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Dual Consensus Proximal Algorithm for

Multi-Agent Sharing Problems
Sulaiman A. Alghunaim , Qi Lyu, Ming Yan , and Ali H. Sayed , Fellow, IEEE

Abstract—This work considers multi-agent sharing optimization
problems, where each agent owns a local smooth function plus a
non-smooth function, and the network seeks to minimize the sum
of all local functions plus a coupling composite function (possibly
non-smooth). For this non-smooth setting, centralized algorithms
are known to converge linearly under certain conditions. On the
other hand, decentralized algorithms have not been shown to
achieve linear convergence under the same conditions. In this
work, we propose a decentralized proximal primal-dual algorithm
and establish its linear convergence under weaker conditions than
existing decentralized works. Our result shows that decentralized
algorithms match the linear rate of centralized algorithms without
any extra condition. Finally, we provide numerical simulations that
illustrate the theoretical findings and show the advantages of the
proposed method.

Index Terms—Multi-agent optimization, sharing problem, dual
consensus, proximal algorithm, linear convergence.

I. INTRODUCTION

W
E CONSIDER a network of K agents connected by

some topology. The goal of agent k is to find its cor-

responding solution, denoted by w�
k ∈ R

Qk , of the following

multi-agent optimization problem:

min
w1,...,wK

K∑

k=1

(
Jk(wk) +Rk(wk)

)
+ h

(
K∑

k=1

Bkwk

)
, (1)

where each Jk : R
Qk → R is a smooth convex function,

Rk : R
Qk → R ∪ {+∞} and h : R

E → R ∪ {+∞} are con-

vex (possibly non-smooth) functions, and Bk ∈ R
E×Qk . The

two functions (Jk and Rk) and the matrix Bk are known

privately by agent k, while all agents know the function h.

Problem (1) is the sharing problem [2], where the individual
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variables {wk}
K
k=1 are coupled through a composite coupling

function h. Formulation (1) arises in various engineering and

machine learning applications, such as image processing [3],

distributed basis pursuit [4], smart grids [5], [6], and learning

problems over distributed models [2], [7], [8]. In this work, we

study the linear convergence of decentralized algorithms (i.e.,

methods that only use local communications between directly

connected agents) for problem (1).

Many methods can solve general problems of the form (1)

– see [9]–[15] and references therein. Applying these meth-

ods directly to problem (1) result in centralized implementa-

tions, where a global communication step is needed to com-

pute
∑K

k=1 Bkwk. When h is nonsmooth, centralized algo-

rithms have been shown to converge linearly if each Rk =

0,
∑K

k=1 Jk(wk) is strongly-convex, and the matrix B =
[B1 · · · Bk] has full row rank [9]–[11]. When h is smooth,

centralized algorithms have also been shown to converge linearly

if
∑K

k=1 Jk(wk) is strongly-convex [12]–[14].

Existing linear convergence results for decentralized algo-

rithms solving the sharing problem (1) have only been estab-

lished under special cases and require stronger assumptions

compared to the ones used to establish linear convergence of

centralized algorithms. In this work, we close this theoretical

linear convergence gap between decentralized and centralized

algorithms for problem (1). In particular, we propose a novel

decentralized algorithm for problem (1) and establish its lin-

ear convergence under conditions matching the ones used for

centralized algorithms.

A. Related Works

Sharing problems of the form (1) have been studied for many

years [16], [17] – see the discussion in [2]. However, most

works that study decentralized methods for the sharing problem

consider different and/or special setups from this work. For

example, the works [17]–[29] study the case where agents are

coupled through equality constraints (i.e., h(x) = 0 if x = 0
and h(x) = ∞ otherwise). The works [30], [31] study inequal-

ity constrained sharing problems (i.e., h(x) = 0 if x ≤ 0 and

h(x) = ∞ otherwise). The works [32]–[35] consider a smooth

coupling function h, and the work [36] considers conic cou-

pling constraints. While decentralized algorithms for sharing

problems have been studied before, their linear convergence

under decentralized setups are not well established compared

to centralized algorithms as we explain next.

For a general non-smooth function h, centralized algo-

rithms are known to converge linearly when each Rk(wk) =

0,
∑K

k=1 Jk(wk) is strongly-convex, and the matrix B =
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TABLE I
COMPARISON WITH EXISTING DECENTRALIZED METHODS LINEAR CONVERGENCE RESULTS FOR PROBLEM (1). HERE, B = [B1 · · · BK ], SC MEANS STRONGLY

CONVEX, AND LC MEANS LINEAR CONSTRAINTS. THE COST Jk IS SMOOTH

[B1 · · · Bk] has full row rank [9]–[11]. On the other hand,

existing decentralized linear convergence results have only been

established for the special case of an equality constraint cou-

pling function h (i.e., h is an indicator function of equality

constraints) [19]–[23], [25], [26]. Moreover, these results require

Bk = I [19]–[22], [26] or each matrix Bk to have full row

rank [23], [25].

For a smooth function h, centralized algorithms can achieve

linear convergence if
∑K

k=1 Jk(wk) is strongly-convex [12]–

[15]. Decentralized algorithms have been shown to achieve

linear convergence ifh is smooth, albeit under special and/or dif-

ferent cases from the centralized case. In particular, the work [34]

established linear convergence for the case where h is smooth

and each Rk(wk) = 0. The work [35] studied problem (1) with

Jk(wk) = 0 and established linear convergence for smooth h
and strongly-convexRk(wk). Table I summarizes the conditions

used to establish linear convergence of decentralized algorithms

for problem (1).

We remark that problem (1) can be reformulated into an

equivalent decentralized problem (see (12)) amenable to decen-

tralized solutions. The same algorithms that solve (1) can also

be used to solve the equivalent problem to get decentralized

implementations. However, their linear convergence guarantees

are not satisfied for the decentralized formulation, and the linear

convergence results from [9]–[15] are not applicable to decen-

tralized setups – see Remark 2.

Finally, note that if we choose h to be the indicator function

of the consensus constraint: w1 = · · · = wK , then formulation

(1) recovers the “consensus problem,” where the agents share a

common variable – see e.g., [37]–[44] and references therein.

Algorithms solving the consensus problem are not generally

applicable to the sharing problem [2, Ch. 7]. This is because,

decentralized consensus algorithms exploit the network sparsity

structure of the matrix [B1, . . . , BK ]. In the sharing formula-

tion (1), this matrix is not necessarily sparse; moreover, the

matrix Bk is privately known by agent k alone.

