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We present a novel machine learning-based approach to generate fast-executing virtual
radiofrequency quadrupole (RFQ) particle accelerators using surrogate modelling. These
could potentially be used as on-line feedback tools during beam commissioning and
operation, and to optimize the RFQ beam dynamics design prior to construction. Since
surrogate models execute orders of magnitude faster than corresponding physics beam
dynamics simulations using standard tools like PARMTEQM and RFQGen, the
computational complexity of the multi-objective optimization problem reduces
significantly. Ultimately, this presents a computationally inexpensive and time efficient
method to perform sensitivity studies and an optimization of the crucial RFQ beam output
parameters like transmission and emittances. Two different methods of surrogate model
creation (polynomial chaos expansion and neural networks) are discussed and the
achieved model accuracy is evaluated for different study cases with gradually
increasing complexity, ranging from a simple FODO cell example to the full RFQ
optimization. We find that variations of the beam input Twiss parameters can be
reproduced well. The prediction of the beam with respect to hardware changes, e.g.,
the electrode modulation, are challenging on the other hand. We discuss possible reasons
for that and elucidate nevertheless existing benefits of the applied method to RFQ beam
dynamics design.

Keywords: radio frequency quadrupole, beam dynamics design, beam matching, virtual accelerator, isodar,
surrogate modelling, neural network, polynomial chaos expansion

1 INTRODUCTION

Machine Learning (ML), using statistical methods and Neural Networks (NNs), is quickly becoming
a staple of modern computational physics. Their highly successful application in computer vision [1],
[2] and the establishment of many software packages that are widely available and standardized (e.g.,
TensorFlow [3] and Keras [4]) has led to attempts to use ML in almost all fields of science. Particle
accelerator physics is no exception, although ML is not as well-established here as in other fields. A
few examples of ML in accelerator physics are given in the following. Arguably, the best-established
use of ML is image analysis using convolutional neural networks (CNNs). CNNs can be used in beam
diagnostics for the analysis of the output of emittance scanners, optical fibers, residual gas monitors,
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TABLE 1 | Basic parameters of the IsoDAR-RFQ, corresponding to the previously
developed baseline beam dynamics design and the preliminary RF/
mechanical design.

Design parameter Value
RF frequency (MHz) 32.8
Design ion Hy*
Design beam current (MA) 6.5
Duty cycle Cw
Input/output energy (keV) 15/ ~70
Inter-vane voltage (kV) 20.1
Beam transmission (%) 97.3
Trans. input emittance (mmm mrad) 0.30
Trans. output emittance (= mm mrad) 0.34
Long. output emittance (rkeV deg) 40.2
Tank diameter (cm) 28
electrode length (cm) 136.5
RF power (kW) ~3.6
Shunt impedance (kQm) 154

and reconstruction of beam pulse structure [5]. The SwissFEL was
tuned using Bayesian optimization [6, 7]. Bayesian optimization,
using Gaussian Process models was also used for the Linac
Coherent Light Source (LCLS) [8].Another very promising
technique, that is also the subject of this paper, is surrogate
modelling. We describe the method in detail later. In short, a fast-
executing model of a complex system can be produced by training
a NN or using Polynomial Chaos Expansion (PCE) on a set of
high-fidelity simulations. This fast-executing Surrogate Model
(SM) can then be used in an optimization scheme or for on-line
feedback during run-time. Some examples of successful use of
surrogate models in particle accelerator optimization are given in
[9], [10-12], which have demonstrated speedups of one to several
orders of magnitude compared to conventional techniques.

To our knowledge, ML has not yet been applied to the design
of radiofrequency quadrupole (RFQ) linear accelerators. Here we
report our recent results using surrogate modelling to create
virtual RFQ models that can be used in several ways:

e Uncertainty Quantification (UQ) [13] of the RFQ with respect
to input beam variations or RFQ settings during run-time.

e Prediction of output beam parameters from a given set of
input beam parameters. The SM becomes a virtual
accelerator, ideal as tuning and commissioning aid.

¢ Design and optimization of the RFQ hardware. Based on the
success as a virtual accelerator, we also tested the SM
technique as a hardware optimization tool.

The findings in this paper are fully transferable to other RFQs.

