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Forecasting.

m
 time dynamics is central in many contexts of scien-

tific research and commercial decision-making such as climate 
modelling1, medical science2 and finance3. Classical parametric 

models such as the autoregressive integrated moving average4 enjoy 
merits of model simplicity and easy solutions but suffer from large 
prediction errors when using strongly nonlinear and stochastic  
data. Machine-leaning approaches provide the opportunity to 
learn time dynamics and the underlying complex representation in 
a data-driven manner without fixed parameters or structures5. In 
particular, given the success of recurrent neural networks (RNNs) 
in natural language processing and the logical interpretation of 
time series as sequences, various RNN architectures, such as long 
short-term memory and the gated recurrent unit (GRU), have been 
employed for time-series forecast applications6–8. However, the 
problems of overfitting and local minima often lead to low model 
efficacy9. Moreover, these models are limited to forecasting short 
sequences, while high-accuracy long-sequence forecasting is more 
desirable10. In addition, conventional machine-learning approaches 
generally require a substantial amount of training data11,12, which 
is infeasible in many practical contexts, and they are also unable to 
extract interpretable knowledge from the dataset13. The fusion of 
machine-learning algorithms with empirical models thus emerges 
as an efficient learning philosophy to address these limitations14,15, 
especially physics-informed machine-learning methods in physical 
science16,17..
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Optical cavities with resonance-enhanced light–matter inter-
actions enable broad innovations including optical quantum 
technologies18–24. One specific example showing the importance 
of capturing and understanding time dynamics is terahertz time-
domain spectroscopy (THz-TDS) of THz resonances, which is 
stimulating ongoing interest in diverse disciplines such as health25, 
sensing and imaging26,27, security28, computing29,30 and communica-
tion31, in addition to quantum applications32,33. In contrast to con-
tinuous-wave spectroscopy, which only captures intensity spectra, 
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the uniqueness of THz-TDS includes the simultaneous acquisition 
of intensity and phase information, broad spectral coverage and 
time-resolved capability34–36. However, the time-domain signals of 
resonance features decay slowly, and long data acquisition times are 
needed for accurate analysis in numerical simulations and experi-
mental measurements. Fast captured short time-domain signals 
contain an incorrect corresponding frequency-domain representa-
tion, which prevents conventional harmonic analysis. Thus, there is 
a trade-off between the data acquisition time and the analysis accu-
racy. Moreover, the time window of experimental THz-TDS is lim-
ited to prevent undesired effects such as multiple reflections, which 
introduces an additional constraint on accurate data analysis36.

Here, we describe a high-performance model of physics-
informed cascaded GRU networks to forecast long time-domain 
signals using short input signals obtained from finite-difference 
time-domain (FDTD) simulations and THz-TDS experiments. This 
model breaks the trade-off between the data acquisition time and 
the analysis accuracy by using fast captured short input sequences 
and highly accurately predicted long output sequences. Instead of 
directly training the model using a substantial amount of high-
fidelity data obtained from time-consuming electromagnetic calcu-
lations or experiments, we employ a two-step multi-fidelity training 
approach. A large number of low-fidelity free induction decay 
(FID)-model-generated synthetic data is first used to pre-train 
the model, which reduces the search space of the network param-
eters for fast and efficient learning, alleviates the problem of local 
minima for high-accuracy forecast and generalizes the applicability 
of the model. Through transfer learning using a small set (at least 
one order of magnitude smaller than that of the low-fidelity data) 
of high-fidelity application-specific data, the pre-trained model is 
tailored to a broad range of resonance features, including resonant 
dielectric metasurfaces37, graphene plasmonics38 and ultra-strongly 
coupled electron cyclotron resonance in a Landau-quantized high-
mobility two-dimensional electron gas (2DEG) with photons in a 
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high-quality-factor cavity33. The cascaded GRU networks enable 
precise long-sequence forecasting, and for dielectric metasurfaces 
the input sequence is 12.5% of the full sequence, suggesting an 
eight-fold speed-up of data acquisition. Furthermore, this model 
accurately captures signal features that account for only 0.01% of 
the total signal energy in experimental data of Landau polaritons 
and simultaneously learns resonance frequencies in spectra. The 
polariton dispersions obtained from experimentally measured and 
forecast time-domain signals, as well as model-learned quantities, 
all agree well. The values obtained for the coupling rates and coop-
erativity from the forecast spectra (147.9 GHz and 3,663) and the 
model inference (145.6 GHz and 3,550) match well with the experi-
mental values (150.1 GHz and 3,513)33. The variations of the pre-
dicted coupling rates from those obtained from the forecast spectra 
and model inference are 1.5% and 3%. For cooperativity, these two 
values are 4% and 1%.

Results
Cascaded GRU networks and multi-fidelity training. Figure  1a 
illustrates the model of cascaded GRU networks taking short input 
sequences (length k) and forecasting long output sequences (length L).  
An input sequence is used in the first GRU network and then 
combined with the forecast output sequence for the input to the 
next-stage network. The GRU network at each stage has the same 
sequence length for both the input and the predicted output. In the 
case where L/k = 2M (where M is a non-negative integer), the mini-
mum required number of cascaded stages of the GRU networks 

is log2(L/k), corresponding to the recursive bisection of an L-long 
sequence. In one middle stage of the cascaded networks, a GRU 
decoder is branched out for the simultaneously learning of reso-
nance frequencies associated with time signals (Fig. 1a, dashed gold 
rectangle). The hidden states from the GRU encoder and the time-
domain data from the previous-stage GRU network form the input 
for both the branch GRU decoder and the forecast GRU generator 
that produces the predicted time-domain output of this GRU stage. 
The branch GRU decoder suggests that the hidden states obtained 
from time-signal-forecast GRU networks are related to interpreta-
ble physical observables, and it is also experimentally beneficial for 
accelerated acquisition and understanding of time dynamics.

