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Although engineers can control the internal geometry of materials down to the micro-scale, it is unclear
what configuration is ideal for a given transport process. We explore the use of mazes as abstract repre-
sentations of two-phase systems. Mazes can be easily generated using many different algorithms and
then represented as graphs for analysis. The three, dimensionless graph parameters of effective tortuous
resistance, average tortuosity, and minimum-cut-size were derived and then correlated to the maze’s
effective transport property (e.g., permeability), average residence time, and robustness, respectively. It
was shown that by tuning the settings of the maze algorithm, one can obtain desired maze performance.
Finally, a composite maze was constructed and shown to mimic the geometry and permeability of a real
commercial membrane. In principle, a surrogate maze geometry can be optimized/tuned for a given
transport process and then used to guide the rational design of the engineered system it represents.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Labyrinths and mazes have fascinated human beings for gener-
ations — from the Minotaur’s labyrinth to the tombs of ancient
Egypt. Today, mazes are viewed primarily as puzzles found in nov-
elty books, Victorian gardens, spent corn fields, and the heart of
most adventure video games. We are interested in whether mazes
could have any useful application for transport processes. Modern
mazes are usually not crafted by hand but are generated by a type
of goal-seeking algorithm (Buck, 2015). A square maze with 25
cells generated by one such algorithm is shown in Fig. 1.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ces.2021.117416&domain=pdf
https://doi.org/10.1016/j.ces.2021.117416
mailto:plawsky@rpi.edu
https://doi.org/10.1016/j.ces.2021.117416
http://www.sciencedirect.com/science/journal/00092509
http://www.elsevier.com/locate/ces


Fig. 1. (single column; online color only): A 5 � 5 maze, generated with the
Sidewinder algorithm, with its graph overlayed on top of it.
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The cellular nature of mazes ensures that they are readily rep-
resented and analyzed by the tools of graph theory, which is a ver-
satile theory that can be used to model pair-wise relationships in
complex systems (Biggs et al., 1986; Chartrand and Zhang, 2012).
We convert a maze into its graphical representation following
Fig. 1. The graph nodes represent the center of maze cells, and
the graph edges represent the channel segments of the maze. More-
over, each edge contains an edge weight that is used to store infor-
mation about the edge, such as the geometric distance between the
two nodes that it connects. An edge weight can also be used to
store additional information if required (e.g., channel segment
width).

Fundamentally, we operate under the assumption that many
transport processes in natural or engineered systems can be
viewed as negotiating some type of maze. However, we restrict
our scope here to systems that contain two phases, and we call
these systems transport media. Examples of transport media
include fluid flow within a porous medium, the flow of heat in a
composite material, the flow and distribution of electrical signals
within an integrated circuit, and the flow of optical signals through
a photonic crystal. There has been extensive work using periodic
media, stochastically generated media, and fractal media to
abstractly represent transport media and to develop the insights
and the mathematics needed to describe how the geometry of a
material affects its transport properties (Matyka et al., 2008;
Koponen et al., 1997; Andrade et al., 1997; Wang et al., 2007;
Hyman et al., 2012; Martys and Garboczi, 1992; Siena et al.,
2014; Zhou et al., 2016; Araújo et al., 2006; Tartakovsky, 2010;
Ye et al., 2017; Adler, 1992; Sahimi, 2003; Sahimi, 2003). However,
in each class of the artificially-generated media, the produced
geometries are either too deterministic or too random or not read-
ily fabricated. Moreover, the algorithms used almost always focus
on generating the solid phase instead of generating the ‘‘active”
phase (i.e., channels) that will host the flow of fluid, heat, charge,
etc. On the other hand, mazes have their channels directly gener-
ated and in a pseudo-randommanner — there is a balance between
randomness and control over how the flow paths will be connected
to each other. Thus, mazes are the ideal, abstract representations of
reality needed to better understand how geometry affects trans-
port and to build new useful geometries for transport operations.

To the best of the authors’ knowledge, mazes have not been
used as an abstraction to study the effects of geometry on
2

transport; however, mazes have been used as an abstraction to
find the shortest solution within multi-solution systems. These
multi-solution systems can include transport media (Kesavan
and Chandrashekar, 1972; Marle, 1981; Bermond et al., 1986),
traffic networks (Kalamaras et al., 2000), logistics operations
(Bramel and Simchi-Levi, 1998), and many other systems that
now also come under the umbrella of network theory (Barnes
and Harary, 1983). A solution to a maze is defined as a unique
sequence of channel segments that connects a specified inlet cell
to a specified outlet cell. A path is a sequence of edges that con-
nects any two nodes in a graph. A multi-solution maze is a maze
with more than one possible solution. The maze in Fig. 1 is a
single-solution maze; however, if one wall of any cell is removed,
then it becomes a multi-solution maze. Once a multi-solution sys-
tem is converted into a graph, the shortest path between two
specified nodes can be found using the Breadth-First Search
(BFS) algorithm if the graph’s edges all have equal weight. In gen-
eral, a system’s graph will have edge weights that aren’t equal; in
this case, Dijkstra’s algorithm can be used (Cormen and (Ed.),
2009). In the literature, mazes are used as an abstraction for
multi-solution systems and the focus has been to develop novel
methods that can find the shortest path of a multi-solution maze
more efficiently than the BFS or Dijkstra’s algorithm. These novel
maze-solving methods have employed the use of fluid flow
(Fuerstman et al., 2003; Lovass et al., 2015; Lagzi et al., 2010),
slime molds (Adamatzky, 2012), and memristors (Sarmiento-
Reyes and Rodriguez-Velasquez, 2018). Although finding the
shortest path is important, for a generic transport process or
operation, the three transport properties of throughput, average
residence time (i.e. average travel time), and system robustness
(Najjar and Gaudiot, 1990) are more important to the design.
These properties of transport through mazes are what we will
focus on.

There has been research where the complex geometries of nat-
ural or engineered systems (e.g., porous media) have been con-
verted directly into graphs. These graphs have been analyzed as
fast, convenient ways to understand some aspects of the transport
process occurring in the media without having to use expensive
simulations (Cocco et al., 2017; Xu et al., 2014). However, graph
theory is a mathematical tool and cannot provide insight into
exactly how the internal geometry (i.e., configuration of channels)
of a material affects its transport properties. To address this chal-
lenge, we believe that artificial mazes can be used as acceptable
abstractions or surrogates for representing transport media. Once
a suitable fitness metric for a transport process is specified, the
deterministic and stochastic elements of maze generation can be
leveraged, and a form of guided natural selection can be applied
to find the optimal or ‘‘fittest” configuration of its channels. With
the internal geometry of the optimal maze in hand, one can use
it to guide the rational design of transport media or even use addi-
tive manufacturing to fabricate and directly use the maze as a
transport medium. In Section 2, we compare various maze genera-
tion algorithms and discuss how the different maze algorithm
biases deterministically lead to mazes with vastly different geo-
metrical biases. In Section 3, we use graph theory to derive three
graph parameters that can be correlated to the three transport
properties of throughput, average residence time, and robustness
of the maze. In Section 4, we show how the act of simply choosing
a maze algorithm bias can act as a coarse tuning knob and the
modification of an algorithm parameter can act as fine tuning knob
for obtaining desired graph parameters and thus desired transport
properties. Finally, in Section 5, we will show how to construct a
composite maze that can mimic the unique geometric features
and throughput of a two-dimensional image of an actual mem-
brane material.



A. Guo, W.C. Marshall, C.C. Woodcock et al. Chemical Engineering Science 250 (2022) 117416
2. Common maze algorithms and characteristics

The most common maze generation algorithms, or maze algo-
rithms for short, first require the generation of a 2D tiling of regular
polygons. Then, certain walls of each polygonal cell are removed/-
carved out to form passages. Here, we focus only on the simplest 2-
D tiling composed of square cells. Maze generation is pseudo-
random in that it uses a seeded, random number generator when-
ever a random decision (such as which wall to remove upon visit-
ing a cell) is required; knowing the seed number allows one to
reproduce a maze geometry identically. Maze algorithms incorpo-
rate randomness in different forms and to different degrees, lead-
ing to vastly different generated mazes (Buck, 2015). 3-D and
higher dimension mazes are fundamentally based on analogous
algorithms.

