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Abstract—Software traceability establishes a network of con-
nections between diverse artifacts such as requirements, design,
and code. However, given the cost and effort of creating and
maintaining trace links manually, researchers have proposed
automated approaches using information retrieval techniques.
Current approaches focus almost entirely upon generating links
between pairs of artifacts and have not leveraged the broader
network of interconnected artifacts. In this paper we investigate
the use of intermediate artifacts to enhance the accuracy of the
generated trace links – focusing on paths consisting of source,
target, and intermediate artifacts. We propose and evaluate
combinations of techniques for computing semantic similarity,
scaling scores across multiple paths, and aggregating results from
multiple paths. We report results from five projects, including one
large industrial project. We find that leveraging intermediate
artifacts improves the accuracy of end-to-end trace retrieval
across all datasets and accuracy metrics. After further analysis,
we discover that leveraging intermediate artifacts is only helpful
when a project’s artifacts share a common vocabulary, which
tends to occur in refinement and decomposition hierarchies of
artifacts. Given our hybrid approach that integrates both direct
and transitive links, we observed little to no loss of accuracy when
intermediate artifacts lacked a shared vocabulary with source or
target artifacts.

Index Terms—software traceability, links, traceability network

I. INTRODUCTION

Software traceability links capture associations between
diverse artifacts such as requirements, design, code, and test
cases [1], [2], and provide support for many different develop-
ment activities, such as safety-assurance, impact analysis, and
software reuse. However, manually creating and maintaining
trace links requires non-trivial effort, and often does not
provide immediate benefits to the team members who need
to create the links [1]. As a result, developers and other
project stakeholders, often postpone the task of creating or
maintaining links, resulting in incomplete, inaccurate, and
even conflicting trace links [1], [3], [4], [5]. Researchers
have addressed this problem through the use of automated
tracing techniques based on information retrieval, machine
learning, repository mining [6], [7], [8], and more recently
deep-learning approaches [9], [10] which have increased the
accuracy achievable by automated approaches.

Project artifacts are organized according to an artifact
schema, often referred to as a Traceability Information Model
(TIM). The trace links created between individual artifacts

Fig. 1: TrainController’s traceability information model (TIM)
showing artifacts and traceability paths.

form an artifact network, and individual trace queries often in-
clude multiple artifacts, creating the notion of a transitive trace
in which multiple atomic traces are connected in a sequence,
where the target artifact for one atomic trace becomes the
source artifact for the next trace [11], [12]. For example, given
the TIM of the TrainController TC dataset depicted in Fig. 1,
we can trace from System Requirements (SR) to SubSystem
Requirements (SSR) directly or intermediately through System
Designs (SD). The network of artifacts introduces the opportu-
nity to leverage intermediate artifacts in order to improve the
accuracy of an automatically generated end-to-end trace link.
In this paper we explore the benefits of leveraging intermediate
artifacts whilst generating trace links.

Consider the example provided in Figure 2 which includes
a system requirement (SR), a system design (SD), and a sub-
system (SSR) requirement artifact taken from the TC System,
and shows two possible traceability paths. The direct trace path
goes from SSR → SR, while the indirect path goes from SSR
→ SD→ SR. The dashed boxes provide semantic explanations
for these associations. For example, the SR includes the
term “Highway Wayside Segment” while the SD includes the
associated acronym ‘WIU’. Tracing techniques that include
project glossaries are easily able to leverage this information
to help establish a link between SD and SR. On the other hand,
the semantic distance from SSR to SR is much greater with
fewer direct connections. By leveraging the intermediate SD
component, we see that ‘WCP’ is a component of the ‘WIU’
which, as previously stated, represents the Highway Wayside
Segment described in the SR.

The question we explore in this paper is whether leveraging
intermediate artifacts can improve the accuracy of trace links
generated using different automated techniques. Nishiwaka
et al., [12] previously explored this question and proposed
a technique which they referred to as “Connecting Links
Method” (CLM). They compared the results from a transitive
trace from A → B → C, against a direct trace from A → C
and reported improvements for only a small subset of the trace
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Fig. 2: An illustrative example inspired by our Train Controller system illustrates the concept of a direct versus a transitive
trace. The implicit semantic connections between the artifacts are depicted in the dashed nodes.

links. However, they evaluated their approach using only one
dataset based on only one technique. We therefore replicate
their experiment on multiple datasets, and expand it to include
diverse techniques for generating links and aggregating results.
We address the following research question:
Can the accuracy of trace links generated between end-to-
end artifacts be improved by incorporating intermediate
artifacts in the trace path, and under what conditions do
intermediate artifacts improve this accuracy?

Results from our experiments show that effectiveness of
using intermediate artifacts to generate trace links is impacted
by the terminology used across the artifacts and the presence
of a strong hierarchical relationship between the artifacts.

The remainder of the paper is laid out as follows. Section
II presents the techniques we used to incorporate intermediate
artifacts in end-to-end trace retrieval. Section III describes the
series of experiments that we conducted, while Sections IV
and V report and analyze the results. Finally in Sections VI to
VIII we describe threats to validity, related work, and present
conclusions and ideas for future work.

