
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022 1775

Compressed Gradient Tracking for Decentralized
Optimization Over General Directed Networks

Zhuoqing Song , Lei Shi, Shi Pu , and Ming Yan

Abstract—In this paper, we propose two communication-efficient
decentralized optimization algorithms over a general directed
multi-agent network. The first algorithm, termed Compressed
Push-Pull (CPP), combines the gradient tracking Push-Pull method
with communication compression. We show that CPP is applicable
to a general class of unbiased compression operators and achieves
linear convergence rate for strongly convex and smooth objective
functions. The second algorithm is a broadcast-like version of
CPP (B-CPP), and it also achieves linear convergence rate under
the same conditions on the objective functions. B-CPP can be
applied in an asynchronous broadcast setting and further reduce
communication costs compared to CPP. Numerical experiments
complement the theoretical analysis and confirm the effectiveness
of the proposed methods.

Index Terms—Decentralized optimization, compression,
directed graphs, first-order methods, linear convergence.

I. INTRODUCTION

IN THIS paper, we focus on solving the decentralized opti-
mization problem, where a system of n agents, each having

access to a private function fi(x), work collaboratively to obtain
a consensual solution to the following problem:

min
x∈Rp

f(x) =
1

n

n∑
i=1

fi(x), (1)

where x is the global decision variable. The n agents are con-
nected through a general directed network and only communi-
cate directly with their immediate neighbors. The problem (1)

Manuscript received August 13, 2021; revised January 1, 2022 and February
14, 2022; accepted March 3, 2022. Date of publication March 17, 2022; date of
current version April 20, 2022. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. David I Shuman. The
work of Zhuoqing Song was supported by the Shanghai Science and Technology
Program under Grant 21JC1400600. The work of Lei Shi was supported in part
by the Shanghai Science and Technology Program under Grants 20JC1412700
and 19JC1420101, and in part by the National Natural Science Foundation of
China (NSFC) under Grant 12171093. The work of Shi Pu was supported in part
by the Shenzhen Research Institute of Big Data under Grant J00120190011, and
in part by the National Natural Science Foundation of China (NSFC) under
Grant 62003287. The work of Ming Yan was supported by NSF under Grant
DMS-2012439. (Corresponding authors: Shi Pu; Ming Yan.)

Zhuoqing Song is with the Shanghai Center for Mathematical Sciences, Fudan
University, Shanghai 200437, China (e-mail: zqsong19@fudan.edu.cn).

Lei Shi is with the School of Mathematical Sciences, Shanghai Key Lab-
oratory for Contemporary Applied Mathematics, Fudan University, Shanghai
200437, China (e-mail: leishi@fudan.edu.cn).

Shi Pu is with the School of Data Science, Shenzhen Research Institute of Big
Data, The Chinese University of Hong Kong, Shenzhen 518172, China (e-mail:
shipu.idda@gmail.com).

Ming Yan is with the Department of Computational Mathematics, Science
and Engineering and Department of Mathematics, Michigan State University,
East Lansing, MI 48864 USA (e-mail: myan@msu.edu).

Digital Object Identifier 10.1109/TSP.2022.3160238

has received much attention in recent years due to its wide appli-
cations in distributed machine learning [2]–[4], multi-agent tar-
get seeking [5], [6], and wireless networks [7]–[9], among many
others. For example, the rapid development of distributed ma-
chine learning involves data whose size is getting increasingly
large, and they are usually stored across multiple computing
agents that are spatially distributed. Centering large amounts of
data is often undesirable due to limited communication resources
and/or privacy concerns, and decentralized optimization serves
as an important tool to solve such large-scale distributed learning
problems due to its scalability, sparse communication, and better
protection for data privacy [10].

Many methods have been proposed to solve the problem (1)
under various settings on the optimization objectives, network
topologies, and communication protocols. The paper [11] devel-
oped a decentralized subgradient descent method (DGD) with
diminishing stepsizes to reach the optimum for convex objective
functions over an undirected network topology. Subsequently,
decentralized optimization methods for undirected networks, or
more generally, with doubly stochastic mixing matrices, have
been extensively studied in the literature; see, e.g., [12]–[17].
Among these works, EXTRA [15] was the first method that
achieves linear convergence for strongly convex and smooth
objective functions under symmetric stochastic matrices. For
directed networks, however, constructing a doubly stochastic
mixing matrix usually requires a weight-balancing step, which
could be costly when carried out in a distributed manner. There-
fore, the push-sum technique [18] was utilized to overcome
this issue. Specifically, the push-sum based subgradient method
in [19] can be implemented over time-varying directed graphs,
and linear convergence rates were achieved in [20], [21] for
minimizing strongly convex and smooth objective functions by
applying the push-sum technique to EXTRA.

Gradient tracking is an important technique that has been
successfully applied in many decentralized optimization algo-
rithms. Specifically, the methods proposed in [13], [22]–[24] em-
ploy gradient tracking to achieve linear convergence for strongly
convex and smooth objective functions, where the work in [22]–
[24] particularly considered combining gradient tracking with
the push-sum technique to accommodate directed graphs. The
methods can also be applied to time-varying graphs [22] and
asynchronous settings [23]. The Push-Pull/AB method intro-
duced in [25], [26] modified the gradient tracking methods to
deal with directed network topologies without the push-sum
technique. The algorithm uses a row stochastic matrix to mix
the local decision variables and a column stochastic matrix

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2624-2414
https://orcid.org/0000-0002-5813-527X
https://orcid.org/0000-0002-8686-3530
mailto:zqsong19@fudan.edu.cn
mailto:leishi@fudan.edu.cn
mailto:shipu.idda@gmail.com
mailto:myan@msu.edu

1776 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

to mix the auxiliary variables that track the average gradients
over the network. It can unify different network architectures,
including peer-to-peer, master-slave, and leader-follower ar-
chitectures [25]. For minimizing strongly convex and smooth
objectives, the Push-Pull/AB method not only enjoys linear con-
vergence over fixed graphs [25], [26], but also works well under
time-varying graphs and asynchronous settings [25], [27], [28].

In decentralized optimization, efficient communication is
critical for enhancing algorithm performance and system scal-
ability. One major approach to reduce communication costs
is considering communication compression, which is essential
especially under limited communication bandwidth. Recently,
several compression methods have been proposed for distributed
and federated learning, including [29]–[41]. Recent works have
tried to combine the communication compression methods with
decentralized optimization. The existence of compression er-
rors may result in inferior convergence performance compared
to uncompressed or centralized algorithms. For example, the
methods considered by [42]–[47] can only guarantee to reach
a neighborhood of the desired solutions when the compression
errors exist. QDGD [48] achieves a vanishing mean solution
error with a slower rate than the centralized method. To reduce
the error from compression, some works [49]–[51] increase
compression accuracy as the iteration grows to guarantee the
convergence. However, they still need high communication
costs to get highly accurate solutions. Techniques to remedy
this increased communication costs include gradient difference
compression [35], [52], [53] and error compensation [38], [54],
[55], which enjoy better performance than direct compression.
In [56], the difference compression (DCD-PSGD) and extrap-
olation compression (ECD-PSGD) algorithms were proposed
to reach the same convergence rate of the centralized schemes
with additional requirements on the compression ratio. In [55],
a quantized decentralized SGD (CHOCO-SGD) method was
proposed and shown to converge to the optimal solution or a
stationary point at a comparable rate as the centralized SGD
method. The works [54] and [57] also achieve comparable
convergence rates with the centralized scheme for solving non-
convex problems.

For strongly convex and smooth objective functions, [58] first
considered a linearly convergent gradient tracking method based
on a specific quantizer. More recently, the paper [53] introduced
LEAD that works with a general class of compression operators
and still enjoys linear convergence. Some recent developments
can be found in [59]–[61], where [60] particularly combined
Push-Pull/AB with a special quantizer to achieve linear conver-
gence over directed graphs.

In this paper, we consider decentralized optimization over
general directed networks and propose a novel Compressed
Push-Pull method (CPP) that combines Push-Pull/AB with a
general class of unbiased compression operators. CPP enjoys
large flexibility in both the compression method and the network
topology. We show CPP achieves linear convergence rate under
strongly convex and smooth objective functions.

Broadcast or gossip-based communication protocols are pop-
ular choices for distributed computation due to their low com-
munication costs [62]–[64]. In the second part of this paper, we
propose a broadcast-like CPP algorithm (B-CPP) that allows for

asynchronous updates of the agents: at every iteration of the algo-
rithm, only a subset of the agents wake up to perform prescribed
updates. Thus, B-CPP is more flexible, and due to its broadcast
nature, it can further save communication over CPP in certain
scenarios [64]. We show that B-CPP also achieves linear conver-
gence for minimizing strongly convex and smooth objectives.

The main contributions of this paper are summarized as
follows.
� We propose CPP – a novel decentralized optimization

method with communication compression. The method
works under a general class of compression operators
and is shown to achieve linear convergence for strongly
convex and smooth objective functions over general
directed graphs. To the best of our knowledge, CPP is the
first method that enjoys linear convergence under such a
general setting.

� We consider an asynchronous broadcast version of CPP (B-
CPP). B-CPP further reduces the communicated data per
iteration and is also provably linearly convergent over di-
rected graphs for minimizing strongly convex and smooth
objective functions. Numerical experiments demonstrate
the advantages of B-CPP in saving communication costs.

The rest of this paper is organized as follows. We provide
necessary notation and assumptions in Section II. CPP is intro-
duced and analyzed in Section III. In Section IV, we consider
the algorithm B-CPP. Numerical examples are presented in
Section V, and we conclude the paper in Section VI.

