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Dual Consensus Proximal Algorithm for
Multi-Agent Sharing Problems

Sulaiman A. Alghunaim

Abstract—This work considers multi-agent sharing optimization
problems, where each agent owns a local smooth function plus a
non-smooth function, and the network seeks to minimize the sum
of all local functions plus a coupling composite function (possibly
non-smooth). For this non-smooth setting, centralized algorithms
are known to converge linearly under certain conditions. On the
other hand, decentralized algorithms have not been shown to
achieve linear convergence under the same conditions. In this
work, we propose a decentralized proximal primal-dual algorithm
and establish its linear convergence under weaker conditions than
existing decentralized works. Our result shows that decentralized
algorithms match the linear rate of centralized algorithms without
any extra condition. Finally, we provide numerical simulations that
illustrate the theoretical findings and show the advantages of the
proposed method.

Index Terms—Multi-agent optimization, sharing problem, dual
consensus, proximal algorithm, linear convergence.

I. INTRODUCTION

E CONSIDER a network of K agents connected by
W some topology. The goal of agent k is to find its cor-
responding solution, denoted by wj, € R®*, of the following
multi-agent optimization problem:

> (Tulwi) + Biwg)) + b (Y- Brawg |, (1)
k=1

k=1

min
wy,.., WK

where each J, : R — R is a smooth convex function,
Ry :RP* - RU{+0c0} and h: R — R U {400} are con-
vex (possibly non-smooth) functions, and Bj, € R¥*@+, The
two functions (J, and Rj) and the matrix Bj are known
privately by agent k, while all agents know the function h.
Problem (1) is the sharing problem [2], where the individual
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variables {wk}f:1 are coupled through a composite coupling
function h. Formulation (1) arises in various engineering and
machine learning applications, such as image processing [3],
distributed basis pursuit [4], smart grids [5], [6], and learning
problems over distributed models [2], [7], [8]. In this work, we
study the linear convergence of decentralized algorithms (i.e.,
methods that only use local communications between directly
connected agents) for problem (1).

Many methods can solve general problems of the form (1)
— see [9]-[15] and references therein. Applying these meth-
ods directly to problem (1) result in centralized implementa-
tions, where a global communication step is needed to com-
pute 2521 Biwi. When h is nonsmooth, centralized algo-
rithms have been shown to converge linearly if each Rj =
0, Zle Jr(wg) is strongly-convex, and the matrix B =
[By -+ Byg] has full row rank [9]-[11]. When h is smooth,
centralized algorithms have also been shown to converge linearly
if 25:1 Ji(wy,) is strongly-convex [12]-[14].

Existing linear convergence results for decentralized algo-
rithms solving the sharing problem (1) have only been estab-
lished under special cases and require stronger assumptions
compared to the ones used to establish linear convergence of
centralized algorithms. In this work, we close this theoretical
linear convergence gap between decentralized and centralized
algorithms for problem (1). In particular, we propose a novel
decentralized algorithm for problem (1) and establish its lin-
ear convergence under conditions matching the ones used for
centralized algorithms.

A. Related Works

Sharing problems of the form (1) have been studied for many
years [16], [17] — see the discussion in [2]. However, most
works that study decentralized methods for the sharing problem
consider different and/or special setups from this work. For
example, the works [17]-[29] study the case where agents are
coupled through equality constraints (i.e., h(z) =0 if x =0
and h(x) = oo otherwise). The works [30], [31] study inequal-
ity constrained sharing problems (i.e., h(x) = 0 if z < 0 and
h(z) = oo otherwise). The works [32]-[35] consider a smooth
coupling function h, and the work [36] considers conic cou-
pling constraints. While decentralized algorithms for sharing
problems have been studied before, their linear convergence
under decentralized setups are not well established compared
to centralized algorithms as we explain next.

For a general non-smooth function h, centralized algo-
rithms are known to converge linearly when each Ry (wy) =
0, Ele Ji(wyg) is strongly-convex, and the matrix B =
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TABLE I

COMPARISON WITH EXISTING DECENTRALIZED METHODS LINEAR CONVERGENCE RESULTS FOR PROBLEM (1). HERE, B = [B;

.-+ Bk, SC MEANS STRONGLY

CONVEX, AND LC MEANS LINEAR CONSTRAINTS. THE COST Jj IS SMOOTH

Reference | Jj Ry, By, h Additional comments
[19] SC 0 scalar by, # 0 LC: ZkK:l brwi =0 randomized coordinate updates
[20] SC 0 1 LC: Zszl wg =0 time-varying networks

[21], [22] | SC 0 I LC: Yr  wg — by =0
each B;, has K _
[23] SC 0 full row rank LC: >, Bywp — by, =0
non-zero rows of By K _
(25] sC 0 are linearly independent LC: X jomy Brwg = by =0
[34] SC 0 any By smooth variance reduced method
[35] 0 | non-smooth SC any By smooth algo.r ithm requires solving
inner subproblems
This work SC 0 B full row rank non-smooth matches centralized algorithms
SC non-smooth any By smooth conditions [9]-[14]

[By -+ Bj| has full row rank [9]-[11]. On the other hand,
existing decentralized linear convergence results have only been
established for the special case of an equality constraint cou-
pling function h (i.e., h is an indicator function of equality
constraints) [19]-[23], [25], [26]. Moreover, these results require
By, = I [19]-[22], [26] or each matrix B} to have full row
rank [23], [25].

For a smooth function h, centralized algorithms can achieve
linear convergence if Zle Ji(wy) is strongly-convex [12]-
[15]. Decentralized algorithms have been shown to achieve
linear convergence if i is smooth, albeit under special and/or dif-
ferent cases from the centralized case. In particular, the work [34]
established linear convergence for the case where h is smooth
and each Ry (wy) = 0. The work [35] studied problem (1) with
Ji(wg) = 0 and established linear convergence for smooth h
and strongly-convex Ry, (wy,). Table I summarizes the conditions
used to establish linear convergence of decentralized algorithms
for problem (1).

