ≥ 2 in the case of
Symp

Rn, and 2 ≤ p ≤ n − 2 in the case of ∧pRn, and it is carried out us-
ing the so-called Weyl’s construction (see Lemmas 4.3 and 4.4). We now give a
brief summary of this method (for details see [FH91]).

Irreducible GL(n,C)-representations are labeled in terms of integer partitions
λ of k ∈ N by applying their Schur functor Sλ to the defining representation Cn.
Each such partition λ determines an idempotent element cλ in the group algebra
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CSk called its Young symmetrizer, where Sk denotes the group of permutations in
k letters. Using the natural action of CSk on the kth tensor power (Cn)⊗k, define
SλC

n := cλ · (Cn)⊗k ⊂ (Cn)⊗k. For instance, the partition λ = (1,1, . . . ,1) of k,
that is, k = 1+ 1+ · · · + 1, gives rise to the exterior power SλCn ≅ ∧kCn, while
the trivial partition µ = (k), that is, k = k, gives rise to the symmetric power

SµC
n ≅ Symk

Cn.
The restriction of the irreducible GL(n,C)-representation SλCn to O(n,C) is,

in general, reducible. Intersecting SλCn with the kernels of all contraction maps
(Cn)⊗k → (Cn)⊗(k−2) yields an O(n,C)-irreducible factor, denoted by S[λ]Cn.
Much as in the case of GL(n,C), this gives a one-to-one correspondence between
integer partitions λ and irreducible O(n,C)-representations. For instance, we have

that S[(1,1,...,1)]Cn = S(1,1,...,1)Cn ≅ ∧kCn and S[(k)]Cn ≅ Symk
0 C

n.
It is well known that the irreducible factorsU, L, W , and ∧4Rn of the O(n)-

representation Sym2(∧2Rn) are of real type; that is, the algebra of equivariant
automorphisms consists of all real scalar multiples of the identity. In particu-
lar, their complexifications are O(n,C)-irreducible and hence of the form S[λ]C

n

for some integer partition λ. Specifically, UC ≅ C is the trivial representation
(corresponding to the empty partition), LC ≅ S[(2)]C

n corresponds to the par-
tition 2 = 2, WC ≅ S[(2,2)]C

n corresponds to the partition 4 = 2 + 2, and
(∧4Rn)C = ∧4Cn ≅ S[(1,1,1,1)]Cn corresponds to the partition 4 = 1+ 1+ 1+ 1.

The tensor product of two Schur functors decomposes into a sum of Schur
functors according to the Littlewood-Richardson Rule (see [FH91, (6.7)]):

(4.7) Sλ ⊗ Sµ =
⊕
ν

NλµνSν .

The multiplicitiesNλµν (collectively called Littlewood-Richardson numbers) are de-
fined combinatorially from the partitions λ, µ, and ν, as the number of ways
one may achieve the Young diagram of ν by performing a strict µ-expansion to
the Young diagram of λ (see [FH91, p. 456]). Furthermore, in order to decom-
pose the restriction of an irreducible GL(n,C)-representation to O(n,C), we use
Littlewood’s restriction formula (see [FH91, (25.37)] and [Lit44]):

(4.8) Res
GL(n,C)
O(n,C) (SνC

n) =
⊕

λ̄

Nνλ̄S[λ̄]C
n,

where Nνλ̄ =
∑
δNδλ̄ν is the sum of the corresponding Littlewood-Richardson

numbers over the partitions δ with even parts.

Lemma 4.3. The O(n)-representation Sym2(Symp
0 Rn) has exactly one irre-

ducible factor isomorphic to each of U, L, and W , and no irreducible factors isomor-
phic to ∧4Rn, for all p ≥ 2, n ≥ 4.

Proof. Since their complexifications are O(n,C)-irreducible, the number of

factors isomorphic to U, L, W , and ∧4Rn that appear in Sym2(Symp
0 Rn) is
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equal to the number of factors isomorphic toUC, LC,WC, and ∧4Cn that appear
in Sym2(Symp

0 Cn) = Sym2(S[(p)]Cn), respectively.
To simplify notation, we henceforth drop the symbol Cn and only write Symp

for Symp
Cn, Sλ for SλCn, etc. Furthermore, we use the formalism of virtual

representations, that is, sums ⊕ as well as differences ⊖ of representations.

First, recall Symp = S[(p)] ⊕ S[(p−2)] ⊕ · · · = S[(p)] ⊕ Symp−2 (cf. (2.7)).
Therefore,

Sym2(S[(p)]) = Sym2(Symp)⊖ Sym2(Symp−2)⊖ (S[(p)] ⊗ Symp−2).

Since the last term equals Symp ⊗Symp−2⊖Symp−2⊗Symp−2, we have that

Sym2(S[(p)]) =Sym2(Symp)⊖ Sym2(Symp−2)(4.9)

⊖ (Symp ⊗Symp−2)⊕ (Symp−2⊗Symp−2).

All the terms in the righthand side of the above equation are restrictions to O(n,C)
of GL(n,C)-representations, so that (4.7) and (4.8) can be used to count the num-
ber of copies of the desired representations in each term. More precisely, it fol-
lows from the Littlewood-Richardson rule (4.7) (see Exercise 6.16 on page 81 of
[FH91]) that

Sym2(Symp) =
⊕

0≤a≤p
p+a even

S(p+a,p−a),

Sym2(Symp−2) =
⊕

0≤a≤p−2
p+a even

S(p+a−2,p−a−2),

Symp ⊗Symp−2 =
p−2⊕

a=0

S(p+a,p−a−2),

Symp−2⊗Symp−2 =
p−2⊕

a=0

S(p+a−2,p−a−2).