II. NOTATION AND ASSUMPTIONS

Denote the set of agents as N = {1, 2, . . . , n}. At iteration
k, each agent i has a local estimation xk

i ∈ Rp of the global
decision variable and an auxiliary variableyk

i . We use lowercase
bold letters to denote the local variables, and their counterpart
uppercase bold letters denote the concatenation of these local
variables. For instance, Xk, ∇F (Xk) are the concatenation of
{xk

i }i∈N , {∇fi(xk
i)}i∈N , respectively, and their connections

are

Xk =
[
xk
1 , . . . ,x

k
n

]� ∈ Rn×p,

∇F (Xk) =
[
∇f1(xk

1), . . . ,∇fn(xk
n)
]� ∈ Rn×p.

Assumption 1: Each fi is μ-strongly convex (μ > 0) and L-
smooth, i.e., for any x1,x2 ∈ Rp,

〈x1 − x2,∇fi(x1)−∇fi(x2)〉 ≥ μ ‖x1 − x2‖22 ,
‖∇fi(x1)−∇fi(x2)‖2 ≤ L ‖x1 − x2‖2 .

Since all fi(x) are strongly convex, f(x) admits a unique
minimizer x∗. Denote x∗ = 1X∗�, where 1 is the all-ones
column vector.

Given any nonnegative matrix M , we denote by GM the

induced graph by M . The sets N−
M ,i

def
= {j ∈ N : M ij > 0}

and N+
M ,i

def
= {j ∈ N : M ji > 0} are called the in-neighbors

and out-neighbors of agent i.
The communication between all the agents is modeled by

directed graphs. Given a strongly connected graph G = (N , E)
with E ⊂ N ×N being the edge set, agent i can receive
information from agent j if and only if (i, j) ∈ E . There are

SONG et al.: COMPRESSED GRADIENT TRACKING FOR DECENTRALIZED OPTIMIZATION OVER GENERAL DIRECTED NETWORKS 1777

two n-by-n nonnegative matrices R and C. A spanning tree T
rooted at some i ∈ N in GR is a subgraph of GR containing
n− 1 edges, and each node except i can be connected to i by a
path in T . Let RR,RC� denote the roots of the spanning trees
in GR and GC� . We have the following assumption on R and
C.

Assumption 2: The matrix R is supported by G, i.e., ER =

{(i, j) ∈ N ×N
∣∣∣Rij > 0} ⊂ E , and R is a row stochastic

matrix, i.e., R1 = 1. The matrix C is also supported by G, and
C is a column stochastic matrix, i.e., 1�C = 1�. In addition,
RR ∩RC�
= ∅.

By [25, Lemma 1], Assumption 2 implies the following facts:
R has a unique left eigenvector sR with respect to 1 such that
s�R1 = n. C has a unique right eigenvector sC with respect
to 1 such that s�C1 = n. In addition, the entries of sR and sC
are all nonnegative. All nonzero entries of sR, sC correspond
to RR, RC� , respectively. Because RR ∩RC�
= ∅, we have
s�RsC > 0.

We denote the spectral radius of matrix A as ρ(A). The inner
product of two matrices is defined as 〈X,Y 〉 = tr(X�Y), and
the Frobenius norm is ‖X‖F =

√
〈X,X〉. Given a vector d,

da:b is the subvector of d containing the entries indexed from a
to b. Given a matrixA, the notionAa:b,c:d denotes the submatrix
containing the entries with row index in [a, b] and column index
in [c, d]. We abbreviate “1 : n” by “:” and “i : i” is abbreviated
as “i”. Especially in our notations, Ai,: and A:,j denote the i-th
row and j-th column of A, respectively. For vector v ∈ Rm,
Diag(v) is an m-by-m diagonal matrix with Diag(v)ii = vi.

Definition 1: Given a vector norm ‖ · ‖∗, we define the cor-
responding matrix norm on an n× p matrix A as

|||A|||∗ =
∥∥[‖A:,1‖∗ , ‖A:,2‖∗ , . . . , ‖A:,p‖∗

]∥∥
2
.

When ‖ · ‖∗ = ‖·‖2, we have |||A|||2 = ‖A‖F, the Frobenius
norm.

Definition 2: Given a vector norm ‖ · ‖∗, we define the cor-
responding induced norm on an n× n matrix A as ‖A‖∗ =
supx
=0

‖Ax‖∗
‖x‖∗ .

Lemma 1 (Lemma 5 in [25]): For any matrices A ∈ Rn×p,
W ∈ Rn×n, and a vector norm ‖ · ‖∗, we have |||WA|||∗ ≤
‖W ‖∗|||A|||∗. For any vectors aaa ∈ Rn, b ∈ Rp, |||aaab�|||∗ ≤
‖aaa‖∗‖b‖2.

The compression in this paper is denoted by COMPRESS(·). For
any matrix X ∈ Rn×p, we denote COMPRESS(X) as an n-by-p
matrix with the i-th row being COMPRESS(Xi,:).

Assumption 3: The compression is unbiased, i.e., given x ∈
Rp and x̂ = COMPRESS(x), there exists C2 > 0 such that
E[x̂

∣∣x] = x, and E[‖x̂− x‖22
∣∣x] ≤ C2‖x‖22. And the random

variables generated inside the procedure COMPRESS(x) depends
on x only.

III. A PUSH-PULL METHOD WITH COMPRESSION

In this section, we propose a Push-Pull method with Com-
pression (CPP) in Algorithm 1.

We start from discussing the following scheme of Push-Pull/AB
from the viewpoint of agent i [25], [26]:{

xk+1
i =

∑
j∈N−

R,i
Rijx

k
j − αiy

k
i

yk+1
i =

∑
j∈N−

C,i
Cijy

k
j +∇fi

(
xk+1
i

)
−∇fi

(
xk
i

)
and y0

i = ∇fi(x0
i). At each iteration, agent i computes∑

j∈N−
R,i

Rijx
k
j to average the local decision variables received

from its neighbors. As each agent takes such a step, the lo-
cal decision variables tend to get closer with each other and
eventually reach consensus when yk

i goes to zero. In the next
“gradient tracking” step, by adding the gradient difference term
∇fi(xk+1

i)−∇fi(xk
i) into yk+1

i and considering that y0
i =

∇fi(x0
i) and 1�C = 1�, we have

∑
i∈N yk

i =
∑

i∈N ∇fi(xk
i)

by induction, which indicates that {yk
i }i∈N can help track the

average gradients over the network.

1778 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

The Compressed Push-Pull (CPP) method differs from Push-
Pull/AB mainly in the averaging step which requires commu-
nication. To alleviate the impact of compression errors, we
use a “damped” averaging step and replace the exact local
variables by their communication-efficient version, i.e., (1−
β)xk

i + β
∑

j∈N−
R,i

Rijx̂
k
j . For yk

i , we take a slightly different

averaging step so that the relation
∑

i∈N yk
i =

∑
i∈N ∇fi(xk

i)
is preserved and the compression errors can also be bounded
“safely”.

However, sending x̂k
i itself can still be expensive. Therefore,

we call the procedure PULL to save the communication costs. In
this procedure, (ui,uR,i) is used to track (xi,

∑
j∈N−

R,i
Rijxj).

The compression and the communication are applied on the
difference (xi − ui) and its compressed version, respectively.
It can be derived from the relation pR,i =

∑
j∈N−

R,i
Rijpj and

induction that in each call to PULL, uR,i =
∑

j∈N−
R,i

Rijuj .

And the compression error could be very small if the differ-
ence xi − ui is small. With this observation, we have x̂R,i =∑

j∈N−
R,i

Rijx̂j with x̂j being an unbiased approximation ofxj ,
whose variance converges to 0.

In the PUSH procedure, since the variable yk
i converges to

zero as we will show later, we can simply compress it and esti-
mate

∑
j∈N−

C,i
Cijy

k
j using the compressed values. Similarly,

we have that in each call to PUSH, ŷC,i =
∑

j∈N−
C,i

Cij ŷj ,

with ŷj being the unbiased compression of yj , whose variance
converges to 0 as the input yk

i converges to 0.
Let α̂ = max1≤i≤n αi, and defineα as a diagonal matrix with

αii = αi. Then, we can rewrite Algorithm 1 into the following
matrix form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̂
k
= Uk + COMPRESS

(
Xk −Uk

)
,

Ŷ
k
= COMPRESS

(
Y k
)
,

xk+1 = (1− β)xk + βRX̂
k
−αY k,

Y k+1 = Y k + γ (C − I) Ŷ
k

+∇F (Xk+1)−∇F (Xk),

Uk+1 = (1− η)Uk + ηX̂
k
.

(2)

Comparing to the standard Push-Pull method in [25], the
procedures PUSH and PULL save communication costs at the

cost of error in the mixing. Note X̂
k

and Ŷ
k

are approximations
for Xk and Y k, respectively. The difference between Xk (or

Y k) and X̂
k

(or Ŷ
k
) are induced by the compression errors.

Let us denote the approximation error as wk
i = xk

i − x̂k
i and

eki = yk
i − ŷk

i . We further write them into the following matrix
form

W k = Xk − X̂
k
,Ek = Y k − Ŷ

k
. (3)

rom the PULL procedure, we can see that W k is also the
compression error for Xk −Uk. The update of Uk+1 = (1−
η)Uk + ηX̂

k
indicates that Uk is tracking the motions of Xk.

As Uk approaches Xk, by Assumption 3, the variance of the
approximation error W k will also tends to 0.

