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In 1980 Carleson posed a question on the minimal regularity of an initial data function

in a Sobolev space Hs(Rn) that implies pointwise convergence for the solution of

the linear Schrödinger equation. After progress by many authors, this was recently

resolved (up to the endpoint) by Bourgain, whose counterexample construction for the

Schrödinger maximal operator proved a necessary condition on the regularity, and Du

and Zhang, who proved a sufficient condition. Analogues of Carleson’s question remain

open for many other dispersive partial differential equations. We develop a flexible

new method to approach such problems and prove that for any integer k ≥ 2, if a

degree k generalization of the Schrödinger maximal operator is bounded from Hs(Rn)

to L1(Bn(0, 1)), then s ≥ 1
4 + n−1

4((k−1)n+1)
. In dimensions n ≥ 2, for every degree k ≥ 3, this

is the first result that exceeds a long-standing barrier at 1/4. Our methods are number-

theoretic, and in particular apply the Weil bound, a consequence of the truth of the

Riemann Hypothesis over finite fields.

1 Introduction

Given a real-valued polynomial P(ξ) : Rn → R, define

T(P)
t f (x) := 1

(2π)n

∫

Rn
f̂ (ξ)ei(ξ ·x+P(ξ)t)dξ ,
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2 C. An et al.

acting initially on functions f of Schwartz class on Rn. In the case that P(ξ) = P2(ξ) :=
|ξ |2, T(P2)

t f provides the solution to the linear Schrödinger equation,

⎧

⎨

⎩

i∂tu − �u = 0, (x, t) ∈ Rn × R,

u(x, 0) = f (x), x ∈ Rn.

Thus, the study of T(P2)
t f relates to Carleson’s well-known question of what degree of

regularity of f is required for the pointwise convergence result

lim
t→0

T(P2)
t f (x) = f (x), a.e. x ∈ Rn. (1.1)

Precisely, what is the smallest value of s for which this holds for all f ∈ Hs(Rn)?

When the story started in 1980, it was soon proved that s ≥ 1/4 is necessary

and s ≥ n/4 is sufficient, so that for dimensions n ≥ 2 the benchmarks were initially

quite far apart (see Carleson [9, Eqn (14), p. 24] and Dahlberg and Kenig [15]). For many

years, it was widely conjectured that the minimal value for which (1.1) holds should

be s = 1/4 in all dimensions. In 2013, Bourgain expressed surprise that he was able

to show otherwise: as he wrote in [3], “perhaps the most interesting point in this

note is a disproof of what one seemed to believe, namely that f ∈ Hs(Rn), s > 1/4

should be the correct condition in arbitrary dimension n.” Ultimately, the resolution

of Carleson’s question (up to the endpoint) arrived when Bourgain [4] showed that

s ≥ s∗
2(n) := n/(2(n + 1)) is necessary and Du and Zhang [22] showed that s > s∗

2(n)

is sufficient (see §1.2 for further literature).

Analogous questions naturally arise for many other dispersive PDEs. These

questions have been developed since the 1980s in the large literature on local smoothing

and associated maximal operator estimates (which we review in §1.2), and were also

raised explicitly by Bourgain [3, §5] and Demeter and Guo [17]. In this paper, we

develop flexible new number-theoretic strategies to construct counterexamples for

generalizations of the Schrödinger maximal operator, with corresponding implications

for convergence questions analogous to (1.1). Notably, we push the necessary condition

on s above a long-standing barrier at 1/4, analogous to the barrier Bourgain remarked

upon for the Schrödinger case.

We introduce the maximal operator that lies at the heart of the matter. Given a

real-valued polynomial P, define the maximal operator

f �→ sup
0<t<1

|T(P)
t f (x)|. (1.2)
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Counterexamples for High-Degree Generalizations of Schrödinger 3

If this maximal operator is bounded from Hs(Rn) to L2
loc(R

n) then for all f ∈ Hs(Rn) the

pointwise convergence property holds:

lim
t→0

T(P)
t f (x) = f (x) for a.e. x ∈ Rn. (1.3)

On the other hand, if this maximal operator is unbounded as an operator from

Hs(Rn) to L1
loc(R

n), then (1.3) must fail for some f ∈ Hs(Rn), by the Stein–Nikishin

maximal principle. (See, e.g., [39, Appendix A] for standard arguments to deduce

these relationships.) Thus, Bourgain’s definitive result that s ≥ s∗
2(n) is necessary for

(1.1) followed from showing that for each s < s∗
2(n) the maximal operator (1.2) with

P(ξ) = P2(ξ) = |ξ |2 is unbounded from Hs(Rn) to L1(Bn(0, 1)), where Bn(0, 1) denotes the

unit ball centered at the origin in Rn.

In this paper, we study higher-degree analogues of the Schrödinger maximal

operator and prove the first necessary condition on s that goes beyond 1/4, both for

the maximal estimate and for the convergence property. We focus on the family of

polynomials defined for any integer k ≥ 2 by

Pk(ξ) := ξk
1 + · · · + ξk

n,

with associated maximal operator

f �→ sup
0<t<1

|T(Pk)
t f |.

For dimension n = 1, for every k ≥ 2, this maximal operator is bounded from Hs(R) to

L1
loc(R) if and only if s ≥ 1/4, and the convergence property (1.3) holds if and only if

s ≥ 1/4; see [15, 26, 27, 46, 49, 50, 62]. For dimensions n ≥ 2, degree k = 2 is

the Schrödinger case resolved by Bourgain [4] and Du–Zhang [22]. For degrees k ≥ 3,

previous literature left a gap: the behavior for 1/4 ≤ s ≤ 1/2 was unknown; see [2,

42, 50]. In fact, for many dispersive PDEs the convergence question is unresolved for

1/4 ≤ s ≤ 1/2 (see §1.2). Our main result proves the first necessary condition on s that

is strictly above 1/4.

Theorem 1.1. Fix n ≥ 2 and k ≥ 2. Suppose there is a constant Cs such that for all

f ∈ Hs(Rn),

‖ sup
0<t<1

|T(Pk)
t f | ‖L1(Bn(0,1)) ≤ Cs‖f ‖Hs(Rn). (1.4)

Then s ≥ 1
4 + n−1

4((k−1)n+1)
.
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4 C. An et al.

As a consequence of Theorem 1.1, for P = Pk, the convergence property (1.3) fails

for all s < 1
4 + n−1

4((k−1)n+1)
for each dimension n ≥ 2.

An interesting open question remains: for P = Pk, what is the value of s∗
k(n)

such that for all s > s∗
k(n), the convergence property (1.3) holds for all f ∈ Hs(Rn), and

for all s < s∗
k(n) it fails? For n = 1, s∗

k(n) = 1/4 for all k ≥ 2. For n ≥ 2 and degree

k = 2, s∗
2(n) = n/(2(n + 1)) and our work recovers Bourgain’s construction. For degrees

k ≥ 3, the optimal value for s∗
k(n) remains open in dimensions n ≥ 2. We do not have

a prediction for whether the threshold we obtain in Theorem 1.1 is optimal (but see

Remark 1.3).

Our results fit into a large body of research on dispersive PDEs, local smoothing,

and maximal operators. In §1.2, we situate our results in that literature, which is rich

with open problems. But first we describe our method for proving Theorem 1.1, which

is number-theoretic, and appears to be the first time that the Weil bound has been

introduced to study the regularity of solutions to a PDE. We anticipate our approach

will be able to address many further open questions.

1.1 Method of proof

We prove Theorem 1.1 by constructing an explicit family of counterexamples that violate

the putative Hs → L1
loc bound (1.4) for every small s.

Theorem 1.2. Fix n ≥ 2 and k ≥ 2. Fix s < 1
4 + n−1

4((k−1)n+1)
. There exists a sequence

of real numbers Rj → ∞ as j → ∞, and a sequence of functions fj ∈ L2(Rn) such that

‖fj‖L2(Rn) = 1 and f̂j is supported in an annulus {(1/C)Rj ≤ |ξ | ≤ CRj}, with the property

that

lim
j→∞

R−s
j ‖ sup

0<t<1
|T(Pk)

t fj| ‖L1(Bn(0,1)) = ∞.

This immediately implies Theorem 1.1, since if a function f ∈ Hs(Rn) is

supported in such an annulus of radius ≈ R, then ‖f ‖Hs ≈ Rs‖f ‖L2 ; see §3.5 for details.

To prove Theorem 1.2, we construct for each large R a counterexample function

f and a carefully chosen set �∗ of points x ∈ Bn(0, 1), such that for each x ∈ �∗, there

is a choice of t ∈ (0, 1) for which T(Pk)
t f (x) can be well approximated by an exponential

sum of a certain length, which can in turn be well approximated by a member of a

family of “large” complete exponential sums modulo q, for primes q in a well-chosen

dyadic range. We then optimize the choices of all parameters in this construction—

in particular, to ensure that simultaneously with all the above considerations, �∗ has
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Counterexamples for High-Degree Generalizations of Schrödinger 5

“large” measure in Bn(0, 1)—and produce a counterexample for each s < 1
4 + n−1

4((k−1)n+1)
.

From this bird’s-eye view, our method appears similar to Bourgain’s approach for the

special case P2(ξ) = |ξ |2, which was rigorously explained in the third author’s work [39].

But to succeed in a higher-degree setting, our method requires several com-

pletely new ideas. First, Bourgain’s argument relied only on Gauss sums, which can be

evaluated by elementary methods [39, Appendix B]. Exponential sums of higher degree

polynomials are more complicated, and hence we require different methods to bound

these sums from both above and below. We use an abstract argument in Proposition 2.2

(and its corollaries) to show that “most” of the complete exponential sums we encounter

are “large.” In particular, we capitalize on the Weil bound, which is a consequence of

the truth of the Riemann Hypothesis over finite fields.

This argument shows that “most” sums are large, but does not identify which

sums are large. Consequently, this necessitates a much more abstract construction of

the special set �∗ ⊂ Bn(0, 1) of points x on which sup0<t<1 |T(Pk)
t f (x)| can be shown to

be large. We prove a very general result showing that if a collection of measurable sets

is sufficiently well distributed, then the measure of their union is comparable to the

sum of the measures of the individual sets. We prove the general case in Lemma 4.1

and adapt it to our setting in Proposition 4.2. In particular, we use a number-theoretic

argument to show that the boxes we construct are sufficiently well distributed if they

are centered at rationals with prime denominators, yet another difference from the

arguments in the quadratic case [4, 39].

These new strategies form a highly flexible framework, and we anticipate that

they can be widely adapted to prove counterexamples for many maximal operators

associated to dispersive PDEs.

1.2 Related literature

Our work fits into a large family of questions about dispersive PDEs of the form

∂tu − iP(D)u = 0, (x, t) ∈ Rn × R (1.5)

u(x, 0) = f (x), x ∈ Rn,

for a function u acting on Rn×R and an initial data function f , where D = 1
i (

∂
∂x1

, . . . , ∂
∂xn

),

and P(D) is defined according to its real symbol by

P(D)f (x) = 1

(2π)n

∫

Rn
eix·ξ P(ξ)f̂ (ξ)dξ .
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6 C. An et al.

Roughly speaking, to be dispersive, the function P must behave like |ξ |α for some α > 1

as |ξ | → ∞. (The case α = 1 corresponds to the wave equation, which has different

behavior.) One main type (Schrödinger type) corresponds to the case that P(ξ) = q(|ξ |2)

for some appropriate function q; for example, P(ξ) = |ξ |α for α > 1 corresponds to a

power of the Laplacian, and in particular the case α = 2 leads to the linear Schrödinger

equation. A second main type (Korteweg–de Vries type) corresponds to the case that

n = 1, u is real valued, and P(ξ) = ξq(ξ2) for some appropriate function q; this includes

the (free) KdV equation with P(ξ) = ξ3, the Benjamin–Ono equation with P(ξ) = ξ |ξ |,
the intermediate long-wave equation, Smith equation, and others (see [13], and also a

high-dimensional Benjamin–Ono equation in [23]). More generally, nonlinear versions

are also of interest, in which (1.5) contains some further term F(u) that is nonlinear in

the function u; but strategies to prove results about the nonlinear case often rely on

deductions involving the linear case, so that the linear case remains of central interest.

We note that the precise condition required of P for the initial value problem

(1.5) to be considered dispersive can vary. One classical criterion appears in Constantin–

Saut [13, Eqns. (0.4)–(0.6)]. A less restrictive criterion is developed by Kenig–Ponce–Vega

[26, Thm. 4.1]; our polynomial Pk(ξ) satisfies the criterion of Kenig–Ponce–Vega.