Four prominent and distinct maze algorithms are presented
here: Sidewinder, Prim’s, Recursive Backtracker, and Aldous-
Broder algorithms (Buck, 2015). All four algorithms will generate
perfect mazes, that is mazes that have no inaccessible areas nor
looping channels. Perfect mazes are always solvable, and they are
single-solution if exactly one inlet cell and exactly one outlet cell
are specified. The maze in Fig. 1 is a perfect maze. Three-
dimensional mazes with regions of inaccessibility and loops may
have many advantages, or even be essential, in membrane and
wicking systems for example, but their detailed properties are out-
side the scope of this paper. The primary difference between each
maze algorithm lies in the maze bias. Maze bias, or equivalently
channel bias, is defined as the characteristic property that the chan-
nels in a generated maze have. Maze bias can be visualized by per-
forming a breadth-first search from the center cell/node of the
maze and then coloring all the other cells based on their distance
to the center cell. Examples of mazes generated by the four algo-
rithms and their biases are presented in Fig. 2.

Sidewinder: The Sidewinder algorithm generates mazes with a
vertical, or top-down, bias. The starting cell is the bottom-left cor-
ner cell, and the algorithm traverses the bottom row of cells while
randomly carving out a north, east, or west wall upon visiting each
cell. Then, the algorithm works on the row of cells above and
repeats the process until the top row of the grid is reached. Side-
winder mazes will never have vertical walls in the top row of cells
because the algorithm must carve a north or vertical wall as it vis-
its a cell, of which the former type cannot be removed if we’re at
the top row of the grid. A 25 � 25 maze generated using the Side-
winder algorithm and its bias are shown in Fig. 2a.

Prim’s algorithm: Prim’s algorithm generates mazes with a
radial bias. (Note that there is a separate algorithm of the same
name used for finding minimum spanning trees of weighted, cyclic
graphs (Kershenbaum and Van Slyke, 1972); the two algorithms
are similar but are for completely different applications.) Since
Fig. 2. (double column; online color only): Channel bias visualized for 25 � 25 mazes gen
Broder algorithm. Darker colors correspond to longer distances to the center cell.
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Prim’s algorithm does not traverse the grid in a linear fashion like
Sidewinder, it requires the selection of a starting cell in which to
start the algorithm; the radial bias originates from the chosen
starting cell. Additionally, the usual maze-generating Prim’s algo-
rithm assigns a random weight to each cell before randomly
traversing cells and carving out walls; however, we use a simpli-
fied version of Prim’s algorithm that doesn’t perform this weight-
assigning step in order for the resulting radial bias around the cho-
sen cell to be more prominent (Buck, 2015). Fig. 2b shows a Prim’s
maze generated with the cell at the center of the maze chosen as
the starting cell. Prim’s maze bias looks like the channels diffuse
outward from the starting cell.

Recursive Backtracker: The Recursive Backtracker algorithm
generates mazes with a long-channel bias and requires the selec-
tion of a starting cell. The algorithm performs a random walk but
with a memory of its path for the purpose of backtracking once a
dead-end is reached; so, there is a long-channel bias, but no direc-
tional bias like with Sidewinder and Prim’s. Moreover, there is no
dependence of the maze bias on which starting cell is chosen,
unlike with Prim’s mazes. In Fig. 2c, the chosen starting cell is at
the center of the maze.

Aldous-Broder: The Aldous-Broder algorithm is designed to
generate mazes with no bias at all. It is similar to the Recursive
Backtracker algorithm and uses a random walk traversal method.
The Aldous-Broder algorithm differs from Recursive Backtracker
in that it retains no memory of past steps, so there is no passage-
length bias. The chosen starting cell in Fig. 2d is also at the center
of the maze.

Since Sidewinder mazes have a vertical direction for their bias,
they can be used to represent transport media that has flow occur-
ring primarily from top to bottom (e.g., the top-down flow through
a membrane that we consider in Section 5). Similarly, the radially-
outward bias of Prim’s mazes could be appropriate for electrical
interconnect networks or clock distribution signals. The Sidewin-
der and Prim’s algorithms generate mazes efficiently because each
cell in the grid is visited exactly once. The Recursive Backtracker
algorithm is also efficient because it visits each cell exactly twice,
once when doing a forward-search and again when backtracking.
The Aldous-Broder algorithm has no memory of the random walk
it has taken, so there is no limit to how many times each cell is vis-
ited before the maze can be finally generated. There are alternative
algorithms for generating mazes with no directional or channel-
length bias, however they also suffer from the same form of ineffi-
ciency exhibited by the Aldous-Broder algorithm (Buck, 2015).
Maze algorithms simply prescribe rules for how the channels
should be generated, and less complicated rules yield more ran-
domness (less maze bias) in the final geometry. When using a
maze to represent how a transport medium should be constructed,
the most suitable form of channel bias will change depending on
erated with the (a) Sidewinder, (b) Prim’s, (c) Recursive Backtracker, and (d) Aldous
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the engineering application in question; however, some amount of
bias will generally be beneficial.
3. Mazes, graphs, and metrics

Many transport processes can be seen as a flow of elements
through a resistive medium. These elements can be fluid/solid par-
ticles, phonons, electrons, molecules, etc., while the resistance is
represented using transport and material properties. In this sec-
tion, we convert mazes to graphs and use aspects of graph theory
to derive three parameters that will be related to the transport
properties of the maze. These parameters are: 1) the normalized
overall graph resistance, which is inversely related to the overall
throughput of the maze; 2) the normalized average distance
through the graph, which relates to the average residence time
through the maze; and 3) the ‘‘cost” required to completely restrict
flow through the graph, which is related to the robustness of the
maze. All three parameters are highly dependent on how the
inlet(s) and outlet(s) of the maze/graph are chosen.

3.1. Preliminary considerations

We first clarify the analogies between mazes and graphs by
using the 5 � 5 maze in Fig. 1 as an example. This maze was gen-
erated using the Sidewinder algorithm and is thus a perfect maze
without any channels that form loops; consequently, its corre-
sponding graph does not contain cycles, which are defined as a
looping sequence of edges. A channel segment in the maze corre-
sponds to a single edge in its graph. A channel in the maze corre-
sponds to a path in the graph. A channel is a sequence of channel
segments in a maze, while a path is a sequence of edges that con-
nects two nodes in the graph without passing through any given
edge or node twice. A solution of the maze corresponds to a path
that connects any inlet with any outlet of the graph. The number
of neighboring cells that a cell is connected to in the maze corre-
sponds to the degree of the node in the graph, where the degree
of a node is the number of neighboring nodes it is connected to.

Many instances of transport involve flow from multiple inlet
cells (source nodes) to multiple outlet cells (sink nodes). For these
cases, a supernode can allow multiple nodes to be effectively repre-
sented as a single node. The graph from Fig. 1 is shown with a
supersource and supersink node in Fig. 3a. The maze now allows
elements to flow from the entire top boundary (represented by
(a) (b)

Fig. 3. (single column; online color only): (a) Graph from Fig. 1 but with the
supersource and supersink nodes added in (dashed-line edges have half the weight
of solid-line edges for reasons described in the text). (b) Reduced graph with
inactive edges removed.
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supersource node S) to the entire bottom boundary (represented
by supersource node T). Note that the addition of the supernodes
(i.e. allowing multiple inlet and outlet cells) makes the maze have
multiple solutions and introduces cycles into its graph. Unless sta-
ted otherwise, ‘‘graph” will henceforth refer to the entire graph
containing the two supernodes. Also, note that the graphs of per-
fect mazes will almost always have cycles but will never have inte-
rior cycles, which we define as cycles that don’t intersect either of
the supernodes. The decision of which nodes to connect to the
supernodes will affect the direction of flow and may be fine-
tuned for a given physical model. For brevity, we define any set
of nodes connected to the supersource as Ns and any set connected
to the supersink as NT .

To facilitate the calculation of the three transport properties of
the graph, edge weights provide useful information and give the
edges a magnitude. Throughout the majority of this paper, edge
weights will be used to simply represent the distance between
nodes. Since we place each node at the center of a maze cell, the
distance between two adjacent nodes is equal to the cell side
length. Referring to Fig. 1, one can see that the distance between
the supersource node (top boundary of the maze) and any of the
inlet nodes is ½ of the cell side length; so, the dashed edges con-
nected to the supersource node S of the graph in Fig. 3a carry ½
the edge weight of solid-line edges. The same is true for the super-
sink node T. Other variables affecting the overall conductance or
resistance of the medium being modeled, like material properties,
channel dimensions, etc., can be included in the edge weights as
needed (this will be done in Section 3.5).