Since Y 0 = ∇F (X0) and 1�C = 1�, it follows from (5d)
and induction that

1�Y k = 1�∇F
(
Xk

)
. (4)

Then, as the local variables become closer to each other, yk
i are

more and more parallel to 1�∇F (Xk). As Xk approaches the
optimal point, 1�∇F (Xk) tends to 1�∇F (X∗) = 0�. This
indicates that yk also tends to 0. Then, by Assumption 3, the
variance of compression error Ek will also tend to 0. As the

compression errors W k, Ek tend to 0, we will have X̂
k
≈

Xk and Ŷ
k ≈ Y k. We remark that if X̂

k
= Xk, Ŷ

k
= Y k,

Algorithm 1 will reduce to the PUSH-PULL method in [25].
To show the convergence of the proposed compressed al-

gorithm, we define Rβ = (1− β)I + βR, Cγ = (1− γ)I +
γC, and rewrite (2) as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

W k = Xk −Uk − COMPRESS
(
Xk −Uk

)
, (5a)

Ek = Y k − COMPRESS
(
Y k
)
, (5b)

Xk+1 = RβX
k −αY k − βRW k, (5c)

Y k+1 = CγY
k +∇F (Xk+1)−∇F (Xk)

+γ (I −C)Ek, (5d)
Uk+1 = (1− η)Uk + ηXk − ηW k, (5e)

We define the value ᾱ = s�RαsC/n. Under Assumption 2, ᾱ > 0
can be satisfied by settingαi > 0 for at least one i ∈ RR ∩RC� .
When ᾱ > 0, let us define a constant w ≥ α̂/ᾱ ≥ n

s�
RsC

. Note
that the analysis in the rest of this section holds true for arbitrary
w ≥ α̂/ᾱ. As we will choosew ≥ α̂/ᾱ as an auxiliary parameter
to help choose proper stepsizes {αi}i∈N in Theorem 7 which is
the main theorem of this section, we use the same w in the
analysis below.

Let Fk denote the σ-field generated by {Ej ,W j}k−1
j=0, and

F+
k is the σ-field generated by {Ej ,W j}k−1

j=0 ∪ {W k}. Thus,
we have F1 ⊂ F+

1 ⊂ F2 ⊂ F+
2 ⊂ · · · ⊂ Fk ⊂ F+

k ⊂ · · · . By
Lemma 2 below, Fk = σ(Xi,Y i,U i : 0 ≤ i < k) and F+

k =
σ(Xi,U i,Y j : 0 ≤ i ≤ k, 0 ≤ j < k).

The following lemma comes from (5c)–(5e) and
Assumption 3.

Lemma 2: The variables Xk,Y k,Uk,V k are measurable
with respect to Fk, and Xk is measurable with respect to F+

k−1.
Moreover, we have

E
[
W k|Fk

]
= E

[
Ek|F+

k

]
= 0. (6)

Proof: By expanding (5c)–(5e) recursively, Xk, Y k, Uk,
and V k can be represented by linear combinations of
X0,Y 0,U0,V 0 and random variables {Ej ,W j}k−1

j=0, i.e.,

Xk,Y k,Uk,V k are measurable with respect to Fk. By (5c),
Xk is a linear combination of W k−1 and Fk−1-measurable
variables Xk−1,Y k−1, thus, Xk is measurable with respect
to F+

k−1. And we obtain (6) directly from Assumption 3. �

A. Convergence Analysis for CPP

In this section, we analyze the convergence rates of Algo-
rithm 1. To begin with, we define the averages of Xk, Y k as
follows,

xk =
1

n
s�RX

k, Y
k
=

1

n
1�Y k. (7)

SONG et al.: COMPRESSED GRADIENT TRACKING FOR DECENTRALIZED OPTIMIZATION OVER GENERAL DIRECTED NETWORKS 1779

We define two matrices ΠR = I − 1s�
R

n , ΠC = I − sC1�

n .
It follows from direct calculation that ΠRR = RΠR =

R− 1s�
R

n ,ΠCC = CΠC = C − sC1�

n ,ΠRX
k = Xk − 1xk,

ΠCY
k = Y k − sCY k,(R− I)ΠR = R− I, and ΠC

(I −C) = I −C.
In the analysis below, E

[
‖xk − x∗‖22

]
is employed to mea-

sure the closeness to the optimal point; E
[
|||ΠRX

k|||2R
]

and

E

[
|||ΠCY

k|||2C
]

measure the consensus error and the gradient

tracking error, respectively. To bound the compression errors,

we use E

[
|||Uk −Xk|||22

]
to measure the convergence of the

momentums. The matrix norms ||| · |||R and ||| · |||C are defined
in Lemma 3.

Compared with the convergence analysis for Push-Pull, the
analysis for CPP additionally requires dealing with the compres-
sion errors and establishing the relationship between the error

terms of different types. Moreover, another term E

[
|||Y k|||22

]
is considered to simplify the proof, and its role will be made
clear in the follow-up analysis.

Now, we have the following expansion by multiplying s�
R

n on
both sides of (5c)

xk+1 =
1

n
s�R
(
RβX

k −αY k − βRW k
)

= xk − 1

n
s�Rα

(
Y k − sCY

k
+ sCY

k
)
− β

n
s�RW

k

= xk − ᾱY
k − 1

n
s�RαΠCY

k − β

n
s�RW

k

= xk − ᾱgk + ᾱ
(
gk − Y

k
)
− 1

n
s�RαΠCY

k

− β

n
s�RW

k, (8)

where gk = ∇f(xk).
Multiplying ΠR on both sides of (5c), we have

ΠRX
k+1

= ΠRRβΠRX
k −ΠRαY k − βΠRRW k, (9)

Multiplying ΠC on both sides of (5d), we obtain

ΠCY
k+1 = ΠCCγΠCY

k + γ (I −C)Ek

+ΠC

(
∇F

(
Xk+1

)
−∇F

(
Xk

))
. (10)

Lemma 3: There are invertible matrices R̃, C̃ ∈ Rn×n in-

ducing vector norms ‖x‖R def
= ‖R̃x‖2, ‖x‖C def

= ‖C̃x‖2 forx ∈
Rn. The corresponding matrix norms ‖ · ‖R, ‖ · ‖C defined by
Definition 2 satisfy: for any β, γ ∈ [0, 1],

‖ΠRRβ‖R ≤ 1− θRβ, ‖ΠCCγ‖C ≤ 1− θCγ, (11)

where θR, θC are constants in (0, 1]. Especially, ‖ΠR‖R =
‖ΠC‖C = 1 and ‖R‖R ≤ 2, ‖R− I‖R ≤ 3, ‖C‖C ≤ 2, ‖C −
I‖C ≤ 3. Additionally, ‖x‖2 ≤ ‖x‖R, ‖x‖2 ≤ ‖x‖C, ∀x ∈
Rn; |||A|||2 ≤ |||A|||R, |||A|||2 ≤ |||A|||C,∀A ∈ Rn×p. There
exist constants δR,2, δC,2 such that ‖x‖R ≤ δR,2‖x‖2, ‖x‖C ≤
δC,2‖x‖2, ∀x ∈ Rn. And for any diagonal matrix V , ‖V ‖R =
‖V ‖2, ‖V ‖C = ‖V ‖2.

Proof: See Lemma 3 of [1]. �
In the following, ‖ · ‖R, ‖ · ‖C, ||| · |||R, and ||| · |||C refer to

the norms defined in the above lemma.
Lemma 4: For any vector norm ‖ · ‖∗ induced by the inner

product 〈·, ·〉∗, and for any θ > 1, we have

|||A+B|||2∗ ≤ θ|||A|||2∗ +
θ

θ − 1
|||B|||2∗ , ∀A,B ∈ Rn×p.

Especially, ‖ · ‖∗ can be taken as ‖ · ‖2, ‖ · ‖R, ‖ · ‖C.
Proof: By Definition 1, it suffices to prove ‖aaa+ b‖2∗ ≤

θ‖aaa‖2∗ + θ
θ−1‖b‖2∗ for any vectors aaa, b ∈ Rn. And it can be

verified by the elementary inequality 2〈aaa, b〉∗ ≤ (θ − 1)‖aaa‖2∗ +
1

θ−1‖b‖2∗ . The vector norms ‖ · ‖R, ‖ · ‖C are induced by inner

products 〈R̃x, R̃Y 〉∗, 〈C̃x, C̃Y 〉∗, respectively. �
The next lemma uses inequalities to de-

rive recursive bounds for the quantities

E
[
‖xk − x∗‖22

]
,E
[
|||ΠRX

k|||2R
]
,E
[
|||ΠCY

k|||2C
]

and

E

[
|||Uk −Xk|||22

]
. The quantity E

[
|||Y k|||22

]
is introduced

to help simplify the proof.
Lemma 5: For k ≥ 0, take dk ∈ R5 as

dk = E

[(∥∥xk − x∗∥∥2
2
,
∣∣∣∣∣∣ΠRX

k
∣∣∣∣∣∣2

R
,

∣∣∣∣∣∣ΠCY
k
∣∣∣∣∣∣2

C
,
∣∣∣∣∣∣Uk −Xk

∣∣∣∣∣∣2
2
,
∣∣∣∣∣∣Y k

∣∣∣∣∣∣2
2

)]�
.

Define a parameterized matrix A(α̂, β, γ, η) as follows

A:,1:3 =

⎛⎜⎜⎜⎜⎜⎜⎝
1− c1α̂ c2α̂ c3α̂

0 1− θRβ 0

0 8nc7β
2

γ 1− θCγ

0 8nβ2

η 0

c10 c9 3

⎞⎟⎟⎟⎟⎟⎟⎠ ,

A:,4:5 =

⎛⎜⎜⎜⎜⎜⎜⎝
c4β

2 0

c6β
2 c5

α̂2

β
C2nc7β

2

γ c8γ
2 + 2c7α̂

2

γ

A44
2α̂2

η

0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , (12)

where A44 = 1− η + 2C2η
2 + 2nC2β

2 and c1-c10 are con-
stants given by (34), (36), (39) and (44) in the Supplementary
Material of [1]. Then, under Assumptions 1-3 and the condition
ᾱ ≤ 2

μ+L , we have the following inequalities:{
E

[∣∣∣∣∣∣Y k
∣∣∣∣∣∣2

2

]
≤ A (α̂, β, γ, η)5,1:4d

k
1:4, (13a)

dk+1
1:4 ≤ A (α̂, β, γ, η)1:4,:d

k. (13b)

Proof: See Lemma 5 of [1]. �
Now, we proceed to show the spectral radius of A(α̂, β, γ, η)

defined in (12) is less than 1 with properly chosen parameters.
Lemma 6: Given anyα′ > 0, β′ > 0, w ≥ n

s�
RsC

and 0 < η <
1

2C2
withC2 > 0 given in Assumption 3, there existsγ′ > 0 such

that for any 0 < γ < γ′, if we take α̂ = α′γ3 and β = β′γ2, then

ρ (A (α̂, β, γ, η)) < 1.