B. Contribution

A natural question is whether decentralized algorithms can

achieve linear convergence under the same conditions as

centralized algorithms. In this work, we give a positive answer to

this question. In particular, we propose a decentralized algorithm

and establish its linear convergence to the exact solution of (1)

under weaker conditions than existing decentralized algorithms

– see Table I. Below, we list the main contributions of this

work:
� We reformulate problem (1) into an equivalent saddle-point

problem, which is amenable to decentralized algorithms,

and propose a dual consensus proximal algorithm (DCPA)

to solve this equivalent problem.
� For a smooth function h, we show that DCPA converges

linearly if
∑K

k=1 Jk(wk) is strongly-convex in the presence

of non-smooth Rk. This result matches the linear conver-

gence of centralized algorithms for smooth h.
� For a non-smooth function h, we show that DCPA con-

verges linearly when each Rk(wk) = 0,
∑K

k=1 Jk(wk)
is strongly-convex, and the matrix B = [B1 · · · Bk]
has full row rank. This result closes a major theoreti-

cal gap in linear convergence between centralized and

decentralized algorithms for sharing problems of the

form (1).

We note that the preliminary work [1] studied a different algo-

rithm for a special case where each Rk(wk) = 0. Moreover, the

linear convergence result in [1] requires a stronger assumption

that each matrix Bk has full row rank.

Notation: We let IS denote the S × S identity matrix, while

the symbol 1N denotes the N × 1 vector with all entries equal

to one. The subscripts are dropped when there is no confusion.

The vector formed by stacking x1, . . . , xN on top of each

other is denoted by col{xj}Nj=1. The block diagonal matrix

with diagonal blocks {Xj}
N
j=1 is denoted by blkdiag{Xj}

N
j=1.

For any matrix A, we let σmax(A) and σ(A) denote the

largest and smallest non-zero singular values of A, respectively.

For a square matrix A, we let λmax(A) and λmin(A) denote

the largest and smallest eigenvalues of A, respectively. We

let ‖x‖2A = xTAx. Given a function f : R
M → R, its sub-

differential ∂f(x) at x ∈ R
M is the set of all subgradients

at x. Its proximal operator with step-size µ is proxµf (x) =

arg minuf(u) +
1
2µ‖u− x‖2. Its conjugate with domain R

M

is f ∗(v) = supx vTx− f(x). The function f is δ-smooth (δ >
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0) if ‖∇f(x)−∇f(y)‖ ≤ δ‖x− y‖ for all x, y ∈ R
M . It is

ν-strongly-convex (ν > 0) if (x− y)T(∇f(x)−∇f(y)) ≥
ν‖x− y‖2 for all x, y ∈ R

M .

II. DECENTRALIZED SADDLE-POINT FORMULATION

In this section, we show how problem (1) can be reformulated

into an equivalent saddle-point problem that is amenable to

decentralized solutions.

A. Saddle-Point Formulation

We start by rewriting the problem (1) in a compact form. We

define the network quantities:

W
∆
= col{w1, . . . , wK} ∈ R

Q, Q
∆
=

K∑

k=1

Qk, (2a)

J (W)
∆
=

K∑

k=1

Jk(wk), R(W)
∆
=

K∑

k=1

Rk(wk), (2b)

B
∆
=

[
B1 · · · BK

]
∈ R

E×Q. (2c)

Using the above notation, problem (1) becomes

min
W

J (W) +R(W) + h (BW) . (3)

Throughout this work, the following assumption holds.

Assumption 1 (Objective Function): The functionJ : R
Q →

R is δ-smooth and convex. The functions R : R
Q → R ∪

{+∞} and h : R
E → R ∪ {+∞} are proper lower semi-

continuous and convex. There exists W in the relative interior

domain ofR such thatBW belongs to the relative interior domain

of h. Problem (3) has a solution W
�.

Under Assumption 1, problem (3) is equivalent to the saddle-

point problem [45, Proposition 19.18]:

min
W

max
y

J (W) +R(W) + yTBW − h∗(y), (4)

where y ∈ R
E is the dual variable. Moreover, (W�, y�) is an

optimal solution of (4) if, and only if, it satisfies [45, Proposition

19.18]:

−BTy� −∇J (W�) ∈ ∂R(W�), (5a)

BW
� ∈ ∂h∗(y�). (5b)

Note that the dual variable y in (4) is multiplied by B, which

couples all agents. Therefore, algorithms directly solving (4)

cannot be implemented in a decentralized manner. Next, we

reformulate the problem into another equivalent problem that is

amenable to decentralized solutions.

B. Decentralized Saddle-Point Formulation

Let J (W)
∆
= J (W) +R(W), then the dual problem of (3)

is [45], [46]:

max
y

−J
∗
(−BTy)− h∗(y). (6)

The above problem is a decentralized consensus problem since

J
∗
(−BTy) =

∑K
k=1 J

∗
k(−BT

ky) where J
∗
k is the conjugate of

Jk
∆
= Jk +Rk. Note that the conjugate function J

∗
k does not

have a closed-form expression in general, and its gradient is

expensive to obtain. Thus, it is infeasible to solve (6) in its

current form. Next, we consider the dual problem as a consensus

problem and let yk denote a local copy of y available at agent k.

For simplicity, we introduce the following network quantities:

Y
∆
= col{yk}

K
k=1 ∈ R

EK , (7a)

H∗(Y)
∆
=

1

K

K∑

k=1

h∗(yk), (7b)

Bd
∆
= blkdiag{Bk}

K
k=1, (7c)

and a symmetric matrix L ∈ R
EK×EK such that:

LY = 0 ⇐⇒ y1 = · · · = yK . (8)

Then, the dual problem (6) is equivalent to:

max
Y

−J
∗
(−BT

dY)−H∗(Y), s.t. LY = 0. (9)

Note that we will later choose a specific matrix L that is related

to the network. Introducing an additional variable θ = −BT

dY,

we derive the following Lagrange dual function of problem (9):

sup
Y,θ

−J
∗
(θ)−H∗(Y) + W

T(θ + BT

dY) + X
TLY,

= sup
θ

(WTθ − J
∗
(θ)) + sup

Y

(
(BdW + LX)T

Y −H∗(Y)
)
,

= J (W) +H(BdW + LX). (10)

Therefore, the dual problem of (9) is:

min
W,X

J (W) +H(BdW + LX), (11)

and the saddle-point reformulation of problem (11) is [45, Propo-

sition 19.18]:

min
W,X

max
Y

J (W) +R(W) + Y
TBdW + Y

TLX −H∗(Y).

(12)

Lemma 1 (Saddle-Point): Suppose that Assumption 1 holds

and let (W�, X�, Y�) be a saddle-point of (12), i.e.,

−BT

dY
� −∇J (W�) ∈ ∂R(W�), (13a)

LY
� = 0, (13b)

BdW
� + LX

� ∈ ∂H∗(Y�). (13c)

Then it holds that Y
� = 1K ⊗ y� and the point (W�, y�) satisfy

the optimality condition (5).

Proof: See Appendix A. �

Remark 1 (Existence of X
�): Suppose that W

� and Y
� =

1K ⊗ y� are given such that (W�, y�) satisfies (5). From matrix

algebra [47], we can decompose BdW
� = 1

K
1K ⊗BW

� + LX̂

into the null space and range space of the symmetric matrix L.

