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a b s t r a c t 

Recovering an unknown object from the magnitude of its Fourier transform is a phase retrieval problem. 

Here, we consider a much difficult case, where those observed intensity values are incomplete and con- 

taminated by both salt-and-pepper and random-valued impulse noise. To take advantage of the low-rank 

property within the image of the object, we use a regularization term which penalizes high weighted 

nuclear norm values of image patch groups. For outliers (impulse noise) in the observation, the � 1 −2 met- 

ric is adopted as the data fidelity term. Then we break down the resulting optimization problem into 

smaller ones, for example, weighted nuclear norm proximal mapping and � 1 −2 minimization, because the 

nonconvex and nonsmooth subproblems have available closed-form solutions. The convergence results 

are also presented, and numerical experiments are provided to demonstrate the superior reconstruction 

quality of the proposed method. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

In this paper, we consider the phase retrieval problem in which 

e try to recover the target image from the intensity measure- 

ents of its Fourier transform. 

Many fields, such as astronomical imaging [1] , crystallography 

2] , and optical imaging [3] , etc., benefit from the development 

f phase retrieval algorithms. The error reduction algorithm [4] , 

s a popular method for phase retrieval, works on both the spa- 

ial and Fourier domains and can be seen as an alternating pro- 

ection method. Fienup pointed out that the error reduction algo- 

ithm may fail to find the optimal solution of the original problem 

5] , he improved it and proposed a basic input-output algorithm, 

hich can be linked to the Dykstra’s algorithm [6] , and a hybrid 

nput-output algorithm [5] , which is an application of the Douglas- 

achford algorithm [6] . Projection-based approaches for phase re- 

rieval also include the hybrid projection-reflection algorithm [7] , 

he relaxed averaged alternation reflections method [8] , and the 

ugmented Lagrangian alternating direction method [9] . 
∗ Corresponding authors. 

E-mail addresses: zeng@math.cuhk.edu.hk (T. Zeng), gxzhang@cs.ecnu.edu.cn (G. 

hang). 
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Due to the difficulty of non-convexity of the phase retrieval 

roblem, semi-definite relaxation methods are used to trans- 

er the non-convex problem into convex ones at the expense 

f squaring the number of variables [10] . Typical methods in- 

lude PhaseLift [11] and PhaseCut [12] . PhaseLift optimizes a cost 

unction defined on a convex set of complex Hermitian positive 

emidefinite matrices, and relaxes the rank minimization prob- 

em, while PhaseCut also drops the rank constraint. More recently, 

haseMax relaxes the non-convex equality constraint to an in- 

quality constraint and changes the problem into a convex one 

ithout lifting [10] . However, in some situations, its numerical re- 

ults are not as good as its counterparts with lifting [13] . To handle

oisy measurements, Chang et al. [14] proposed to use the total 

ariation regularization together with structured illuminated pat- 

erns in holography to build a model, later he applied a global con- 

ergent algorithm to solve phase retrieval problems with observed 

easurements polluted by Poisson or Gaussian noise [15] . 

.1. Phase retrieval problem 

Our goal is to recover the image u (t 1 , t 2 ) : � → R 

n 1 ×n 2 defined

n the lattice � from its incomplete noisy phaseless measure- 

ents, where t 1 ∈ { 0 , 1 , . . . , n 1 − 1 } , t 2 ∈ { 0 , 1 , . . . , n 2 − 1 } . These

easurements are obtained by illuminating the object with three 

https://doi.org/10.1016/j.patcog.2022.108537
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108537&domain=pdf
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ight fields [16] , and the resulting 3 n 1 n 2 measurements have the 

orm 

 b 0 , b 1 , b 2 } := J{| F u | , | F (u + D 

s u ) | , | F (u − i D 

s u ) |} , (1)

here F is the Fourier transform given by 

F u )(ω 1 , ω 2 ) := 

1 √ 

n 1 n 2 

∑ 

(t 1 ,t 2 ) ∈ �
u (t 1 , t 2 ) exp 

(
−2 π i 

(
ω 1 t 1 

n 1 
+ 

ω 2 t 2 
n 2 

))
, 

ith ω = (ω 1 , ω 2 ) ∈ �, D 

s is the modulation defined as 

D 

s u )(t 1 , t 2 ) = exp 

(
2 π i 

(
s 1 t 1 
n 1 

+ 

s 2 t 2 
n 2 

))
u ( t 1 , t 2 ) , (2) 

ith s = (s 1 , s 2 ) = (0 . 5 , 0 . 5) to yield an exact recovery [14] , the

 ∗ | is to take the element-wise absolute value of the matrix (the 

esult of the Fourier transform), similarly, + and - are the element- 

ise addition and subtraction. J acts on all three magnitudes of the 

easurement in the curly brackets separately to apply both data 

oss and noise, details are given later in (4) in Section 2 . 

.2. Weighted nuclear norm 

To build the image recovery model and reconstruct u , we 

eed to adopt a properly chosen regularization term that reflects 

parse properties of the underlying solutions. The low-rank ap- 

roximation [17] is a fundamental tool in image processing, and 

eights [18,19] are incorporated into the sparsity promoting term 

o treat components adaptively. Sparse coding is a powerful strat- 

gy that is commonly implemented in a group-based way [20–

2] , which groups similar image patches together, then enforce the 

ow-rank property over each group, the application includes, de- 

oising [21,22] , inpainting and deblocking [20] , etc. 