Figure  1b displays the training process of the cascaded GRU 
networks. A conventional training approach (Fig. 1b, orange path) 
requires a large training dataset, which generally takes a long time to 
generate through FDTD simulations or experiments and frequently 
leads to suboptimally trained networks because of issues related 
to local minima16. In contrast, we utilize a physics-informed two-
step multi-fidelity training approach (Fig. 1b, blue path), where the 
networks with randomly initialized weights are first pre-trained by 
using a large number of low-fidelity synthetic data that are generated 
instantaneously from analytical physical models based on domain 
expertise. In the transfer learning process, the pre-trained networks 
are then fine trained with a small high-fidelity application-specific 
dataset obtained from either FDTD simulations or experiments. 
The fully trained network is optimal and has superior performance 
over the one trained using the conventional approach.
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Fig. 1 | Cascaded GRU networks and two-step multi-fidelity training approach. a, Forecast of an L-long time-domain signal with a k-long time-domain 
signal using cascaded GRU networks. 

.

m
The output sequence of the GRU network at each stage is combined with the input sequence to serve as the input 

for the next-stage GRU. In the experiment, a branch GRU network is connected to a GRU encoder in the middle stage of the cascaded GRU networks  
that are for time-series forecast. b, The slow and suboptimal conventional training approach (orange path) and our fast, broadly applicable and optimal 
two-step multi-fidelity training approach (blue path).
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We first demonstrate our model and training methodology for 
predicting time-domain signals in resonant dielectric metasurfaces, 
which consist of a periodic array of unit cells with four dielectric 
cylindrical pillars of varying diameter (d) (ref. 37) (Fig.  2a). We 
generate high-fidelity training data by numerically simulating the 
electrical field time response of the structures with the diameter in 
a range to have THz resonances (see Methods section for details). 
In addition to bright photonic modes, the coupling between neigh-
bouring pillars can generate sharp Fano resonances. The bottom 
trace in Fig.  2b shows the electric field norm of a representative 
time-domain signal on a logarithmic scale. The purple section is 
the input short sequence, while the remaining cyan section is the 
long sequence to be predicted. Although the standard GRU archi-
tecture has been employed in a variety of time-series forecast appli-
cations6–8, they are limited to forecasting short sequences using long 
sequences, yet architectural concepts are similar to sequence-to-
sequence (seq2seq) models39 that can be extended to long sequence 
forecasts. We trained our cascaded GRU networks and a standard 
seq2seq model using high-fidelity FDTD simulation training data. 
The black dashed line and the blue dashed line with cross mark-
ers in Fig. 2c show the training mean squared error (MSE) loss of 
the seq2seq model constructed using the GRU architecture and our 
model trained in a conventional manner, respectively (see Methods 
section for detailed descriptions of the MSE loss and seq2seq model 
and Supplementary Fig. 1b for an illustration of the seq2seq model). 
The clear contrasts of the training MSE loss shown in Fig. 2c and the 
test loss shown in Supplementary Fig. 1c indicate that the standard 
seq2seq model does not perform well.

To improve the forecast accuracy, we employ a multi-fidelity 
training framework16. Most physical resonance features and struc-
tures appear as a sum of damped oscillations in time-domain signals 
originating from the FID in two-level atomic systems40. They fol-
low the general mathematical form ɢ

J

"

J

F

−ǿ

J

U

TJO (ȗ
J

U), where Ai is 
the amplitude factor, F−ǿ

J

U describes the decay envelope of the har-
monic where αi is connected to a lifetime in the dephasing process, 
sin(ωit) is an oscillating carrier with a resonance frequency of ωi cor-
responding to the energy level in a two-level system and i enumer-
ates all the resonance features. We employed this analytical model 
to generate 40,000 low-fidelity synthetic data (see Methods section 
and Supplementary Fig. 2 for details). Instead of random initializa-
tion, all the GRU networks went through the physics-informed ini-
tialization process, where they were pre-trained and their weights 
were informed by the synthetic data generated by the FID model. 
The transfer learning of the pre-trained model was achieved by fine-
tuning the model parameters with 4,000 high-fidelity time-domain 
data of dielectric metasurfaces obtained through FDTD simulations 
(see Methods section for details). We trained the model with input 
sequences of various lengths (k) and evaluated its performance (see 
Methods section and Supplementary Fig. 3 for details). The ratio  
of the full sequence length to the input sequence length, L/k, is  
chosen as ~8 for the shortest input sequence with high forecast accu-
racy. How the time-domain signals are segmented, and thus the length 
of the GRU network at each stage, has little influence on the model 
forecast accuracy (see Methods section and Supplementary Fig. 1c,d).

Figure 2d and the upper traces in Fig. 2b display the part of and 
the full predicted time-domain signals with and without the pre-
training process and the target time-domain signal. As also shown 
in Fig. 2c and Supplementary Fig. 1c, the cascaded GRU networks 
trained using the multi-fidelity approach clearly outperform those 
trained using the conventional approach in terms of forecast accu-
racy. Note that there is no overfitting in our model since the training 
and test losses show a negligible difference. Unless otherwise stated, 
all the time-domain signals and corresponding frequency-domain 
spectra are from test datasets and the MSE loss refers to the test  
loss (see Methods section for details of the MSE loss and Supple-
mentary Fig. 1a for a comparison of the training and test losses).  

The better forecast accuracy of the model trained using the multi-
fidelity approach suggests that the physics-informed pre-training 
initialization process utilizing synthetic data generated by the FID 
model can help with the escape from local minima16. Furthermore, 
we obtained three types of full-length time-domain signals by 
combining input sequences with the forecast time-domain signals 
obtained using the models trained by the conventional and multi-
fidelity approaches, and directly by zero-padding input sequences. 
We then calculated the sample Fourier transformation of the 
obtained signals as well as the reference Fourier transformation 
of a time-domain signal from a bare silicon substrate without any 
structures (Methods). There is no need to forecast the reference 
time-domain signal since it was taken only once. Figure 2e displays 
the transmittance spectra as the squared norm of the ratio of the 
Fourier transformation of the sample over that of the reference. 
Figure 2f displays the corresponding phase spectra as the angle of 
this complex-valued ratio. Both the transmittance and phase spectra 
calculated from the time-domain signals generated from the model 
trained using the multi-fidelity approach show good agreement 
with the target spectra calculated based on the data obtained from 
FDTD simulations. The spectra calculated from the time-domain 
signals generated from the model trained using the conventional 
approach show clear deviation, while the resonance feature nearly 
disappears in those obtained from zero-padded input sequences.