Then X
� = −X̂ satisfies (13c) since

BdW
� + LX

� = 1
K
1K ⊗BW

�
(5b)
∈ ∂H∗(Y�).

Note that for any W
� and Y

� = 1K ⊗ y�, the value of X
� is not

unique because adding a vector from the null space of L does

not change the optimality condition (13c).

From Lemma 1 and Remark 1, we see that problem (12) is

equivalent to problem (4). However, unlike problem (4), problem

(12) can be solved in a decentralized because the matrices Bd

and L encode the network sparsity structure.

Remark 2 (Partial Strong-Convexity): The decentralized

saddle-point formulation (12) is only strongly convex with
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respect to W and not strongly-convex with respect to (W, X).
Moreover, Bd is not assumed to have any rank condition. There-

fore, existing linear convergence results [9]–[14] on general

saddle-point problems of form (12) are not applicable.

III. PROPOSED DECENTRALIZED SOLUTION

In this section, we introduce our proposed algorithm. To do

that, we first select L based on the network graph.

A. Network Combination Matrix

We introduce the network combination weights {ask}, where

ask is a scalar used by agent k to scale information coming

from agent s. We let ask = 0 if s /∈ Nk, where Nk denotes

the set of agents directly connected to agent k through an

edge, including agent k itself. We also introduce the network

combination matrices:

A = [ask], A
∆
= A⊗ IE . (14)

Assumption 2 (Combination Matrix): We assume that the

network is static and undirected. Moreover, the matrix A is

symmetric, doubly stochastic, and primitive.

We choose L2 as follows:

L2 = 1
2 (I −A). (15)

Note that under Assumption 2, the eigenvalues of the matrix A
belong to (−1, 1] – see [40, Lemma F.4]. Thus, it holds that 0 ≤
L2 < I and 0 < σ2(L) ≤ σ2

max(L) < 1. Note that the matrix

L is defined as the square root of 1
2 (I −A), which is properly

defined. To see this, let us introduce the eigen-decomposition

of the positive semidefinite matrix L2 = 1
2 (I −A) = UD2UT

then L exists and equal to L = UDUT.

B. Dual Consensus Proximal Algorithm

To solve (12), we propose the following dual consensus

proximal algorithm (DCPA). Initialize W−1, Y−1 with arbitrary

values and let X−1 = 0. Choose step-sizes µw, µy, µx > 0 and

repeat for i ≥ 0:

Wi = proxµwR(Wi−1 − µw∇J (Wi−1)− µwB
T

dYi−1), (16a)

Vi = Yi−1 − L2
Yi−1 + µyBd(2Wi − Wi−1) + LX i−1, (16b)

X i = X i−1 − µxLVi, (16c)

Yi = proxµyH∗(Vi). (16d)

Recall thatL2 = 1
2 (I −A) has the network structure butL does

not necessarily have the network structure. We can make a simple

change of variable to transform DCPA (16) into an equivalent

and fully decentralized recursion. In particular, if we let Zi =
L(X i − LYi) and multiply the update (16c) by L, then we can

rewrite (16) into the following equivalent recursion:

Wi = proxµwR(Wi−1 − µw∇J (Wi−1)− µwB
T

dYi−1), (17a)

Vi = Yi−1 + µyBd(2Wi − Wi−1) + Zi−1, (17b)

Yi = proxµyH∗(Vi), (17c)

Zi = Zi−1 − L2(µxVi + Yi − Yi−1). (17d)

Since only L2 appears in (17), the k-th block vector of Wi, Yi, Zi

can be updated by agent k only as listed in Algorithm 1. The

step (18d) requires agent k to send (µxvk,i + yk,i − yk,i−1) to

its immediate neighbors Nk.

Algorithm 1: Dual Consensus Proximal Algorithm (DCPA).

Setting: Let C = 1
2 (I −A) = [csk]. Choose step-sizes

µw > 0, µy > 0, µx > 0. Let zk,−1 = yk,−1 = 0 and

arbitrary wk,−1.

For every agent k, repeat for i ≥ 0:

wk,i = prox
µwRk

(
wk,i−1 − µw∇Jk(wk,i−1)− µwB

T

kyk,i−1

)
,

(18a)

vk,i = yk,i−1 + µyBk(2wk,i − wk,i−1) + zk,i−1, (18b)

yk,i = prox
µy
K

h∗

(vk,i), (18c)

zk,i = zk,i−1 −
∑

s∈Nk

csk(µxvs,i + ys,i − ys,i−1). (18d)

Remark 3 (Intuition for the Update (16)): Algorithm (16) is

not a typical proximal primal-dual method. The main difference

lies in the update of X i in (16c), where it uses the auxiliary

variable Vi instead of the dual estimate Yi. This is inspired

from [48] albeit for a different problem. This is a critical step that

allows us to establish linear convergence when h is nonsmooth.

The term Bd(2Wi − Wi) is not necessary for our result and

can be, for example, replaced by BdWi. However, we use it

here because algorithms using the formBd(2Wi − Wi) instead of

BdWi have stronger convergence guarantees under nonstrongly-

convex settings – see [3].

The term −L2
Yi−1 allows us to establish linear convergence

by only requiring B to have full row rank in Theorem 2 instead

of requiring eachBk to have full row rank. SinceLY = 0, having

this term is equivalent to adding −1/2YL2
Y to the saddle-point

function in (12), which makes it an augmented Lagrangian

formulation.

IV. LINEAR CONVERGENCE RESULTS

In this section, we list our main linear convergence results.

We begin with some auxiliary results.

A. Auxiliary Results

The next result shows the existence and optimality of the fixed

points of (16).

Lemma 2 (Fixed Point of DCPA): A fixed point

(Wo, Xo, Yo, Vo) of recursion (16) exists, i.e.,

0 ∈ ∇J (Wo) + BT

dY
o + ∂R(Wo), (19a)

V
o = Y

o + µyBdW
o + LX

o, (19b)

0 = LV
o, (19c)

Y
o = proxµyH∗(Vo), (19d)

and L2
Y
o = 0. Moreover, for any fixed-point (Wo, Xo, Yo, Vo),

it holds that Y
o = 1K ⊗ yo and (Wo, yo) is an optimal point for

problem (4). Consequently, W
o is an optimal solution of (3).

Proof: See Appendix B. �
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Note that if X−1 = 0, then from (16c), we have X1 = −LV1,

which is in the range space of L. As a consequence, the iterates

{X i}i≥0 stay in the range space of L. It can be shown that for

a given point (Wo, Yo, Vo), there exists a unique X
o, denoted by

X̄
o, in the range space ofL [49], [50]. To analyze algorithm (16),

we consider the error quantities:

W̃i = Wi − W
o, Ỹi = Yi − Y

o, (20a)

Ṽi = Vi − V
o, X̃ i = X i − X̄

o. (20b)

From equations (16) and (19), and the definition of the proximal

mapping, the error quantities evolve as:

W̃i = W̃i−1 − µw (∇J (Wi−1)−∇J (Wo))− µwB
T

d Ỹi−1

− µw

(
∂̂R(Wi)− ∂̂R(Wo)

)
, (21a)

Ṽi = Ỹi−1 − L2
Ỹi−1 + µyBd(2W̃i − W̃i−1) + LX̃ i−1, (21b)

X̃ i = X̃ i−1 − µxLṼi, (21c)

Ỹi = proxµyH∗(Vi)− proxµyH∗(Vo), (21d)

where ∂̂R(W) ∈ ∂R(W). The following result will be useful in

our analysis.