Sparse coding can be achieved by minimizing the weighted nu- 

lear norm (WNN), which can alleviate the bias of the nuclear 

orm. The WNN of a matrix X is defined as 

 X ‖ w , ∗ = 

∑ 

i 

w i σi (X ) , (3) 

here weights { w i } m 

i =1 
are non-negative, σi (X ) is the i th singu- 

ar value of matrix X , in this paper, X is a patch group (see

ection 3.3 ) in an image. For more details, please check [21,23] , 

he WNN has attracted researchers’ attention recently, especially 

n image processing [24–28] . In [21,25,27] , authors have demon- 

trated that WNN models can better recover images polluted by 

aussian noise, and can outperform many state-of-the-art meth- 

ds in terms of the visual quality. WNN models are also de- 

igned to handle other image recovery problems such as, Cauchy 

oise removal [26] and deblurring [28] , and for recovery of spe- 

ial types of images, such as hyperspectral images [24] . Consider- 

ng the fact that the weighted � 1 norm can enhance sparsity [23] , 

u et al. [21] suggested to choose the weights based on the singu- 

ar values, which works better than the nuclear norm [21,29] . They 

lso provide a closed-form shrinkage operator to obtain a low-rank 

pproximation of a matrix. However, the nonconvex penalty func- 

ion corresponding to the approximate solution is not given. 

Moreover, the WNN is implemented patch-wisely, and in a 

roup-based manner, that is to say, similar patches are grouped to- 

ether as a matrix, on which the WNN is computed. As far as we 

now, for those group-based methods, there was no convergence 

roof. In summary, the main contributions of this paper are listed 

s follows: 

• We propose a new scheme for solving the phase retrieval prob- 

lem with noisy measurements using group sparse representa- 

tion via weighted nuclear norm minimization. 
• We suggest to use the � 1 −2 metric fidelity term for reconstruc- 

tion of images form incomplete magnitude measurements cor- 

rupted by both salt-and-pepper and random-valued impulse 

noise. 
2 
• We present closed-form solutions for sub-problems after de- 

composing the main optimization problem. We give the ana- 

lytical justification of the closed-form solution for the weighted 

nuclear norm proximal mapping, so that we can prove the con- 

vergence within the group-based sparse representation frame- 

work. 

Organization: This paper is structured as follows: In Section 2 , 

e introduce the proposed model. Then in Section 3 , we revisit 

he approximate solution of the weighted nuclear norm proximal 

apping suggested in [21] , and give the analytical justification of 

he closed-form solution, so that, in the group-based sparse rep- 

esentation framework, we can provide the convergence proof of 

he penalty method which we adopt to solve the model. Numeri- 

al experiments are conducted on natural images to demonstrate 

he superior performance of the proposed model in Section 4 . In 

he conclusion section, we also discuss future works. 

. The proposed model 

The observed measurements b := { b 0 , b 1 , b 2 } in (1) can be in-

omplete, e.g., from the perspective of compressive sensing, one 

an reconstruct the object from just its sub-sampled diffraction 

attern [30–32] . We introduce three subsets: �i ⊂ �, for i ∈ 

 0 , 1 , 2 } to define the observed measurements. We assume that

 i ( j, k ) is given when ( j, k ) ∈ �i . In this paper, we consider the

ituation when the pollution is caused by both salt-and-pepper 

nd random-valued impulse noise [33] . We assume that these 

wo types of contamination are mutually exclusive, since salt-and- 

epper noise overshadows other noise. We assume that the noise 

atios of salt-and-pepper and random-valued impulse noise are r 1 
nd r 2 , respectively, and r 1 + r 2 ∈ (0 , 1) . Similar to the definition of

he noise in [33] , the intensity value of the corrupted measurement 

 i ( j, k ) , at location ( j, k ) ∈ �i is given by 

 i ( j, k ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

max (b i ) with probability r 1 / 2 ;
min (b i ) with probability r 1 / 2 ;
ηi ( j, k ) with probability r 2 ;
b i ( j, k ) with probability 1 − r 1 − r 2 , 

(4) 

here ηi ( j, k ) is a uniformly-distributed random value in 

 min (b i ) , max (b i )] . Note that the direct detection of noisy mea-

urement is extremely difficult, especially for the random-valued 

oise, because observed measurements suffer from a major data 

oss at random places. Therefore, we propose to use a data loss 

erm with the � 1 −2 minimization [34,35] . The loss function is 

‖| F u | − b 0 ‖ � 1 −2 , �0 
+ ‖| F (u + D 

s u ) | − b 1 ‖ � 1 −2 , �1 

+ ‖| F (u − iD 

s u ) | − b 2 ‖ � 1 −2 , �2 
, (5) 

here ‖ v ‖ � 1 −2 , �i 
:= 

∑ 

j∈ �i 

| v ( j) | − α( 
∑ 

j∈ �i 

| v ( j) | 2 ) 1 2 . We fix α = 0 . 5 in 

his paper [34] . 