In order to count factors isomorphic to LC = S[(2)] in the restriction of terms
of the form S(k+a,k−a) to O(n,C), apply (4.8) with partitions ν = (k+ a,k− a)
and λ̄ = (2). There are several cases to be analyzed, as follows:

(i) If k + a is even and a = 0 or a = k, there is a unique strict λ̄-
expansion starting from a partition δ with even parts arriving at ν:

(a = 0)

1 1

(a = k)
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(ii) If k+ a is even and 0 < a < k, there are two strict λ̄-expansions:

1 1

1 1

(iii) If k+ a is odd and 0 < a < k, there is a unique strict λ̄-expansion:

1

1

(iv) If k+a is odd and a = 0, there are no strict λ̄-expansions by the Pieri
rule.

Analogously, the restriction of S(k+a,k−a−2) to O(n,C) contains two factors
isomorphic to S[(2)] if k + a is even and a < k− 2, one factor if a = k− 2, and
one factor if k+ a is odd.

Altogether, some elementary counting yields that the number of factors iso-
morphic to S[(2)] in each term of (4.9) is given according to the following table.

Term in (4.9) Number of factors isomorphic to S[(2)]

Sym2(Symp)
p even: 1+ 2(p/2 − 1)+ 1 = p
p odd: 2(p − 1)/2+ 1 = p

Sym2(Symp−2) p − 2 (analogous to the above)

Symp ⊗Symp−2 p even: 1+ 2(p/2 − 1)+ (p/2− 1) = (3p − 4)/2

p odd: 1+ 2(p − 3)/2) + (p − 1)/2 = (3p − 5)/2

Symp−2⊗Symp−2 p even: 1+ 2(p/2 − 2)+ 1+ (p/2− 1) = (3p − 6)/2

p odd: 1+ 2(p − 3)/2 + (p − 3)/2 = (3p − 7)/2

Therefore, combining the quantities in the above table according to (4.9), we
have

p − (p − 2)− 3p − 4
2

+ 3p − 6
2

= 1, if p is even,

p − (p − 2)− 3p − 5
2

+ 3p − 7
2

= 1, if p is odd.

That is, there is exactly one factor isomorphic to LC = S[(2)] in Sym2(S[(p)]).
We proceed in a similar fashion to count factors isomorphic to WC = S[(2,2)].

Specifically, we apply (4.8) with ν = (k + a,k− a) and λ̄ = (2,2). Again, there
are different cases to be analyzed:

(i) If k + a is even and 0 ≤ a < k, there is a unique strict λ̄-expansion
starting from a partition δ with even parts arriving at ν:
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2 2

1 1

(a = 0)

2 2

1 1

(a > 0)

(ii) If k + a is even and a = k, or k + a is odd, then there are no strict
λ̄-expansions.

Analogously, the restriction of S(k+a,k−a−2) to O(n,C) contains one factor
isomorphic to S[(2,2)] if k+ a is even and a < k− 2, and no factors otherwise.

Thus, the number of factors isomorphic to S[(2,2)] in each term of (4.9) is
given according to the following table.

Term in (4.9)
Number of

factors S[(2,2)]

Sym2(Symp)
p even: p/2

p odd: (p − 1)/2

Sym2(Symp−2), Symp ⊗Symp−2, Symp−2⊗Symp−2 p even: (p − 2)/2

p odd: (p − 3)/2

Thus, by combining the quantities in the above table according to (4.9), it fol-

lows that there is exactly one factor isomorphic to WC = S[(2,2)] in Sym2(S[(p)]).
To tackle the case ∧4Cn = S[(1,1,1,1)], set λ̄ = (1,1,1,1) in (4.8). Any strict

λ̄-expansion has at least four parts, and therefore Nδλ̄ν = 0 for any partition ν
with less than four parts. Hence, there are no factors isomorphic to ∧4Cn in
Sym2(S[(p)]).

Finally, since S[(p)] is irreducible, we see that Sym2(S[(p)]) contains exactly
one copy of the trivial representation UC ≅ C, corresponding to multiples of

Id ∈ Sym2(S[(p)]). ❐

Lemma 4.4. The O(n)-representation Sym2(∧pRn) has exactly one irreducible
factor isomorphic to each of U, L, W , and ∧4Rn, for all 2 ≤ p ≤ n− 2, n ≥ 4.

Proof. As in the proof of Lemma 4.3, it suffices to count O(n,C)-irreducible
factors isomorphic to UC, LC, WC, and ∧4Cn in

Sym2(∧pCn) = Sym2(S[(1,1,...,1)]C
n).

By the Littlewood-Richardson rule (4.7) (see [FH91, Exercise 6.16, p.81]), we
have

(4.10) Sym2(∧p) =
⊕

0≤a≤p
a even

Sνa ,
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where νa = (2,2, . . . ,2,1,1, . . . ,1) is the partition of 2p into (p − a) factors 2
and 2a factors 1.

Applying the Littlewood restriction rule (4.8) with ν = νa and λ̄ = (2),
respectively, λ̄ = (2,2), it follows that Sνa contains a unique factor isomorphic to
S[(2)], respectively S[(2,2)], if a = 0; and no such factors if a > 0.

1 1

λ̄ = (2)
2 2

1 1

λ̄ = (2,2)

Setting λ̄ = (1,1,1,1) in (4.8), it follows that Sνa contains a unique factor
isomorphic to S[(1,1,1,1)] if a = 2 and no such factors otherwise.

4

3

2

1

Indeed, note that Nδλ̄νa = 0 unless a = 2 and δ = (2, . . . ,2) is the partition of
2p − 4 into p − 2 equal terms, in which case Nδλ̄νa = 1. Here, we have used the

fact that a strict λ̄-expansion of δ has precisely 4 odd parts.

