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In 1980 Carleson posed a question on the minimal regularity of an initial data function
in a Sobolev space H*(R™) that implies pointwise convergence for the solution of
the linear Schrodinger equation. After progress by many authors, this was recently
resolved (up to the endpoint) by Bourgain, whose counterexample construction for the
Schrodinger maximal operator proved a necessary condition on the regularity, and Du
and Zhang, who proved a sufficient condition. Analogues of Carleson’s question remain
open for many other dispersive partial differential equations. We develop a flexible
new method to approach such problems and prove that for any integer k > 2, if a
degree k generalization of the Schrédinger maximal operator is bounded from HS(R"™)
to L' (B,(0, 1)), then s > } + 75wy

is the first result that exceeds a long-standing barrier at 1/4. Our methods are number-

In dimensions n > 2, for every degree k > 3, this

theoretic, and in particular apply the Weil bound, a consequence of the truth of the

Riemann Hypothesis over finite fields.

1 Introduction
Given a real-valued polynomial P(¢) : R"™ — R, define

1
(2m)"
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2 C.Anetal

acting initially on functions f of Schwartz class on R”. In the case that P(§) = P,(§) :=

112, Tt(P 2) f provides the solution to the linear Schrodinger equation,

iu—Au=0, (xt)eR"xR,
u(x,0) =f(x), xeR"

Thus, the study of Tt(P 2)f relates to Carleson’s well-known question of what degree of

regularity of f is required for the pointwise convergence result
%in(l) Tt(PZ)f(X) = f(x), a.e. x ¢ R™. (1.1)

Precisely, what is the smallest value of s for which this holds for all f € HS(R"™)?

When the story started in 1980, it was soon proved that s > 1/4 is necessary
and s > n/4 is sufficient, so that for dimensions n > 2 the benchmarks were initially
quite far apart (see Carleson [9, Eqn (14), p. 24] and Dahlberg and Kenig [15]). For many
years, it was widely conjectured that the minimal value for which (1.1) holds should
be s = 1/4 in all dimensions. In 2013, Bourgain expressed surprise that he was able
to show otherwise: as he wrote in [3], “perhaps the most interesting point in this
note is a disproof of what one seemed to believe, namely that f € HS(R"), s > 1/4
should be the correct condition in arbitrary dimension n.” Ultimately, the resolution
of Carleson’s question (up to the endpoint) arrived when Bourgain [4] showed that
s > sy(n) := n/(2(n + 1)) is necessary and Du and Zhang [22] showed that s > s5(n)
is sufficient (see §1.2 for further literature).

Analogous questions naturally arise for many other dispersive PDEs. These
questions have been developed since the 1980s in the large literature on local smoothing
and associated maximal operator estimates (which we review in §1.2), and were also
raised explicitly by Bourgain [3, §5] and Demeter and Guo [17]. In this paper, we
develop flexible new number-theoretic strategies to construct counterexamples for
generalizations of the Schrédinger maximal operator, with corresponding implications
for convergence questions analogous to (1.1). Notably, we push the necessary condition
on s above a long-standing barrier at 1/4, analogous to the barrier Bourgain remarked
upon for the Schrédinger case.

We introduce the maximal operator that lies at the heart of the matter. Given a

real-valued polynomial P, define the maximal operator

f sup [TVFx)|. (1.2)
O<t<l1
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Counterexamples for High-Degree Generalizations of Schrédinger 3

If this maximal operator is bounded from H*(R") to L? (R™) then for all f € HS(R") the

loc
pointwise convergence property holds:

1iné Tip)f(x) = f(x) for a.e. x ¢ R™. (1.3)

On the other hand, if this maximal operator is unbounded as an operator from
H5(R") to LIIOC(R”), then (1.3) must fail for some f € H5(R"), by the Stein—-Nikishin
maximal principle. (See, e.g., [39, Appendix A] for standard arguments to deduce
these relationships.) Thus, Bourgain's definitive result that s > s5(n) is necessary for
(1.1) followed from showing that for each s < s3(n) the maximal operator (1.2) with
PE) =P,y(¢) = |€]% is unbounded from H*(R") to Ll(Bn(O, 1)), where B, (0, 1) denotes the
unit ball centered at the origin in R".

In this paper, we study higher-degree analogues of the Schrédinger maximal
operator and prove the first necessary condition on s that goes beyond 1/4, both for
the maximal estimate and for the convergence property. We focus on the family of

polynomials defined for any integer k > 2 by
P() =&+ &K,
with associated maximal operator

P
> sup |T{Vf].
O<t<l
For dimension n = 1, for every k > 2, this maximal operator is bounded from H*(R) to
LIIOC(R) if and only if s > 1/4, and the convergence property (1.3) holds if and only if
s > 1/4; see [15, 26, 27, 46, 49, 50, 62]. For dimensions n > 2, degree k = 2 is
the Schroédinger case resolved by Bourgain [4] and Du-Zhang [22]. For degrees k > 3,
previous literature left a gap: the behavior for 1/4 < s < 1/2 was unknown; see [2,
42, 50]. In fact, for many dispersive PDEs the convergence question is unresolved for
1/4 < s < 1/2 (see §1.2). Our main result proves the first necessary condition on s that

is strictly above 1/4.

Theorem 1.1. Fixn > 2 and k > 2. Suppose there is a constant C,; such that for all
feH@®RY),

P
I sup 1T F I g0,1)) < CsllF lasny- (1.4)
O<t<l1

1 n—1
Thenszz—i—m.
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4 C.Anetal.

As a consequence of Theorem 1.1, for P = P, the convergence property (1.3) fails

forall s < for each dimension n > 2.

i+ T

An interesting open question remains: for P = P, what is the value of s;(n)
such that for all s > s3(n), the convergence property (1.3) holds for all f € H*(R"), and
for all s < sg(n) it fails? For n = 1, sp(n) = 1/4 for all k > 2. For n > 2 and degree
k=2, s5(n) = n/(2(n + 1)) and our work recovers Bourgain’s construction. For degrees
k > 3, the optimal value for s*,;(n) remains open in dimensions n > 2. We do not have
a prediction for whether the threshold we obtain in Theorem 1.1 is optimal (but see
Remark 1.3).

Our results fit into a large body of research on dispersive PDEs, local smoothing,
and maximal operators. In §1.2, we situate our results in that literature, which is rich
with open problems. But first we describe our method for proving Theorem 1.1, which
is number-theoretic, and appears to be the first time that the Weil bound has been
introduced to study the regularity of solutions to a PDE. We anticipate our approach

will be able to address many further open questions.

1.1 Method of proof

We prove Theorem 1.1 by constructing an explicit family of counterexamples that violate
the putative H® — L!

ioc Pound (1.4) for every small s.

Theorem 1.2. Fixn > 2 and k > 2. Fix s < There exists a sequence

3+ T
of real numbers R; — oo as j — oo, and a sequence of functions f; € L?(R™) such that
IIfJ-IILz(Rn) =1 andj}- is supported in an annulus {(1/OR; < |§] = CRj}, with the property
that
jEI?oR;S” oi‘ifl |Tt(Pk)fj| Izt B 0,1)) = 0©-

This immediately implies Theorem 1.1, since if a function f € H5R") is
supported in such an annulus of radius ~ R, then ||f|lgs ~ R||f||;2; see §3.5 for details.

To prove Theorem 1.2, we construct for each large R a counterexample function
f and a carefully chosen set Q* of points x € B,,(0,1), such that for each x € Q@*, there
is a choice of ¢t € (0,1) for which Tt(Pk)f(X) can be well approximated by an exponential
sum of a certain length, which can in turn be well approximated by a member of a
family of “large” complete exponential sums modulo g, for primes g in a well-chosen
dyadic range. We then optimize the choices of all parameters in this construction—

in particular, to ensure that simultaneously with all the above considerations, 2* has
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Counterexamples for High-Degree Generalizations of Schrédinger 5

“large” measure in B, (0, 1)—and produce a counterexample for each s < }—} + mcfl_)l—nﬂ).
From this bird’s-eye view, our method appears similar to Bourgain’s approach for the
special case P, (&) = |£2, which was rigorously explained in the third author’s work [39].

But to succeed in a higher-degree setting, our method requires several com-
pletely new ideas. First, Bourgain's argument relied only on Gauss sums, which can be
evaluated by elementary methods [39, Appendix B]. Exponential sums of higher degree
polynomials are more complicated, and hence we require different methods to bound
these sums from both above and below. We use an abstract argument in Proposition 2.2
(and its corollaries) to show that “most” of the complete exponential sums we encounter
are “large.” In particular, we capitalize on the Weil bound, which is a consequence of
the truth of the Riemann Hypothesis over finite fields.

This argument shows that “most” sums are large, but does not identify which
sums are large. Consequently, this necessitates a much more abstract construction of
the special set @* C B, (0,1) of points x on which sup,_;_; |Tt(Pk)f(X)| can be shown to
be large. We prove a very general result showing that if a collection of measurable sets
is sufficiently well distributed, then the measure of their union is comparable to the
sum of the measures of the individual sets. We prove the general case in Lemma 4.1
and adapt it to our setting in Proposition 4.2. In particular, we use a number-theoretic
argument to show that the boxes we construct are sufficiently well distributed if they
are centered at rationals with prime denominators, yet another difference from the
arguments in the quadratic case [4, 39].

These new strategies form a highly flexible framework, and we anticipate that
they can be widely adapted to prove counterexamples for many maximal operators

associated to dispersive PDEs.

1.2 Related literature

Our work fits into a large family of questions about dispersive PDEs of the form

du—iPMu=0, (x1teR"xR (1.5)

ux,0) =f(x), xeR"

for a function u acting on R” xR and an initial data function f, where D = %(%, e, ),

and P (D) is defined according to its real symbol by

PD)f(x) = /R ) e* 5 P(e)f (£)ds.

2m)"
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6 C.Anetal

Roughly speaking, to be dispersive, the function P must behave like |£|* for some « > 1
as |&] — oo. (The case @ = 1 corresponds to the wave equation, which has different
behavior.) One main type (Schrédinger type) corresponds to the case that P(¢) = q(|£|%)
for some appropriate function g; for example, P(§) = |£|* for « > 1 corresponds to a
power of the Laplacian, and in particular the case o = 2 leads to the linear Schrodinger
equation. A second main type (Korteweg—de Vries type) corresponds to the case that
n =1, u is real valued, and P(¢) = £q(£2) for some appropriate function g; this includes
the (free) KdV equation with P(¢) = £3, the Benjamin—-Ono equation with P(§) = £|&],
the intermediate long-wave equation, Smith equation, and others (see [13], and also a
high-dimensional Benjamin-Ono equation in [23]). More generally, nonlinear versions
are also of interest, in which (1.5) contains some further term F(u) that is nonlinear in
the function u; but strategies to prove results about the nonlinear case often rely on
deductions involving the linear case, so that the linear case remains of central interest.