A major focus in the study of the initial value problem (1.5) is proving local

smoothing; this refers to a phenomenon where the solution u to the initial value problem

is (locally) smoother than the initial data function f . Quantitatively, for an equation

of the form (1.5) with P(ξ) behaving (roughly) like |ξ |α with α > 1 as |ξ | → ∞, local

smoothing is a statement of the following form: if f ∈ Hs(Rn) then for a.e. t �= 0, u(·, t) ∈
Hs+μ

loc (Rn) where μ = (α − 1)/2. Thus, when α is larger, so that the differential equation

(1.5) is more dispersive, the local smoothing effect in the x variable is stronger. (The

effect is only local since eitP(ξ) has unit norm for every t ∈ R, so that the solutions of

the dispersive equation give a unitary group on the Sobolev space Hs(Rn) = Ws,2(Rn); in

particular, for each s the global Hs(Rn) norm of u(·, t) cannot differ from that of f .)

Remark 1.3. Fix n ≥ 2. In Theorem 1.1 we prove that if (1.4) holds, then s ≥ 1/4+δ(k, n)

for a value δ(k, n) > 0 that decreases as k increases. In our method, this decrease in

δ(k, n) for large k is due to the tighter neighborhood we must impose on t in (3.7), (3.9)

as a result of needing to remove degree k terms from the phase of an integral before

applying Fourier inversion. This then imposes smaller neighborhoods in y1 when we

construct the set x ∈ �∗ in (4.14), and ultimately a tighter constraint on the parameter Q

in (5.1). But it could be the truth that δ(k, n) should decrease with k, given that the local

smoothing effect increases as the dispersive effect increases with k.
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Counterexamples for High-Degree Generalizations of Schrödinger 7

The literature on local smoothing (which also has connections to well-

posedness, Strichartz estimates, and restriction theory) is far too vast to survey here,

but we mention for example the influential works of Kato [25], Constantin and Saut [13],

and Kenig, Ponce, and Vega [26]. In particular, [26, Theorem 4.1] proves local smoothing

of the above type in a setting that includes the polynomial Pk(ξ) =
∑

j ξk
j we study. The

connection between space-time estimates for the Schrödinger operator and restriction

theory is implicit in many of these articles, but for a few examples, see Kenig, Ponce, and

Vega [26], Moyua, Vargas, and Vega [36, 37], Rogers [40], and in particular the explicit

connection derived in Lee, Rogers, and Seeger [30].

1.2.1 Convergence results

So far this has mentioned local smoothing with respect to x. Proving that for all

f ∈ Hs(Rn), the pointwise convergence result (1.3) holds, additionally requires under-

standing regularity of u(·, t) in t. This is best understood when the symbol P is of degree

2, including the important cases of the linear Schrödinger equation and the non-elliptic

Schrödinger equation. For all higher-degree symbols, the previous literature left open

the convergence question for 1/4 ≤ s ≤ 1/2 in dimensions n ≥ 2. For clarity, we

briefly give specific citations, to highlight the context of breaking the 1/4 barrier in

Theorem 1.1.

(a) The symbol P2(ξ) = |ξ |2: in this case (1.5) is the linear Schrödinger equation.

For n = 1, (1.3) holds if and only if s ≥ 1/4 by Carleson [9] and Dahlberg–Kenig [15].

The convergence question in dimensions n ≥ 2 has a long history, including works by

Carbery [8], Cowling [14], Sjölin [46], Vega [62], Bourgain [7], Moyua–Vargas–Vega [36],

Tao–Vargas [60], Lee [29], Bourgain [3], Lucà–Rogers [32], Demeter–Guo [17], Bourgain

[4], Lucà–Rogers [34], Du–Guth–Li [19], and Du–Guth–Li–Zhang [21]. Bourgain [4] and

Du–Zhang [22] resolved the question (up to the endpoint): (1.3) holds if s > s∗
2(n) =

n/(2(n + 1)) and fails if s < s∗
2(n).

(b) The symbol P−
2 (ξ) := ξ2

1 − ξ2
2 ± ξ2

3 ± · · · ± ξ2
n : in this case (1.5) is the non-

elliptic Schrödinger equation (and when P−
2 has only one change of sign, P(D) is the box

operator �). Then by Rogers, Vargas, and Vega [42], for all n ≥ 2 (1.3) fails if s < 1/2 and

holds for all s > 1/2. In that work they also note that for n = 2, (1.3) holds for s = 1/2,

due to an observation of Stein (see the proof in [42, p. 1900]). It is interesting that this

behavior differs significantly from the elliptic case.

(c) The symbol P : Rn → R is a polynomial of degree 2: for any n ≥ 1, (1.3) holds

for all s > 1/2 by Rogers, Vargas, and Vega [42, Thms. 1.2 and 2.1] (recording a method

of [61]). It fails for s < 1/4 by several methods, for example, Sjölin [50] (see Remark 1.4).
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8 C. An et al.

Aside from the special cases n = 1 or P2(ξ) and P−
2 (ξ) for n ≥ 2, the convergence question

is open for 1/4 ≤ s ≤ 1/2.

(d) The symbol P(ξ) = |ξ |α for real α > 1 on Rn: Sjölin [46, Thms. 2–5] proved

that for n = 1, 2 (1.3) holds if s ≥ n/4 and for n ≥ 3 it holds if s > 1/2. For all

n ≥ 1 it fails if s < 1/4. This is also proved in Vega [62, Thm. 1’]; similar estimates

also appear in Constantin and Saut [13]. In dimensions n ≥ 2, for P(ξ) = |ξ |α with

α > 1, α �= 2, the convergence question is open for 1/4 ≤ s ≤ 1/2 (or 1/4 ≤ s < 1/2 if

n = 2).

(e) The symbol P : Rn → R is a polynomial of degree k ≥ 2: this is the

case in which our polynomial Pk(ξ) lies. In the case n = 1, Kenig, Ponce, and Vega

[26, Cor. 2.6] prove that (1.3) holds for any polynomial P of degree k ≥ 2 and s > 1/4

(and even when P is replaced by R((ξ))α with α �= 0, for a rational function R); it fails if

s < 1/4 by [15, 27]. For all n ≥ 1, Ben-Artzi and Devinatz [2, Thm. D] prove (1.3) for all

s > 1/2, for any real polynomial P of principal type of order α for α > 1 (that is, such

that |∇P(ξ)| � (1+|ξ |)α−1 for all sufficiently large |ξ |). Furthermore, Rogers, Vargas, and

Vega prove (1.3) holds for all s > 1/2 if P : Rn → R is a member of an appropriate class of

differentiable functions, which in particular includes polynomials [42, Remark 2.2]. The

convergence property (1.3) fails for s < 1/4 by several methods, including, for example,

Sjölin [50] (see Remark 1.4). This left the convergence question in the range 1/4 ≤ s ≤ 1/2

open, until the present paper.

We further remark that convergence problems like (1.1) and (1.3) are also

being studied from many more perspectives. For example: in relation to non-tangential

convergence [45]; when t varies in a set defined according to a complex parameter

[53], [56]; convergence along restricted directions or variables curves [11]; and along

t belonging to various types of countable sequences {tn} of points in (0, 1); see, for

example, [55], [58], [18], [59], or certain uncountable sets [58]. There are also interesting

recent studies related to pointwise convergence of solutions of analogous PDEs in

other settings: on the torus [26, §5], [63], [38]; on manifolds [66]; and for the nonlinear

Schrödinger flow [12].

Finally, we note that Bourgain’s work on counterexamples for the Schrödinger

maximal operator associated to P2(ξ) = |ξ |2 stimulated a number of new works for

quadratic symbols, including the study of divergence on sets of lower-dimensional

Hausdorff measure, for example in [1], [33], [34], [31], and the study of the failure of

local maximal estimates analogous to (1.2) in higher Lp spaces [20]. We anticipate that

the methods of the present paper can be adapted to study higher-degree analogues of

many such questions.
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Counterexamples for High-Degree Generalizations of Schrödinger 9

1.2.2 Maximal operators

Our main theorem is a statement about a maximal operator. This is closely related

to the literature on convergence results mentioned above, since by classical argu-

ments, appropriate maximal estimates imply convergence results, and the failure of

certain maximal estimates implies the failure of certain convergence results (see, e.g.,

[39, Appendix A]). But additionally, there is a broad literature on maximal operators in

their own right.

For any given symbol P, several types of maximal estimates are typically studied.

One can study the maximal operator supt∈I |T(P)
t f | for a bounded interval I, or for an

infinite interval I; one can ask whether a local norm of this operator is bounded, or a

global norm; one can consider f in an L2 Sobolev space such as Hs = Ws,2 or in an Lq

Sobolev space Ws,q for q > 2. Further questions study not the maximal operator in t, but

Lq-means over t in some compact interval I.

Our result, for a local L1 norm of the maximal operator with t in the bounded

interval (0, 1), and with initial data f ∈ Hs(Rn), is a strong result in the hierarchy of

types described above. In particular, for a given s, our result that (1.4) fails implies

that the corresponding inequality must also fail for the (larger) maximal operator over

0 < t < ∞; for the (larger) global L1(Rn) norm; for the (larger) local Lp(Bn(0, 1)) norm for

all p > 1.

To situate our results in the large literature on maximal operators, we highlight

here a few of the most relevant papers.

(a) The paper that lies closest to our maximal estimates for Pk(ξ) =
∑

j ξk
j

with k ≥ 3 is by Sjölin [50]. Sjölin studies local Lq(Bn(0, 1)) norms for the operator

f �→ sup0<t<1 |T(	)
t f (x)| for functions 	(ξ) = φ1(ξ) + · · · + φ�(ξ), where each φj is a real-

valued C2(Rn \ {0}) function that is homogeneous of degree aj, where 0 ≤ a1 < a2 <

· · · < a�−1 ≤ a� − 1/2. Under the assumption that a := a� ≥ 1 and φ� does not vanish

identically, Sjölin proves that if

‖ sup
0<t<1

|T(	)
t f |‖Lq(Bn(0,1)) �q,s ‖f ‖Hs(Rn) (1.6)

for all f ∈ Hs(Rn) then

s ≥ n

4
− n − 1

2q
. (1.7)

If n = 1 then this is the requirement s ≥ 1/4. In the setting of our Theorem 1.1 (n ≥ 2

and q = 1), the condition (1.7) provides no nontrivial lower bound on s > 0.
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10 C. An et al.

Remark 1.4. We recall that standard arguments show that for a fixed real symbol P,

if the convergence result (1.3) holds for all f ∈ Hs(Rn), then (1.6) must hold for q = 2 (see

[39, Appendix A]). Sjölin’s result (1.7) at q = 2 confirms that for all symbols covered by

his methods, for the convergence result to hold, s ≥ 1/4 is necessary, for all dimensions

n ≥ 1. (We also recover this; see Remark 3.2.)

(b) Many works have considered the maximal operator associated to P2(ξ) = |ξ |2

in terms of global Lq(Rn) norms for various q, for f ∈ Hs. This has been studied both for

the local case 0 < t < 1 and the global case t ∈ R for q = 2 [47], and for other q by Sjölin

[49]; sharp results for q �= 2 are obtained in Rogers and Villarroya [43]. See Sjölin [52]

and Rogers, Vargas, and Vega [42] for the non-elliptic case P−
2 (ξ), for f ∈ Hs and various

Lq(Rn) global norms, corresponding to case (b) in §1.2.1. The equivalent problems with

homogeneous Sobolev spaces Ḣs have been studied as well; see, for example, [51].

(c) For the case P(ξ) = |ξ |a with a > 1, Sjölin has characterized for which s, q (1.4)

can hold when n = 1, in terms of the local supremum and local Lq norm [49]. For n ≥ 2,

maximal operators over 0 < t < 1 have been extensively studied for both the local and

global norm, for f radial [48, 49, 54]; see also Wang [64, 65]. More recently, Sjölin [52]

has also considered the case P(ξ) =
∑

j ±|ξj|α, α > 1, but for t ∈ R and for Lq(Rn) global

norms, which have quite a different flavor from our result, since for such global norms,

standard homogeneity arguments place tight restrictions on q relative to n, s (see, e.g.,

arguments in [52, §2.4]).