We remark that problem (1) can be reformulated into an
equivalent decentralized problem (see (12)) amenable to decen-
tralized solutions. The same algorithms that solve (1) can also
be used to solve the equivalent problem to get decentralized
implementations. However, their linear convergence guarantees
are not satisfied for the decentralized formulation, and the linear
convergence results from [9]-[15] are not applicable to decen-
tralized setups — see Remark 2.

Finally, note that if we choose h to be the indicator function
of the consensus constraint: w; = - -+ = wp, then formulation
(1) recovers the “consensus problem,” where the agents share a
common variable — see e.g., [37]-[44] and references therein.
Algorithms solving the consensus problem are not generally
applicable to the sharing problem [2, Ch. 7]. This is because,
decentralized consensus algorithms exploit the network sparsity
structure of the matrix [By,. .., Bgk]|. In the sharing formula-
tion (1), this matrix is not necessarily sparse; moreover, the
matrix By, is privately known by agent k alone.

B. Contribution

A natural question is whether decentralized algorithms can
achieve linear convergence under the same conditions as

centralized algorithms. In this work, we give a positive answer to
this question. In particular, we propose a decentralized algorithm
and establish its linear convergence to the exact solution of (1)
under weaker conditions than existing decentralized algorithms
— see Table I. Below, we list the main contributions of this
work:

e Wereformulate problem (1) into an equivalent saddle-point
problem, which is amenable to decentralized algorithms,
and propose a dual consensus proximal algorithm (DCPA)
to solve this equivalent problem.

e For a smooth function h, we show that DCPA converges
linearly if Zszl Ji (wy,) is strongly-convex in the presence
of non-smooth Ry. This result matches the linear conver-
gence of centralized algorithms for smooth h.

e For a non-smooth function h, we show that DCPA con-
verges linearly when each Ry(wi) =0, S5, Ji(wg)
is strongly-convex, and the matrix B = [B; By]
has full row rank. This result closes a major theoreti-
cal gap in linear convergence between centralized and
decentralized algorithms for sharing problems of the
form (1).

We note that the preliminary work [1] studied a different algo-
rithm for a special case where each Ry (wy) = 0. Moreover, the
linear convergence result in [1] requires a stronger assumption
that each matrix By, has full row rank.

Notation: We let Ig denote the S x S identity matrix, while
the symbol 1 5 denotes the N x 1 vector with all entries equal
to one. The subscripts are dropped when there is no confusion.
The vector formed by stacking xi,...,xy on top of each
other is denoted by col{x;}}_,. The block diagonal matrix
with diagonal blocks {X; }évzl is denoted by blkdiag{ X }f;l
For any matrix A, we let oyax(A) and o(A) denote the
largest and smallest non-zero singular values of A, respectively.
For a square matrix A, we let Ayax(A4) and A\pin(A) denote
the largest and smallest eigenvalues of A, respectively. We
let ||z||% = T Az. Given a function f:RM — R, its sub-
differential 0f(z) at * € RM is the set of all subgradients
at x. Its proximal operator with step-size 1 is prox,(v) =
arg min,, f(u) + z; [[u — [ Its conjugate with domain R
is f*(v) = sup, v'x — f(x). The function f is §-smooth (§ >
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0) if [|[Vf(z) = Vf(y)| < 6|z — vy for all z,y € RM. It is
v-strongly-convex (v > 0) if (z—y)(Vf(x) - Vf(y)) >
v||z — y||? forall z,y € RM.
II. DECENTRALIZED SADDLE-POINT FORMULATION

In this section, we show how problem (1) can be reformulated
into an equivalent saddle-point problem that is amenable to
decentralized solutions.
A. Saddle-Point Formulation

We start by rewriting the problem (1) in a compact form. We
define the network quantities:

K
Wécol{wl,...,wK}ERQ, QéZle (2a)

k=1
K K
T 2 Je(w), Rw) 2 S Rifwy), (2b)
k=1 k=1
B2 {Bl BK} € REXQ, (2¢)
Using the above notation, problem (1) becomes
mvéjn JW)+R(w)+ h(Bw). (3)

Throughout this work, the following assumption holds.

Assumption 1 (Objective Function): The function J : R¢ —
R is d-smooth and convex. The functions R : R® — R U
{+oc} and h:RF - RU{+oc0} are proper lower semi-
continuous and convex. There exists w in the relative interior
domain of R such that Bw belongs to the relative interior domain
of h. Problem (3) has a solution w*.

Under Assumption 1, problem (3) is equivalent to the saddle-
point problem [45, Proposition 19.18]:

minmax J(W) + RW) +y Bw —h'(y),| @)
y

where y € R¥ is the dual variable. Moreover, (W*,y*) is an
optimal solution of (4) if, and only if, it satisfies [45, Proposition
19.18]:

—BTy* = VIW*) € 9R(W*), (5a)

Bw* € Oh* (y*). (5b)
Note that the dual variable y in (4) is multiplied by B, which
couples all agents. Therefore, algorithms directly solving (4)
cannot be implemented in a decentralized manner. Next, we
reformulate the problem into another equivalent problem that is
amenable to decentralized solutions.

B. Decentralized Saddle-Point Formulation

Let 7(w) 2 J(w) +R(w), then the dual problem of (3)
is [45], [46]:

max —J (—=B"y) — h*(y). (6)

The above problem is a decentralized consensus problem since
T (=BTy) = 1, J,.(—Bly) where J}, is the conjugate of

T 2 Jir + Rj. Note that the conjugate function jz does not
have a closed-form expression in general, and its gradient is
expensive to obtain. Thus, it is infeasible to solve (6) in its

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen).