Finally, depending on the nature of the transport process being
modeled, one may reduce the computational costs of analyzing the
maze geometry by removing dead-end edges/channel segments.
Such instances are common in many steady-state processes where
the movement of elements to and from dead-end channel seg-
ments (possibly due to diffusion) is negligible compared to the
flow in channel segments with advection. One can perform this
reduction in the graph by recursively removing all nodes of degree
one until one is left with a reduced graph or proper subgraph of the
original. If one were to follow this proposed reduction process, one
can see that the edge connecting S to node 2 and the edge connect-
ing node 2 to node 1 in Fig. 3a will remain, despite the fact that
these edges may contribute almost nothing to the overall flow of
elements from S to T (as a result of a shorter path involving the
edge that directly connects S to node 1). Thus, the proposed reduc-
tion procedure is insufficient, and some nodes need to be removed
in the node sets NS and NT , even if those nodes have a degree
greater than one. The actual procedure we use for reducing a graph
is to first remove all edges between the nodes in NS, do the same
for nodes in NT , and then recursively remove all nodes of degree
one. The reduced graph corresponding to Fig. 3a is shown in
Fig. 3b, where the four paths from S to T, which represent the four
solutions to the maze, retain only the active edges of the original
graph. This is the final version of the graph from which we extract
the three graph parameters in Sections 3.2-3.4. In Section 3.5, we
relate the graph parameters to their corresponding transport
properties.

3.2. Effective graph resistance

According to constructal theory, ‘‘For a finite-size system to per-
sist in time (to live), it must evolve in such a way that it provides
easier access to the imposed (global) currents that flow through it”
(Bejan, 1997). There is an optimization problem known as the
‘‘max-flow problem,” which tries to optimize the overall through-
put/flow through a graph while satisfying constraints on the max-
imum flow allowed through each edge (Schrijver, 2002). Though
related to the analysis here, we consider a slightly different
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problem where there are no a priori fixed limits on the maximum,
allowable flow through each edge. The overall throughput of a
graph, or its ability to permit flow through it, is instead related
to the reciprocal of its effective resistance. To follow constructal
theory, we assume that the effective resistance of the reduced
graph that contains only the active flow paths is essentially equiv-
alent to that of its original graph. The effective resistance of a
reduced graph depends on the resistance to the flow of elements
through the edges connecting the supersource to the supersink.
For generality, we don’t account for parameters such as channel
segment widths and viscosity until Section 3.5 and assume here
that the resistance to flow in the i th edge of the reduced graph,
Ri, is equivalent to just its length or the physical distance, li,
between the two nodes that it connects. After setting all edge
weights of the reduced graph to Ri ¼ li, we can calculate the effec-
tive resistance of a reduced graph using classical ideas from the
theory of resistor networks, where series and parallel resistor net-
works within the graph are simplified using Equations (1) and (2),
respectively.

Rseries ¼
P

iRi ð1Þ
Rparallel ¼
P

i
1
Ri

� ��1 ð2Þ

We calculate the effective length resistance, lR;eff , between S and
T by distilling (i.e., simplifying) the entire resistor network down
until we obtain a single resistor, which is shown on the right in
Fig. 4. Although lR;eff has units of length, we use the subscript ‘‘R”
to denote that it fundamentally represents a kind of effective resis-
tance of the graph, and it can be greater or less than the nominal
length or size of the graph, L. The effective length resistance lR;eff
calculated here is usually termed the effective resistance distance
in graph theory (Klein and Randić, 1993; Ellens et al., 2011).

The effective length resistance of a graph is a length variable
akin to a physical separation and represents a fundamental form
of resistance in most transport processes. Tortuosity is a parameter
used in many different academic fields (Clennell, 1997), and it is
generally defined as the ratio between the length of a curved path
between two points and the straight-line distance between them.
Classically, tortuosity can never be less than 1. Here, we define a
tortuosity variant, sR;eff , as:

sR;eff ¼ lR;eff
L ; ð3Þ

where sR;eff is the effective tortuous resistance and L is the straight-
line separation distance between S and T . Since lR;eff can be less than
L when many parallel paths linking S and T exist, it is possible and
Fig. 4. (single column; online color only): A resistor network corresponding to the
reduced graph from Fig. 3b but with supernodes represented as lines (left) and its
single, distilled, equivalent resistor (right). The length of each resistor is propor-
tional to its length resistance value.

5

likely for sR;eff to be less than 1. For the reduced graph in Fig. 3b,
sR;eff ¼ 0:56.

The effective length resistance lR;eff describes the overall length
resistance to the flow of elements through a graph. We made this
measure dimensionless by defining an effective tortuous resistance
sR;eff , which is our first dimensionless graph parameter. It provides
a ratio of the effective length resistance to the minimum separa-
tion resistance distance between the supersource and supersink
nodes. In the context of mazes, the effective tortuous resistance
accounts for a reduction of flow resistance with an increasing num-
ber of parallel channels between the inlet and outlet (boundaries)
of the maze.

3.3. Normalized average path length

To obtain the second dimensionless graph parameter, we now
extract the second length variable from the reduced graph in
Fig. 3b, which is the average path length, lavg. Our definition of the
average path length is the average length of all paths that specifi-
cally connect the supernodes S and T , and it should not be confused
with the standard definition in graph theory which instead per-
tains to the average length of the shortest path between all possi-
ble pairs of nodes. The procedure for obtaining lavg is to first assign
each edge a weight based solely on physical distance such as in
Section 3.2, find all paths between S and T , and average the length
of those paths. Note that the second step of finding all possible
paths between two nodes in a graph is NP-hard, meaning it is
among the class of problems with the highest computational com-
plexity (e.g. the traveling salesman problem) (Matyka et al., 2008);
so, finding the average path length for very large graphs with many
interior cycles (which we don’t deal with in this paper) will be
computationally infeasible. Here, we use a modified breadth-first
search algorithm to find and record all possible paths between
the two supernodes. We normalize the length variable by the nom-
inal maze length to obtain the average tortuosity savg as:

savg ¼ lavg
L

ð4Þ
The average tortuosity, which is our second dimensionless

graph parameter, behaves in a familiar way to the classical tortuos-
ity definition: as the average path length approaches the minimum
separation distance between S and T, the average tortuosity
approaches a lower limit of 1, and as the average path length
increases, so does the average tortuosity. In terms of mazes, lavg
physically represents the average length of all possible solutions
to the maze. For the reduced graph in Fig. 3b, savg ¼ 1:27.

3.4. Maze/graph robustness

The third, and final, dimensionless graph parameter we extract
from the reduced graph in Fig. 3b is the min-cut-size, j, which is a
measure of the resilience or robustness of a graph with super-
source node S and supersink node T. To measure the resilience of
an arbitrary graph to flow disruption, we use ideas from the
S� T minimum cut problem (Nagamochi and Ibaraki, 1992). We
let the nodes of the arbitrary graph be partitioned into two disjoint
sets of nodes, NA and NB, where NA contains the source S and NB

contains the sink T (note that these definitions are vastly different
from the definition of the inlet nodes NS and the outlet nodes NT).
Then, the S–T cut, C, is defined as the set of edges in the graph that
connect one node in NA and the other node in NB. The cut-size of C;
sometimes called the capacity, is the sum of the edge weights of all
edges in C. The S� T minimum cut problem aims to find a parti-
tioning of nodes that yields an optimal set of edges Copt with the
smallest cut-size. The smallest cut-size of the graph, or its
min-cut-size j, is
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j ¼ P
ei2Copt

ei; ð5Þ
where ei is the edge weight of the i th edge. If the graph is
unweighted (has equal edge weights), then j is just the minimum
number of edges that must be removed to completely disconnect
flow from S to T (i.e., no paths exist between them).

The min-cut algorithm finds the ‘‘weakest links” in the graph, so
an edge that is more vulnerable to being cut-out should have its
edge weight set to a smaller magnitude than the other edges.
Although the lengths between nodes differ in the reduced graphs
of mazes (due to the presence of supernodes), we consider all
edges to be equally vulnerable and so we set all of the edge weights
to 1 before calculating the min-cut-size. Following the min-cut
algorithm, we find that the reduced graph in Fig. 3b has a min-
cut-size of j ¼ 2. As the number of cycles increases (the number
of solutions in the maze increases), j and the resilience of the
graph both increase because it is harder to completely cut off the
flow between S and T . Unlike the previous two tortuosity parame-
ters, j can be calculated from either the original or reduced graph
and give the same answer.
3.5. Relating graph parameters to transport properties

We now relate the three graph parameters we derived in the
three previous subsections to the transport properties of the 2D,
square-cell maze from which the graph was born (Fig. 1). We
aim to describe a generalized steady flow of elements from the
source to the sink of the maze in the framework of laminar,
pressure-driven flow to provide a familiar context. We will exactly
relate the effective tortuous resistance to the permeability of the
maze. Then, we will use the average tortuosity to estimate the res-
idence time in the geometry. Finally, we will use the min-cut size to
describe the maze robustness to channel blockage. The main reason
that these graph parameters are extensible to describing transport
processes in 2D channel segments (not just 1D edges) is because
geometrical and transport aspects of flow through channel seg-
ments can be easily incorporated into the edge weights of the
graph.