We note that the precise condition required of P for the initial value problem
(1.5) to be considered dispersive can vary. One classical criterion appears in Constantin-
Saut [13, Egns. (0.4)—(0.6)]. A less restrictive criterion is developed by Kenig-Ponce-Vega
[26, Thm. 4.1]; our polynomial P, (£) satisfies the criterion of Kenig-Ponce-Vega.

A major focus in the study of the initial value problem (1.5) is proving local
smoothing; this refers to a phenomenon where the solution u to the initial value problem
is (locally) smoother than the initial data function f. Quantitatively, for an equation
of the form (1.5) with P(¢) behaving (roughly) like |£|* with ¢ > 1 as |§] — o0, local

smoothing is a statement of the following form: if f € HS(R") then for a.e. t # 0, u(-, t) €

S+
Hloc

(1.5) is more dispersive, the local smoothing effect in the x variable is stronger. (The

(R™) where 4 = (e — 1)/2. Thus, when « is larger, so that the differential equation

effect is only local since € has unit norm for every t € R, so that the solutions of
the dispersive equation give a unitary group on the Sobolev space H’(R") = WS%(R"); in

particular, for each s the global H5(R") norm of u(-, t) cannot differ from that of f.)

Remark 1.3. Fixn > 2. In Theorem 1.1 we prove that if (1.4) holds, then s > 1/4+6(k, n)
for a value §(k,n) > O that decreases as k increases. In our method, this decrease in
8(k,n) for large k is due to the tighter neighborhood we must impose on ¢ in (3.7), (3.9)
as a result of needing to remove degree k terms from the phase of an integral before
applying Fourier inversion. This then imposes smaller neighborhoods in y; when we
construct the set x € Q* in (4.14), and ultimately a tighter constraint on the parameter Q
in (5.1). But it could be the truth that §(k, n) should decrease with k, given that the local

smoothing effect increases as the dispersive effect increases with k.
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Counterexamples for High-Degree Generalizations of Schrédinger 7

The literature on local smoothing (which also has connections to well-
posedness, Strichartz estimates, and restriction theory) is far too vast to survey here,
but we mention for example the influential works of Kato [25], Constantin and Saut [13],
and Kenig, Ponce, and Vega [26]. In particular, [26, Theorem 4.1] proves local smoothing
of the above type in a setting that includes the polynomial P (¢) = Zj Sjk we study. The
connection between space-time estimates for the Schrédinger operator and restriction
theory is implicit in many of these articles, but for a few examples, see Kenig, Ponce, and
Vega [26], Moyua, Vargas, and Vega [36, 37], Rogers [40], and in particular the explicit

connection derived in Lee, Rogers, and Seeger [30].

1.2.1 Convergence results

So far this has mentioned local smoothing with respect to x. Proving that for all
f € H5(R"), the pointwise convergence result (1.3) holds, additionally requires under-
standing regularity of u(-, t) in ¢. This is best understood when the symbol P is of degree
2, including the important cases of the linear Schrédinger equation and the non-elliptic
Schrodinger equation. For all higher-degree symbols, the previous literature left open
the convergence question for 1/4 < s < 1/2 in dimensions n > 2. For clarity, we
briefly give specific citations, to highlight the context of breaking the 1/4 barrier in
Theorem 1.1.

(a) The symbol P,(£) = |£|2: in this case (1.5) is the linear Schrédinger equation.
For n = 1, (1.3) holds if and only if s > 1/4 by Carleson [9] and Dahlberg—Kenig [15].
The convergence question in dimensions n > 2 has a long history, including works by
Carbery [8], Cowling [14], Sj6lin [46], Vega [62], Bourgain [7], Moyua—-Vargas-Vega [36],
Tao-Vargas [60], Lee [29], Bourgain [3], Luca-Rogers [32], Demeter—Guo [17], Bourgain
[4], Luca-Rogers [34], Du-Guth-Li [19], and Du-Guth-Li-Zhang [21]. Bourgain [4] and
Du-Zhang [22] resolved the question (up to the endpoint): (1.3) holds if s > sj(n) =
n/(2(n + 1)) and fails if s < s5(n).

(b) The symbol P, (§) := &2 — 2 £ €2 +--- £ £2 : in this case (1.5) is the non-
elliptic Schrédinger equation (and when P, has only one change of sign, P(D) is the box
operator [J). Then by Rogers, Vargas, and Vega [42], for all n > 2 (1.3) fails if s < 1/2 and
holds for all s > 1/2. In that work they also note that for n = 2, (1.3) holds for s = 1/2,
due to an observation of Stein (see the proof in [42, p. 1900]). It is interesting that this
behavior differs significantly from the elliptic case.

(c) The symbol P: R"™ — R is a polynomial of degree 2: for any n > 1, (1.3) holds
for all s > 1/2 by Rogers, Vargas, and Vega [42, Thms. 1.2 and 2.1] (recording a method
of [61]). It fails for s < 1/4 by several methods, for example, Sj6lin [50] (see Remark 1.4).

220z Rey pz uo 1asn Ajisiaaiun ana Aq Z€1.2/69/9809BUIUIWI/SE0 L 0 |/I0P/8|91e-80UBAPE/UILI/WOo9 dno olwapede//:sdiy Wol) papeojumod



8 C.Anetal

Aside from the special cases n = 1 or P,(§) and P, (£§) for n > 2, the convergence question
isopenfor1/4 <s<1/2.

(d) The symbol P(¢) = |£]* for real « > 1 on R™: Sjélin [46, Thms. 2-5] proved
that for n = 1,2 (1.3) holds if s > n/4 and for n > 3 it holds if s > 1/2. For all
n > 1 it fails if s < 1/4. This is also proved in Vega [62, Thm. 1']; similar estimates
also appear in Constantin and Saut [13]. In dimensions n > 2, for P(§) = |£|* with
o > 1, a # 2, the convergence question is open for 1/4 < s < 1/2 (or1/4 <s < 1/2if
n=2).

(e) The symbol P : R®™ — R is a polynomial of degree k > 2: this is the
case in which our polynomial P;(£) lies. In the case n = 1, Kenig, Ponce, and Vega
[26, Cor. 2.6] prove that (1.3) holds for any polynomial P of degree k > 2 and s > 1/4
(and even when P is replaced by R((£))* with « # 0, for a rational function R); it fails if
s < 1/4 by [15, 27]. For all n > 1, Ben-Artzi and Devinatz [2, Thm. D] prove (1.3) for all
s > 1/2, for any real polynomial P of principal type of order « for « > 1 (that is, such
that [VP(&)| > (1+|£])*! for all sufficiently large |£|). Furthermore, Rogers, Vargas, and
Vega prove (1.3) holds forall s > 1/2if P: R"™ — R is a member of an appropriate class of
differentiable functions, which in particular includes polynomials [42, Remark 2.2]. The
convergence property (1.3) fails for s < 1/4 by several methods, including, for example,
Sjolin [50] (see Remark 1.4). This left the convergence question in the range 1/4 <s <1/2
open, until the present paper.

We further remark that convergence problems like (1.1) and (1.3) are also
being studied from many more perspectives. For example: in relation to non-tangential
convergence [45]; when t varies in a set defined according to a complex parameter
[53], [56]; convergence along restricted directions or variables curves [11]; and along
t belonging to various types of countable sequences {t,} of points in (0,1); see, for
example, [55], [58], [18], [59], or certain uncountable sets [58]. There are also interesting
recent studies related to pointwise convergence of solutions of analogous PDEs in
other settings: on the torus [26, §5], [63], [38]; on manifolds [66]; and for the nonlinear
Schrédinger flow [12].

Finally, we note that Bourgain's work on counterexamples for the Schrodinger
maximal operator associated to P,(§) = |€|> stimulated a number of new works for
quadratic symbols, including the study of divergence on sets of lower-dimensional
Hausdorff measure, for example in [1], [33], [34], [31], and the study of the failure of
local maximal estimates analogous to (1.2) in higher LP spaces [20]. We anticipate that
the methods of the present paper can be adapted to study higher-degree analogues of

many such questions.
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Counterexamples for High-Degree Generalizations of Schrédinger 9

1.2.2 Maximal operators

Our main theorem is a statement about a maximal operator. This is closely related
to the literature on convergence results mentioned above, since by classical argu-
ments, appropriate maximal estimates imply convergence results, and the failure of
certain maximal estimates implies the failure of certain convergence results (see, e.g.,
[39, Appendix Al]). But additionally, there is a broad literature on maximal operators in
their own right.

For any given symbol P, several types of maximal estimates are typically studied.
One can study the maximal operator sup,.; |Tt(P )f | for a bounded interval I, or for an
infinite interval I; one can ask whether a local norm of this operator is bounded, or a
global norm; one can consider f in an L? Sobolev space such as HS = W¥? or in an L4
Sobolev space W54 for q > 2. Further questions study not the maximal operator in t, but
L9-means over t in some compact interval I.

Our result, for a local L' norm of the maximal operator with ¢ in the bounded
interval (0, 1), and with initial data f € HS(R"), is a strong result in the hierarchy of
types described above. In particular, for a given s, our result that (1.4) fails implies
that the corresponding inequality must also fail for the (larger) maximal operator over
0 < t < oo; for the (larger) global L!(R™) norm; for the (larger) local LP(B,(0, 1)) norm for
allp > 1.

To situate our results in the large literature on maximal operators, we highlight
here a few of the most relevant papers.

(a) The paper that lies closest to our maximal estimates for P (§) = ZJ- S}‘
with k > 3 is by Sjélin [50]. Sj6lin studies local L9(B,,(0, 1)) norms for the operator
f = supg.i; |T§¢)f(x)| for functions ®(§) = ¢, (§) + --- + ¢, (§), where each ¢; is a real-
valued C?(R™ \ {0}) function that is homogeneous of degree a;, where 0 < a;, < a, <

- < a,_; <a,— 1/2. Under the assumption that a := a, > 1 and ¢, does not vanish

identically, Sjolin proves that if

[}
I sup |T§ )f|||LQ(Bn(o,1)) <Lgs 1 s (1.6)
O<t<1

for all f € H5(R™) then

n-—1
2q

s> (1.7)

N

If n = 1 then this is the requirement s > 1/4. In the setting of our Theorem 1.1 (n > 2

and g = 1), the condition (1.7) provides no nontrivial lower bound on s > 0.
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10 C.Anetal.

Remark 1.4. We recall that standard arguments show that for a fixed real symbol P,
if the convergence result (1.3) holds for all f € H5(R"), then (1.6) must hold for g = 2 (see
[39, Appendix Al). Sj6lin’s result (1.7) at g = 2 confirms that for all symbols covered by
his methods, for the convergence result to hold, s > 1/4 is necessary, for all dimensions

n > 1. (We also recover this; see Remark 3.2.)

