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Recovering an unknown object from the magnitude of its Fourier transform is a phase retrieval problem.
Here, we consider a much difficult case, where those observed intensity values are incomplete and con-
taminated by both salt-and-pepper and random-valued impulse noise. To take advantage of the low-rank
property within the image of the object, we use a regularization term which penalizes high weighted
nuclear norm values of image patch groups. For outliers (impulse noise) in the observation, the ¢;_, met-
ric is adopted as the data fidelity term. Then we break down the resulting optimization problem into
smaller ones, for example, weighted nuclear norm proximal mapping and ¢;_, minimization, because the
nonconvex and nonsmooth subproblems have available closed-form solutions. The convergence results
are also presented, and numerical experiments are provided to demonstrate the superior reconstruction
quality of the proposed method.
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1. Introduction

In this paper, we consider the phase retrieval problem in which
we try to recover the target image from the intensity measure-
ments of its Fourier transform.

Many fields, such as astronomical imaging [1], crystallography
[2], and optical imaging [3], etc., benefit from the development
of phase retrieval algorithms. The error reduction algorithm [4],
as a popular method for phase retrieval, works on both the spa-
tial and Fourier domains and can be seen as an alternating pro-
jection method. Fienup pointed out that the error reduction algo-
rithm may fail to find the optimal solution of the original problem
[5], he improved it and proposed a basic input-output algorithm,
which can be linked to the Dykstra’s algorithm [6], and a hybrid
input-output algorithm [5], which is an application of the Douglas-
Rachford algorithm [6]. Projection-based approaches for phase re-
trieval also include the hybrid projection-reflection algorithm [7],
the relaxed averaged alternation reflections method [8], and the
augmented Lagrangian alternating direction method [9].
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Due to the difficulty of non-convexity of the phase retrieval
problem, semi-definite relaxation methods are used to trans-
fer the non-convex problem into convex ones at the expense
of squaring the number of variables [10]. Typical methods in-
clude Phaselift [11] and PhaseCut [12]. PhaseLift optimizes a cost
function defined on a convex set of complex Hermitian positive
semidefinite matrices, and relaxes the rank minimization prob-
lem, while PhaseCut also drops the rank constraint. More recently,
PhaseMax relaxes the non-convex equality constraint to an in-
equality constraint and changes the problem into a convex one
without lifting [10]. However, in some situations, its numerical re-
sults are not as good as its counterparts with lifting [13]. To handle
noisy measurements, Chang et al. [14] proposed to use the total
variation regularization together with structured illuminated pat-
terns in holography to build a model, later he applied a global con-
vergent algorithm to solve phase retrieval problems with observed
measurements polluted by Poisson or Gaussian noise [15].

1.1. Phase retrieval problem

Our goal is to recover the image u(t, t;) : & — R"1>*"2 defined
on the lattice £ from its incomplete noisy phaseless measure-
ments, where t; € {0,1,...,ny -1}, t €{0,1,...,n, —1}. These
measurements are obtained by illuminating the object with three
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light fields [16], and the resulting 3n,n, measurements have the
form

{bo. by. by} :=J{|Ful, |F(u+ D'w)|, |F(u - iD*u)[}, (1)

where F is the Fourier transform given by

. t t:
u(ty, tp) exp (—2711(% + %»
1

(Fu)(w1, w) = nz

=
M2 oee

with @ = (w1, w;) € R, D¥ is the modulation defined as
[ S1t t;
(D°u) (1. 1) = exp (2i( 10+ 22 ) Ju(er. 1), 2)
1 2

with s = (s1,53) = (0.5,0.5) to yield an exact recovery [14], the
| % | is to take the element-wise absolute value of the matrix (the
result of the Fourier transform), similarly, + and - are the element-
wise addition and subtraction. J acts on all three magnitudes of the
measurement in the curly brackets separately to apply both data
loss and noise, details are given later in (4) in Section 2.

1.2. Weighted nuclear norm

To build the image recovery model and reconstruct u, we
need to adopt a properly chosen regularization term that reflects
sparse properties of the underlying solutions. The low-rank ap-
proximation [17] is a fundamental tool in image processing, and
weights [18,19] are incorporated into the sparsity promoting term
to treat components adaptively. Sparse coding is a powerful strat-
egy that is commonly implemented in a group-based way [20-
22], which groups similar image patches together, then enforce the
low-rank property over each group, the application includes, de-
noising [21,22], inpainting and deblocking[20], etc.

