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Physics-informed recurrent neural network for
time dynamics in optical resonances

Yingheng Tang'?, Jichao Fan', Xinwei Li3, Jianzhu Ma®4%, Minghao Qi?, Cunxi Yu®'™ and Weilu Gao®'

Resonance structures and features are ubiquitous in optical science. However, capturing their time dynamics in real-world sce-
narios suffers from long data acquisition time and low analysis accuracy due to slow convergence and limited time windows.
We report a physics-informed recurrent neural network to forecast the time-domain response of optical resonances and infer
corresponding resonance frequencies by acquiring a fraction of the sequence as input. The model is trained in a two-step multi-
fidelity framework for high-accuracy forecast, using first a large amount of low-fidelity physical-model-generated synthetic
data and then a small set of high-fidelity application-specific data. Through simulations and experiments, we demonstrate
that the model is applicable to a wide range of resonances, including dielectric metasurfaces, graphene plasmonics and ultra-
strongly coupled Landau polaritons, where our model captures small signal features and learns physical quantities. The dem-
onstrated machine-learning algorithm can help to accelerate the exploration of physical phenomena and device design under

resonance-enhanced light-matter interaction.

tific research and commercial decision-making such as climate

modelling', medical science” and finance’. Classical parametric
models such as the autoregressive integrated moving average* enjoy
merits of model simplicity and easy solutions but suffer from large
prediction errors when using strongly nonlinear and stochastic
data. Machine-leaning approaches provide the opportunity to
learn time dynamics and the underlying complex representation in
a data-driven manner without fixed parameters or structures’. In
particular, given the success of recurrent neural networks (RNNs)
in natural language processing and the logical interpretation of
time series as sequences, various RNN architectures, such as long
short-term memory and the gated recurrent unit (GRU), have been
employed for time-series forecast applications®™. However, the
problems of overfitting and local minima often lead to low model
efficacy’. Moreover, these models are limited to forecasting short
sequences, while high-accuracy long-sequence forecasting is more
desirable'. In addition, conventional machine-learning approaches
generally require a substantial amount of training data'""?, which
is infeasible in many practical contexts, and they are also unable to
extract interpretable knowledge from the dataset'”. The fusion of
machine-learning algorithms with empirical models thus emerges
as an efficient learning philosophy to address these limitations'*",
especially physics-informed machine-learning methods in physical

. V. . . . .
al | orecasting time dynamics is central in many contexts of scien-

science'®",

Optical‘cavities with resonance-enhanced light-matter inter-
actions enable broad innovations including optical quantum
technologies'***. One specific example showing the importance
of capturing and understanding time dynamics is terahertz time-
domain spectroscopy (THz-TDS) of THz resonances, which is
stimulating ongoing interest in diverse disciplines such as health?,
sensing and imaging®”, security”, computing**’ and communica-
tion’, in addition to quantum applications*>*. In contrast to con-
tinuous-wave spectroscopy, which only captures intensity spectra,

the uniqueness of THz-TDS includes the simultaneous acquisition
of intensity and phase information, broad spectral coverage and
time-resolved capability**~*°. However, the time-domain signals of
resonance features decay slowly, and long data acquisition times are
needed for accurate analysis in numerical simulations and experi-
mental measurements. Fast captured short time-domain signals
contain an incorrect corresponding frequency-domain representa-
tion, which prevents conventional harmonic analysis. Thus, there is
a trade-off between the data acquisition time and the analysis accu-
racy. Moreover, the time window of experimental THz-TDS is lim-
ited to prevent undesired effects such as multiple reflections, which
introduces an additional constraint on accurate data analysis™.
Here, we describe a high-performance model of physics-
informed cascaded GRU networks to forecast long time-domain
signals using short input signals obtained from finite-difference
time-domain (FDTD) simulations and THz-TDS experiments. This
model breaks the trade-off between the data acquisition time and
the analysis accuracy by using fast captured short input sequences
and highly accurately predicted long output sequences. Instead of
directly training the model using a substantial amount of high-
fidelity data obtained from time-consuming electromagnetic calcu-
lations or experiments, we employ a two-step multi-fidelity training
approach. A large number of low-fidelity free induction decay
(FID)-model-generated synthetic data is first used to pre-train
the model, which reduces the search space of the network param-
eters for fast and efficient learning, alleviates the problem of local
minima for high-accuracy forecast and generalizes the applicability
of the model. Through transfer learning using a small set (at least
one order of magnitude smaller than that of the low-fidelity data)
of high-fidelity application-specific data, the pre-trained model is
tailored to a broad range of resonance features, including resonant
dielectric metasurfaces”, graphene plasmonics®™ and ultra-strongly
coupled electron cyclotron resonance in a Landau-quantized high-
mobility two-dimensional electron gas (2DEG) with photons in a
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Fig. 1| Cascaded GRU networks and two-step multi-fidelity training approach. a, Forecast of an L-long time-domain signal with a k-long time-domain
B4 signal using cascaded GRU networks. ':I'he output sequence of the GRU network at each stage is combined with the input sequence to serve as the input
for the next-stage GRU. In the experiment, a branch GRU network is connected to a GRU encoder in the middle stage of the cascaded GRU networks
that are for time-series forecast. b, The slow and suboptimal conventional training approach (orange path) and our fast, broadly applicable and optimal

two-step multi-fidelity training approach (blue path).