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

current form. Next, we consider the dual problem as a consensus
problem and let y; denote a local copy of y available at agent k.
For simplicity, we introduce the following network quantities:

v £ col{yehiS, € RPX, (7a)
A1l K
H() = 2 D h (), (7b)
k=1
By £ blkdiag{ B, }_,, (7¢)
and a symmetric matrix £ € REE*EFK guch that:
Ly=0 < y; = - = yg. (8)
Then, the dual problem (6) is equivalent to:
max ~T (=Bly) = H*(y), st.Ly=0. )
Note that we will later choose a specific matrix £ that is related
to the network. Introducing an additional variable § = —BJy,

we derive the following Lagrange dual function of problem (9):
sup —J (0) — H*(¥) +w' (0 + Bly) + 2" Ly,
0

)

=supw'0 — T (0)) + sup ((Baw + Lx)Ty = H*()),

6
=JTWw) +H(Baw + Lx). (10)
Therefore, the dual problem of (9) is:
min T W) + H(Bgw + Lx), (11)

and the saddle-point reformulation of problem (11) is [45, Propo-
sition 19.18]:

)r/[vligfl max TW) +RW) + ¥ Baw + 3" Lx — H* ().

(12)
Lemma 1 (Saddle-Point): Suppose that Assumption 1 holds
and let (W*, x*, »*) be a saddle-point of (12), i.e.,

—BIy* = VIW*) € OR(W*), (13a)
Ly* =0, (13b)
Baw* + Lx* € OH* (). (13c)

Then it holds that y* = 1 x ® y* and the point (W*, y*) satisfy
the optimality condition (5).

Proof: See Appendix A. |

Remark 1 (Existence of x*): Suppose that w* and y* =
1, ® y* are given such that (W*, y*) satisfies (5). From matrix
algebra [47], we can decompose Byw* = %]l K @ BW* + LXx
into the null space and range space of the symmetric matrix L.
Then x* = —X satisfies (13¢) since

Baw* + La* = 1k @ B (5€b) OH* (V).
Note that for any w* and y* = 1 ® y*, the value of x* is not
unique because adding a vector from the null space of £ does
not change the optimality condition (13c).

From Lemma 1 and Remark 1, we see that problem (12) is
equivalent to problem (4). However, unlike problem (4), problem
(12) can be solved in a decentralized because the matrices 5y
and £ encode the network sparsity structure.

Remark 2 (Partial Strong-Convexity): The decentralized
saddle-point formulation (12) is only strongly convex with
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respect to w and not strongly-convex with respect to (w, x).
Moreover, B, is not assumed to have any rank condition. There-
fore, existing linear convergence results [9]-[14] on general
saddle-point problems of form (12) are not applicable.

III. PROPOSED DECENTRALIZED SOLUTION

In this section, we introduce our proposed algorithm. To do
that, we first select £ based on the network graph.

A. Network Combination Matrix

We introduce the network combination weights {asy, }, where
ask 18 a scalar used by agent k to scale information coming
from agent s. We let az, = 0 if s ¢ N, where N} denotes
the set of agents directly connected to agent k through an
edge, including agent k£ itself. We also introduce the network
combination matrices:

A=lasx), A 2 AT (14)

Assumption 2 (Combination Matrix): We assume that the
network is static and undirected. Moreover, the matrix A is
symmetric, doubly stochastic, and primitive.

We choose £ as follows:

L£2=1(1-A). (15)
Note that under Assumption 2, the eigenvalues of the matrix A
belong to (—1, 1] —see [40, Lemma F.4]. Thus, it holds that 0 <
L% <Tand 0 < g?(L) <02, (L) < 1. Note that the matrix
L is defined as the square root of %(I — A), which is properly
defined. To see this, let us introduce the eigen-decomposition
of the positive semidefinite matrix £2 = (I — A) =UD?UT
then £ exists and equal to £ = UDU".

B. Dual Consensus Proximal Algorithm

To solve (12), we propose the following dual consensus
proximal algorithm (DCPA). Initialize w_;, y_; with arbitrary
values and let x_; = 0. Choose step-sizes fiy, [y, fiz > 0 and
repeat for ¢ > 0:

Wi = prOX,LwR(Wi—l — VI (Wi-1) — lffwB;yi—l)a (16a)
vi=vi1— L1+ pyBa(2wi —wi1) + La;—1, (16b)
X = X1 — LV, (16¢)
Vi = prox, - (vi). (16d)

Recall that £? = 3 (I — A) has the network structure but £ does
not necessarily have the network structure. We can make a simple
change of variable to transform DCPA (16) into an equivalent
and fully decentralized recursion. In particular, if we let z; =
L(x; — Ly;) and multiply the update (16¢) by £, then we can
rewrite (16) into the following equivalent recursion:

wi = prox, r(Wi-1 — VI (Wi—1) — wBiyic1),  (17a)

Vi = Vi1 + piyBa(2wi — wi1) + 21, (17b)
Vi = prox, - (vi), (17c¢)
Zi = 2Zj-1— Ez(um + Vi — Yio1). (17d)

Since only £2 appears in (17), the k-th block vector of w;, ¥;, 2;
can be updated by agent k only as listed in Algorithm 1. The

5571

step (18d) requires agent k to send (ki + Yk, — Yk,i—1) tO
its immediate neighbors N

Algorithm 1: Dual Consensus Proximal Algorithm (DCPA).

Setting: Let C' = (I — A) = [c,]. Choose step-sizes
Hw > 0, Hy > O,,UJT > 0. Let k-1 = Yk,—1 = 0 and
arbitrary wy, 1.