Model generalization to different optical resonances. Our method  
can be generalized to other resonance structures and features. The 
similar damped oscillation signature of the time-domain signals in 
most resonance features originating from the FID process physically 
guarantees the feasibility of such generalization. We demonstrate the 
generalization of the approach to two physically distinct resonance 
features, viz. active graphene plasmonics38 and ultra-strongly cou-
pled Landau polaritons32,33, in addition to dielectric metasurfaces. 
Specifically, periodically patterned monolayer graphene ribbons 
that can support localized THz plasmonic resonance from bounded 
carriers are simulated to obtain time-domain signals (Fig. 3a). The 
width and Fermi level of the graphene ribbon are selected to obtain 
a THz resonance frequency (see Methods section for details). The 
model was pre-trained using 8,000 synthetic data and fine-trained 
using 800 high-fidelity FDTD simulation data. The input sequence 
length is chosen with L/k ~ 4 (Methods and Supplementary Fig. 3). 
Both the predicted time-domain signals and the corresponding fre-
quency-domain spectra show agreement with the target time signal 
(Fig.  3b) and spectra (Fig.  3c) obtained from FDTD simulations. 
The transmission spectra were calculated in the same manner as 
used for the dielectric metasurfaces, and the reference time-domain 
signal was taken from a bare silicon oxide substrate without gra-
phene structures.

Moreover, an ultra-high-mobility 2DEG inside a high-quality-
factor one-dimensional THz photonic-crystal cavity under a mag-
netic field displayed ultra-narrow Landau polaritons32,33 (Fig.  3d). 
Their spectra were measured experimentally by standard THz-TDS 
under high magnetic fields as reported in ref. 33, where the refer-
ence time-domain signal was measured from air transmission. 
There are 71 spectra in total, under various magnetic fields from 
0 to 4.5 T. We use 24 spectra to fine-train the pre-trained model 
trained using 3,000 synthetic data, and the remaining 47 spectra 
as test data. These 24 spectra are from measurements taken under 
magnetic fields either uniformly or randomly distributed between 
0 and 4.5 T. The test loss displays small variance when the training 
spectra are shuffled for different magnetic fields (Supplementary 
Fig. 4). The length of the input sequence for the 47 test time-domain 
signals is chosen with L/k ~ 7 (Methods and Supplementary Fig. 3). 
In contrast to simulation data, experimental data contain measure-
ment noise, for example, from lasers and electronic components. 
In addition, the number of high-fidelity time-domain data (71) is 
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much smaller than those used for the graphene plasmonics (1,000) 
or dielectric metasurfaces (5,000). Moreover, our Landau polariton 
features are located inside the defect mode of the photonic-crystal 
cavity stop band, and the signal energy of interest only accounts for 
0.01% of the total signal energy (see Supplementary Fig. 5 for a full 
spectrum). All these factors make it challenging to forecast using 

the conventional direct training approach. However, the two-step 
multi-fidelity approach substantially improves the prediction power 
and accuracy, thus small but important resonance features can be 
captured. Figure 3e,f displays one representative time-domain sig-
nal and the corresponding transmission spectra, both aligning well 
with target experimental results.
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c, The training MSE loss as a function of the training epoch for a seq2seq model constructed using the GRU architecture, our cascaded GRU networks 
without pre-training and our cascaded GRU networks with pre-training. d, Predicted time signals using the conventional training approach and the  
two-step multi-fidelity approach. Clearly better forecast performance is observed when using the two-step approach. e,f, THz transmission (e) and phase  
spectra (f) produced from the Fourier transformation of time-domain signals obtained from zero-padded input signals, predicted signals without  
pre-training, predicted signals with pre-training and target time-domain signals from numerical simulations.
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For Landau polariton experiments, a branch GRU network is 
added to a middle stage of the cascaded GRU networks used for 
time-series forecast to infer the resonance frequencies associated 
with the time-domain signals (Fig. 1a). The cascaded GRU networks 
were first trained for time-series forecast, then the branch GRU net-
work was trained with the hidden states and intermediate sequences 
from time-series-forecast GRU networks as the input (see Methods 
section for details). After training, the short time signals from the 
test data are input into the full model, simultaneously generating 
both the forecast time-domain signals and the corresponding reso-
nance frequencies.

Model analysis in Landau polariton experiments. Figure  4a,b  
displays all 47 experimental spectra and the spectra obtained by 
Fourier transformation of the corresponding predicted time-domain  

signals. All the essential physical features expected in linearly 
polarized transmission spectra are well reproduced, including 
cyclotron-resonance-active lower polaritons (CRA-LPs), CRA 
upper polaritons (CRA-UPs) and CR-inactive (CRI) modes33 (see 
Supplementary Figs. 6 and 7 for more data). In stark contrast, the 
spectra obtained directly from short input sequences with zero pad-
dings (Fig. 4c) display completely random patterns with all features 
lost. The distinct difference seen among Fig.  4a–c highlights the 
necessity for long data acquisition to capture essential THz features 
if no prediction is employed, as well as the high prediction power 
and accuracy of our cascaded GRU networks and the two-step 
multi-fidelity training approach.