Thus, according to (4.10), it follows that Sym2(∧p) contains exactly one fac-
tor isomorphic to each of LC, WC, and ∧4Cn. Finally, since S[(1,1,...,1)] is irre-
ducible, Sym2(S[(1,1,...,1)]) contains exactly one copy of the trivial representation
UC ≅ C, corresponding to multiples of Id ∈ Sym2(S[(1,1,...,1)]). ❐

5. CURVATURE TERMS FOR ALTERNATING AND SYMMETRIC TENSORS

In this section, we give a proof of Theorem B by computing the curvature terms
K(R,∧pRn) and K(R,Symp

0 Rn) of the Weitzenböck formulae for alternating
and symmetric tensors using the Kulkarni-Nomizu algebras studied in the previous
section. As mentioned in the Introduction, the formula for K(R,∧pRn) under
the assumption that R∧4 = 0 was previously obtained by Labbi [Lab15, Proposi-
tion 4.2]; however, we provide here a new and independent proof for the sake of
completeness.
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Proof of Theorem B. We begin by analyzing the case of the O(n)-representa-
tions ρ of the form Symp

0 Rn, p ≥ 2. It follows from Proposition 2.1 and O(n)-
equivariance of (·)> g : A0 →A0 that the linear maps

(5.1)
K(·,Symp

0 R
n) : Sym2(∧2

R
n)→ Sym2(Symp

0 R
n),

K(·,Sym2
0 R

n)> gp−2 : Sym2(∧2
R
n)→ Sym2(Symp

0 R
n)

are O(n)-equivariant. Thus, their restrictions to the O(n)-irreducible factors in
the decomposition Sym2(∧2Rn) = U ⊕ L ⊕W ⊕ ∧4Rn are themselves O(n)-
equivariant, and their images are contained in the corresponding O(n)-irreducible

factors of Sym2(Symp
0 Rn). According to Lemma 4.3, there are no O(n)-irreduc-

ible factors isomorphic to ∧4Rn in Sym2(Symp
0 Rn), and hence the restrictions

of the maps (5.1) to ∧4Rn ⊂ Sym2(∧2Rn) vanish identically by Schur’s lemma.
Moreover, by Lemma 4.3, there is a unique O(n)-irreducible factor isomorphic
to each of U, L, and W in Sym2(Symp

0 Rn). Provided that the restrictions of

K(·,Sym2
0 R

n)> gp−2 to such irreducibles do not vanish, it follows from Schur’s
lemma that, since they are of real type, there exist real constants Ap,n, Bp,n, and
Cp,n, such that

K(R,Symp
0 R

n) = Ap,nK(RU,Sym2
0 R

n)> gp−2

+ Bp,nK(RL,Sym2
0 R

n)> gp−2

+ Cp,nK(RW ,Sym2
0 R

n)> gp−2

where R = RU + RL + RW + R∧4 are the components of R. By evaluating the

maps in (5.1) at convenient choices of R ∈ Sym2(∧2Rn) and ϕp ∈ Symp
0 Rn, we

simultaneously show that K(·,Sym2
0 R

n) > gp−2 restricted to each of U, L, and
W is nonzero, and compute Ap,n, Bp,n, and Cp,n, proving the desired formula.

In what follows, using the conventions established in the Introduction, we fix

ϕp(x) := Re(x1 +
√
−1x2)

p ∈ Symp
0 R

n.

To simplify computations, we use complex coordinates

z = x1 +
√
−1x2, z̄ = x1 −

√
−1x2,

with respect to which ϕp(x) = Rezp = (zp + z̄p)/2. Recall that, according to
our conventions, the inner product on Symp

0 Rn is computed as 〈ϕ,ψ〉 = ϕ̂(ψ),
where ϕ̂ is the dual differential operator to ϕ. In complex coordinates, note that

the duals to z and z̄ are, respectively, ẑ = 2∂/∂z̄ and ˆ̄z = 2∂/∂z. For example,
we may compute

(5.2) ‖ϕp‖2 = ϕ̂p(ϕp) =
̂zp + z̄p

2

(
zp + z̄p

2

)
= 2p−1p !.
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First, we consider the irreducible factor U ≅ R. Setting

(5.3) RU = 1
2
g ? g =

∑

1≤i<j≤n
Eij ⊗ Eij ,

it follows from (2.2) that

〈K(RU,Symp
0 R

n)ϕ,ϕ〉 = −
∑

1≤i<j≤n
〈dρ(Eij)2ϕ,ϕ〉(5.4)

=
∑

1≤i<j≤n
‖dρ(Eij)ϕ‖2.

Note that dρ(Eij)ϕp = 0 for 3 ≤ i < j ≤ n, while

dρ(E12)ϕp =
(
x1

∂

∂x2
− x2

∂

∂x1

)
zp + z̄p

2
=
√
−1

(
z
∂

∂z
− z̄ ∂
∂z̄

)
zp + z̄p

2
= −p Imzp,

dρ(E1j)ϕp =
(
x1

∂

∂xj
− xj ∂

∂x1

)
zp + z̄p

2
= −xj

(
∂

∂z
+ ∂

∂z̄

)
zp + z̄p

2

= −pxj Rezp−1,

dρ(E2j)ϕp =
(
x2

∂

∂xj
− xj

∂

∂x2

)
zp + z̄p

2
= −

√
−1xj

(
∂

∂z
− ∂

∂z̄

)
zp + z̄p

2

= pxj Imzp−1,

for 3 ≤ j ≤ n. Hence, the square norms of the above can be computed as

‖dρ(E12)ϕp‖2 = p2
̂(zp − z̄p)
2
√−1

(
zp − z̄p
2
√−1

)
(5.5)

= −
√
−1 2p−1p2

((
∂

∂z̄

)p
−
(
∂

∂z

)p)(zp − z̄p
2
√−1

)

= 2p−1p2p!,

‖dρ(E1j)ϕp‖2 = ‖dρ(E2j)ϕp‖2 = 2p−2pp!, 3 ≤ j ≤ n,(5.6)

‖dρ(Eij)ϕp‖2 = 0, 3 ≤ i < j ≤ n.(5.7)

Altogether, by (5.4), we have that

〈K(RU,Symp
0 R

n)ϕp ,ϕp〉 = 2p−1p2p!+ 2(n− 2)(2p−2pp!)(5.8)

= (n+ p − 2)2p−1p2(p − 1)! .
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In particular, 〈K(RU,Sym2
0 R

n)ϕp ,ϕp〉 = 8n. Combining this with (5.2), Ex-

ample 4.2, and O(n)-equivariance, we have that K(RU,Sym2
0 R

n) = ng> g, and
hence

(5.9) 〈(K(RU,Sym2
0 R

n)> gp−2)ϕp ,ϕp〉 = n2p−1(p!)2.