For simplicity, we introduce operators to rewrite (5) into a con- 

ise form: A := [ I, I + D 

s , I − i D 

s ] , where I is the identity transform,
¯ := (�0 , �1 , �2 ) , and F z := (F z 0 , F z 1 , F z 2 ) for z = (z 0 , z 1 , z 2 ) .

hen, the loss function in (5) is rewritten into a simple form 

 = ‖| F A u | − b ‖ 

� 1 −2 , ̄�
. (6) 

Taking the advantage of the sparsity at the image patch level, 

e incorporate the WNN [21] into (6) as a regularization term. The 

ew model, which we named the WNN model, is 

min 

0 ≤u ≤1 
E W NN (u ) = ‖ u ‖ W NN + 

λ
2 
‖| F A u | − b ‖ 

� 1 −2 , ̄�
, (7) 

here ‖ u ‖ W NN is the regularization term, whose definition can be 

ound in Section 3 . The parameter λ balances the regularization 

erm ‖ u ‖ and the data fitting term. 
W NN 
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2 
. Numerical algorithms 

In Section 3.1 , we review the weighted nuclear norm proximal 

apping (see Definition 1 and the weighted nuclear norm is de- 

ned in (3) ), and its approximate solution suggested in [21] , where 

he authors adaptively turn weights. Following [23] , they choose 

he weight w i in k th iteration to be C 

| x k 
i 
| + ε , where C is a non-zero 

onstant. x i is the i th singular value calculated in the k th iteration. 

is a small positive number to avoid divide overflow. Strategically, 

u et al. [21] came up with a very efficient closed-form solution 

o the non-convex problem, essentially it provides a relaxed soft- 

hresholding for the singular value, and the algorithm achieves su- 

erior performance in numerical experiments. However, because of 

he dynamic setting of weight values, without a fixed form of the 

bjective function, it is hard to explore the convergence behavior. 

herefore, we analyze the efficient closed-form approximate solu- 

ion to the optimization problem involving the WNN, and prove 

he approximate solution proposed in [21] can be seen as an exact 

olution of a fixed functional. With this functional, after we review 

he way to generate patch groups in Section 3.3 , and illustrate the 

lgorithm to solve the proposed model in Section 3.4 , we can give 

ts convergence results in Section 3.5 . 

.1. Weighted nuclear norm proximal mapping 

In this paper, we follow the definition of the weighted nuclear 

orm proximal operator in [21] . 

efinition 1. For a matrix Y ∈ R 

d×m , the weighted nulcear norm 

roximal (WNNP) mapping with given weights { w i } is defined as 

 

∗ = prox ‖·‖ w , ∗ (Y ) = arg min 

X 
‖ X ‖ w , ∗ + 

1 

2 

‖ X − Y ‖ 

2 
F 

= arg min 

X 

∑ 

i 
w i σi (X ) + 

1 

2 

‖ X − Y ‖ 

2 
F . (8) 

ere σi (X ) is the i th singular value of matrix X . 

The closed-form solution for the WNNP was given in [21, Theo- 

em 1 and Corollary 1] . Without loss of generality, we assume that 

 ≥ m , and the thin singular value decomposition of Y is U�V 

T ,

here � = diag(σ1 , σ2 , . . . , σm 

) ∈ R 

m ×m with σ1 ≥ σ2 ≥ . . . ≥ σm 

≥
 . Then the global optimum of the WNNP problem can be ex- 

ressed as X 

∗ = UDV 

T , where D = diag(d 1 , d 2 , . . . , d m 

) and 

{ d i } i =1 , ... ,m 

= arg min 

{ x i } i =1 , ... ,m 

m ∑ 

i =1 

{ w i x i + 

1 
2 
‖ x i − σi ‖ 

2 } , 
s.t. x 1 ≥ x 2 ≥ . . . ≥ x m 

≥ 0 . 

(9) 

urthermore, if the weights { w i } m 

i =1 
satisfy 0 ≤ w 1 ≤ w 2 ≤, . . . , ≤

 m 

, we obtain d i = max (σi − w i , 0) . 

The weights in the WNNP bring flexibility and a potential 

ood solution, but they are difficult to choose. In addition, set- 

ing an appropriate weight is critical for this model. Paper [21, Re- 

ark 1] suggests to set weights as 

 i = 

C 

| d i | + ε
. 

t is inspired from the reweighted � 1 norm for a sparse vector x 

rom [23] , where the weights for the � 1 norm at the k th iteration

re based on 

 

k 
i = 

C 

| x k 
i 
| + ε 

. (10) 

ere C is a non-zero constant. In the matrix case, a reweighted 

uclear norm method iteratively solves the WNNP problem with 

 

k 
i = 

C 

| d k | + ε 
. 
i 

3 
herefore, the iteration is 

 

k +1 
i 

= max (σi −
C 

| d k 
i 
| + ε 

, 0) . (11) 

e can find the fixed point for the iteration, which is 

 i = 

{
0 , c 2 < 0 ;
c 1 + 

√ 

c 2 
2 

, otherwise , 
(12) 

here c 1 = σi − ε, c 2 = (σi + ε) 2 − 4 C. 

Though the shrinkage in (12) performs very well in practice, 

o the best of our knowledge, the exact function whose proximal 

apping coincides with (12) is not given in literature. 