Furthermore, yellow stars in Fig. 4d, orange circles in Fig. 4e and 
gold triangles in Fig. 4f show peak positions extracted from experi-
mentally measured spectra obtained as the Fourier transformation 
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Fig. 3 | Model generalization to graphene plasmonics and Landau polaritons. a–c, Graphene plasmonics, showing schematics of graphene ribbons 
supporting localized plasmonic resonance (a) and time-domain (b) and corresponding frequency-domain response (c) for the predicted time signal and 
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Fig. 4 | Experimental verification of the GRU model in Landau polaritons. a–c, Linearly polarized THz transmittance spectra under various magnetic 
fields obtained by Fourier transformation of experimentally acquired time-domain signals (a), predicted time-domain signals combined with much shorter 
input experimental time-domain signals (b) and short input experimental time-domain signals with zero padding (c). The spectra are offset vertically for 
easy visualization. d–f, Simulated transmittance colour contour maps obtained using the transfer matrix method to fit the experimental spectra shown 
in a (d), the model-learned resonance frequencies (e) and the predicted spectra shown in b (f). The colour bar is the same and shown in d, representing 
the transmittance. Yellow stars in d, orange circles in e and gold triangles in f mark the peak positions extracted from experimental spectra, learned from 
the branch GRU network and extracted from predicted spectra. The extracted coupling rates g are 150.1, 145.6 and 147.9!GHz, respectively. g–i, Lorentzian 
fits (dashed red line) of the predicted spectra for the UP peak at zero detuning (1!T) (g), the LP peak at zero detuning (h) and the CRI mode at 3!T (i). The 
obtained full-width at half-maximum values are indicated by green arrows.
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of time-domain signals, the model-learned resonance frequencies 
and the peaks extracted from the predicted spectra, respectively. 
We utilized the transfer matrix method (see Methods section and 
ref. 33 for details) to calculate the transmission spectra for samples 
under various magnetic fields, through which the coupling ratio g 
can be extracted. Figure 4d–f also displays the transmittance colour 
contour map calculated to match the extracted and learned peaks. 
Note that the CRA-UP branch is not clearly predicted (Fig. 4b), so 
the corresponding peaks are missing from Fig.  4f. These missing 
features again reflect the challenging aspects of predicting small sig-
nals in experimental Landau polariton spectra. Despite such miss-
ing peaks, unique fitting is still possible for the CRA-LP and CRI 
branches. In contrast, the branch GRU decoder successfully captures 
all the resonance frequencies. The coupling ratio extracted from the 
experimental spectra, the branch GRU decoder that generates the 
resonance frequencies and the predicted spectra is 150.1, 145.6 and 
147.9 GHz, respectively. This agreement confirms not only the pre-
cise forecast of the cascaded GRU networks but also that the gener-
ated hidden states are related to interpretable physical observables, 
which are resonance frequencies. Moreover, the visualization of 
the hidden states (see Methods section and Supplementary Fig. 8a 
for details) features a clustering of the time-domain data in the test 
dataset under different magnetic fields into three categories: one for 
the data in the range from 0 to 1.5 T, one for the data in the range 
from 1.6 to 2.6 T and the rest for high fields from 2.7 to 4.5 T. As 
discussed in ref. 33 and shown in Supplementary Fig. 8b, when the 
magnetic field increases to 1.5 T, the CRA mode starts to move into 
the transmission band of the photonic-crystal cavity, and the CRA 
mode starts to move out of the transmission band to the second 
stop band of the photonic-crystal cavity when the magnetic field 
increases to 2.6 T. The interaction of the strongly absorptive CRA 
mode with the large signals in the transmission band can lead to 
the substantial change of the time-domain signals. The clear clus-
tering of the hidden states is fully consistent with the interaction of 
the CRA mode with the transmission band, and their connection 
with interpretable physical observables suggests that our cascaded 
GRU networks successfully capture the damped oscillatory nature 
of time-domain signals in optical resonances.

With the obtained predicted dispersion, the specific magnetic 
fields corresponding to the conditions at zero detuning and far 
away from zero detuning can be determined. As shown in Fig. 4g–i, 
we predicted the spectra of the CRI mode at 3 T and the CRA-UP 
and CRA-LP peaks at zero detuning by using the final stage of the 
trained GRU networks and the corresponding input sequences. 
The spectral line width determined from the Lorentzian fitting is 
4.6, 5.2 and 5.2 GHz, respectively. Thus, the values obtained for the 
cooperativity from the forecast spectra (3,663) and from model 
inference (3,550) are close to the reported experimental value 
(3,513) (ref. 33), with variation of 4% and 1%, respectively. The long-
sequence forecast capability of our cascaded GRU networks with 
short input sequences to accelerate experimental data acquisition 
can be impacted by additional experimental noise and the change 
of the time-domain sampling rate. We artificially added white noise 
to the original experimental time-domain signals and evaluated 
the prediction performance. When the signal-to-noise (SNR) ratio 
drops below ~40% of the SNR of the current experimental data, the 
prediction performance of our model starts to degrade substantially 
(see Methods section and Supplementary Fig. 9 for mode details). 
From the perspective of experimentalists, it is helpful to average 
more measurement results to reduce random noise when employ-
ing our model. Furthermore, the increase of the time sampling rate 
gradually increases the prediction loss, possibly due to the increas-
ing number of data points. Thus, it seems beneficial to choose a 
time sampling rate close to the Nyquist rate. However, this choice is 
more dependent on the purpose of the experiments (see Methods 
section and Supplementary Fig. 10 for more details).

Discussion
In comparison with the demonstrations of the resonant dielectric 
metasurfaces and active graphene plasmonics based on numerical 
FDTD simulations, the forecast performance of our cascaded GRU 
networks in experimental data of Landau polaritons is less optimal. 
This is largely due to the measurement noise associated with signals, 
the small energy of the signals of interest and the small number of 
high-fidelity training data. Future improvements could be achieved 
by introducing more advanced RNN models such as transformers, 
and more diverse input features such as experiment parameters and 
cavity structures in addition to time sequences. The high-fidelity 
training dataset could be augmented through generative networks 
such as generative adversarial networks41,42 and variational auto-
encoders43 for better performance. Furthermore, an additional 
frequency-domain term in the frequency range of interest could be 
added to the loss function to better capture small signals. The appli-
cability of cascaded GRU networks could also be extended to infer 
more physical observables and equations and to the discovery of 
new phenomena in complex systems through analogies with more 
accessible optical systems44 and the exploration of device function-
alities under resonant light–matter interaction.

Methods
High-!delity training data generation. FDTD time-domain simulations were 
performed using commercial Ansys Lumerical so"ware and applied to generate the 
high-#delity training data for the dielectric metasurface and graphene plasmonics 
examples. For the dielectric metasurfaces, we use four silicon cylindrical pillars 
as the base structure with periodic boundary conditions. $e time-domain data 
of the electric #eld along one polarization were obtained by simulating structures 
with randomly selected radii for the four cylindrical pillars. $e radius ranged 
from 39.5 to 44.5 μm in steps of 0.25 μm. $e pillar height was set as 30 μm. We 
generated a total number of 5,000 samples, using 4,000 of them as the training set 
and the remaining 1,000 as the test set. $e reference was simulated once, being 
the time-domain signal of a bare silicon substrate without any structures on top. 
For the graphene plasmonics, the graphene monolayer is modelled as a two-
dimensional (2D) rectangular conducting sheet from the Ansys Lumerical material 
library, including both inter- and intraband contributions. $e Fermi level and 
scattering rate are two parameters used to calculate the dielectric constants used 
by the so"ware. $e dataset was generated by randomly sweeping the width and 
Fermi level of the graphene ribbon. $e width ranged between 3.8 and 13.8 μm 
in steps of 0.2 μm. $e Fermi level ranged from 0.18 to 0.41 eV in steps of 0.01 eV. 
$e scattering rate was set as 0.00099 eV. We generated a total number of 1,000 
samples, using 800 of them as the training set and the remaining 200 as the test set. 
$e reference was taken once, being the time-domain signal of a bare silicon oxide 
substrate without graphene structures. In both examples, the structural parameters 
of the cylindrical pillars and graphene material properties were chosen such that 
the resonance features were located in the THz range (0.1–10 THz). $e detailed 
physical mechanism governing the resonance frequency can be found in refs. 37  
and 38, respectively.