Lemma 3 (Inequality bound): Assume that the step-sizes µw,

µy , and µx are strictly positive. Then, the iterates of the error

recursion (21) satisfy:

cy‖Ṽi‖
2
I−µxL2 +

cy
µx

‖X̃ i‖
2

≤
(
1− µxσ

2(L)
) cy

µx
‖X̃ i−1‖

2

+ cy‖Ỹi−1 − L2
Ỹi−1 + µyBdW̃i‖

2

+ 2µwµy‖Bd(W̃i − W̃i−1)‖
2 + µwµy‖BdW̃i‖

2

− µwµy‖BdW̃i−1‖
2 + 2µw(W̃i − W̃i−1)

T

× BT

d(Ỹi−1 − L2
Ỹi−1), (22)

where cy = µw

µy
.

Proof: See Appendix C. �

B. Linear Convergence of DCPA

In this section, we establish the linear convergence of (16)

under two different conditions listed in Assumption 3.

Assumption 3: The function J (W) is ν-strongly-convex and

either one of the following two conditions is satisfied.

I: The function h is 1
νh

-smooth.

II: B = [B1 · · · BK ] has full row rank and R = 0.

Remark 4: Assumption 3 is typically required for linearly

convergent algorithms in solving the centralized saddle-point

(4). Assumption 3-I implies that the conjugate function h∗ is

strongly-convex, and Assumption 3-II implies that J ∗(−BTy)
is strongly-convex. In other words, Assumption 3 implies that

the centralized dual formulation (6) is strongly-concave.

We establish the linear convergence of (16) under Assumption

3-I and 3-II separately.

Theorem 1 (Linear Convergence I): Let Assumptions 1, 2,

and 3-I hold. If the step-sizes µw, µy , and µx satisfy

µw ≤
1

2δ − ν + (2µy +
1
νh
)σ2

max(Bd)
, (23a)

µy <
ν

3σ2
max(Bd)

, (23b)

µx <
µyνh

(1 + µyνh)σ2
max(L)

, (23c)

then it holds that Vi ≤ γVi−1, i ≥ 0, where

Vi = ‖W̃i‖
2 + cy(1 + µyνh)

2β‖Ỹi‖
2 +

cy
µx

‖X̃ i‖
2 (24a)

γ = max

{
1− µwν,

1
(1+µyνh)β

, 1− µxσ
2(L)

}
< 1, (24b)

and β = 1− µxσ
2
max(L).

Proof: See Appendix D. �

The above result shows that when h is smooth, DCPA con-

verges linearly. The assumptions used to establish this result

matches the ones in the centralized case [12]–[14]. The next

result establishes the linear convergence for the case where h is

non-smooth.

Theorem 2 (Linear Convergence II): Let Assumptions 1, 2,

and 3-II hold. If the step-sizes µw, µy , and µx satisfy

µw < 1
3δ , µy ≤ ν(1−σ2

max
(L))

2σ2
max

(Bd)
, (25a)

µx <
min{1, λmin(µwµyBdB

T

d + 1
2L

2)}

σ2
max(L)

, (25b)

then it holds that Vi ≤ γVi−1, i ≥ 0, where

Vi = ‖W̃i‖
2
Cw

+ cyβ‖Ỹi‖
2 +

cy
µx

‖X̃ i‖
2 (26a)

γ = max

{
1− µwν(1− 3µwδ),

1−λmin(µwµyBdB
T

d
+

1
2L

2)

1−µxσ2
max

(L) ,

1− µxσ
2(L)

}
< 1, (26b)

with Cw = I − 2µyµw

1−σ2
max

(L)B
T

dBd and β = 1− µxσ
2
max(L).

Proof: See Appendix D. �

Theorem 2 shows that whenh is nonsmooth, DCPA converges

linearly to the exact solution if each Rk = 0. To the best of

our knowledge, this is the first result that establishes the linear

convergence of a decentralized algorithm for non-smooth h and

under the same conditions used to establish the linear conver-

gence of centralized algorithms [9]–[11]. As shown in Remark

2, while the methods from [9]–[14] can be used to solve (12),

their linear convergence requires stronger assumptions that are

not satisfied here.

V. NUMERICAL EXPERIMENTS

In this section, we apply the DCPA algorithm to two numerical

problems: the elastic net problem and a ridge regression prob-

lem. All experiments are performed using MATLAB R2019b on

a laptop with Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz.

A. Elastic Net

We first consider the elastic net problem [51]:

min
w1,...,wK

f(W), (27)

where

f(W)
∆
=

K∑

k=1

(
1

2
‖wk‖

2 + βk‖wk‖1

)
+

γ

2

∥∥∥∥∥
K∑

k=1

Bkwk − b

∥∥∥∥∥

2

.
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Fig. 1. Comparison of COLA [35] and DCPA. Left: the distance of Wi to the optimal solution W�, which is defined by ‖Wi − W�‖2. Right: the objective function
value at each iteration minus the optimal function value. Both algorithms require one communication step per iteration.

Fig. 2. The convergence rate plot of W and function value, which is defined by ‖Wi − W�‖2 and f(Wi)− f�. The black one is the baseline: µw = 0.03,
µy = 0.03, and µx = 0.5. The blue lines only change µw from the baseline values, while the red lines change µy and the green lines change µx.

The above problem satisfies Assumption 3-I because h(·)
∆
=

γ
2 ‖ · −b‖2 is γ-smooth. We choose K = 10, wk ∈ R

20 for all k,

Bk ∈ {0, 1}20×20 with entries randomly drafted from {0,1} for

all k, and b ∈ R
20, whose entries are chosen from the standard

normal distribution independently. Since there are K agents,

there can be at most
K(K−1)

2 edges. We define the connectivity

ratio as the actual edges divided by
K(K−1)

2 . The network graph

is generated using the same way as [49] with connectivity ratio

0.4. We set the parameters γ = 0.1 and βk = 1 for all k. The

optimal function value f� = f(W�) is estimated by the CVX

toolbox [52].

1) Comparison With COLA: We compare the performance

of our proposed algorithm and COLA [35] on problem (27).

The parameter setting of DCPA is µw = 0.1, µy = 0.003 and

µx = 0.3. The COLA parameters are chosen as recommended

in [35]. The results are shown in Fig. 1. Both algorithms have

linear convergence, and DCPA has a faster convergence rate

than COLA in terms of number of iterations (or communication

rounds). One reason for this superiority is that COLA requires

solving inner optimization sub-problems at each iteration that

do not have analytical solutions and can only be approximated.