high-quality-factor cavity”’. The cascaded GRU networks enable
precise long-sequence forecasting, and for dielectric metasurfaces
the input sequence is 12.5% of the full sequence, suggesting an
eight-fold speed-up of data acquisition. Furthermore, this model
accurately captures signal features that account for only 0.01% of
the total signal energy in experimental data of Landau polaritons
and simultaneously learns resonance frequencies in spectra. The
polariton dispersions obtained from experimentally measured and
forecast time-domain signals, as well as model-learned quantities,
all agree well. The values obtained for the coupling rates and coop-
erativity from the forecast spectra (147.9 GHz and 3,663) and the
model inference (145.6 GHz and 3,550) match well with the experi-
mental values (150.1 GHz and 3,513)*. The variations of the pre-
dicted coupling rates from those obtained from the forecast spectra
and model inference are 1.5% and 3%. For cooperativity, these two
values are 4% and 1%.

Results

Cascaded GRU networks and multi-fidelity training. Figure la
illustrates the model of cascaded GRU networks taking short input
sequences (length k) and forecastinglong outputsequences (length L).
An input sequence is used in the first GRU network and then
combined with the forecast output sequence for the input to the
next-stage network. The GRU network at each stage has the same
sequence length for both the input and the predicted output. In the
case where L/k=2" (where M is a non-negative integer), the mini-
mum required number of cascaded stages of the GRU networks

is log,(L/k), corresponding to the recursive bisection of an L-long
sequence. In one middle stage of the cascaded networks, a GRU
decoder is branched out for the simultaneously learning of reso-
nance frequencies associated with time signals (Fig. 1a, dashed gold
rectangle). The hidden states from the GRU encoder and the time-
domain data from the previous-stage GRU network form the input
for both the branch GRU decoder and the forecast GRU generator
that produces the predicted time-domain output of this GRU stage.
The branch GRU decoder suggests that the hidden states obtained
from time-signal-forecast GRU networks are related to interpreta-
ble physical observables, and it is also experimentally beneficial for
accelerated acquisition and understanding of time dynamics.

Figure 1b displays the training process of the cascaded GRU
networks. A conventional training approach (Fig. 1b, orange path)
requires a large training dataset, which generally takes a long time to
generate through FDTD simulations or experiments and frequently
leads to suboptimally trained networks because of issues related
to local minima'®. In contrast, we utilize a physics-informed two-
step multi-fidelity training approach (Fig. 1b, blue path), where the
networks with randomly initialized weights are first pre-trained by
using a large number of low-fidelity synthetic data that are generated
instantaneously from analytical physical models based on domain
expertise. In the transfer learning process, the pre-trained networks
are then fine trained with a small high-fidelity application-specific
dataset obtained from either FDTD simulations or experiments.
The fully trained network is optimal and has superior performance
over the one trained using the conventional approach.
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We first demonstrate our model and training methodology for
predicting time-domain signals in resonant dielectric metasurfaces,
which consist of a periodic array of unit cells with four dielectric
cylindrical pillars of varying diameter (d) (ref. ) (Fig. 2a). We
generate high-fidelity training data by numerically simulating the
electrical field time response of the structures with the diameter in
a range to have THz resonances (see Methods section for details).
In addition to bright photonic modes, the coupling between neigh-
bouring pillars can generate sharp Fano resonances. The bottom
trace in Fig. 2b shows the electric field norm of a representative
time-domain signal on a logarithmic scale. The purple section is
the input short sequence, while the remaining cyan section is the
long sequence to be predicted. Although the standard GRU archi-
tecture has been employed in a variety of time-series forecast appli-
cations”™, they are limited to forecasting short sequences using long
sequences, yet architectural concepts are similar to sequence-to-
sequence (seq2seq) models” that can be extended to long sequence
forecasts. We trained our cascaded GRU networks and a standard
seq2seq model using high-fidelity FDTD simulation training data.
The black dashed line and the blue dashed line with cross mark-
ers in Fig. 2c show the training mean squared error (MSE) loss of
the seq2seq model constructed using the GRU architecture and our
model trained in a conventional manner, respectively (see Methods
section for detailed descriptions of the MSE loss and seq2seq model
and Supplementary Fig. 1b for an illustration of the seq2seq model).
The clear contrasts of the training MSE loss shown in Fig. 2c and the
test loss shown in Supplementary Fig. 1c indicate that the standard
seq2seq model does not perform well.

To improve the forecast accuracy, we employ a multi-fidelity
training framework®. Most physical resonance features and struc-
tures appear as a sum of damped oscillations in time-domain signals
originating from the FID in two-level atomic systems®. They fol-
low the general mathematical form T:A;e” %" sin (w;t), where A, is
the amplitude factor, e~** describes the decay envelope of the har-
monic where ¢, is connected to a lifetime in the dephasing process,
sin(wt) is an oscillating carrier with a resonance frequency of w; cor-
responding to the energy level in a two-level system and i enumer-
ates all the resonance features. We employed this analytical model
to generate 40,000 low-fidelity synthetic data (see Methods section
and Supplementary Fig. 2 for details). Instead of random initializa-
tion, all the GRU networks went through the physics-informed ini-
tialization process, where they were pre-trained and their weights
were informed by the synthetic data generated by the FID model.
The transfer learning of the pre-trained model was achieved by fine-
tuning the model parameters with 4,000 high-fidelity time-domain
data of dielectric metasurfaces obtained through FDTD simulations
(see Methods section for details). We trained the model with input
sequences of various lengths (k) and evaluated its performance (see
Methods section and Supplementary Fig. 3 for details). The ratio
of the full sequence length to the input sequence length, L/k, is
chosen as ~8 for the shortest input sequence with high forecast accu-
racy. How the time-domain signals are segmented, and thus the length
of the GRU network at each stage, has little influence on the model
forecast accuracy (see Methods section and Supplementary Fig. 1c,d).