Loss function. In all the dielectric metasurface, graphene plasmonics and Landau 
polaritons examples with all types of models, we use the following MSE loss 
function:

.4&-PTT =
O∑

J=�

(&
J

− &

′

J
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 	�


where Ei is the electric field value forecast at the certain time index i and &′

J

 is the 
target electric field value at the same time index. Both Ei and &′

J

 are real values. 
We use the electric field value along only one polarization direction, which is 
also consistent with standard THz-TDS measurements. n is the total number of 
time steps in the sequences to be predicted. The MSE loss calculated on a training 
dataset is called the training MSE loss, while the MSE loss calculated on a test 
dataset is called the test MSE loss. Except for Fig. 2c, which is presented in terms 
of the training MSE loss, all the time-domain signals and the corresponding 
frequency-domain spectra are within test datasets, and the comparison of 
different models and model parameters is made in terms of the test MSE loss. 
Supplementary Fig. 1a compares the training loss and the test loss of one network 
stage in the cascaded GRU networks trained using the multi-fidelity approach. 
The negligible difference between these two losses confirms that our model is not 
overfitting5.

Seq2seq model. The standard seq2seq model that we implemented using the GRU 
architecture is illustrated in Supplementary Fig. 1b. The encoder block takes the 
input sequence and extracts the encoded hidden states. The extracted hidden states 
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along with the last input sequence xt are then fed into the decoder block to predict 
the next value xt+1. The decoding process can propagate infinitely since it only 
requires the previous input value and the previous hidden state. The test MSE loss 
is shown in Supplementary Fig. 1c.

Low-fidelity synthetic pre-training data generation. Generally, optical resonance 
features follow the mathematical representation of a sum of multiple damped 
oscillations because of FID. Thus, we created synthetic data for the pre-training 
step in the two-step multi-fidelity training approach using the equation
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For the pre-training data for the dielectric metasurfaces, the number of 
sinusoidal signals used was 2. The sweep range for α1 and α2 was from 0.002 to 
0.01 and from 0.05 to 0.2, respectively. The sweep range for ω1 and ω2 was from 
0.4π to 2π. For A1 and A2, the ranges were from 1.72 to 3.5 and from 150 to 220, 
respectively. The total number of synthetic time-domain signals generated was 
40,000. For the pre-training data of graphene plasmonics, we used one sinusoidal 
signal. The sweep range for α was from 0.03 to 0.07. The sweep range for ω was 
from 0.09π to 0.16π. A was fixed as 1. The total number of synthetic data generated 
was 8,000. For the pre-training data for the Landau polaritons, the number of 
sinusoidal signals used was 2. The sweep ranges for α1 and α2 were from 0.0001 
to 0.0002 and from 0.055 to 0.065, respectively. The sweep range for ω1 and ω2 
was from 1.8π to 2.2π. The variables A1 and A2 were set to be 1. The total number 
was 3,000. Supplementary Fig. 2 shows two examples of synthetic time signals 
generated by using the equation given above for dielectric metasurfaces. When we 
pre-train our cascaded GRU networks, pre-training data are divided into segments 
(Data pre-processing) to first train the model.

Training of RNNs with GRU. The multi-fidelity training consists of two steps: 
pre-training and fine training (transfer learning). During the pre-training stage, 
the synthetic data are divided into segments and fed into the model to first tune the 
random weights. In the fine-training process, we first use the pre-trained model as 
a starting model, which is from the physics-informed initialization process. All the 
weights of the pre-trained networks are trainable in the fine-training process, and 
the high-fidelity data from FDTD simulations or experimental measurements are 
used to further update weights without constraints. The detailed hyperparameters 
for both the pre-training and fine-training processes of all the demonstrations are 
summarized in Supplementary Tables 1–3.

In the example of Landau polaritons, once the model for the time dynamics 
forecast is fully trained, a branch GRU decoder is connected to the trained encoder 
of the second GRU to receive the encoded hidden states and the processed time 
signal outputs from the previous stage. We trained this branch GRU network with 
resonance frequency labels associated with the time-domain signals, while we kept 
the weights of the other cascaded GRU networks unchanged and only updated 
this branch GRU decoder. The decoder is a GRU network with four hidden layers, 
similar to the decoders used in the time-domain signal forecasting networks. This 
branch GRU network was trained using the Adam optimizer with a learning rate of 
5 × 10−4. The total number of epochs for the training was 300, with a batch size of 1. 
The learning rate decayed every 100 epochs with a decay rate of 0.2.

Data pre-processing. In the example of dielectric metasurfaces, the full time 
sequence with a total of 1,600 data points was divided into six segments: [0, 200] 
(input), [200, 400], [400, 600], [600, 800], [800, 1200] and [1200, 1600]. We also 
tried another segmentation method that divided the signal into four segments: 
[0, 200] (input), [200, 400], [400, 800] and [800, 1600]. These two segmentation 
approaches are shown in Supplementary Fig. 1d. The test MSE loss was calculated 
for both segmentation approaches (Supplementary Fig. 1c). The MSE loss for the 
test data was 0.0135 and 0.0169 for the first and second segmentation method, 
respectively. This suggests that the model performance shows little dependence on  
the signal segmentation approach. We also evaluated the model prediction perfor-
mance as a function of the input sequence length for all the demonstrations, so that 
we can select the shortest input length while maintaining high prediction accu-
racy (that is, low MSE loss). The results are summarized in Supplementary Fig. 3. 
Furthermore, since the electric field values obtained from the FDTD simulations 
and experiments are small, a simple scaling of the signals is performed before 
training. In other words, the original signals are multiplied by a scaling factor. For 
the example of the dielectric metasurfaces, the simulated time-domain signals 
were pre-processed by multiplying by a scaling factor of 1,000. For the graphene 
plasmonics, the full time sequence with a total of 600 data points was divided into 
three segments: [0, 150] (input), [150, 300] and [300, 600]. The scaling factor used 
in this example was 100. For the Landau polaritons, the full time sequence with a 
total of 950 data points was divided into four segments: [0, 125] (input), [125, 250], 
[250, 500] and [500, 950]. The scaling factor was 1 × 106.