(b) Many works have considered the maximal operator associated to P,(§) = HE
in terms of global L4(R™) norms for various g, for f € HS. This has been studied both for
the local case 0 < ¢t < 1 and the global case t € R for g = 2 [47], and for other g by Sj6lin
[49]; sharp results for g # 2 are obtained in Rogers and Villarroya [43]. See Sj6lin [52]
and Rogers, Vargas, and Vega [42] for the non-elliptic case P, (£), for f € H® and various
L9(R™) global norms, corresponding to case (b) in §1.2.1. The equivalent problems with
homogeneous Sobolev spaces H® have been studied as well; see, for example, [51].

(c) For the case P(§) = |£|% with a > 1, Sj6lin has characterized for which s, g (1.4)
can hold when n = 1, in terms of the local supremum and local L2 norm [49]. For n > 2,
maximal operators over 0 < t < 1 have been extensively studied for both the local and
global norm, for f radial [48, 49, 54]; see also Wang [64, 65]. More recently, Sj6lin [52]
has also considered the case P(§) = Zj % o > 1, but for ¢t € R and for LI(R") global
norms, which have quite a different flavor from our result, since for such global norms,
standard homogeneity arguments place tight restrictions on q relative to n, s (see, e.g.,
arguments in [52, §2.4]).

There are many further investigations of maximal operators that generalize the
Schrédinger setting in other ways. For example, bounds for multiparameter analogues of
maximal Schrodinger operators are considered in [57]; Rogers and Villarroya [44] prove
sharp results for the maximal operator associated to the wave equation; and bounds of
L9-means with respect to t (rather than a supremum over t) are studied, for example, by
Rogers [40] and Rogers—-Seeger [41]. Finally, of course, many of the convergence results
mentioned in the previous section are in fact stated in terms of results for maximal

operators.

1.3 Outline of the paper

In Section 2 we prove upper and lower bounds for exponential sums, which are the
critical ingredients to force supy_, ; |Tt(Pk)f(X)| to be large for many values of x. In
Section 3 we construct a family of functions f, according to certain parameters, and

reduce the study of Tt(Pk) f(x) to an exponential sum. In Section 4 we motivate our choice
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Counterexamples for High-Degree Generalizations of Schrédinger 11

for the set Q* of points x for which there exists a choice of 0 < t < 1 such that
|Tt(Pk)f(X)| is large. We then give an abstract proof to show that the measure of Q* is
sufficiently large. In Section 5 we use our explicit choice of the set Q* to evaluate the
exponential sum and bound the error terms. Finally, in Section 6 we assemble all of
these constructions and make the optimal choices of parameters that prove Theorem 1.2

and hence Theorem 1.1.

1.4 Notation

We use the notation A « B to indicate that there is a constant C such that |A| < CB;
the notation A «, B indicates that the constant C may depend on the parameter «. In
general, we will allow implicit constants to depend on the dimension n, the degree k,
and a C* function ¢ that is fixed once and for all. We will denote certain small constants
we can freely choose by c;, ¢y, c3, .. .. Since we will use our ability to choose them to our
advantage, we will denote them explicitly in inequalities in which their small size plays
arole.

We let B, (c,r) € R™ denote the Euclidean ball centered at ¢ and of radius r and
let A,,(R,C) € R™ denote the annulus B,,(0, CR)\B,,(0, R/C). For a finite set A we let | A]

denote its cardinality; for a Lebesgue measurable set 2, we let |2| denote its Lebesgue

measure.
We follow the convention in [4] of letting e(t) = e'. Correspondingly, we

use the normalization for the Fourier transform that f'(é) = me f(x)e *édx and

fx) = @m)™™ mef‘(E)eiX'Sdé. Then Plancherel’s theorem states that ||f||§2(Rm)

(2n)_m||f||§2(Rm). The Sobolev space H*(R") is the set of f € S’'(R™) with finite Sobolev
norm

1 N
ey = e /R A+ IEPY @R, (1.8)

2 Upper and Lower Bounds for Exponential Sums

We will use complete exponential sums to show that for each x in a certain set
Q* C B,(0,1), we can choose a t € (0,1) to make |Tt(Pk)f(X)| large. We first prove
Proposition 2.2, which shows that for each prime g, a sufficiently numerous collection of
complete exponential sums modulo g is large. Second, in order to bound the contribution
of certain error terms from above, we develop an upper bound for exponential sums in
Proposition 2.7. Both our lower and upper bounds rely on the Weil bound, which we now

state.
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12 C.Anetal.

The Weil bound is a consequence of Deligne’s proof of the Weil conjectures [16];
we cite this in the form provided by [24, Thm. 11.43]; Tr denotes the trace function from
Fon to Fg.
Lemma 2.1 (Weil bound). Let f € Z[X;,...,X,,] be a nonzero polynomial of degree k
such that the hypersurface Hy in P~ defined by the equation Hp : fir(xy,... %) =0
is nonsingular, where f}, is the homogeneous component of f of degree k. For any prime
g 1 k such that the reduction of Hy modulo g is smooth, any nontrivial additive character

¥ modulo g and any n > 1,

Z Y(Tr(f(xy, ..., X,)))| < (k—1)"q"™/2,

We apply this in the case of g prime, gt k, m =1, n=1,and f =P € Z[X] a
polynomial of degree k > 2, with leading coefficient c;. Then f; (x) = Cka, where we

assume that q { ¢y, so that Hy is nonsingular. Then the Weil bound is

> e@rPx)/q)| < (k—1)q"/% (2.1)

X (mod q)

2.1 Large values of exponential sums with rational coefficients

In what follows, we use the convention u (mod q)° to indicate that in each coordinate of
u = (uy,...,ug), u; runs modulo q.
We now show that a positive proportion of choices for integral coefficients lead

to a complete exponential sum modulo q of size > g'/? (which by (2.1) is optimal, up to

a constant).
Proposition 2.2. Fix an integer s > 2 and integers 1 = k; < --- < k, < k,. For each
integer q and tuple a = (a,, ..., ay) let

2
Ta,q@ =T(@a,,...,a54Qq) = Z e((alnk1 + - +asnk5)—).
n (mod q) q

Then there exist constants 0 < «; < 1 and 0 < o, < 1 with o, depending on k;, such that
for every prime g > 3 with g { k; for alli € {1,...,s}, at least «,g° choices of a (mod g)°

have |T(a; g)| > @;q"/?. In fact, one can take o; = 1/2 and «, = k; ?/4.
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Counterexamples for High-Degree Generalizations of Schrédinger 13

In the case that the exponents k., k;,_;,..., k; are 1,2,...,s (respectively), this
is Theorem 14 of [28], also recorded as [10, Lemma 2.4]. The case of sparse exponents
is remarked upon in [10, §6.1], and we thank Igor Shparlinski for communicating their

method of proof.

Proof. Parseval's theorem shows that

> IT@ @l =g (2.2)
a (mod g)*

Indeed, expanding the left-hand side as

Z Z e((alnkl + .. + asnks)z_n) Z e( _ (almkl + . + asmk‘g)z?n)

a (mod @)% n (mod q) m (mod q)

and summing first over a,,...,a, (mod g) we gain a contribution of ¢**! precisely for
those n, m with n = m (mod ), which confirms the claim.
Suppose now that for certain constants o;,a, > 0 (to be specified later), there

are < a,q° choices of a (mod q)* with |T(g; q)| > a;q/?. Then write

> Ir@olf=¢+ D> IT@ol+ > |IT@ql

a (mod @) a (mod q)%,a#0 a (mod g),a#0
IT(@q)>a19'/2 IT(@iq)l<ayq'/2
Here the 1st term on the right-hand side is from ¢ = 0 (mod ¢)%, in which case

|T(a; q)|*> = g°. In the second term, we can apply our assumption to bound the number
of values of a included in the sum and then apply the Weil bound to each term |T(g; q)|.
In particular, the Weil bound (2.1) shows that if k; is the largest exponent for which
a; # 0 (mod q), then |T(g; q)| < (k; — 1)q*/?> < k,q'/?. Since the smallest exponent is
k, = 1, this observation applies for all a # 0 (mod g)° with some nonzero coefficient
of a nonlinear term, that is, with q; # 0 (mod q) for some i € {1,2,...,s — 1}. For the

remaining cases of a # 0, namely a = (0,0, ..., a,) with a, # 0 (mod g), we observe that

T@q= », e@ramn/q) =0,
n (mod q)
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14 C.Anetal.

which also suffices. We conclude that

> IT@ P < @ + @ (k@5 + ¢° (6% < (1/3 + aykd + oD)g* .
a (mod g)%

Here we used the fact that if ¢ > 3 then g < (1/3)g°"! for all s > 2. Now we see that
for any «y, a, small enough that (1/3 + a,k? +a?) < 1, we have obtained a contradiction
to the identity (2.2). Thus, for any sufficiently small choices of «;, «a,, there are > «,q°
values of @ (mod q)° such that |T(a; q)| > «;q"/?. In particular, we may take o; = 1/2 and
a, =k ?/4. |

In order to apply Proposition 2.2, we need the following corollary, which
distinguishes the role of the highest-order coefficient. Here we let a = (a,,a’) with

a, € Zand a' € Z571.

Corollary 2.3. Fix an integer s > 2 and integers 1 =k, < --- < k, < k;. For each prime
qglet T(a; q) = T((a;,a’); q), and specify «;, @, to be as in Proposition 2.2. Let .A(g) denote
the set of a (mod q)° such that |T(a; g)| > alql/z. For each g, (mod g), define the “good

"

set
G(a;) :={a’ (mod @) ! : (a;,a’) € A(Q)}.

Suppose that g > 3is a prime such that g { k; foralli € {1, ..., s}. Then for at least («,/2)q

choices of a; (mod g), we have |G(a,)| > (a2/2)q3_1.

Proof. For afixed 0 < a3 < 1 to be determined later, write

A@l= D IGapl= D, IG@pl+ > IGal

a; (mod q) ay (mod q) ay (mod q)
IG(ay)|za3q5~! IG(ap)l<azqs™!