Sparse coding can be achieved by minimizing the weighted nu-
clear norm (WNN), which can alleviate the bias of the nuclear
norm. The WNN of a matrix X is defined as

where weights {w;}!"; are non-negative, 0;(X) is the ith singu-
lar value of matrix X, in this paper, X is a patch group (see
Section 3.3) in an image. For more details, please check [21,23],
the WNN has attracted researchers’ attention recently, especially
in image processing [24-28]. In [21,25,27], authors have demon-
strated that WNN models can better recover images polluted by
Gaussian noise, and can outperform many state-of-the-art meth-
ods in terms of the visual quality. WNN models are also de-
signed to handle other image recovery problems such as, Cauchy
noise removal [26] and deblurring [28], and for recovery of spe-
cial types of images, such as hyperspectral images [24]. Consider-
ing the fact that the weighted ¢; norm can enhance sparsity [23],
Gu et al. [21] suggested to choose the weights based on the singu-
lar values, which works better than the nuclear norm [21,29]. They
also provide a closed-form shrinkage operator to obtain a low-rank
approximation of a matrix. However, the nonconvex penalty func-
tion corresponding to the approximate solution is not given.

Moreover, the WNN is implemented patch-wisely, and in a
group-based manner, that is to say, similar patches are grouped to-
gether as a matrix, on which the WNN is computed. As far as we
know, for those group-based methods, there was no convergence
proof. In summary, the main contributions of this paper are listed
as follows:

« We propose a new scheme for solving the phase retrieval prob-
lem with noisy measurements using group sparse representa-
tion via weighted nuclear norm minimization.

* We suggest to use the ¢;_, metric fidelity term for reconstruc-
tion of images form incomplete magnitude measurements cor-
rupted by both salt-and-pepper and random-valued impulse
noise.
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* We present closed-form solutions for sub-problems after de-
composing the main optimization problem. We give the ana-
lytical justification of the closed-form solution for the weighted
nuclear norm proximal mapping, so that we can prove the con-
vergence within the group-based sparse representation frame-
work.

Organization: This paper is structured as follows: In Section 2,
we introduce the proposed model. Then in Section 3, we revisit
the approximate solution of the weighted nuclear norm proximal
mapping suggested in [21], and give the analytical justification of
the closed-form solution, so that, in the group-based sparse rep-
resentation framework, we can provide the convergence proof of
the penalty method which we adopt to solve the model. Numeri-
cal experiments are conducted on natural images to demonstrate
the superior performance of the proposed model in Section 4. In
the conclusion section, we also discuss future works.

2. The proposed model

The observed measurements b := {bg, b;,b,} in (1) can be in-
complete, e.g., from the perspective of compressive sensing, one
can reconstruct the object from just its sub-sampled diffraction
pattern [30-32]. We introduce three subsets: ; c 2, for ie
{0,1,2} to define the observed measurements. We assume that
b;(j, k) is given when (j, k) € ;. In this paper, we consider the
situation when the pollution is caused by both salt-and-pepper
and random-valued impulse noise [33]. We assume that these
two types of contamination are mutually exclusive, since salt-and-
pepper noise overshadows other noise. We assume that the noise
ratios of salt-and-pepper and random-valued impulse noise are r;
and ry, respectively, and r; + 15 € (0, 1). Similar to the definition of
the noise in [33], the intensity value of the corrupted measurement
b;(j, k), at location (j, k) € €; is given by

max(b;) with probability rq/2;
:+ 1y Jmin(b;) with probability ry/2;
i K) =1 p.(j k) with probability r: (4)
b;(j, k)  with probability 1 —ry — 1y,

where 9;(j, k) is a uniformly-distributed random value in
[min(b;), max(b;)]. Note that the direct detection of noisy mea-
surement is extremely difficult, especially for the random-valued
noise, because observed measurements suffer from a major data
loss at random places. Therefore, we propose to use a data loss
term with the ¢;_, minimization [34,35]. The loss function is

[1Fu] —boll, , @, + [IIF(u+D*uw)| — b, , e
+I[|F (u —iD*w)| — by [, , @, (3)

where V], , o = ¥ V()| —a( ¥ [V(j)I})3. We fix & = 0.5 in
jeL; jeR;
this paper [34].