Transfer matrix method. We used the same transfer matrix method as described 
in ref. 33 to fit the experimental and predicted spectra. Since our one-dimensional 
(1D) photonic-crystal cavity integrated with the multiple quantum well (QW) 
structure had translational symmetry within the x–y plane of the sample 
(where z is along the Bragg mirror stacking direction, that is, the multiple QW 

growth direction), we were able to use the transfer matrix method to reproduce 
experimental transmission spectra. For an electromagnetic wave normally incident 
onto an isotropic multilayer structure, the complex transmission coefficient t and 
reflection coefficient r satisfy

(
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Here, Q is the 2 × 2 transfer matrix calculated from cascading multiplications of the 
matrices of the different layers
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where M and P represent an interface matrix and a propagation matrix, 
respectively, d is the layer thickness and the subscripts are layer indexes that range 
from 0 to N. t and r can be calculated as t = Q11 − (Q12Q21/Q22) and r = −Q21/Q22, and 
the power transmittance and reflectance are T = ∣t∣2 and R = ∣r∣2, respectively.

Material parameters enter equation (4) through the refractive index of the Nth 
layer nN in the M and P matrices:
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We used nSi = 3.4 for silicon and n0 = 1 for the vacuum spacings. For the 
2DEG layer, we first calculated the direct-current surface conductivity from the 
expression σDC = neμ, where n is the total surface electron density and μ = eτ/m* is 
the electron mobility. The elements of the Drude conductivity tensor of the 2DEG 
in a perpendicular magnetic field are given by
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In the circular polarization basis, the conductivity eigenvalues for the CR-active 
and CR-inactive polarization modes, respectively, are expressed as
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The bulk dielectric permittivity and refractive index of the 2DEG layer for the CRA 
and CRI polarization modes are then calculated as
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where we chose the background dielectric permittivity εbg = 3.62 to be the same as 
that of GaAs, and dQW is the total thickness of the multiple QW membrane.

The above material parameters, combined with experimental cavity structure 
parameters such as the layer thicknesses and separations, allowed us to calculate 
transmission spectra as a function of the magnetic field. We can then extract the 
coupling rate g by following the supplementary information of ref. 33.

Visualization of hidden states in cascaded GRU networks. We utilized 
t-distributed stochastic neighbour embedding to visualize the hidden states 
in the middle stage of a GRU network, here reducing the hidden states from 
200 to 2 dimensions. The perplexity was set as 5, and the learning rate as 100. 
Supplementary Fig. 8a clearly highlights three types of time-domain data in the test 
dataset: the data in the range of 0–1.5 T, the data in the range of 1.6–2.6 T and the 
data in the range of 2.7–4.5 T. As shown in Supplementary Fig. 8b adapted from  
ref. 33, when the magnetic field increases to around 1.5 T, the CRA mode starts 
to move out of the stop band (black area) into the transmission band (yellow 
white area). When the magnetic field further increases to around 2.6 T, the CRA 
mode starts to move out of the transmission band of the 1D photonic-crystal 
cavity (yellow white area) into the second stop band (black area). The signal is 
strong in the transmission band, so that the strongly absorptive CRA feature in 
the transmission band would lead to a substantial influence on the time-domain 
signals. The clustering of the hidden states in the GRU networks, which is fully 
consistent with the interaction of the CRA mode with the transmission band, 
strongly suggests that our GRU networks can learn the features of time-domain 
signals following the strong-coupling physics in Landau polaritons. In addition, 
the connection of hidden states with physical observables (that is, resonance 
frequencies) further suggests that the GRU networks learn about the nature of 
oscillating time-domain signals.
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Signal noise in Landau polaritons. A white noise was intentionally added on top 
of the original time-domain signal as B̂(U) = B(U) + O(U), where n(t) is the noise 
signal, modelled based on the original signal a(t) as n(t) = A × N(0, std(a(t))). 
Here, std(a(t)) stands for the standard deviation of the original signal and N(0, σ) 
is a normal distribution with mean of zero and standard deviation of σ. A is the 
noise strength and was swept from 0 to 0.2. The transmission spectra calculated 
from the corresponding time-domain signals for various values of A are shown in 
Supplementary Fig. 9a. To better connect with experimental settings, we define a 
SNR ratio calculated from the spectra of Landau polaritons. Specifically, as shown 
in Supplementary Fig. 9a, the spectra under magnetic fields between 2.5 and 3.0 T 
in the range from 0.41 to 0.55 THz (shaded area) were selected to evaluate the 
SNR. Within this frequency range, there is only the CRI peak and the signal above 
0.45 THz should be zero if there is no noise. Thus, we define the peak intensity as 
the signal strength and the average intensity from 0.45 to 0.55 THz as the noise 
strength. The SNR is defined as the ratio of the defined signal strength over the 
defined noise strength, and we take the average SNR for all the spectra between 2.5 
and 3.0 T. We first calculated the signal strength for the case with A = 0, then use 
the same signal strength for all other values of A. The noise strength is evaluated 
for each value of A. For the dispersion with different values of A shown in 
Supplementary Fig. 9a, A = 0 corresponds to an SNR of 60.45, A = 0.05 corresponds 
to an SNR of 22.49, A = 0.1 corresponds to an SNR of 6.86 and A = 0.2 corresponds 
to an SNR of 1.85.

We used the test MSE loss to quantify the influence of the added noise on the 
model performance. Here, we explored two methods. The first method was to train 
the model using signals without noise and do the prediction with the input sequence 
with noise (that is, to train with a(t) but infer with B̂(U)). This corresponds to the red 
dots in Supplementary Fig. 9b. The second method is to train the model using the 
signals with additional artificial noise (n(t) term) and do the prediction (that is, to 
both train and infer with B̂(U)). This corresponds to the blue dots in Supplementary 
Fig. 9b. In both cases, when the strength of the added noise was A ≥ 0.05 (SNR 
≤22.49), we observed that the MSE loss became noticeably increasing and the spectra 
became noticeably noisy, as is clear from Supplementary Fig. 9a. In an experimental 
setting, A = 0 corresponds to a SNR in a specific standard THz-TDS setup. If the SNR 
drops below ~40% of the value under normal operation, the prediction performance 
of the cascaded GRU models could start to degrade substantially.