By Proposition 2.2 we know that |A(q)| > «,q°. We can bound the last term on the right-
hand side from above by g - ¢3¢*~!. On the other hand, we always know that |G(a,)| <

q¢*!. Thus, after rearranging, we see that

@ = D (6@ = ayqf — asq’

ay (mod q) ay (mod q)
IG(ay)|>agqs—1 1G(ay)|>agqs—1
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Counterexamples for High-Degree Generalizations of Schrédinger 15

Upon taking, for example, a3 = «,/2, we learn that

l{a, (mod q) : [G(a,))| = (¢2/2)¢° '} = (25/2)q.
|

Finally, we are actually interested in products of sums of the form T(a; q). Here
we replace the notation a by (a,,b) where a; € Z and b € Z5~!. For any (a;,b) € Z x Z5~!
define T((a;,b); q) as in Proposition 2.2. We are interested in products of m copies of

these sums, where a, varies (mod q) and each of b,,...,b,, varies (mod QL.
Corollary 2.4. Fix an integer s > 2 and integers 1 = k; < --- < k, < k;. Let a;, @, and
T((a;,b); q) be as in Proposition 2.2. Let G(q) C Fy x F§ ! x --- x F§~! denote the set of
a, (mod q) and by, ..., b,, (mod g)5~! for which

IT((@1,B1); Q-+ 1T(@1, )i @) = o™/, (2.3)
Then for every prime g > 3 such that g1 k; foralli € {1, ..., s}, we have

|g(q)| > (az/z)m+lq1+m(sfl)‘

Proof. For each a, (mod g), define the “good set” G(a,) as in Corollary 2.3. Now define

A(Q) := {a; (mod q) : |G(ay)| > (ay/2)g" ).

By Corollary 2.3, |A;(q@)| > (@,/2)q. Now for each a; € A,(q) we let by,...,b,, vary

independently over G(a,). This gives us a collection of

> (03/2)q - (a3/2)g" " -+ (03/2)g° !

tuples (@, b, ..., by,) € Fy x F5™! x .. x F5~! for which [T((a,, b;); )| > «,q'/? for each
1 <1 <m, so that (2.3) holds. [ |

When we construct the set Q* in Section 4, we will apply Corollary 2.4 in the case
ofs=2, m=n—-1,withk; =k > 2and k, = 1. In this case we will also need a good
upper bound for the product of the T(a;,b; q), so we modify the sets G(q) by removing

one point.
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16 C.Anetal.

Corollary 2.5. Fix an integer k > 2 and set k; = k,k, = 1 in Corollary 2.4, so that
ap =1/2,0y = k=2/4. Let G*(q) C ]Fj; X ]FZ‘1 denote the set of a,,a,,...,a, (mod g) for
which

a1q V2 <T@y, a0); @l - 1T (@1, ay); @I < (k — 1)1 =D/2, (2.4)

Then for every prime g such that g > 16k?,

IG*(@)] = (ap/2)" (1 —27)q".

We will use these sets G*(q) to pick the rationals a,/q,a,/q,...,a,/q we use to
build the set Q* in Section 4.

Proof. If g > k and gt a, then we can apply the Weil bound to each factor, and prove
the upper bound in (2.4). If gla, then T(a,,b;q) = 0 unless g|b also. In particular, the
only choice of (a,,a,,...,a,) with g|a; that could contribute to the large values in (2.4)
must have (a;,a,,...,a,) = (0,0,...,0) (mod g), in which case the product in (2.4) is

actually of size g"~!. Taking G(g) as in Corollary 2.4 we now set

G*(q@) =G(@\O0. (2.5)

Then for every prime q > k, (2.4) holds for every (a,,a,,...,a,) € G*(q). Moreover, as

long as we assume that g > (012/4)_l = 16k2, then

IG* (@ = 1G(@| — 1 = ((p/2)" — @7 ™)q" = (ap/2)" (1 — 27)q". (2.6)

Finally, we record that for all a € G*(q), g1 a;. [ |

2.2 Upper bounds for incomplete exponential sums

We require upper bounds for incomplete sums modulo q. We prove that an incomplete
sum is at most as large (up to a logarithmic factor) as the complete sum, by the standard

method of completing the sum and applying the Weil bound.
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Counterexamples for High-Degree Generalizations of Schrédinger 17

Lemma 2.6. Let P € Z[X] be a polynomial of degree k > 2, with leading coefficient cy.
Let g be a prime with g1k, g { ¢;. Then forevery 1 <H < g,

> e(ZnP(n)/q)‘ < q'*(og Q).

1<n<H

Proof. Let S(H) denote the sum on the left-hand side. For any integer g, we can

complete the sum by writing

SH) = Y e@rP@/q Y, 1

1<a=<q 1<n<H
- n=a (mod q)

1
= > e@rP@/q D, - > e@r(h(n—a)/q))

1<a<q 1<n<H * 1<h=<q
1

= = > > e@n(P(a)-ha)/q) D e2rhn/q).
q 1<h<ql=<a=q l<n<H

Now in the case that g is a prime (our case of interest), under the assumption that g { ¢,
we can apply the Weil bound (2.1) to the sum over a, to achieve the bound < (k — 1)g'/?
for the absolute value of this sum, uniformly in h. We also recall that the geometric
series summed over 1 < n < H is bounded by « min{H, ||h/q| "'}, in which ||¢|| denotes
the distance from ¢ to the nearest integer. By separating into the cases h < g/2 and
q/2 < h < q we see that the sum of min{H, ||h/q| "'} over 1 < h < g is bounded by

<« qlog g. We can conclude that

IS(H)| < (k — 1)g"/*(log q). (2.7)

2.3 A sum in which the top coefficient is rational

We will also encounter exponential sums

Z e(2nP(n))

M<n<M+N

in which the degree k polynomial P has real coefficients. Here it would be standard to
apply the Weyl bound, which for k > 3 is substantially weaker than the square-root
cancellation bounds we have seen above. (Here is another difference from Bourgain's

quadratic case; for k = 2 the Weyl bound only differs from square-root cancellation by
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18 C.Anetal.

a logarithm.) Following the resolution of the Main Conjecture for the Vinogradov Mean
Value Theorem [6] (see also [67, 68]), an improvement on the classical Weyl bound is now
available. For k > 3, if for some 2 < j < k the coefficient o satisfies |ozj —a/q| <1/qg? for

some (a,q) = 1, then

‘ > e@rP()| < N'(q T+ N 4 gNRE,

M<n<M+N

This is recorded by Bourgain [5, Thm. 5] but was already known to be an outcome of
proving the Main Conjecture; see [35, Ch. 4, §1]. But a direct application of this bound
in our setting would significantly weaken our method.

Instead we use the following critical observation that is specific to the coun-
terexample we construct. The exponential sums we encounter are determined by a
particular choice of x € Q* C B,(0,1) and t € (0,1). The fact that for each x in the
set Q* we construct we can choose t allows us to ensure that the leading coefficient
of our degree k polynomial is rational. This means we only accrue an error term by
approximating the linear term; this is very advantageous. Here is the core estimate we

require.

Proposition 2.7. Suppose that P(n) = 2ra;n*/q + yn for an integer k > 2, a prime
q > 3 such that g { k, an integer 1 < a, < g, and a real value y. Suppose also that

ly —2nb/q| < V, for some integer 1 < b < g and some real V > 0. Then for every N > 1,

‘ > e(P(n))‘ = [N/q] -

M<n<M+N

> e@n(an*+bn)/g)|+E (2.8)

1<n=q

in which
] < NV(IN/qlq'? + q"/?1log q) + q'/*logq.

In applications, we will choose a; and b to be such that the main term is >
o LN/qul/z, for some constant «. Thus, in order for the error term to be, say, at most
half the size of the main term, we will need to have V «; N —1, with an implicit constant

that is chosen to be appropriately small relative to k, «.
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Counterexamples for High-Degree Generalizations of Schrédinger 19
Proof. By partial summation (see, e.g., the standard statement in (2.13) below),

> e®m) =e(y—27b/QM+N) > e@ranf+bn)/+E (2.9
M<n<M+N M<n<M+N

in which

E'| < sup ‘

e(2m(a;n® + bn)/q)‘ . VN. (2.10)
uel0,N]

M<n<M+u

Now we recognize that for any u > 0,

> e@n(anf+bn)/q) < lu/qlq"?* + q'/*logg.
M<n<M+u

The first term comes from applying the Weil bound (2.1) to as many complete sums as
possible, and the second term comes from applying (2.7) to the one possible remaining
incomplete sum. In particular, since this upper bound is increasing with u we can apply
it in (2.10) to see that

|E'| < NV(IN/qlq"? + q*/*log q).

The final step is to note that we can also break the main term in (2.9) into |[N/q]
complete sums of length g, and at most one incomplete sum that is bounded above by
<k q'/?logq, which contributes an acceptable term to the error. This completes the

proof. |

2.4 Partial summation and integration

We record here several standard facts that we use to remove slowly-varying weights
from sums and integrals. First, let a < b be real numbers. Let ¢ be an integrable function

and let h be a real-valued C! function. Then integration by parts shows that

b b
/ n(teh(t)dt = e(h(b)) / w(t)dt + E, (2.11)

where |E| < ||M||L1[a,b]||h/||Loo[a,b] -(b—a).
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20 C.Anetal.

Second, let {a,,} be a sequence of complex numbers and let H be a C! function.

Define the partial sum A(u) = > j;_,,<, @,,- Then as a result of partial summation,

M+N
> a,H(m) = AM +NHM +N) — / AWH (wdu. (2.12)
M<n<M-+N M

Third, let f be a real-valued function and h be a C! real-valued function. Then

as a consequence of (2.12),

> e(fm)+hm)=ehM+N) >  efn)+E (2.13)

M<n=<M+N M<n<M+N

where

|E| < sup ‘ Z e(f(n))‘ M om0 - N-
uelON | py cn<m+u

3 Reduction of the Maximal Function to a Complete Exponential Sum
3.1 The initial definition

Our construction of the counterexample functions f = fz is motivated by Bourgain's
construction in [4] in the special case P,(§) = |€]2, as presented and motivated by the
third author in [39]. We work initially with unspecified parameters that we will choose
optimally at the end of the argument; this reveals both the flexibility and the natural
constraints of our method.

We begin by exploiting the simple fact that modulating a smooth function by an
exponential shifts the support of its Fourier transform. Indeed, if S = (S;,...,S,) € RZO

and we define Sox = (§;x,,...,5,%,) and S~ = (§7,...,S,;1), then
[®(Sox)eM -0 (E) =5 -5, &S o (€ — M)).

Hence, if ® is supported in B,,(0, 1) then [®(Sox)e(M-x)]"(§) is supported in B, (M, max S)),
which in turn lies in an annulus of “radius” M, if M is appropriately larger than
max, i Sj.

Once and for all, we fix a Schwartz function ¢ on R that satisfies ¢ > 0,
¢(0) = 2n)~! [¢(£)de = 1, and supp ($) C [-1,1]. Such a function can be constructed
by starting with ¢ e C3°(B,(0,1/4)) with 2m)~1 J¥(&)dé = 1. Then we define ¢ by
¢ = (2m)" 'y % ¥(—), so that ¢ = |¢/|?, in which ¢ (x) = (27)~! [y (&)e*édk. Since ¢ is
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Counterexamples for High-Degree Generalizations of Schrédinger 21

fixed once and for all, we will allow implicit constants below to depend on ¢ (e.g., on
various bounded norms of ¢, ¢/, <;3), and will often denote this dependence by <y without
further specification.