For simplicity, we introduce operators to rewrite (5) into a con-
cise form: A := [I, I+ DS, I —iDS], where I is the identity transform,
Q= (R, 9.92,), and Fz:= (Fzy,Fz,,Fzy) for z= (29,21, 25).
Then, the loss function in (5) is rewritten into a simple form

s = [IFAu| - b, , o- (6)
Taking the advantage of the sparsity at the image patch level,

we incorporate the WNN [21] into (6) as a regularization term. The
new model, which we named the WNN model, is

in & — A _ _
02111121 Swan (@) = [[ullwnn + 5 || |[FAu b||g172.97 (7)

where ||u|lyyy is the regularization term, whose definition can be
found in Section 3. The parameter A balances the regularization
term ||u|lyyy and the data fitting term.
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3. Numerical algorithms

In Section 3.1, we review the weighted nuclear norm proximal
mapping (see Definition 1 and the weighted nuclear norm is de-
fined in (3)), and its approximate solution suggested in [21], where
the authors adaptively turn weights. Following [23], they choose
the weight w; in k" iteration to be ﬁ where C is a non-zero

constant. x; is the it" singular value calculated in the k" iteration.
€ is a small positive number to avoid divide overflow. Strategically,
Gu et al. [21] came up with a very efficient closed-form solution
to the non-convex problem, essentially it provides a relaxed soft-
thresholding for the singular value, and the algorithm achieves su-
perior performance in numerical experiments. However, because of
the dynamic setting of weight values, without a fixed form of the
objective function, it is hard to explore the convergence behavior.
Therefore, we analyze the efficient closed-form approximate solu-
tion to the optimization problem involving the WNN, and prove
the approximate solution proposed in [21] can be seen as an exact
solution of a fixed functional. With this functional, after we review
the way to generate patch groups in Section 3.3, and illustrate the
algorithm to solve the proposed model in Section 3.4, we can give
its convergence results in Section 3.5.

3.1. Weighted nuclear norm proximal mapping

In this paper, we follow the definition of the weighted nuclear
norm proximal operator in [21].

Definition 1. For a matrix Y € R9*™, the weighted nulcear norm
proximal (WNNP) mapping with given weights {w;} is defined as

. 1
X* = prox;, (¥) = argmin [X]lw... + 51X - Y[}

. 1
= argmin > wioi(X) + §||X—Y||§- (8)

Here 0;(X) is the it" singular value of matrix X.

The closed-form solution for the WNNP was given in [21, Theo-
rem 1 and Corollary 1]. Without loss of generality, we assume that
d > m, and the thin singular value decomposition of Y is UXVT,
where X = diag(oq,09, ..., om) € R™M with 07 >0y > ... > 0m >
0. Then the global optimum of the WNNP problem can be ex-
pressed as X* = UDVT, where D = diag(d;, d>, ..., dm) and

m
{di}iz1...m = argmin )_{w;x; + %Hxi —ail|?}
{Xi}ic1,...m i=1 (9)

st. Xy >=Xy>...>Xxp >0.

Furthermore, if the weights {w;}I",
W, We obtain d; = max(o; — w;, 0).

The weights in the WNNP bring flexibility and a potential
good solution, but they are difficult to choose. In addition, set-
ting an appropriate weight is critical for this model. Paper [21, Re-

mark 1] suggests to set weights as

_ C
dif+ €

satisfy 0 <wq <ws <, ..., <

Wi

It is inspired from the reweighted ¢; norm for a sparse vector x
from [23], where the weights for the ¢; norm at the k' iteration

are based on
k C
W e

Here C is a non-zero constant. In the matrix case, a reweighted
nuclear norm method iteratively solves the WNNP problem with

X C
Wf :ki
ldf| + ¢
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Therefore, the iteration is

df*! = max(o; - ——— ¢ ,0). (11)
ldf| + &

We can find the fixed point for the iteration, which is
0,

d :{ 0,

2 £

where ¢; = 0; — ¢, ¢; = (07 + €)% — 4C.