In the following, we show that this shrinkage operator corre- 

ponds to the proximal operator of a nonconvex function. Since 

he constant parameter ε is very small (In [21] , the authors use 

he floating-point relative accuracy, 2 . 2204 e − 16 ), we let ε = 0 for

implicity and rewrite (12) as 

 i = 

{
0 , σ 2 

i 
− 4 C < 0 ;

σi + 
√ 

σ 2 
i 
−4 C 

2 
, otherwise , 

(13) 

e show that actually d i = prox P (σi ) := arg min 

x 
P(x ) + (x −

i ) 
2 / 2 , where P is the continuous function defined as 

(x ) = 

{
3 
2 
(Cx ) 

2 
3 , 0 ≤ x ≤ √ 

C ;
3 
2 
C + C ln ( x √ 

C 
) , x > 

√ 

C . 
(14) 

roposition 1. The proximal operator of P for non-negative y has a 

losed-form expression, and 

rox P (y ) ∈ 

⎧ ⎨ 

⎩ 

{ 0 } , if 0 ≤ y < 2 

√ 

C ;
{ 0 , 

√ 

C } , if y = 2 

√ 

C ;
{ y + 

√ 

y 2 −4 C 

2 
} , if y > 2 

√ 

C . 

roof. The proximal prox P (y ) := arg min 

x 
Q (x, y ) , where 

 (x, y ) = 

{
f (x ) , 0 ≤ x ≤ √ 

C ;
g(x ) , x > 

√ 

C , 
(15) 

f (x ) := 

3 

2 

(Cx ) 
2 
3 + 

1 

2 

(x − y ) 2 , 

g(x ) := 

3 

2 

C + C ln ( 
x √ 

C 
) + 

1 

2 

(x − y ) 2 , (16) 

here f (x ) is smooth over [0 , 
√ 

C ] and 

f ′ (x ) = C 
2 
3 x −

1 
3 + x − y, 

f ′′ (x ) = −1 

3 

C 
2 
3 x −

4 
3 + 1 , 

f ′′′ (x ) ≥ 0 . (17) 

Let f ′′ ( ̃  x ) = 0 , and we obtain ˜ x = 3 −3 / 4 
√ 

C < 

√ 

C . We have

f ′ (x ) → + ∞ when x → 0+ . Thus, 

f (x ) is 

{
concave, x ∈ [0 , ̃  x ] ;
convex, x ∈ [ ̃  x , 

√ 

C ] , 
(18) 

n the following, we will consider x in the intervals [0 , ̃  x ] , [ ̃ x , 
√ 

C ] ,

nd [ 
√ 

C , + ∞ ] separately, and it is obvious that, to find the mini-

um, the concave part ( x ∈ [0 , ̃  x ] ) in (18) is easy, we only need to

ompare f (0) and f ( ̃  x ) . 

We also compute the derivative of g, 

g ′ (x ) = 

C 

x 
+ x − y, 

 

′′ (x ) = − C + 1 > 0 , x ∈ ( 
√ 

C , + ∞ ] . (19) 

x 



Z. Li, M. Yan, T. Zeng et al. Pattern Recognition 125 (2022) 108537 

(  

 

 

 

 

 

 

(  

 

 

 

(  

 

 

3

w

a

√

t  

s  

{  

f

a  

p

p

a  

t

a

3

t

X

C

s

v

v

w

3

m

W

f

w

‖  

z

χ

B

s

P

w

c

u  

a

A

p

a) When 0 ≤ y < 2 
√ 

C , we have g ′ (x ) > 0 for x > 

√ 

C , and f ( 
√ 

C ) =
g( 

√ 

C ) . Therefore, the minimum can be reached in [0 , 
√ 

C ] . Re-

call in (17) , f ′′′ (x ) ≥ 0 , then f ′ (x ) is convex. 

(11) If f ′ ( ̃  x ) ≥ 0 , f (x ) is non-decreasing and we have 

prox P (y ) = 0 . 

(22) If f ′ ( ̃  x ) < 0 , that is C 2 / 3 ˜ x −1 / 3 + ̃  x − y < 0 . 

Recall f ′ (x ) → + ∞ when x → 0+ . f ′ ( 
√ 

C ) = 2 
√ 

C − y > 0 ,

then there exists a unique ˆ x ∈ ( ̃  x , 
√ 

C ) such that f ′ ( ̂  x ) = 0 .

Considering the shape of f (x ) described in (18) , we know 

that the minimum can only be reached at f ( ̂  x ) or f (0) . Note

that 

f ( ̂ x ) − f (0) = 

3 

2 
(C ̂  x ) 2 / 3 + 

1 

2 
( ̂ x − y ) 2 − 1 

2 
y 2 

= 

3 

2 
(C ̂  x ) 2 / 3 + 

1 

2 
ˆ x 2 − ˆ x y = ˆ x ( 

3 

2 
C 2 / 3 ˆ x −1 / 3 + 

1 

2 
ˆ x − y ) . 

Let h (x ) = 

3 
2 C 

2 / 3 x −1 / 3 + 

1 
2 x − y . We have h ( 

√ 

C ) = 2 
√ 

C − y >

0 . The derivative h ′ (x ) = − 1 
2 C 

2 / 3 x −4 / 3 + 

1 
2 being negative 

over (0 , 
√ 

C ) shows that h (x ) > 0 for all x ∈ (0 , 
√ 

C ) . There-

fore, we have f ( ̂  x ) > f (0) . So we also have 

prox P (y ) = 0 . 

b) When y = 2 
√ 

C , similar to (a), we have g ′ (x ) > 0 for x > 

√ 

C ,

and f ( 
√ 

C ) = g( 
√ 

C ) . Therefore, the minimum can be reached in

[0 , 
√ 

C ] . Furthermore, 

f ′ ( ̃  x ) = C 1 / 2 3 

1 / 4 + 3 

−3 / 4 
√ 

C − 2 

√ 

C < 0 , 

and recall f ′ (x ) → + ∞ when x → 0+ , and f ′ (x ) is convex. So

we only need to compare f (0) and f ( 
√ 

C ) because f ′ ( 
√ 

C ) = 0 .