II. LEVERAGING INTERMEDIATE ARTIFACTS

This section describes how we leverage intermediate arti-
facts in automated trace retrieval techniques. There are three
technique families in our study. The first, Direct, uses one of
two algebraic models to compute textual similarities between
source and target artifacts, subsequently, this family does not
leverage intermediate artifacts. The second family, Transitive,
was first proposed by Nishiwaka et al. [12] as the ‘Connecting
Links Method’ (CLM) and only uses intermediate artifacts.
We evaluate 12 transitive techniques using combinations of
two algebraic models, two scaling methods, and three path
aggregation functions. We refer to this approach as transi-
tive traceability. Finally, the third family, Hybrid, aggregates
results from a Direct and Transitive technique using one of
three aggregation functions. Figure 3 illustrates the differences
between these three techniques.

A. Computing Artifact Similarity

Several different information retrieval techniques have been
proposed and evaluated for generating links between two

Fig. 3: Artifact relations used by each technique to calculate
similarity scores between a source and target artifact pair.

artifacts. Of these, the Vector Space Model (VSM) has consis-
tently performed well in previous studies even though it fails
to take semantic similarity into consideration. We also include
the Latent Semantic Indexing (LSI) approach for comparison
purposes, as this considers underlying semantic concepts.
• VSM computes term similarity between two artifacts and
has been applied to many traceability tasks [13], [14], [15],
[16]. Despite its simplicity it has been shown to consistently
outperform other information retrieval techniques [17], [10].
In VSM, terms are represented as an indexed linear vector,
while individual artifacts are depicted as weighted vectors,
with weights commonly assigned using term frequency-inverse
document frequency (tf-idf). In tf-idf, the importance of each
term is based on its occurrence and distribution across the
text corpus. More precisely, let AS and AT represent the
collection of source and target artifacts respectively, then
each artifact ai ∈ AS ∪ AT is represented by the terms
{t1...tn} it contains, and transformed into a numeric format
ai = {w1, w2, . . . , wn} where wn indicates the tf idf score
for ti. Artifact similarity is then measured by computing the
distance between vector representations, often using cosine
similarity between the source and target vectors as follows:

Similarity(ai, aj) =
aTi · aj√

aTi · ai
√

aTj · aj
(1)



• Topic modeling approaches have also been used for trace
link generation [18], [17], [19], [16] as they are capable of
discovering hidden semantic structures as abstract concepts
and representing each artifact as a distribution over these
concepts. The most common techniques are Latent Dirichlet
Allocation (LDA), Latent Semantic Indexing (LSI), and Prob-
abilistic Latent Semantic Indexing (PLSI). LSI represents each
artifact ai as a vector of word counts cn such that each word is
represented as ai = {c1, c2, ..., cn} and the artifact corpus A is
represented as a matrix A = {a1, a2, ..., am} where m refers
to the total number of all artifacts in A. LSI applies matrix
decomposition, e.g Singular Value Decomposition (SVD) in
order to learn the latent topics [15], [20], [21]. In a proba-
bilistic variant of LSI, known as [22], SVD is replaced by a
probabilistic model of latent topics. Finally, LDA is a Bayesian
version of PLSI in which dirichlet priors are introduced for the
topic distribution. Given a topic distribution vector of both
source and target artifacts, the similarity, or affinity between
two artifacts is estimated by using either Cosine similarity or
Hellinger distance [23] to quantify the similarity between two
probability distributions. In this paper, we have selected LSI
as a representative topic modeling approach.

Both VSM and LSI produce a similarity score for each pair
of artifacts. Scores range from 0 to 1, with higher numbers
representing greater likelihood of a link. Scores are stored in
a similarity matrix where a score at indices (i,j) stores the
similarity between ai ∈ AS and aj ∈ AT .

B. Aggregating Results across Trace Paths

The vast majority of research in trace link generation has
focused on generating links directly between two artifacts
without considering alternate paths, even though case studies
of industrial projects have shown that multiple, potentially
redundant paths often exist between artifacts [4], [24]. In
this work we focus on trace queries involving three different
artifact types (e.g., requirements → design → code). We
define a direct link as a link between a source artifact and a
target artifact, and an indirect link (otherwise referred to as
a transitive trace link) as a link comprising multiple atomic
trace links strung in sequence, such that a target artifact for
one atomic trace link becomes the source artifact for the
next atomic trace link [11], [12]. For the remainder of this
discussion we assume three artifact types AS (source), AT

(target), and AI (intermediate).
All direct links are generated from AS to AT using a tracing

algorithm (e.g., VSM and LSI) to compute artifact similarity
and to produce a traceability matrix as previously described.

The goal of using a transitive approach is to generate links
from AS to AT by leveraging an intermediate artifact type
AI . We first generate a trace matrix of direct links between
AS and AI and refer to this as TMSI , and then a second
matrix of direct links from AI to AT , referred to as TMIT .
To generate transitive links, we need to perform two additional
tasks to normalize and aggregate TMSI and TMIT in order
to produce a trace matrix between AS and AT . There are

Fig. 4: The groups of similarity scores scaled to the range [0,
1] within the Independent and Global scaling approaches

several possible approaches for normalization and aggregation
of links.
• Link Score normalization: Tracing algorithms, such as VSM
and LSI, are sensitive to the characteristics of the artifacts –
typically impacted by attributes such as document length and
vocabulary size [25]. In practice, they often produce higher
scores on more textually rich documents than on sparser ones,
which creates a problem when aggregating results from two
or more trace matrices (e.g. TMSI and TMIT ) where the
matrices with higher scores could overly influence the final
trace results. We therefore evaluated the following scaling
approaches as summarized in Figure 4:
- Independent Scaling: Each matrix is scaled separately,

normalizing its scores to span the range [0,1]. The scope
of each score is noted in Figure 4 by the orange and red
rectangles.