For every agent k, repeat for i > 0:

Wy,i = Prox (Wy,i—1 — pwVJIk(Whi—1) — fwBLyki1),
fow R

(18a)

Vi = Yk,i—1 + HyBr(2wr,i — wi,i—1) + 2k,i-1, (18b)

Yi,i = Prox(vk.,q), (18¢c)

Fy p«
= h

2k = Zhi-1 — Z Cok(MaVsi + Ysi — Ys,i—1). (18d)
SGNk

Remark 3 (Intuition for the Update (16)): Algorithm (16) is
not a typical proximal primal-dual method. The main difference
lies in the update of x; in (16¢), where it uses the auxiliary
variable v; instead of the dual estimate y;. This is inspired
from [48] albeit for a different problem. This is a critical step that
allows us to establish linear convergence when h is nonsmooth.

The term B, (2w; — w;) is not necessary for our result and
can be, for example, replaced by B;w,;. However, we use it
here because algorithms using the form B (2w; — w;) instead of
Baw; have stronger convergence guarantees under nonstrongly-
convex settings — see [3].

The term —£2y;_; allows us to establish linear convergence
by only requiring B to have full row rank in Theorem 2 instead
of requiring each By, to have full row rank. Since £y = 0, having
this term is equivalent to adding —1,/2y£L?y to the saddle-point
function in (12), which makes it an augmented Lagrangian
formulation.

IV. LINEAR CONVERGENCE RESULTS

In this section, we list our main linear convergence results.
We begin with some auxiliary results.

A. Auxiliary Results

The next result shows the existence and optimality of the fixed
points of (16).

Lemma 2 (Fixed Point of DCPA): A fixed point
(we, x°,»°,v°) of recursion (16) exists, i.e.,

0€ VIW°) + BIy® + aR(W°), (19a)
VO =27+ py Baw® + Lx°, (19b)
0= Ly, (19¢)
¥’ = prox,, 5. (V°), (19d)

and £2y° = 0. Moreover, for any fixed-point (W°, x°,y°,1°),

it holds that y° = 1 ® y° and (W°, y°) is an optimal point for

problem (4). Consequently, w? is an optimal solution of (3).
Proof: See Appendix B. ]
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Note that if x_; = 0, then from (16¢), we have x1 = —Lv1,
which is in the range space of £. As a consequence, the iterates
{xi}i>0 stay in the range space of L. It can be shown that for
a given point (W°, ¥°,1°), there exists a unique x°, denoted by
x?, in the range space of £ [49], [50]. To analyze algorithm (16),
we consider the error quantities:

(20a)
(20b)

From equations (16) and (19), and the definition of the proximal
mapping, the error quantities evolve as:

Wi =W =W, Y= =7,

%:vifv", }i:?(if)_(o.

Wi = Wi 1 — o (VT Wi_1) = VI W) = pByia
— o (TROW) = TROV) ), (21a)

Wi—1) + L¥;i_1, (21b)
21c)

21d)

Vi =Yio1 — L2 1 + pyBa(2w; —
?71‘ = }iq - ﬂrﬁgia
Vi = prox,, - (vi) — prox, 3 (v°),

where 57\?,()/\/) € OR(w). The following result will be useful in
our analysis.

Lemma 3 (Inequality bound): Assume that the step-sizes /i,
iy, and p, are strictly positive. Then, the iterates of the error
recursion (21) satisfy:

eyllVill7 e + 221
2 Cy
< (1= paa®(L)) -

+ cy|[yi1 — L2V 1+ ,udeVViHZ

¥l

I?

+ 2ttty [ Ba(OWi = Wiet) | + iy [ Baws |

— thatyl| Bawi 1 [* + 240 (Wi — Wi 1)

x By(Fi1 — L25i1), (22)
where ¢, = £,
Proof: See Appendix C. |

B. Linear Convergence of DCPA

In this section, we establish the linear convergence of (16)
under two different conditions listed in Assumption 3.

Assumption 3: The function 7 (W) is v-strongly-convex and
either one of the following two conditions is satisfied.

I: The function h is ;--smooth.

II: B =By -+ Bg] has full row rank and R = 0.

Remark 4: Assumption 3 is typically required for linearly
convergent algorithms in solving the centralized saddle-point
(4). Assumption 3-1 implies that the conjugate function h* is
strongly-convex, and Assumption 3-II implies that [7*(—BTy)
is strongly-convex. In other words, Assumption 3 implies that
the centralized dual formulation (6) is strongly-concave.

We establish the linear convergence of (16) under Assumption
3-1 and 3-II separately.

Theorem 1 (Linear Convergence I): Let Assumptions 1, 2,
and 3-I hold. If the step-sizes i, iy, and ji, satisfy

1
Py < T )
20 —v+ (2/’67/ + Z)O’?nax(b,(ﬁ

(23a)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

v
< — 23b
"= 307 (Ba) 230
HyVh
z < , (23¢)
oS W i) 02 o (L)

then it holds that V; < ~V;_1, ¢ > 0, where

Vi = [IWill® + ¢y (14 pyvn)* B9 + 2|7 (24a)

Y = max {1 — U, m71 — /’L$O—2(£)} < ]_7 (24b)

and ﬁ =1- Mmafnax(ﬁ)'

Proof: See Appendix D. |

The above result shows that when h is smooth, DCPA con-
verges linearly. The assumptions used to establish this result
matches the ones in the centralized case [12]-[14]. The next
result establishes the linear convergence for the case where h is
non-smooth.