1780 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

More specifically, we can choose γ′ = sup{v̂i}
5
i=1 ∈ Pmin

{ξ1, ξ2, ξ3, ξ4}, whereP =

{
{v̂i}5i=1|{v̂i}5i=1satisfies (14a),

(14b)

}
and ξ1, ξ2, ξ3, ξ4 are the minimum positive roots of the

polynomials (15a)–(15d).
Proof: To begin with, we choose positive numbers

v̂1, v̂2, v̂3, v̂4, v̂5 satisfying{
c2v̂2 + c3v̂3 < c1v̂1, (14a)
c10v̂1 + c9v̂2 + 3v̂3 < v̂5 (14b).

Define v̂ = (v̂1, v̂2, v̂3, v̂4, v̂5)
�, then the five entries {gi}5i=1

of the vector [A(α′γ3, β′γ2, γ, η)v̂ − v̂] (as functions of γ) are
given by

g1 (γ) = (−c1v̂1 + c2v̂2 + c3v̂3)α
′γ3

+ c4v̂4β
′2γ4 (15a)

g2 (γ) = − θRβ
′v̂2γ

2

+

(
c6v̂4β

′2 + c5v̂5
α′2

β′

)
γ4 (15b)

g3 (γ) = − θCv̂3γ + c8v̂5γ
2

+
(
8nc7v̂2β

′2 + C2nc7v̂4β
′2) γ3

+ 2c7v̂5α
′2γ5 (15c)

g4 (γ) = −
(
η − 2C2η

2
)
v̂4

+

(
8nβ′2v̂2

η
+ 2nC2β

′2v̂4

)
γ4 +

2α′2v̂5

η
γ6

(15d)

g5 (γ) = c10v̂1 + c9v̂2 + 3v̂3 − v̂5. (15e)

By (14a), for any 0 < γ < ξ1 = α′(c1v̂1−c2v̂2−c3v̂3)
c4v̂4β′2 , we have

g1(γ) < 0, where ξ1 is the minimum positive root of g1(γ).
By direct calculation, g2(γ) < 0, for any 0 < γ < ξ2 =√

θRβ′v̂2

c6v̂4β′2+c5v̂5
α′2
β′

, where ξ2 is the minimum positive root of

g2(γ).
Since g3(0) = 0, g′3(0) = −θCv̂3 < 0 and limγ→+∞

g3(γ) = +∞, g3(γ) has at least one positive root. By defining
ξ3 as this minimum positive root of g3(γ), we have g3(γ) < 0,
for any 0 < γ < ξ3.

As we have assumed 0 < η < 1
2C2

and v̂4 > 0, g4(0) =
−(η − 2C2η

2)v̂4 < 0. Since limγ→+∞ g4(γ) = +∞, g4(γ)
has a minimum positive root ξ4. Then, we have g4(γ) < 0, for
any 0 < γ < ξ4. From (14b), g5(γ) is a negative constant.

Thus, by the above discussion, for 0 < γ < min
{ξ1, ξ2, ξ3, ξ4}, we have gi(γ) < 0(1 ≤ i ≤ 5), i.e.,
A(α̂′γ3, β′γ2, γ, η)v̂ = A(α̂, β, γ, η)v̂ < v̂. Since v̂ is a
positive vector, A(α̂, β, γ, η) is a nonnegative matrix, by [65,
Corollary 8.1.29], ρ(A(α̂, β, γ, η)) < 1. The above arguments
hold true for any positive numbers {v̂i}5i=1 satisfying
(14a) and (14b). Then, by defining P as the set containing
these positive number sets {v̂i}5i=1, we can choose γ′ as
sup{v̂i}5i=1∈P min{ξ1, ξ2, ξ3, ξ4}. �

The next theorem shows that Algorithm 1 converges linearly
with proper parameters and stepsizes.

Theorem 7: Under Assumptions 1-3, given positive numbers
α,′ β′ and 0 < η < 1

2C2
, η ≤ 1, w ≥ n

s�
RsC

, there exists γ′ >

0 (the value of γ′ is given in Lemma 6) such that for any γ
satisfying 0 < γ < γ′ and

γ ≤ min

⎧⎨⎩1, β′−1/2,

(
2n

α′ (μ+ L)
(
s�RsC

))1/3
⎫⎬⎭ , (16)

if we set β = β′γ2 and the stepsizes {αi}i∈N satisfy
α̂ = maxi∈N αi = α′γ3, with α̂/ᾱ ≤ w, then E[‖xk − x∗‖22],
E[|||ΠRX

k|||2R] converge linearly to 0. More specifically,

E

[∥∥xk − x∗∥∥2
2

]
≤ σv1ρ (A (α̂, β, γ, η))k ,

E

[∣∣∣∣∣∣ΠRX
k
∣∣∣∣∣∣2

R

]
≤ σv2ρ (A (α̂, β, γ, η))k ,

where σ,v1,v2 are constants given in the proof.
Proof: Denote A = A(α̂, β, γ, η) for simplicity. Since A is

a regular nonnegative matrix,1 by the Perron-Frobenius theo-
rem [66], ρ(A) is an eigenvalue of A, and A has a unique
right positive eigenvector v with respect to the eigenvalue ρ(A).

Define the constant σ = max1≤i≤4
d0
i

vi
. Thus, by the definition

of σ, d0
1:4 ≤ σv1:4.

Next, we prove the linear convergence by induction. If we
have proved dk

1:4 ≤ σρ(A)kv1:4, we will show that it also holds
true for k + 1. The requirement (16) guarantees that γ ≤ 1,

β = β′γ2 ≤ 1, ᾱ ≤ (s�
RsC)α̂

n =
(s�

RsC)α′γ3

n ≤ 2
μ+L . According

to Lemma 6, ρ(A) < 1.
By (13a) and the inductive hypothesis, there holds

E

[∣∣∣∣∣∣Y k
∣∣∣∣∣∣2

2

]
≤ A5,1:4d

k
1:4 ≤ σρ (A)k A5,1:4v1:4

= σρ (A)k A5,:v = σρ (A)k+1 v5 ≤ σρ (A)k v5.

Combining with the inductive hypothesis, we obtain

dk ≤ σρ (A)k v. (17)

Now, by (13b) and (17),

dk+1
1:4 ≤ A1:4,:d

k ≤ σρ (A)k A1:4,:v = σρ (A)k+1 v1:4,

i.e., the statement holds for k + 1. Therefore, by induc-
tion, dk

1:4 ≤ σρ(A)kvk
1:4, for any k ≥ 0, which completes the

proof. �
Remark 8: In practice, we can take for instance α′ = 1

L , β′ =
1, γ = 1, η = min{ 1

2C2
, 1}. Then, we hand-tune γ under the

relations αi = α̂ = α′γ3(∀i ∈ N) and β = β′γ2 to achieve the
optimal performance.

Remark 9: We can also add momentums for the commu-
nication of Y k like what we did for Xk. In this case, linear
convergence can be proved similarly. However, we see little im-
provement in the numerical experiments when Y k is equipped
with momentums. In addition, more momentums will take more
storage space. Therefore, we omit the details of this case here.

1A matrix A is said to be regular if all the entries of Ak are positive for some
integer k ≥ 0.

SONG et al.: COMPRESSED GRADIENT TRACKING FOR DECENTRALIZED OPTIMIZATION OVER GENERAL DIRECTED NETWORKS 1781

IV. A BROADCAST-LIKE GRADIENT TRACKING METHOD WITH

COMPRESSION (B-CPP)

In this section, we consider a broadcast-like gradient tracking
method with compression (B-CPP). Broadcast or gossip-based
communication protocols are popular for distributed computa-
tion due to their low communication costs [62]–[64]. In B-CPP,
at every iteration k, one agent ik ∈ N wakes up with uniform
probability. This can be easily realized, for example, if each
agent wakes up according to an independent Poisson clock with
the same parameter. Hence the probability Pr[ik = j] = 1

n for
any j ∈ N . In addition, {ik}k≥0 are independent with each
other.

Briefly speaking, each iteration k of the B-CPP algorithm
consists of the following steps:

1) One random agent ik wakes up.
2) Agent ik sends information to all its out-neighbors in R

(N+
R,ik

) and C (N+
C,ik

).
3) The agents who received information from ik are awaken

and update their local variables.
We remark that the number k is only used for analysis purpose

and does not need to be known by the agents. B-CPP can
be generalized to the case when each agent wakes up with
different but known probabilities. The awakened agents will
know whether they are ik and whether they are in the set N+

R,ik

or in the set N+
C,ik

, and will take different actions accordingly.
The B-CPP method is illustrated in Algorithm 2. To implement
communication compression in a broadcast setting, a naive way
is to let each agent i hold different momentums ui,j for each
neighbors j. In this way, at each time agent i receives information
p from neighboring agent j, it can restore the information sent
from agent j directly by summing p+ ui,j . However, this pro-
cedure would require momentums as many as the total number
of edges. Hence it could be impractical when the storage space
is limited and the graph is dense. In B-CPP, we overcome this
issue so that each agent only uses 2 momentums.

To help analyze the convergence rate of Algorithm 2, for 0 ≤
k ≤ K, let us define the final state of variablexj before iteration
k as xk

j . These xk
j are written compactly into an n-by-p matrix

Xk. And Y k,Uk,Uk
R,∇F (Xk) are defined analogously. Let

Dk be the σ-field generated by {ij ,pj , qj}0≤j≤k−1. Let D+
k

denote the σ-field generated by Dk and ik. Let D++
k denote the

σ-field generated by Dk and {ik,pk}. For any event A, let χA

denote the indicator function of A.
The differences between B-CPP and CPP mainly lie

in the averaging step. Taking the averaging step for Xk

as an example. Firstly, we also have by induction that
Uk

R = RUk, ∀0 ≤ k ≤ K. For i ∈ N , denote the in-degree of
i in R by ri = |N−

R,i|. Since R is row stochastic, ri > 0 for any
i ∈ N . Notice that the update step (18a) will be implemented
by agent j when agent ik is an in-neighbor of agent j (or
equivalently, j is an out-neighbor of ik).