Let R > 1 be given; this is the main parameter we will let go to infinity in
Theorem 1.2. Let

L=R", S, =R°

for some parameters 0 < A, 0 < 1 that we will choose later in terms of R.
Fix n > 2. Denote x = (xy,...,X,) = (x;,x)) and define @, ;(x') = H}l=2¢>(xj).
Define f = fy by

Fx) = oS x)De®x)P, 1(x) D e@m  -x). (3.1)

m/EZn—l

R/L=m;j<2R/L

Under the constraints on L, S; specified above, this function has the property that its

Fourier transform is supported in
[R—S,,R+S;1x[R-1,2R+1]""! CB,(0,v/n- 2R+ +/nS;) \ B, (0, VnR — /nS)).

Thus, since S; = R with o < 1, there exists R; = R;(n,0) such that for all R > R;, f is
supported in the annulus 4,,(R,4/n).

; (Pr)
3.2 Computation of T, *'f

In this section it is convenient to use the notation
P&)=tF 4+ ek =l + B, BE)=EF 4+ gk

By definition,

TF00 = 5 [ Be®+isx + R +8)Fods

1
X ——
(27‘[)”_1

/R L b)) D el +Lm) X 4 P+ Lm)nds.

/ n—1
R/L<mj<2R/L
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22 C.Anetal.

Our goal is to isolate out from this the exponential sum

S@R/L;X,t):= > elm -x +L*P(m)1). (3.2)
m’ n—1
R/L<m;j<2R/L

To do so, we will approximate Tt(Pk)f(X) by an integral that has only linear phase
dependence on &’ and A, so that we can apply Fourier inversion and the fact that ¢
is nonzero close to the origin. The reduction to S(2R/L; x', t) generalizes the approach
of [39]; the error terms that we accrue in the process are naturally larger than in the
quadratic case, since we must remove higher-degree terms from the phase.

Since ¢ (0) = 1 and ¢ is smooth, given any small 0 < ¢, < 1/2 of our choice, there

exists a constant §; = §,(cy, ¢) < 1/2 such that
()l = 1—cy/2, forall|y| < 4. (3.3)

This section proves the following lower bound:

Proposition 3.1. Let 0 < ¢y < 1/2 be a small constant of our choice, and let §; be as in
(3.3). Assume o < 1/2. There exist 0 < c,(k,§y), c,(k, ¢, Cy, 8y), c5(k, ¢, cy) < 1/2 such that
for all sufficiently small constants ¢; < ¢;(k,38y), ¢, < Cy(k,9,Cy,8p), €3 < C3(k, ¢, Cy) of
our choice, the following holds.

Let R > Ry(cy,cy,n,¢,0) be sufficiently large. Let x € [—c;,c;]" with
x; € (—c;,—c;/2] and t € (0,1) satisfy the constraints (3.7) and (3.9) stated below.
Then

ITE9F ()] = (1= Go)"IS(R/L; X, 8)| + Ey,

in which |E,| is bounded as in (3.16), stated below.

3.3 Removal of higher-degree phase in A and constraints on x,t

In this section, we show that the integral over X in Tt(P") f(x) has magnitude at least 1—cj,

as long as we make appropriate constraints on x; and t. Rewrite the integral over A as

k
1 . k
7 ¢(Rx, + RFp) /R d(L)e(h (S, x, +kR’°—1slt))e<§ (E)Rk—‘(,\sl)‘t)dx. (3.4)

=2
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Since ¢ is supported in [—1,1], using integration by parts as in (2.11) to remove the
last exponential factor, followed by an application of Fourier inversion, shows that this

expression is equal to

k
e(Rx; + Rkt)e( > (Z)Rk—fsf t)¢(81 (x; + kR* 1)) + E,, (3.5)

(=2
where the error term has absolute value

k

k
R K\
|E;| < 1Dl - (Z (Z)mk ‘st t) 12 <L, RS /R <41 tRE(S /R (3.6)
=2 =2

Next we place constraints on ¢ so we can bound |E; | from above and ¢ (S, (x; +
kR*~1t)) from below. We suppose that cy, §, are as in (3.3). Fix another constant 0 < ¢; <
1/2; we assume from now on that x € [-c;, c;]". We then specify two constraints on ¢:

first, we require that for some small 0 < ¢, < 1/2 of our choice,

X1 a0y
t=— + 17, where |7| < —&——. 3.7
kRk-1 Il = kS,Rk-1 3.7
Notice then that by choosing c;, ¢, appropriately small, we can make ¢ as small as any
multiple of 1/R¥~! as we like. In particular, by choosing ¢, and c, sufficiently small

relative to k, §;, we can ensure that foreachj=2,...,n,
lx; + k(LR 1t| < 5, (3.8)

in which R’ := [2R/L] — 1, and hence ¢ (x; + k(LR 1) > 1 — Co/2. This is a property
we will apply momentarily in §3.4.2 below.

Second, we require that for some small 0 < ¢3 < 1/2 of our choice,

< ——3 (3.9)
RK(S,/R)?

In particular, by choosing c; small enough relative to the implicit constant in the
upper bound (3.6) for |E;|, we can bound |E;| by as small a constant as we like, and

in particular, as small as

|E; | < co/2.
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Third, as a consequence of (3.7), |S;(x; + kR¥"1t)| < §,, so that |¢(S;(x; +
kRF1t))| > 1— Co/2. Thus, in total we have confirmed that the integral over X in Tt(Pk) f(x)
is at least 1 — ¢y in absolute value.

Note that the requirements (3.7) and (3.9) are compatible as long as we assume
that S; = R with

o<1/2, (3.10)

as we do from now on.

Finally, note that we can ensure t € (0, 1) by restricting x; € (—c;, —c;/2]. Then
any corresponding t satisfying the above constraints will belong to (0,1) as long as
c;/(kR*¥1) + ¢,8,/(kS;R¥1) < 1 and ¢, /(2kR*"1) — ¢,8,/(kS;R¥"1) > 0. This will occur
for all sufficiently large R, say R > R, = R,(C;,Cy, 11, ¢, 0).

At its heart, the efficacy of the counterexamples we construct depends on k
because of the higher order terms we encountered in this step; the constraint t « R~*-1
ultimately affects the size of the prime denominators we use when we construct the set
Q* in §4.

3.4 Removal of higher-degree phase components in terms of &’

In this section, we show that the integral over &£’ in the expression for |T§P’°) f(x)| can
be well-approximated by (1 — ¢y)"!|S(2R/L; x/, t)|, plus an error term. We will work one

coordinate at a time, and it is convenient to define the one-dimensional exponential sum

Swiv,ty:= D eldmv+Lmk (3.11)

R/L<m<u
for any u > R/L.

3.4.1 Expression for the integral over &;

We begin with the expression for the integral over §; in Tépk) f(x), namely

1t
7 / 1¢(gj)e(gjxj+sj"t) > emx;+LFmio)
- R/L=mj<2R/L

k-1

X e( > (I;)Lk_em}‘_ggft) dg;. (3.12)
=1
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We will show that for x and ¢ as constrained above in (3.7) and (3.9), this integral over éj

is equal in absolute value to
|6 (x; + K@LR)10)| - IS2R/L; x5, D) + |Ey, (3.13)
in which R’ = [2R/L] — 1 and

Byl <4 BEHE sup  |S(u;x;, ).
R/L<u<2R/L
To show this, we first use partial summation to remove the dependency on m; of any
terms involving both m; and sj; this is useful for extracting the sum S(2R/L; Xj, t). Then
in a second step we use integration by parts to remove all higher-order terms in &;, to
prepare for applying Fourier inversion.

Let R’ = [2R/L] — 1. By partial summation as in (2.12), the sum over m; is equal

to
=
e(z (E)(LR/)ngJ.‘t)s(zR/L;Xj,t) A (3.14)
=1
in which
2R/ < (k k=t k—t—1451
|E|§/ IS(w; x;, )] - ( )(k—z)L—u——s.t du.
3 R/L J ; ¢ J

Thus, in particular for &1 <1,

|E5| <) (R/LLF'R/D* 2t sup  |S(u;x;, 0.
R/L<u<2R/L

If we then denote by E, the contribution of this error term to the integral over éj, then

Byl < @l B El sup  [S(u;x;, 0.
R/L<u<2R/L
Now we consider the contribution of the main term (3.14) to the integral (3.12),

which is the expression

1 k
S(2R/L; x;, t)% / 1 PEpeE;(x; + k(LR/)k—lt))e(z (IZ) (LR/)k—‘fgft) dg;. (3.15)

=2
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In order to apply Fourier inversion we must remove the higher order terms in §;, which
we can do by applying integration by parts as in (2.11). This shows that the integral over

& in the previous line is equal to

k
k 1 1
e(z (ﬂ)(LR/)ket)Z /_1 ¢(§])e(§J(X] + k(LR/)kflt))dgj + Eg,
=2
in which
A k k
|E5| << ”¢”L1[,1,1] |t| ( Z (Z)E(LR/)]C—Z) <<¢,k Rk_z |t|

(=2

Thus, the total contribution of Ej to (3.15) is Eg, say, where
|Eg| <41 B¥2|t] - ISQR/L; x;, 1))

Finally, we apply Fourier inversion to the main term. This shows that (3.15) is equal to
£ (k
S(2R/L; x;, t)e( > (z) (LR’)k—‘t)gb(xj + k(LR)*1t) + E.

=2

We assemble this computation with our upper bound for |E,|, and we conclude that the

integral (3.12) can be expressed as

k
S(2R/L; x;, t)e( > (72) (LR/)“t)¢(xj + k(LR " 't) + E, + E.
=2

This gives (3.13) and verifies the upper bound

Byl < |Eyl + |Egl <4 BEMEl  sup  |S(uix;, D).
R/L<u<2R/L

This proves our claim.

3.4.2 Expression for the full integral over &’
We now multiply together the expression (3.13) we have derived for the absolute value

of each integral over SJ- for 2 < j < n. We see that in absolute value, the integral over &’
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in Tt(Pk)f(X) is equal to

[1¢x; + k@R 0)| - 1SQR/L; X, )] + E,,
j=2

in which the error term includes all the cross terms accrued when we multiply (3.13) for

j=2,...,n. Precisely, we can write

n—2 Vi n—1—¢
Byl <y i Z( sup |S(2R/L:xj,t)|) (R’Hm sup  sup \S(u:xj,o() . (3.16)
" 20 \2<j=n 2<j<n R/L<u<2R/L

Finally, in order to complete the proof of Proposition 3.1, recall the constraint
on t given in (3.7) and recall that by choosing c¢; and c, sufficiently small relative to §,, k,
we have (3.8) so that |¢ (x; + k(LR 1t)| > 1— Co/2 = 1 — ¢, for each j. To finish the proof
of Proposition 3.1, we simply recall that the integral over A is at least 1 — ¢, in absolute
value (and at most <, 1 in absolute value). We apply the first fact when we multiply it
by the main term for £’ and the second fact when we multiply it by the error term for &'.
This enlarges E; by a constant dependent on ¢, which we simply include in the implicit
constant. This completes the proof of Proposition 3.1.