Theorem 2 (Linear Convergence II): Let Assumptions 1, 2,
and 3-1I hold. If the step-sizes fi.,, tiy, and ji, satisfy

v(1-03 . (L))

Hw < %7 ,Ufy S 20-12113):(841) 9 (253)
min{ 1, Muin (fa oy BaBY + L2
< { (HwpyBaBg + 3 )}7 (25b)
Tmax (L)
then it holds that V; < ~V;_1, ¢ > 0, where
Vi = [illg,,, + ey BT + 2|7 (26a)

1
1= Amin (fw 1y BaB+ 552)
1—pa0dax (L) ’

v = max {1 — fw (1 — 3p0),

1—pea®(L)} <1, (26b)
with Cy, = I — =45 BIB and B = 1 — 1,02, (L).

Proof: See Appendix D. |

Theorem 2 shows that when h is nonsmooth, DCPA converges
linearly to the exact solution if each Rj = 0. To the best of
our knowledge, this is the first result that establishes the linear
convergence of a decentralized algorithm for non-smooth h and
under the same conditions used to establish the linear conver-
gence of centralized algorithms [9]-[11]. As shown in Remark
2, while the methods from [9]-[14] can be used to solve (12),
their linear convergence requires stronger assumptions that are
not satisfied here.

V. NUMERICAL EXPERIMENTS

In this section, we apply the DCPA algorithm to two numerical
problems: the elastic net problem and a ridge regression prob-
lem. All experiments are performed using MATLAB R2019b on
a laptop with Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz.

A. Elastic Net
We first consider the elastic net problem [51]:

fw), @7

where

1
709 2 3 (Gl + Bl ) + 3

k=1

2

K
Z Bkwk —b
k=1
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Comparison of COLA [35] and DCPA. Left: the distance of W; to the optimal solution W*, which is defined by ||w; — w*||. Right: the objective function

value at each iteration minus the optimal function value. Both algorithms require one communication step per iteration.
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The convergence rate plot of w and function value, which is defined by ||w; —w*||? and f(w;) — f*. The black one is the baseline: p,, = 0.03,
ty = 0.03, and p; = 0.5. The blue lines only change 1., from the baseline values, while the red lines change 11, and the green lines change 1.

The above problem satisfies Assumption 3-I because h(-) =
2| - —b[* is y-smooth. We choose K = 10, wy, € R?° forall ,
By, € {0,1}2°%20 with entries randomly drafted from {0,1} for
all k, and b € R?°, whose entries are chosen from the standard

normal distribution independently. Since there are K agents,
there can be at most w

do not have analytical solutions and can only be approximated.
In our simulations, we used FISTA [53] to approximate the
solutions of these sub problems. Hence, the computational time
for each iteration of COLA may be larger than that of DCPA,

because several FISTA iterations are required at each COLA

o iteration.
edges. We define the connectivity

ratio as the actual edges divided by w The network graph
is generated using the same way as [49] with connectivity ratio
0.4. We set the parameters v = 0.1 and S = 1 for all k. The

optimal function value f* = f(w*) is estimated by the CVX
toolbox [52].

1) Comparison With COLA: We compare the performance
of our proposed algorithm and COLA [35] on problem (27).
The parameter setting of DCPA is i, = 0.1, p,, = 0.003 and
1o = 0.3. The COLA parameters are chosen as recommended
in [35]. The results are shown in Fig. 1. Both algorithms have
linear convergence, and DCPA has a faster convergence rate
than COLA in terms of number of iterations (or communication
rounds). One reason for this superiority is that COLA requires
solving inner optimization sub-problems at each iteration that

2) Step-Sizes by, fia> and ji,,: We simulate DCPA for differ-
ent step-size parameters. We define the baseline parameters as
tw = 0.03, y = 0.03, and 1, = 0.5, since it gives areasonable
performance. We fix two step-size parameters and change the
third one. The result is shown in Fig. 2. We see that increasing

fw OF fiy from the baseline value results in faster convergence
speed.

To see how the step-sizes affects the convergence of the
algorithm, we numerically test different step-size parameters.
For any fixed fi,, and p,, there exist an upper bound for the
parameter 1, to make the algorithm converge. The contour
lines (or level sets) of this upper bound is shown in Fig. 3.
The figure shows that u,, and i, have an inverse relation;

moreover, increasing (i, decreases the range of step-sizes i,
and i,
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Fig. 3. The contour of the upper bound of 1, to make DCPA converge.
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Fig. 4. The convergence of w; to the optimal solution w*, ||w; — w*||2, for
ridge regression problem.

B. Ridge Regression

In this section, we test our algorithm for the case where h is
non-smooth. We consider the ridge regression problem

1 K
fov) £ 53wl
k=1

min
W, WK
K
subject to ||y~ Bywy — b|| < o, (28)
k=1

which can be rewritten as

.....

with h being the indicator function that returns zero for all
|lx — ]| < o and +oo otherwise. The above problem satisfies
Assumption 3-IL if B = [By, ..., Bk] has a full row rank. We
let 0 = 0.1 in the numerical experiment. As in the previous
experiment, we generate a random graph with K = 20 agents
and connectivity ratio 0.3. We let wy, € R for all k. The matrix
By € {0,1}29%10 and the vector b € R2° are constructed using
the same way as in the previous experiment. The result is shown

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

in Fig. 4. As expected DCPA achieves linear convergence under
Assumption 3-1II.

VI. CONCLUSION

We studied the linear convergence of decentralized algorithms
for the multi-agent sharing optimization problem (1) with a
general coupling function (possibly non-smooth). To solve the
problem in a decentralized manner, we reformulated it into the
equivalent decentralized saddle-point problem (12). We pro-
posed a decentralized algorithm that solves problem (12) (hence,
(1)) and established its exact global linear convergence. Our
conditions are weaker than the conditions used to establish linear
convergence of existing decentralized algorithms and match the
standard conditions used to establish linear convergence for
centralized implementations. Finally, we provided numerical
simulations that illustrate our theory and show the advantages
of the proposed method.