Though the shrinkage in (12) performs very well in practice,
to the best of our knowledge, the exact function whose proximal
mapping coincides with (12) is not given in literature.

In the following, we show that this shrinkage operator corre-
sponds to the proximal operator of a nonconvex function. Since
the constant parameter ¢ is very small (In [21], the authors use
the floating-point relative accuracy, 2.2204e — 16), we let ¢ = 0 for
simplicity and rewrite (12) as

d 0, Oiz —4C < 0;
e 70"“/;"2?, otherwise, (13)

cy <0

otherwise, (12)

We show that actually d; = proxy(o;) :=arg mxinP(x) +(x—
07)%/2, where P is the continuous function defined as

303, 0<x<+G

P(x) = {%C-l—Cln(%), x> +/C. (14)

Proposition 1. The proximal operator of P for non-negative y has a
closed-form expression, and

(B, ity - 2ve

Proof. The proximal prox, (y) := arg n&in Q(x,y), where

| feo, 0<x< G
Qx,y) = {g(x)’ x> €. (15)
3, 1
f() =505 + E(X—y)z,
3 X 1
g(x) = 5c+c1n(7C)+j(x—y)2, (16)
where f(x) is smooth over [0, +/C] and
fx) =Cix 3 +x-y,
f(x) = f%C%x’% +1,
f"(x) = 0. (17)

Let f’(®) =0, and we obtain &=3"3/4/C<+C. We have
f'(x) = +oo when x — 0+. Thus,

concave, x e [0,%];

convex, x e [& v/C], (18)

f) iS{
In the following, we will consider x in the intervals [0, ], [&, vC],
and [+/C, +o0] separately, and it is obvious that, to find the mini-
mum, the concave part (x € [0, X]) in (18) is easy, we only need to
compare f(0) and f(X).

We also compute the derivative of g,

g0 = +xy,

g'(x) = —X%H >0, x e (VC, +o0]. (19)
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(a) When 0 <y < 2+/C, we have g'(x) > 0 for x > +/C, and f(/C) =
g(~/C). Therefore, the minimum can be reached in [0, v/C]. Re-
call in (17), f”'(x) = 0, then f’(x) is convex.

(11) If f/(8) > 0, f(x) is non-decreasing and we have

prox,(y) = 0.

(22) If f/(R) <O, that is C23%- 13 4+ % —y < 0.
Recall f/(x) > +oc0 when x — 0+. f/(v/C)=2/C—-y=>0,
then there exists a unique X € (%,+/C) such that f/(8) = 0.
Considering the shape of f(x) described in (18), we know
that the minimum can only be reached at f(X) or f(0). Note
that

¢ S Ligop2 12
fR) = f0) =5 ()T + 5&=9)" =35y
3 oas 1o o o3 ams1s, 1,0
_E(CX) +§x xy_x(iC X +§x y).
Let h(x) = 3€?/3x~13 + 1x — y. We have h(v/C) =2v/C -y >
0. The derivative h'(x) = —1C?3x=%/3+ 1 being negative

over (0,+/C) shows that h(x) > 0 for all x € (0, v/C). There-
fore, we have f(X) > f(0). So we also have

prox,(y) =0.
(b) When y = 2+/C, similar to (a), we have g'(x) > 0 for x > +/C,
and f(+/C) = g(~/C). Therefore, the minimum can be reached in
[0, ~/C]. Furthermore,

/(&) =C1/231/4 1 373/4/C - 2/C < 0,

and recall f’(x) - +oo when x — 0+, and f’(x) is convex. So
we only need to compare f(0) and f(~/C) because f'(~/C) = 0.
Note that

F(SE) — F(0) =§c+ %(ﬁ 2O - %(zﬁ)z 0.
So we have

prox, (y) € {0, vVC}.