Signal sampling rate in Landau polaritons. The sampling rate of the experimental 
measurement of Landau polaritons is already at the Nyquist rate. The total THz 
bandwidth is 2.5 THz (Supplementary Fig. 5a), and the time sampling rate is 0.2 ps. 
From the experimental perspective, further downsampling below the Nyquist rate 
is generally already avoided by experimentalists to prevent aliasing. However, time-
domain signals can be further downsampled by picking data points every n points, 
where n is an integer referred to as the downsampling factor. These signals are 
also upsampled by linearly interpolating m points between neighbouring points. 
We both trained and tested cascaded GRU networks with these re-sampled data. 
For downsampling, we swept n from 2 to 20. For upsampling, we chose m = 1, 
thus the length of the sequence doubles (that is, the downsampling factor is 0.5). 
A few downsampled time-domain signals are shown in Supplementary Fig. 10a. 
Supplementary Figure 10b summarizes the test MSE loss for various downsampling 
factors. When n lies in the range of 2−10, the MSE loss is reduced compared  
with the original sequence (n = 1). This could be because of the reduction of the 
total amount of data, which could be beneficial for the training process.  
A further increase of n (to 20) leads to a situation in which the damped oscillatory 
nature of the signals cannot be accurately captured and the MSE loss increases 
substantially. On the other hand, for upsampled signals (n = 0.5), the MSE loss 
increases as well. This can be attributed to the increasing difficulty of training the 
model with a growing number of parameters. From this analysis and experimental 
considerations, a sampling rate close to the Nyquist rate is desirable for both 
experiments and the prediction performance of the cascaded models.

Data availability
The source data of all figures in both main text and Supplementary Information 
are available at https://github.com/GaoUtahLab/Cascaded_GRU_Networks. The 
Zenodo version is available at ref. 45. Source data for Figs. 2–4 is available with this 
manuscript.

Code availability
The code for the models in all three demonstrations of optical resonances and that 
support the plots within this paper and other findings of this study is available at 
https://github.com/GaoUtahLab/Cascaded_GRU_Networks. The Zenodo version 
is available at ref. 45.

Received: 6 September 2021; Accepted: 16 February 2022;  
Published: xx xx xxxx

References
 1. Mudelsee, M. Trend analysis of climate time series: a review of methods. 

Earth Sci. Rev. 190, 310–322 (2019).

 2. Topol, E. J. High-performance medicine: the convergence of human and 
arti#cial intelligence. Nat. Med. 25, 44–56 (2019).

 3. Lim, B. & Zohren, S. Time-series forecasting with deep learning: a survey. 
Philos. Trans. R. Soc. A 379, 20200209 (2021).

 4. Box, G. E., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M. Time Series Analysis: 
Forecasting and Control (Wiley, 2015).

 5. Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y. Deep Learning, vol. 1 
(MIT Press, 2016).

 6. Fu, R., Zhang, Z. & Li, L. in 2016 31st Youth Academic Annual Conference of 
Chinese Association of Automation (YAC) 324–328 (IEEE, 2016).

 7. Kong, W. et al. Short-term residential load forecasting based on lstm 
recurrent neural network. IEEE Trans. Smart Grid 10, 841–851 (2017).

 8. Nelson, D. M., Pereira, A. C. & de Oliveira, R. A. in 2017 International Joint 
Conference on Neural Networks (IJCNN) 1419–1426 (IEEE, 2017).

 9. Hyndman, R. J. A brief history of forecasting competitions. Int. J. Forecast. 
36, 7–14 (2020).

 10. Zhou, H. et al. Informer:
.

m
 beyond e%cient transformer for long sequence 

time-series forecasting. Preprint at https://arxiv.org/abs/2012.07436 (2020).
 11. Jiang, J., Chen, M. & Fan, J. A. Deep

.

m
 neural networks for the evaluation and 

design of photonic devices. Nat. Rev. Mater. 1–22 (2020).
 12. Ma, W. et al. Deep learning for the design of photonic structures. Nat. Photonics 

1–14 (2020).
 13. Xie, N., Ras, G., van Gerven, M. & Doran, D. Explainable deep learning: a 

#eld guide for the uninitiated. Preprint at https://arxiv.org/abs/2004.14545 
(2020).

 14. Rangapuram, S. S. et al. in Proceedings of the 32nd International Conference 
on Neural Information Processing Systems (NIPS 2018) 7796–7805 

.

m
(2018).

 15. Salinas, D., Flunkert, V., Gasthaus, J. & Januschowski, T. Deepar: probabilistic 
forecasting with autoregressive recurrent networks. Int. J. Forecast. 36, 
1181–1191 (2020).

 16. Willard, J., Jia, X., Xu, S., Steinbach, M. & Kumar, V. Integrating scienti#c 
knowledge with machine learning for engineering and environmental 
systems. Preprint at https://arxiv.org/abs/2003.04919 (2020).

 17. Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 
3, 422–440 (2021).

 18. Pellizzari, T., Gardiner, S. A., Cirac, J. I. & Zoller, P. Decoherence, continuous 
observation, and quantum computing: a cavity qed model. Phys. Rev. Lett. 75, 
3788 (1995).

 19. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer 
and entanglement distribution among distant nodes in a quantum network. 
Phys. Rev. Lett. 78, 3221 (1997).

 20. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum 
communication with atomic ensembles and linear optics. Nature 414, 
413–418 (2001).

 21. Mabuchi, H. & Doherty, A. Cavity quantum electrodynamics: coherence in 
context. Science 298, 1372–1377 (2002).

 22. Englund, D. et al. Controlling cavity re&ectivity with a single quantum dot. 
Nature 450, 857–861 (2007).

 23. O’brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. 
Nat. Photonics 3, 687–695 (2009).

 24. Forn-Díaz, P., Lamata, L., Rico, E., Kono, J. & Solano, E. Ultrastrong coupling 
regimes of light–matter interaction. Rev. Mod. Phys. 91, 025005 (2019).