Therefore, by (5.8) and (5.9), we conclude that Ap,n = (n+p− 2)/(n(p− 1)!).

Second, consider the irreducible factor L ≅ Sym2
0 R

n. Setting

RL = diag(1,0, . . . ,0,−1)? g(5.10)

=
∑

2≤j≤n−1

E1j ⊗ E1j −
∑

2≤i≤n−1

Ein ⊗ Ein,

it follows from (2.2) and (5.5)–(5.7) that

〈K(RL,Symp
0 R

n)ϕp ,ϕp〉(5.11)

=
∑

2≤j≤n−1

|dρ(E1j)ϕp‖2 −
∑

2≤i≤n−1

‖dρ(Ein)ϕp‖2

= 2p−1p2p!+ (n− 3)(2p−2pp!)− 2p−2pp!

= (n+ 2p − 4)2p−2p2(p − 1)! .

On the other hand, to compute 〈(K(RL,Sym2
0 R

n)> gp−2)ϕp,ϕp〉, we need to
recognize

dρ(Eij)
2 : Sym2

R
n → Sym2

R
n

as an element of Sym2(Sym2
Rn). Applying (2.6) twice to each element of the

orthonormal basis of Sym2
Rn, we obtain

dρ(Eij)
2 = x2

i ⊗ x2
j + x2

j ⊗ x2
i −

n∑

k=1

(xixk ⊗ xixk + xjxk ⊗ xjxk)(5.12)

− 2xixj ⊗ xixj .

Combining (5.10), (5.12), Example 4.2, and the fact that ϕp(x) depends only
on x1 and x2, we have that

〈(K(RL,Sym2
0 R

n)> gp−2)ϕp,ϕp〉 = 〈(F >G)ϕp ,ϕp〉,

where

(5.13)

F = −x2
1 ⊗ x2

2 − x2
2 ⊗ x2

1 +n(x1x2 ⊗ x1x2)+ (n− 2)x2
1 ⊗ x2

1 ,

G =
p−2∑

k=0

(
p − 2
k

)
xk1x

p−k−2
2 ⊗ xk1xp−k−2

2 .
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Expanding F >G according to the definition of > yields

(5.14) F >G =
p−2∑

k=0

(
p − 2
k

)
Hk,

where

Hk = −xk+2
1 x

p−k−2
2 ⊗ xk1xp−k2 − xk1xp−k2 ⊗ xk+2

1 x
p−k−2
2

+ nxk+1
1 x

p−k−1
2 ⊗ xk+1

1 x
p−k−1
2

+ (n− 2)xk+2
1 x

p−k−2
2 ⊗ xk+2

1 x
p−k−2
2 .

Using complex coordinates, the first term of Hk acts on ϕp as

(5.15) 〈(−xk+2
1 x

p−k−2
2 ⊗ xk1xp−k2 )ϕp ,ϕp〉

=
〈
− xk+2

1 x
p−k−2
2

(
∂

∂z
+ ∂

∂z̄

)k(√
−1

∂

∂z
−
√
−1

∂

∂z̄

)p−k(zp + z̄p
2

)
,

zp + z̄p
2

�

= −p!
√
−1

p−k
(

1+ (−1)p−k

2

)(
∂

∂z
+ ∂

∂z̄

)k+2

×
(√
−1

∂

∂z
−
√
−1

∂

∂z̄

)p−k−2 (zp + z̄p
2

)

= (−1)p−k(p!)2
(

1+ (−1)p−k

2

)
.

Analogously, the second, third, and fourth terms of Hk act on ϕp as, respectively,

〈(−xk1xp−k2 ⊗ xk+2
1 x

p−k−2
2 )ϕp,ϕp〉(5.16)

= (−1)p−k(p!)2
(

1+ (−1)p−k

2

)
,

〈(nxk+1
1 x

p−k−1
2 ⊗ xk+1

1 x
p−k−1
2 )ϕp ,ϕp〉

= n(−1)p−k−1(p!)2
(

1+ (−1)p−k−1

2

)
,

〈((n− 2)xk+2
1 x

p−k−2
2 ⊗ xk+2

1 x
p−k−2
2 )ϕp ,ϕp〉

= (n− 2)(−1)p−k(p!)2
(

1+ (−1)p−k

2

)
.
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Altogether, summing over k according to (5.14), we obtain

(5.17) 〈(K(RL,Sym2
0 R

n)> gp−2)ϕp,ϕp〉 = n2p−2(p!)2.

Therefore, by (5.11) and (5.17), we conclude that

Bp,n = n+ 2p − 4
n(p − 1)!

.

Third, consider the irreducible factor W . It can be checked that

(5.18) RW = (E12 + E34)⊗ (E12 + E34)− (E13 − E24)⊗ (E13 − E24)

is orthogonal to U⊕ L ⊕ ∧4Rn and hence belongs to W . It follows from (2.2)
and the fact that ϕp(x) depends only on x1 and x2 that

〈K(RW ,Symp
0 R

n)ϕp,ϕp〉
= ‖dρ(E12)ϕp‖2 − ‖dρ(E13)ϕp‖2 − ‖dρ(E24)ϕp‖2

− ‖dρ(E24)ϕp‖2 + 2〈dρ(E13)ϕp,dρ(E24)ϕp〉.