- Global Scaling: Matrices are scaled conjointly, such that
each score is scaled within the global minimum and max-
imum score of all matrices, and so the global range spans
[0,1]. Figure 4 illustrates this with the encompassing green
rectangle highlighting that the range of all scores in consid-
ered when scaling.
• Link Aggregation: Given two matrices TMSI and TMIT

we could imagine multiple paths from source artifact aj ∈ AS

to target tk ∈ AT via different intermediate artifacts (see red
paths in Figure 3). Each of these individual, intermediate paths
includes two distinct links from aj to il and from il to tk,
each with their own similarity score (or probability score). We
compute the product of these two scores to produce the final
strength of a single intermediate path. Furthermore, given N
intermediate artifacts, our approach generates N intermediate
paths from aj to tk each associated with its own similarity
score. In Figure 5 we see an example with three intermediate
artifacts between a source and target artifact pair. In the first
intermediate path we see that the similarity score between
the source and intermediate artifact is 0.5; similarly, the score
between the intermediate and target artifact is 0.75. Therefore,
the source and target artifacts have a similarity score of
0.375 through the first intermediate artifact as depicted in the
second step of Figure 5. Finally, the final score describing
the similarity between source and target artifacts will be the
aggregate of the scores for each intermediate path (e.g. 0.375,



Fig. 5: The process of creating single transitive relation score
from textual similarities.

0, 0.125).
We aggregate the relation scores using the following func-

tions in order to produce a single score representing the
likelihood of a link from aj → tk:
- Max: The maximum relation score is used with the rationale

that a single strong connection is sufficient to establish a
trace link.

- Sum: The sum of all transitive relation scores with the
rationale that a set of related intermediate nodes provides
evidence for a link. While there is a risk that a large
number of intermediate artifacts with low similarities could
incorrectly inflate the score, we include this method for
replication purposes as it was the original method used by
Nishikawa et al., [12].

- PCA: A weighted sum of intermediate similarity scores is
used. The weights represent the percentage of variance ex-
plained by relation scores through some intermediate artifact
calculated using principal component analysis (PCA). The
underlying assumption here is that intermediate artifacts
whose relations scores explain the variance among all tran-
sitive relation scores deserves more weight because they are
more able to discern relatedness between artifact pairs. This
method has previously been used to integrate orthogonal
information in retrieval techniques [19].

C. Exploring a Hybrid Approach

We also evaluate a hybrid approach in which results from
the direct and transitive approaches are aggregated. The idea
behind this approach is to augment benefits of the direct links
with supporting data provided by the transitive links. This is
also illustrated in Figure 3. We evaluated three different ways
of aggregating direct and transitive results as follows:
- Max: The maximum value between the direct and multi-hop

similarity scores.
- Sum: Direct and transitive scores are summed and scaled.
- PCA: A weighted sum of the direct and transitive relation

scores. The weights represent the proportion of variance
explained by each technique in the aggregate of all relation
scores calculated using PCA. The underlying assumption
being that techniques that better discern between link and
non-links deserve a greater weight. [26].

III. EXPERIMENTAL DESIGN

We evaluated our approach using five different datasets. Our
experiments require datasets with at least three different types

of artifacts and trace links provided along at least two dis-
tinct trace paths. Many publicly available traceability datasets
include two artifact types or are extremely small. We favored
the use of larger datasets (e.g., TrainController and Dronology)
as these are more representative of targeted industrial projects,
but due to lack of available datasets we also used three smaller
ones available at COEST.org. We established the additional
criterion that intermediate artifacts must represent at least 5%
of the total artifacts. We did not use OSS as in prior traceability
experiments (e.g., reported by Rath et al., [27]) because of their
lack of sufficient intermediate traces. For example, SEAM2,
had 27 source artifacts, 63,207 intermediate artifacts, 21,069
target artifacts; but, did not include any intermediate trace
links. Similarly, PIG included three artifact types, but one of
the paths only included actual links for about 0.01% of the
artifact pairs.

The selected datasets are shown in Table I. Four of these
datasets are available as community resources, while one
(TrainController) was provided by our industrial collaborators
under a non-disclosure agreement. Table I provides a brief
description of each dataset, the three artifact types used in
our study for each dataset, the trace link paths, the number of
actual links, candidate links, and subsequent percent of true
links out of all candidate links for that path.

A. Dataset Preparation

All artifacts were processed as follows. Method names such
as receiverManager.log() were split into their constituent parts,
non-alpha numeric characters were removed, and CamelCase
or Snake case phrases were split apart. Finally, all characters
were converted to lower case, stop words were removed, and
remaining words were stemmed to their morphological roots
using the Porter Stemmer (e.g. receiv manag log).

In most datasets links were only provided between a subset
of artifact types. We therefore used transitive inferencing, to
establish ground truth for the end-to-end tracing path or its
missing segment – depending upon which subset of links
were provided. For example, as shown in Table I, Dronology
provided transitive links from FRs→ Design, and from Design
→ to Java Classes. By using the Connecting Links Method
(CLM) described by Nishikawa et al. [12], we were able to
establish ground truth for the direct links from FRs → Java
Classes. Table I differentiates between manually created links
(bolded diamonds and triangles), and inferred ones (hollowed
diamonds and triangles). Diamonds represent the direct trace
path, while triangles represent either the path from source to
intermediate artifact (i.e., TMSI N) or from the intermediate
artifact to the target (i.e., TMIT H).