Figure 2d and the upper traces in Fig. 2b display the part of and
the full predicted time-domain signals with and without the pre-
training process and the target time-domain signal. As also shown
in Fig. 2c and Supplementary Fig. 1c, the cascaded GRU networks
trained using the multi-fidelity approach clearly outperform those
trained using the conventional approach in terms of forecast accu-
racy. Note that there is no overfitting in our model since the training
and test losses show a negligible difference. Unless otherwise stated,
all the time-domain signals and corresponding frequency-domain
spectra are from test datasets and the MSE loss refers to the test
loss (see Methods section for details of the MSE loss and Supple-
mentary Fig. la for a comparison of the training and test losses).
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The better forecast accuracy of the model trained using the multi-
fidelity approach suggests that the physics-informed pre-training
initialization process utilizing synthetic data generated by the FID
model can help with the escape from local minima'®. Furthermore,
we obtained three types of full-length time-domain signals by
combining input sequences with the forecast time-domain signals
obtained using the models trained by the conventional and multi-
fidelity approaches, and directly by zero-padding input sequences.
We then calculated the sample Fourier transformation of the
obtained signals as well as the reference Fourier transformation
of a time-domain signal from a bare silicon substrate without any
structures (Methods). There is no need to forecast the reference
time-domain signal since it was taken only once. Figure 2e displays
the transmittance spectra as the squared norm of the ratio of the
Fourijer transformation of the sample over that of the reference.
Figure 2f displays the corresponding phase spectra as the angle of
this complex-valued ratio. Both the transmittance and phase spectra
calculated from the time-domain signals generated from the model
trained using the multi-fidelity approach show good agreement
with the target spectra calculated based on the data obtained from
FDTD simulations. The spectra calculated from the time-domain
signals generated from the model trained using the conventional
approach show clear deviation, while the resonance feature nearly
disappears in those obtained from zero-padded input sequences.

Model generalization to different optical resonances. Our method
can be generalized to other resonance structures and features. The
similar damped oscillation signature of the time-domain signals in
most resonance features originating from the FID process physically
guarantees the feasibility of such generalization. We demonstrate the
generalization of the approach to two physically distinct resonance
features, viz. active graphene plasmonics®™ and ultra-strongly cou-
pled Landau polaritons®>*, in addition to dielectric metasurfaces.
Specifically, periodically patterned monolayer graphene ribbons
that can support localized THz plasmonic resonance from bounded
carriers are simulated to obtain time-domain signals (Fig. 3a). The
width and Fermi level of the graphene ribbon are selected to obtain
a THz resonance frequency (see Methods section for details). The
model was pre-trained using 8,000 synthetic data and fine-trained
using 800 high-fidelity FDTD simulation data. The input sequence
length is chosen with L/k~4 (Methods and Supplementary Fig. 3).
Both the predicted time-domain signals and the corresponding fre-
quency-domain spectra show agreement with the target time signal
(Fig. 3b) and spectra (Fig. 3c) obtained from FDTD simulations.
The transmission spectra were calculated in the same manner as
used for the dielectric metasurfaces, and the reference time-domain
signal was taken from a bare silicon oxide substrate without gra-
phene structures.

Moreover, an ultra-high-mobility 2DEG inside a high-quality-
factor one-dimensional THz photonic-crystal cavity under a mag-
netic field displayed ultra-narrow Landau polaritons™* (Fig. 3d).
Their spectra were measured experimentally by standard THz-TDS
under high magnetic fields as reported in ref. **, where the refer-
ence time-domain signal was measured from air transmission.
There are 71 spectra in total, under various magnetic fields from
0 to 4.5T. We use 24 spectra to fine-train the pre-trained model
trained using 3,000 synthetic data, and the remaining 47 spectra
as test data. These 24 spectra are from measurements taken under
magnetic fields either uniformly or randomly distributed between
0 and 4.5T. The test loss displays small variance when the training
spectra are shuffled for different magnetic fields (Supplementary
Fig. 4). The length of the input sequence for the 47 test time-domain
signals is chosen with L/k~7 (Methods and Supplementary Fig. 3).
In contrast to simulation data, experimental data contain measure-
ment noise, for example, from lasers and electronic components.
In addition, the number of high-fidelity time-domain data (71) is
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Fig. 2 | Model demonstration for dielectric metasurfaces. a, A dielectric metasurface with a unit cell consisting of four cylindrical pillars of different
dimensions. b, Lower trace: the electric field norm of a representative time-domain signal illustrating the input sequence (purple section) and the
sequence to be predicted (cyan section) on a logarithmic scale. The orange arrow indicates that the lower trace uses the left y axis. Upper traces: the
time-domain signal corresponding to the sequence to be predicted (that is, target) (cyan line), the predicted signal from the model trained through the
conventional approach (black line, without pre-training) and the predicted signal from the model trained using the two-step approach (red line, with
pre-training). The signals are multiplied by 35 and offset vertically for easy visualization. The blue arrow indicates that the upper traces use the right y axis.
¢, The training MSE loss as a function of the training epoch for a seq2seq model constructed using the GRU architecture, our cascaded GRU networks
without pre-training and our cascaded GRU networks with pre-training. d, Predicted time signals using the conventional training approach and the
two-step multi-fidelity approach. Clearly better forecast performance is observed when using the two-step approach. e,f, THz transmission (e) and phase
spectra (f) produced from the Fourier transformation of time-domain signals obtained from zero-padded input signals, predicted signals without
pre-training, predicted signals with pre-training and target time-domain signals from numerical simulations.