1.1 Particle Physics Motivation for This
Work

The motivation for this work lies in the IsoDAR project [13];
[14,15], a proposed search for exotic neutrinos. These are
hypothesized cousins to the three known standard model
neutrinos and could explain anomalies seen in the neutrino
oscillation experiments of the past 3 decades [16].

RFQ Beam Matching Using Machine Learning

To reach discovery-level sensitivity (>50) in 5years of
running, IsoDAR requires a 10mA cw proton beam at
60 MeV on a neutrino production target. This accelerator
(described in Refs. [17], [15,18]) accelerates H,* ions instead
of protons and uses a novel RFQ direct injection method [19],
[15], in which the beam is aggressively pre-bunched in an RFQ
that is embedded axially in the cyclotron yoke and brought very
close to the cyclotron median plane. Because of the high beam
current, necessarily small diameter (as little yoke iron as possible
must be removed), and the difficult matching of the RFQ output
to the cyclotron acceptance, we have initiated this study to
accurately predict the sensitivity of the RFQ, the output beam
parameters, and to optimize the RFQ design beyond the current
baseline. In Table 1, we list the most important parameters of the
IsoDAR RFQ, some of which will be used as design variables
(DVARSs) and objectives (OBJs) in the reported study.

1.2 The Structure of This Paper

We have structured this manuscript into Methodology, Results,
and Discussion. In each section, we describe our work separately
for the two applications of the SM: 1. As Tuning and
Commissioning Tool; 2. As Design and Optimization Tool.
These are the natural applications due to the immense
speedup of SMs compared to high-fidelity Particle-In-Cell
(PIC) simulations. We also present results for a very simple
system—the FODO cell—as a benchmark and to elucidate the
basic principles and challenges. In the Results, we show that the
SM performs excellently as a tuning tool, but issues arise when we
vary the hardware parameters of the RFQ. In the Discussion we
elaborate possible aspects relevant for the surrogate model to
under-perform when the beam dynamics is affected by hardware
(design parameter) changes, e.g., space charge, number of design
variables or neural network topology.

1.2.1 The Surrogate Model as Tuning and
Commissioning Tool

The first application we present is using the SM as an on-line
feedback tool during the commissioning and running of the RFQ
direct injection prototype. We envision the SM to provide
valuable assistance for the operator to allow quick or
automated adjustment of the RFQ and beamline settings with
respect to the input beam properties. To this end, in the final
application, we will train the SM using simulated input values like
the signal of beam position monitors (BPMs), the beam current
(from an AC Current Transformer [20]), and beam size (from a
wire probe) before the RFQ and predict the signals from similar
devices after the RFQ. To test the idea in this manuscript, we use
the Twiss parameters [21] of the beam as input.

1.2.2 The Surrogate Model as Design and Optimization
Tool

Finding an optimized beam dynamics design often requires a very
large number of simulation iterations. This makes the design
procedure of RFQs time consuming, especially when completely
new solutions to meet the required beam output quality need to
be explored. This is sometimes even the case for comparatively
fast executing beam dynamics codes like PARMTEQM [22] or
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FIGURE 1| Transverse electric quadrupole field around the beam axis of
an RFQ (A) with focusing/defocusing plane (green/red) and electrode cell
modulation (B), resulting in a longitudinal field component.

RFQGen [23], but is definitely a problem when very time
consuming PIC simulations are used as the basis for
optimization. Similar to demonstrated successes with
cyclotrons and electron accelerators [11,24], we are
investigating the use of SMs to perform multiobjective
optimization for the RFQ modulation cell parameters, in order
to yield minimum beam output emittances (transverse and
longitudinal) and maximum transmission.

2 METHODOLOGY
2.1 Surrogate Modelling

Surrogate models are cheap alternatives to reduce the computational
complexity of multiobjective optimizations as already shown in the
context of particle accelerators in [25]. We chose neural networks
and polynomial chaos expansions to replace the high-fidelity RFQ
model codes. These methods are explained in the following
subsections. More detailed introductions can be found in the
listed references and the references contained therein.