B. Trace Link Generation

To construct the trace matrices needed for our evaluation,
we first used VSM to generate trace links for trace paths with
artifact indices 0→ 1, 1→ 2, and 0→ 2 for each dataset and
stored the subsequent results in a trace matrix. This produced
three initial trace matrices for each of our five projects in
which the 0→ 2 matrix represented the direct links, while the



TABLE I: Dataset descriptions, artifacts, and defined trace links.

Dataset Description Refs Artifacts Paths Links Candidates Percent

Dronology
A system for managing and coordinating
multiple semi-autonomous Unmanned Aerial
Vehicles for emergency response missions.

[28][29]
0: FRs (30)
1: Design (20)
2: Java Classes (455)

0 → 2 ♦ 2,985 25,025 11.9%
0 → 1 N 1,749 5,445 32.1%
1 → 2 H 7,100 45,045 15.8%

TrainControl
An industrial system for the Onboard Unit of a
positive train control (PTC) system.

Hidden
for DBR

0: SRS (218)
1: SDD (519)
2: SSRS (583)

0 → 2 ♦ 26,857 127,094 21.1%
0 → 1 N 31,303 113,142 27.7%
1 → 2 H 104,976 302,577 34.7%

EasyClinic
A small, student-created dataset in both English
and Italian. The English version was used for
this project.

[30]
0: Use Cases (30)
1: IDs (20)
2: Class Descriptions (47)

0 → 2 � 373 1,410 26.5%
0 → 1 N 210 600 35.0%
1 → 2 H 254 940 27.0%

EBT
Small dataset created to support event-based
traceability using a publish-subscribe model. [30]

0: Requirements (41)
1: Test Cases (25)
2: Source Code (50)

0 → 2 � 1,086 2,050 53.0%
0 → 1 N 740 1,025 72.2%
1 → 2 O 652 1,250 52.2%

WARC
A tool suite for handling files in the WARC
format including command line tools, server
plug-ins, and documentation for file handling.

[30]
0: NFRs (21)
1: SRs (89)
2: FRs (42)

0 → 2 ♦ 45 882 5.1%
0 → 1 N 90 1,869 4.8%
1 → 2 H 192 3,738 5.1%

Legend: FR=Functional Requirement, NFR=Non-Functional Requirement, SR=Software level requirement, ID=Interaction Diagrams.
Trace paths provided by dataset: �=Direct, N=Higher Level, H = Lower Level. Inferred paths are unfilled (e.g., ♦, M, O)

other two matrices comprised the building blocks needed to
generate the transitive links. We then applied each combination
of previously described techniques for normalizing link scores
and aggregating links. This produced six additional trace
matrices for each project, representing the transitive matrix for
each combination of scaling scores (independent, global) and
link aggregation methods (Max, Sum, PCA) applied to trace
matrices for trace paths 0→ 1 and 1→ 2. Finally, each unique
combination of direct and transitive matrices was combined
using the link aggregation methods (Max, Sum, and PCA) to
produce a total of 72 hybrid matrices. Regardless of whether
direct, transitive, or hybrid techniques had been used, the final
result was the end-to-end trace matrix (TMST ), representing
the 0 → 2 path depicted by a black diamond for each dataset
in Table I. The entire process was then repeated using LSI in
place of VSM.

C. Accuracy Metrics

Accuracy was evaluated by comparing the generated TMST

against its corresponding answer set. Candidate links within
TMST were ranked in descending order, and the following
metrics, in alignment with standard benchmarking guidelines
for traceability experiments [31], were computed.
- MAP: the mean average precision (AP) assigns a non-

proportional higher weight to correct links ranked at the
top of the result list rather than the bottom [31].

- AUC: area under ROC Curve, measures how well a tech-
nique distinguishes between linked and non-linked arti-
facts. It assigns the same weight to each correct link [31].

- LAG: the number of non-links that a human analyst would
have to review in a ranked list of candidate traces before
finding all actual links. It assigns a non-proportionally
higher negative weight to a correct link ranked at the
bottom of the result list [31][32]. Note, a higher LAG score
means a lower performing technique. It is convenient to
adjust LAG so that greater scores mean better performances
as well as having it fit within the range between 0 and
1, like the other metrics. For this reason we apply a
transformation to LAG to be able to visualize and compare

metrics. This transformation scales scores to fit between 0
and 1 and inverts (1 − score) so that higher scores mean
more accurate techniques. LAG was normalized across
each project, using all generated scores to establish the
scaling factor. We refer to this metric as LagNormInverted
through the remainder of this study.

The best techniques are identified by random sampling
(without replacement) 75% of the artifacts of each artifact
level (e.g. requirements, designs, code) into a training set
and the remaining into a test set. Then, all techniques are
evaluated over 20 independent training splits by taking the
mean metric score (after standardization) over 20 iterations.
The best performing techniques are determined via the sum
of metrics scores (e.g. MAP, AUC, LagNormInverted).

Finally, after having identified the best techniques we tested
whether a technique could be considered more accurate than
another technique by using the non-parametric Wilcoxon test
applied to our three accuracy metrics over the entire dataset.
We selected this test because our trace query data does
not follow a normal distribution, as noted when performing
Shapiro–Wilk tests [33]. Therefore, our approach is compliant
to the suggestion to avoid using ScottKnottESD in case of non
normal distributions [34]. We set alpha at 0.01; we have chosen
this conservative value due to the high number of performed
tests.