First, we show how the effective tortuous resistance, sR;eff , can
be used to calculate the permeability of a maze. Similar to
Hagen-Poiseuille’s equation for volumetric flow rate through a
channel with a circular cross-section, the volumetric flow rate
(per unit depth) through the maze’s i th channel segment with a
rectangular cross-section can be expressed as (Cornish, 1928):

Qi
z ¼ w3

12l
Dpi
li
; ð6Þ

where Qi is the volumetric flow rate in m3/s, w is the width of the
channel segment, z � w is the depth into the channel segment, li
is the length of the channel segment (note that li ¼ w for the solid
line edges of the graph in Fig. 3b), l is the dynamic viscosity of
the fluid, and Dpi is the pressure drop across the length of the chan-
nel segment. We rearrange Equation (6) into a form of the driving
force (the pressure drop) over a resistance, and isolate the local
resistance, Ri:

Qi

z
¼ Driving Force

Resistance
¼ Dpi

12l
w3

� �
li

ð7Þ

Ri ¼ 12l
w3 li ð8Þ

Since the constants multiplying li in Equation (8) can be fac-
tored out when using Equations (1) and (2), we calculate the effec-
tive length resistance lR;eff as described in Section 3.2 and express
the effective hydraulic resistance in this case as:
6

Reff ¼ 12l
w3 lR;eff ð9Þ

The factoring and isolation of the length variable in the local
resistance term is not done for the calculation of the effective resis-
tance of systems such as microfluidic networks (Oh et al., 2012;
Ajdari, 2004), likely due to the fact that channel segment widths
are non-homogeneous in almost all real systems. See Appendix
A1 for how Reff can be expressed as a function of the effective
length resistance even for a maze with non-homogeneous channel
segment widths (e.g., for the composite maze discussed in
Section 5). For the rest of this derivation, we maintain the assump-
tion that the channel segment widths are homogeneous. Upon
obtaining the effective resistance Reff from Equation (9), the total
flow rate, Q total, through the maze can be expressed as:

Q total

z
¼ DP

Reff
¼ DP

12l
w3

� �
lR;eff

; ð10Þ

where DP is the overall pressure drop across the maze.
Equation (10) allows us to use the effective length resistance

derived from the graph to create a constitutive relationship
between a pressure driving force, DP, and total flow rate of fluid
elements through a maze. The cell width in the original (square)
grid is w, and the viscosity, l, is of the fluid we choose to model.
To relate the total flow rate to the classical permeability, Darcy’s
law is used. For a porous domain with a linear pressure drop,
Darcy’s law is:

vs ¼ k
l
DP
L

; ð11Þ

where v s is the superficial velocity (i.e., volume flux) through the
outlet, k is the permeability, and L is the overall length of the porous
domain — the distance between S and T . Let W be the superficial
width of the porous domain (i.e., overall width of the entire maze)
so that the superficial cross-sectional area is

As ¼ Wz. Equation (10) can now be rewritten as:

vs ¼ Q total

As
¼ w3

12lW
DP
lR;eff

: ð12Þ

By equating Equations (11) and (12) and then using the defini-
tion for sR;eff in Equation (3), we finally get an exact relationship
between the first graph parameter and the first transport property
of permeability:

k ¼ w3

12WsR;eff
: ð13Þ

Now, we use the second graph parameter of average tortuosity
savg, derived in Equation (4), to obtain an approximate expression
for the transport property of average residence time tres;avg for a
physical element (e.g., a particle on a streamline) traveling through
a maze. Unlike the previous graph parameter sR;eff , we can use lavg
and savg directly here without first needing to find an expression
like Equation (8) and factoring out constants. We derive the
expression for tres;avg for an idealized maze with a reduced graph
that is composed only of paths between S and T (i.e., solutions) that
do not overlap at any node or edge. The steady-state, cross-
sectionally-averaged velocity through the j th solution of length
lj;sol and cross-sectional area A ¼ wz can be written as

v j;sol ¼ Qj

A ¼ w3DP
12llj;sol

=w ¼ w2DP
12llj;sol

. Then, the residence time within this

solution is tj;res ¼ lj;sol
v j;sol

¼ 12l lj;solð Þ2
w2DP . We assume here that the cells of

this idealized maze are square and uniform such thatw is the same
for all solutions of the maze. If we make a simplification that
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assumes that the average of l2j;sol over all j is the same as the square
of the average value of lj;sol over all j (i.e., it’s the same as the square
of Lsavg), then we can write the average residence time as

tres;avg ¼ 12lL2s2avg
w2DP : ð14Þ

For any non-idealized maze that contains paths that branch into
or out of each other, the solutions of the maze will overlap. In this
case, or in the case of non-homogeneity in channel segment
widths, the equality in Equation (14) will not hold; however, to a
first-order approximation, the average residence time will still be
proportional to the square of the average tortuosity parameter.
See Appendix A2 for more discussion on the effects of branching
and non-homogeneous channels segment widths on the relation-
ship between average residence time and average tortuosity.

For the last graph parameter, the min-cut-size j, we make an
analogy to the robustness of the maze. The min-cut-size quantifies
thenumberof edges that canbe removed inagraphbefore thesuper-
source and supersinknodesbecomedisconnectedandnopaths exist
between them.Analogously, it quantifies thenumberof channel seg-
ments that can be blocked in a maze before it becomes unsolvable.
We qualify a robust maze as one that is more resistant to blockage
and possesses a highmin-cut-size value. Quantifying the robustness
of a maze, however, heavily depends on the transport process in
question; so, we can only say that robustness is proportional to the
min-cut-size j. See Appendix A3 for a discussion of the effects of
non-homogeneous channel segment widths on the relationship
between j and the robustness of a maze.

The example of fluid flow through porous media demonstrated
in this subsection can easily be extended to other forms of flow
through transport media. For any transport process that can be
expressed as driving force over resistance like in Equation (7), an
appropriate flux-gradient transport law can be used to obtain an
expression for the corresponding effective transport/material
property that describes throughput (Table 1). The analysis involv-
ing graph theory and the effective tortuous resistance here pro-
vides a balance between accurate but costly numerical
simulations which completely discretize the geometry, and simple
but low-fidelity equations like Kozeny-Carman’s equation (Kozeny,
1927; Carman, 1956) which do not discretize the geometry at all
and cannot directly account for inhomogeneity in the geometry.
For the second and third graph parameters, they have only been
approximately related to their corresponding transport properties
in the fluid flow case here but are believed to be easily generaliz-
able to approximating analogous transport/system properties of
other types of transport processes.
4. Properties of maze algorithms

This section explores two ‘‘knobs” that can be turned to achieve
desired values of the three graph parameters sR;eff , savg, and j, and
hence the transport properties of a maze geometry. In Section 4.1,
we show that a coarse tuning knob could simply be one’s choice of
which maze algorithm to use, since maze algorithms create mazes
Table 1
Effective transport equations for three analogous types of flow.

Flow in Single
Channel
Segment i

Flux-Gradient
Transport Law
(for a linear domain)

Effective Transport
Property
Describing
Throughput

Laminar
Flow

Qi ¼ w3z
12l

Dpi
li

vs ¼ k
l
DP
L k ¼ w3

12WsR;eff

Mass Flow _ni ¼ ðwzÞDab
Dci
li

Na ¼ Deff
Dc
L Deff ¼ Dabw

WsR;eff
Heat Flow _Qi ¼ wzð Þk DTi

li
q0 0 ¼ keff DTL keff ¼ kw

WsR;eff

7

in vastly different parts of the graph parameter space. In Sec-
tion 4.2, we show how we can modify one algorithm, specifically
the Sidewinder algorithm, to create a fine tuning knob for the
maze’s graph parameters.