In our simulations, we used FISTA [53] to approximate the

solutions of these sub problems. Hence, the computational time

for each iteration of COLA may be larger than that of DCPA,

because several FISTA iterations are required at each COLA

iteration.

2) Step-Sizes µw, µx, and µy: We simulate DCPA for differ-

ent step-size parameters. We define the baseline parameters as

µw = 0.03,µy = 0.03, andµx = 0.5, since it gives a reasonable

performance. We fix two step-size parameters and change the

third one. The result is shown in Fig. 2. We see that increasing

µw or µy from the baseline value results in faster convergence

speed.

To see how the step-sizes affects the convergence of the

algorithm, we numerically test different step-size parameters.

For any fixed µw and µy , there exist an upper bound for the

parameter µx to make the algorithm converge. The contour

lines (or level sets) of this upper bound is shown in Fig. 3.

The figure shows that µw and µy have an inverse relation;

moreover, increasing µx decreases the range of step-sizes µw

and µy .
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Fig. 3. The contour of the upper bound of µx to make DCPA converge.

Fig. 4. The convergence of Wi to the optimal solution W�, ‖Wi − W�‖2, for
ridge regression problem.

B. Ridge Regression

In this section, we test our algorithm for the case where h is

non-smooth. We consider the ridge regression problem

min
w1,...,wK

f(W)
∆
=

1

2

K∑

k=1

‖wk‖
2,

subject to

∥∥∥∥∥
K∑

k=1

Bkwk − b

∥∥∥∥∥ ≤ σ, (28)

which can be rewritten as

min
w1,...,wK

1

2

K∑

k=1

‖wk‖
2
2 + h

(
K∑

k=1

Bkwk

)
, (29)

with h being the indicator function that returns zero for all

‖x− b‖ ≤ σ and +∞ otherwise. The above problem satisfies

Assumption 3-II if B = [B1, . . . , BK ] has a full row rank. We

let σ = 0.1 in the numerical experiment. As in the previous

experiment, we generate a random graph with K = 20 agents

and connectivity ratio 0.3. We letwk ∈ R
10 for all k. The matrix

Bk ∈ {0, 1}20×10 and the vector b ∈ R
20 are constructed using

the same way as in the previous experiment. The result is shown

in Fig. 4. As expected DCPA achieves linear convergence under

Assumption 3-II.

VI. CONCLUSION

We studied the linear convergence of decentralized algorithms

for the multi-agent sharing optimization problem (1) with a

general coupling function (possibly non-smooth). To solve the

problem in a decentralized manner, we reformulated it into the

equivalent decentralized saddle-point problem (12). We pro-

posed a decentralized algorithm that solves problem (12) (hence,

(1)) and established its exact global linear convergence. Our

conditions are weaker than the conditions used to establish linear

convergence of existing decentralized algorithms and match the

standard conditions used to establish linear convergence for

centralized implementations. Finally, we provided numerical

simulations that illustrate our theory and show the advantages

of the proposed method.

APPENDIX A

PROOF OF LEMMA 1

It holds that Y
� = 1K ⊗ v� for some v�, which follows from

equations (8) and (13b). Thus, substituting −BT

dY
� = −BTv�

into (13a), we have:

−BTv� −∇J (W�) ∈ ∂R(W�). (30)

Multiplying (13c) by 1
T

K ⊗ IE on the left, we get:

(1T

K ⊗ IE)BdW
� + (1T

K ⊗ IE)LX
� ∈ (1T

K ⊗ IE)∂H
∗(Y�)

=⇒ BW
� ∈ ∂h∗(v�), (31)

where we used the fact that (1T

K ⊗ IE)L = 0 and Y
� = 1K ⊗

v�. Equations (30) and (31) are the same conditions as (5). Thus,

the point (W�, y�) with y� = v� is optimal. �

APPENDIX B

PROOF OF LEMMA 2

Suppose that an optimal point (W�, y�) of of (4) is given,

which satisfies (5). We define W
o ∆

= W
� and Y

o ∆
= Y

� = 1K ⊗
y�. Then, (19a) is satisfied due to (13a). We define

V
o = 1K ⊗ vo

∆
= 1K ⊗

(
y� +

µy

K
BW

�
)
, (32)

which satisfies condition (19c). Note that equation (19d) is

equivalent to V
o − Y

o ∈ µy∂G∗(Yo). Hence, from the definition

of G∗, (5b) and (32), the condition (19d) is satisfied. It remains

to show the existence of X
o such that (19b) holds. Note that

(1�
K ⊗ IE)(V

o − Y
o − µyBdW

o)

= K(vo − yo)− µyBW
o (32)

= 0. (33)

This means that Vo − Y
o − µyBdW

o is in null space of1�
K ⊗ IE ,

consequently, it is in the range space of L. Hence, there exists

X
o such that (19b) holds.

Now, suppose that (Wo, Xo, Yo, Vo) is a fixed-point of (16).

It follows that V
o = 1K ⊗ vo due to equation (19c). As a re-

sult, (19d) implies that Y
o = 1K ⊗ yo. We also have BdW

o +
1
µy

LX
o ∈ ∂G∗(Yo), which holds from (19b) and (19d). Thus,

using Lemma 1, the point (Wo, yo) satisfies the optimality con-

dition (5). �
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APPENDIX C

PROOF OF LEMMA 3

Taking the norm squares of (21b) and (21c), we have:

‖Ṽi‖
2 =‖Ỹi−1−L2

Ỹi−1 + µyBd(2W̃i − W̃i−1)‖
2 + ‖LX̃ i−1‖

2

+ 2X̃T

i−1L(Ỹi−1 − L2
Ỹi−1 + µyBd(2W̃i − W̃i−1)),

(34)

and

‖X̃ i‖
2 = ‖X̃ i−1‖

2 + µ2
x‖LṼi‖

2 − 2µxX̃
T

i−1L
(
Ỹi−1 − L2

Ỹi−1

+µyBd(2W̃i − W̃i−1) + LX̃ i−1) . (35)

Dividing (35) by µx and adding it to (34) give us

‖Ṽi‖
2
I−µxL2 + 1

µx
‖X̃ i‖

2

= 1
µx

‖X̃ i−1‖
2
I−µxL2 + ‖Ỹi−1 − L2

Ỹi−1

+ µyBd(2W̃i − W̃i−1)‖
2

= 1
µx

‖X̃ i−1‖
2
I−µxL2 + ‖Ỹi−1 − L2

Ỹi−1 + µyBdW̃i‖
2

+ µ2
y‖Bd(W̃i − W̃i−1)‖

2

+ 2µy(W̃i − W̃i−1)
TBT

d

(
Ỹi−1 − L2

Ỹi−1 + µyBdW̃i

)
.