There are many further investigations of maximal operators that generalize the

Schrödinger setting in other ways. For example, bounds for multiparameter analogues of

maximal Schrödinger operators are considered in [57]; Rogers and Villarroya [44] prove

sharp results for the maximal operator associated to the wave equation; and bounds of

Lq-means with respect to t (rather than a supremum over t) are studied, for example, by

Rogers [40] and Rogers–Seeger [41]. Finally, of course, many of the convergence results

mentioned in the previous section are in fact stated in terms of results for maximal

operators.

1.3 Outline of the paper

In Section 2 we prove upper and lower bounds for exponential sums, which are the

critical ingredients to force sup0<t<1 |T(Pk)
t f (x)| to be large for many values of x. In

Section 3 we construct a family of functions f , according to certain parameters, and

reduce the study of T(Pk)
t f (x) to an exponential sum. In Section 4 we motivate our choice
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Counterexamples for High-Degree Generalizations of Schrödinger 11

for the set �∗ of points x for which there exists a choice of 0 < t < 1 such that

|T(Pk)
t f (x)| is large. We then give an abstract proof to show that the measure of �∗ is

sufficiently large. In Section 5 we use our explicit choice of the set �∗ to evaluate the

exponential sum and bound the error terms. Finally, in Section 6 we assemble all of

these constructions and make the optimal choices of parameters that prove Theorem 1.2

and hence Theorem 1.1.

1.4 Notation

We use the notation A � B to indicate that there is a constant C such that |A| ≤ CB;

the notation A �α B indicates that the constant C may depend on the parameter α. In

general, we will allow implicit constants to depend on the dimension n, the degree k,

and a C∞ function φ that is fixed once and for all. We will denote certain small constants

we can freely choose by c1, c2, c3, . . .. Since we will use our ability to choose them to our

advantage, we will denote them explicitly in inequalities in which their small size plays

a role.

We let Bm(c, r) ⊆ Rm denote the Euclidean ball centered at c and of radius r and

let Am(R, C) ⊆ Rm denote the annulus Bm(0, CR)\Bm(0, R/C). For a finite set A we let |A|
denote its cardinality; for a Lebesgue measurable set �, we let |�| denote its Lebesgue

measure.

We follow the convention in [4] of letting e(t) = eit. Correspondingly, we

use the normalization for the Fourier transform that f̂ (ξ) =
∫

Rm f (x)e−ix·ξ dx and

f (x) = (2π)−m
∫

Rm f̂ (ξ)eix·ξ dξ . Then Plancherel’s theorem states that ‖f ‖2
L2(Rm)

=
(2π)−m‖f̂ ‖2

L2(Rm)
. The Sobolev space Hs(Rn) is the set of f ∈ S ′(Rn) with finite Sobolev

norm

‖f ‖2
Hs(Rn) = 1

(2π)n

∫

Rn
(1 + |ξ |2)s|f̂ (ξ)|2dξ . (1.8)

2 Upper and Lower Bounds for Exponential Sums

We will use complete exponential sums to show that for each x in a certain set

�∗ ⊂ Bn(0, 1), we can choose a t ∈ (0, 1) to make |T(Pk)
t f (x)| large. We first prove

Proposition 2.2, which shows that for each prime q, a sufficiently numerous collection of

complete exponential sums modulo q is large. Second, in order to bound the contribution

of certain error terms from above, we develop an upper bound for exponential sums in

Proposition 2.7. Both our lower and upper bounds rely on the Weil bound, which we now

state.
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12 C. An et al.

The Weil bound is a consequence of Deligne’s proof of the Weil conjectures [16];

we cite this in the form provided by [24, Thm. 11.43]; Tr denotes the trace function from

Fqn to Fq.

Lemma 2.1 (Weil bound). Let f ∈ Z[X1, . . . , Xm] be a nonzero polynomial of degree k

such that the hypersurface Hf in Pm−1 defined by the equation Hf : fk(x1, . . . , xm) = 0

is nonsingular, where fk is the homogeneous component of f of degree k. For any prime

q � k such that the reduction of Hf modulo q is smooth, any nontrivial additive character

ψ modulo q and any n ≥ 1,

∣

∣

∣

∣

∑

x1,...,xm∈Fqn

ψ(Tr(f (x1, . . . , xm)))

∣

∣

∣

∣

≤ (k − 1)mqnm/2.

We apply this in the case of q prime, q � k, m = 1, n = 1, and f = P ∈ Z[X] a

polynomial of degree k ≥ 2, with leading coefficient ck. Then fk(x) = ckxk, where we

assume that q � ck, so that Hf is nonsingular. Then the Weil bound is

∣

∣

∣

∣

∑

x (mod q)

e(2πP(x)/q)

∣

∣

∣

∣

≤ (k − 1)q1/2. (2.1)

2.1 Large values of exponential sums with rational coefficients

In what follows, we use the convention u (mod q)s to indicate that in each coordinate of

u = (u1, . . . , us), ui runs modulo q.

We now show that a positive proportion of choices for integral coefficients lead

to a complete exponential sum modulo q of size � q1/2 (which by (2.1) is optimal, up to

a constant).

Proposition 2.2. Fix an integer s ≥ 2 and integers 1 = ks < · · · < k2 < k1. For each

integer q and tuple a = (a1, . . . , as) let

T(a; q) = T(a1, . . . , as; q) :=
∑

n (mod q)

e

(

(a1nk1 + · · · + asn
ks)

2π

q

)

.

Then there exist constants 0 < α1 < 1 and 0 < α2 < 1 with α2 depending on k1, such that

for every prime q ≥ 3 with q � ki for all i ∈ {1, . . . , s}, at least α2qs choices of a (mod q)s

have |T(a; q)| ≥ α1q1/2. In fact, one can take α1 = 1/2 and α2 = k−2
1 /4.
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Counterexamples for High-Degree Generalizations of Schrödinger 13

In the case that the exponents ks, ks−1, . . . , k1 are 1, 2, . . . , s (respectively), this

is Theorem 14 of [28], also recorded as [10, Lemma 2.4]. The case of sparse exponents

is remarked upon in [10, §6.1], and we thank Igor Shparlinski for communicating their

method of proof.

Proof. Parseval’s theorem shows that

∑

a (mod q)s

|T(a; q)|2 = qs+1. (2.2)

Indeed, expanding the left-hand side as

∑

a (mod q)s

∑

n (mod q)

e

(

(a1nk1 + · · · + asn
ks)

2π

q

)

∑

m (mod q)

e

(

− (a1mk1 + · · · + asm
ks)

2π

q

)

and summing first over a1, . . . , as (mod q) we gain a contribution of qs+1 precisely for

those n, m with n ≡ m (mod q), which confirms the claim.

Suppose now that for certain constants α1, α2 > 0 (to be specified later), there

are < α2qs choices of a (mod q)s with |T(a; q)| ≥ α1q1/2. Then write

∑

a (mod q)s

|T(a; q)|2 = q2 +
∑

a (mod q)s ,a�≡0

|T(a;q)|≥α1q1/2

|T(a; q)|2 +
∑

a (mod q)s,a �≡0

|T(a;q)|<α1q1/2

|T(a; q)|2.

Here the 1st term on the right-hand side is from a ≡ 0 (mod q)s, in which case

|T(a; q)|2 = q2. In the second term, we can apply our assumption to bound the number

of values of a included in the sum and then apply the Weil bound to each term |T(a; q)|.
In particular, the Weil bound (2.1) shows that if ki is the largest exponent for which

ai �≡ 0 (mod q), then |T(a; q)| ≤ (ki − 1)q1/2 ≤ k1q1/2. Since the smallest exponent is

ks = 1, this observation applies for all a �≡ 0 (mod q)s with some nonzero coefficient

of a nonlinear term, that is, with ai �≡ 0 (mod q) for some i ∈ {1, 2, . . . , s − 1}. For the

remaining cases of a �≡ 0, namely a = (0, 0, . . . , as) with as �≡ 0 (mod q), we observe that

T(a; q) =
∑

n (mod q)

e(2πasn/q) = 0,
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14 C. An et al.

which also suffices. We conclude that

∑

a (mod q)s

|T(a; q)|2 < q2 + α2qs(k1q1/2)2 + qs(α1q1/2)2 ≤ (1/3 + α2k2
1 + α2

1)qs+1.

Here we used the fact that if q ≥ 3 then q2 ≤ (1/3)qs+1 for all s ≥ 2. Now we see that

for any α1, α2 small enough that (1/3 + α2k2
1 + α2

1) < 1, we have obtained a contradiction

to the identity (2.2). Thus, for any sufficiently small choices of α1, α2, there are ≥ α2qs

values of a (mod q)s such that |T(a; q)| ≥ α1q1/2. In particular, we may take α1 = 1/2 and

α2 = k−2
1 /4. �

In order to apply Proposition 2.2, we need the following corollary, which

distinguishes the role of the highest-order coefficient. Here we let a = (a1, a′) with

a1 ∈ Z and a′ ∈ Zs−1.

Corollary 2.3. Fix an integer s ≥ 2 and integers 1 = ks < · · · < k2 < k1. For each prime

q let T(a; q) = T((a1, a′); q), and specify α1, α2 to be as in Proposition 2.2. Let A(q) denote

the set of a (mod q)s such that |T(a; q)| ≥ α1q1/2. For each a1 (mod q), define the “good

set”

G(a1) := {a′ (mod q)s−1 : (a1, a′) ∈ A(q)}.

Suppose that q ≥ 3 is a prime such that q � ki for all i ∈ {1, . . . , s}. Then for at least (α2/2)q

choices of a1 (mod q), we have |G(a1)| ≥ (α2/2)qs−1.

Proof. For a fixed 0 < α3 < 1 to be determined later, write

|A(q)| =
∑

a1 (mod q)

|G(a1)| =
∑

a1 (mod q)

|G(a1)|≥α3qs−1

|G(a1)| +
∑

a1 (mod q)

|G(a1)|<α3qs−1

|G(a1)|.

By Proposition 2.2 we know that |A(q)| ≥ α2qs. We can bound the last term on the right-

hand side from above by q · α3qs−1. On the other hand, we always know that |G(a1)| ≤
qs−1. Thus, after rearranging, we see that

∑

a1 (mod q)

|G(a1)|≥α3qs−1

qs−1 ≥
∑

a1 (mod q)

|G(a1)|≥α3qs−1

|G(a1)| ≥ α2qs − α3qs.
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Counterexamples for High-Degree Generalizations of Schrödinger 15

Upon taking, for example, α3 = α2/2, we learn that

|{a1 (mod q) : |G(a1)| ≥ (α2/2)qs−1}| ≥ (α2/2)q.

�

Finally, we are actually interested in products of sums of the form T(a; q). Here

we replace the notation a by (a1, b) where a1 ∈ Z and b ∈ Zs−1. For any (a1, b) ∈ Z× Zs−1

define T((a1, b); q) as in Proposition 2.2. We are interested in products of m copies of

these sums, where a1 varies (mod q) and each of b1, . . . , bm varies (mod q)s−1.

Corollary 2.4. Fix an integer s ≥ 2 and integers 1 = ks < · · · < k2 < k1. Let α1, α2 and

T((a1, b); q) be as in Proposition 2.2. Let G(q) ⊂ Fq × Fs−1
q × · · · × Fs−1

q denote the set of

a1 (mod q) and b1, . . . , bm (mod q)s−1 for which

|T((a1, b1); q)| · · · |T((a1, bm); q)| ≥ αm
1 qm/2. (2.3)

Then for every prime q ≥ 3 such that q � ki for all i ∈ {1, . . . , s}, we have

|G(q)| ≥ (α2/2)m+1q1+m(s−1).

Proof. For each a1 (mod q), define the “good set” G(a1) as in Corollary 2.3. Now define

A1(q) := {a1 (mod q) : |G(a1)| ≥ (α2/2)qs−1}.

By Corollary 2.3, |A1(q)| ≥ (α2/2)q. Now for each a1 ∈ A1(q) we let b1, . . . , bm vary

independently over G(a1). This gives us a collection of

≥ (α2/2)q · (α2/2)qs−1 · · · (α2/2)qs−1

tuples (a1, b1, . . . , bm) ∈ Fq × Fs−1
q × · · · × Fs−1

q for which |T((a1, bi); q)| ≥ α1q1/2 for each

1 ≤ i ≤ m, so that (2.3) holds. �

When we construct the set �∗ in Section 4, we will apply Corollary 2.4 in the case

of s = 2, m = n − 1, with k1 = k ≥ 2 and k2 = 1. In this case we will also need a good

upper bound for the product of the T(a1, b; q), so we modify the sets G(q) by removing

one point.
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16 C. An et al.