In order to be more precise about our upper bound for E;, we will have to be
more specific about the properties of x and ¢. We turn to this in the next section, in
which we construct the set @* to which x belongs. Ultimately, we will show in (5.10)
that for x € Q* there is a choice of ¢ for which [E;| <4, (¢ + 0280)(5‘;1/2)"*1, where
€y,Cy. 8y can be chosen as small as we like, as in (3.7).

We conclude this section by computing the L? norm, and hence the H® norm,

of f.

3.5 Computation of the L2 norm

In order to prove Theorem 1.1, we must compute the H* norm of f, or in the form of
its precursor Theorem 1.2, we must compute the L? norm of f. The norms IF 1| s mmy and
Il 2gn) are comparable Whenf' is supported in an annulus of radius R > 1, in which

case

RS||f||L2(]Rn) <5 ||f||HS(]Rn) <5 RS”f”LZ(Rn)- (3.17)
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Indeed, recall that the Sobolev space H¥(R") consists of functions f such that G_, % f €
L2(R"), where G_, is the Bessel kernel defined by its Fourier transform é_s(é) = (1+
|€|2)5/2. By Plancherel’s theorem,

1 A A

In particular, iff is supported in an annulus {(1/C)R < |¢| < CR} for a constant C > 1,
then (3.17) holds forall R > 1.
To compute the L? norm of f, Plancherel’s theorem shows that it suffices to

compute the L2 norm of f. By the definition of f in (3.1),

FE &= D guE,E)

m/ ez !
R/L<m;<2R/L
with g,,, (¢,,&") = S;'¢(S7 ' (6, — R)®,,_, (¢’ — Lm'). Since ¢(&)) is supported in [-1,1], it
follows that g,,, is supported in B+ (R, Lm’) where B is the box [-S;, S;] x [-1, 11"1. we
see that for all sufficiently large L (L > 4 suffices), the supports of g,,, for distinct m/

are disjoint. Hence,

112 2
“f”LZ(R") = Z ”gm’ ”LZ(R”)'

m'ezZn!
R/L<mj<2R/L

By Plancherel’s theorem again,
”gm’”LZ (Rn) — S ||¢|| R”) - Sl (277)n||¢||L2 (R")*

In conclusion,

Sy R/LIT 91 gy < Iflz@n) < 572 TR/LTZ 1017, - (3.18)

In particular, to satisfy the requirements of Theorem 1.2, for each value R, we can
formally define our counterexample function to bef = f/Ifll;2, so that it has L? norm 1.
But for simplicity we proceed for now with f, and only apply this normalization in our

final arguments in §6.

Remark 3.2. For all n > 1, our results adapt easily to show that s > 1/4 is necessary
for (1.4) to hold. Set f(x) = ¢(S;x;)e(Rx;)P,_;(x)e(R - x'), with the understanding
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that if n = 1, only the first two factors arise. The method used to prove Proposition

3.1 shows that |Tt(Pk)f(X)| > 1 for a neighborhood of x with measure > 1. Thus,
P /2 . .

| SUPg-s<; |Tt( k)f|||L1(Bn(O,l))/”f”LZ(R") > 51/ , with S; = R° where ¢ < 1/2. Choosing

o = 1/2 leads to the necessary condition s > 1/4.

4 The Sets 2 and Q*

We have reduced the study of Tt(Pk) f(x) for our function f to the study of the exponential
sum S(2R/L; x’, t) defined in (3.2). It is now convenient to define new variable names:

k

L
si=LF7, y, = TR (mod 27), y; = Lx; (mod 27). (4.1)

In this notation, we can now write each one-variable sum defined in (3.11) as

S(uix;,t) = Z e(Lm;x; +Lka’-‘t) = Z e(m;y; + mJ’-‘(y1 +5)). (4.2)

R/Lgmj<u R/Lgmj<u

We will define a set @ in which the variable y lies, and correspondingly a set Q*

in which the variable x lies, such that for each x € Q*, there is a choice of ¢ such that
R -]
ISQ2R/L; X, t)| > {—J q /2 (4.3)
Lq
for some prime g in a certain dyadic range [Q/2, Q], where
Q = R¥, O0<k <1

is a parameter that we will later choose optimally to be a small power of R.
Our goals for @ (and correspondingly ©*) have two conflicting priorities. In

Theorem 1.2 we aim to show that

I sup 1Tz, 0.1)
0<t<l1
is large. Thus, we aim to show that for all x € Q* we can choose t to make |Tt(Pk)f(X)|
large, and moreover we aim to show that Q* has measure as large as possible, that is,
|Q*| > 1. We will not quite achieve this, but we will show that |Q*| > (logQ)~!.
On the other hand, we aim for Q* to have the property that for every x € Q*, there

exists a choice of ¢t such that the previous constraints (3.7) and (3.9) hold for ¢t and such
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that all the error terms we have accumulated so far in E; (and further error terms we
will accumulate in the approximation (4.3)) are sufficiently small. This points to making
Q* as small as possible, which clearly conflicts with the 1st goal. We will work with
abstract parameters and will choose these parameters at the end of the argument in

order to optimize the balance between these two goals.

4.1 Heuristics for a model of the set Q

Our model for the set Q is as a union of the form:

U U U tn-2ra/q < U@, ly; - 27a;/ql < V(@),2 <j < n).

Q/2=9q=Q 1=<aj<q @2,.-.An
gprime

We do not yet specify the widths U(q) and V(qg) of the intervals, but so that they
do not overlap, we may naturally think of them as functions g% <« U(q) K q7¢%,
q? « V(q) « qP for some «, 8 > 1. The restriction % on the unions indicates for each
g we will only choose a certain subset a,, a,, ..., a, of the values 1 < a; < q.

We wish to restrict the unions to a collection of a;, a,, ..., a, chosen so that the

complete exponential sum

T(ay,a;;q) = Z e(2n(a1nk +a;n)/q) (4.4)

1<n<q

is on the order of size g'/?

for each 2 < j < n. In fact, we know that > g" choices
for a,,a,,...,a, lead to this property, by Corollary 2.5. Precisely, set «; = 1/2 and

o, = k=2/4, as in that corollary. Assume that
Q> 2-(ay/4)7 " =32k,

so that all g € [Q/2, Q] satisfy q > k as well as q > («,/4) . (When we ultimately choose
Q to be a small power of R, this will hold for all R > R3(n, k).)

By the prime number theorem, for each X > 2 there are X/log X + 0(X/(log X)?)
primes g < X. Thus, there exists a universal constant Q, such that for all Q > Q there
are at least (1/4)Q/log Q primes g € [Q/2, Ql. (Again, when we choose Q to be a small
power of R, this will hold for all R > R,(n, k).)
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Now for each prime g € [Q/2, Q] define the good set G*(q) to denote the set of

a,ay,...,a, modulo g for which

o 1"V < |T(ay, a5 )l - | T(@y, ay; @ < (k= 1) g™ D2,
Then by Corollary 2.5, |G*(@)| > (2y/2)"(1 —27™)g".

It remains to decide how large the neighborhoods of the rationals should be, in
our definition of Q. On the one hand, U(qg) and V(q) must be sufficiently large that the
set Q has positive measure in [0, 1]*, independent of R (or losing at most a logarithmic
factor of R).

We could be motivated to choose V(q) according to simultaneous Dirichlet
approximation in n — 1 variables, so that the neighborhoods in the last n —1 dimensions
fill a positive measure set in [0,27]*"!. Simultaneous Dirichlet approximation shows

that for every Q > 1, every point (y,,...,¥,) in [0,27]""! can be approximated by

(2may/q,...,2ra,/q) with accuracy
2 .
ly; — 2ma;/ql < 2@/ 2<j=<n (4.5)
This would suggest taking
V(g » g M=), (4.6)

In fact, the complementary condition V(q) <« ¢ 1+t1/M=1) will arise naturally in
Proposition 4.2 below, which shows how to compute the measure of a union of
boxes from the measures of the individual boxes, if the boxes are appropriately well
distributed.

On the other hand, U(q) must be sufficiently small that given y; in an interval of
length 2U(q) centered at 2ra, /q, if we set s = y; — 2wa,/q, where s = L*r, then t meets
the constraints (3.7) and (3.9). Thus, we are motivated to choose (roughly) U(q) ~ L¥t ~
L¥/(S;R¥ ).

Similarly, V(q) must be sufficiently small that given y; in an interval of length
2V(q) centered at 2wa;/q, the error accrued when we replace y; by 2ra;/q in the
exponential sum S(2R/L;X]-,t) is sufficiently small. This error term is the term E
appearing in Proposition 2.7, applied with N = R/L. By the remark following that
proposition, we are then motivated to choose V(q) « (R/L)~!, up to a small constant

factor of our choice. To make this compatible with the previous restriction (4.6) on V,
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we see that the relation

must be satisfied.

4.2 Measure considerations for a union of well-distributed sets

Our next goal is to show that the measure of © (and correspondingly of *) is sufficiently
large. In our degree k setting, our argument diverges from the previous works [4] and

[39] in the quadratic setting. This is because we construct Q2 as a union

U U T

4 (ai1,az,...an)€G*(q)

of certain boxes I ,, in which the sets G*(q) have sufficiently large cardinality but are
otherwise inexplicit. Thus, the explicit method developed in [39] to compute the measure
of © does not apply.

Instead we take an abstract approach. We prove that if a set I is constructed as a
union of sets I, and if these sets I; are sufficiently well distributed, then the measure of
I'is comparable to the sum of the measures of the I;. After we prove this abstract lemma,
we use an arithmetic argument (and the primality of q) to prove that in our setting, the
boxes Iig corresponding to tuples in G*(q) are sufficiently well distributed. Thus, we
can compute a lower bound for the measure of @ by computing the measures of the

individual boxes.

Lemma 4.1. Suppose we have a finite index set J and a collection of measurable sets
{I;}jey In R™.

(i) Suppose the sets {I;};.; have bounded overlap, in the sense that there exists a
universal constant C, such that every point lying in the union (J;.;; lies in at most C,
of the sets I;. Then

Uz

jeJ

> Co' DIl

jeJ

(ii) Suppose the sets {I;};.; have comparable sizes, in the sense that for all j € J,

By = || = By, and that the sets are regularly distributed, in the sense that

#j.j €T LNI, #0) < Cy1J). (4.8)
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Then

We will apply case (ii), but without any additional work we include (i) as a
simpler model case. Note that the trivial upper bound in (4.8) is |J|?; (4.8) can be thought

of as an assumption of bounded overlap on average.