(36)

We can rewrite the last term on the right hand side of (36) as

2µy(W̃i − W̃i−1)
TBT

d(Ỹi−1 − L2
Ỹi−1 + µyBdW̃i)

= 2µ2
y(BdW̃i − BdW̃i−1)

TBdW̃i

+ 2µy(W̃i − W̃i−1)
TBT

d(Ỹi−1 − L2
Ỹi−1)

= µ2
y‖Bd(W̃i − W̃i−1)‖

2 + µ2
y‖BdW̃i‖

2 − µ2
y‖BdW̃i−1‖

2

+ 2µy(W̃i − W̃i−1)
TBT

d(Ỹi−1 − L2
Ỹi−1), (37)

where we used 2xTy = ‖x‖2 + ‖y‖2 − ‖x− y‖2 in the last

step. Substituting the above equation into (36) and multiplying

by cy = µw

µy
, we get

cy‖Ṽi‖
2
I−µxL2 +

cy
µx

‖X̃ i‖
2

=
cy
µx

‖X̃ i−1‖
2
I−µxL2 + cy‖Ỹi−1 − L2

Ỹi−1 + µyBdW̃i‖
2

+ 2µwµy‖Bd(W̃i − W̃i−1)‖
2 + µwµy‖BdW̃i‖

2

− µwµy‖BdW̃i−1‖
2

+ 2µw(W̃i − W̃i−1)
TBT

d(Ỹi−1 − L2
Ỹi−1). (38)

Now, since X−1 = 0 and X̄
o belong to the range space of L, the

error quantity X̃ i−1 always belongs to the range space L. This

implies that [50, Lemma 1]:

‖X̃ i−1‖
2
L2 ≥ σ2(L)‖X̃ i−1‖

2.

Therefore,

‖X̃ i−1‖
2
I−µxL2 ≤

(
1− µxσ

2(L)
)
‖X̃ i−1‖

2. (39)

Using this bound in (38) we get our result. �

APPENDIX D

THEOREM 1 AND 2 PROOFS

Lemma 4: Under Assumption 1, the iterates of the error

recursion in (21) satisfy:

‖W̃i‖
2 − µwµy‖BdW̃i‖

2 + cy‖Ṽi‖
2
I−µxL2︸ ︷︷ ︸

(A)

+
cy
µx

‖X̃ i‖
2

≤ ‖W̃i−1‖
2−µwµy‖BdW̃i−1‖

2+cy‖Ỹi−1‖
2 − 2cy‖Ỹi−1‖

2
L2

+
(
1− µxσ

2(L)
) cy

µx
‖X̃ i−1‖

2 − ‖W̃i − W̃i−1‖
2

+ 2µwµy‖Bd(W̃i − W̃i−1)‖
2

−2µw(∇J (Wi−1)−∇J (Wo))�W̃i︸ ︷︷ ︸
(B)

+ cy‖µyBdW̃i − L2
Ỹi−1‖

2

︸ ︷︷ ︸
(C)

+ 2µw(W̃i − W̃i−1)
TBT

d(Ỹi−1 − L2
Ỹi−1)︸ ︷︷ ︸

(D)

. (40)

Proof: Since the subgradient of a convex function is mono-

tone, it holds that

0 ≤ 2µw

(
∂̂R(Wi)− ∂̂R(Wo)

)�
W̃i

(21a)
= 2

(
W̃i−1 − W̃i − µw(∇J (Wi−1)−∇J (Wo))

− µwB
�
d Ỹi−1

)�

W̃i

= 2(W̃i−1 − W̃i)
�
W̃i − 2µw (∇J (Wi−1)−∇J (Wo))� W̃i

− 2µwỸ
�
i−1BdW̃i. (41)

Using

2(W̃i−1 − W̃i)
�
W̃i = ‖W̃i−1‖

2 − ‖W̃i‖
2 − ‖W̃i − W̃i−1‖

2

and

− 2µwỸ
�
i−1BdW̃i

= cy‖Ỹi−1‖
2 + cy‖µyBdW̃i − L2

Ỹi−1‖
2

− 2cy‖Ỹi−1‖
2
L2 − cy‖Ỹi−1 + µyBdW̃i − L2

Ỹi−1‖
2,

with cy = µw/µy , and rearranging (41), we get:

‖W̃i‖
2 ≤ ‖W̃i−1‖

2 − ‖W̃i − W̃i−1‖
2

− 2µw (∇J (Wi−1)−∇J (Wo))� W̃i

+ cy‖Ỹi−1‖
2 + cy‖µyBdW̃i − L2

Ỹi−1‖
2

− 2cy‖Ỹi−1‖
2
L2 − cy‖Ỹi−1 − L2

Ỹi−1 + µyBdW̃i‖
2.

Adding the above to (22) in Lemma 3 and rearranging the terms

yield our result. �

To prove Theorems 1 and 2, we upper bound the four terms

((A), (B), (C), (D)) for each case.
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A. Proof of Theorem 1

We consider term (A) first. From equations (16d) and (19d),

it holds that:

Ṽi = Ỹi + µy

(
∂̂H∗(Yi)− ∂̂H∗(Y�)

)
. (42)

Left-multiplying both sides of the previous equation by Ỹ
T

i , we

obtain:

Ỹ
T

i Ṽi = ‖Ỹi‖
2 + µy Ỹ

T

i

(
∂̂H∗(Yi)− ∂̂H∗(Y�)

)

≥ (1 + µyνh)‖Ỹi‖
2, (43)

where the last inequality comes from the νh-strong convexity of

H∗. Hence, by using the Cauchy-Schwarz inequality, the bound

(1 + µyνh)‖Ỹi‖ ≤ ‖Ṽi‖

holds. We can thus bound

(A) = cy‖Ṽi‖
2
I−µxL2 ≥ cy

(
1− µxσ

2
max(L)

)
‖Ṽi‖

2

≥ cy(1 + µyνh)
2β‖Ỹi‖

2. (44)

where

β
∆
= 1− µxσ

2
max(L).

Since J is ν-strongly convex and δ-smooth, we have

(B) = 2µw∇J (Wo)�(Wi − W
o)

+ 2µw∇J (Wi−1)
�(Wo − Wi−1)

+ 2µw∇J (Wi)
�(Wi−1 − Wi)

+ 2µw (∇J (Wi)−∇J (Wi−1))
� (Wi − Wi−1)

≤ 2µwJ (Wi)− 2µwJ (Wo)− µwν‖W̃i‖
2

+ 2µwJ (Wo)− 2µwJ (Wi−1)− µwν‖W̃i−1‖
2

+ 2µwJ (Wi−1)− 2µwJ (Wi)− µwν‖W̃i − W̃i−1‖
2

+ 2µwδ‖W̃i − W̃i−1‖
2

= − µwν‖W̃i‖
2 − µwν‖W̃i−1‖

2

− (µwν + 2µwδ)‖W̃i − W̃i−1‖
2. (45)

For term (C), we have

(C) ≤ 2cyµ
2
y‖BdW̃i‖

2 + 2cy‖Ỹi−1‖
2
L4

≤ 2µwµy‖BdW̃i‖
2 + 2cy‖Ỹi−1‖

2
L2 , (46)

where we used ‖x+ y‖2 ≤ 2‖x‖2 + 2‖y‖2 and 0 ≤ L2 < I .