Corollary 2.5. Fix an integer k ≥ 2 and set k1 = k, k2 = 1 in Corollary 2.4, so that

α1 = 1/2, α2 = k−2/4. Let G∗(q) ⊂ F∗
q × Fn−1

q denote the set of a1, a2, . . . , an (mod q) for

which

αn−1
1 q(n−1)/2 ≤ |T((a1, a2); q)| · · · |T((a1, an); q)| ≤ (k − 1)n−1q(n−1)/2. (2.4)

Then for every prime q such that q ≥ 16k2,

|G∗(q)| ≥ (α2/2)n(1 − 2−n)qn.

We will use these sets G∗(q) to pick the rationals a1/q, a2/q, . . . , an/q we use to

build the set �∗ in Section 4.

Proof. If q > k and q � a1 then we can apply the Weil bound to each factor, and prove

the upper bound in (2.4). If q|a1 then T(a1, b; q) = 0 unless q|b also. In particular, the

only choice of (a1, a2, . . . , an) with q|a1 that could contribute to the large values in (2.4)

must have (a1, a2, . . . , an) ≡ (0, 0, . . . , 0) (mod q), in which case the product in (2.4) is

actually of size qn−1. Taking G(q) as in Corollary 2.4 we now set

G∗(q) = G(q) \ 0. (2.5)

Then for every prime q > k, (2.4) holds for every (a1, a2, . . . , an) ∈ G∗(q). Moreover, as

long as we assume that q ≥ (α2/4)−1 = 16k2, then

|G∗(q)| ≥ |G(q)| − 1 ≥ ((α2/2)n − q−n)qn ≥ (α2/2)n(1 − 2−n)qn. (2.6)

Finally, we record that for all a ∈ G∗(q), q � a1. �

2.2 Upper bounds for incomplete exponential sums

We require upper bounds for incomplete sums modulo q. We prove that an incomplete

sum is at most as large (up to a logarithmic factor) as the complete sum, by the standard

method of completing the sum and applying the Weil bound.
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Counterexamples for High-Degree Generalizations of Schrödinger 17

Lemma 2.6. Let P ∈ Z[X] be a polynomial of degree k ≥ 2, with leading coefficient ck.

Let q be a prime with q � k, q � ck. Then for every 1 ≤ H ≤ q,

∣

∣

∣

∣

∑

1≤n≤H

e(2πP(n)/q)

∣

∣

∣

∣

�k q1/2(log q).

Proof. Let S(H) denote the sum on the left-hand side. For any integer q, we can

complete the sum by writing

S(H) =
∑

1≤a≤q

e(2πP(a)/q)
∑

1≤n≤H
n≡a (mod q)

1

=
∑

1≤a≤q

e(2πP(a)/q)
∑

1≤n≤H

1

q

∑

1≤h≤q

e(2π(h(n − a)/q)))

= 1

q

∑

1≤h≤q

∑

1≤a≤q

e(2π(P(a) − ha)/q)
∑

1≤n≤H

e(2πhn/q).

Now in the case that q is a prime (our case of interest), under the assumption that q � ck,

we can apply the Weil bound (2.1) to the sum over a, to achieve the bound ≤ (k − 1)q1/2

for the absolute value of this sum, uniformly in h. We also recall that the geometric

series summed over 1 ≤ n ≤ H is bounded by � min{H, ‖h/q‖−1}, in which ‖t‖ denotes

the distance from t to the nearest integer. By separating into the cases h ≤ q/2 and

q/2 < h ≤ q we see that the sum of min{H, ‖h/q‖−1} over 1 ≤ h ≤ q is bounded by

� q log q. We can conclude that

|S(H)| � (k − 1)q1/2(log q). (2.7)

�

2.3 A sum in which the top coefficient is rational

We will also encounter exponential sums

∑

M<n≤M+N

e(2πP(n))

in which the degree k polynomial P has real coefficients. Here it would be standard to

apply the Weyl bound, which for k ≥ 3 is substantially weaker than the square-root

cancellation bounds we have seen above. (Here is another difference from Bourgain’s

quadratic case; for k = 2 the Weyl bound only differs from square-root cancellation by
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18 C. An et al.

a logarithm.) Following the resolution of the Main Conjecture for the Vinogradov Mean

Value Theorem [6] (see also [67, 68]), an improvement on the classical Weyl bound is now

available. For k ≥ 3, if for some 2 ≤ j ≤ k the coefficient αj satisfies |αj − a/q| ≤ 1/q2 for

some (a, q) = 1, then

∣

∣

∣

∣

∑

M<n≤M+N

e(2πP(n))

∣

∣

∣

∣

� N1+ε(q−1 + N−1 + qN−j)
1

k(k−1) .

This is recorded by Bourgain [5, Thm. 5] but was already known to be an outcome of

proving the Main Conjecture; see [35, Ch. 4, §1]. But a direct application of this bound

in our setting would significantly weaken our method.

Instead we use the following critical observation that is specific to the coun-

terexample we construct. The exponential sums we encounter are determined by a

particular choice of x ∈ �∗ ⊂ Bn(0, 1) and t ∈ (0, 1). The fact that for each x in the

set �∗ we construct we can choose t allows us to ensure that the leading coefficient

of our degree k polynomial is rational. This means we only accrue an error term by

approximating the linear term; this is very advantageous. Here is the core estimate we

require.

Proposition 2.7. Suppose that P(n) = 2πa1nk/q + yn for an integer k ≥ 2, a prime

q ≥ 3 such that q � k, an integer 1 ≤ a1 < q, and a real value y. Suppose also that

|y − 2πb/q| ≤ V, for some integer 1 ≤ b ≤ q and some real V ≥ 0. Then for every N ≥ 1,

∣

∣

∣

∣

∑

M<n≤M+N

e(P(n))

∣

∣

∣

∣

= �N/q� ·
∣

∣

∣

∣

∑

1≤n≤q

e(2π(a1nk + bn)/q)

∣

∣

∣

∣

+ E (2.8)

in which

|E| �k NV(�N/q�q1/2 + q1/2 log q) + q1/2 log q.

In applications, we will choose a1 and b to be such that the main term is ≥
α0�N/q�q1/2, for some constant α0. Thus, in order for the error term to be, say, at most

half the size of the main term, we will need to have V �k N−1, with an implicit constant

that is chosen to be appropriately small relative to k, α0.
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Counterexamples for High-Degree Generalizations of Schrödinger 19

Proof. By partial summation (see, e.g., the standard statement in (2.13) below),

∑

M<n≤M+N

e(P(n)) = e((y − 2πb/q)(M + N))
∑

M<n≤M+N

e(2π(a1nk + bn)/q) + E′ (2.9)

in which

|E′| ≤ sup
u∈[0,N]

∣

∣

∣

∣

∑

M<n≤M+u

e(2π(a1nk + bn)/q)

∣

∣

∣

∣

· VN. (2.10)

Now we recognize that for any u ≥ 0,

∑

M<n≤M+u

e(2π(a1nk + bn)/q) �k �u/q�q1/2 + q1/2 log q.

The first term comes from applying the Weil bound (2.1) to as many complete sums as

possible, and the second term comes from applying (2.7) to the one possible remaining

incomplete sum. In particular, since this upper bound is increasing with u we can apply

it in (2.10) to see that

|E′| �k NV(�N/q�q1/2 + q1/2 log q).

The final step is to note that we can also break the main term in (2.9) into �N/q�
complete sums of length q, and at most one incomplete sum that is bounded above by

�k q1/2 log q, which contributes an acceptable term to the error. This completes the

proof. �

2.4 Partial summation and integration

We record here several standard facts that we use to remove slowly-varying weights

from sums and integrals. First, let a < b be real numbers. Let μ be an integrable function

and let h be a real-valued C1 function. Then integration by parts shows that

∫ b

a
μ(t)e(h(t))dt = e(h(b))

∫ b

a
μ(t)dt + E, (2.11)

where |E| ≤ ‖μ‖L1[a,b]‖h′‖L∞[a,b] · (b − a).
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20 C. An et al.

Second, let {an} be a sequence of complex numbers and let H be a C1 function.

Define the partial sum A(u) =
∑

M<n≤u an. Then as a result of partial summation,

∑

M<n≤M+N

anH(n) = A(M + N)H(M + N) −
∫ M+N

M
A(u)H ′(u)du. (2.12)

Third, let f be a real-valued function and h be a C1 real-valued function. Then

as a consequence of (2.12),

∑

M<n≤M+N

e(f (n) + h(n)) = e(h(M + N))
∑

M<n≤M+N

e(f (n)) + E (2.13)

where

|E| ≤ sup
u∈[0,N]

∣

∣

∣

∣

∑

M<n≤M+u

e(f (n))

∣

∣

∣

∣

· ‖h′‖L∞[M,M+N] · N.

3 Reduction of the Maximal Function to a Complete Exponential Sum

3.1 The initial definition

Our construction of the counterexample functions f = fR is motivated by Bourgain’s

construction in [4] in the special case P2(ξ) = |ξ |2, as presented and motivated by the

third author in [39]. We work initially with unspecified parameters that we will choose

optimally at the end of the argument; this reveals both the flexibility and the natural

constraints of our method.

We begin by exploiting the simple fact that modulating a smooth function by an

exponential shifts the support of its Fourier transform. Indeed, if S = (S1, . . . , Sn) ∈ Rn
>0

and we define S ◦ x = (S1x1, . . . , Snxn) and S−1 = (S−1
1 , . . . , S−1

n ), then

[	(S ◦ x)e(M · x)]ˆ(ξ) = S−1
1 · · · S−1

n 	̂(S−1 ◦ (ξ − M)).

Hence, if 	̂ is supported in Bn(0, 1) then [	(S◦x)e(M ·x)]ˆ(ξ) is supported in Bn(M, max Sj),

which in turn lies in an annulus of “radius” M, if M is appropriately larger than

max1≤j≤n Sj.

Once and for all, we fix a Schwartz function φ on R that satisfies φ ≥ 0,

φ(0) = (2π)−1
∫

φ̂(ξ)dξ = 1, and supp (φ̂) ⊆ [−1, 1]. Such a function can be constructed

by starting with ψ ∈ C∞
0 (B1(0, 1/4)) with (2π)−1

∫

ψ(ξ)dξ = 1. Then we define φ by

φ̂ = (2π)−1ψ ∗ ψ(−·), so that φ = |ψ̌ |2, in which ψ̌(x) = (2π)−1
∫

ψ(ξ)eixξ dξ . Since φ is
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Counterexamples for High-Degree Generalizations of Schrödinger 21

fixed once and for all, we will allow implicit constants below to depend on φ (e.g., on

various bounded norms of φ, φ′, φ̂), and will often denote this dependence by �φ without

further specification.

Let R ≥ 1 be given; this is the main parameter we will let go to infinity in

Theorem 1.2. Let

L = Rλ, S1 = Rσ

for some parameters 0 < λ, σ < 1 that we will choose later in terms of R.

Fix n ≥ 2. Denote x = (x1, . . . , xn) = (x1, x′) and define 	n−1(x′) =
∏n

j=2 φ(xj).

Define f = fR by

f (x) = φ(S1x1)e(Rx1)	n−1(x′)
∑

m′∈Zn−1

R/L≤mj<2R/L

e(Lm′ · x′). (3.1)

Under the constraints on L, S1 specified above, this function has the property that its

Fourier transform is supported in

[R − S1, R + S1] × [R − 1, 2R + 1]n−1 ⊆ Bn(0,
√

n · 2R +
√

nS1) \ Bn(0,
√

nR −
√

nS1).

Thus, since S1 = Rσ with σ < 1, there exists R1 = R1(n, σ) such that for all R ≥ R1, f̂ is

supported in the annulus An(R, 4
√

n).

3.2 Computation of T
(Pk)
t f

In this section it is convenient to use the notation

Pk(ξ) = ξk
1 + · · · + ξk

n = ξk
1 + P̃k(ξ ′), P̃k(ξ ′) := ξk

2 + · · · + ξk
n.

By definition,

T(Pk)
t f (x) = 1

2π

∫

R

φ̂(λ)e((R + λS1)x1 + (R + λS1)kt)dλ

× 1

(2π)n−1

∫

Rn−1
	̂n−1(ξ ′)

∑

m′∈Zn−1

R/L≤mj<2R/L

e((ξ ′ + Lm′) · x′ + P̃k(ξ ′ + Lm′)t)dξ ′.
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22 C. An et al.