2.1.1 Polynomial Chaos Expansion

The principle of the polynomial chaos expansion (PCE) relies on
the orthogonality of the multivariate polynomials ¥;. The high-
fidelity model m(x) with input vector x € RY and d > 1 is
approximated by

p P d
m(x) = m(x) = ) ¥ =Y e[y, (&) W
i=1 =1 j=1
where
(p+4d)!
p-2dt 2)

is the total number of monomials determined by the expansion
truncation order p and the dimensionality of the system d. The vector
E= (&, ..., &) represents the input vector that is mapped onto the
support of the univariate polynomials ;. The type of the univariate
polynomials of the jth dimension depends on the distribution of the
corresponding input dimension. For example, uniformly distributed
dimensions are approximated by Legendre polynomials and
normally distributed dimensions by Hermite polynomials.

RFQ Beam Matching Using Machine Learning

There are multiple methods to obtain the expansion coefficients ¢;
with different requirements on the number of training points N.
Commonly used methods are orthogonal projection, regression and
Bayesian. In the case of the projection method, the number of
training points grows exponentially with the dimension, i.e.,

N=(p+1)". 3)

Regression and Bayesian approaches have no strict requirements,
but according to [26] an optimal number of samples is given by

N =(d-1)P. (4)

A benefit of PCE based surrogate models is the evaluation of
Sobol’ indices [26], a measure of global sensitivity of the output
on the input. The first-order Sobol’ index, also known as main
sensitivity, quantifies the effect of a single input dimension. The
total effect of an input dimension, that also includes all
correlations with other dimensions, is denoted as total sensitivity.

We also refer the interested reader to the following literature
[26] (and the references therein). Many PCE literature references
can also be found in the bibliography of [27].

2.1.2 Artificial Neural Networks

The term “Artificial Neural Network” (ANN) refers to a broad class
of methods within Machine Learning (ML) that share the common
property of consisting of many interconnected processing units that
are used to transform data. The first of such a hierarchy of layers,
consists of an affine linear function T: R” — R™, defined as T(x):=
Wx + b, where W = (a;;) e R"™", x ¢ R", b € R", and n,m € N.
W and b are commonly referred to as the weights and biases of the
ANN. The second is an activation function o: R — R, which is
typically nonlinear. Many variants of o exist, in this work we use the
rectified linear unit o(x) = max (0, x).

The activation function is applied in an element-wise manner,
hence a vector activation function o: R" — R" can be defined. Now
we are able to define a continuous function f(x) by a composition
of linear transforms T' and activation functions o, i.e.,

fx)=TregeTE e oot goT oo T (x), ®)

with T(x) = Wix + b;. W, are initially undetermined matrices and
b; initially undetermined vectors and o(-) is the element-wise
activation function. The values of W; and b; are randomly
initialized and adjusted during “training” wusing an
optimization algorithm to maximize some performance metric.

Such an ANN is called a (k + 1)-layer ANN, which has k
hidden layers. Denoting all the undetermined coefficients (e.g.,
W;and b;) in Eq. 5 as 0 € ©, where 0 is a high dimensional vector
and O is the span of 6, the ANN representation of a continuous
function can now be viewed as

J=r(x0). (6)

Let F = {f (-, 0)|0 € O} denote the set of all expressible functions
by the ANN parameterized by 0 € ©, then FF provides an efficient
way to represent unknown continuous functions.
Approximation properties of neural network can be found in
[28], [29], where the authors studied approximation properties
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FIGURE 2 | Parametrization functions for the RFQ cell properties specified by design variables (DVARs): The transversal focusing parameter B(z) is kept constant
behind the Radial Matching Section (RMS), with DVAR1 determining the absolute value. Regarding the synchronous phase ¢(z) and the electrode modulation m(z), the
RFQ is subdivided into three sections (slow linear shaping, exponential shaping and exponential bunching), the lengths of which are defined by DVARs 2 and 3. The total
slope and the smoothness of the occurrence of the shaping/bunching effect are characterized by DVARs 4-13. Qualitatively, this overall design approach
corresponds to a previously developed beam dynamics design using the PARMTEQM RFQ design tools and additionally applying manual changes to the design
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FIGURE 3 | General machine learning optimization scheme for RFQ beam dynamics.

FIGURE 4 | Schematic depiction of a FODO cell, showing a transverse
projection of the beam envelope undergoing focusing (F), drift (O), defocusing
(D) and drift (O).

for the function classes given by a feed-forward neural network
with a single hidden layer. In later works, authors studied the
error estimates for such neural networks in terms of hyper-
parameters such as number of neurons, layers of the network,
and activation functions, a review can be found in [30] and [31].