E

[
χ{

j∈N+
R,ik

}nRj,ikp
k|Dk

]
= E

[
χ{

j∈N+
R,ik

}nRj,ikE
[
pk|ik

]
|Dk

]

= E
[
nRj,ik

(
xk
ik
− uk

ik

)
|Dk

]
=

1

n

n∑
ik=1

nRj,ik

(
xk
ik
− uk

ik

)
= Rj,:

(
Xk −Uk

)
.

Analogously,

E

[
χ{

j∈N+
R,ik

}
(
1− βn

rj

)
xk
j |Dk

]
=

1

n

∑
ik∈N , Rj,ik

>0

(
1− βn

rj

)
xk
j

=
rj
n
xk
j − βxk

j ,

1782 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

and

E

[
χ{

j∈N+
R,ik

}
(
n

rj
uk
R,j

)
|Dk

]
=

n

rj
uk
R,jPr

[
j ∈ N+

R,ik
|Dk

]
=

1

n

∑
ik∈N , Rj,ik

>0

n

rj
uk
R,j

= uk
R,j = Rj,:U

k.

Thus, taking expectation on the RHS of (18b) yields

E

[
χ{

j/∈N+
R,ik

}xk
j + χ{

j∈N+
R,ik

}
((

1− βn

rj

)
xk
j

)
+ χ{

j∈N+
R,ik

}
(
βn

rj
uk
R,j + βnRj,ikp

k

) ∣∣∣Dk

]
=

(
n− rj
n

+
rj
n

− β

)
xk
j + βRj,:

(
Uk +Xk −Uk

)
= [Rβ]j,: X

k.

Briefly speaking, after taking conditional expectation, the aver-
aging step of B-CPP reduces to that of CPP (the first term of the
RHS of (5c)). By choosing a proper value for β, the variance of
the RHS of (18) can be made small enough. In this way, the av-
eraging step in B-CPP could have a similar effect to that of CPP.

To show the linear convergence of B-CPP, for simplicity, we
assume α = α1 = α2 = · · · = αn. We remark that the analysis
below can be easily generalized to the case when the stepsizes
differ among the agents.

We denote 1i ∈ Rn×1 as the vector with 1 on the i-th com-
ponent and 0 on the others. Define

P k = Xk −Uk + 1ik

(
pk − xk

ik
+ uk

ik

)
,

Qk = Y k + 1ik

(
qk − Y k

ik

)
.

As Uk + P k and Qk are used to estimate Xk and yk, respec-
tively, we define the error matrices induced by the compression
as follows

W k = Xk −Uk − P k = 1ik

(
xk
ik
− uk

ik
− pk

)
,

Ek = Y k −Qk = 1ik

(
Y k

ik
− qk

)
.

The following lemma is a direct corollary of Assumption 3.
Lemma 10: The random variable ik is independent with Dk.

And E[W k|D+
k] = 0, E[Ek|D++

k] = 0.
Moreover, by Assumption 3,

E

[∣∣∣∣∣∣W k
∣∣∣∣∣∣2

2
|D+

k

]
= E

[∥∥xk
ik
− uk

ik
− pk

∥∥2
2
|D+

k

]
≤ C2E

[∥∥xk
ik
− uk

ik

∥∥2
2
|Dk

]
=
C2

n

∣∣∣∣∣∣Xk −Uk
∣∣∣∣∣∣2

2
, (19)

E

[∣∣∣∣∣∣Ek
∣∣∣∣∣∣2

2
|D++

k

]
= E

[∥∥Y ik − qk
∥∥2
2
|Dk

]
≤ C2E

[∥∥Y k
ik

∥∥2
2
|D++

k

]
=
C2

n

∣∣∣∣∣∣Y k
∣∣∣∣∣∣2

2
. (20)

We will also use the following random matrices, which are all
measurable with respect to ik,

Λk = nDiag (1ik) , Λ̃
k =

∑
j∈{ik}∪N+

R,ik
∪N+

C,ik

Diag (1j) ,

Λ̃k
R =

∑
j∈N+

R,ik

n

rj
Diag (1j) ,R

k
=

∑
j∈N+

R,ik

n

rj
1jRj,:,

R̂
k
= nR:,ik1

�
ik
, Ĉ

k
= nC :,ik1

�
ik
.

Now, Algorithm 2 can be rewritten into a more compact form:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Xk+1 =
(
I − βΛ̃k

R

)
Xk + βΛ̃k

RRUk

+βR̂
k
P k − αΛ̃kY k, (21a)

Y k+1 = Y k + γ
(
Ĉ

k − Λk
)
Qk

+∇F (Xk+1)−∇F (Xk), (21b)
Uk+1 = Uk + ηΛkP k. (21c)

Compared to CPP, the stochastic matrices R̂
k
,R

k
,Λk, Λ̃k, Λ̃k

R

will induce additional errors that need to be dealt with in the
convergence analysis of B-CPP.

To analyze the convergence rate of B-CPP, similar
to what we did for CPP, we also use E[‖xk − x∗‖22],
E[|||ΠRX

k|||2R],E[|||ΠCY
k|||2C] and E[|||Uk −Xk|||22] to

measure the closeness to the optimal point, consensus error,
gradient tracking error and the convergence of the momentums,

respectively. And we useE[|||Y k|||22],E[|||Xk+1 −Xk|||22] and

E[|||Vk|||22] to help simplify the recursive relations between the
above four quantities. The definition of Vk is given by (47) in
the Supplementary Material of [1].

Lemma 11: For k ≥ 0, define d̃
k ∈ R7 as an extension of dk:

d̃
k
=
(
dk,E

[∣∣∣∣∣∣Vk
∣∣∣∣∣∣2

2

]
,E
[∣∣∣∣∣∣Xk+1 −Xk

∣∣∣∣∣∣2
2

])�
.

Define a parameterized matrix Ã(α, β, γ, η) as follows

Ã:,1:3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− d1α d2α d3α

0 1− θRβ 0

0 0 1− θCγ

0 0 0

c10 c9 3

0 3V1β
2 0

0 18β2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ã:,4:7 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 d4 0

0 α2

βθR
δ2R,2 0

0 d5γ
2

1−θCγ + d7γ
2 0 d6

γ

Ã44 0 0 2
η

0 0 0 0

d9β
2 3V4α

2 0 0

0 2α2 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(22)

where Ã44 = 1− η + η2(n−1)2

1−η + d8
β2

η + 2C2nη
2 + d8β

2

and the constants d1-d9 are given by (51), (55), (57) and (59) in
the Supplementary Material of [1]. Then, under Assumptions 1-3

SONG et al.: COMPRESSED GRADIENT TRACKING FOR DECENTRALIZED OPTIMIZATION OVER GENERAL DIRECTED NETWORKS 1783

and the condition α̃ ≤ 2
μ+L , we have the following inequalities:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

E

[∣∣∣∣∣∣Y k
∣∣∣∣∣∣2

2

]
≤ Ã (α, β, γ, η)5,1:4 d̃

k

1:4, (23a)

E

[∣∣∣∣∣∣Vk
∣∣∣∣∣∣2

2

]
≤ Ã (α, β, γ, η)6,1:5 d̃

k

1:5, (23b)

E

[∣∣∣∣∣∣Xk+1 −Xk
∣∣∣∣∣∣2

2

]
≤ Ã (α, β, γ, η)7,1:6 d̃

k

1:6, (23c)

d̃
k+1

1:4 ≤ Ã (α, β, γ, η)1:4,: d̃
k
. (23d)

Proof: See Lemma 11 of [1]. �
Next, we show that with properly chosen parameters and

stepsize, the spectral radius of the parameterized matrix
Ã(α, β, γ, η) in (22) will be less than 1.

Lemma 12: Given any positive numbers α,′ β′ and η satisfy-
ing

0 < η ≤ 1

2
, η <

1

2(n− 1)2 + 2C2n
, (24)

there exists γ′ > 0 such that for any 0 < γ < γ′, if we take α =
α′γ3 and β = β′γ2, then

ρ
(
Ã (α, β, γ, η)

)
< 1.

More specifically, we can take γ′ = sup{ṽi}7i=1∈P′

min{ψ2, ψ3, ψ4, ψ6, ψ7,
1
θC

}, where θC is given in Lemma 3
and P,′ ψi(i = 2, 3, 4, 6, 7) are given in the proof.

Proof: Given positive numbers {ṽi}7i=1 satisfying⎧⎨⎩d2ṽ2α
′ + d3ṽ3α

′ + d4ṽ6 < d1ṽ1α,
′ (25a)

c10ṽ1 + c9ṽ2 + 3ṽ3 < ṽ5, (25b)
ṽ6 < ṽ7 . (25c)

Define v̂ = (ṽ1, ṽ2, ṽ3, ṽ4, ṽ5, γ
3ṽ6, γ

3ṽ7)
�. The seven en-

tries {gi}7i=1 of the vector [v̂ − Ã(α′γ3, β′γ2, γ, η)v̂] (as func-
tions of γ) are given by

g1 (γ) = γ3 (−d1ṽ1α
′ + d2ṽ2α

′ + d3ṽ3α
′ + d4ṽ6)

g2 (γ) = γ2
(
−θRβ′ṽ2 +

α′2ṽ5

β′θR
γ2 + δ2R,2ṽ6γ

)
,

g3 (γ) = γ

(
−θCṽ3 +

d5ṽ5γ

1− θCγ
+ d7ṽ5γ + d6ṽ7γ

)
,

g4 (γ) =

(
−η + η2(n− 1)2

1− η
+ 2C2nη

2

)
ṽ4 + d8ṽ4

β′2

η
γ4

+ d8ṽ4β
′2γ4 +

2ṽ7

η
γ3,

g5 (γ) = c10ṽ1 + c9ṽ2 + 3ṽ3 − ṽ5,

g6 (γ) = γ3
(
3V1ṽ2β

′2γ + d9ṽ4β
′2γ + 3V4ṽ5α

′2γ3 − ṽ6

)
,

g7 (γ) = γ3
(
(ṽ6 − ṽ7) + 18ṽ2β

′2γ + 2ṽ5α
′2γ3

)
.