Our goal is to isolate out from this the exponential sum

S(2R/L; x′, t) :=
∑

m′∈Zn−1

R/L≤mj<2R/L

e(Lm′ · x′ + LkP̃k(m′)t). (3.2)

To do so, we will approximate T(Pk)
t f (x) by an integral that has only linear phase

dependence on ξ ′ and λ, so that we can apply Fourier inversion and the fact that φ

is nonzero close to the origin. The reduction to S(2R/L; x′, t) generalizes the approach

of [39]; the error terms that we accrue in the process are naturally larger than in the

quadratic case, since we must remove higher-degree terms from the phase.

Since φ(0) = 1 and φ is smooth, given any small 0 < c0 < 1/2 of our choice, there

exists a constant δ0 = δ0(c0, φ) < 1/2 such that

|φ(y)| ≥ 1 − c0/2, for all |y| ≤ δ0. (3.3)

This section proves the following lower bound:

Proposition 3.1. Let 0 < c0 < 1/2 be a small constant of our choice, and let δ0 be as in

(3.3). Assume σ ≤ 1/2. There exist 0 < c1(k, δ0), c2(k, φ, c0, δ0), c3(k, φ, c0) < 1/2 such that

for all sufficiently small constants c1 < c1(k, δ0), c2 < c2(k, φ, c0, δ0), c3 < c3(k, φ, c0) of

our choice, the following holds.

Let R ≥ R2(c1, c2, n, φ, σ) be sufficiently large. Let x ∈ [−c1, c1]n with

x1 ∈ (−c1, −c1/2] and t ∈ (0, 1) satisfy the constraints (3.7) and (3.9) stated below.

Then

|T(Pk)
t f (x)| ≥ (1 − c0)n|S(2R/L; x′, t)| + E1,

in which |E1| is bounded as in (3.16), stated below.

3.3 Removal of higher-degree phase in λ and constraints on x1, t

In this section, we show that the integral over λ in T(Pk)
t f (x) has magnitude at least 1−c0,

as long as we make appropriate constraints on x1 and t. Rewrite the integral over λ as

1

2π
e(Rx1 + Rkt)

∫

R

φ̂(λ)e(λ(S1x1 + kRk−1S1t))e

( k
∑

�=2

(

k

�

)

Rk−�(λS1)�t

)

dλ. (3.4)
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Counterexamples for High-Degree Generalizations of Schrödinger 23

Since φ̂ is supported in [−1, 1], using integration by parts as in (2.11) to remove the

last exponential factor, followed by an application of Fourier inversion, shows that this

expression is equal to

e(Rx1 + Rkt)e

( k
∑

�=2

(

k

�

)

Rk−�S�
1t

)

φ(S1(x1 + kRk−1t)) + E1, (3.5)

where the error term has absolute value

|E1| �k ‖φ̂‖L1 ·
( k

∑

�=2

(

k

�

)

�Rk−�S�
1t

)

· 2 �φ,k tRk ·
k

∑

�=2

(S1/R)� �φ,k tRk(S1/R)2. (3.6)

Next we place constraints on t so we can bound |E1| from above and φ(S1(x1 +
kRk−1t)) from below. We suppose that c0, δ0 are as in (3.3). Fix another constant 0 < c1 <

1/2; we assume from now on that x ∈ [−c1, c1]n. We then specify two constraints on t:

first, we require that for some small 0 < c2 < 1/2 of our choice,

t = − x1

kRk−1
+ τ , where |τ | ≤ c2δ0

kS1Rk−1
. (3.7)

Notice then that by choosing c1, c2 appropriately small, we can make t as small as any

multiple of 1/Rk−1 as we like. In particular, by choosing c1 and c2 sufficiently small

relative to k, δ0, we can ensure that for each j = 2, . . . , n,

|xj + k(LR′)k−1t| ≤ δ0, (3.8)

in which R′ := �2R/L� − 1, and hence |φ(xj + k(LR′)k−1t)| ≥ 1 − c0/2. This is a property

we will apply momentarily in §3.4.2 below.

Second, we require that for some small 0 < c3 < 1/2 of our choice,

|t| ≤ c3

Rk(S1/R)2
. (3.9)

In particular, by choosing c3 small enough relative to the implicit constant in the

upper bound (3.6) for |E1|, we can bound |E1| by as small a constant as we like, and

in particular, as small as

|E1| ≤ c0/2.
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24 C. An et al.

Third, as a consequence of (3.7), |S1(x1 + kRk−1t)| ≤ δ0, so that |φ(S1(x1 +
kRk−1t))| ≥ 1−c0/2. Thus, in total we have confirmed that the integral over λ in T(Pk)

t f (x)

is at least 1 − c0 in absolute value.

Note that the requirements (3.7) and (3.9) are compatible as long as we assume

that S1 = Rσ with

σ ≤ 1/2, (3.10)

as we do from now on.

Finally, note that we can ensure t ∈ (0, 1) by restricting x1 ∈ (−c1, −c1/2]. Then

any corresponding t satisfying the above constraints will belong to (0, 1) as long as

c1/(kRk−1) + c2δ0/(kS1Rk−1) < 1 and c1/(2kRk−1) − c2δ0/(kS1Rk−1) > 0. This will occur

for all sufficiently large R, say R ≥ R2 = R2(c1, c2, n, φ, σ).

At its heart, the efficacy of the counterexamples we construct depends on k

because of the higher order terms we encountered in this step; the constraint t � R−(k−1)

ultimately affects the size of the prime denominators we use when we construct the set

�∗ in §4.

3.4 Removal of higher-degree phase components in terms of ξ ′

In this section, we show that the integral over ξ ′ in the expression for |T(Pk)
t f (x)| can

be well-approximated by (1 − c0)n−1|S(2R/L; x′, t)|, plus an error term. We will work one

coordinate at a time, and it is convenient to define the one-dimensional exponential sum

S(u; v, t) :=
∑

R/L≤m<u

e(Lmv + Lkmkt) (3.11)

for any u ≥ R/L.

3.4.1 Expression for the integral over ξj

We begin with the expression for the integral over ξj in T(Pk)
t f (x), namely

1

2π

∫ 1

−1
φ̂(ξj)e(ξjxj + ξk

j t)
∑

R/L≤mj<2R/L

e(Lmjxj + Lkmk
j t)

× e

( k−1
∑

�=1

(

k

�

)

Lk−�mk−�
j ξ �

j t

)

dξj. (3.12)
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Counterexamples for High-Degree Generalizations of Schrödinger 25

We will show that for x and t as constrained above in (3.7) and (3.9), this integral over ξj

is equal in absolute value to

|φ(xj + k(LR′)k−1t)| · |S(2R/L; xj, t)| + |E2|, (3.13)

in which R′ = �2R/L� − 1 and

|E2| �φ,k Rk−1|t| sup
R/L≤u<2R/L

|S(u; xj, t)|.

To show this, we first use partial summation to remove the dependency on mj of any

terms involving both mj and ξj; this is useful for extracting the sum S(2R/L; xj, t). Then

in a second step we use integration by parts to remove all higher-order terms in ξj, to

prepare for applying Fourier inversion.

Let R′ = �2R/L� − 1. By partial summation as in (2.12), the sum over mj is equal

to

e

( k−1
∑

�=1

(

k

�

)

(LR′)k−�ξ �
j t

)

S(2R/L; xj, t) + E3 (3.14)

in which

|E3| ≤
∫ 2R/L

R/L
|S(u; xj, t)| ·

∣

∣

∣

∣

∣

k−1
∑

�=1

(

k

�

)

(k − �)Lk−�uk−�−1ξ �
j t

∣

∣

∣

∣

∣

du.

Thus, in particular for |ξj| ≤ 1,

|E3| �k (R/L)Lk−1(R/L)k−2|t| sup
R/L≤u≤2R/L

|S(u; xj, t)|.

If we then denote by E4 the contribution of this error term to the integral over ξj, then

|E4| �k ‖φ̂‖L1[−1,1]R
k−1|t| sup

R/L≤u≤2R/L
|S(u; xj, t)|.

Now we consider the contribution of the main term (3.14) to the integral (3.12),

which is the expression

S(2R/L; xj, t)
1

2π

∫ 1

−1
φ̂(ξj)e(ξj(xj + k(LR′)k−1t))e

( k
∑

�=2

(

k

�

)

(LR′)k−�ξ �
j t

)

dξj. (3.15)
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26 C. An et al.

In order to apply Fourier inversion we must remove the higher order terms in ξj, which

we can do by applying integration by parts as in (2.11). This shows that the integral over

ξj in the previous line is equal to

e

( k
∑

�=2

(

k

�

)

(LR′)k−�t

)

1

2π

∫ 1

−1
φ̂(ξj)e(ξj(xj + k(LR′)k−1t))dξj + E5,

in which

|E5| � ‖φ̂‖L1[−1,1]|t|
( k

∑

�=2

(

k

�

)

�(LR′)k−�

)

�φ,k Rk−2|t|.

Thus, the total contribution of E5 to (3.15) is E6, say, where

|E6| �φ,k Rk−2|t| · |S(2R/L; xj, t)|.

Finally, we apply Fourier inversion to the main term. This shows that (3.15) is equal to

S(2R/L; xj, t)e

( k
∑

�=2

(

k

�

)

(LR′)k−�t

)

φ(xj + k(LR′)k−1t) + E6.

We assemble this computation with our upper bound for |E4|, and we conclude that the

integral (3.12) can be expressed as

S(2R/L; xj, t)e

( k
∑

�=2

(

k

�

)

(LR′)k−�t

)

φ(xj + k(LR′)k−1t) + E4 + E6.

This gives (3.13) and verifies the upper bound

|E2| ≤ |E4| + |E6| �φ,k Rk−1|t| sup
R/L≤u≤2R/L

|S(u; xj, t)|.

This proves our claim.

3.4.2 Expression for the full integral over ξ ′

We now multiply together the expression (3.13) we have derived for the absolute value

of each integral over ξj for 2 ≤ j ≤ n. We see that in absolute value, the integral over ξ ′
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Counterexamples for High-Degree Generalizations of Schrödinger 27

in T(Pk)
t f (x) is equal to

∣

∣

∣

∣

∣

∣

n
∏

j=2

φ(xj + k(LR′)k−1t)

∣

∣

∣

∣

∣

∣

· |S(2R/L; x′, t)| + E1,

in which the error term includes all the cross terms accrued when we multiply (3.13) for

j = 2, . . . , n. Precisely, we can write

|E1| �φ,k

n−2
∑

�=0

(

sup
2≤j≤n

|S(2R/L; xj, t)|
)�(

Rk−1|t| sup
2≤j≤n

sup
R/L≤u<2R/L

∣

∣

∣
S(u; xj, t)

∣

∣

∣

)n−1−�

. (3.16)

Finally, in order to complete the proof of Proposition 3.1, recall the constraint

on t given in (3.7) and recall that by choosing c1 and c2 sufficiently small relative to δ0, k,

we have (3.8) so that |φ(xj + k(LR′)k−1t)| ≥ 1 − c0/2 ≥ 1 − c0 for each j. To finish the proof

of Proposition 3.1, we simply recall that the integral over λ is at least 1 − c0 in absolute

value (and at most �φ 1 in absolute value). We apply the first fact when we multiply it

by the main term for ξ ′ and the second fact when we multiply it by the error term for ξ ′.

This enlarges E1 by a constant dependent on φ, which we simply include in the implicit

constant. This completes the proof of Proposition 3.1.

In order to be more precise about our upper bound for E1, we will have to be

more specific about the properties of x and t. We turn to this in the next section, in

which we construct the set �∗ to which x belongs. Ultimately, we will show in (5.10)

that for x ∈ �∗ there is a choice of t for which |E1| �φ,k,n (c1 + c2δ0)( R
LQ1/2 )n−1, where

c1, c2, δ0 can be chosen as small as we like, as in (3.7).

We conclude this section by computing the L2 norm, and hence the Hs norm,

of f .

3.5 Computation of the L2 norm

In order to prove Theorem 1.1, we must compute the Hs norm of f , or in the form of

its precursor Theorem 1.2, we must compute the L2 norm of f . The norms ‖f ‖Hs(Rn) and

‖f ‖L2(Rn) are comparable when f̂ is supported in an annulus of radius R ≥ 1, in which

case

Rs‖f ‖L2(Rn) �s ‖f ‖Hs(Rn) �s Rs‖f ‖L2(Rn). (3.17)
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28 C. An et al.