2.2 Data Generation for Surrogate Modelling
The beam dynamics properties of an RFQ with a number of n
modulation cells are fully described by the parameter sets B = (B,

TABLE 2 | Hyperparameter boundaries for neural network hyperparameter scan
and the best determined value for each case.

Scan boundaries Best value

Depth 2 to 40 6
Width 3 to 160 54
Learning rate 0.1 to 0.0001 0.0013
Batch size 8, 16, 32, 128 or 256 256
Activation function Relu, Tanh or Sigmoid Relu

L2 Regularization Penalty 0.001 to 0.05 0.018
Gaussian noise 0.001 to 0.1 0.008
Loss function Mean square error —
Epochs Up to 10000 —

.» By), m = (my, .., my,) and ¢ = (Ps 1, .., Ps ), quantifying the
basic functions of an RFQ as explained in the sequel:

e The transversely defocusing effect of the space charge force
has a 1/y>-dependency (y being the Lorentz factor) and
hence at low beam velocities efficient and velocity-
independent transverse focusing is required. As shown in
Figure 1, the alternating electric quadrupole field between
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TABLE 3 | Input beam design variables to the fixed FODO cell lattice generated
using OPAL, and the range of their parameter space.

Parameter Value
Corx -0.51t0 0.5
Cory -0.5t0 0.5
Beam current (mA) 2to0 10

RMS t (MeV deg)
RMS x (m)
RMS y (m)

0.0001 to 0.0005
0.001 to 0.005
0.001 to 0.005

TABLE 4 | Design variables and range of their parameter space for the FODO
lattice system with varying beam and cell parameters.

Parameter Value

Beam Current (mA) -0.5to 10

K1 (m™? 4210 4.8

K2 (M) 52t05.7

RMS t (MeV deg) 0.0001 to 0.0005
RMS x (m) 0.001 to 0.005
RMS y (m) 0.001 to 0.005

the RFQ electrodes leads to a focusing force along one of the
transverse axes while defocusing occurs in the perpendicular
direction, effectively constituting an alternating gradient
focusing channel. The transverse focusing strength in an
RFQ cell n is commonly characterized by the parameter
B, [32].

¢ By adding a sinusoidal modulation to the electrode shape, a
longitudinal field component is generated which can be
used to adiabatically bunch the DC input beam. This is a
highly delicate procedure due to the high sensitivity of
space-charge dominated beams to perturbations of the
beam particle density. The consecutive modulation cells
form a 7-mode accelerator structure with a cell length of £, =
BAre/2. The extent of electrode modulation (corresponding
to the magnitude of the longitudinal field component) of a
cell n is parameterized by the modulation factor m,,.

e The synchronous phase ¢ ,,, which is set by the cell lengths,
determines the ratio of longitudinal bunching to
acceleration and hence the overall phase space stability.
By increasing ¢, along the RFQ, beam acceleration is
gradually introduced.

Ultimately, the beam output properties depend on the RFQ
hardware specifications as well as on the given input beam
parameters, which for a DC input beam are specified by the
transverse emittances, the Twiss parameters and the beam
current.

2.2.1 Simulated Data for a Fixed Radiofrequency
Quadrupole Design

To investigate the capability of surrogate models to reproduce the
RFQ beam output properties as a function of only the adjustable
beam input parameters (in our case the Twiss parameters o and
B), we used a fixed preliminary optimized RFQ design, through

RFQ Beam Matching Using Machine Learning
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FIGURE 5 | Predictions by the neural network surrogate model as
function of the actual data values for variation of only the beam input Twiss
parameters to a fixed RFQ (MAEs being well below 1%). The red dots
correspond to the test dataset whereas the blue dots are training data.

which we simulated the beam using the PARMTEQM code. A
sample data set was obtained from the output of a number of
PARMTEQM simulations with randomized values for the input
Twiss parameters (corresponding to the design variables of the
underlying optimization problem) within a predefined range of «
= [1, 4] and B = [7, 25] (cm/mrad). The transverse and
longitudinal output emittances as well as the transmission
(constituting the optimization objectives) were evaluated
directly at the end of the RFQ electrodes.

2.2.2 Simulations of Full Radiofrequency Quadrupole
Design

To study the applicability of surrogate models for optimizing the
RFQ design itself, we introduced a parameterization of the
functions for transverse focusing B(z), synchronous phase ¢(z)
and electrode modulation m(z) according to Figure 2. This
reduces the size of the RFQ design parameter space,
corresponding to the number of design variables, from 3n + 1
(B> Psn» m,, for each cell n, + 1 because the number of cells is a
design variable itself) to a total number of 14.