The last term above vanishes because dρ(E13)ϕp is divisible by x3, while
dρ(E24)ϕp does not depend on x3. From (5.5)–(5.7), we have

〈K(RW ,Symp
0 R

n)ϕp ,ϕp〉 = 2p−1p2p!− 2(2p−2pp!)(5.19)

= (2p − 2)2p−2p2(p − 1)! .

The computation of 〈(K(RW ,Sym2
0 R

n) > gp−2)ϕp ,ϕp〉 is analogous to the
above case pertaining to L. Specifically,

〈(K(RW ,Sym2
0 R

n)> gp−2)ϕp,ϕp〉 = 〈(F ′ >G)ϕp ,ϕp〉,

where G is defined in (5.13), and F ′ = x2
1 ⊗ x2

2 + x2
2 ⊗ x2

1 − 2x1x2 ⊗ x1x2.
Expanding F ′ >G according to the definition of > yields

F ′ >G =
p−2∑

k=0

(
p − 2
k

)
H′k,

where

H′k = −xk+2
1 x

p−k−2
2 ⊗ xk1xp−k2 − xk1xp−k2 ⊗ xk+2

1 x
p−k−2
2

+ 2xk+1
1 x

p−k−1
2 ⊗ xk+1

1 x
p−k−1
2 .
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Thus, from (5.15) and (5.16), summing over k, we obtain

(5.20) 〈(K(RW ,Sym2
0 R

n)> gp−2)ϕp ,ϕp〉 = 2p−1(p!)2.

Therefore, by (5.19) and (5.17), we conclude that Cp,n = 1/(p − 2)!.
We now turn to the case of the O(n)-representations ρ of the form ∧pRn,

2 ≤ p ≤ n − 2. It follows from Proposition 2.1 and from O(n)-equivariance of
(·)? g : C → C that the linear maps

(5.21)
K(·,∧pRn) : Sym2(∧2

R
n)→ Sym2(∧pRn),

(·)? gp−2 : Sym2(∧2
R
n)→ Sym2(∧pRn),

are O(n)-equivariant. By using Lemma 4.4 and reasoning as in the previous case,
it follows that there exist real constants A′p,n, B′p,n, C′p,n, and D′p,n such that

K(R,∧pRn) = A′p,nRU ? gp−2 + B′p,nRL ? gp−2

+ C
′
p,nRW ? gp−2 +D′p,nR∧4 ? gp−2

where R = RU + RL + RW + R∧4 are the components of R. By evaluating the

maps in (5.21) at convenient choices of R ∈ Sym2(∧2Rn) and βp, γp ∈ ∧pRn,
we simultaneously show that (·)? gp−2 restricted to each of U, L, W , and ∧4Rn

is nonzero, and compute A′p,n, B′p,n, C′p,n, and D′p,n proving the desired formula.
Let

βp = e1 ∧ · · · ∧ ep ∈ ∧pRn, γp = (e1 ∧ e2 + e3 ∧ e4)∧ δp ∈ ∧pRn,

where δp = e5 ∧ · · · ∧ ep+2 ∈ ∧p−2Rn.
Note that

(5.22)
‖dρ(Eij)βp‖2 = 1, 1 ≤ i ≤ p < j ≤ n,
‖dρ(Eij)βp‖2 = 0, otherwise.

Using the curvature operator RU in (5.3) and (5.22), we have

〈K(RU,∧pRn)βp , βp〉 =
∑

1≤i<j≤n
‖dρ(Eij)βp‖2 = p(n− p).

Using the definition of ? and Example 4.2, we have that

〈(RU ? gp−2)βp , βp〉 = 1
2
〈(gp)βp , βp〉 = 1

2
p! .

Thus, we conclude that A′p,n = 2(n− p)/(p − 1)!.
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Using the curvature operator RL in (5.10), by (2.2) and (5.22), we have

〈K(RL,∧pRn)βp , βp〉 =
∑

2≤j≤n−1

‖dρ(E1j)βp‖2 −
∑

2≤i≤n−1

‖dρ(Ein)βp‖2

= (n− p − 1)− (p − 1)

= n− 2p.

A straightforward computation using the definition of ? and Example 4.2 gives

〈(RL ? gp−2)βp , βp〉 = (p − 1)! .

Thus, we conclude that B′p,n = (n− 2p)/(p − 1)!.
Using the curvature operator RW in (5.18), by (2.2) and (2.4)–(2.5), we have

that

〈K(RW ,∧pRn)γp, γp〉 = −‖dρ(E13)γp‖2 − ‖dρ(E24)γp‖2

+ 2〈dρ(E13)γp ,dρ(E24)γp〉
= −8.

On the other hand, using the definition of ? and Example 4.2, we have that

〈(RW ? gp−2)γp , γp〉 = 4(p − 2)! .

Thus, we conclude that C′p,n = −2/(p − 2)!.

Finally, consider the irreducible factor ∧4Rn. It can be checked that

R∧4 = E12 ⊗ E34 + E34 ⊗ E12 − E13 ⊗ E24 − E24 ⊗ E13 + E14 ⊗ E23 + E23 ⊗ E14

is orthogonal to U ⊕ L ⊕W and hence belongs to ∧4Rn. Applying (2.2) and
(2.4)–(2.5),

〈K(R∧4 ,∧pRn)γp , γp〉
= −2〈dρ(E13)γp ,dρ(E24)γp〉 + 2〈dρ(E14)γp ,dρ(E23)γp〉
= −2〈(−e3 ∧ e2 + e1 ∧ e4)∧ δp, (−e1 ∧ e4 + e3 ∧ e2)∧ δp〉

+ 2〈(−e4 ∧ e2 + e3 ∧ e1)∧ δp, (−e1 ∧ e3 + e2 ∧ e4)∧ δp〉
= 8.