Denote g̃i = gi/γ
3(i = 1, 6, 7), g̃2 = g2/γ

2, g̃3 = g3/γ.
By (25a), g̃1 = −d1ṽ1α

′ + d2ṽ2α
′ + d3ṽ3α

′ + d4ṽ6 < 0.
By (25b), g5 = c10ṽ1 + c9ṽ2 + 3ṽ3 − ṽ5 < 0. By
(25c), g̃7(0) = ṽ6 − ṽ7 < 0. By (24), η ≤ 1/2, then
g4(0) ≤ −η + 2η2(n− 1)2 + 2C2nη

2 < 0. It follows
directly that g̃2(0) = −θRβ′ṽ2 < 0, g̃3(0) = −θCṽ3 < 0,
g̃6(0) = −ṽ6 < 0.

If 0 < γ < 1
θC

, we have limγ→+∞ g3(γ) = +∞. Combining
with the facts that limγ→+∞ gi(γ) = +∞, for i = 2, 4, 6, 7, we

can define ψi to be the minimum positive solution of gi(γ) (i =
2, 3, 4, 6, 7) when 0 < γ < 1

θC
.

Thus, for any 0 < γ < min{ψ2, ψ3, ψ4, ψ6, ψ7,
1
θC

}, there

holds gi(γ) < 0, for any 1 ≤ i ≤ 7, i.e., Ã(α, β, γ, η)v̂ =

Ã(α′γ3, β′γ2, γ, η)v̂ < v̂. Since Ã(α, β, γ, η) is a nonnegative
matrix, v̂ is a positive vector, by [65, Corollary 8.1.29], we have
ρ(Ã(α, β, γ, η)) < 1.

The above arguments hold true for arbitrary {ṽi}7i=1

satisfying (25a), (25b) and (25c). Then, let the
set P′ consist of all these {ṽi}7i=1, we have γ′ ≥
sup{ṽi}7i=1∈P′ min{ψ2, ψ3, ψ4, ψ6, ψ7,

1
θC

}.
�

The following theorem shows the linear convergence of Al-
gorithm 2 given proper parameters and stepsize.

Theorem 13: Under Assumptions 1-3, if we choose ar-
bitrary positive numbers α,′ β,′ η satisfying 0 < η ≤ 1

2 , η <
1

2(n−1)2+2C2n
, and choose γ′ > 0 as in Lemma 12. Then, for

any γ satisfying 0 < γ < γ′ and

γ ≤ min

⎧⎪⎨⎪⎩1, β′− 1
2 ,

⎛⎝ 2n

α′ (μ+ L)
(
s�RΛ̃sC

)
⎞⎠ 1

3

⎫⎪⎬⎪⎭ , (26)

β = β′γ2, and α = α′γ3, there holds, for any k ≥ 0,

E

[∥∥xk − x∗∥∥2
2

]
≤ σ′v′

1ρ
(
Ã (α, β, γ, η)

)k
,

E

[∣∣∣∣∣∣ΠRX
k
∣∣∣∣∣∣2

R

]
≤ σ′v′

2ρ
(
Ã (α, β, γ, η)

)k
,

where σ′,v′
1,v

′
2 are constants given in the proof.

Proof: To begin with, we denote Ã = Ã(α, β, γ, η) for sim-
plicity. Since Ã is a regular nonnegative matrix, by the Perron-
Frobenius theorem [66], ρ(Ã) is an eigenvalue of Ã, and Ã has
a unique positive right eigenvector v′ with respect to the eigen-

value ρ(Ã). Define σ′ = max1≤i≤4
d̃
0

i

v′
i
. Then, d̃

0

1:4 ≤ σ′v′
1:4.

Next, we prove the linear convergence by induction. If we

have proved d̃
k

1:4 ≤ σ′ρ(Ã)kv′
1:4, we will show that it also holds

for k + 1. The requirement (26) guarantees that γ ≤ 1, β ≤ 1,
α̃ ≤ 2

μ+L . From Lemma 12, ρ(Ã) < 1.
By (23a) and the inductive hypothesis, there holds

E

[∣∣∣∣∣∣Y k
∣∣∣∣∣∣2

2

]
≤ Ã5,1:4d̃

k

1:4 ≤ σ′ρ
(
Ã
)k

Ã5,1:4v
′
1:4

= σ′ρ
(
Ã
)k [

Ãv′
]
5
= σ′ρ

(
Ã
)k+1

v′
5 ≤ σ′ρ

(
Ã
)k

v′
5.

Then combining with the inductive hypothesis, we have

d̃
k

1:5 ≤ σ′ρ
(
Ã
)k

v′
1:5. (27)

By (23b) and (27),

E

[∣∣∣∣∣∣Vk
∣∣∣∣∣∣2

2

]
≤ Ã6,1:5d̃

k

1:5 ≤ σ′ρ
(
Ã
)k

Ã6,1:5v
′
1:5

= σ′ρ
(
Ã
)k [

Ãv′
]
6
= σ′ρ

(
Ã
)k+1

v′
6 ≤ σ′ρ

(
Ã
)k

v′
6.

Then combining with (27), we have

d̃
k

1:6 ≤ σ′ρ
(
Ã
)k

v′
1:6. (28)

1784 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

By (23c) and (28),

E

[∣∣∣∣∣∣Xk+1−Xk
∣∣∣∣∣∣2

2

]
≤Ã7,1:6d̃

k

1:6≤σ′ρ
(
Ã
)k

Ã7,1:6v
′
1:6

= σ′ρ
(
Ã
)k [

Ãv′
]
7
= σ′ρ

(
Ã
)k+1

v′
7 ≤ σ′ρ

(
Ã
)k

v′
7.

Then combining with (28), we have obtained

d̃
k ≤ σ′ρ

(
Ã
)k

v′. (29)

Using (23d) and (29), we have

d̃
k+1

1:4 ≤ Ã1:4,:d̃
k ≤ σ′ρ

(
Ã
)k

Ã1:4,:v
′

= σ′ρ
(
Ã
)k [

Ãv′
]
1:4

= σ′ρ
(
Ã
)k+1

v′
1:4,

i.e., the statement holds for k + 1. Therefore, by induction,

d̃
k

1:4 ≤ σ′ρ(Ã)kv′
1:4, for any k ≥ 0, which completes the

proof. �
Remark 14: In practice, the parameters β, γ, η and stepsize

α can be chosen in the same way as in CPP.

V. NUMERICAL EXPERIMENTS

In this section, we compare the numerical performance of
CPP and B-CPP with the Push-Pull/AB method [25], [26].
In the experiments, we equip CPP and B-CPP with different
compression operators and consider different graph topologies.

We consider the following decentralized
2-regularized logis-
tic regression problem:

min
x∈Rp

1

n

n∑
i=1

log
(
1 + e−λiz

�
i x
)
+
μ

2
‖x‖22 ,

where (zi, λi) ∈ Rp × {−1,+1} is the training example pos-
sessed by agent i. The data is from QSAR biodegradation Data
Set2 [67], where each feature vector is of p = 41 dimension. In
our experiments, we set n = 20 and μ = 0.001. We construct
the directed graphs GR and GC by adding d directed links to
the undirected cycle, respectively. In our experiments below,
we will consider the cases d = 5, 20, 50, representing sparse,
normal and dense graphs respectively.

We consider two kinds of compression operators. The first
one is the b bit 2-quantization given by

COMPRESS (x) =
(
‖x‖2 sign (x)21−b

) ⌊2b−1 |x|
‖x‖2

+ v

⌋
,

where v ∈ Rp is a random vector picked uniformly from (0, 1)p

and we choose b = 2, 4, 6 in the experiments. The second one
is Rand-k which is defined by

COMPRESS (x) =
p

k
x̂,

where x̂ is obtained by randomly choosing k entries of x and
setting the rest entries to be 0. We will set k = 5, 10, 20 respec-
tively. Then, we hand-tune to find the optimal parameters for all
the numerical cases below. In the figures, the y-axis represents
the loss f(xi)− f(x∗) and x-axis is the iteration number or the
number of transmitted bits.

2https://archive.ics.uci.edu/ml/datasets/QSAR+biodegradation

Fig. 1. Linear convergence of Push-Pull/AB, CPP, and B-CPP with b bit
quantization (b = 2, 4, 6) and Rand-k (k = 5, 10, 20) compressors.

Fig. 2. Linear convergence of B-CPP with b bit quantization (b = 2, 4, 6) and
Rand-k (k = 5, 10, 20) compressors.

A. Linear Convergence

The performance of Push-Pull/AB, CPP and B-CPP is il-
lustrated in Fig. 1. To see the performance of B-CPP more
clearly, we plot the trajectories of B-CPP additionally at a larger
scale in Fig. 2. The experiments illustrated in Fig. 1 and Fig. 2
are conducted on graphs with d = 20. The quantization with
b = 2, 4, 6 and Rand-k with k = 5, 10, 20 are considered. It
can be seen from Fig. 1 and Fig. 2 that all the trajectories exhibit
linear convergence, and the exact Push-Pull/AB method is faster
than CPP and B-CPP with any compression methods. This is
reasonable as the compression operator induces additional errors
compared to the exact method, and these additional errors could
slow down the convergence. Meanwhile, as the values of b or k
increases, both CPP and B-CPP speed up since the compression
errors decrease. When b = 6 or k = 20, the trajectories of CPP
are very close to that of exact Push-Pull/AB, which indicates
that when the compression errors are small, they are no longer
the bottleneck of convergence.

https://archive.ics.uci.edu/ml/datasets/QSARprotect $
elax +$biodegradation

SONG et al.: COMPRESSED GRADIENT TRACKING FOR DECENTRALIZED OPTIMIZATION OVER GENERAL DIRECTED NETWORKS 1785

Fig. 3. Performance of Push-Pull/AB, CPP, B-CPP against the number of
transmitted bits: the left column shows the results with quantization (b = 2, 4, 6)
and the right column shows the results with Rand-k (k = 5, 10, 20).