APPENDIX A
PROOF OF LEMMA 1

It holds that y* = 1 x ® v* for some v*, which follows from
equations (8) and (13b). Thus, substituting —Bgy* = —BTy*
into (13a), we have:

—BTv* = VI (W*) € OR(WY).
Multiplying (13c) by ]1}-( ® I on the left, we get:
(1% @ Ig)Bow* + (1% @ Ip)La* € (1, @ Ig)oH" (")
— Bw* € 0h* (v*), (31)

where we used the fact that (]l}} RIg)L=0and y* =1 ®
v*. Equations (30) and (31) are the same conditions as (5). Thus,
the point (W*, y*) with y* = v* is optimal. |

(30)

APPENDIX B
PROOF OF LEMMA 2

Suppose that an optimal point (W*,y*) of of (4) is given,

which satisfies (5). We define w° £ ¥ and )° 2 V=1 ®
y*. Then, (19a) is satisfied due to (13a). We define

Vo =1 @0° 2 1K®<y*+l;(—yBW*), (32)

which satisfies condition (19¢). Note that equation (19d) is
equivalent to v° — )»° € 1, 0G*(¥°). Hence, from the definition
of G*, (5b) and (32), the condition (19d) is satisfied. It remains
to show the existence of x° such that (19b) holds. Note that

(Li ® 1) (v = ¥° = pyBaw®)

= K(v° —y°) — uy B’ 20, 33)
This means thatv° — y° — p, Byw? is innull space of 1. @ I,
consequently, it is in the range space of L. Hence, there exists
x° such that (19b) holds.

Now, suppose that (w°, x°,»°,v°) is a fixed-point of (16).
It follows that v° = T ® v° due to equation (19¢). As a re-
sult, (19d) implies that ° = 1 ® y°. We also have Byw° +
:—yﬁxo € 0G*(»°), which holds from (19b) and (19d). Thus,
using Lemma 1, the point (Ww°, y°) satisfies the optimality con-
dition (5). |
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APPENDIX C
PROOF OF LEMMA 3

Taking the norm squares of (21b) and (21c), we have:
ill® =11Pi-1 = L2Fio1 + sy Ba(2Wi = Wima) |12 + [|£Fi1 ]

+ 23] (L1 — L%+ Ly Ba(2W; — Wi—1)),
(34)

and
[%l[? = [[Fica]? + k2 LV — 2p2¥]_1 £ (Ficr — L2Fi1

+uy8d(217vi — 1/~V¢71) + AC}Z',l) . 35)

Dividing (35) by p, and adding it to (34) give us

Dll7 2 + 7 172

= TIIH}ifluiuzz:? + 1951 — £2Vi1

+ sy Ba(2W; — Wi 1) |12
= %||}i*1”%7u152 + ||3;z‘71 - £237i4 + /Jde);'Vi

x

I?

+ po | Ba(wi — wi1)|1?

+ 241y (Wi — Wim1) By (Bie1 — L2941 + tiy Bavi) .
(36)

We can rewrite the last term on the right hand side of (36) as
2ty (Wi — Wi 1) BY i1 — L29i 1 + pyBaws)
= 2#22/ (Bd{/\vil — Bd17\/¢_1)TBdVA\’/7;

+ 20y (Wi — Wi 1) TBY (i1 — L% 1)

= po | Ba(Ws — Wie1)|I* + pallBawsl|*> — 13 || Bawi—1 ||

+ 20y (Wi — Wim1) By (Bio1 — L23i-1), (37)
where we used 22Ty = ||lz[|? + [|y[|? — ||z — y||? in the last
step. Substituting the above equation into (36) and multiplying
by ¢, = £, we get
eylVill7 e + 221

Ha

FiallT e+ eyl — £25i1 + py Bawi|?

12 + iy || Baws||?

=+ QNwNyHBd({’\V/i - {’VVi—l)
- /-Lw,uyHBdV‘/i—l||2
4 2t (Wi — Wi 1) By (Fi1 — L2945 1). (38)

Now, since x_; = 0 and x° belong to the range space of L, the
error quantity x; 1 always belongs to the range space £. This
implies that [50, Lemma 1]:

1¥i1l|Z2 > (L)% 1.
Therefore,
||%i—1||?_uz£2 < (1 - .Uacg2(£)) ||}z'—1H2-

Using this bound in (38) we get our result. ]

(39)
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APPENDIX D
THEOREM 1 AND 2 PROOFS

Lemma 4: Under Assumption 1, the iterates of the error
recursion in (21) satisfy:

Wil = prawpiy 1Bawill? + ey Wil 7,0, 22+ 1%
(A)
< Wim a1 = prao iy 1Bawia |2+ |51 1* = 26, [Fi-1 22
+ (1= paa®(L£)) 2R |* — Wi = Wi |2
Oty | B — )|
—20 (VT Wis1) — VT (W°)) '

(B)

+ cyllpy Bawi — L2 4|?

(©)
+ 200 (W5 — Wi 1) T BY3i 1 — L2 1).

(D)

(40)

Proof: Since the subgradient of a convex function is mono-
tone, it holds that

0 < 20 (OROw) — RO 7,

(2la) <17v1-1 — Wi = (VT Wis1) = VI (W)

.
- uwB}$i1> Wi

= 2(17\/7;_1 — )/TM)T{/VV, — 2,LLw (VJ(WfL_l) — VJ(WO))T VN\/z
— 241,91 Bawi. (41)

Using

12 = [1%i = Wi ||

2(Wim1 — W3) T = Wit ||® — Wi
and
— ¥, Bai
= cy|[Fi-1ll? + ey lluy Bawi — L2512
= 2¢y[|Bi-1llZ2 — ¢ylPir + pyBawi — L2317,

with ¢, = p,,,/ 1y, and rearranging (41), we get:

™
IN

[Wi-1]l? = Wi — Wi |?
— 241y (VT Wis1) = VI (W°)) " Wy

+ ey Vi1 lI® + ey llpy Baws — L2542

W

—2¢, T 122 — ¢yl[Fii1 — L2Ti 1 + pyBawi||*.