On the other hand, from the definition of ? and Example 4.2, we have

〈(R∧4 ?gp−2)γp , γp〉 = 2(p−2)!〈e1∧e2∧δp, γp〉〈e3∧e4∧δp, γp〉 = 2(p−2)! .

Therefore, we conclude that D′p,n = 4/(p − 2)!. ❐
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6. BOCHNER TECHNIQUE IN DIMENSION FOUR

In this section, we combine the Bochner technique and the Finsler-Thorpe trick to
prove Theorems C and D regarding closed 4-manifolds with sec > 0 and sec ≥ 0.
The first of these tools is explained in Subsection 2.2, so we proceed to briefly
discussing the second (see [BKM,BM18,Tho71,Tho72,ST69,Zol79] for details).

Recall that the (oriented) Grassmannian Gr2(Rn) of 2-planes in Rn is the
quadratic subvariety of the unit sphere in ∧2Rn given by the Plücker relations
α ∧ α = 0, which characterize decomposable elements α ∈ ∧2Rn. In this con-
text, the sectional curvature function secR : Gr2(Rn)→ R of a modified algebraic

curvature operator R ∈ Sym2(∧2Rn) is simply the restriction of the quadratic
form associated with R:

secR(σ) = 〈R(σ),σ 〉.

It is easy to see that the above is independent of the component of R in the
subspace ∧4Rn ⊂ Sym2(∧2Rn). In particular, if there exists ω ∈ ∧4Rn such
that the operator (R +ω) ∈ Sym2(∧2Rn) is positive definite, then secR > 0.
Remarkably, the converse statement is true in dimensions ≤ 4, as observed by
Thorpe [Tho71, Tho72], rediscovering a result that was known to Finsler (see
[BKM, BM18] for details).

Proposition 6.1. An oriented 4-manifold (M, g) has sec > 0 (respectively, it has
sec ≥ 0), if and only if there exists a continuous function f : M → R such that the
operator (R + f∗) ∈ Sym2(∧2TM) is positive definite (respectively, positive semidef-
inite).

In the above statement, we are using the fact that, in dimension 4, the sub-

space R ≅ ∧4R4 ⊂ Sym2(∧2R4) is spanned by the Hodge star ∗ : ∧2 R4 → ∧2R4,
the unique self-adjoint operator such that for all α ∈ ∧2R4,

(6.1) α∧∗α = ‖α‖2 vol,

where vol = e1 ∧ e2 ∧ e3 ∧ e4 ∈ ∧4R4 is the volume form of R4. Moreover, we
are using a routine barycenter argument to globalize toM the pointwise statement
from each TpM (see [BM18, Remark 2.3]). Manifolds (of any dimension) whose
curvature operator R admits a positive-definite or positive-semidefinite modifi-
cation (R + ω) ∈ Sym2(∧2TM), ω ∈ ∧4TM , were systematically studied in
[BM18, BM17, BM15].

Finally, we need some elementary facts regarding self-duality in dimension 4
(see [Bes08, Chapter 13] or [DK90] for details). A closed oriented Riemannian 4-
manifold (M, g) also has a Hodge star, which is defined as the self-adjoint operator
∗ : ∧2TM → ∧2TM for which (6.1) holds for all α ∈ ∧2TM , where vol ∈ ∧4TM
is its volume form. Since ∗2 = Id, there is an orthogonal direct sum splitting
∧2TM = ∧2+TM ⊕ ∧2−TM , where ∧2±TM are rank-3 vector bundles of self-dual
and anti-self-dual 2-forms, corresponding to the +1 and −1 eigenspaces of ∗. A
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standard fact in Hodge Theory is that there exists an analogous decomposition of
the second cohomology H2(M,R) = H+ ⊕H− as the direct sum of the spaces
H± of harmonic self-dual and harmonic anti-self-dual 2-forms. Writing b±(M) =
dimH±, we have that the second Betti number ofM is b2(M) = b+(M)+b−(M),
the signature of M is τ(M) = b+(M) − b−(M), and M has indefinite intersection
form if and only if b+(M) > 0 and b−(M) > 0. For instance, S2 × S2 and
CP2#CP2 have indefinite intersection form, as b±(S2×S2) = b±(CP2#CP2) = 1;
while S4 and CP2 have definite intersection form, as b+(S4) = b−(S4) = 0,
b+(CP2) = 1, and b−(CP2) = 0.

We now turn to the proof of Theorem C, using the above facts.

Proof of Theorem C. According to Proposition 6.1, there exists a continuous
function f : M → R such that (R + f∗) : ∧2 TM → ∧2TM is positive definite.
We claim that f has a zero. Since b±(M) > 0, there exist nonzero harmonic
self-dual and anti-self-dual 2-forms α± ∈ ∧2±TM . In particular, by Theorem B,

(6.2) 〈K(∗,∧2
R

4)α±, α±〉 = 4〈∗α±, α±〉 = ±4‖α±‖2.

Applying the Bochner technique (see Subsection 2.2), we integrate over M the
Weitzenböck formula (2.1) corresponding to the representation ∧2R4, obtaining

0 =
∫

M
〈∆α,α〉 vol(6.3)

=
∫

M
‖∇α‖2 + 2〈K(R,∧2

R
4)α,α〉 vol

=
∫

M
‖∇α‖2 + 2〈K(R + f∗,∧2

R
4)α,α〉 − 2〈K(f∗,∧2

R
4)α,α〉 vol

=
∫

M
‖∇α‖2 + 2〈K(R + f∗,∧2

R
4)α,α〉 ∓ 8f‖α‖2 vol,

for α = α± ∈ ∧2±TM , where the last equality follows from (6.2). Since the
operator K(R + f∗,∧2R4) is positive definite, ∓f > 0 would imply that α±
vanishes identically, a contradiction. Thus, f has a zero.