IV. RESULTS

We report accuracy of all direct and transitive techniques
over the entire dataset in Table II. The direct family includes
two techniques, the transitive family 12, and the hybrid family
72. Given so many combinations of hybrid techniques, we
report only the best and worst cases using the test-train splits
defined in Section III-C to select these techniques. The best
techniques vary by dataset and are reported in Table IV. The
best direct, transitive, and hybrid techniques are identified by
the training splits and evaluated on the testing splits.

As reported in Figure 6, the best transitive technique out-
performed the best direct techniques in all dataset’s except
WARC’s MAP. The best hybrid technique outperformed



TABLE II: Performance of direct and transitive techniques in each dataset over all artifacts. LAG scores are represented by
LagNormInverted metrics defined in Section III-C. A score of 0 means it performed the worst among all techniques and 1 the
best. Best and worst hybrid techniques are selected via a test-train split defined in Section III-C.

Approach Technique Variant Project
Model Scaling Aggregation Drone TC EC EBT WARC

ID VSM LSI Ind Glob Sum PCA Max MAP AUC LAG MAP AUC LAG MAP AUC LAG MAP AUC LAG MAP AUC LAG

Direct D1 • 0.341 0.613 0.237 0.503 0.545 0.358 0.705 0.758 0.779 0.755 0.685 0.729 0.674 0.835 0.624
D2 • 0.334 0.594 0.000 0.503 0.536 0.264 0.686 0.750 0.719 0.755 0.655 0.577 0.634 0.800 0.327

Trans

T1 • • • 0.384 0.677 0.940 0.514 0.662 1.000 0.642 0.731 0.588 0.853 0.733 1.000 0.621 0.885 0.975
T2 • • • 0.362 0.652 0.653 0.448 0.597 0.621 0.475 0.667 0.148 0.835 0.691 0.774 0.563 0.852 0.725
T3 • • • 0.376 0.671 0.876 0.536 0.615 0.723 0.781 0.790 1.000 0.810 0.707 0.86 0.617 0.889 1.000
T4 • • • 0.384 0.677 0.940 0.514 0.662 1.000 0.632 0.726 0.554 0.853 0.733 1.000 0.621 0.885 0.975
T5 • • • 0.362 0.652 0.653 0.448 0.597 0.621 0.464 0.662 0.116 0.835 0.691 0.774 0.563 0.852 0.725
T6 • • • 0.376 0.671 0.876 0.536 0.615 0.723 0.780 0.790 0.996 0.810 0.707 0.86 0.617 0.889 1.000
T7 • • • 0.420 0.670 0.860 0.484 0.65 0.932 0.578 0.700 0.375 0.861 0.704 0.846 0.387 0.758 0.009
T8 • • • 0.357 0.608 0.166 0.342 0.501 0.056 0.433 0.646 0.004 0.828 0.582 0.182 0.585 0.787 0.229
T9 • • • 0.362 0.662 0.772 0.497 0.575 0.489 0.767 0.778 0.917 0.791 0.686 0.746 0.625 0.867 0.837
T10 • • • 0.424 0.682 1.000 0.480 0.655 0.961 0.575 0.699 0.370 0.861 0.675 0.686 0.387 0.757 0.000
T11 • • • 0.355 0.615 0.244 0.340 0.492 0.000 0.432 0.645 0.000 0.831 0.548 0.000 0.585 0.785 0.214
T12 • • • 0.365 0.663 0.781 0.509 0.586 0.557 0.766 0.778 0.916 0.791 0.667 0.641 0.625 0.869 0.848

Hybrid Best Performing Hybrid Technique (H1) 0.399 0.681 1.000 0.563 0.634 1.000 0.770 0.797 0.954 0.838 0.739 1.000 0.749 0.894 1.000
Worst Performing Hybrid Technique (H2) 0.342 0.605 0.000 0.488 0.516 0.000 0.686 0.754 0.000 0.792 0.602 0.000 0.603 0.808 0.000

Note: For the hybrid approach we show only the best (H1) and worst (H2) results

TABLE III: The relative gain in average accuracy achieved by
the best technique(s) of each family for each dataset over 20
test splits. The Transitive and Hybrid families are compared
to Direct, and Hybrid to Transitive.

Dataset Metric Transitive
over Direct

Hybrid over
Direct

Hybrid over
Transitive

Drone
MAP 22.0% 16.7% -4.4%
AUC 9.7% 10.3% 0.5%
LAG 15.6% 16.6% 1.2%

TrainController
MAP 3.4% 12.4% 8.7%
AUC 20.2% 15.9% -3.6%
LAG 22.8% 18.0% -6.3%

EasyClinic
MAP 5.4% 7.2% 1.7%
AUC 0.9% 3.5% 2.5%
LAG 2.8% 10.7% 8.1%

EBT
MAP 11.6% 10.4% -1.0%
AUC 6.1% 7.3% 1.2%
LAG 12.6% 15.2% 2.9%

WARC
MAP -6.4% 9.3% 16.8%
AUC 5.0% 6.5% 1.4%
LAG 28.4% 36.0% 10.6%

the best direct technique in all datasets across all metrics.
Interestingly, the best transitive technique outperformed the
best hybrid technique in Drone across all metrics as well as for
EasyClinic and EBT on MAP. These results are summarized
in Figure 6 which shows the best results obtained for direct,
transitive, and hybrid techniques. In three cases (Drone, TC,
and EC) the hybrid approach performed best, followed by the
transitive approach, and then the direct one.