much smaller than those used for the graphene plasmonics (1,000)
or dielectric metasurfaces (5,000). Moreover, our Landau polariton
features are located inside the defect mode of the photonic-crystal
cavity stop band, and the signal energy of interest only accounts for
0.01% of the total signal energy (see Supplementary Fig. 5 for a full
spectrum). All these factors make it challenging to forecast using

the conventional direct training approach. However, the two-step
multi-fidelity approach substantially improves the prediction power
and accuracy, thus small but important resonance features can be
captured. Figure 3e,f displays one representative time-domain sig-
nal and the corresponding transmission spectra, both aligning well
with target experimental results.
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Fig. 3 | Model generalization to graphene plasmonics and Landau polaritons. a-c, Graphene plasmonics, showing schematics of graphene ribbons
supporting localized plasmonic resonance (a) and time-domain (b) and corresponding frequency-domain response (¢) for the predicted time signal and
the full target time signal. d-f, Landau polaritons from strongly coupled photons in a one-dimensional photonic-crystal cavity with electron cyclotron
resonance in a high-mobility two-dimensional electron gas (d), showing the time-domain (e) and corresponding frequency-domain response (f) under a
specific magnetic field for the predicted time signal and the full target time signal.

For Landau polariton experiments, a branch GRU network is
added to a middle stage of the cascaded GRU networks used for
time-series forecast to infer the resonance frequencies associated
with the time-domain signals (Fig. 1a). The cascaded GRU networks
were first trained for time-series forecast, then the branch GRU net-
work was trained with the hidden states and intermediate sequences
from time-series-forecast GRU networks as the input (see Methods
section for details). After training, the short time signals from the
test data are input into the full model, simultaneously generating
both the forecast time-domain signals and the corresponding reso-
nance frequencies.

Model analysis in Landau polariton experiments. Figure 4a,b
displays all 47 experimental spectra and the spectra obtained by

Fourier transformation of the corresponding predicted time-domain

NATURE COMPUTATIONAL SCIENCE | www.nature.com/natcomputsci

signals. All the essential physical features expected in linearly
polarized transmission spectra are well reproduced, including
cyclotron-resonance-active lower polaritons (CRA-LPs), CRA
upper polaritons (CRA-UPs) and CR-inactive (CRI) modes™ (see
Supplementary Figs. 6 and 7 for more data). In stark contrast, the
spectra obtained directly from short input sequences with zero pad-
dings (Fig. 4c) display completely random patterns with all features
lost. The distinct difference seen among Fig. 4a—c highlights the
necessity for long data acquisition to capture essential THz features
if no prediction is employed, as well as the high prediction power
and accuracy of our cascaded GRU networks and the two-step
multi-fidelity training approach.

Furthermore, yellow stars in Fig. 4d, orange circles in Fig. 4¢ and
gold triangles in Fig. 4f show peak positions extracted from experi-
mentally measured spectra obtained as the Fourier transformation
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Fig. 4 | Experimental verification of the GRU model in Landau polaritons. a-c, Linearly polarized THz transmittance spectra under various magnetic
fields obtained by Fourier transformation of experimentally acquired time-domain signals (a), predicted time-domain signals combined with much shorter
input experimental time-domain signals (b) and short input experimental time-domain signals with zero padding (c). The spectra are offset vertically for
easy visualization. d-f, Simulated transmittance colour contour maps obtained using the transfer matrix method to fit the experimental spectra shown

in a (d), the model-learned resonance frequencies (e) and the predicted spectra shown in b (f). The colour bar is the same and shown in d, representing
the transmittance. Yellow stars in d, orange circles in e and gold triangles in f mark the peak positions extracted from experimental spectra, learned from
the branch GRU network and extracted from predicted spectra. The extracted coupling rates g are 150.1, 145.6 and 147.9 GHz, respectively. g-i, Lorentzian