Adding the above to (22) in Lemma 3 and rearranging the terms
yield our result. |

To prove Theorems 1 and 2, we upper bound the four terms
((A), (B),(C), (D)) for each case.
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A. Proof of Theorem 1

We consider term (A) first. From equations (16d) and (19d),
it holds that:

Vi =i+ 1y (57?(.%) - 57?@*)) .

Left-multiplying both sides of the previous equation by 51, we
obtain:

SV = 332 + 3T (TR () — T )

(42)

> (14 pywn) 15417, (43)
where the last inequality comes from the 1/, -strong convexity of
H*. Hence, by using the Cauchy-Schwarz inequality, the bound

(L + pyvn)[[2ill < [vill
holds. We can thus bound

(4) = eylFill3 ez > ey (1 = pe0?0n(£)) [

> ¢y (14 pyvn)* B3 ]2 (44)

where

B é 1_/~L$O-r2nax(’c)'

Since J is v-strongly convex and d-smooth, we have
(B) = 21, VI (0°) T (w;
+ 20, VI (Wio1) T (W — wi1)
+ Q/LwVJ(Wi)T(Wifl — W)
+ 240 (VT (Wi) = VI (Wi 1)) " (Wi —
< 20T (Wi) = 2410 T () I”
+ 240 T (W
+ 2000 T (Wiz1) —
+ 2p,0 || Wi —

_—"

Wi-1)
— p|Wi
) = 240 T (Wi-1)
210 T (W)

Wi |?

— pV || Wiz |?

— pV || Wi — Wi |?

= — poV|Will* = pov|Wis

— (fteo? + 2010) || W5 — W12 (45)

For term (C), we have

(C) < 2ey | Bavill* + 2¢, [ Fi-1 |24
< 2ty | Bawi || + 2¢y||Fi-1 |72, (46)
where we used ||z + y||*> < 2[|z||? + 2||y||* and 0 < L? < .
Using 227y < 2||z[|? 4 €||y[|* for any e > 0, the fourth term
(D) can bounded by

(D) < *HBd(Wz = Wi) |2 + povn | (I = L2)Fia ||,
(47)

Substituting all four bounds on ((A), (B), (C), (D)) into (40),
we obtain

(L4 st [IWi* = Bptas pry | Bai |

+ ey (14 pyvn)?B15l* + 21|72
< (1= p) Wil = prwopty | Bawia||* + ¢yl[Fi-a|?
+ bVl = L2 [|? + (1= pea®(£)) 221 %ia |
o+ (2ptty + ) [Bals = s-) |1
— (14 prwV = 20 Wi — Wi || (48)
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We can ensure that

(2t + 2 ) 1Bals = ) P

— (14 prV — 2p00) W5 — Wi 1|2 €0,  (49)
under the condition on ,, given in (23a). We can also ensure
that

1Wall® < (1 + pat) il1? = Bptapay [|Bavi> (50)
if the conditions on p,, in (23b) holds. Note that
(1= pao) Wi 1 [|* = paopty | Bavi -1 ||
< (1= pot) [ Wi || (5D
Using the condition 0 < £2 < I, it holds that
eyllVioa P + pwrnl| (I — £2)¥i4]?
< (ey + pwvn)|9ia]?
= 726y (14 pryvn)? (1 = praomax (L)) [Via]?, - (52)
where
1
Yo = <1, (53)

(1 + Ny”h)(l HzO max(’c))
under the condition (23c). Therefore, substituting the previous

bounds into (48), it holds that

IWil* + ey (1 + pyvn)* Bl + 22112

<7y (HWZ 1H +cy(1 +Myyh) 5”321 1”2 v ”}z*1||2)

with
’Y:max{l HwV aﬁizh%al_#xg2(£)} <17

under the conditions (23). The theorem is proved. |

B. Proof of Theorem 2
Note that

ﬁ é 1- H’Io'?nax([’) >0

for p1, < ﬁ We can lower bound (A) by

I?

BeylPill” = Beyllprox,, - (vi) — prox,, 2 (V)|

< Bey[Vill* < (4).
We have the following upper bound for the term (B):
(B) = — 2p(VI (Wi—1) — VJ(WO))TVNWA

= 211y (VT (Wim1) = VI ()"
Wi-1 = (VT (Wi 1) VI WP —
— (VI Wie1) = VI (W) |12
= 20 (VI (Wi1) — VJ(WO))T (Wi = wi-1)
= [[Wi-1 = (VT (Wii1) = VI (W)
— Wil + llwi = wia ||
(VI Wi-1) = VI (W
= Wit — (VT Wit) — VT (w

— [l By Vi1l + [ws — wia|?

(56)

(Wl — Wi— 1)

Wit

) +wi —wia|?

NIZ -

Wit ||
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< = (2 = pu )iy (VT (i) =

= lwBi Vi1l + [lws (57)
where the last equality holds from (21a) since R = 0. The
last inequality holds because J is convex and J-smooth. Us-
ing Jensen’s inequality ||z + y||* < %5 |z||* + {ly||* for any
t < 1, the term (C') can be upper bounded by:

2
Cylly
e N3

VI (W)

— Wi-1 || )

~ & ~
|Bsz‘||2 + 0-27y(£) ||yi71 H,2C4

max

D)

Fhaw by
< - 7
T 1- max(‘c)

Last, we can upper bound the term (D) by:
(D) = L25i1)|? ~

VI W) + By L2V ||?