(c) When y > 2+/C, we have f/(~/C) = g (~/C) < 0. The function f is
decreasing on the convex part [%, +/C], and recall on the con-
cave part [0, X], the minimum can only be reached in f(0) or
f(®). Therefore, we only need to compare f(0) and the mini-

mal value of g at £ := £Evy" =% ”2’2’“ (g’ (x) > 0). In fact, we have
g(v/C) = f(WC) =3C/2+ (VC—y)?/2 =2C —/Cy

+y/2 <y*/2 = f(0).
Therefore, we have

y+y?—4C

prox, (y) =
O

3.2. Description of the patch group

Considering that the WNN is actually calculated on each group,
we give a brief introduction about how to construct patch groups,
and this process can be elaborated in Fig. 1.

Image u € R"*"2 is divided into N overlapped patches y; of size

Vd x v/d, after the square patch is stretched into a column vec-
set {y;}j—1..m M <N is fixed as key patches. For each Vi, je
{1,..., M}, its most similar m patches are found from all patches
falling into a fixed-size search window, and together they form
a matrix Y; e RY*M the matrix is essentially a group of similar
patches, and also be called a patch group, then the WNN is com-
puted on each group, and promotes sparsity. Without loss of gener-
ality, we can write the procedure as Lu =Y = {Y;};_(1 _y, Where
the operator L extracts patches from image u, then regroups them,
and L : RMx"2 — RAxmxM,
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3.3. Group sparse representation

We describe the implementation of the group sparse represen-
tation in [21], since their main results will be used here.
The WNNP is adopted to compute the denoised patch group

Xj = prox;, (Yj).
Considering the overlapping of pixels in patches, the authors then

solve the following minimization problem for the denoised image
v*
* : Y. _ X*)|2
v = argmin | 32(X; - X)l3, (20)
j

where {X;};_1._my = Lv.
3.4. Solving the WNN model

We apply the penalty method to solve the proposed WNN
model and present some convergence results in the next section.
We start by rewriting the WNN model (7) into its group based
form

min [Pl + 5 [zl = bll,, g + X ().

z = FAu, (21)
s.t. P=1Lv,

u=yv,

IP||w.« = > Zw,»ai(Pj), 0i(P;) denotes the ith singular value of P;.
J 1
z=(29,21,2y), and

0, O<v<l;

x W) :{oo, otherwise. (22)

Based on variable splitting and the quadratic penalty method, we
solve

) A
Zwin (W, P.V.2) = [[Pllw.. + 5 [llz] = bl , g + X (V)

b2,

Jo
+ 5z~ FAulz + 2P - Lv?

+ 2 u-vi (23)

where pq, py, and p3 in the unconstrained objective are positive
constants. The penalty method minimize 2,y with respect to
u,P,v, and z alternatively while increasing the variables pq, p,,
and ps. The algorithm is summarized in Algorithm 1.

Algorithm 1 Penalty Method for solving the WNN model (7).
Initialize u® =v0, k=0, r > 1.
while stopping conditions are not satisfied do
Update zf™! via (33), similarly for z¥+1, zk+1;
Solve (28) via (12) to obtain P¥*!;
Update v¥+1 via (32);
Update u*+! via (37);
increase the variables py, p; and p3: pj=r1p;,i=1,2,3;
k<~ k+1.
end while
output the solution u* = uk+1,

Below we present the closed-form solutions for minimizing the
primal subproblems, respectively:

Z! = arg min 2y (Uk, P VK, 2), (24)
z

PK = arg m“in Py (UE PV 2, (25)
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30% mask

\

/g

Table 1

¢

fruits

dronﬂy

house

patch group Y;

stretched
patch Y
similar search T
. patch window \
!]\ /| L/>
\p/étch'\ j
- 1
image '

Fig. 1. Formulation of a patch group.

lena

2

| peppés

Fig. 2. 1st: 30% mask; the rest: clean image .

barbara

stars

flowers

squares

SNR values of the recovered images under mixed impulse noise (both salt-and-pepper noise and random-valued impulse noise) by differ-
ent methods.