Using 2xTy ≤ 1
ε
‖x‖2 + ε‖y‖2 for any ε > 0, the fourth term

(D) can bounded by

(D) ≤
µw

νh
‖Bd(W̃i − W̃i−1)‖

2 + µwνh‖(I − L2)Ỹi−1‖
2.

(47)

Substituting all four bounds on ((A), (B), (C), (D)) into (40),

we obtain

(1 + µwν)‖W̃i‖
2 − 3µwµy‖BdW̃i‖

2

+ cy(1 + µyνh)
2β‖Ỹi‖

2 +
cy
µx

‖X̃ i‖
2

≤ (1− µwν)‖W̃i−1‖
2 − µwµy‖BdW̃i−1‖

2 + cy‖Ỹi−1‖
2

+ µwνh‖(I − L2)Ỹi−1‖
2 +

(
1− µxσ

2(L)
) cy

µx
‖X̃ i−1‖

2

+
(
2µwµy +

µw

νh

)
‖Bd(W̃i − W̃i−1)‖

2

− (1 + µwν − 2µwδ)‖W̃i − W̃i−1‖
2. (48)

We can ensure that(
2µwµy +

µw

νh

)
‖Bd(W̃i − W̃i−1)‖

2

− (1 + µwν − 2µwδ)‖W̃i − W̃i−1‖
2 ≤ 0, (49)

under the condition on µw given in (23a). We can also ensure

that

‖W̃i‖
2 ≤ (1 + µwν)‖W̃i‖

2 − 3µwµy‖BdW̃i‖
2 (50)

if the conditions on µy in (23b) holds. Note that

(1− µwν)‖W̃i−1‖
2 − µwµy‖BdW̃i−1‖

2

≤ (1− µwν)‖W̃i−1‖
2. (51)

Using the condition 0 ≤ L2 < I , it holds that

cy‖Ỹi−1‖
2 + µwνh‖(I − L2)Ỹi−1‖

2

≤ (cy + µwνh)‖Ỹi−1‖
2

= γ2cy(1 + µyνh)
2
(
1− µxσ

2
max(L)

)
‖Ỹi−1‖

2, (52)

where

γ2 =
1

(1 + µyνh)(1− µxσ2
max(L))

< 1, (53)

under the condition (23c). Therefore, substituting the previous

bounds into (48), it holds that

‖W̃i‖
2 + cy(1 + µyνh)

2β‖Ỹi‖
2 +

cy
µx

‖X̃ i‖
2

≤ γ
(
‖W̃i−1‖

2 + cy(1 + µyνh)
2β‖Ỹi−1‖

2 +
cy
µx

‖X̃ i−1‖
2
)

(54)

with

γ = max
{
1− µwν,

1+µyνh

(1+µyνh)2β
, 1− µxσ

2(L)
}
< 1, (55)

under the conditions (23). The theorem is proved. �

B. Proof of Theorem 2

Note that

β
∆
= 1− µxσ

2
max(L) > 0

for µx < 1
σ2
max

(L) . We can lower bound (A) by

βcy‖Ỹi‖
2 = βcy‖proxµyH∗(Vi)− proxµyH∗(Vo)‖2

≤ βcy‖Ṽi‖
2 ≤ (A). (56)

We have the following upper bound for the term (B):

(B) = − 2µw(∇J (Wi−1)−∇J (Wo))�W̃i−1

− 2µw(∇J (Wi−1)−∇J (Wo))�(Wi − Wi−1)

= ‖W̃i−1 − µw(∇J (Wi−1)−∇J (Wo))‖2 − ‖W̃i−1‖
2

− ‖µw(∇J (Wi−1)−∇J (Wo))‖2

− 2µw (∇J (Wi−1)−∇J (Wo))T (Wi − Wi−1)

= ‖W̃i−1 − µw(∇J (Wi−1)−∇J (Wo))‖2

− ‖W̃i−1‖
2 + ‖Wi − Wi−1‖

2

− ‖µw(∇J (Wi−1)−∇J (Wo)) + Wi − Wi−1‖
2

= ‖W̃i−1 − µw(∇J (Wi−1)−∇J (Wo))‖2 − ‖W̃i−1‖
2

− ‖µwB
�
d Ỹi−1‖

2 + ‖Wi − Wi−1‖
2
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≤ − µw(2− µwδ)W̃
�
i−1(∇J (Wi−1)−∇J (Wo))

− ‖µwB
�
d Ỹi−1‖

2 + ‖Wi − Wi−1‖
2, (57)

where the last equality holds from (21a) since R = 0. The

last inequality holds because J is convex and δ-smooth. Us-

ing Jensen’s inequality ‖x+ y‖2 ≤ 1
1−t

‖x‖2 + 1
t
‖y‖2 for any

t < 1, the term (C) can be upper bounded by:

(C) ≤
cyµ

2
y

1− σ2
max(L)

‖BdW̃i‖
2 +

cy
σ2
max(L)

‖Ỹi−1‖
2
L4

≤
µwµy

1− σ2
max(L)

‖BdW̃i‖
2 + cy‖Ỹi−1‖

2
L2 . (58)

Last, we can upper bound the term (D) by:

(D) = − µ2
w‖B

T

d(Ỹi−1 − L2
Ỹi−1)‖

2 − ‖W̃i − W̃i−1‖
2

+ µ2
w‖∇J (Wi−1)−∇J (W�) + B�

d L
2
Ỹi−1‖

2

≤ − ‖W̃i − W̃i−1‖
2

+ 2µ2
wδW̃

�
i−1 (∇J (Wi−1)−∇J (W�))

+ 2µ2
w‖Ỹi−1‖

2
L2BdB�

d
L2 , (59)

where the equality holds due to 2xTy = −‖x‖2 − ‖y‖2 + ‖x+
y‖2 and (21a) (with R = 0). The last step holds since

µ2
w‖∇J (Wi−1)−∇J (W�) + BT

dL
2
Ỹi−1‖

2

≤ 2µ2
w‖∇J (Wi−1)−∇J (W�)‖2 + 2µ2

w‖B
T

dL
2
Ỹi−1‖

2

≤ 2µ2
wδW̃

�
i−1 (∇J (Wi−1)−∇J (W�))

+ 2µ2
w‖Ỹi−1‖

2
L2BdB�

d
L2 , (60)

and

−µ2
w‖B

T

d Ỹi−1 − BT

dL
2
Ỹi−1‖

2 ≤ 0.