Note that 

f ( 
√ 

C ) − f (0) = 

3 

2 

C + 

1 

2 

( 
√ 

C − 2 

√ 

C ) 2 − 1 

2 

(2 

√ 

C ) 2 = 0 . 

So we have 

prox P (y ) ∈ { 0 , 
√ 

C } . 
c) When y > 2 

√ 

C , we have f ′ ( 
√ 

C ) = g ′ ( 
√ 

C ) < 0 . The function f is

decreasing on the convex part [ ̃  x , 
√ 

C ] , and recall on the con-

cave part [0 , ̃  x ] , the minimum can only be reached in f (0) or

f ( ̃  x ) . Therefore, we only need to compare f (0) and the mini- 

mal value of g at ˆ x := 

y + 
√ 

y 2 −4 C 
2 ( g ′′ (x ) > 0 ). In fact, we have 

g( 
√ 

C ) = f ( 
√ 

C ) = 3 C/ 2 + ( 
√ 

C − y ) 2 / 2 = 2 C −
√ 

C y 

+ y 2 / 2 < y 2 / 2 = f (0) . 

Therefore, we have 

prox P (y ) = 

y + 

√ 

y 2 − 4 C 

2 

. 

�

.2. Description of the patch group 

Considering that the WNN is actually calculated on each group, 

e give a brief introduction about how to construct patch groups, 

nd this process can be elaborated in Fig. 1 . 

Image u ∈ R 

n 1 ×n 2 is divided into N overlapped patches ȳ j of size 
 

d ×
√ 

d , after the square patch is stretched into a column vec- 

or y j ∈ R 

d , among these N stretched patches { y j } j=1 , ... ,N , a sub-

et { y j } j=1 , ... ,M 

, M < N is fixed as key patches. For each y j , j ∈
 1 , . . . , M} , its most similar m patches are found from all patches

alling into a fixed-size search window, and together they form 

 matrix Y j ∈ R 

d×m , the matrix is essentially a group of similar

atches, and also be called a patch group, then the WNN is com- 

uted on each group, and promotes sparsity. Without loss of gener- 

lity, we can write the procedure as Lu = Y = { Y j } j= { 1 , ... ,M} , where

he operator L extracts patches from image u , then regroups them, 

nd L : R 

n 1 ×n 2 → R 

d×m ×M . 
4 
.3. Group sparse representation 

We describe the implementation of the group sparse represen- 

ation in [21] , since their main results will be used here. 

The WNNP is adopted to compute the denoised patch group 

 

∗
j = prox ‖·‖ w , ∗ (Y j ) . 

onsidering the overlapping of pixels in patches, the authors then 

olve the following minimization problem for the denoised image 

 

∗

 

∗ = arg min 

v 
‖ 

∑ 

j 

( ̄X j − X 

∗
j ) ‖ 

2 
2 , (20) 

here { ̄X j } j= { 1 , ... ,M} = Lv . 

.4. Solving the WNN model 

We apply the penalty method to solve the proposed WNN 

odel and present some convergence results in the next section. 

e start by rewriting the WNN model (7) into its group based 

orm 

min 

u 
‖ P ‖ w , ∗ + 

λ
2 
‖| z | − b ‖ 

� 1 −2 , ̄�
+ χ(v ) , 

s.t. 

{ 

z = F A u , 

P = Lv , 
u = v , 

(21) 

here P = { P j } j= { 1 , ... ,M} ∈ R 

d×m ×M are groups of patches, and 

 P ‖ w , ∗ = 

∑ 

j 

∑ 

i 

w i σi (P j ) , σi (P j ) denotes the i th singular value of P j .

 = (z 0 , z 1 , z 2 ) , and 

(v ) = 

{
0 , 0 ≤ v ≤ 1 ;
∞ , otherwise . 

(22) 

ased on variable splitting and the quadratic penalty method, we 

olve 

 W NN (u , P , v , z ) = ‖ P ‖ w , ∗ + 

λ

2 

‖| z | − b ‖ 

� 1 −2 , ̄�
+ χ(v ) 

+ 

ρ1 

2 

‖ z − F A u ‖ 

2 
F + 

ρ3 

2 

‖ P − Lv ‖ 

2 
F 

+ 

ρ2 

2 

‖ u − v ‖ 

2 
F , (23) 

here ρ1 , ρ2 , and ρ3 in the unconstrained objective are positive 

onstants. The penalty method minimize P W NN with respect to 

 , P , v , and z alternatively while increasing the variables ρ1 , ρ2 ,

nd ρ3 . The algorithm is summarized in Algorithm 1 . 

lgorithm 1 Penalty Method for solving the WNN model (7) . 

Initialize u 

0 = v 0 , k = 0 , r > 1 . 

while stopping conditions are not satisfied do 

Update z k +1 
0 

via (33), similarly for z k +1 
1 

, z k +1 
2 

; 

Solve (28) via (12) to obtain P 

k +1 ; 

Update v k +1 via (32); 

Update u 

k +1 via (37); 

increase the variables ρ1 , ρ2 and ρ3 : ρi = rρi , i = 1 , 2 , 3 ;
k ← k + 1 . 

end while 

output the solution u 

∗ = u 

k +1 . 

Below we present the closed-form solutions for minimizing the 

rimal subproblems, respectively: 

z k +1 = arg min 

z 
P W NN (u 

k , P 

k , v k , z ) , (24) 

P 

k +1 = arg min 

u 
P W NN (u 

k , P , v k , z k +1 ) , (25) 
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Fig. 1. Formulation of a patch group. 

Fig. 2. 1st: 30% mask; the rest: clean image . 