4.1. Choosing a maze algorithm

To eventually use maze geometries for transport operations, we
first explore how the graph parameters sR;eff , savg, and j change
when: 1) different maze algorithms are used to define the geome-
try, and 2) the flow direction is changed by varying which nodes in
the graph are connected to the supersource (S) and supersink (T)
nodes. The four maze algorithms used are Sidewinder, Prim’s with
the starting cell as the center cell, Recursive Backtracker with the
starting cell as the center cell, and Aldous-Broder with the starting
cell randomly chosen. We consider three flow directions from
S ! T: top-down, left–right, and radially-outward. The diversity
in flow directions allows the analyses of mazes here to be applica-
ble to a wide range of engineered materials or systems, while the
diversity in maze algorithms is what will provide the coarse tun-
ability of graph parameters. For top-down and left–right flow,
the distance from S to T is the overall length L and the overall width
W ¼ L for the square mazes considered here, respectively. For
radially-outward flow, S is linked to only the graph’s middle node,
while T is linked to all nodes on the graph’s outer perimeter. The
distance between the supernodes, L, needed for the calculation of
sR;eff is not trivial to obtain. For radially-outward flow, we chose
to let L be the average of the shortest and longest distances
between S and T; specifically, we used L ¼ ðr þ

ffiffiffi
2

p
rÞ=2, where r is

half the overall width or length of the maze. For each of the twelve
cases of maze algorithm and flow direction combinations, 500
25 � 25 mazes were generated to obtain average values of the
three graph parameters.

Before comparing the graph parameters of the mazes across the
12 cases, we first consider just the case of Aldous-Broder mazes
(mazes with channels that don’t have any directional or length
bias) under top-down flow. A significant spread in the two tortuos-
ity parameters for this case is observed in Fig. 5a, which shows the
sR;eff vs. savg tortuosity parameter space of the 500 mazes. In the four
extreme corners of the tortuosity parameter space, the channels of
mazes take on distinct characteristics (Fig. 5b); these channel char-
acteristics can be easily seen in the graphs in Fig. 5c-5f. In Fig. B.1
in Appendix B, the tortuosity parameter space is shown for the
other 11 cases. The simplicity of mazes and the graphs associated
with them means we can run many thousands of seed-numbers
in a short amount of time and quickly determine the part of the
tortuosity parameter space that is associated with a certain maze
algorithm and flow direction. In most engineering systems the flow
direction is predetermined, so one can see that the choice of maze
algorithm entirely dictates what graphs are possible and thus can
be used as a coarse tuning knob for obtaining desired values of
the first two graph parameters and transport properties. The rea-
son that the min-cut-size, j, is excluded from the parameter spaces
shown is because all graphs considered in this subsection contain
no interior cycles and thus will have a low integer value of j in
the range of 1 through 4 (note that for almost all 12 cases consid-
ered here, this upper limit is not related to the fact that the maxi-
mum degree of a node is equal to 4). Automating the introduction
of interior cycles to increase j and understanding how they affect
the other two graph parameters is the subject of future work.

The average and standard deviation of the three graph parame-
ters for each of the twelve cases is shown in Table 2. A representa-
tive graph for each case is shown in Fig. 6. The variation in the
average values of the parameters shows that the choice of maze
algorithm and flow direction changes the average value of the
graph parameters significantly. For Prim’s mazes in particular,



(a)

(b)

(c) (d)

(e) (f)

Fig. 5. (1.5 column; online color only): (a) Tortuosity parameter space for 500 Aldous-Broder mazes with top-down flow. (b) Characteristics of the channels of mazes situated
in the extreme corners of the tortuosity parameter space. (c) Reduced graph of the maze corresponding with the blue cross in Fig. 5a. (d) Reduced graph corresponding with
the cyan diamond. (e) Reduced graph corresponding with the magenta plus sign. (f) Reduced graph corresponding with the green triangle.

Table 2
The average value (and standard deviation in parentheses) of sR;eff , savg, and j obtained from 500 different mazes/graphs for each of the 12 cases. The three graph parameters
describe a graph’s normalized effective length resistance, normalized average path length, and robustness to blockage, respectively.

Sidewinder Prim’s Recursive Backtracker Aldous-Broder

sR;eff savg j sR;eff savg j sR;eff savg j sR;eff savg j

Top-Down 0.53 (0.14) 1.71 (0.1) 2.5 (0.6) 0.47 (0.10) 1.6 (0.069) 1.6 (0.6) 2.2 (1.4) 3.6 (1.1) 1.6 (0.6) 1.1 (0.4) 2.4 (0.4) 1.5 (0.6)
Left-Right 0.85 (0.09) 1.71 (0.4) 1.04 (0.2) 0.46 (0.10) 1.6 (0.065) 1.6 (0.6) 2.2 (1.3) 3.5 (1.1) 1.6 (0.6) 1.0 (0.4) 2.4 (0.4) 1.6 (0.6)
Radially-Outward 0.93 (0.37) 2.0 (0.6) 1.2 (0.4) 0.16 (0.03) 1.3 (0.054) 2.5 (0.8) 3.9 (2.0) 3.9 (2.0) 1 (0) 0.8 (0.4) 2.5 (0.6) 1.2 (0.4)
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when the direction of the maze bias (equivalently channel bias)
matches the direction of the flow (i.e., both radially-outward),
mazes are more robust, resulting in a larger min-cut-size j, and
they have straighter channels and lower resistances, resulting in
smaller values in both tortuosities. Similar, though less prominent
behavior is seen for the Sidewinder algorithm. In Prim’s algorithm,
more active-flow channel segments are generated for the radially-
outward case, evident by there being a greater number of edges
being retained after the reduction of the graph (see Fig. 6). When
more channel segments are retained, parallel maze channels are
more likely to be present in the reduced graph, thus lowering
sR;eff . Since these retained channels also tend to point in the same
direction as the flow direction, savg is also lowered. The standard
deviation in the tortuosity graph parameters is also smaller when
channel bias and flow direction are aligned (both radially-
outward), meaning that these graphs with small values in their tor-
tuosities are being consistently generated. As for the third graph
parameter j, its average value is also the largest during this align-
ment of channel bias and flow direction for the same reason of
there being more active channel segments in the reduced graph.
It is worth noting that the standard deviation of j is not the small-
est during alignment due to the fact that j can only take on a small
range of values. Also, for the case of radially-outward Prim’s in par-
ticular, the min-cut-size is capped at a value of 4 because there is
only one inlet node.

The Sidewinder algorithm has a top-down channel bias. We
observed for Prim’s mazes that alignment of the directional channel
8

bias with the flow direction leads to the two tortuosity parameters
being the smallest in their average values and having the least stan-
dard deviation when compared with the other flow direction cases.
Twodiscrepancies occur for Sidewindermazes that conflictwith this
observation about alignment: 1) the average value of savg is the low-
est for left–right instead of top-downflowby a small amount, and 2)
the standard deviation in sR;eff is the lowest for left–right instead of
top-down flow. The reason behind both discrepancies is that a
straight, fully connected, top row of nodes will always be present
in the unreduced graph of Sidewinder mazes (see Section 2 for
why);when the flowdirection is left–right, the top rowof nodeswill
be retained after the graph reduction and sowe observe this artifact
for all of the 500 seed numbers. Thus, the first discrepancy occurs
because the extremely short path between S and T skews the calcu-
lation and makes savg much smaller than it should be for left–right
flow,while the seconddiscrepancyoccursbecauseof theguaranteed
appearance of the connected top row of nodes in the reduced graph
no matter the seed number. Moreover, this artifact augments the
valueofsR;eff tobemuchsmaller than itwouldbe—without this arti-
fact, the flow direction being perpendicular to the channel bias can
lead to very fewandpossibly no edges being retained after the graph
reduction. Rectifying this artifact bymodifying the Sidewinder algo-
rithm,or choosingadifferentalgorithm, is the subjectof futurework.
Similar to Prim’s mazes, the average value for j is highest for Side-
winder in the top-downflowdirection becausemazeswithmultiple
paths in parallel with each other tend to be generated more easily
due to the alignment of flow and channel biases. For Sidewinder



Fig. 6. (1.5 column; online color only): For each of the 12 cases in Table 2, one representative graph was chosen such that its values of sR;eff and savg were both within � 10% of
their respective averages, and its value of j was within a value of �1 to its average. The set of source nodes NS connected to S are colored red, and the set of sink nodes NT

connected to T are colored black; however, S and T (and the dashed-line edges connected to them) are omitted from the graphs for clarity.
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top-downmazes in particular,j is tied to the number of inlet nodes;
althoughnoneof themazes considered in this subsectionhadavalue
ofj larger than4, just generatinga largermazewithmorecells (orby
modifying the Sidewinder algorithm, which is what is done in the
next subsection) can lead to a value of j larger than 4.