fits (dashed red line) of the predicted spectra for the UP peak at zero detuning (1T) (g), the LP peak at zero detuning (h) and the CRI mode at 3T (i). The
obtained full-width at half-maximum values are indicated by green arrows.
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of time-domain signals, the model-learned resonance frequencies
and the peaks extracted from the predicted spectra, respectively.
We utilized the transfer matrix method (see Methods section and
ref. * for details) to calculate the transmission spectra for samples
under various magnetic fields, through which the coupling ratio g
can be extracted. Figure 4d-f also displays the transmittance colour
contour map calculated to match the extracted and learned peaks.
Note that the CRA-UP branch is not clearly predicted (Fig. 4b), so
the corresponding peaks are missing from Fig. 4f. These missing
features again reflect the challenging aspects of predicting small sig-
nals in experimental Landau polariton spectra. Despite such miss-
ing peaks, unique fitting is still possible for the CRA-LP and CRI
branches. In contrast, the branch GRU decoder successfully captures
all the resonance frequencies. The coupling ratio extracted from the
experimental spectra, the branch GRU decoder that generates the
resonance frequencies and the predicted spectra is 150.1, 145.6 and
147.9 GHz, respectively. This agreement confirms not only the pre-
cise forecast of the cascaded GRU networks but also that the gener-
ated hidden states are related to interpretable physical observables,
which are resonance frequencies. Moreover, the visualization of
the hidden states (see Methods section and Supplementary Fig. 8a
for details) features a clustering of the time-domain data in the test
dataset under different magnetic fields into three categories: one for
the data in the range from 0 to 1.5T, one for the data in the range
from 1.6 to 2.6 T and the rest for high fields from 2.7 to 4.5T. As
discussed in ref. ** and shown in Supplementary Fig. 8b, when the
magnetic field increases to 1.5 T, the CRA mode starts to move into
the transmission band of the photonic-crystal cavity, and the CRA
mode starts to move out of the transmission band to the second
stop band of the photonic-crystal cavity when the magnetic field
increases to 2.6 T. The interaction of the strongly absorptive CRA
mode with the large signals in the transmission band can lead to
the substantial change of the time-domain signals. The clear clus-
tering of the hidden states is fully consistent with the interaction of
the CRA mode with the transmission band, and their connection
with interpretable physical observables suggests that our cascaded
GRU networks successfully capture the damped oscillatory nature
of time-domain signals in optical resonances.

With the obtained predicted dispersion, the specific magnetic
fields corresponding to the conditions at zero detuning and far
away from zero detuning can be determined. As shown in Fig. 4g-i,
we predicted the spectra of the CRI mode at 3T and the CRA-UP
and CRA-LP peaks at zero detuning by using the final stage of the
trained GRU networks and the corresponding input sequences.
The spectral line width determined from the Lorentzian fitting is
4.6, 5.2 and 5.2 GHz, respectively. Thus, the values obtained for the
cooperativity from the forecast spectra (3,663) and from model
inference (3,550) are close to the reported experimental value
(3,513) (ref. **), with variation of 4% and 1%, respectively. The long-
sequence forecast capability of our cascaded GRU networks with
short input sequences to accelerate experimental data acquisition
can be impacted by additional experimental noise and the change
of the time-domain sampling rate. We artificially added white noise
to the original experimental time-domain signals and evaluated
the prediction performance. When the signal-to-noise (SNR) ratio
drops below ~40% of the SNR of the current experimental data, the
prediction performance of our model starts to degrade substantially
(see Methods section and Supplementary Fig. 9 for mode details).
From the perspective of experimentalists, it is helpful to average
more measurement results to reduce random noise when employ-
ing our model. Furthermore, the increase of the time sampling rate
gradually increases the prediction loss, possibly due to the increas-
ing number of data points. Thus, it seems beneficial to choose a
time sampling rate close to the Nyquist rate. However, this choice is
more dependent on the purpose of the experiments (see Methods
section and Supplementary Fig. 10 for more details).
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Discussion

In comparison with the demonstrations of the resonant dielectric
metasurfaces and active graphene plasmonics based on numerical
FDTD simulations, the forecast performance of our cascaded GRU
networks in experimental data of Landau polaritons is less optimal.
This is largely due to the measurement noise associated with signals,
the small energy of the signals of interest and the small number of
high-fidelity training data. Future improvements could be achieved
by introducing more advanced RNN models such as transformers,
and more diverse input features such as experiment parameters and
cavity structures in addition to time sequences. The high-fidelity
training dataset could be augmented through generative networks
such as generative adversarial networks*>** and variational auto-
encoders” for better performance. Furthermore, an additional
frequency-domain term in the frequency range of interest could be
added to the loss function to better capture small signals. The appli-
cability of cascaded GRU networks could also be extended to infer
more physical observables and equations and to the discovery of
new phenomena in complex systems through analogies with more
accessible optical systems* and the exploration of device function-
alities under resonant light-matter interaction.

Methods

High-fidelity training data generation. FDTD time-domain simulations were
performed using commercial Ansys Lumerical software and applied to generate the
high-fidelity training data for the dielectric metasurface and graphene plasmonics
examples. For the dielectric metasurfaces, we use four silicon cylindrical pillars

as the base structure with periodic boundary conditions. The time-domain data

of the electric field along one polarization were obtained by simulating structures
with randomly selected radii for the four cylindrical pillars. The radius ranged
from 39.5 to 44.5 pm in steps of 0.25 pm. The pillar height was set as 30 um. We
generated a total number of 5,000 samples, using 4,000 of them as the training set
and the remaining 1,000 as the test set. The reference was simulated once, being
the time-domain signal of a bare silicon substrate without any structures on top.
For the graphene plasmonics, the graphene monolayer is modelled as a two-
dimensional (2D) rectangular conducting sheet from the Ansys Lumerical material
library, including both inter- and intraband contributions. The Fermi level and
scattering rate are two parameters used to calculate the dielectric constants used
by the software. The dataset was generated by randomly sweeping the width and
Fermi level of the graphene ribbon. The width ranged between 3.8 and 13.8 pm