Table 1 

SNR values of the recovered images under mixed impulse noise (both salt-and-pepper noise and random-valued impulse noise) by differ- 

ent methods. 

SP + RI dragonfly swan airplane barbara flowers fruits house lena peppers stars squares 

ER 18.85 13.80 17.48 14.69 15.48 18.34 19.16 15.64 14.86 25.32 26.56 

0.2 PPA 20.94 17.43 18.82 15.75 17.61 19.72 20.32 15.89 15.92 26.94 28.36 

+ 0.1 TV 21.73 18.20 19.45 16.16 18.14 20.15 20.75 16.32 16.54 27.52 29.13 

PEN 23.89 20.87 20.91 17.71 19.77 21.95 24.17 18.11 18.55 28.86 30.37 

ER 20.01 16.85 18.83 14.59 16.43 18.16 19.24 15.29 14.92 25.12 27.03 

0 PPA 21.40 19.86 19.75 17.76 19.82 20.05 22.09 18.33 18.31 27.24 28.96 

+ 0.3 TV 22.03 20.34 20.45 18.36 20.33 20.76 22.59 18.94 19.05 27.63 29.16 

PEN 24.95 22.77 21.91 20.34 22.82 23.21 25.79 21.28 21.94 29.78 31.24 

ER 23.38 20.19 20.54 18.69 20.35 22.45 23.24 20.77 19.80 26.21 28.15 

0.1 PPA 24.71 22.94 23.15 20.41 23.26 23.31 25.52 21.27 22.29 28.12 29.56 

+ 0.1 TV 25.14 23.52 23.70 20.90 23.66 23.82 26.22 21.93 22.72 28.72 30.12 

PEN 27.29 24.93 24.64 22.42 25.74 25.14 28.32 23.81 25.28 30.21 31.64 

ER 18.18 18.49 18.43 15.75 17.77 18.92 19.97 16.19 15.72 26.13 27.22 

0.1 PPA 20.12 20.26 19.02 16.91 19.16 20.08 21.01 17.88 17.19 27.57 28.84 

+ 0.2 TV 20.52 20.56 19.74 17.53 19.75 20.65 21.47 18.35 17.95 27.94 29.25 

PEN 22.87 22.57 20.93 19.33 21.40 22.16 25.35 20.47 20.28 29.22 30.93 

T

R

P

l

v  

C

L

h

t

f

ρ

a

v

v k +1 = arg min 

v 
P W NN (u 

k , P 

k +1 , v , z k +1 ) , (26) 

u 

k +1 = arg min 

u 
P W NN (u , P 

k +1 , v k +1 , z k +1 ) . (27) 

here are closed-form solutions for all the four subproblem above. 

ecall P = { P j } j= { 1 , ... ,M} 

 

k +1 
j 

= arg min 

P j 
‖ P j ‖ w , ∗ + 

ρ3 

2 

‖ P j − (Lv k ) j ‖ 

2 
2 . (28) 

Remark 1 in [21] gives the closed-form solution of the prob- 

em (28) with the weights chosen as (10) . 

 

k +1 = arg min 

v 
ρ3 ‖ Lv − P 

k +1 ‖ 

2 
2 + ρ2 ‖ v − u 

k +1 ‖ 

2 
2 + χ(v ) . (29)
5 
onsidering the fact that a pixel in v can have K duplicate copies in 

v , correspondingly, it related to K elements in the same position 

 in P 

k +1 . In the following two formulas, we slightly abuse nota- 

ions by omitting the index that indicates the position of a pixel, 

or example, v k +1 actually stands for a pixel, 

3 

K ∑ 

h =1 

(
v k +1 − P k +1 

h 

)
+ ρ2 

(
v k +1 − u 

k +1 
)

= 0 , (30) 

nd 0 ≤ v k +1 ≤ 1 , then we have 

ˆ 
 

k +1 = 

1 

ρ2 + ρ3 K 

( 

ρ3 

K ∑ 

h =1 

P k +1 
h 

+ ρ2 u 

k +1 

) 

. (31) 
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ollowed by thresholding 

 

k +1 = min 

{
1 , max 

{
0 , ̂  v k +1 

}}
. (32) 

Recall that �̄ := (�0 , �1 , �2 ) , so the three components of z can

e calculated separately with the same strategy [14] , therefore, we 

nly show the derivation of the closed-form solution for updating 

 0 . The solution 

 

k +1 
0 

= arg min 

z 0 
λ/ ρ1 ‖| z 0 | − b 0 ‖ � 1 −−2 , �0 

+ ‖ z 0 − F u ‖ 

2 
2 , 

here g 0 = F u , obviously, z k +1 
0 

parallel to g 0 . (Otherwise, we can

lways project z k +1 
0 

onto g 0 , and get a better solution.) Thus let x =
 z 0 | − b 0 , then it is equivalent to solve the following minimization

roblem, which has a closed-form solution [34] 

 

k +1 = arg min 

x 
‖ x − (g 0 − b 0 ) ‖ 

2 + 

λ
ρ1 

‖ x ‖ � 1 −−2 , �0 
, 

hen 

 

k +1 
0 = (x 

k +1 + b 0 ) n . (33) 