Note that

µwµy‖BdW̃i‖
2 ≤ µwµy

1−σ2
max

(L)‖BdW̃i‖
2

since 0 ≤ σ2
max(L) < 1. Using this, and substituting all four

bounds on ((A), (B), (C), (D)) into (40), we get

‖W̃i‖
2
Cw

+ cyβ‖Ỹi‖
2 +

cy
µx

‖X̃ i‖
2

≤ ‖W̃i−1‖
2 − µwµy‖BdW̃i−1‖

2 + cy‖Ỹi−1‖
2 − cy‖Ỹi−1‖

2
L2

+
(
1− µxσ

2(L)
) cy

µx
‖X̃ i−1‖

2

− ‖W̃i − W̃i−1‖
2 + 2µwµy‖Bd(W̃i − W̃i−1)‖

2

− µw(2− 3µwδ)W̃
�
i−1 (∇J (Wi−1)−∇J (Wo))

− ‖µwB
�
d Ỹi−1‖

2 + 2µ2
w‖Ỹi−1‖

2
L2BdB�

d
L2

≤ (1− µwν(2− 3µwδ))‖W̃i−1‖
2 − µwµy‖BdW̃i−1‖

2

+ cy‖Ỹi−1‖
2 − cy‖Ỹi−1‖

2
L2 − ‖µwB

�
d Ỹi−1‖

2

+ 2µ2
w‖Ỹi−1‖

2
L2BdB�

d
L2 +

(
1− µxσ

2(L)
) cy

µx
‖X̃ i−1‖

2

− ‖W̃i − W̃i−1‖
2 + 2µwµy‖Bd(W̃i − W̃i−1)‖

2, (61)

where

Cw
∆
= I − 2µyµw

1−σ2
max

(L)B
T

dBd

and we used strong-convexity in the last inequality. Note that

−‖W̃i − W̃i−1‖
2 + 2µwµy‖Bd(W̃i − W̃i−1)‖

2 ≤ 0, (62)

for µwµy ≤ 1
2σ2

max
(Bd)

. Moreover,

(1− µwν(2− 3µwδ)) ‖W̃i−1‖
2 − µwµy‖BdW̃i−1‖

2

= γ1‖W̃i−1‖
2
Cw

− µwν‖W̃i−1‖
2

+ γ1‖W̃i−1‖
2

2µyµw

1−σ2
max

(L)B
T

d
Bd

− µwµy‖BdW̃i−1‖
2

≤ γ1‖W̃i−1‖
2
Cw

− µwν‖W̃i−1‖
2 +

2µyµwσ2
max

(Bd)
1−σ2

max
(L) ‖W̃i−1‖

2

≤ γ1‖W̃i−1‖
2
Cw

− µw

(
ν − 2µy

1−σ2
max

(L)σ
2
max(Bd)

)
‖W̃i−1‖

2

≤ γ1‖W̃i−1‖
2
Cw

, (63)

where γ1
∆
= 1− µwν(1− 3µwδ) < 1 forµw < 1

3δ and the last

step holds for

µy ≤
ν(1− σ2

max(L))

2σ2
max(Bd)

.

Also note that

cy‖Ỹi−1‖
2−cy‖Ỹi−1‖

2
L2−‖µwB

�
d Ỹi−1‖

2+2µ2
w‖Ỹi−1‖

2
L2BdB�

d
L2

≤ cy‖Ỹi−1‖
2 − cy‖Ỹi−1‖

2
L2 − ‖µwB

�
d Ỹi−1‖

2

+ 2µ2
wσ

2
max(B

T

dL)‖Ỹi−1‖
2
L2

= cy‖Ỹi−1‖
2
I− 1

2
L2−µwµyBdBT

d

− ( 12 − 2µwµyσ
2
max(B

T

dL))cy‖Ỹi−1‖L2

≤ cy‖Ỹi−1‖
2
I− 1

2
L2−µwµyBdBT

d

, (64)

where the last step holds under the condition 1
2 −

2µwµyσ
2
max(B

T

dL) > 0. It holds that (see Appendix E)

0 <
1

2
L2 + µwµyBdB

T

d < I

for

µwµy <
1− 1

2σmax(L
2)

σ2
max(Bd)

.

Therefore, we can further bound the last inequality by

cy‖Ỹi−1‖
2−cy‖Ỹi−1‖

2
L2−‖µwB

�
d Ỹi−1‖

2+2µ2
w‖Ỹi−1‖

2
L2BdB�

d
L2

≤ cy‖Ỹi−1‖
2
I− 1

2
L2−µwµyBdBT

d

≤
(
1− λmin

(
µwµyBdB

T

d + 1
2L

2
))

‖Ỹi−1‖
2. (65)

Note that

γ2
∆
=

1− λmin(µwµyBdB
T

d + 1
2L

2)

1− µxσ2
max(L)

< 1 (66)

for µx <
λmin(µwµyBdB

T

d
+ 1

2
L2)

σ2
max

(L) . Combining the previous bounds

into (61), and noting that β = 1− µxσ
2
max(L), the following

holds

‖W̃i‖
2
Cw

+ cyβ‖Ỹi‖
2 +

cy
µx

‖X̃ i‖
2

≤ γ

(
‖W̃i−1‖

2
Cw

+ cyβ‖Ỹi−1‖
2 +

cy
µx

‖X̃ i−1‖
2

)
, (67)
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where

γ = max

{
1− µwν(1− 3µwδ),

1−λmin(µwµyBdB
T

d
+

1
2L

2)

β
,

1− µxσ
2(L)

}
< 1. (68)

Collecting all step-size conditions, our bound holds for the

sufficient conditions given in (25). The linear convergence is

proved. �

APPENDIX E

POSITIVE DEFINITENESS OF µwµyBdB
�
d + 1

2L
2

In this section, we will show that if B = [B1 · · · BK ] has

full row rank, then the matrix

G
∆
= 1

2L
2 + µwµyBdB

�
d

is positive definite. To see this, note that 1
2L

2 andµwµyBdB
�
d are

positive semi-definite matrices. This means that Y
TGY ≥ 0 and

is equal to zero if and only if Y
TL2

Y = 0 and µwµyY
TBdB

�
d Y =

0. To show that G is positive definite, it remains to show that

Y
TGY = 0 only for Y = 0. Assume that there exist Y such that

Y
�GY = 0. This means that LY = 0 and B�

d Y = 0. Note that

LY = 0 implies that Y is consensual, Y = 1K ⊗ y for some y.

Using this, means that B�
d Y = B�y. Because B has a full row

rank, then B� has a full column rank, and B�y = 0 only for

y = 0. Thus, the matrix G is positive definite and λmin(G) > 0.

To ensure that λmax(µwµyBdB
T

d + 1
2L

2) < 1, we use Weyl’s

Theorem to bound the maximum eigenvalue [54]:

λmax(µwµyBdB
T

d + 1
2L

2)

≤ µwµyλmax(BdB
T

d) +
1
2λmax(L

2), (69)

which is less than one for

µwµy <
1− 1

2λmax(L
2)

λmax(BdBT

d)
.

Note thatλmax(BdB
T

d) = σ2
max(Bd) andλmax(L

2) = σ2
max(L).
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