SP +RI dragonfly  swan airplane  barbara  flowers fruits house  lena peppers stars squares

ER 18.85 13.80  17.48 14.69 15.48 1834 1916 1564  14.86 2532 26.56

0.2 PPA 2094 1743 18.82 15.75 17.61 19.72 2032 1589 1592 2694  28.36

+0.1 V. 2173 1820 1945 16.16 18.14 2015 2075 1632  16.54 2752 2913

PEN  23.89 2087 2091 17.71 19.77 2195 2417 1811 1855 28.86 3037

ER 20.01 16.85 18.83 14.59 16.43 18.16 1924 1529  14.92 2512 27.03

0 PPA  21.40 19.86  19.75 17.76 19.82 2005 2209 1833 1831 2724 28.96

+0.3 TV 22.03 2034 2045 18.36 20.33 2076 2259 1894  19.05 27.63  29.16

PEN  24.95 2277 2191 20.34 22.82 2321 2579 2128 2194 29.78 3124

ER 2338 2019  20.54 18.69 20.35 2245 2324 2077 19.80 2621 2815

0.1 PPA 2471 2294 2315 20.41 23.26 2331 2552 2127 2229 28.12  29.56

+0.1 V. 2514 2352 23.70 20.90 23.66 2382 2622 2193 22.72 2872 30.12

PEN  27.29 2493 2464 22.42 25.74 2514 2832 2381 2528 3021 31.64

ER 18.18 1849 1843 15.75 17.77 1892 1997 1619 1572 2613 27.22

0.1 PPA  20.12 2026 19.02 16.91 19.16 2008 2101 1788 17.19 2757 28.84

+0.2 TV 2052 2056 19.74 17.53 19.75 2065 2147 1835 17.95 27.94 2925

PEN 22387 2257 2093 19.33 21.40 2216 2535 2047 2028 29.22 3093
Considering the fact that a pixel in v can have K duplicate copies in
VA = arg min 2y (ub, P v, 264, (26) Lv: correspondingly, it rglated to K elements in .the same position
v h in P!, In the following two formulas, we slightly abuse nota-
tions by omitting the index that indicates the position of a pixel,

w1 = arg min Py (u, P VR ZK4, (27) for example, v*+1 actually stands for a pixel,
u

There are closed-form solutions for all the four subproblem above.

Recall P = {p]}j:{l AAAA M}

Pyt = argmin [Pyl + 57 1P — (L) . (28)
Remark 1 in [21] gives the closed-form solution of the prob-

lem (28) with the weights chosen as (10).

V¥ = argmin ps|Lv - P43 4 polv — w3 4 x (v). (29)

K
03 Z (Uk+1 _ P}:(H) + 02 (Uk+1 _ uk+1) =0, (30)
h=1
and 0 < v**1 < 1, then we have
1 K
~k+1 k+1 k+1
P+l = P14 pou 31
o7+ K ,03; ) P2 (31)



Z. Li, M. Yan, T. Zeng et al.

Followed by thresholding

v = min {1, max {0, 91} }. (32)

Recall that @ := (¢, R4, £5), so the three components of z can
be calculated separately with the same strategy [14], therefore, we
only show the derivation of the closed-form solution for updating
zy. The solution

i = argn;%n)\/pl llzo] —bolle, , @, + llzo — Fu]

2
2

k+1

where gy = Fu, obviously, z;"" parallel to go. (Otherwise, we can
always project zk+1

5 onto g, and get a better solution.) Thus let x =
|zg| — bg, then it is equivalent to solve the following minimization
problem, which has a closed-form solution [34]

X1 = argmin [[x — (80 —bo) I* + 2 [IX[l., ..
then
ZIO€+1 — (xk+l +b0)n.

To make this paper self-contained, we list the derivatives

(33)

du(llzo — Ful|?/2) = 8u(l|F*zo — u||?/2) = u — % (F*zo).
du(llzi — F(u+D*u)||%/2) = (2 + 29(D*) )u — 5 (F'z, + D’F°z,),

du(llz — F(u - iD°w)||?/2) = (2 + 23(D%))u — % (F*z, — iDF*2y),

where F* is the inverse Fourier transform, z is the complex con-
jugate of z. Therefore, to solve (27), we only need to solve a linear
equation with invertible and diagonal matrix H,
u=H"(p;(N@ +2X + D2 + 25) + 3(D°Z)) + povh), (37)
where H = (p; (51 + 201(DS) + 23(D®)) + p,I), 2¥ = F*z¥ for0 <i <
2.
In Algorithm 1, we set a constant r > 1, to increase the penalty
coefficients pq, po and ps.