In addition, Table III displays the relative gain in accuracy of
the best performing hybrid technique over the best performing
direct technique for each dataset-metric combination. Relative
gain is calculated for a target (T) and baseline (B) score where
the gain is of the target over the base calculated by:

RelativeGain = T−B
B

Our results so far has focused on top performing techniques
for each dataset; however to understand when and where the
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Fig. 6: The average accuracy metric scores over the 20 test
splits for the best technique(s) of each direct, transitive, and
hybrid family. As LagNormInverted is normalized, a score of
1 represents the best lag score and not perfect achievement.

transitive approach works, we now investigate its performance
across individual trace queries. Figure 7 reports results for
individual queries and Table V reports the significance levels
of the non-parametric Wilcoxon method for identifying differ-
ences in distributions of rankings.

Figure 7 shows a large variance in accuracy scores across
all techniques meaning that there are some queries that are



TABLE IV: Top performing hybrid techniques of each dataset.

Dataset Direct
Algebraic
Model

Transitive
Algebraic
Model

Scaling
Method

Path
Aggreg.

Direct-
Transitive
Technique
Aggregation

Drone VSM LSI GLB SUM SUM
TC VSM LSI GLB SUM SUM
EC VSM VSM IND MAX SUM
EBT VSM VSM Tie(GLB,IND) SUM SUM
WARC VSM VSM Tie(GLB,IND) MAX SUM

TC = TrainController, EC = EasyClinic
GLB = Global Scaling, IND = Independent Scaling

TABLE V: Significance values of non-parametric Wilcoxon
Method for differences in accuracy scores on individual trace
queries for the best direct, transitive, and hybrid techniques.

Dataset Metric Transitive
over Direct

Hybrid over
Direct

Hybrid over
Transitive

Dronology
MAP 0.001 0.001 0.003
AUC 0.001 0.001 0.001
LAG 0.001 0.001 0.004

TrainController
MAP 0.001 0.001 0.127
AUC 0.001 0.001 0.053
LAG 0.001 0.001 0.030

EasyClinic
MAP 0.058 0.070 0.620
AUC 0.043 0.112 0.511
LAG 0.036 0.081 0.506

EBT
MAP 0.001 0.001 0.074
AUC 0.001 0.001 0.338
LAG 0.001 0.001 0.399

WARC
MAP 0.562 0.637 0.293
AUC 0.494 0.793 0.674
LAG 0.494 0.833 0.600

difficult for all techniques to perform well on. Further, there
are some individual trace queries for which the best transitive
technique performs significantly worse than the direct one.
This is illustrated in the MAP scores for the EBT and
TrainController datasets. We also notice that the best hybrid
and transitive techniques were significantly more accurate than
the best direct technique across 3 datasets. Interestingly, our
analysis showed that the best transitive technique was only
significantly better than the hybrid transitive technique in the
case of AUC in Dronology.

Although the best technique using intermediate artifacts
performed well, results in Table II indicate that the worst
hybrid technique performed worse than the worst direct tech-
nique for TC, EC, EBT, WARC, implying that using the
wrong technique would be counterproductive. This is likely
the reason why Nishiwaka’s CLM approach did not achieve
more positive results [12]. For example, their CLM method
resulted in a precision of 0.75 at a recall of 0.161 on the
EasyClinic dataset; however, the best transitive technique we
found in EasyClinic reaches a precision of 0.970 at a recall
level of 0.165 resulting in a 29.3% relative gain. Therefore,
it is important to investigate which hybrid technique is more
useful and under which conditions.

From Table IV we observe that no single technique per-
formed best across all datasets, which implies that the selection
of an optimal technique will need to be tuned for each project
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Fig. 7: Distribution of metrics scores of best performing
Direct, Transitive, and Hybrid techniques for each individual
project and family, requiring project-level configuration.

and possibly for different trace paths within the project. On
the other hand, we can observe trends that suggest a good
baseline technique. For example, VSM outperforms LSI in all
projects for the direct algebraic model and in 3/5 projects for
the transitive algebraic model. Within the transitive technique,
global scaling slightly outperforms independent as it provides
best results in 4/5 datasets. Finally for link aggregation, sum
performs best in 3/5 projects. For aggregating direct and
transitive results in the hybrid approach, sum wins across all
projects. In conclusion, VSM is favored over LSI, the choice of
scaling method has little to no effect on the actual performance
of a technique, and the sum of transitive paths performs best
for aggregating direct and transitive techniques.

We refer to the aggregate of the most popular variants as
the best performing overall technique as it returned generally
good results across all projects. Note, however, that the best
performing overall technique is only the top performer in
EBT. Figure 8 presents the distribution of accuracy scores for
the best direct technique and best overall technique across
individual trace queries. Although this technique may not
return top results for each individual project, it can be used
without project-specific fine-tuning, and we still observe an
increase to the median accuracy for the best overall technique
over the best direct technique.
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V. ANALYSIS OF RESULTS

Now that we have identified the best performing techniques
we can examine where they work and where they do not.