in steps of 0.2 pm. The Fermi level ranged from 0.18 to 0.41 eV in steps of 0.01 eV.
The scattering rate was set as 0.00099 eV. We generated a total number of 1,000
samples, using 800 of them as the training set and the remaining 200 as the test set.
The reference was taken once, being the time-domain signal of a bare silicon oxide
substrate without graphene structures. In both examples, the structural parameters
of the cylindrical pillars and graphene material properties were chosen such that
the resonance features were located in the THz range (0.1-10 THz). The detailed
physical mechanism governing the resonance frequency can be found in refs. ¥/
and *, respectively.

Loss function. In all the dielectric metasurface, graphene plasmonics and Landau
polaritons examples with all types of models, we use the following MSE loss
function:

MSELoss = > _ (Ei — E})’, (1)

i=1

where E, is the electric field value forecast at the certain time index i and E] is the
target electric field value at the same time index. Both E, and E are real values.
We use the electric field value along only one polarization direction, which is

also consistent with standard THz-TDS measurements. # is the total number of
time steps in the sequences to be predicted. The MSE loss calculated on a training
dataset is called the training MSE loss, while the MSE loss calculated on a test
dataset is called the test MSE loss. Except for Fig. 2¢, which is presented in terms
of the training MSE loss, all the time-domain signals and the corresponding
frequency-domain spectra are within test datasets, and the comparison of
different models and model parameters is made in terms of the test MSE loss.
Supplementary Fig. 1a compares the training loss and the test loss of one network
stage in the cascaded GRU networks trained using the multi-fidelity approach.
The negligible difference between these two losses confirms that our model is not
overfitting’.

Seq2seq model. The standard seq2seq model that we implemented using the GRU
architecture is illustrated in Supplementary Fig. 1b. The encoder block takes the
input sequence and extracts the encoded hidden states. The extracted hidden states
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along with the last input sequence x, are then fed into the decoder block to predict
the next value x,,,. The decoding process can propagate infinitely since it only
requires the previous input value and the previous hidden state. The test MSE loss
is shown in Supplementary Fig. 1c.

Low-fidelity synthetic pre-training data generation. Generally, optical resonance
features follow the mathematical representation of a sum of multiple damped
oscillations because of FID. Thus, we created synthetic data for the pre-training
step in the two-step multi-fidelity training approach using the equation

f(t) = Aje” ' sin(wi t) + Aze” ' sin(wat) + ... + Aje” ' sin(wut).  (2)

For the pre-training data for the dielectric metasurfaces, the number of
sinusoidal signals used was 2. The sweep range for @, and @, was from 0.002 to
0.01 and from 0.05 to 0.2, respectively. The sweep range for w, and w, was from
0.47 to 27 For A, and A,, the ranges were from 1.72 to 3.5 and from 150 to 220,
respectively. The total number of synthetic time-domain signals generated was
40,000. For the pre-training data of graphene plasmonics, we used one sinusoidal
signal. The sweep range for a was from 0.03 to 0.07. The sweep range for w was
from 0.097 to 0.167. A was fixed as 1. The total number of synthetic data generated
was 8,000. For the pre-training data for the Landau polaritons, the number of
sinusoidal signals used was 2. The sweep ranges for a, and a, were from 0.0001
to 0.0002 and from 0.055 to 0.065, respectively. The sweep range for w, and w,
was from 1.87 to 2.2x. The variables A, and A, were set to be 1. The total number
was 3,000. Supplementary Fig. 2 shows two examples of synthetic time signals
generated by using the equation given above for dielectric metasurfaces. When we
pre-train our cascaded GRU networks, pre-training data are divided into segments
(Data pre-processing) to first train the model.

Training of RNNs with GRU. The multi-fidelity training consists of two steps:
pre-training and fine training (transfer learning). During the pre-training stage,
the synthetic data are divided into segments and fed into the model to first tune the
random weights. In the fine-training process, we first use the pre-trained model as
a starting model, which is from the physics-informed initialization process. All the
weights of the pre-trained networks are trainable in the fine-training process, and
the high-fidelity data from FDTD simulations or experimental measurements are
used to further update weights without constraints. The detailed hyperparameters
for both the pre-training and fine-training processes of all the demonstrations are
summarized in Supplementary Tables 1-3.

In the example of Landau polaritons, once the model for the time dynamics
forecast is fully trained, a branch GRU decoder is connected to the trained encoder
of the second GRU to receive the encoded hidden states and the processed time
signal outputs from the previous stage. We trained this branch GRU network with
resonance frequency labels associated with the time-domain signals, while we kept
the weights of the other cascaded GRU networks unchanged and only updated
this branch GRU decoder. The decoder is a GRU network with four hidden layers,
similar to the decoders used in the time-domain signal forecasting networks. This
branch GRU network was trained using the Adam optimizer with a learning rate of
5% 107 The total number of epochs for the training was 300, with a batch size of 1.
The learning rate decayed every 100 epochs with a decay rate of 0.2.