The curvature operator R of (M, g) is positive definite along f−1(0) ⊂ M ,
so the statement of the theorem follows from the existence of p± ∈ M such that
f (p−) < 0 < f(p+) and Rp : ∧2 TpM → ∧2TpM is not positive definite for all p
in an open neighborhood of p± ∈ M .

Suppose no such p+ ∈ M exists, so that the curvature operator R is posi-
tive semidefinite at all p ∈ M such that f (p) > 0. Thus, the function f0 =
min{0, f } ≤ 0 is such that R+f0∗ is positive semidefinite. Moreover, since f has
a zero, R + f0∗ is positive definite at some point, hence on an open set. Setting
α = α+ in (6.3), it follows that α+ vanishes on this open set, and hence globally
on M , a contradiction. Thus, there exists p+ ∈ M with f (p+) > 0 and Rp not
positive definite for all p in a neighborhood of p+. The existence of p− ∈ M is
completely analogous. ❐
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Remark 6.2. A consequence of Theorem C is that if a closed 4-manifold with
indefinite intersection form, such as S2 × S2 or CP2#CP2, admits a metric with
sec > 0, then there exists a (nonempty) open subset in M where the curvature op-
erator is positive definite. It is worth stressing that this conclusion is much weaker
than Theorem C, and indeed can always be achieved up to a small deformation.
Specifically, given any manifold (M, g) with sec ≥ k and a neighborhood U of
p ∈M , for all ε > 0, there exists a Riemannian metric gε onM with secgε ≥ k−ε,
which agrees with g on M \ U , and has constant curvature k in a smaller neigh-
borhood of p ∈ U ⊂ M (see Spindeler, Corollary 1.6 of [Spi14]). On the other
hand, Theorem C ensures that any metric with sec > 0 on 4-manifolds as above
has positive-definite curvature operator on a subset whose complement has at least
two connected components.

As explained in Subsection 2.2, the Bochner technique often yields rigidity
results under curvature assumptions that are not strict. This is precisely the case
when relaxing the condition sec > 0 to sec ≥ 0 in the above proof, leading to
Theorem D.

Proof of Theorem D. According to Proposition 6.1, there exists a continuous
function f : M → R such that R + f∗ is a positive-semidefinite operator. If the
analogous situation to that of Theorem C holds, that is, there exist p± ∈ M such
that f (p−) < 0 < f(p+) and Rp± is not positive semidefinite, then (i) holds.

Thus, assume, for all p ∈ M such that f (p) < 0, that Rp is positive semidef-
inite, or, for all p ∈M such that f (p) > 0, that Rp is positive semidefinite. Since
both cases are analogous, suppose the latter holds. Setting f0 := min{0, f }, this
implies R + f0∗ is positive semidefinite. Since b+(M) > 0, there exists a nonzero
harmonic self-dual 2-form α+ ∈ ∧2+TM . Then, by (6.3), it follows that α+ is par-
allel, and hence ‖α+‖ is a positive constant. Using (6.3) once more, we conclude
that f0 vanishes identically, so R : ∧2 TM → ∧2TM is positive semidefinite.

Since b−(M) > 0, a nonzero harmonic anti-self-dual 2-form α− ∈ ∧2−TM
exists, which must be parallel by the Weitzenböck formula. Thus, ‖α−‖ is a
positive constant, so we may assume ‖α−‖ = ‖α+‖. We claim that the parallel
2-form α = α+ + α− is pointwise decomposable, that is, for all p ∈ M there are
v,w ∈ TpM such that αp = v ∧w. Indeed,

α∧α = α+ ∧ α+ + 2α+ ∧α− +α− ∧α−
= α+ ∧∗α+ − 2α+ ∧∗α− −α− ∧∗α−
= (‖α+‖2 − 2〈α+, α−〉 − ‖α−‖2) vol

= 0,

so the Plücker relations are satisfied. Thus, α is a parallel field of 2-planes on
the simply connected manifold M , which hence splits isometrically as a product
(M, g) = (M1 ×M2, g1 ⊕ g2) of surfaces (M1, g1) and (M2, g2) by the de Rham
splitting theorem. Since sec ≥ 0 andM is simply connected, it follows that (Mi, gi)
are isometric to (S2, gi) where gi have sec ≥ 0; that is, (ii) holds. ❐
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[Lab15] M. L. LABBI, On Weitzenböck curvature operators, Math. Nachr. 288 (2015), no. 4, 402–
411. http://dx.doi.org/10.1002/mana.201300352. MR3320455.

[Lit44] D. E. LITTLEWOOD, On invariant theory under restricted groups, Philos. Trans. Roy. Soc.
London Ser. A 239 (1944), 387–417. http://dx.doi.org/10.1098/rsta.1944.0003.
MR12299.

[PW] P. PETERSEN AND M. WINK, New curvature conditions for the Bochner technique, In-
vent. Math. 224 (2021), no. 1, 33–54, available at http://arxiv.org/abs/arXiv:1908.
09958. http://dx.doi.org/10.1007/s00222-020-01003-3. MR4228500.

[Spi14] W. SPINDELER, S1-actions on 4-manifolds and fixed point homogeneous manifolds of non-
negative curvature, PhD thesis (2014), Westfälischen Wilhelms Universität, Münster.

[ST69] I. M. SINGER AND J. A. THORPE, The curvature of 4-dimensional Einstein spaces, Global
Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 355–365.
MR0256303.