Proof. Define a function f acting on R™ by

f@ = 1®.

jeJ
By the Cauchy-Schwarz inequality,
IF 12 e
U1L| = Isupp (N1 = —2.
jEJ ”f”LZ(Rm)

On the one hand,

Fllp = DIl

jeJ

On the other hand,

IF12, =/Rm > 1,001, (0dx.

JjJj'ed

We now apply either of the hypotheses. If (i) holds, then

17 < DIl #G LN # 8} < Co D 1L < Collf -

jeJ jeJ

Thus,

If112 _
UL = —2— = Iflln-

- C
jes o||f||L1
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Alternatively, suppose that condition (ii) is met. Then

IfIZ < By#(j,j € J: NI, # 0}

IL|
<B\C,lJ|<BC, Y B—’O = C,(B,/By)lflp1-

J

Thus,

_ WAig Bo o)
el = 1.
CiB1/B)lflyr ~ BiCy o F -

Uz
jeJ

4.3 Construction of well-distributed boxes centered at rationals

Consider a set P of primes with P C [Q/2, Q. To each such prime g € P, we associate a
set G*(q) of tuples (a,, ay,...,a,), with G*(q) C [1, q]". We assume that all the sets G*(q)
are of comparable size, in the sense that there are uniform constants D;,D, such that

forall q,q' € P,

_lg@ _

. (4.9)
L= 1G%(q) ~ 7 *

This will be true in our application by Corollary 2.5 and the fact that P lies in a dyadic
range.

To each choice of g € P and tuple a € G*(q) we associate a box centered at
(2ra,/q,...,2wa,/q), denoted by I, ,. Let us suppose that the box has side length k,(q)

in the first coordinate and h,(g) in the coordinates j = 2,...,n. Assume that
Dyq ™ <hy(@ <D4q %  Dsq’ <hy(@ <Dgq*, (4.10)

for constants 0 < D3 < D, < 1 and 0 < Dy < Dg < 1 of our choice, and for some

1 <«, B < 2.In particular, h;(x) is a decreasing function of x.

Proposition 4.2. In the setting described above, if |G*(q)| > q" for all g € P C [Q/2,Q],
and h,(x) « x~ 171D then

U U L

qeP acG*(q)

> 2 2 gl

qeP acG*(q)

in which the implicit constant may depend on n,«, 8,D,, D, but is independent of Q.
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If we further assume that |P| > Q/log Q, then the lower bound is of the form

U U L

qeP acG*(q)

> Q" h (Q)hy,(Q)" TlogQ) 7t

in which the implicit constant may depend on n, «, 8, D,, D, but is independent of Q.

Note that since we assume h,(x) < x~!71/®=D in order for the right-hand side
to possibly be > (logQ)~!, we would need to take h;(x) > x . Combined with the
hypothesis that h, (x) < x~!, this determines that h;(x) ~ x~!. Similarly, comparison of
the hypothesis with (4.6) determines in our application that h,(x) ~ x~1~1/(=D,

Proof. We check that this setting obeys hypothesis (ii) of the previous lemma. The

measure of each box Ijg is
hl(Q)hz(Q)n_1 < gal = h1(0/2)h2(0/2)n_1-

In the notation of the previous lemma, under the assumption on the functions k;, h,,

By h(@hy@"!
B, ~ hy(Q/2hy@/2" 1

independent of Q.

We also need to verify (4.8), for which it suffices to show that
#H(@a),(q.a): 1Ny y # 0} <P 1;16171)1 IG* (). (4.11)

The contribution where (g,a) = (q',a’) as tuples is at most |P| - max, |G*(q)| < |P] -
min, |G*(g)|, under the assumption (4.9) that all the sets G*(q) are of comparable size.
Thus, we consider the case where these tuples are not identical. Supposing I, , NI o # ¥

then it must be the case that simultaneously

lay/q —a}/q| < (1/2)h (@) + (1/2)h,(q)
la;j/q —a/q'| < (1/2)hy(@) + (1/2)hy(q),  2<j<n.
If g = q’ then the upper bound (4.10) assumed on h,(q) shows that |a, — a}| <

D, <1, and |a; — a]’.| < Dg < 1 for 2 < j < n, so that we would obtain (g,a) = (¢, a’),

contrary to our assumption.
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Thus, it only remains to consider the case with g # q' € P c [Q/2,Q]. Then we

learn from the above relations that simultaneously

la,q' — ajql < Q*h,(Q/2)

la;,q — ajql < Q®h,(Q/2), 2<j<n.

Note that under the assumptions on h,, h,, in each case Q?h;(Q/2) > 1.

If primes g and ¢ with gcd(q,q') = 1 are fixed, then we claim that the
representation of any integer by a;q' — a;q with 1 < a; < q,1 < a; < ¢ is unique.
b,q — biq = a;q' — a}q, so that (b; — a;)q’ = (b; — a})q. Then the fact that gcd(q,q') = 1
shows that g|(b; — a;) and q'|(b; — a}), which suffices to show that b; = a; and b; = a;.

Indeed, suppose that there is also a representation by 1 < b; < q,1 < b, < q'. Then

Thus, once an integer m with |m| < Ozhl(O/Z) is fixed, there is (at most) one
choice of a pair a,,a] with a,q' — a}q = m. Similarly, for each j = 2,...,n, once an
integer m with |m| < thz(O/Z) is fixed, there is (at most) one choice of aj,a} with
a;q — aJ/.q = m. Thus, once q # q’ € P are fixed, we obtain at most Q?"h,(Q/2)h,(Q/2)"!
choices of boxes Iq,g,lq,lg, that can intersect.

In total, we have so far shown that

#(q,2),(q,a) : I, NI, 4 # 0} < [PI*Q*"hy(Q/2)hy(Q/2)" ' +|P| -min 1G*(@)!.
In order for this to be sufficiently small to verify (4.11), we require that

IP1Q*"h, (Q/2)h,(Q/2)" " « rqnel71; 1G*(@)!. (4.12)

We certainly have |P| < Q/logQ and h;(Q) < Q. If we assume, as in the hypothesis
of the proposition, that min,.p [G*(q)| > Q" and h,(Q) < Q- 1-V®-1 then (4.12) is
satisfied. This concludes the proof that the hypothesis (4.8) of the lemma is satisfied in
our setting.

We now can apply the lemma, and hence

U U

qeP acG*(q)

> D> Ll

qeP acG*(q)
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Finally, note that each box has measure |I, ,| = hi(@hy (@1 > hi(Q)h,(Q" 1. If we
additionally assume that |P| 3> Q/log Q, then the lower bound is of the form

> Q" hy (Q)hy,(@)" 1/ 1og Q.

4.4 Formal definition of

We now formally construct the set @, and Proposition 4.2 will allow us to conclude

immediately that it has the desired measure.

Proposition 4.3. Let Q > max{32k?, Q,}. Define for each prime g € [Q/2, Q] the good

set G*(q) to denote the set of a,,a,,...,a, modulo g for which

n
1/2" g V2 < T]IT(ay, a5 @l < (k- 1" g™ V72, (4.13)
j=2

Let O < ¢4, c5 < 1/16 be sufficiently small constants of our choice. Define

-1
Q= U U {lyy —2ma;/ql <cuq
0/2=q=Q  (ay,ay,...,an)€G*(q)
q prime

lv; - 27a;/ql <csq VTV, 2 <j<n). (414)
Then

1€2] >>n,k,C4,05 (log 0)71- (4.15)

1 and

Proof. Apply Proposition 4.2 to the boxes I, , with side lengths h,(q) = 2¢c,q~
hy(q) = 2¢c5q 11/~ Note that " <, 1G*(¢)] < g" for all g € [Q/2,Q] by Corollary

2.5. Hence, we conclude that

Q0 >0, 0k Q"TQTHQTTTVT)  log Q)T > k0 0 T08 Q)T
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4.5 Formal definition of Q*

We have constructed a set Q of (y;,¥,,...,¥,) € [0,27]". Now we use the change of
variables (4.1) to define the corresponding set Q* of (x;,x,,...,x,). For completeness,
we briefly note this correspondence, following the analogous argument given in [39].
Consider the reduction modulo 27 map ¢ : R — [0,2x] defined by t(z) = z
(mod 27) and the rescaling map r : R — R defined by r(z) = Mz for some M sufficiently
large so that Mc, > 2z, where c, is the constant fixed just above (3.7). From (4.1) we have
y; =tor(—x;) with M = kRL%; for eachj = 2,...,n we have yj = tor(x) with M = L. If
we assume that L = R* with A > (k — 1)/k (as we will later verify), then there exists an
absolute constant Rs(k, c;) such that for all R > Ry each of these rescaling factors M is
sufficiently large relative to c;. Finally, let 7 be the projection map to the jth coordinate.

Define Q* C [—¢;, —¢;/2] x [—¢;, ¢;1"! to be the set such that

Q) =—(on ln(Q), M=-——

Q) = (Lo N (), M=1, 2<j<n.

To see that Q* has the desired measure, we may work coordinate by coordinate,
since each of Q and ©* is a union of boxes. Let S, be a set in [0, 27]. For S; € [-Mc,;, Mc,]
with «(S;) = Sy, we see that S; contains at least 2|Mc, /27| shifted copies of S; and so
IS;| = 2|Mc,/2m ||Syl. Further, for S, < [—c;,c;] with r(S,) = S;, |S;] = |S;|/M and so
ISy| > ¢;1Spl|. Analogously, for S; € [-Mc;, —Mc, /2] with ((S;) = Sy and S, € [—c¢;, —¢; /2]
with r(S,) = S;, we have |S;| > |Mc, /47 ]ISyl and so |Sy| = [S;|/M > ¢;|S,l. It follows
that for Sy = 7, (), we achieve |7, (Q2*)| > c,|7;()| and for Sy = () withj = 2,...,n,
1.

In combination with (4.15), we may conclude that

we have |7rj(§2*)| > 0 |mi(Q)]. Then |Q*| >

n,ci

1] >k crcares 108 Q)71 (4.16)

5 Analysis of the Arithmetic Contribution

Given any Q > max{32k?, Q,y}, we have now constructed a set @* C [-c;, ;1" C B,(0,1)

with measure |Q*| > (log@)~! and such that for every x € Q* there exists a

n,k,Cl,C4,C5
corresponding y € @, with Q defined in (4.14). Now we restrict our choice of Q relative

to R,L,S,, so that the other desired properties of 2* hold.
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Proposition 5.1.  Suppose that Q > max{32k?, Q,}, and that

1 Lk 1 R\! R )
+A
0= SRFT FIEEVICESTIAN (f) ' >a 0 (5.1)

for some constant 0 < Ay < 1/(n — 1). There exists 0 < c,(c,, k,8;) < 1/16 such that if
for any ¢, < c4(cy, k,8;) and c5 < 1/16 we define Q* as above, the following holds.