Data pre-processing. In the example of dielectric metasurfaces, the full time
sequence with a total of 1,600 data points was divided into six segments: [0,200]
(input), [200,400], [400,600], [600,800], [800,1200] and [1200, 1600]. We also
tried another segmentation method that divided the signal into four segments:
[0,200] (input), [200,400], [400,800] and [800, 1600]. These two segmentation
approaches are shown in Supplementary Fig. 1d. The test MSE loss was calculated
for both segmentation approaches (Supplementary Fig. 1c). The MSE loss for the
test data was 0.0135 and 0.0169 for the first and second segmentation method,
respectively. This suggests that the model performance shows little dependence on
the signal segmentation approach. We also evaluated the model prediction perfor-
mance as a function of the input sequence length for all the demonstrations, so that
we can select the shortest input length while maintaining high prediction accu-
racy (that is, low MSE loss). The results are summarized in Supplementary Fig. 3.
Furthermore, since the electric field values obtained from the FDTD simulations
and experiments are small, a simple scaling of the signals is performed before
training. In other words, the original signals are multiplied by a scaling factor. For
the example of the dielectric metasurfaces, the simulated time-domain signals
were pre-processed by multiplying by a scaling factor of 1,000. For the graphene
plasmonics, the full time sequence with a total of 600 data points was divided into
three segments: [0, 150] (input), [150,300] and [300,600]. The scaling factor used
in this example was 100. For the Landau polaritons, the full time sequence with a
total of 950 data points was divided into four segments: [0, 125] (input), [125,250],
[250,500] and [500,950]. The scaling factor was 1 x 10°.

Transfer matrix method. We used the same transfer matrix method as described
in ref. ** to fit the experimental and predicted spectra. Since our one-dimensional
(1D) photonic-crystal cavity integrated with the multiple quantum well (QW)
structure had translational symmetry within the x-y plane of the sample

(where z is along the Bragg mirror stacking direction, that is, the multiple QW

growth direction), we were able to use the transfer matrix method to reproduce
experimental transmission spectra. For an electromagnetic wave normally incident
onto an isotropic multilayer structure, the complex transmission coefficient ¢ and

reflection coefficient r satisfy
t 1
=Q . (3)
0 r

Here, Qis the 2 X 2 transfer matrix calculated from cascading multiplications of the
matrices of the different layers

Q= Mnn—1-Pyv_1(dy — 1) - MN_1,N—2.. M2 - P1(dr) - My, (4)

where M and P represent an interface matrix and a propagation matrix,
respectively, d is the layer thickness and the subscripts are layer indexes that range
from 0 to N. t and r can be calculated as t=Q,, — (Q,,Q,,/Q,,) and r=—Q,,/Q,,, and
the power transmittance and reflectance are T=|t|> and R = |r]?, respectively.

Material parameters enter equation (4) through the refractive index of the Nth
layer ny in the M and P matrices:

1 14+ ny_1/ny 1 — ny—_1/nyn
MyN—1 = > > (5)
2 1 —nn_1/nNy 1 + ny—_1/nn

einN R dy 0

Py = o . (6)
0 e_m“’TdN

We used ng= 3.4 for silicon and n,=1 for the vacuum spacings. For the
2DEG layer, we first calculated the direct-current surface conductivity from the
expression op, = ney, where  is the total surface electron density and u =ez/m* is
the electron mobility. The elements of the Drude conductivity tensor of the 2DEG
in a perpendicular magnetic field are given by

opc(l — iwr) ODCW:T @
Oxx = T 3 3 Oxy = T .
T (1 —iw0)? + (wer)2 Y (1 — iw7)? + (wet)?

In the circular polarization basis, the conductivity eigenvalues for the CR-active
and CR-inactive polarization modes, respectively, are expressed as

oDC
1—i(ow — o)t

oDC
1—i(w+ o)t
(8)

OCRA = Oxx + 10y = OCRI = Oxx — 10y =

The bulk dielectric permittivity and refractive index of the 2DEG layer for the CRA
and CRI polarization modes are then calculated as

£CRA = &bg + i0crRA/(€00dqw), €cr1 = €bg + iocr1/(€0wdqw)- 9)

nera = (ecra)™ nert = (ecr)"?, (10)
where we chose the background dielectric permittivity e,,=3.6” to be the same as
that of GaAs, and d, is the total thickness of the multiple QW membrane.

The above material parameters, combined with experimental cavity structure
parameters such as the layer thicknesses and separations, allowed us to calculate
transmission spectra as a function of the magnetic field. We can then extract the
coupling rate g by following the supplementary information of ref. **.