 25. Siegel, P. H. Terahertz technology in biology and medicine. IEEE Trans. 
Microw. !eory Techn. 52, 2438–2447 (2004).

 26. Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 1, 97–105 
(2007).

 27. Mittleman, D. M. Twenty years of terahertz imaging. Opt. Express 26, 
9417–9431 (2018).

 28. Liu, H.-B., Zhong, H., Karpowicz, N., Chen, Y. & Zhang, X.-C. Terahertz 
spectroscopy and imaging for defense and security applications. Proc. IEEE 
95, 1514–1527 (2007).

 29. Lin, X. et al. All-optical machine learning using di)ractive deep neural 
networks. Science 361, 1004–1008 (2018).

 30. Li, Y., Chen, R., Sensale-Rodriguez, B., Gao, W. & Yu, C. Real-time
.

m
 multi-task 

di)ractive deep neural networks via hardware-so"ware co-design. Sci. Rep. 
11, 11013 (2021).

 31. Kleine-Ostmann, T. & Nagatsuma, T. A review on terahertz communications 
research. J. Infrared Millim. Terahertz Waves 32, 143–171 (2011).

 32. Zhang, Q. et al. Collective non-perturbative coupling of 2D electrons with 
high-quality-factor terahertz cavity photons. Nat. Phys. 12, 1005–1011 (2016).

 33. Li, X. et al. Vacuum Bloch–Siegert shi" in Landau polaritons with ultra-high 
cooperativity. Nat. Photonics 12, 324–329 (2018).

 34. Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics 
in semiconductors studied with time-resolved terahertz spectroscopy.  
Rev. Mod. Phys. 83, 543 (2011).

 35. Jepsen, P. U., Cooke, D. G. & Koch, M. Terahertz spectroscopy and imaging– 
modern techniques and applications. Laser Photonics Rev. 5, 124–166 (2011).

 36. Neu, J. & Schmuttenmaer, C. A. Tutorial: an introduction to terahertz time 
domain spectroscopy (THz-TDS). J. Appl. Phys. 124, 231101 (2018).

Q8

Q9

Q10

Q11

NATURE COMPUTATIONAL SCIENCE | www.nature.com/natcomputsci

https://github.com/GaoUtahLab/Cascaded_GRU_Networks
https://github.com/GaoUtahLab/Cascaded_GRU_Networks
https://arxiv.org/abs/2012.07436
https://arxiv.org/abs/2004.14545
https://arxiv.org/abs/2003.04919
http://www.nature.com/natcomputsci


A B

DispatchDate:  05.03.2022  · ProofNo: 215, p.10

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618

ARTICLES NATURE COMPUTATIONAL SCIENCE

 37. Nadell, C. C., Huang, B., Malof, J. M. & Padilla, W. J. Deep learning for 
accelerated all-dielectric metasurface design. Opt. Express 27, 27523–27535 
(2019).

 38. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials.  
Nat. Nanotechnol. 6, 630–634 (2011).

 39. Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to sequence learning with 
neural networks. Adv. Neural Inform. Process. Syst. 3104–3112 (2014).

 40. Allen, L. & Eberly, J. H. Optical Resonance and Two-Level Atoms, vol. 28 
(Courier Corporation, 1987).

 41. Liu, Z., Zhu, D., Rodrigues, S. P., Lee, K.-T. & Cai, W. Generative model for 
the inverse design of metasurfaces. Nano Lett. 18, 6570–6576 (2018).

 42. Jiang, J. et al. Free-form di)ractive metagrating design based on generative 
adversarial networks. ACS Nano 13, 8872–8878 (2019).

 43. Tang, Y. et al. Generative deep learning model for inverse design of integrated 
nanophotonic devices. Laser Photonics Rev. 14, 2000287 (2020).

 44. Li, X. et al. Observation of Dicke cooperativity in magnetic interactions. 
Science 361, 794–797 (2018).

 45. Tang, Y. et al. Physics-informed 
.

m
recurrent neural network for time dynamics 

in optical resonances (code). https://doi.org/10.5281/zenodo.6058054

Acknowledgements
J.F. and W.G. thank the University of Utah start-up fund for support. X.L. acknowledges 
support from the Caltech Postdoctoral Prize Fellowship and the IQIM. C.Y. 
acknowledges support from grants NSF-2047176 and NSF-2008144.

Q12

Author contributions
C.Y. and W.G. conceived the idea and designed the project. Y.T. performed the modelling 
and calculations with the help of J.F., J.M., M.Q., C.Y. and W.G. X.L. helped with the 
analysis of the Landau polariton data. Y.T. and W.G. wrote the manuscript. All authors 
discussed the manuscript and provided feedback.

Competing interests
The authors declare that they have no competing financial interests.

Additional information
Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s43588-022-00215-2.
Correspondence and requests for materials should be addressed to 
Cunxi Yu or Weilu Gao.
Peer review information Nature Computational Science thanks Andrey Baydin, Bowen 
Zheng and the other, anonymous, reviewer(s) for their contribution to the peer review  
of this work. Kaitlin McCardle, in collaboration with the Nature Computational  
Science team.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature America, Inc. 2022

NATURE COMPUTATIONAL SCIENCE | www.nature.com/natcomputsci

https://doi.org/10.5281/zenodo.6058054
https://doi.org/10.1038/s43588-022-00215-2
http://www.nature.com/reprints
http://www.nature.com/natcomputsci

	Physics-informed recurrent neural network for time dynamics in optical resonances

	Results

	Cascaded GRU networks and multi-fidelity training. 
	Model generalization to different optical resonances. 
	Model analysis in Landau polariton experiments. 

	Discussion

	Methods

	High-fidelity training data generation
	Loss function
	Seq2seq model
	Low-fidelity synthetic pre-training data generation
	Training of RNNs with GRU
	Data pre-processing
	Transfer matrix method
	Visualization of hidden states in cascaded GRU networks
	Signal noise in Landau polaritons
	Signal sampling rate in Landau polaritons

	Acknowledgements

	Fig. 1 Cascaded GRU networks and two-step multi-fidelity training approach.
	Fig. 2 Model demonstration for dielectric metasurfaces.
	Fig. 3 Model generalization to graphene plasmonics and Landau polaritons.
	Fig. 4 Experimental verification of the GRU model in Landau polaritons.