For each x € Q*, there exists a choice of ¢t € (0, 1) satisfying (3.7) and (3.9) such

that
ISQR/L; X, t)| = M, (X, t) + E,, (5.2)
in which
M, (x', )] = 272D (Lail/z)n_l , (5.3)
|Ey| <o g (C5 + O_A°/2)(L§1/z)nl' (5.4)

Here the implied constant can depend on n, k but is independent of x/, t.

At this point we can also complete the upper bound for the error term E; from
(3.16).

Lemma 5.2. Assume the conditions of Proposition 5.1, and for each x € Q*, choose t

as in Proposition 5.1. Then

R n—1
[Eq| gk (€1 + C250) (m) .

We remark on the motivations for the conditions in (5.1). The first condition
ensures that for each x € Q* there exists a choice of ¢ such that the one-dimensional
exponential sum S(u;x;,¢) has a rational leading coefficient; this allows the use
of Proposition 2.7. Equivalently, this is the property that we can choose s so that
Y, + S = 2ma,/q for some a,,q in the definition of Q. In the construction of @ we
specify |s| < C4q_1 < 2640_1,‘ moreover, recall from (3.7) and (4.1) that we must have
Is| = L¥7| < CZSOLk/(kSIRk*I). The first condition of (5.1) imposes that these two
restrictions are compatible, and then we simply ensure that we choose c, sufficiently
small that 2¢, < ¢,8y/k.
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The second and third conditions in (5.1) are imposed so that the upper bound
for the term E, in (5.2) is small enough relative to the main term. We can see from these
conditions that Q grows with R since as we assumed from the beginning, L = o(R).
The second condition can be regarded as imposing that V(q) is small enough; this is
consistent with our previous condition (4.7). The third condition will provide the term
Q~20/2 in the upper bound (5.4), which can be made satisfactorily small. In particular,

there exists some Rg = Rg(A, ¢5) such that for all R > Ry, Q20/2 < ¢.

Remark 5.3. The first condition in (5.1) is the condition that ultimately forces the
dependence on k in the threshold for s proved in Theorems 1.1 and 1.2. This will be

visible when we optimize the choice of parameters in §6.1.

5.1 Contribution of |S(2R/L; x’, t)| and bound for E;

We now prove Proposition 5.1. Fix Q > max{32k2,00}. Fix x € Q*. By definition, this
point x corresponds to a point y € €2, and for this y € Q there exists a prime g € [Q/2, Q]
and a tuple 1 < ay,4a,,...,a, < qin G*(g) such that q { a,, ly; — 27a,/q| < ¢,q~* and
ly; — 2maj/ql < csq 171/ ™"D for each 2 < j < n, and such that (4.13) holds. We then
define s by y; +s = 2rna;/q, and this defines t accordingly. Note that ¢ satisfies (3.7) and

(3.9) as long as ¢, is sufficiently small relative to c,, §,.

5.1.1 The one dimensional sums

For each coordinate 2 < j < n we apply Proposition 2.7 to show that for each u < 2R/L,
S(u;x;,t) = [(u—R/L)/qlT(a,,a;; Q) + E, j, (5.5)
where T(a,, a;; q) is defined in (4.4) and
R -1-1/(n-1) R 1/2 1/2
|E, | g Z(qu ) Lgi2 +q/“logq)+q'“loggq.

From this we will deduce two results: first,

SeR/Lix.t) = | B |iT : o) a-202) B (5.6)
IS2R/L; xj, 1)| = 7 IT(ay, a;; q)| + O\ (c5 + )Lal/z : :

Second, for all R/L < u < 2R/L,

R
|S(uFXjrt)| <Lk m (5.7)
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To prove both of these, it is useful to simplify the upper bound for E, ;. By the
second condition in (5.1), R/L - csq 1"V~ D « ¢ for all ¢ € [Q/2,Q]. By the third

condition in (5.1),

R R
1/2 1/2 —Ag —Ao/2
q/“loggq <« 1150 g /“logg <« 10172 Q logQ « 1012 Q , (5.8)
say. Thus,
R
—Ag/2
Bl <k (5 + Q77 o7 (5.9)

To prove (5.6) we simply apply (5.5) with u = 2R/L, and use our bound for E, ;.
To prove (5.7) we apply the Weil bound to T(a;,a;; @) in the main term, using q { a,. We
conclude that for all u < 2R/L,

IS; x5, 0| < (R/LQG"? + |Ey,

which suffices for (5.7).

5.1.2 Assembling the one-dimensional sums

We multiply together the expression (5.6) over 2 < j < n, to obtain that

n-1n

R
IS2R/L; X, t)| = L‘—qJ EIT(al,Gj; Q|+ E,.

The first term satisfies the lower bound

n—1 n—1
- LR ez, L (R
— on-1 Lq — 22(n-1) \ 1,Ql/2 :

Here first we applied (4.13), then used the fact that L%J > % . L%, which holds as long as
R

ig = 2. This we can assure for all g € [Q/2, Q] by our final choices for R, L, Q, as long as

R > R,(n, k). This suffices for (5.3). The error term is of the form

n—2

R 4 R n—1-¢
AR (— sup |T(a;,a; q)|) ((C5+O—A°/2)—) :

=0 q 2<j<n Lol/z
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For all values of a;, a,, ..., a, that were chosen in G*(gq) in the construction of €,

sup |T(ay,a;;q) < (k—1)g"/?
2<j<n

by the Weil bound. For all R > R4(A, ¢5) we have cg + Q~20/2 < 2¢; < 1, so that the
dominant term occurs when ¢ = n — 2. Then this satisfies the upper bound in (5.4).
5.2 Bound for E,

At this point we can also complete our upper bound for the term E;. Fix x € Q*. We can
define the same s (and hence t) as in the proof of Proposition 5.1, satisfying (3.7) and
(3.9). Now apply the upper bound for [S(u; x;, )| derived in (5.7) to the expression for E,
from (3.16). This shows that

n—1n-2

R _ _1-
B | <k (m) > @
=0

By the conditions (3.7) and (3.9) on t, R¥"1|t| < ¢; + ¢,8, < 1 so that the dominant term

occurs when £ = n — 2. Then we achieve the bound

n—1

R \"! R

k-1

|E1| <<¢,k,1’l R |t| (m) <<¢,k'n (Cl + 0280) (m) . (510)
Here ¢y, c,, 8, are constants we can choose as small as we like, as in (3.7).

6 Optimization of Parameters and Concluding Arguments

The results from Proposition 3.1, Proposition 5.1, and Lemma 5.2 show that for every
x € Q*, there exists t € (0,1) such that

R
Lalﬂ

T f (o) z(l—co)”z—z“‘—“( )n 1—(|El|+|E2|>. 6.1)
Here the error terms E,,E, satisfy the upper bounds given in Lemma 5.2 and
Proposition 5.1. This is under the conditions (3.7) and (3.9) for ¢, condition (3.10)
for S, = R“, and the conditions in (5.1) on R,L,S;,Q. Recall that we may freely
choose the small constants ¢, and §, = §y(cy), as well as c;,cy C3,04,C5 as
small as we like, subject to the dependencies we have recorded in the notations

c1(k,8y), cy(k, d,cy,80), C3(k, @, o), Ca(Cy k,8y). The implicit constants in the upper
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bounds for E;,E, depend only on n,k,¢. We also recall that there exists Rg(A, Cs5)
such that for all R > Rg, Q720/2 < ¢.

First we fix c,. Upon choosing c;, ¢y, c5, §; small enough relative to ¢, and the
implicit constants in Lemma 5.2 and Proposition 5.1 (which are dependent only on
n,k,¢), choosing c;, ¢, suitably small, and then taking R > Rg(n, k, ¢, Ay) sufficiently
large, we can conclude that |E,| + |E,| is, say, no more than 1/2 the size of the main term
in (6.1). We now let R*(n, k, ¢, Ay, 0,Cy) denote the maximum of R,,...,Rg. Then for all
R > R*, for all x € QF,

o 1 R \"!
sup |T, * x)| > =(1 —¢y)"272D ,
sup [T 2 51 - ) o1
under the conditions we have assumed so far on R,L,S;, Q. Combining this with the
lower bound (4.16) for the measure of @* and the computation for ||f];2 in (3.18), we can

conclude that

Po)
Il suPose1 1T “flllz1B,00,1))

IF 12

R n—1 1/2 o ) B
k¢ (LQI/Z) 51/ (R/L)~ =1/ (log @)1,

6.1 Choices for the parameters
Now to prove Theorem 1.2 it suffices to show that for each

1 n-—1

S i X k—Dn+1)’

we can choose L, Q, S; in terms of R such that all previous constraints are met, and

R n—1 12 o B ,
(LQ—I/Z) S;*(R/L)"™V/2(log @)~ = A,R® (6.2)
for some s’ > s and some A, = A (n, k, ).

Let 0 < 0,XA,k < 1 denote parameters such that Q = R¥,L = RA,S1 = R°. Then
(6.2) will hold for all sufficiently large R if

n-1, 0 (+Nm-1)

5 2 2 (6.3)

s <

We also require o < 1/2 as in (3.10). The first and second constraints from (5.1) are met
if

o+ (k—1)<ki+x, A+K(n"1)z1. (6.4)
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(The left-hand relation here is the only effect of k on the choice of parameters.) Finally,
we will have to check that certain less restrictive restraints are met, namely that
(k—1)/k < > and that forsome 0 < Ay <1/(n —1), k(1 +Ay) <1 —A.

By taking a linear combination of the inequalities in (6.4) (namely 1/(k— 1) times

the first one plus (n — 1) times the second one) we deduce that

Atk > n+o/(k—1)

= m (6.5)

The relation (6.3) yields the largest upper bound for s when A + « is the smallest; thus
we will choose A, k so that equality holds here. Assuming this for the moment, we learn
that

nm—1+o(k—2n+2)
2((k—Dn+1)

The upper bound is largest when o is largest among allowable values, so we take
o = 1/2. We solve for values of A,« satisfying (6.4) that attain equality in (6.5); this
yields
n n-—1
=1--— k=
2((k—DHn+1) 2((k-1n+1)
(This means we choose Q such that Q~1-/®™=1 ~ (R/L)~!, or in other words, we can
take Ay = 1/(n — 1). Finally, we see that this choice of A satisfies » > (k — 1)/k for all
n > 1,k > 2.) This leads to the final constraint that
kn

<—

4((k—Dn+1)
This completes the proof of Theorem 1.2, and hence of Theorem 1.1.
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