To make this paper self-contained, we list the derivatives 

∂ u 
(‖ z 0 − F u ‖ 

2 / 2 

)
= ∂ u 

(‖ F ∗z 0 − u ‖ 

2 / 2 

)
= u −

∂ u 
(‖ z 1 − F (u + D 

s u ) ‖ 

2 / 2 

)
= (2 + 2 
 (D 

s )) u − 

 u 

(‖ z 2 − F (u − i D 

s u ) ‖ 

2 / 2 

)
= (2 + 2 � (D 

s )) u − 
 (F ∗z 2 − i D 

s F ∗z 2 )

where F ∗ is the inverse Fourier transform, z̄ is the complex con- 

ugate of z . Therefore, to solve (27) , we only need to solve a linear

quation with invertible and diagonal matrix H , 

 = H 

−1 ( ρ1 (
 ( ̂ z k 0 + ̂

 z k 1 + D 

s ¯̂
 z k 1 + ̂

 z k 2 ) + � (D 

s ¯̂
 z k 2 )) + ρ2 v 

k ) , (37)

here H = ( ρ1 (5 I + 2 
 (D 

s ) + 2 � (D 

s )) + ρ2 I ) , ˆ z k 
i 

= F ∗z k 
i 

for 0 ≤ i ≤
 . 

In Algorithm 1 , we set a constant r > 1 , to increase the penalty

oefficients ρ1 , ρ2 and ρ3 . 

.5. Convergence results 

We apply the convergence theorems listed in [36] , and verify 

he objection function satisfies the required conditions, therefore 

he result of Algorithm 1 is a stationary point of P W NN (u , P , v , z ) . 

In [36] , the authors consider the following optimization prob- 

em, 

inimize 
x 0 , x 1 , ... , x N 

f (x 0 , x 1 , . . . , x N ) , (38) 

here the nondifferentiable part of f is separable, 

f (x 0 , x 1 , . . . , x N ) = f 0 (x 0 , x 1 , . . . , x N ) + 

N ∑ 

k =1 

f k (x k ) , (39)

he function f is proper, f 0 : R 

n 1 + ···+ n N �→ R ∪ {∞} and f k : R 

n k �→
 ∪ {∞} , k = 1 , . . . , N. Here, N, n 1 , . . . , n N are positive integers, and

ach x k , k = 1 , . . . , N, is a coordinate block of x = ( x 1 , . . . , x N ) . 

emma 1. Suppose that dom f 0 is open and f 0 is Gâteaux- 

ifferentiable on dom f 0 , then f is regular at each z ∈ dom f . 

heorem 1. Assume that the level set X 

0 = 

{
x : f (x ) ≤ f 

(
x 0 

)}
is 

ompact and that f is continuous on X 

0 . Then, the sequence 

x r = 

(
x r 1 , . . . , x 

r 
N 

)}
r=0 , 1 ... 

generated by the penalty (Block Coordi- 

ate Descent) method using the essentially cyclic rule is defined and 

ounded. Moreover, the following statements hold: If f ( x 1 , . . . , x N ) 
as at most one minimum in x k for k = 2 , . . . , N − 1 and if the cyclic

ule is used, then every cluster point z of { x r } r≡(N−1) mod N is a coor- 

inatewise minimum point of f . In addition, if f is regular at z , then

 is a stationary point of f . 
6 
∗z 0 ) , (34

z 1 + D 

s F ∗z 1 ) , (35

(36

Recall (23) , we let 

f (z , P , v , u ) = P W NN (u , P , v , z ) 

= f 0 + ‖ P ‖ w , ∗ + 

λ

2 

‖| z | − b ‖ 

� 1 −2 , ̄�
+ χ(v ) , (40) 

here f 0 (z , P , v , u ) = 

ρ1 
2 ‖ z − F A u ‖ 2 F + 

ρ3 
2 ‖ P − Lv ‖ 2 F + 

ρ2 
2 ‖ u − v ‖ 2 F ,

hen from Lemma 1 , we know f is regular. Moreover, f is con- 

inuous on the compact level set X 

0 = 

{
x : f (x ) ≤ f 

(
x 0 

)}
. Recall 

he two minimization subproblem (28) and (29) , they all have at 

ost one minimum, then use Theorem 1 , we know the output 

z k +1 , P 

k +1 , v k +1 , u 

k +1 ) is a stationary point of P W NN . 

. Numerical experiments 

Here we assume the three masks are randomly generated, and 

e further assume that they are identical, i.e., �0 = �1 = �2 , then 

e randomly generate those masks in the same way as in [14] , and

ere in �i , only 30% of pixels are available, the rest of pixels are

onsidered lost, as shown in the 1st row of the top line in Fig. 2 .

he signal-noise-ratio (SNR) is used to measure the reconstruction 

uality 

MSE (u , u g ) = 

∑ 

j∈ 

| u ( j) − u g ( j) | 2 
∑ 

j∈ 

| u g ( j) | 2 , 

NR (u , u g ) = −10 log 10 RMSE (u , u g ) , 

here u g is the ground truth image of size n 1 × n 2 and u is the

econstructed image. 

The SNR of the noisy measurements is defined as 

NR (N , M ) = −10 log 10 

( ∑ 

j∈ �0 , 0 ≤k ≤2 

| ̂ b k ( j) − b k ( j) | 2 / ∑ 

j∈ �0 , 0 ≤k ≤2 

| b k ( j) | 2 ), 
here N = { ̂ b 0 , ̂

 b 1 , ̂
 b 2 } is the noisy measurement with respect to 

he mask, and M = { b 0 , b 1 , b 2 } is the ground truth measurement. 