Indeed, recall that the Sobolev space Hs(Rn) consists of functions f such that G−s ∗ f ∈
L2(Rn), where G−s is the Bessel kernel defined by its Fourier transform Ĝ−s(ξ) = (1 +
|ξ |2)s/2. By Plancherel’s theorem,

‖f ‖2
Hs(Rn) = ‖G−s ∗ f ‖2

L2(Rn)
= 1

(2π)n
‖Ĝ−sf̂ ‖2

L2(Rn)
= 1

(2π)n

∫

Rn
(1 + |ξ |2)s|f̂ (ξ)|2dξ .

In particular, if f̂ is supported in an annulus {(1/C)R ≤ |ξ | ≤ CR} for a constant C > 1,

then (3.17) holds for all R ≥ 1.

To compute the L2 norm of f , Plancherel’s theorem shows that it suffices to

compute the L2 norm of f̂ . By the definition of f in (3.1),

f̂ (ξ1, ξ ′) =
∑

m′∈Zn−1

R/L≤mj<2R/L

gm′(ξ1, ξ ′)

with gm′(ξ1, ξ ′) = S−1
1 φ̂(S−1

1 (ξ1 − R))	̂n−1(ξ ′ − Lm′). Since φ̂(ξj) is supported in [−1, 1], it

follows that gm′ is supported in B+ (R, Lm′) where B is the box [−S1, S1] × [−1, 1]n−1. We

see that for all sufficiently large L (L ≥ 4 suffices), the supports of gm′ for distinct m′

are disjoint. Hence,

‖f̂ ‖2
L2(Rn)

=
∑

m′∈Zn−1

R/L≤mj<2R/L

‖gm′‖2
L2(Rn)

.

By Plancherel’s theorem again,

‖gm′‖2
L2(Rn)

= S−1
1 ‖φ̂‖2n

L2(Rn)
= S−1

1 (2π)n‖φ‖2n
L2(Rn)

.

In conclusion,

S−1/2
1 �R/L�n−1

2 ‖φ‖n
L2(R)

≤ ‖f ‖L2(Rn) ≤ S−1/2
1 �R/L�n−1

2 ‖φ‖n
L2(R)

. (3.18)

In particular, to satisfy the requirements of Theorem 1.2, for each value R, we can

formally define our counterexample function to be f̃ = f /‖f ‖L2 , so that it has L2 norm 1.

But for simplicity we proceed for now with f , and only apply this normalization in our

final arguments in §6.

Remark 3.2. For all n ≥ 1, our results adapt easily to show that s ≥ 1/4 is necessary

for (1.4) to hold. Set f (x) = φ(S1x1)e(Rx1)	n−1(x′)e(R · x′), with the understanding
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Counterexamples for High-Degree Generalizations of Schrödinger 29

that if n = 1, only the first two factors arise. The method used to prove Proposition

3.1 shows that |T(Pk)
t f (x)| � 1 for a neighborhood of x with measure � 1. Thus,

‖ sup0<t<1 |T(Pk)
t f |‖L1(Bn(0,1))/‖f ‖L2(Rn) � S1/2

1 , with S1 = Rσ where σ ≤ 1/2. Choosing

σ = 1/2 leads to the necessary condition s ≥ 1/4.

4 The Sets � and �∗

We have reduced the study of T(Pk)
t f (x) for our function f to the study of the exponential

sum S(2R/L; x′, t) defined in (3.2). It is now convenient to define new variable names:

s := Lkτ , y1 := − Lk

kRk−1
x1 (mod 2π), yj := Lxj (mod 2π). (4.1)

In this notation, we can now write each one-variable sum defined in (3.11) as

S(u; xj, t) =
∑

R/L≤mj<u

e(Lmjxj + Lkmk
j t) =

∑

R/L≤mj<u

e(mjyj + mk
j (y1 + s)). (4.2)

We will define a set � in which the variable y lies, and correspondingly a set �∗

in which the variable x lies, such that for each x ∈ �∗, there is a choice of t such that

|S(2R/L; x′, t)| �
⌊

R

Lq

⌋n−1

q(n−1)/2 (4.3)

for some prime q in a certain dyadic range [Q/2, Q], where

Q = Rκ , 0 < κ < 1

is a parameter that we will later choose optimally to be a small power of R.

Our goals for � (and correspondingly �∗) have two conflicting priorities. In

Theorem 1.2 we aim to show that

‖ sup
0<t<1

|T(Pk)
t f (x)|‖L1(Bn(0,1))

is large. Thus, we aim to show that for all x ∈ �∗ we can choose t to make |T(Pk)
t f (x)|

large, and moreover we aim to show that �∗ has measure as large as possible, that is,

|�∗| � 1. We will not quite achieve this, but we will show that |�∗| � (log Q)−1.

On the other hand, we aim for �∗ to have the property that for every x ∈ �∗, there

exists a choice of t such that the previous constraints (3.7) and (3.9) hold for t and such
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30 C. An et al.

that all the error terms we have accumulated so far in E1 (and further error terms we

will accumulate in the approximation (4.3)) are sufficiently small. This points to making

�∗ as small as possible, which clearly conflicts with the 1st goal. We will work with

abstract parameters and will choose these parameters at the end of the argument in

order to optimize the balance between these two goals.

4.1 Heuristics for a model of the set �

Our model for the set � is as a union of the form:

⋃

Q/2≤q≤Q
qprime

⋃∗

1≤a1<q

⋃∗

a2,...,an

{|y1 − 2πa1/q| < U(q), |yj − 2πaj/q| < V(q), 2 ≤ j ≤ n}.

We do not yet specify the widths U(q) and V(q) of the intervals, but so that they

do not overlap, we may naturally think of them as functions q−α � U(q) � q−α,

q−β � V(q) � q−β for some α, β ≥ 1. The restriction ∗ on the unions indicates for each

q we will only choose a certain subset a1, a2, . . . , an of the values 1 ≤ aj ≤ q.

We wish to restrict the unions to a collection of a1, a2, . . . , an chosen so that the

complete exponential sum

T(a1, aj; q) =
∑

1≤n≤q

e(2π(a1nk + ajn)/q) (4.4)

is on the order of size q1/2 for each 2 ≤ j ≤ n. In fact, we know that � qn choices

for a1, a2, . . . , an lead to this property, by Corollary 2.5. Precisely, set α1 = 1/2 and

α2 = k−2/4, as in that corollary. Assume that

Q > 2 · (α2/4)−1 = 32k2,

so that all q ∈ [Q/2, Q] satisfy q > k as well as q > (α2/4)−1. (When we ultimately choose

Q to be a small power of R, this will hold for all R ≥ R3(n, k).)

By the prime number theorem, for each X ≥ 2 there are X/ log X + O(X/(log X)2)

primes q ≤ X. Thus, there exists a universal constant Q0 such that for all Q ≥ Q0 there

are at least (1/4)Q/ log Q primes q ∈ [Q/2, Q]. (Again, when we choose Q to be a small

power of R, this will hold for all R ≥ R4(n, k).)
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Counterexamples for High-Degree Generalizations of Schrödinger 31

Now for each prime q ∈ [Q/2, Q] define the good set G∗(q) to denote the set of

a1, a2, . . . , an modulo q for which

αn−1
1 q(n−1)/2 ≤ |T(a1, a2; q)| · · · |T(a1, an; q)| ≤ (k − 1)n−1q(n−1)/2.

Then by Corollary 2.5, |G∗(q)| ≥ (α2/2)n(1 − 2−n)qn.

It remains to decide how large the neighborhoods of the rationals should be, in

our definition of �. On the one hand, U(q) and V(q) must be sufficiently large that the

set � has positive measure in [0, 1]n, independent of R (or losing at most a logarithmic

factor of R).

We could be motivated to choose V(q) according to simultaneous Dirichlet

approximation in n−1 variables, so that the neighborhoods in the last n−1 dimensions

fill a positive measure set in [0, 2π ]n−1. Simultaneous Dirichlet approximation shows

that for every Q ≥ 1, every point (y2, . . . , yn) in [0, 2π ]n−1 can be approximated by

(2πa2/q, . . . , 2πan/q) with accuracy

|yj − 2πaj/q| ≤ 2π

qQ1/(n−1)
, 2 ≤ j ≤ n. (4.5)

This would suggest taking

V(q) � q−(1+1/(n−1)). (4.6)

In fact, the complementary condition V(q) � q−(1+1/(n−1)) will arise naturally in

Proposition 4.2 below, which shows how to compute the measure of a union of

boxes from the measures of the individual boxes, if the boxes are appropriately well

distributed.

On the other hand, U(q) must be sufficiently small that given y1 in an interval of

length 2U(q) centered at 2πa1/q, if we set s = y1 − 2πa1/q, where s = Lkτ , then τ meets

the constraints (3.7) and (3.9). Thus, we are motivated to choose (roughly) U(q) ≈ Lkτ ≈
Lk/(S1Rk−1).

Similarly, V(q) must be sufficiently small that given yj in an interval of length

2V(q) centered at 2πaj/q, the error accrued when we replace yj by 2πaj/q in the

exponential sum S(2R/L; xj, t) is sufficiently small. This error term is the term E

appearing in Proposition 2.7, applied with N = R/L. By the remark following that

proposition, we are then motivated to choose V(q) � (R/L)−1, up to a small constant

factor of our choice. To make this compatible with the previous restriction (4.6) on V,
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32 C. An et al.

we see that the relation

Q−(1+1/(n−1)) � (R/L)−1 (4.7)

must be satisfied.

4.2 Measure considerations for a union of well-distributed sets

Our next goal is to show that the measure of � (and correspondingly of �∗) is sufficiently

large. In our degree k setting, our argument diverges from the previous works [4] and

[39] in the quadratic setting. This is because we construct � as a union

⋃

q

⋃

(a1,a2,...,an)∈G∗(q)

Iq,a

of certain boxes Iq,a, in which the sets G∗(q) have sufficiently large cardinality but are

otherwise inexplicit. Thus, the explicit method developed in [39] to compute the measure

of � does not apply.

Instead we take an abstract approach. We prove that if a set I is constructed as a

union of sets Ij, and if these sets Ij are sufficiently well distributed, then the measure of

I is comparable to the sum of the measures of the Ij. After we prove this abstract lemma,

we use an arithmetic argument (and the primality of q) to prove that in our setting, the

boxes Iq,a corresponding to tuples in G∗(q) are sufficiently well distributed. Thus, we

can compute a lower bound for the measure of � by computing the measures of the

individual boxes.

Lemma 4.1. Suppose we have a finite index set J and a collection of measurable sets

{Ij}j∈J in Rm.

(i) Suppose the sets {Ij}j∈J have bounded overlap, in the sense that there exists a

universal constant C0 such that every point lying in the union
⋃

j∈J Ij lies in at most C0

of the sets Ij. Then

∣

∣

∣

∣

⋃

j∈J

Ij

∣

∣

∣

∣

≥ C−1
0

∑

j∈J

|Ij|.

(ii) Suppose the sets {Ij}j∈J have comparable sizes, in the sense that for all j ∈ J,

B0 ≤ |Ij| ≤ B1, and that the sets are regularly distributed, in the sense that

#{j, j′ ∈ J : Ij ∩ Ij′ �= ∅} ≤ C1|J|. (4.8)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
c
0
8
8
/6

5
7
2
1
3
7
 b

y
 D

u
k
e
 U

n
iv

e
rs

ity
 u

s
e
r o

n
 2

4
 M

a
y
 2

0
2
2



Counterexamples for High-Degree Generalizations of Schrödinger 33

Then

∣

∣

∣

∣

⋃

j∈J

Ij

∣

∣

∣

∣

≥ B0

B1C1

∑

j∈J

|Ij|.

We will apply case (ii), but without any additional work we include (i) as a

simpler model case. Note that the trivial upper bound in (4.8) is |J|2; (4.8) can be thought

of as an assumption of bounded overlap on average.

Proof. Define a function f acting on Rm by

f (x) =
∑

j∈J

1Ij
(x).

By the Cauchy–Schwarz inequality,

∣

∣

∣

∣

⋃

j∈J

Ij

∣

∣

∣

∣

= |supp (f )| ≥
‖f ‖2

L1(Rm)

‖f ‖2
L2(Rm)

.

On the one hand,

‖f ‖L1 =
∑

j∈J

|Ij|.

On the other hand,

‖f ‖2
L2 =

∫

Rm

∑

j,j′∈J

1Ij
(x)1Ij′

(x)dx.