3.5. Convergence results

We apply the convergence theorems listed in [36], and verify
the objection function satisfies the required conditions, therefore
the result of Algorithm 1 is a stationary point of Zyyy(u,P,v,2z).

In [36], the authors consider the following optimization prob-
lem,

minimize f(Xq, X1, ..., Xn), (38)
X0,X1,.., XN
where the nondifferentiable part of f is separable,
N
fo. X1, ... Xn) = fo(Xo, Xa, .. Xn) + D fu(Xy), (39)

k=1

the function f is proper, fo : RM+™ W » RU {oco} and f; : R% >
RU{c}, k=1,...,N. Here, N, ny,...,ny are positive integers, and
each x;, k=1,...,N, is a coordinate block of X = (X1, ..., Xy).

Lemma 1. Suppose that dom fy is open and f, is Gdteaux-
differentiable on dom fy, then f is regular at each z € dom f.

Theorem 1. Assume that the level set X°={x: f(x) < f(x°)} is
compact and that f is continuous on X°. Then, the sequence
{x = (xg,...,xlr\,)}rzol generated by the penalty (Block Coordi-
nate Descent) method Yusing the essentially cyclic rule is defined and
bounded. Moreover, the following statements hold: If f(Xq,...,Xy)
has at most one minimum in x;, for k=2,...,N —1 and if the cyclic
rule is used, then every cluster point z of {X"},_y_1ymod N IS @ cOOT-
dinatewise minimum point of f. In addition, if f is regular at z, then
z is a stationary point of f.
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Recall (23), we let
f(z P,v,u) = Zyyy(u,P,v, z)

= fo+ 1P+ 51zl ~Bll, g+ x®.  (40)
where fo(z,P.v.u) = &l ||z FAu|2 + 3 ||P - Lv||2 + Z|lu—v]|?2,
then from Lemma 1, we know f is regular. Moreover, f is con-
tinuous on the compact level set X? = {x: f(x) < f(x°)}. Recall
the two minimization subproblem (28) and (29), they all have at
most one minimum, then use Theorem 1, we know the output
(zk+1, P+l yk+1 yk+1y js a stationary point of 2.

4. Numerical experiments

Here we assume the three masks are randomly generated, and
we further assume that they are identical, i.e., 2y = 271 = R,, then
we randomly generate those masks in the same way as in [14], and
here in ;, only 30% of pixels are available, the rest of pixels are
considered lost, as shown in the 1st row of the top line in Fig. 2.

(34)
(35)
(36)

The signal-noise-ratio (SNR) is used to measure the reconstruction
quality
% lu(j) —ug()HI?
RMSE(u, up) ==
g > lug(jHI?

je

SNR(u, ug) = —10log;o RMSE(u, u),

where ug is the ground truth image of size ny x n, and u is the
reconstructed image.
The SNR of the noisy measurements is defined as

SNR(N.M) = —10logyo (> [Be(i) —be(DP/ >

jeRo,0<k=<2 jefo,0<k=<2

|bk(j)|2)v

where N = {by, by, b,} is the noisy measurement with respect to
the mask, and M = {bg, by, b,} is the ground truth measurement.

Total variation (TV) is widely used as a regularizer [15,37,38],
here we replace the WNN regularizer in the proposed method
with the TV, and it is easy to see that we only need to
change (27) and (26) a little bit to solve the TV model, then we
compare with the proposed method, along with the ER method
[14] and the newly proposed variational model [15] we mentioned
before, we use PPA to note this method.

4.1. Noisy incomplete measurements

We consider both incomplete and noisy measurements, which
are plotted in the first column in Figs. 3, 4, 5 and 6. After the
mask (see Fig. 2) is applied, the observed intensity values suffer
from a major information lost, only 30% data left. Then, the data
is also corrupted by salt-and-pepper noise and random-valued im-
pulse noise described in (4). Ground-truth images are presented in
Fig. 2, where two sparse type images are considered: 10% nonzero
pixels (stars) and 2% nonzero pixels (squares). From Table 1, we
can see the proposed WNN model can outperform the ER model,
PPA and TV based models in terms of SNR. To further demon-
strate the effectiveness of the proposed model, beside the noise
described in (4), we also test the proposed method to recover from
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polluted