Total variation (TV) is widely used as a regularizer [15,37,38] , 

ere we replace the WNN regularizer in the proposed method 

ith the TV, and it is easy to see that we only need to 

hange (27) and (26) a little bit to solve the TV model, then we 

ompare with the proposed method, along with the ER method 

14] and the newly proposed variational model [15] we mentioned 

efore, we use PPA to note this method. 

.1. Noisy incomplete measurements 

We consider both incomplete and noisy measurements, which 

re plotted in the first column in Figs. 3 , 4 , 5 and 6 . After the

ask (see Fig. 2 ) is applied, the observed intensity values suffer 

rom a major information lost, only 30% data left. Then, the data 

s also corrupted by salt-and-pepper noise and random-valued im- 

ulse noise described in (4) . Ground-truth images are presented in 

ig. 2 , where two sparse type images are considered: 10% nonzero 

ixels (stars) and 2% nonzero pixels (squares). From Table 1 , we 

an see the proposed WNN model can outperform the ER model, 

PA and TV based models in terms of SNR. To further demon- 

trate the effectiveness of the proposed model, beside the noise 

escribed in (4) , we also test the proposed method to recover from 
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Fig. 3. Results of different methods when measurements are contaminated by mixed impulse noise. (Levels of salt-and-pepper noise and random-valued impulse noise are 

0.2 and 0.1, respectively, refer to (4) .). 

7 
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Fig. 4. Results of different methods when measurements are contaminated by random-valued impulse noise only with level 0.3, refer to (4) . 

8 
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Fig. 5. Results of different methods when measurements are contaminated by mixed impulse noise (Levels of salt-and-pepper noise and random-valued impulse noise are 

0.1 and 0.1, respectively, refer to (4) .). 

9 
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Fig. 6. Results of different methods when measurements are contaminated by mixed impulse noise (Levels of salt-and-pepper noise and random-valued impulse noise are 

0.1 and 0.2, respectively, refer to (4) .). 

10 



Z. Li, M. Yan, T. Zeng et al. Pattern Recognition 125 (2022) 108537 

Table 2 

SNR values of the recovered images under mixed impulse-Gaussian noise (salt-and- 

pepper noise, random-valued impulse noise and Gaussian noise) by different meth- 

ods. 

SP + RI+GS swan airplane flowers fruits stars squares 

ER 14.32 18.26 16.07 18.78 25.93 27.34 

0.2 PPA 17.86 19.54 18.33 20.57 27.71 29.13 

+ 0 TV 19.05 20.28 18.84 20.79 28.27 29.92 

+ 0.1 PEN 21.62 22.03 21.13 22.73 30.21 31.19 

ER 19.53 20.11 19.84 22.02 25.86 27.58 

0.1 PPA 22.23 22.65 22.63 22.87 27.84 29.16 

+ 0.1 TV 22.87 23.21 23.15 23.31 28.19 29.82 

+ 0.1 PEN 24.32 24.18 25.15 24.82 29.91 31.28 

ER 18.87 18.92 18.32 19.48 26.72 27.78 

0 PPA 20.91 19.75 19.86 20.79 28.02 29.27 

+ 0.2 TV 21.12 20.24 20.31 21.15 28.63 29.91 

+ 0.1 PEN 23.28 21.85 22.24 22.85 29.73 31.26 
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[  
ixed impulse-Gaussian noise, from Table 2 , we can see that the 

roposed WNN model still can achieve better results. 

As we can see, for example, from Fig. 4 , we observe that ER 

an not restore clear results, for example, in the last line of Fig. 4 ,

e can barely tell shapes of different peppers in the first column, 

hile both WNN and TV models can recover images with clear 

ontour of each pepper, however the TV restorations still have no- 

iceable amount of noise left since collected intensity values are 

olluted and also suffer from a major data lost. We can see that 

he proposed model can recover the image with good visual qual- 

ty, edge contours are clear, the homogeneous regions are reason- 

ble smooth, see the pepper in the middle of the image located in 

he right corner of the last row of Fig. 4 . 

Also, as the noise gets heavier, the TV models can not yield 

lean restored images. As we can observe from Fig. 6 , it is hard to

ell shapes of peppers in the second and third columns of the last 

ow. Also for the dragonfly and swan image, there are considerable 

mount of noise left. While from our result, in the first row of the 

ast column, the noise are removed and the edge of the leaf where 

he dragonfly rests are shape, those thin legs of the dragonfly are 

lso get restored. 

. Conclusion and future work 

From compressive sensing perspective, we demonstrated that, 

f only a small portion of measurements are available and there 

re mixed impulse noise in the available data, we can still recover 

he image. The WNN regularization term is adopted to enforce the 

roup sparsity patch-wisely, we provide a theoretical explanation 

or the approximate solution of the WNNM and also give the con- 

ergence proof, so that the widely used patch group algorithm 

amily can benefit from our work, which sheds light on the way 

o explore the convergence behavior of these series of sparse cod- 

ng approaches. Therefore, one can be more confident to use the 

losed-form solution of WNNM, since we provide analytical justi- 

cation. Numerical experiments demonstrate the superior perfor- 

ance of the suggested model. However, the proposed approach 

as its limitations, on the condition that, for example, only 30% of 

ata is available, then the impulse noise can not pollute more than 

ne third of the remaining data, otherwise, the image can not be 

ell restored by the proposed method. 

Later on, we plan to extend the framework to deal with other 

ypes of pollution in the observed incomplete measurements, such 

s multiplicative noise [39] . Also, the analysis of the computational 

verhead of the penalty method is also an interesting topic to ex- 

lore in the future. 
11 
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