We now apply either of the hypotheses. If (i) holds, then

‖f ‖2
L2 ≤

∑

j∈J

|Ij| · #{j′ : Ij ∩ Ij′ �= ∅} ≤ C0

∑

j∈J

|Ij| ≤ C0‖f ‖L1 .

Thus,

∣

∣

∣

∣

⋃

j∈J

Ij

∣

∣

∣

∣

≥
‖f ‖2

L1

C0‖f ‖L1

= C−1
0 ‖f ‖L1 .
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34 C. An et al.

Alternatively, suppose that condition (ii) is met. Then

‖f ‖2
L2 ≤ B1#{j, j′ ∈ J : Ij ∩ Ij′ �= ∅}

≤ B1C1|J| ≤ B1C1

∑

j

|Ij|
B0

= C1(B1/B0)‖f ‖L1 .

Thus,
∣

∣

∣

∣

⋃

j∈J

Ij

∣

∣

∣

∣

≥
‖f ‖2

L1

C1(B1/B0)‖f ‖L1

= B0

B1C1

‖f ‖L1 .

�

4.3 Construction of well-distributed boxes centered at rationals

Consider a set P of primes with P ⊂ [Q/2, Q]. To each such prime q ∈ P, we associate a

set G∗(q) of tuples (a1, a2, . . . , an), with G∗(q) ⊂ [1, q]n. We assume that all the sets G∗(q)

are of comparable size, in the sense that there are uniform constants D1, D2 such that

for all q, q′ ∈ P,

D1 ≤ |G∗(q)|
|G∗(q′)| ≤ D2. (4.9)

This will be true in our application by Corollary 2.5 and the fact that P lies in a dyadic

range.

To each choice of q ∈ P and tuple a ∈ G∗(q) we associate a box centered at

(2πa1/q, . . . , 2πan/q), denoted by Iq,a. Let us suppose that the box has side length h1(q)

in the first coordinate and h2(q) in the coordinates j = 2, . . . , n. Assume that

D3q−α ≤ h1(q) ≤ D4q−α, D5q−β ≤ h2(q) ≤ D6q−β , (4.10)

for constants 0 < D3 < D4 < 1 and 0 < D5 < D6 < 1 of our choice, and for some

1 ≤ α, β ≤ 2. In particular, hi(x) is a decreasing function of x.

Proposition 4.2. In the setting described above, if |G∗(q)| � qn for all q ∈ P ⊂ [Q/2, Q],

and h2(x) � x−1−1/(n−1), then

∣

∣

∣

∣

⋃

q∈P

⋃

a∈G∗(q)

Iq,a

∣

∣

∣

∣

�
∑

q∈P

∑

a∈G∗(q)

|Iq,a|,

in which the implicit constant may depend on n, α, β, D1, D2 but is independent of Q.
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Counterexamples for High-Degree Generalizations of Schrödinger 35

If we further assume that |P| � Q/ log Q, then the lower bound is of the form

∣

∣

∣

∣

⋃

q∈P

⋃

a∈G∗(q)

Iq,a

∣

∣

∣

∣

� Qn+1h1(Q)h2(Q)n−1(log Q)−1,

in which the implicit constant may depend on n, α, β, D1, D2 but is independent of Q.

Note that since we assume h2(x) � x−1−1/(n−1), in order for the right-hand side

to possibly be � (log Q)−1, we would need to take h1(x) � x−1. Combined with the

hypothesis that h1(x) � x−1, this determines that h1(x) ≈ x−1. Similarly, comparison of

the hypothesis with (4.6) determines in our application that h2(x) ≈ x−1−1/(n−1).

Proof. We check that this setting obeys hypothesis (ii) of the previous lemma. The

measure of each box Iq,a is

h1(Q)h2(Q)n−1 ≤ |Iq,a| ≤ h1(Q/2)h2(Q/2)n−1.

In the notation of the previous lemma, under the assumption on the functions h1, h2,

B0

B1

= h1(Q)h2(Q)n−1

h1(Q/2)h2(Q/2)n−1
� 1,

independent of Q.

We also need to verify (4.8), for which it suffices to show that

#{(q, a), (q′, a′) : Iq,a ∩ Iq′,a′ �= ∅} � |P| · min
q∈P

|G∗(q)|. (4.11)

The contribution where (q, a) = (q′, a′) as tuples is at most |P| · maxq |G∗(q)| � |P| ·
minq |G∗(q)|, under the assumption (4.9) that all the sets G∗(q) are of comparable size.

Thus, we consider the case where these tuples are not identical. Supposing Iq,a∩Iq′,a′ �= ∅
then it must be the case that simultaneously

|a1/q − a′
1/q′| ≤ (1/2)h1(q) + (1/2)h1(q′)

|aj/q − a′
j/q′| ≤ (1/2)h2(q) + (1/2)h2(q′), 2 ≤ j ≤ n.

If q = q′ then the upper bound (4.10) assumed on h1(q) shows that |a1 − a′
1| ≤

D4 < 1, and |aj − a′
j| ≤ D6 < 1 for 2 ≤ j ≤ n, so that we would obtain (q, a) = (q′, a′),

contrary to our assumption.
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36 C. An et al.

Thus, it only remains to consider the case with q �= q′ ∈ P ⊂ [Q/2, Q]. Then we

learn from the above relations that simultaneously

|a1q′ − a′
1q| ≤ Q2h1(Q/2)

|ajq
′ − a′

jq| ≤ Q2h2(Q/2), 2 ≤ j ≤ n.

Note that under the assumptions on h1, h2, in each case Q2hi(Q/2) � 1.

If primes q and q′ with gcd(q, q′) = 1 are fixed, then we claim that the

representation of any integer by aiq
′ − a′

iq with 1 ≤ ai ≤ q, 1 ≤ a′
i ≤ q′ is unique.

Indeed, suppose that there is also a representation by 1 ≤ bi ≤ q, 1 ≤ b′
i ≤ q′. Then

biq
′ − b′

iq = aiq
′ − a′

iq, so that (bi − ai)q
′ = (b′

i − a′
i)q. Then the fact that gcd(q, q′) = 1

shows that q|(bi − ai) and q′|(b′
i − a′

i), which suffices to show that bi = ai and b′
i = a′

i.

Thus, once an integer m with |m| ≤ Q2h1(Q/2) is fixed, there is (at most) one

choice of a pair a1, a′
1 with a1q′ − a′

1q = m. Similarly, for each j = 2, . . . , n, once an

integer m with |m| ≤ Q2h2(Q/2) is fixed, there is (at most) one choice of aj, a′
j with

ajq
′ −a′

jq = m. Thus, once q �= q′ ∈ P are fixed, we obtain at most Q2nh1(Q/2)h2(Q/2)n−1

choices of boxes Iq,a, Iq′,a′ that can intersect.

In total, we have so far shown that

#{(q, a), (q′, a′) : Iq,a ∩ Iq′,a′ �= ∅} � |P|2Q2nh1(Q/2)h2(Q/2)n−1 + |P| · min
q∈P

|G∗(q)|.

In order for this to be sufficiently small to verify (4.11), we require that

|P|Q2nh1(Q/2)h2(Q/2)n−1 � min
q∈P

|G∗(q)|. (4.12)

We certainly have |P| � Q/ log Q and h1(Q) � Q−1. If we assume, as in the hypothesis

of the proposition, that minq∈P |G∗(q)| � Qn and h2(Q) � Q−1−1/(n−1), then (4.12) is

satisfied. This concludes the proof that the hypothesis (4.8) of the lemma is satisfied in

our setting.

We now can apply the lemma, and hence

∣

∣

∣

∣

⋃

q∈P

⋃

a∈G∗(q)

Iq,a

∣

∣

∣

∣

�
∑

q∈P

∑

a∈G∗(q)

|Iq,a|.
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Counterexamples for High-Degree Generalizations of Schrödinger 37

Finally, note that each box has measure |Iq,a| = h1(q)h2(q)n−1 � h1(Q)h2(Q)n−1. If we

additionally assume that |P| � Q/ log Q, then the lower bound is of the form

� Qn+1h1(Q)h2(Q)n−1/ log Q.

�

4.4 Formal definition of �

We now formally construct the set �, and Proposition 4.2 will allow us to conclude

immediately that it has the desired measure.

Proposition 4.3. Let Q > max{32k2, Q0}. Define for each prime q ∈ [Q/2, Q] the good

set G∗(q) to denote the set of a1, a2, . . . , an modulo q for which

(1/2)n−1q(n−1)/2 ≤
n

∏

j=2

|T(a1, aj; q)| ≤ (k − 1)n−1q(n−1)/2. (4.13)

Let 0 < c4, c5 < 1/16 be sufficiently small constants of our choice. Define

� =
⋃

Q/2≤q≤Q
q prime

⋃

(a1,a2,...,an)∈G∗(q)

{|y1 − 2πa1/q| < c4q−1,

|yj − 2πaj/q| < c5q−1−1/(n−1), 2 ≤ j ≤ n}. (4.14)

Then

|�| �n,k,c4,c5
(log Q)−1. (4.15)

Proof. Apply Proposition 4.2 to the boxes Iq,a with side lengths h1(q) = 2c4q−1 and

h2(q) = 2c5q−1−1/(n−1). Note that qn �n,k |G∗(q)| ≤ qn for all q ∈ [Q/2, Q] by Corollary

2.5. Hence, we conclude that

|�| �c4,c5,k Qn+1Q−1(Q−1−1/(n−1))n−1(log Q)−1 �n,k,c4,c5
(log Q)−1.

�
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38 C. An et al.

4.5 Formal definition of �∗

We have constructed a set � of (y1, y2, . . . , yn) ∈ [0, 2π ]n. Now we use the change of

variables (4.1) to define the corresponding set �∗ of (x1, x2, . . . , xn). For completeness,

we briefly note this correspondence, following the analogous argument given in [39].

Consider the reduction modulo 2π map ι : R → [0, 2π ] defined by ι(z) = z

(mod 2π) and the rescaling map r : R → R defined by r(z) = Mz for some M sufficiently

large so that Mc1 > 2π , where c1 is the constant fixed just above (3.7). From (4.1) we have

y1 = ι ◦ r(−x1) with M = Lk

kRk−1 ; for each j = 2, . . . , n we have yj = ι ◦ r(xj) with M = L. If

we assume that L = Rλ with λ > (k − 1)/k (as we will later verify), then there exists an

absolute constant R5(k, c1) such that for all R ≥ R5 each of these rescaling factors M is

sufficiently large relative to c1. Finally, let πj be the projection map to the jth coordinate.

Define �∗ ⊆ [−c1, −c1/2] × [−c1, c1]n−1 to be the set such that

π1(�∗) = −(ι ◦ r)−1π1(�), M = Lk

kRk−1
,

πj(�
∗) = (ι ◦ r)−1πj(�), M = L, 2 ≤ j ≤ n.

To see that �∗ has the desired measure, we may work coordinate by coordinate,

since each of � and �∗ is a union of boxes. Let S0 be a set in [0, 2π ]. For S1 ⊆ [−Mc1, Mc1]

with ι(S1) = S0, we see that S1 contains at least 2�Mc1/2π� shifted copies of S0 and so

|S1| ≥ 2�Mc1/2π�|S0|. Further, for S2 ⊆ [−c1, c1] with r(S2) = S1, |S2| = |S1|/M and so

|S2| � c1|S0|. Analogously, for S1 ⊆ [−Mc1, −Mc1/2] with ι(S1) = S0 and S2 ⊆ [−c1, −c1/2]

with r(S2) = S1, we have |S1| ≥ �Mc1/4π�|S0| and so |S2| = |S1|/M � c1|S0|. It follows

that for S0 = π1(�), we achieve |π1(�∗)| � c1|π1(�)| and for S0 = πj(�) with j = 2, ..., n,

we have |πj(�
∗)| � c1|πj(�)|. Then |�∗| �n,c1

|�|.
In combination with (4.15), we may conclude that

|�∗| �n,k,c1,c4,c5
(log Q)−1. (4.16)

5 Analysis of the Arithmetic Contribution

Given any Q > max{32k2, Q0}, we have now constructed a set �∗ ⊂ [−c1, c1]n ⊂ Bn(0, 1)

with measure |�∗| �n,k,c1,c4,c5
(log Q)−1 and such that for every x ∈ �∗ there exists a

corresponding y ∈ �, with � defined in (4.14). Now we restrict our choice of Q relative

to R, L, S1, so that the other desired properties of �∗ hold.
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Counterexamples for High-Degree Generalizations of Schrödinger 39

Proposition 5.1. Suppose that Q > max{32k2, Q0}, and that

1

Q
≤ Lk

S1Rk−1
,

1

Q1+1/(n−1)
�

(

R

L

)−1

,
R

L
� Q1+�0 (5.1)

for some constant 0 < �0 ≤ 1/(n − 1). There exists 0 < c4(c2, k, δ0) < 1/16 such that if

for any c4 < c4(c2, k, δ0) and c5 < 1/16 we define �∗ as above, the following holds.