A. Where does leveraging intermediate artifacts help?

To understand where leveraging intermediate artifacts
works, we examined where the transitive technique component
of each best performing hybrid technique (see Table IV)
performed better than its direct counterpart. This revealed that
transitive techniques help the most on queries where the source
and target artifacts share little to no words in common, as
illustrated by Figure 9. This figure is constructed by generating
trace links using direct and transitive techniques, categorizing
each traced artifact pair by the number of shared terms, and
then computing the relative gain in ranking achieved using the
transitive over direct technique.

We observe that the median gain is highest when the source
and target artifacts share little or no words (e.g. 0 or 1).
Consequently, a transitive technique is sometimes able to
help a direct technique transcend the term mismatch problem
between source and target artifacts. However, these term-
matching problems [35] can only be alleviated when the
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intermediate artifacts include a common vocabulary used by
both source and target artifacts as shown next.

B. Where do intermediate artifacts not help?

To examine where intermediate artifacts did not help end-
to-end retrieval we again examine the performance of the best
direct, transitive, and hybrid for each dataset. Previously, Fig-
ure 7 had shown us the distribution of accuracy scores across
individual trace queries for the best performing techniques in
each family per dataset.

In Section IV we observed that there are some queries where
the best transitive technique performs significantly worse than
the direct one (e.g. MAP in EBT). In general, we observe
that transitive techniques also suffer from the term-mismatch
problem. This is due to the fact that the algebraic models
evaluated in this paper are bag-of-word models (or derivatives)
and rely on the assumption that two traced artifacts must share
a set of words (or similarly topic distributions in the case of
LSI). Conversely, there is also an assumption that artifacts
that share words should be connected via a trace link. These
assumptions begin to break down as we introduce transitive
traces and more distant links are introduced.

In order to test our theory we calculated the performance
of the best performing hybrid techniques across different trace
queries paths in each dataset and report results in Figure 10.
For example, for the WARC dataset we have only examined
the trace query path between non-functional requirements (0)
and functional requirements (2) through system requirements
(1). The other query paths explored for WARC would be:
non-functional requirements → functional requirements →
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software requirements (0-2-1) and system requirements →
non-functional requirements → functional requirements (1-
0-2). Note, although there are technically 6 permutations of
different query paths with three artifact types the results are
identical when the source and target artifact types are swapped.
This is due to our preprocessing step described in Section
III-A in which all transitive traces are implied, so we expect
to observe this symmetry in accuracy. This means that we can
examine the performance of the best technique across all query
paths (e.g. 0-1-2, 0-2-1, 1-0-2).

Examining Figure 10 we observe that some paths clearly
benefit from the transitive approach while others do not.
These results can be explained by dissecting the relationships
between the artifacts and examining how they were created.
Typically, projects begin by first specifying system features.
Then, these features are refined by artifacts implicitly or
explicitly teasing out the design and architecture of a system.
Finally, once enough is known about how a system should look
and behave the final refinement is made and the code is written.
Note, that both agile and waterfall methodologies follow this
progressive refinement with the difference being that in agile
a smaller scope of features is followed through to the end per
iteration. The interdependence between artifacts, as each level
introduces more granularity, creates a hierarchy where each
artifact is rooted to a less granular parent, ultimately creating
a shared vocabulary across all child artifacts.

Transitive techniques leverage this common vocabulary to
retrieve end-to-end trace links. There are three systems whose
artifacts follow a clear hierarchy, namely, Dronology, Train-

Controller, and EasyClinic. Notably, the query path following
this hierarchical order (0-1-2) is the most improved path for
each of these datasets across almost all metrics. WARC in-
cluded non-functional requirements which are difficult to place
into a hierarchy; however, we followed the path established by
the developers of the dataset and observe that its use leads to
the greatest accuracy across all metrics.

Queries experiencing less than 5% improvement (e.g. 1-0-2
in TrainController, 0-2-1 in EasyClinic) break the established
hierarchy of the project. It is expected that differences in
vocabularies between artifacts in a query path affect the
performance of transitive techniques; namely, if there is a
vocabulary mismatch between either source → intermediate
artifacts or intermediate → target artifacts, and just one of
their correspond similarity matrices is not able to compute
enough similarity between artifacts (like when vocabularies
mismatch) then the result is a near zero-valued matrix which
wipes out any upstream or downstream relation scores.

VI. THREATS TO VALIDITY

Our experiments are subject to several threats to validity
[36]. A possible threat to internal validity is that different
tracing techniques might influence our findings. To minimize
this threat we adopted diverse, commonly adopted techniques
that have performed well in past studies [37], [38], [26],
[39], [6], [13]. However, we defer experimentation with deep
learning solutions to future work as discussed in Section VIII.
With respect to external validity and generalizability of our
results, we experimented with only five datasets due to the lack
of publicly available datasets containing three levels of arti-
facts. However, as suggested by Nagappan [40], our datasets
spanned small, medium, and large projects, and contained
different artifact types. Results indicated clear patterns of
improvement across all datasets when artifacts are arranged
in a hierarchical fashion, suggesting that our results extend
beyond a specific type of artifacts. To support reproducibility,
all materials needed for replication are made available 1. The
major threat to construct validity [41] is the accuracy and
completeness of our five datasets. As described in Section
III-A, we used the CLM method to infer missing trace links
in datasets; however, three of the datasets were explicitly
organized this way by the original engineers (e.g. Dronology,
TrainController). , EasyClinic) in order to support transitivity.
Finally, with respect to conclusion validity, our discussion in
in Sections IV and V concluded that techniques leveraging
intermediate artifacts only improved accuracy when artifacts
have clear relations (e.g. hierarchy of artifacts). Given the
analysis of Figure 10 there is reasonable evidence that our
result holds under these circumstances.