Visualization of hidden states in cascaded GRU networks. We utilized
t-distributed stochastic neighbour embedding to visualize the hidden states

in the middle stage of a GRU network, here reducing the hidden states from

200 to 2 dimensions. The perplexity was set as 5, and the learning rate as 100.
Supplementary Fig. 8a clearly highlights three types of time-domain data in the test
dataset: the data in the range of 0-1.5T, the data in the range of 1.6-2.6 T and the
data in the range of 2.7-4.5T. As shown in Supplementary Fig. 8b adapted from
ref. #, when the magnetic field increases to around 1.5 T, the CRA mode starts
to move out of the stop band (black area) into the transmission band (yellow
white area). When the magnetic field further increases to around 2.6 T, the CRA
mode starts to move out of the transmission band of the 1D photonic-crystal
cavity (yellow white area) into the second stop band (black area). The signal is
strong in the transmission band, so that the strongly absorptive CRA feature in
the transmission band would lead to a substantial influence on the time-domain
signals. The clustering of the hidden states in the GRU networks, which is fully
consistent with the interaction of the CRA mode with the transmission band,
strongly suggests that our GRU networks can learn the features of time-domain
signals following the strong-coupling physics in Landau polaritons. In addition,
the connection of hidden states with physical observables (that is, resonance
frequencies) further suggests that the GRU networks learn about the nature of
oscillating time-domain signals.
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Signal noise in Landau polaritons. A white noise was intentionally added on top
of the original time-domain signal as d(t) = a(t) + n(t), where n(t) is the noise
signal, modelled based on the original signal a(t) as n(t) =A x N(0, std(a(?))).
Here, std(a(t)) stands for the standard deviation of the original signal and N(0, 5)
is a normal distribution with mean of zero and standard deviation of 6. A is the
noise strength and was swept from 0 to 0.2. The transmission spectra calculated
from the corresponding time-domain signals for various values of A are shown in
Supplementary Fig. 9a. To better connect with experimental settings, we define a
SNR ratio calculated from the spectra of Landau polaritons. Specifically, as shown
in Supplementary Fig. 9a, the spectra under magnetic fields between 2.5 and 3.0 T
in the range from 0.41 to 0.55 THz (shaded area) were selected to evaluate the
SNR. Within this frequency range, there is only the CRI peak and the signal above
0.45 THz should be zero if there is no noise. Thus, we define the peak intensity as
the signal strength and the average intensity from 0.45 to 0.55 THz as the noise
strength. The SNR is defined as the ratio of the defined signal strength over the
defined noise strength, and we take the average SNR for all the spectra between 2.5
and 3.0 T. We first calculated the signal strength for the case with A=0, then use
the same signal strength for all other values of A. The noise strength is evaluated
for each value of A. For the dispersion with different values of A shown in
Supplementary Fig. 9a, A=0 corresponds to an SNR of 60.45, A =0.05 corresponds
to an SNR of 22.49, A=0.1 corresponds to an SNR of 6.86 and A =0.2 corresponds
to an SNR of 1.85.

We used the test MSE loss to quantify the influence of the added noise on the
model performance. Here, we explored two methods. The first method was to train
the model using signals without noise and do the prediction with the input sequence
with noise (that is, to train with a(t) but infer with a(t)). This corresponds to the red
dots in Supplementary Fig. 9b. The second method is to train the model using the
signals with additional artificial noise (n(¢) term) and do the prediction (that is, to
both train and infer with d(t)). This corresponds to the blue dots in Supplementary
Fig. 9b. In both cases, when the strength of the added noise was A >0.05 (SNR
<22.49), we observed that the MSE loss became noticeably increasing and the spectra
became noticeably noisy, as is clear from Supplementary Fig. 9a. In an experimental
setting, A =0 corresponds to a SNR in a specific standard THz-TDS setup. If the SNR
drops below ~40% of the value under normal operation, the prediction performance
of the cascaded GRU models could start to degrade substantially.

Signal sampling rate in Landau polaritons. The sampling rate of the experimental
measurement of Landau polaritons is already at the Nyquist rate. The total THz
bandwidth is 2.5 THz (Supplementary Fig. 5a), and the time sampling rate is 0.2 ps.
From the experimental perspective, further downsampling below the Nyquist rate
is generally already avoided by experimentalists to prevent aliasing. However, time-
domain signals can be further downsampled by picking data points every n points,
where 7 is an integer referred to as the downsampling factor. These signals are

also upsampled by linearly interpolating m points between neighbouring points.
We both trained and tested cascaded GRU networks with these re-sampled data.
For downsampling, we swept # from 2 to 20. For upsampling, we chose m=1,

thus the length of the sequence doubles (that is, the downsampling factor is 0.5).

A few downsampled time-domain signals are shown in Supplementary Fig. 10a.
Supplementary Figure 10b summarizes the test MSE loss for various downsampling
factors. When # lies in the range of 2—10, the MSE loss is reduced compared

with the original sequence (n=1). This could be because of the reduction of the
total amount of data, which could be beneficial for the training process.

A further increase of # (to 20) leads to a situation in which the damped oscillatory
nature of the signals cannot be accurately captured and the MSE loss increases
substantially. On the other hand, for upsampled signals (n=0.5), the MSE loss
increases as well. This can be attributed to the increasing difficulty of training the
model with a growing number of parameters. From this analysis and experimental
considerations, a sampling rate close to the Nyquist rate is desirable for both
experiments and the prediction performance of the cascaded models.

Data availability

The source data of all figures in both main text and Supplementary Information
are available at https://github.com/GaoUtahLab/Cascaded_GRU_Networks. The
Zenodo version is available at ref. *. Source data for Figs. 2-4 is available with this
manuscript.

Code availability

The code for the models in all three demonstrations of optical resonances and that
support the plots within this paper and other findings of this study is available at
https://github.com/GaoUtahLab/Cascaded_GRU_Networks. The Zenodo version
is available at ref. .
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