In contrast to Prim’s and Sidewinder, the Recursive Backtracker
algorithm generates mazes with a non-directional, long-channel
bias. These mazes have very tortuous channels, but few are in par-
allel with each other and so there are limited opportunities to
increase the throughput between S and T. Due to this preference
for long, tortuous paths, the average values of sR;eff and savg are
the largest out of all four algorithms (see Table 2). Although the
Recursive Backtracker has no directional bias, sR;eff is larger by
nearly a factor of 2 in the case of radially-outward flow. The reason
is that having only one node connected to S restricts the number of
paths connecting S and T to be identically one. For the radially-
outward case, having a single path between S and T makes the
two tortuosity values equal, while the random-walk and memory
aspects of the algorithmmake the standard deviations of the tortu-
osity values very large relative to the averages. The min-cut-size j
is low for all flow-directions. For the radially-outward case, the
average value of j is exactly one and the standard deviation is
exactly zero because single-solution mazes are generated for every
single seed number.

The Aldous-Broder algorithm generates mazes with no direc-
tional or long-channel bias. Thus, this algorithm has the highest
level of randomness. From Table 2, one can see that the magnitude
9

of the values of sR;eff and savg both fall in-between those for the
other maze algorithms and the relative standard deviations in
the tortuosities are generally larger compared to the Sidewinder
or Prim’s mazes due to the random walk nature of the Aldous-
Broder algorithm. Although Aldous-Broder has no directional bias,
the values of sR;eff and savg are slightly lower in the case of radially-
outward flow; the reason is most likely because having four
boundaries instead of one boundary as the outlet in the maze
allows for additional channels to be retained after the reduction
of the graph. The min-cut-size is low for all three flow-
directions; however, it is slightly lower for radially-outward flow
for the same reason the two tortuosity values are slightly smaller.

Equation (13) explicitly relates sR;eff to permeability, while
Equation (14) approximately relates savg to the average residence
time of an element flowing through the maze. There are many sit-
uations where the path length and the flow resistance are pitted
against one another and where a high throughput (low sR;eff ) and
long average residence time (large savg) are desired. Membrane
separation, chromatographic separation, and leaching are exam-
ples where the system properties of particle retention and flow
throughput are both increased if one uses a geometry with channel
properties described by the upper-left quadrant of Fig. 5b (many
parallel, tortuous channels) rather than the lower-right quadrant
(a single, straight channel) due to more interaction of particles
with the channel walls. Picking a geometry that optimizes both
system properties is required and using mazes may provide some
insight on how to accomplish that. Here, we examine the ratio of
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savg to sR;eff of the mazes, where a larger ratio corresponds to a
maze with more parallel and tortuous channels; note that the
two tortuosity values are not entirely uncorrelated, since sR;eff con-
tains information about the length of the paths in addition to the
number of parallel paths. Table 3 shows a comparison of the ratio
of savg to sR;eff for each of the 12 graphs in Fig. 6.

In Table 3, we see that the Prim’s mazes provide the largest spa-
tial sampling (largest savg) for the least resistance (smallest sR;eff ),
followed by Sidewinder, Aldous-Broder, and Recursive Backtracker.
Note that the data in Table 3 is calculated from the graph parame-
ters of the representative graphs in Fig. 6, so the seed number can
also have a large effect on the ratio of savg to sR;eff . Not surprisingly,
Recursive Backtracker has the lowest tortuosity ratio because it is
biased toward long channels and very few paths (exactly one if it is
the radially-outward case) that span from S to T. Clearly both tor-
tuosities are related to one another, but the exact relationship
depends on the maze algorithm, flow direction, and seed number.
Still, the variation between algorithms provides a coarse but viable
way to determine which type of geometry might be most suitable
for a given application.

4.2. Fine tuning a maze algorithm

Since mazes involve a component of randomness in choosing
which walls to remove, it is possible to bias the random number
generator to fine-tune the details of the maze generated. For exam-
ple, the classic Sidewinder algorithm uses equal weighting when
deciding to carve out walls in the north direction vs. the east/west
direction. We altered this carving-bias parameter to be between 0
and 1, such that a bias closer to zero will prefer to carve north,
while a bias closer to 1 will prefer to carve east or west. Fig. 7a
and 7b show the results of these changes for sR;eff and savg. sR;eff
approaches a value near 0 as the bias approaches zero, whereas
savg approaches 1 under the same conditions. Fig. 7c shows how
we use the carving-bias to manipulate the ratio of sR;eff to savg to
vary from 1 to 25. As shown in Fig. 7d, at low values of the carving
bias a Gaussian relationship exists between sR;eff and savg, while at
high bias the relationship is linear, like what would occur in Recur-
sive Backtracker mazes. This observation is further confirmed by
Fig. 7e, which shows that j can take on a value of 1 or 2 for a carv-
ing bias larger than 0.75, or it can take on a value larger than 2 for a
carving bias of less than 0.75. Fig. 7f shows representative maze
solutions at the two extremes of carving bias. Using this carving-
bias parameter, a Sidewinder maze can be fine-tuned to have a
specific average tortuosity and effective tortuous resistance. The
exact maze will vary with the seed number, which may also be
used as a fine-tuning knob to produce the desired values of tortu-
osities. The modification of other maze algorithms is also viable
but not explored in this paper.
5. Composite mazes as membrane surrogates

Throughout this paper, we have asserted that mazes can
abstractly represent any form of a two-phase transport medium
and can be used as a design tool for guidance in engineered sys-
tems. Before we can use mazes for this purpose, we first show they
can be crudely and easily designed to approximate system-specific
features and the transport property of a real material. To demon-
Table 3
Ratio of savg to sR;eff for the graphs in Fig. 6.

Flow Direction Sidewinder Prim’s

Top-Down 3.2 4.0
Left-Right 1.8 4.1
Radially-Outward 1.9 7.8
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strate this, we chose a system we have investigated in the past,
which is a commercial, microporous, polyethersulfone (PES) mem-
brane (Sorci et al., 2020). The structure of this membrane is shown
in Fig. 8a, and it is a two-dimensional slice through the membrane
obtained using a focused ion beam within a scanning electron
microscope (SEM), then converted into a CAD image by creating
a trace of said SEM image. The geometry was then imported into
finite element software to compute the flow through the slice.
The structure of the real membrane indicates that there are two
skin layers, regions of smaller pores and lower porosity, at the
top and bottom. Thus, a single maze composed of homogeneous-
width channels would not be able to represent this system-
specific feature of the actual structure. Producing a maze with
inhomogeneous channel segment widths required the construction
of a composite maze formed by vertically stacking three mazes
with varying cell size. Fig. 8b shows the composite maze structure
we generated. Fig. 8c shows the reduced graph of this composite
maze.

When generating the three component mazes of the composite
maze, the primary parameters considered were: 1) the maze algo-
rithm, 2) the number of rows and columns, and 3) the cell size,
which determines the width of the channel segments. For each
component maze, a Sidewinder algorithm was selected to match
the maze bias to the vertical flow bias for dead-end filtration.
The composite maze’s overall dimensions were adjusted to match
the real membrane’s domain width of 100 mm and thickness of 130
mm. The number of rows and columns as well as the cell size for
each component maze were also adjusted to fit into the overall
width and height desired in each component maze. The overall
heights of the top and bottom component mazes were set to
roughly match the thickness of the two skin layers of the real
membrane; information about this system-specific feature was
obtained qualitatively from the real membrane domain image in
Fig. 8a and quantified using the simulated pressure drop data
shown in Fig. 9. A change in the slope is observable in Fig. 9 at a
height of �15 and �115 mm, creating an S-shaped curve. Addition-
ally, the component maze cell sizes were chosen to approximate
the total volumetric flowrate through the membrane at the given
pressure drop — this is equivalent to matching the permeability
— and to match the nominal, reported pore size of the commercial
membrane. Within the framework we have developed, the perme-
ability of a candidate composite maze was calculated using the
effective tortuous resistance parameter. The methodology for cal-
culating the effective tortuous resistance, as well as the other
two graph parameters, are discussed in Appendix C1. A total of
three trials for getting qualitative and quantitative match-up were
performed before obtaining the composite maze in Fig. 8b. Its cor-
responding graph and its three graph parameters are shown in
Fig. 8c. The number of rows and columns, cell sizes used, and more
details about each of the three component mazes can be found in
Appendix C2.

Fig. 10a shows the flow field through the real membrane struc-
ture with a pressure of 13,750 kPa applied at the top and a pressure
of 0 kPa applied at the bottom. What is interesting is the channel-
ing (i.e., funneling of the flow through a single pore) that appears
near the bottom, which can limit the performance of the mem-
brane. This geometry only represents one two-dimensional slice
though the membrane. The real membrane has a three-
dimensional pore structure, so channeling, like that observed in
Recursive Backtracker Aldous Broder

1.6 2.4
1.6 2.4
1.0 2.3
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(d) (e) (f)
Fig. 7. (1.5 column; online color only): (a) Effect of carving bias on effective tortuous resistance. (b). Effect of carving bias on normalized average path length. (c) Ratio of path
length to length resistance as a function of bias. (d) Relationship between sR;eff and savg in two regimes of the carving bias. Circles behave as a traditional Sidewinder maze
would, while the squares behave more like a Recursive Backtracker maze. (e) Robustness of the transport through the maze measured by the min-cut-size. (f) Example mazes
at the extremes of bias (0 left; 1 right).