1Bawi|* + ¢y [[Fi-|Ze- (58)

- /iszBg@i 1= Wi — 17\/1'71”2
+up VT (i) —

< = Wi = Wia |)?

+ 205,00, 1 (VT (Wie1) = VI (W)

+ 200 191112 5,57 2 (59)

where the equality holds due to 22Ty = —||z||% — ||y||? + ||z +
y||? and (21a) (with R = 0). The last step holds since

o |VT (wis1) = VI W) + BIL? i
<2 [IVT Wia) = VI WP + 202 | BIL?D: ||
< 28,6y (VT (Wio1) = VI (W)
+ 241|117 5,57 2 (60)
and
— 112, ||BiYi1 — BIL? i 4]* < 0.

Note that

How Py

< ot 1Bavill®

potty | Bawil|* <

since 0 < 02, (£) < 1. Using this, and substituting all four
bounds on ((A), (B), (C), (D)) into (40), we get

~ ~ C ~
1Will&, + ey BlIPill* + M—yuxin?
< Wit I = sty | Bawica |I? + ey 91 1? = ey l19i-1 112
+ (1= pag®(L)) 221 %i |
- VVPlHQ =+ 2Nwﬂy||8d(‘/~vz - V~Vi—1)||2
— (2 = 3uwd)W,_y (VT (Wis1) = VI (W)

— By Vi1l + Q:U'wHFji*1”£2BdB;£2

— [Iw:

< (1= (2 = 318 [ |2 = protsy |1 Bawvia
— BT

+ 2/&;”’371'71”%2&5;& + (1 - NIQ2(£)) ;%H}zflw

+ eyl|Picall? = ey Pi-allZ2

— Wi = W1 ||* + 21wty || BaOWi — Wi—1)]?, (61)
where
A by P T
Co 21— (2ate BT3B,

5577

and we used strong-convexity in the last inequality. Note that

—[[Wi = Wit I® 4 2pteopty | Ba(Wi — Wi—1)|* <0, (62)

for fly py < 73) Moreover,

Zrax(

(1= paov(2 = Bpaa0)) Wi |* — praspy | Bai 1 ||

— || Wi ||

= 71| Wi1 |2

w

F Vi1l 2y~ Mty | Bawioa]|®
1-02 ﬁ)BdBd

Ziax(

<mnlwiall, — povwial? + 2“1”“’7«:?)

%12
— 0 Ra(Ba) ) i
=02, (£) TmaxPd) ) [PViz1

(63)

< NIl - o (v

< Wiz, ,

w

where 1 21 tw (1 — 3pyd) < Lfor puy, < 3—15 and the last

step holds for

V(l - 0'12nax([:))
< —— == 77
M= "202 (Ba)

Also note that

ey[Fi-1ll? = cyllFi-1lZe =l Ba Fimall* + 205 Fi-1ll 225,57 2
< ¢ylPFiall® = ey lFi1ll2e = llwBi il
+ 20,0 (BLL) |51 [ 22

= cyll¥i-allf 1 e
o

< il g

.uwlindBE
— 2ty T (BIL) )y Vi1 22

*,LLHHU,deB;; ’ (64)

N

where the last step holds under the condition
24ty fyy 020 a (BYL) > 0. Tt holds that (see Appendix E)

1
0 < 5;62 + //Lw,udeBl- < I
for
1 — 2omax(L?)
max(Bd)

Therefore, we can further bound the last inequality by

How by <

cylFi1ll? = cyllFi-1lZe = o BaFima |1+ 205 Fi-1l 25,57 2

g Cy”f)?ifl ||3_%£2

— o oy BaBY)
< (1= Amin (popty BBy + 5£2)) (|95 (65)
Note that
1 — Amin (o o BaBY + £ 22
’Yzé (,u:uydd B} )<1 (66)

1- M:Ifa-rznax(ﬁ)
Amin(u1uﬂy3d8-{5+%£2)
Thax (L)
into (61), and noting that 3 = 1 — p,02, (L), the following

holds

WillZ, + cuBlFill® + 2= 117

for p, < . Combining the previous bounds

m(nm_l|éu,+cyﬁ||5,»_1|2 |7, 1||2) 67
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where

—Ami T, Lo
5 = max {1 — (1 = 31, 8), ey BB G2

1— ,ung(/.:)} <1. (68)

Collecting all step-size conditions, our bound holds for the
sufficient conditions given in (25). The linear convergence is
proved. |

APPENDIX E
POSITIVE DEFINITENESS OF [, udeBg + %EQ

In this section, we will show that if B = [B; --- Bg] has
full row rank, then the matrix
G = L%+ oy BaBj

is positive definite. To see this, note that %£2 and fu,, f1,BaB)) are
positive semi-definite matrices. This means that "Gy > 0 and
is equal to zero if and only if T £2y = 0 and j1,, 11,y " BaB) v =
0. To show that G is positive definite, it remains to show that
YGy=0 only for y = 0. Assume that there exist ¥ such that
»'Gy = 0. This means that £y = 0 and B,;» = 0. Note that
Ly = 0 implies that y is consensual, ¥ = 1 ® y for some y.
Using this, means that B;y = BTy. Because B has a full row
rank, then BT has a full column rank, and By = 0 only for
y = 0. Thus, the matrix G is positive definite and A\, (G) > 0.
To ensure that Anlax(,u”u),u'deB; + %52) < 1, we use Weyl’s
Theorem to bound the maximum eigenvalue [54]:

)\max(,uwludeBg + %[’2)

S Mw,uly)\max(BdB;) + %)\max(‘cz)a (69)
which is less than one for
1— e (£2?)
2 max
< -k _ 7
Huwlly Amax(BdBZ)
Note that )\max(Bng) =02, (Bg)and Aoy (£2) = 02, (L).
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