Within the same number of iterations, CPP outperforms B-
CPP, and the trajectories of CPP are smoother than B-CPP.
These results can be expected since CPP updates all the local
variables in a single iteration, while in B-CPP, only one node
updates with its neighbors. To guarantee the linear convergence,
B-CPP requires smaller parameters and stepsizes. In addition,
the mixing matrix at each iteration of B-CPP can be regarded as
a stochastic matrix, which will induce additional variances.

B. Communication Efficiency

When we compare the number of transmitted bits to reach
certain levels of accuracy, CPP and B-CPP show their superior-
ity. We consider the same settings as in Section V-A. We can see
from all of the sub-figures of Fig. 3 that, to reach a high accuracy
within about 10−15, the number of transmitted bits required by
these methods have the ranking: B-CPP<CPP<Push-Pull/AB.

To see why CPP outperforms Push-Pull/AB, note that the
vectors sent in CPP have been compressed, and hence the
transmitted bits at each iteration are greatly reduced compared
to Push-Pull/AB. Although the additional compression errors
slow down the convergence, our design for CPP guarantees
that the impact on the convergence rate is relatively small.
Therefore, CPP is much more communication-efficient than the
exact Push-Pull/AB method. Moreover, in all cases, B-CPP
is much more communication-efficient than CPP. This is be-
cause when CPP converges, each agent will receive similar, or
“overlapping” vectors from different neighbors, which impacts
the communication-efficiency. By contrast, for B-CPP, only one

Fig. 4. Performance of CPP and Push-Pull/AB with different communication
networks under both quantization and Rand-k compressors.

Fig. 5. Performance of B-CPP with different communication networks under
both quantization and Rand-k compressors.

agent wakes up in each iteration, and its information can be
utilized by its neighbors more efficiently.

It is worth noting that for both CPP and B-CPP, the choices b =
2 for quantization or k = 5 for Rand-k are more communication-
efficient than b = 4, 6 or k = 10, 20. This indicates that as
the compression accuracy becomes smaller, its impact exhibits
“marginal effects”. In other words, when the compression er-
rors are not the bottleneck for the convergence, sacrificing the
communication costs for faster convergence will reduce the
communication efficiency.

C. Different Topologies

We also examine the performance of CPP and B-CPP on
communication networks with different levels of connectivity.

1786 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

We consider d = 5, 10, 20 respectively: as the value of d
increases, the communication network has a better connectivity.
As before, both the quantization and the Rand-k compressors are
considered, and we show the performance of CPP and B-CPP
separately for better clarity.

In Fig. 4 and Fig. 5, we can see that when d increases, the
convergence of both CPP/B-CPP and Push-Pull/AB speed up.
This is expected since better connectivity implies less consensus
errors in each iteration, and the algorithms perform closer to the
centralized gradient descent algorithm which is faster.

VI. CONCLUSION

In this paper, we proposed two communication-efficient
algorithms for decentralized optimization over a multi-agent
network with general directed topology. First, we consider a
novel communication-efficient gradient tracking based method,
termed CPP, that combines the Push-Pull method with communi-
cation compression. CPP can be applied to a general class of un-
biased compression operators and achieves linear convergence
for strongly convex and smooth objective functions. Second,
we consider a broadcast-like version of CPP (B-CPP) which
also achieves linear convergence rate for strongly convex and
smooth objective functions. B-CPP can be applied in an asyn-
chronous broadcast setting and further reduce communication
costs compared to CPP.

ACKNOWLEDGMENT

Most work was done while the first author was visiting the
School of Data Science, The Chinese University of Hong Kong,
Shenzhen.

REFERENCES

[1] Z. Song, L. Shi, S. Pu, and M. Yan, “Compressed gradient tracking
for decentralized optimization over general directed networks,” 2021,
arXiv:2106.07243.

[2] K. Cohen, A. Nedić, and R. Srikant, “On projected stochastic gradient
descent algorithm with weighted averaging for least squares regression,”
IEEE Trans. Autom. Control, vol. 62, no. 11, pp. 5974–5981, Nov. 2017.

[3] A. I. Forrester, A. Sóbester, and A. J. Keane, “Multi-fidelity optimization
via surrogate modelling,” in Proc. Royal Soc. London A: Math. Physical
Eng. Sci., 2007, pp. 3251–3269.

[4] A. Nedić, A. Olshevsky, and C. A. Uribe, “Fast convergence rates for
distributed non-Bayesian learning,” IEEE Trans. Autom. Control, vol. 62,
no. 11, pp. 5538–5553, Nov. 2017.

[5] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for distributed
optimization and learning over networks,” IEEE Trans. Signal Process.,
vol. 60, no. 8, pp. 4289–4305, Aug. 2012.

[6] S. Pu, A. Garcia, and Z. Lin, “Noise reduction by swarming in social
foraging,” IEEE Trans. Autom. Control, vol. 61, no. 12, pp. 4007–4013,
Dec. 2016.

[7] B. Baingana, G. Mateos, and G. B. Giannakis, “Proximal-gradient algo-
rithms for tracking cascades over social networks,” IEEE J. Sel. Topics
Signal Process., vol. 8, no. 4, pp. 563–575, Aug. 2014.

[8] K. Cohen, A. Nedić, and R. Srikant, “Distributed learning algorithms for
spectrum sharing in spatial random access wireless networks,” IEEE Trans.
Autom. Control, vol. 62, no. 6, pp. 2854–2869, Jun. 2017.

[9] G. Mateos and G. B. Giannakis, “Distributed recursive least-squares:
Stability and performance analysis,” IEEE Trans. Signal Process., vol. 60,
no. 7, pp. 3740–3754, Jul. 2012.

[10] A. Nedić and J. Liu, “Distributed optimization for control,” Annu. Rev.
Control, Robot., Auton. Syst., vol. 1, pp. 77–103, 2018.

[11] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48–61,
Jan. 2009.

[12] Z. Li, W. Shi, and M. Yan, “A decentralized proximal-gradient method
with network independent step-sizes and separated convergence rates,”
IEEE Trans. Signal Process., vol. 67, no. 17, pp. 4494–4506, Sep. 2019.

[13] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed opti-
mization,” IEEE Trans. Control Netw. Syst., vol. 5, no. 3, pp. 1245–1260,
Sep. 2018.

[14] K. Scaman, F. Bach, S. Bubeck, L. Massoulié, and Y. T. Lee, “Optimal
algorithms for non-smooth distributed optimization in networks,” in Proc.
Adv. Neural Inf. Process. Syst., 2018, pp. 2745–2754.

[15] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order
algorithm for decentralized consensus optimization,” SIAM J. Optim.,
vol. 25, no. 2, pp. 944–966, 2015.

[16] C. A. Uribe, S. Lee, A. Gasnikov, A. Gasnikov, and A. Nedić, “A
dual approach for optimal algorithms in distributed optimization over
networks,” Optim. Methods Softw., vol. 36, no. 1, pp. 171–210, 2021,
doi: 10.1080/10556788.2020.1750013.

[17] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradi-
ent methods for multi-agent optimization under uncoordinated constant
stepsizes,” in Proc. 54th IEEE Conf. Decis. Control, 2015, pp. 2055–2060.

[18] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggre-
gate information,” in Proc. 44th Annu. IEEE Symp. Foundations Comput.
Sci., 2003, pp. 482–491.

[19] A. Nedić and A. Olshevsky, “Distributed optimization over time-varying
directed graphs,” IEEE Trans. Autom. Control, vol. 60, no. 3, pp. 601–615,
Mar. 2015.

[20] C. Xi and U. A. Khan, “DEXTRA: A fast algorithm for optimization
over directed graphs,” IEEE Trans. Autom. Control, vol. 62, no. 10,
pp. 4980–4993, Oct. 2017.

[21] J. Zeng and W. Yin, “ExtraPush for convex smooth decentralized optimiza-
tion over directed networks,” J. Comput. Math., vol. 35, no. 4, pp. 383–396,
2017.

[22] A. Nedic, A. Olshevsky, and W. Shi, “Achieving geometric convergence
for distributed optimization over time-varying graphs,” SIAM J. Optim.,
vol. 27, no. 4, pp. 2597–2633, 2017.

[23] Y. Tian, Y. Sun, and G. Scutari, “ASY-SONATA: Achieving linear
convergence in distributed asynchronous multiagent optimization,” in
Proc. 56th Annu. Allerton Conf. Commun., Control, Comput., 2018,
pp. 543–551.

[24] C. Xi, R. Xin, and U. A. Khan, “ADD-OPT: Accelerated distributed
directed optimization,” IEEE Trans. Autom. Control, vol. 63, no. 5,
pp. 1329–1339, May 2018.

[25] S. Pu, W. Shi, J. Xu, and A. Nedic, “Push-pull gradient methods for dis-
tributed optimization in networks,” IEEE Trans. Autom. Control, vol. 66,
no. 1, pp. 1–16, Jan. 2021.

[26] R. Xin and U. A. Khan, “A linear algorithm for optimization over directed
graphs with geometric convergence,” IEEE Contr. Syst. Lett., vol. 2, no. 3,
pp. 315–320, Jul. 2018.

[27] F. Saadatniaki, R. Xin, and U. A. Khan, “Decentralized optimization over
time-varying directed graphs with row and column-stochastic matrices,”
IEEE Trans. Autom. Control, vol. 65, no. 11, pp. 4769–4780, Nov. 2020.