VII. RELATED WORK

Several areas of prior work on traceability are related to
our research. Many researchers have used textual similarity to
generate scores that are used to predict whether artifacts should

1https://github.com/thearod5/LeveragingIntermediateArtifacts



be connected through trace links [6], [14], [42], [43], [44],
[35]. Additional work has leveraged supporting information
to improve trace accuracy [7]. Recently researchers have pro-
posed augmenting textual information from individual artifacts
with diverse information from the project’s environment [45],
[46], [13], [47]. We have followed this line of research by
combining transitive relation scores and textual similarities
between artifacts to recover traceability links.

As we set out to combine direct textual similarities with
transitive similarity scores it is unclear whether these methods
are complementary; therefore, we include Gethers et al.’s
recommended method of combining orthogonal IR methods
in two places where this uncertainty may be true [26]. His
work stemmed from the observation by Oliveto et al that some
IR techniques are statistically equivalent while others seemed
to provide orthogonal information [19]. Gethers et al. study
explored an integration of these complementary or orthogonal
methods by treating each method as an expert and using a
weighted sum of the expert’s opinion as the final opinion.
Gethers recommends weighting each expert based on the ratio
of explained variance given by principal component analysis;
therefore, we refer to Gether’s et al. method as PCA.

In the most closely related work, Nishikawa et al. first
explored an automated method for calculating probabilities
between source and target artifacts using intermediate artifacts
named Connecting Links Methods (CLM) [12]. In this method,
the similarity score between a source and target artifact is
calculated by multiplying the textual similarities between
source and intermediate artifact with that of the intermediate
and target artifact. This method proved to be effective to cross
language barriers, but in some cases would be outperformed by
the direct textual similarity of the source and target artifacts. It
was thus our motivation to investigate the benefits and methods
of integrating both transitive relation scores and direct textual
similarities. Nishikawa et al utilized EasyClinic, a dataset we
included in our analysis too. They reported a precision of 0.75
while at a recall of 0.161. At similar or higher recall levels
our technique reached a precision of 0.98. A later study by
Tsuchiya et al took another look at the original methodology
(connect the links) [48] and found a technique that reached
0.45 precision at a recall level of 0.72. Again, we were able
to achieve a precision score of 0.59 at equal or greater recall
levels.

A recent paper tackled trace recovery by leveraging tran-
sitive traces in a probabilistic model named HierarChical
PrObabilistic Model for SoftwarE Traceability (COMET)
[13]. Moran et al. utilized transitive relationships as one of
a few inputs to tune their probabilistic model. Their paper
intersects with ours on the integration of textual similarities
from multiple information retrieval (IR) techniques as well as
modeling transitive links in a hierarchy; however, we differ
on the method in which we integrate IR techniques and
transitive links in our trace predictions. First, COMET utilizes
its various IR techniques to inform the parameter estimations
of a beta-distribution representing all textual similarities in a
project. We, in contrast, combine multiple IR techniques into a

single technique that serves as the final technique determining
the ranks of artifact pairs. Both COMET and our approach
allow the integration of orthogonal techniques, supporting
information, and relationships between the same types of
artifacts which has been shown to improve accuracy when
recovering trace links [8], [26], [7], [37]. Second, COMET
models transitive relationships between artifacts by examining
the execution trace of code to establish transitive trace links.
We are not limited to transitive relationships that must include
code artifacts since our model also predicts using the textual
similarities between the artifacts in a transitive relationship.
For example, recently Roll et al. observed benefits in using
textual similarities between source artifact to improve trace
retrieval [37]. Finally, other work has begun to incorporate
multiple artifact types into IR models [49], [50], [51], [48] and
to consider using the structural information about a project to
help aid trace recovery [52], [53], [8].

VIII. CONCLUSION

Our study empirically evaluated several different techniques
for leveraging intermediate artifacts to improve the accuracy of
end-to-end trace retrieval. Our evaluation included two direct
techniques, 12 transitive, and 72 hybrid. Our results showed
that the best technique leveraging intermediate artifacts outper-
formed the best direct technique. We also evaluated a hybrid
technique composed of the overall best performing transitive
and direct techniques. The hybrid approach returned better
median accuracy across all metrics on individual trace queries
than the best direct technique. Our subsequent analysis of the
top performing hybrid techniques discovered that transitive
techniques help support direct techniques when few words
exist between source and target artifacts, initially helping alle-
viate term-matching problems. However, transitive techniques
suffer from their own term-matching issues, as evidenced by
little to negative performance gain on trace queries containing
semantically distant artifacts.

In future work we plan to explore two open research
questions. First, whilst the experiments in this paper focused
on IR-based tracing techniques, we expect that the findings
will apply to the emergent set of deep-learning tracing al-
gorithms too [10], [9], [35]. Even though DL approaches
are able to link artifacts based on their semantics instead of
relying upon shared terms and synonyms, we have made the
initial observation that both the terminology mismatch and
the semantic difference increases as artifacts are further apart
in the development hierarchy. If this observation holds true,
then the use of transitive trace links will also be useful with
DL tracing solutions. Second, we plan to explore the benefits
of leveraging transitive artifacts across broader graph-based
networks of traceability links including the exploration of
partial networks in which trace links are missing.
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