intensity

Fig. 3. Results of different methods when measurements are contaminated by mixed impulse noise. (Levels of salt-and-pepper noise and random-valued impulse noise are
0.2 and 0.1, respectively, refer to (4).).
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polluted

intensity

Fig. 4. Results of different methods when measurements are contaminated by random-valued impulse noise only with level 0.3, refer to (4).
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polluted ER

intensity

Fig. 5. Results of different methods when measurements are contaminated by mixed impulse noise (Levels of salt-and-pepper noise and random-valued impulse noise are
0.1 and 0.1, respectively, refer to (4).).
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A NI
AALRBD NI

polluted TV
intensity

Fig. 6. Results of different methods when measurements are contaminated by mixed impulse noise (Levels of salt-and-pepper noise and random-valued impulse noise are
0.1 and 0.2, respectively, refer to (4).).
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Table 2

SNR values of the recovered images under mixed impulse-Gaussian noise (salt-and-
pepper noise, random-valued impulse noise and Gaussian noise) by different meth-
ods.

SP+RI+GS swan airplane  flowers  fruits stars squares
ER 14.32 18.26 16.07 18.78 25.93 27.34
0.2 PPA 17.86 19.54 18.33 20.57 27.71 29.13
+0 TV 19.05 20.28 18.84 20.79 28.27 29.92
+0.1 PEN 21.62 22.03 21.13 22.73 30.21 31.19
ER 19.53 20.11 19.84 22.02 25.86 27.58
0.1 PPA 22.23 22.65 22.63 22.87 27.84 29.16
+0.1 TV 22.87 23.21 23.15 23.31 28.19 29.82
+0.1 PEN 24.32 24.18 25.15 24.82 29.91 31.28
ER 18.87 18.92 18.32 19.48 26.72 27.78
0 PPA 2091 19.75 19.86 20.79 28.02 29.27
+0.2 TV 21.12 20.24 20.31 21.15 28.63 29.91
+0.1 PEN 23.28 21.85 22.24 22.85 29.73  31.26

mixed impulse-Gaussian noise, from Table 2, we can see that the
proposed WNN model still can achieve better results.

As we can see, for example, from Fig. 4, we observe that ER
can not restore clear results, for example, in the last line of Fig. 4,
we can barely tell shapes of different peppers in the first column,
while both WNN and TV models can recover images with clear
contour of each pepper, however the TV restorations still have no-
ticeable amount of noise left since collected intensity values are
polluted and also suffer from a major data lost. We can see that
the proposed model can recover the image with good visual qual-
ity, edge contours are clear, the homogeneous regions are reason-
able smooth, see the pepper in the middle of the image located in
the right corner of the last row of Fig. 4.

Also, as the noise gets heavier, the TV models can not yield
clean restored images. As we can observe from Fig. 6, it is hard to
tell shapes of peppers in the second and third columns of the last
row. Also for the dragonfly and swan image, there are considerable
amount of noise left. While from our result, in the first row of the
last column, the noise are removed and the edge of the leaf where
the dragonfly rests are shape, those thin legs of the dragonfly are
also get restored.

5. Conclusion and future work

From compressive sensing perspective, we demonstrated that,
if only a small portion of measurements are available and there
are mixed impulse noise in the available data, we can still recover
the image. The WNN regularization term is adopted to enforce the
group sparsity patch-wisely, we provide a theoretical explanation
for the approximate solution of the WNNM and also give the con-
vergence proof, so that the widely used patch group algorithm
family can benefit from our work, which sheds light on the way
to explore the convergence behavior of these series of sparse cod-
ing approaches. Therefore, one can be more confident to use the
closed-form solution of WNNM, since we provide analytical justi-
fication. Numerical experiments demonstrate the superior perfor-
mance of the suggested model. However, the proposed approach
has its limitations, on the condition that, for example, only 30% of
data is available, then the impulse noise can not pollute more than
one third of the remaining data, otherwise, the image can not be
well restored by the proposed method.

Later on, we plan to extend the framework to deal with other
types of pollution in the observed incomplete measurements, such
as multiplicative noise [39]. Also, the analysis of the computational
overhead of the penalty method is also an interesting topic to ex-
plore in the future.
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