[28] J. Zhang and K. You, “Fully asynchronous distributed optimization with
linear convergence in directed networks,” 2021, arXiv:1901.08215.

[29] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
Adv. Neural Inf. Process. Syst., pp. 1709–1720, 2017.

[30] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“signSGD: Compressed optimisation for non-convex problems,” in Proc.
Int. Conf. Mach. Learn., 2018, pp. 560–569.

[31] A. Beznosikov, S. Horváth, P. Richtárik, and M. Safaryan, “On biased
compression for distributed learning,” 2020, arXiv:2002.12410.

[32] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi, “Error feedback
fixes signsgd and other gradient compression schemes,” in Proc. Int. Conf.
Mach. Learn., 2019, pp. 3252–3261.

[33] J. Liu et al., “Distributed learning systems with first-order methods,”
Foundations Trends Databases, vol. 9, no. 1, pp. 1–100, 2020.

[34] X. Liu, Y. Li, J. Tang, and M. Yan, “A double residual compression
algorithm for efficient distributed learning,” in Proc. Int. Conf. Artif. Intell.
Statist., 2020, pp. 133–143.

[35] K. Mishchenko, E. Gorbunov, M. Takáč, and P. Richtárik, “Distributed
learning with compressed gradient differences,” 2019, arXiv:1901.09269.

[36] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
DNNs,” in Proc. 15th Annu. Conf. Int. Speech Commun. Assoc., 2014,
pp. 1058–1062.

[37] S. U. Stich, “On communication compression for distributed optimization
on heterogeneous data,” 2020, arXiv:2009.02388.

https://dx.doi.org/10.1080/10556788.2020.1750013

SONG et al.: COMPRESSED GRADIENT TRACKING FOR DECENTRALIZED OPTIMIZATION OVER GENERAL DIRECTED NETWORKS 1787

[38] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with mem-
ory,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 4447–4458.

[39] H. Tang, C. Yu, X. Lian, T. Zhang, and J. Liu, “Doublesqueeze: Parallel
stochastic gradient descent with double-pass error-compensated compres-
sion,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 6155–6165.

[40] H. Xu et al., “Compressed communication for distributed deep learning:
Survey and quantitative evaluation,” King Abdullah University of Science
and Technology, Tech. Rep., 2020.

[41] Y. Lin, S. Han, H. Mao, Y. Wang, and B. Dally, “Deep gradient compres-
sion: Reducing the communication bandwidth for distributed training,” in
Proc. Int. Conf. Learn. Representations, 2018. [Online]. Available: https:
//openreview.net/forum?id=SkhQHMW0W

[42] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor
fusion based on average consensus,” in Proc. 4th Int. Symp. Inf. Process.
Sensor Netw., 2005, pp. 63–70.

[43] R. Carli, F. Fagnani, P. Frasca, T. Taylor, and S. Zampieri, “Average
consensus on networks with transmission noise or quantization,” in Proc.
Eur. Control Conf., 2007, pp. 1852–1857.

[44] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “Distributed
subgradient methods and quantization effects,” in Proc. 47th IEEE Conf.
Decis. Control, 2008, pp. 4177–4184.

[45] T. C. Aysal, M. J. Coates, and M. G. Rabbat, “Distributed average con-
sensus with dithered quantization,” IEEE Trans. Signal Process., vol. 56,
no. 10, pp. 4905–4918, Oct. 2008.

[46] R. Carli, F. Fagnani, P. Frasca, and S. Zampieri, “Gossip consensus
algorithms via quantized communication,” Automatica, vol. 46, no. 1,
pp. 70–80, 2010.

[47] D. Yuan, S. Xu, H. Zhao, and L. Rong, “Distributed dual averaging
method for multi-agent optimization with quantized communication,” Syst.
Control Lett., vol. 61, no. 11, pp. 1053–1061, 2012.

[48] A. Reisizadeh, A. Mokhtari, H. Hassani, and R. Pedarsani, “An exact
quantized decentralized gradient descent algorithm,” IEEE Trans. Signal
Process., vol. 67, no. 19, pp. 4934–4947, Oct. 2019.

[49] R. Carli, F. Bullo, and S. Zampieri, “Quantized average consensus via
dynamic coding/decoding schemes,” Int. J. Robust Nonlinear Control:
IFAC-Affiliated J., vol. 20, no. 2, pp. 156–175, 2010.

[50] T. T. Doan, S. T. Maguluri, and J. Romberg, “Fast convergence rates of
distributed subgradient methods with adaptive quantization,” IEEE Trans.
Autom. Control, vol. 66, no. 5, pp. 2191–2205, 2020.

[51] A. S. Berahas, C. Iakovidou, and E. Wei, “Nested distributed gradient
methods with adaptive quantized communication,” in Proc. IEEE 58th
Conf. Decis. Control, 2019, pp. 1519–1525.

[52] Z. Li, D. Kovalev, X. Qian, and P. Richtárik, “Acceleration for compressed
gradient descent in distributed and federated optimization,” in Proc. Int.
Conf. Mach. Learn., 2020, pp. 5895–5904.

[53] X. Liu, Y. Li, R. Wang, J. Tang, and M. Yan, “Linear convergent decen-
tralized optimization with compression,” in Proc. Int. Conf. Learn. Rep-
resentations, 2021. [Online]. Available: https://openreview.net/forum?id=
84gjULz1t5

[54] A. Koloskova, S. Stich, and M. Jaggi, “Decentralized stochastic optimiza-
tion and gossip algorithms with compressed communication,” in Proc. Int.
Conf. Mach. Learn., 2019, pp. 3478–3487.

[55] A. Koloskova, T. Lin, S. U. Stich, and M. Jaggi, “Decentralized deep
learning with arbitrary communication compression,” in Proc. Int. Conf.
Learn. Representations, 2020. [Online]. Available: https://openreview.net/
forum?id=SkgGCkrKvH

[56] H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu, “Communication
compression for decentralized training,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 7663–7673.

[57] H. Tang et al., “Deepsqueeze: Decentralization meets error-compensated
compression,” 2019, arXiv:1907.07346.

[58] Y. Kajiyama, N. Hayashi, and S. Takai, “Linear convergence of consensus-
based quantized optimization for smooth and strongly convex cost func-
tions,” IEEE Trans. Autom. Control, vol. 66, no. 3, pp. 1254–1261,
Mar. 2020.

[59] Z. Li, Y. Liao, K. Huang, and S. Pu, “Compressed gradient track-
ing for decentralized optimization with linear convergence,” 2021,
arXiv:2103.13748.

[60] Y. Xiong, L. Wu, K. You, and L. Xie, “Quantized distributed gradient
tracking algorithm with linear convergence in directed networks,” 2021,
arXiv:2104.03649.

[61] J. Zhang, K. You, and L. Xie, “Innovation compression for communication-
efficient distributed optimization with linear convergence,” 2021,
arXiv:2105.06697.

[62] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, “Broadcast
gossip algorithms for consensus,” IEEE Trans. Signal Process., vol. 57,
no. 7, pp. 2748–2761, Jul. 2009.

[63] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2508–2530,
Jun. 2006.

[64] S. Pu and A. Nedić, “Distributed stochastic gradient tracking methods,”
Math. Program., vol. 187, no. 1, pp. 409–457, 2021.

[65] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 2012.

[66] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical
Sciences. Philadelphia, PA, USA: SIAM, 1994.

[67] K. Mansouri, T. Ringsted, D. Ballabio, R. Todeschini, and V. Consonni,
“Quantitative structure-activity relationship models for ready biodegrad-
ability of chemicals,” J. Chem. Inf. Model., vol. 53, no. 4, pp. 867–878,
2013.

Zhuoqing Song received the B.S. degree in math-
ematics and applied mathematics in 2019 from Fu-
dan University, Shanghai, China, where he is cur-
rently working toward the Ph.D. degree in applied
mathematics. His research interests include decen-
tralized optimization, graph algorithms, and machine
learning.

Lei Shi received the Ph.D. degree in mathematics
from the City University of Hong Kong, Hong Kong,
in 2010. He is currently a Professor with the School
of Mathematical Sciences, Fudan University, Shang-
hai, China. His research interests include learning
theory, approximation theory and optimization. He
was jointly awarded by University of Science and
Technology of China in 2010.

Shi Pu received the B.S. degree from Peking Univer-
sity, Beijing, China, in 2012, and the Ph.D. degree in
systems engineering from the University of Virginia,
Charlottesville, VA, USA, in 2016. He is currently an
Assistant Professor with the School of Data Science,
The Chinese University of Hong Kong, Shenzhen,
China. He is also affiliated with Shenzhen Research
Institute of Big Data. He was a Postdoctoral Asso-
ciate with the University of Florida, Gainesville, FL,
USA, Arizona State University, Tempe, AZ, USA,
and Boston University, Boston, MA, USA, from 2016

to 2019. His research interests include distributed optimization, network science,
machine learning, and game theory.

Ming Yan received the B.S. and M.S. degrees from
the University of Science and Technology of China,
Hefei, China, and the Ph.D. degree from the Univer-
sity of California, Los Angeles, Los Angeles, CA,
USA, in 2012. He is currently an Associate Professor
with the Department of Computational Mathemat-
ics, Science and Engineering and the Department
of Mathematics, Michigan State University, East
Lansing, MI, USA. His research interests include op-
timization methods and their applications in sparse re-
covery and regularized inverse problems, variational

methods for image processing, and parallel and distributed algorithms for solving
big data problems.

https://openreview.net/forum{?}id$=$SkhQHMW0W
https://openreview.net/forum{?}id$=$SkhQHMW0W
https://openreview.net/forum{?}id$=$84gjULz1t5
https://openreview.net/forum{?}id$=$84gjULz1t5
https://openreview.net/forum{?}id$=$SkgGCkrKvH
https://openreview.net/forum{?}id$=$SkgGCkrKvH