For each x ∈ �∗, there exists a choice of t ∈ (0, 1) satisfying (3.7) and (3.9) such

that

|S(2R/L; x′, t)| = M1(x′, t) + E2, (5.2)

in which

|M1(x′, t)| ≥ 2−2(n−1)

(

R

LQ1/2

)n−1

, (5.3)

|E2| �n,k (c5 + Q−�0/2)

(

R

LQ1/2

)n−1

. (5.4)

Here the implied constant can depend on n, k but is independent of x′, t.

At this point we can also complete the upper bound for the error term E1 from

(3.16).

Lemma 5.2. Assume the conditions of Proposition 5.1, and for each x ∈ �∗, choose t

as in Proposition 5.1. Then

|E1| �n,k,φ (c1 + c2δ0)

(

R

LQ1/2

)n−1

.

We remark on the motivations for the conditions in (5.1). The first condition

ensures that for each x ∈ �∗ there exists a choice of t such that the one-dimensional

exponential sum S(u; xj, t) has a rational leading coefficient; this allows the use

of Proposition 2.7. Equivalently, this is the property that we can choose s so that

y1 + s = 2πa1/q for some a1, q in the definition of �. In the construction of � we

specify |s| < c4q−1 ≤ 2c4Q−1; moreover, recall from (3.7) and (4.1) that we must have

|s| = Lk|τ | ≤ c2δ0Lk/(kS1Rk−1). The first condition of (5.1) imposes that these two

restrictions are compatible, and then we simply ensure that we choose c4 sufficiently

small that 2c4 < c2δ0/k.
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40 C. An et al.

The second and third conditions in (5.1) are imposed so that the upper bound

for the term E2 in (5.2) is small enough relative to the main term. We can see from these

conditions that Q grows with R since as we assumed from the beginning, L = o(R).

The second condition can be regarded as imposing that V(q) is small enough; this is

consistent with our previous condition (4.7). The third condition will provide the term

Q−�0/2 in the upper bound (5.4), which can be made satisfactorily small. In particular,

there exists some R6 = R6(�0, c5) such that for all R ≥ R6, Q−�0/2 ≤ c5.

Remark 5.3. The first condition in (5.1) is the condition that ultimately forces the

dependence on k in the threshold for s proved in Theorems 1.1 and 1.2. This will be

visible when we optimize the choice of parameters in §6.1.

5.1 Contribution of |S(2R/L; x′, t)| and bound for E2

We now prove Proposition 5.1. Fix Q > max{32k2, Q0}. Fix x ∈ �∗. By definition, this

point x corresponds to a point y ∈ �, and for this y ∈ � there exists a prime q ∈ [Q/2, Q]

and a tuple 1 ≤ a1, a2, . . . , an ≤ q in G∗(q) such that q � a1, |y1 − 2πa1/q| < c4q−1 and

|yj − 2πaj/q| < c5q−1−1/(n−1) for each 2 ≤ j ≤ n, and such that (4.13) holds. We then

define s by y1 + s = 2πa1/q, and this defines t accordingly. Note that t satisfies (3.7) and

(3.9) as long as c4 is sufficiently small relative to c2, δ0.

5.1.1 The one dimensional sums

For each coordinate 2 ≤ j ≤ n we apply Proposition 2.7 to show that for each u ≤ 2R/L,

S(u; xj, t) = �(u − R/L)/q�T(a1, aj; q) + E2,j, (5.5)

where T(a1, aj; q) is defined in (4.4) and

|E2,j| �k
R

L
(c5q−1−1/(n−1))

(

R

Lq1/2
+ q1/2 log q

)

+ q1/2 log q.

From this we will deduce two results: first,

|S(2R/L; xj, t)| =
⌊

R

Lq

⌋

|T(a1, aj; q)| + Ok

(

(c5 + Q−�0/2)
R

LQ1/2

)

. (5.6)

Second, for all R/L ≤ u ≤ 2R/L,

|S(u; xj, t)| �k
R

LQ1/2
. (5.7)
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Counterexamples for High-Degree Generalizations of Schrödinger 41

To prove both of these, it is useful to simplify the upper bound for E2,j. By the

second condition in (5.1), R/L · c5q−1−1/(n−1) � c5 for all q ∈ [Q/2, Q]. By the third

condition in (5.1),

q1/2 log q � R

LQ1+�0
q1/2 log q � R

LQ1/2
Q−�0 log Q � R

LQ1/2
Q−�0/2, (5.8)

say. Thus,

|E2,j| �k (c5 + Q−�0/2)
R

LQ1/2
. (5.9)

To prove (5.6) we simply apply (5.5) with u = 2R/L, and use our bound for E2,j.

To prove (5.7) we apply the Weil bound to T(a1, aj; q) in the main term, using q � a1. We

conclude that for all u ≤ 2R/L,

|S(u; xj, t)| �k (R/Lq)q1/2 + |E2,j|,

which suffices for (5.7).

5.1.2 Assembling the one-dimensional sums

We multiply together the expression (5.6) over 2 ≤ j ≤ n, to obtain that

|S(2R/L; x′, t)| =
⌊

R

Lq

⌋n−1 n
∏

j=2

|T(a1, aj; q)| + E2.

The first term satisfies the lower bound

≥ 1

2n−1

⌊

R

Lq

⌋n−1

q(n−1)/2 ≥ 1

22(n−1)

(

R

LQ1/2

)n−1

.

Here first we applied (4.13), then used the fact that � R
Lq� ≥ 1

2 · R
Lq , which holds as long as

R
Lq ≥ 2. This we can assure for all q ∈ [Q/2, Q] by our final choices for R, L, Q, as long as

R ≥ R7(n, k). This suffices for (5.3). The error term is of the form

|E2| �
n−2
∑

�=0

(

R

Lq
sup

2≤j≤n
|T(a1, aj; q)|

)�(

(c5 + Q−�0/2)
R

LQ1/2

)n−1−�

.
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42 C. An et al.

For all values of a1, a2, . . . , an that were chosen in G∗(q) in the construction of �,

sup
2≤j≤n

|T(a1, aj; q)| ≤ (k − 1)q1/2

by the Weil bound. For all R ≥ R6(�0, c5) we have c5 + Q−�0/2 ≤ 2c5 < 1, so that the

dominant term occurs when � = n − 2. Then this satisfies the upper bound in (5.4).

5.2 Bound for E1

At this point we can also complete our upper bound for the term E1. Fix x ∈ �∗. We can

define the same s (and hence t) as in the proof of Proposition 5.1, satisfying (3.7) and

(3.9). Now apply the upper bound for |S(u; xj, t)| derived in (5.7) to the expression for E1

from (3.16). This shows that

|E1| �φ,k

(

R

LQ1/2

)n−1 n−2
∑

�=0

(Rk−1|t|)n−1−�.

By the conditions (3.7) and (3.9) on t, Rk−1|t| < c1 + c2δ0 < 1 so that the dominant term

occurs when � = n − 2. Then we achieve the bound

|E1| �φ,k,n Rk−1|t|
(

R

LQ1/2

)n−1

�φ,k,n (c1 + c2δ0)

(

R

LQ1/2

)n−1

. (5.10)

Here c1, c2, δ0 are constants we can choose as small as we like, as in (3.7).

6 Optimization of Parameters and Concluding Arguments

The results from Proposition 3.1, Proposition 5.1, and Lemma 5.2 show that for every

x ∈ �∗, there exists t ∈ (0, 1) such that

|T(Pk)
t f (x)| ≥ (1 − c0)n2−2(n−1)

(

R

LQ1/2

)n−1

− (|E1| + |E2|). (6.1)

Here the error terms E1, E2 satisfy the upper bounds given in Lemma 5.2 and

Proposition 5.1. This is under the conditions (3.7) and (3.9) for t, condition (3.10)

for S1 = Rσ , and the conditions in (5.1) on R, L, S1, Q. Recall that we may freely

choose the small constants c0 and δ0 = δ0(c0), as well as c1, c2, c3, c4, c5 as

small as we like, subject to the dependencies we have recorded in the notations

c1(k, δ0), c2(k, φ, c0, δ0), c3(k, φ, c0), c4(c2, k, δ0). The implicit constants in the upper
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Counterexamples for High-Degree Generalizations of Schrödinger 43

bounds for E1, E2 depend only on n, k, φ. We also recall that there exists R6(�0, c5)

such that for all R ≥ R6, Q−�0/2 ≤ c5.

First we fix c0. Upon choosing c1, c2, c5, δ0 small enough relative to c0 and the

implicit constants in Lemma 5.2 and Proposition 5.1 (which are dependent only on

n, k, φ), choosing c3, c4 suitably small, and then taking R ≥ R8(n, k, φ, �0) sufficiently

large, we can conclude that |E1|+ |E2| is, say, no more than 1/2 the size of the main term

in (6.1). We now let R∗(n, k, φ, �0, σ , c0) denote the maximum of R1, . . . , R8. Then for all

R ≥ R∗, for all x ∈ �∗,

sup
0<t<1

|T(Pk)
t (f )(x)| ≥ 1

2
(1 − c0)n2−2(n−1)

(

R

LQ1/2

)n−1

,

under the conditions we have assumed so far on R, L, S1, Q. Combining this with the

lower bound (4.16) for the measure of �∗ and the computation for ‖f ‖L2 in (3.18), we can

conclude that

‖ sup0<t<1 |T(Pk)
t f |‖L1(Bn(0,1))

‖f ‖L2

�n,k,φ

(

R

LQ1/2

)n−1

S1/2
1 (R/L)−(n−1)/2(log Q)−1.

6.1 Choices for the parameters

Now to prove Theorem 1.2 it suffices to show that for each

s <
1

4
+ n − 1

4((k − 1)n + 1)
,

we can choose L, Q, S1 in terms of R such that all previous constraints are met, and

(

R

LQ1/2

)n−1

S1/2
1 (R/L)−(n−1)/2(log Q)−1 ≥ AsR

s′
(6.2)

for some s′ > s and some As = As(n, k, φ).

Let 0 < σ , λ, κ < 1 denote parameters such that Q = Rκ , L = Rλ, S1 = Rσ . Then

(6.2) will hold for all sufficiently large R if

s <
n − 1

2
+ σ

2
− (κ + λ)(n − 1)

2
. (6.3)

We also require σ ≤ 1/2 as in (3.10). The first and second constraints from (5.1) are met

if

σ + (k − 1) ≤ kλ + κ, λ + κ

(

n

n − 1

)

≥ 1. (6.4)
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(The left-hand relation here is the only effect of k on the choice of parameters.) Finally,

we will have to check that certain less restrictive restraints are met, namely that

(k − 1)/k < λ and that for some 0 < �0 ≤ 1/(n − 1), κ(1 + �0) ≤ 1 − λ.

By taking a linear combination of the inequalities in (6.4) (namely 1/(k−1) times

the first one plus (n − 1) times the second one) we deduce that

λ + κ ≥ n + σ/(k − 1)

n + 1/(k − 1)
. (6.5)

The relation (6.3) yields the largest upper bound for s when λ + κ is the smallest; thus

we will choose λ, κ so that equality holds here. Assuming this for the moment, we learn

that

s <
(n − 1) + σ((k − 2)n + 2)

2((k − 1)n + 1)
.

The upper bound is largest when σ is largest among allowable values, so we take

σ = 1/2. We solve for values of λ, κ satisfying (6.4) that attain equality in (6.5); this

yields

λ = 1 − n

2((k − 1)n + 1)
, κ = n − 1

2((k − 1)n + 1)
.

(This means we choose Q such that Q−1−1/(n−1) ≈ (R/L)−1, or in other words, we can

take �0 = 1/(n − 1). Finally, we see that this choice of λ satisfies λ > (k − 1)/k for all

n ≥ 1, k ≥ 2.) This leads to the final constraint that

s <
kn

4((k − 1)n + 1)
.

This completes the proof of Theorem 1.2, and hence of Theorem 1.1.
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