[Tho71] J. A. THORPE, The zeros of nonnegative curvature operators, J. Differential Geometry 5

(1971), 113–125. http://dx.doi.org/10.4310/jdg/1214429781. MR290285.
[Tho72] , On the curvature tensor of a positively curved 4-manifold, Proceedings of the Thir-

teenth Biennial Seminar of the Canadian Mathematical Congress (Dalhousie Univ., 1971),
Canad. Math. Congr., Montreal, Que., 1972, pp. 156–159. MR0375157.

[Wil07] B. WILKING, Nonnegatively and positively curved manifolds, Surveys in Differential Geom-
etry. Vol. XI, Surv. Differ. Geom., vol. 11, Int. Press, Somerville, MA, 2007. http://dx.
doi.org/10.4310/SDG.2006.v11.n1.a3, pp. 25–62.

[Wu88] H. H. WU, The Bochner technique in differential geometry, Math. Rep. 3 (1988), no. 2,
i–xii and 289–538. MR1079031.

[YB53] K. YANO AND S. BOCHNER, Curvature and Betti Numbers, Annals of Mathematics Stud-
ies, vol. 32, Princeton University Press, Princeton, NJ, 1953. MR0062505.

[Zil07] W. ZILLER, Examples of Riemannian manifolds with non-negative sectional curvature, Sur-
veys in Differential Geometry. Vol. XI, Surv. Differ. Geom., vol. 11, Int. Press, Somerville,
MA, 2007. http://dx.doi.org/10.4310/SDG.2006.v11.n1.a4, pp. 63–102.

http://dx.doi.org/10.1090/ulect/027/02
http://www.ams.org/mathscinet-getitem?mr=1922721)
http://dx.doi.org/10.2140/gt.2014.18.3091
http://www.ams.org/mathscinet-getitem?mr=3285230)
http://dx.doi.org/10.1007/978-3-319-11523-8_14
http://dx.doi.org/10.1007/978-3-319-11523-8_14
http://www.ams.org/mathscinet-getitem?mr=3331406)
http://dx.doi.org/10.4310/jdg/1214443064
http://dx.doi.org/10.4310/jdg/1214443064
http://www.ams.org/mathscinet-getitem?mr=992332)
http://dx.doi.org/10.1016/j.geomphys.2016.04.014
http://dx.doi.org/10.1016/j.geomphys.2016.04.014
http://www.ams.org/mathscinet-getitem?mr=3508929)
http://www.ams.org/mathscinet-getitem?mr=1282112)
http://www.ams.org/mathscinet-getitem?mr=1193605)
http://dx.doi.org/10.1007/BF01429873
http://dx.doi.org/10.1007/BF01429873
http://www.ams.org/mathscinet-getitem?mr=339004)
http://dx.doi.org/10.1002/mana.201300352
http://www.ams.org/mathscinet-getitem?mr=3320455)
http://dx.doi.org/10.1098/rsta.1944.0003
http://www.ams.org/mathscinet-getitem?mr=12299)
http://arxiv.org/abs/arXiv:1908.09958
http://arxiv.org/abs/arXiv:1908.09958
http://dx.doi.org/10.1007/s00222-020-01003-3
http://www.ams.org/mathscinet-getitem?mr=4228500)
http://www.ams.org/mathscinet-getitem?mr=0256303)
http://dx.doi.org/10.4310/jdg/1214429781
http://www.ams.org/mathscinet-getitem?mr=290285)
http://www.ams.org/mathscinet-getitem?mr=0375157)
http://dx.doi.org/10.4310/SDG.2006.v11.n1.a3
http://dx.doi.org/10.4310/SDG.2006.v11.n1.a3
http://www.ams.org/mathscinet-getitem?mr=1079031)
http://www.ams.org/mathscinet-getitem?mr=0062505)
http://dx.doi.org/10.4310/SDG.2006.v11.n1.a4


1242 RENATO G. BETTIOL & RICARDO A. E. MENDES

[Zil14] , Riemannian manifolds with positive sectional curvature, Geometry of Manifolds
with Non-negative Sectional Curvature, Lecture Notes in Math., vol. 2110, Springer,
Cham, 2014. http://dx.doi.org/10.1007/978-3-319-06373-7_1 , pp. 1–19.

[Zol79] S. M. ZOLTEK, Nonnegative curvature operators: Some nontrivial examples, J. Differential
Geometry 14 (1979), no. 2, 303–315. http://dx.doi.org/10.4310/jdg/1214434976.
MR587555.

RENATO G. BETTIOL:
City University of New York (Lehman College)
Department of Mathematics
250 Bedford Park Blvd W
Bronx, NY 10468, USA

AND

City University of New York (Graduate Center)
Department of Mathematics
365 Fifth Avenue
New York, NY 10016, USA
E-MAIL: r.bettiol@lehman.cuny.edu

RICARDO A. E. MENDES:
University of Oklahoma
Department of Mathematics
601 Elm Ave
Norman, OK 73019-3103, USA
E-MAIL: ricardo.mendes@ou.edu

2010 MATHEMATICS SUBJECT CLASSIFICATION: 53C20 (53C21, 20G05, 53B20, 58A14).

Received: February 19, 2020.

http://dx.doi.org/10.1007/978-3-319-06373-7_1
http://dx.doi.org/10.4310/jdg/1214434976
http://www.ams.org/mathscinet-getitem?mr=587555)

	1. Introduction
	Conventions.

	2. Weitzenböck Formulae
	2.1. Exterior and Symmetric Powers.
	2.2. The Bochner technique.

	3. Algebraic Characterization of Sectional Curvature Bounds
	4. Kulkarni-Nomizu Algebras
	4.1. Kulkarni-Nomizu products.
	4.2. Representation theory.

	5. Curvature Terms for Alternating and Symmetric Tensors
	6. Bochner Technique in Dimension Four
	Acknowledgements.

	References