Fig. 8. (double column; online color only): (a) Commercial PES membrane, with grey as the fluid phase. (b) Simulation domain of composite maze, with white as the fluid
phase. (c) Reduced graph of composite maze, with grey edges as the fluid phase and red lines crossing the edges that belong in Copt, which is the minimal S� T cut that
completely restricts flow in the graph; see Appendix C1 for why Copt doesn’t instead just contain two of the edges in the middle component maze.
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Fig. 10a, would likely not be as severe. Fig. 10b shows the results
for the composite maze. While not reproducing the exact features
of the real, 3-D membrane, the overall features appear similar and
include the presence of a finite number of primary channels and a
moderate channeling effect. Fig. 10c shows the calculated pressure
distribution within the real membrane slice, and Fig. 10d shows
the pressure distribution within the composite maze structure.
Slices of pressure are averaged every two microns throughout
the length of the domain and plotted against the pressure drop
for the PES membrane and composite maze structure in Fig. 11.
Clearly 50% of the overall pressure drop occurs in the final 20% of
the membrane. Here too, about 50% of the pressure drop occurs
near or within the bottom component of the composite maze.
The calculated permeability of the real membrane is 2:41� 10�13

m2. The permeability of the composite maze, calculated using the
11
same finite element software, is 2:05� 10�13 m2. The permeability
of the composite maze, calculated using Equation (13) (and the
modification to the equation as discussed in Appendix C1), is
1:78� 10�13 m2. While not as precise as the finite element calcula-
tion, the graph approach is faster and can screen many more
geometries to find common or hidden patterns.

Despite the minimal amount of optimization effort (three trials)
used in generating the composite maze structure, the flow field
and permeability of the composite maze are remarkably similar
to the membrane. It is important to note that the goal of this sec-
tion is not to perfectly mimic a transport medium using a compos-
ite maze — it is to show that mazes are flexible and can be used,
creatively, to capture the unique geometrical and transport-
related features of a system (here, these are the skin layers and
non-linear pressure drop).



Fig. 9. (single column; online color only): Nonlinear pressure drop from the PES
membrane simulation. The S-shaped pressure curve is due to the pore distribution
forming a ‘‘skin layer” on the membrane where larger pressure drops are observed.
The pressure data is averaged across the width of the domain.

Fig. 10. (1.5 column; online color only): Pressure-driven Stokes flow modeled with a 137
is presented for a commercial PES membrane (left) and a composite maze (right).
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In a membrane, selectivity may be as important or more impor-
tant than permeability. There is no guarantee that the maze struc-
ture that mimics the permeability can also mimic the selectivity.
Outside of pure size exclusion, an exact selectivity metric is diffi-
cult to derive. However, as discussed at the end of Section 4.1,
selectivity/particle-retention should scale with average residence
time (i.e., the average time a particle spends interacting with the
channel walls); in Section 3.5, the average residence time was
found to approximately scale with the square of the average tortu-
osity savg. So, selectivity should approximately scale with the
square of the average tortuosity. The ratio of savg to sR;eff , intro-
duced at the end of Section 4.1, can provide a starting point to
deriving a metric that accounts for both permeability and selectiv-
ity. Moreover, the min-cut-size j can provide a metric for the
robustness of the composite maze to fouling. The values of sR;eff ,
savg, and j for the composite maze are 0.24, 2.23, and 3.004,
respectively; see Appendix C1 for the calculation of these graph
parameters (and why the min-cut-size is not an integer). The ratio
of the tortuosities for the composite maze is 9.4, which is larger
than that of the graphs of the single-component mazes in Fig. 6
(see Table 3). Finally, membranes are three dimensional structures
and so cycles are likely the rule rather than the exception. Since the
graph of the composite maze still has a small value of j, more
cycles need to be introduced to increase its robustness. Although
incorporating additional cycles in mazes is not difficult to do, espe-
cially for 3-D mazes, the extraction of the three graph parameters
of the maze can become very difficult. Appendix C1 discusses how
50 Pa transmembrane pressure. Velocity field (a,b) and pressure gradient (c,d). Data



Fig. 11. (single column; online color only): Average pressure taken every y = 2 lm.
The dashed line is data from the PES membrane simulation, while the solid line is
from simulation data on the composite maze. The composite maze captures the
nonlinear pressure drop through the membrane.
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we have already generalized our analyses in Section 3 to apply to
mazes with interior cycles, which is what the composite maze
studied in this section was. For graphs of mazes that have even
more (interior) cycles and/or nodes with a degree larger than 4,
it is expected that sR;eff and j will remain viable to compute while
savg will not due to the algorithmic complexity of finding all paths
between two nodes in a highly cyclic graph.
6. Conclusions

Mazes can be more than just puzzles to be solved by children,
animals, molds, or robots: they can be thought of as simple
abstractions that resemble the internal structure of complex sys-
tems found in nature and in various engineering applications. Thus,
mazes can be used as surrogate materials and studied to funda-
mentally understand how geometry affects transport processes
and systems. With the new understanding, maze-inspired trans-
port geometries/materials can be rationally-designed and opti-
mized for a given engineering application and then realized with
additive manufacturing. The structure of a maze can be easily
translated and represented as a graph, where the tools of graph
theory can be applied to quantify the features of the maze. We pre-
sented methods to extract three dimensionless graph parameters
from the graph structure and related each of them to a transport
property of the maze, providing a platform for guiding the design
of maze-based materials from first principles. The first graph
parameter is the effective tortuous resistance sR;eff of the graph,
which can be used to explicitly relate the structure of the graph
to the effective transport resistance of the maze and used to calcu-
late effective transport properties such as permeability, effective
13
thermal conductivity, or effective diffusivity. The second graph
parameter is the average tortuosity savg, and it is a normalized
average path length that can be used to obtain an estimate of the
average residence time within the maze geometry. The third graph
parameter is the min-cut-size j, which gives a measure to the resi-
lience of the graph to edge removal and a measure to the robust-
ness of the maze geometry to channel blockage.

There is a plethora of maze generation algorithms, each with
their own inherent biases, and we examined only four common
types. Each algorithm incorporates some degree of randomness,
so the same algorithm can generate multiple mazes that have a
spread in their graph parameters. However, it was found that dif-
ferent algorithms can generate mazes in very different regions of
the graph parameter space. Consequently, the choice of a maze
algorithm is in itself a way to coarsely tune the graph parameters
of a maze. We also showed that the maze generation bias can be
manually adjusted within one of the algorithms to fine-tune the
values of the graph parameters and especially the ratio of the aver-
age tortuosity to the effective tortuous resistance. Finally, we
showed how a surrogate, composite maze geometry — formed by
stacking together three individual mazes — can accurately mimic
the permeability and even the system-specific nonlinear pressure
drop and flow patterns (caused by the skin layers) observed in a
real membrane. The eventual goal is to leverage the flexibility
and tunability of mazes to construct and optimize a surrogate
maze geometry that can be used as a guide to design an engineered
geometry supporting a specific transport process.
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Appendix A: Relating graph parameters to transport properties
for mazes with non-homogeneous channel segment widths
(such as the composite maze studied in Section 5)

Appendix A1: Relating effective tortuous resistance to permeability

Let w
�

be the average width of the channel segments in the
reduced graph. Then, Equation (8) for the hydraulic resistance of

edge i can be rewritten as Ri ¼ 12l
w
�3 li w

�3

w3
i

� �
. Factoring out the con-

stants, the edge weights of the reduced graph can be set to li w
�3

w3
i
(in-

stead of li for the case of homogeneous channel segment widths)
before proceeding to calculating the effective length resistance
lR;eff as described in Section 3.2. Note that the edge weights still
have a dimension of length, so the calculated lR;eff still does as well.
Following the rest of the derivation in Section 3.5, the final perme-

ability equation is k ¼ w
�3

12WsR;eff
, and it is very similar to Equation

(13).