The parameterization functions were chosen so that the crucial
properties of the underlying baseline design remain variable for
optimization; e.g. the constant value of B(z) behind the Radial
Matching Section (RMS) (corresponding to DVAR1), the lenghts
of the linear and exponential shaping and bunching sections
(DVAR2 and DVAR3) as well as the rate and smoothness of
shaping and bunching (DVARs 5-13). The length of the RFQ is
determined by DVARI4, being the cutoff energy after which
PARMTEQM ends the electrode (always with a full RFQ cell).

We generated a sample data set from beam dynamics
simulations using PARMTEQM for a number of random RFQ
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TABLE 5 | Optimum set of Twiss parameters found by Bayesian optimizer based
on the surrogate model output and corresponding predicted beam output
parameters with comparison to PARMTEQM results.

Beam parameter SM output PARMTEQM output
Input « 2.55 2.55

Input 16.60 cm/rad 16.60 cm/rad
Transmission (%) 95.5 95.3

es (MeV Deg) 0.031 0.031

& (mm mrad) 0.021 0.021

€, (mm mrad) 0.024 0.024

design variations (randomized DVAR values within a predefined
range) with a fixed input beam (input Twiss parameters held
constant).

2.3 Machine Learning Training and Use of
Radiofrequency Quadrupole Surrogate
Models

As being best practice for the training of ML models, we
randomly split sample datasets into 70% training and 30% test
data. A total of 1,000 samples was used for the input beam tuning
studies, whereas for the full RFQ optimization with an increased
number of design variables, up to 200,000 samples were used. The
training data is then used to train either a PCE or NN based
surrogate model. After training of the SM, the model predictions
are evaluated on both the test and training data by comparison to
the original simulation output values. The normalized Mean
Absolute Error (MAE) is calculated and reported. To prevent

RFQ Beam Matching Using Machine Learning

overfitting, the PCE is run repeatedly with increased order to
minimize the MAE until the difference between the test and
training dataset are more than 5%. In our case, this was at 4th
order. A general workflow scheme for surrogate model creation
from simulation data is depicted in Figure 3.

To design and train neural networks we used the TensorFlow
[33] machine learning framework and the hyperparameter
optimization tools provided by Keras [34]. These support
automated tuning of the neural network hyperparameters, the
used boundary values of which are given in Table 2. We
underwent a new hyperparameter scan for each case, and
automatically selected the best hyperparameter configuration
with minimized MAE for the training set. The choice of a
Relu (Rectified Linear Unit) activation function was found to
be the best option for the considered use cases. Eventually, the
obtained surrogate model can be saved and used for beam
dynamics sensitivity studies and optimization.

Based on the surrogate model, an optimization of the design
variables with respect to the objectives using a generic optimizer
algorithm can be performed, the result of which (SM output for
the best found set of DVARs) can then be validated by the result
of the corresponding PARMTEQM beam dynamics simulation
output.

3 RESULTS
3.1 Basic FODO Cell Example

The effects of a quadrupole magnet on an ion beam causes
focusing on one transverse spatial axis, while leading to
defocusing in the perpendicular direction. However, using
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FIGURE 6 | Surrogate model predictions as function of the actual data values for full RFQ design variation by 14 DVARs and fixed beam input Twiss parameters.
Again, the red dots correspond to the test dataset and the blue dots are training data.
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TABLE 6 | Comparison between mean average errors (MAEs) for surrogate models based on polynomial chaos expansion (PCE) and neural networks (NN) for different

optimization cases and objectives.

MAE’s (%) Input beam Full RFQ FODO cell
optimaization optimaization (14 Variation of beam Variation of
(2 DVARs) DVARs) input only quadrupole focusing

PCE NN PCE NN PCE NN NN
Transmission 0.17 0.15 3.5 2.4 No variation
Eiongitudinal 0.72 0.57 10.5 8.2 0.76 5.8 13.6
& 1.85 0.55 13.2 12.8 0.19 1.8 5.1
& 0.74 0.71 13.3 12.5 0.95 6.3 10.5
Output energy No variation 1.8 1.9 No variation
RFQ length 1.2 2.0 —

alternating quadrupoles in series can lead to a net focusing effect
for the beam. In accelerator physics, one of the most basic
examples of this is called a FODO cell, thus named for
focusing (F), drift (0), defocusing (D), and again drift (0). This
is schematically depicted in Figure 4.