Appendix A2: Relating average tortuosity to average residence time

In momentum transport, the flow rate in a channel segment
changes if the pressure difference across the channel segment
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changes; moreover, at a set flow rate, the cross-sectionally-
averaged velocity (or simply velocity) in a channel segment
changes if the channel segment width changes. For a parent chan-
nel bifurcating into two child channels, different pressure differ-
ences across the child channels as well as different channel
widths can cause the velocities through them to be very different.
So, complications arise when trying to obtain the average residence
time of a fluid parcel (or inertia-less particle) traveling in a maze
with branching channels even if channel segment widths are
homogeneous. The average tortuosity savg simply cannot provide
enough information to be used in an explicit expression for the
average residence time in a graph. However, there is still a proce-
dure one can use to obtain the average residence time for a steady-
state transport process in a maze with branching channels and/or
inhomogenous channel segment widths:

1. Solve for the potential (i.e., pressure) at every node in the
reduced graph using Kirchhoff’s law and Ohm’s law by setting
up a system of flow-balance equations at each node. Calculate
the pressure drop Dpi across all the edges.
2. Use Equation (6) to get the velocity v i through all the edges.
3. Get the residence time of all the edges using tres;i ¼ li=v i.
4. Use the procedure for getting lavg, which is discussed in Sec-
tion 3.3, but with edge weights being tres;i instead of li in order
to obtain the average residence time tres;avg.

Depending on the transport process, even the above procedure
might be insufficient. For example, particles could become trapped
in the medium and never make their way out; in this case, the
probability of a particle becoming stuck on the walls of channel
segments could be incorporated into the edge weights and possibly
lead to a modified way of calculating tres;avg. This is the subject of
future work.
Appendix A3: Relating min-cut-size to robustness

Consider the specific transport process of fluid flow in a mem-
brane (which Section 5 considers) with particles. The membrane
can foul if the solid particles clog up too many channel segments.
Recall that the min-cut algorithm finds the ‘‘weakest links” in the
Fig. B1. (double column; online color only): Tortuosity parameter space for the 12 cas
savg ¼ sR;eff curve, and the green circle represents the average of the data points.
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graph, and so an edge that is more vulnerable to being cut-out
should have a smaller edge weight than the other edges so that
it will be more easily picked out by the algorithm; one can enforce
this policy by setting the edge weights equal to wi

w
� . One can see that

wider channels are more resilient to being blocked than narrower
channels by a particle and will thus have a larger contribution to
the min-cut-size j calculated in Equation (5). There is no quantita-
tive basis for this edge-weighting-scheme (for example we could

have set the edge weights to be wi

w
�

� �3
or wi

w
�

� �2
instead), but it is

the one that we use to calculate the min-cut-size j for the compos-
ite maze in Section 5. Note that j, the sum of edges weights of the
edges in the discovered optimal cut-set Copt, will be dimensionless
like the other two tortuosity graph parameters. The subject of
future work is to use a physics-informed approach to modify the
edge weights to calculate the min-cut-size more accurately and
relate it to the robustness of a maze more quantitatively.

Appendix B: Additional information for Section 4

Fig. B.1 shows the tortuosity parameter spaces for the 12 cases
considered in Section 4. A graph with a data point lying on the
dashed red line of savg ¼ sR;eff will contain just a single path
between S and T and will have a value of j ¼ 1. By definition of
the two tortuosities, no graphs can exist below this line.

Appendix C: Details related to the composite maze studied in
Section 5

Appendix C1: Calculation of the three graph parameters of the
composite maze

Here we provide details on how the three graph parameters
sR;eff , savg, and j were calculated for the composite maze. We start
with sR;eff . The first complication related to the composite maze is
that the channel segment widths are non-homogeneous; however,
as discussed in Appendix A1, one can just set the edge weights of

the reduced graph to li w
�

wi

� �3
. The average channel segment width

was found to be w
� ¼ 3:70. The second complication of the compos-
es. Positions of subplots match those in Fig. 6, the dashed red line represents the



Fig. C1. (single column; online color only): Transformation of resistor network
where the edge weights ei represent length resistance.
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ite maze is that the calculation of lR;eff (which uses the series and
parallel rules for simplifying a reduced graph / resistor network
into a single edge and two supernodes) can fail if the reduced
graph has interior cycles, which we defined in Section 3.1 as cycles
that don’t intersect either of the supernodes (see Fig. 8c). Similar to
the replacement of multiple edges in parallel or in series with an
effective edge, the Y � D transform can be used to replace a ‘‘Y”-
shaped resistor network with a ‘‘D”-shaped resistor network, or
vice-versa (Kennelly, 1899). Fig. C.1 shows the transformation of
a resistor network from a shape of ‘‘D” to ‘‘Y . ” Note that if a
reduced graph has interior cycles and contains many nodes with
a degree of 4 or larger, it is likely that even the Y � D transform
won’t be sufficient for simplifying the resistor network; in this
case, the pseudo-inverse of the Laplacian matrix of the graph (re-
duced or unreduced) can be used to calculate the effective length
resistance lR;eff (Klein and Randić, 1993). (We don’t use this method
because all graphs we work with have nodes with degree less than
or equal to 4.) The algorithm in Section 3.2 was modified to incor-
porate the use of the Y � D transform to break interior cycles dur-
ing the simplification of the reduced graph’s resistor network and
thus enable the calculation of lR;eff . The reduced graph in Fig. 8c was
calculated to have a value of sR;eff ¼ 0:24.

Unlike the method used for the calculation of lR;eff , the method
discussed in Section 3.3 for calculating the average path length lavg
(involves finding all paths between S and T) is not complicated by
the inhomogeneity in channel segment widths. Furthermore, the
method is robust enough to work for any graph no matter how
many interior or normal cycles it has or how large the degrees of
the nodes are; however, since the composite graph contains inte-
rior cycles, the number of paths (and thus computation time for
calculating the average path length) will be orders of magnitude
higher than that compared to the graphs in Section 4 that don’t
have any interior cycles. To greatly reduce the number of allowable
paths between S and T , the composite graph was first converted
Table C1
Geometrical features of component mazes.

Structure Rows Columns Ce

Top Maze 7 30 3.
Middle Maze 13 15 6.
Bottom Maze 9 45 2.
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into a directed graph, which is a graph where the edges have direc-
tions; this was done by using the first two steps detailed in the pro-
cedure in Appendix A2 to find the velocity (and therefore flow
direction) in each edge. The decision to use a directed graph is
not only practical here, but sensible due to the context wherein
solid/fluid particles can only follow streamlines in pressure-
driven flow. The number of paths in the directed version of the
composite graph in Fig. 8c was found to be around 11,000, and a
value of savg ¼ 2:2 was calculated. (As a side note, one can follow
the other steps detailed in the procedure in Appendix A2 to find
the average residence time instead of the averge path length for
a general graph containing interior cycles, but this calculation
was not done for the graph considered in this paper.)

The calculation of j requires one to first set the edge weights in
the reduced graph to ei ¼ wi

w
� (as discussed in Appendix A3). For the

composite maze, w
� ¼ 3:70. The min-cut solution is shown in

Fig. 8c, where the 5 edges marked by red dashes through them
are the edges that compose the optimal S–T cut, Copt. Although
the middle component maze has 2 edges that could also compose
an S–T cut, the cut would not be optimal since these 2 edges each
have a width that is three times larger than the width of any edge
in the bottom component maze (see Table C.1 in Appendix C2). So,
choosing 5 edges from the bottom component maze would yield a
smaller min-cut-size than choosing 2 edges from the middle com-
ponent maze. From Equation (5), the capacity of Copt (i.e the min-
cut-size j) is 3.004. Together, the three graph parameters of the
composite maze are more ideal than those of any of the single-
component mazes in Fig. 6 of Section 4.
Appendix C2: Construction of the composite maze

Here we provide further details on how the composite maze
was constructed. Table C.1 summarizes the information for each
of the three mazes. For the edges connecting two nodes at the
interface between two different component mazes, the channel
segment width wi of these edges were approximated by setting
them equal to the average of the channel segment widths of the
two adjacent mazes. Recall that the Sidewinder algorithm gener-
ates mazes with the top row of cells containing no vertical walls.
After using the Sidewinder algorithm to generate each component
maze, a modification was done. This modification involved adding
a west wall to each cell along the top row of cells at a 50% proba-
bility, and the reason was to minimize the amount of horizontal
flow in the row of cells (i.e. interface) between the mazes; in
Fig. 8b, these added, vertical walls actually appear on the bottom
row of cells in each component maze, since each component maze
was further modified by flipping it vertically (this flipping was
done to better capture the downwards funneling aspect of the flow
field in the real membrane). Finally, the component mazes were
stacked on top of each other and all the horizontal walls between
ll size/channel segment width (lm) Overall thickness (lm)

33 23.33
67 86.67
22 20.0
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them were removed to ‘‘stitch” them together and create the com-
posite maze.
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