In order to demonstrate the feasibility of using machine
learning techniques to replicate accelerators, we started by
reproducing the beam dynamics of this focusing/defocusing
FODO lattice. This is the simplest and most basic example
that still features similar transverse beam behavior as in RFQs
but with greatly reduced overall complexity, and was therefore
decided to be a good case to prove the proposed modelling
concept.We computed the FODO cell simulations in OPAL
[33], using beam input parameters as summarized in Table 3.
As shown in Table 6, the generated surrogate model of the FODO
cell is capable of mapping the beam input parameters accurately
to the values of the output emittances (both transversely and
longitudinally) with MAEs of less than 1%, regarding the test
data set.

3.2 FODO Lattice With Varying Cell

Parameters

In addition to manipulating the beam input properties and
simulating the beam through a fixed FODO cell, we also
investigated the case of a variable hardware setup by using the
focusing strengths K1 and K2 of the FODO cell quadrupole
magnets as design variables. A summary of all design variables of
the investigated system is given in Table 4.

This scenario resulted in significantly larger errors compared
to the fixed cell example where variation was restricted to the
input beam properties. A more detailed discussion of this issue is
given later in the discussion section of this paper. The yielded
MAE values can again be found in Table 6.

3.3 Creating a Beam Dynamics Tuning Tool
for an Radiofrequency Quadrupole

Next, we created a surrogate model with the aim to reproduce the
beam dynamics behavior through the RFQ, given a fixed RFQ and
variable LEBT input parameters. As summarized in Table 6, a
very high model accuracy could be achieved (using either PCE or
NN) with values of the normalized MAEs typically being below

1%, regarding transmission and emittances. Corresponding
accuracy plots are shown in Figure 5.

Because executing the surrogate models takes only about 7 -
107" s, given the used computer hardware and software
specification, this method can be used to rapidly model the
RFQ output for different inputs from the LEBT, allowing to
compare simulations and commissioning data in real time. We
have thus been able to create a real time, accurate tool for use
during the commissioning phase of our RFQ.

Furthermore, we were able to use the same surrogate model to
optimize the input beam Twiss parameters (« and f) given a fixed
RFQ setup.

Due to the high-fidelity of the achieved surrogate model, the
intended optimization of the input beam Twiss parameters for
RFQ injection could be performed using a Bayesian optimizer
[35], with the SM as the test function and maximum output
transmission and minimum output emittances as optimization
objectives.

To cross check the optimization results based on the SM, the
found optimum set of Twiss parameters was used to validate the
predicted SM output by PARMTEQM simulations. The optimum
Twiss parameters found for a preliminary revised design of the
IsoDAR RFQ are given in Table 5 together with the predicted
beam output parameters by the SM and the corresponding
PARMTEQM output. Deviations between the simulation and
the SM prediction, i.e., optimization result, are less than 0.2% for
both transmission and emittance values.

3.4 Optimization of the Entire
Radiofrequency Quadrupole Beam
Dynamics Design on the Basis of Surrogate

Models

Ultimately, we used the 14-DVAR RFQ model sample data set to
train PCE and NN based models. Corresponding accuracy plots
can be seen in Figure 6 and achieved MAEs are again
summarized in Table 6.Similar to the previous case, the
obtained surrogate models execute much faster than their
simulation counterparts. Whereas the calculation of a SM
prediction takes around 107> s, a corresponding physics beam
dynamics simulation with PARMTEQM of a short IsoDAR type
RFQ with an electrode length of around 1.3 m consumes up to
around 40s. With a sufficiently large design space, this
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FIGURE 7 | Sensitivity plot for the full RFQ optimization with 14 design variables (DVARS).

significantly reduces the time to find an optimized RFQ beam
dynamics design.

With MAE:s of the predicted output emittances of up to 10%
(the MAEs for the transmission however being noticeably
smaller) we found the surrogate models currently do not
provide decent enough accuracy in any of the considered cases
to perform a full RFQ design optimization. However, these
computationally inexpensive surrogate models can be used to
perform a rough pre-optimization with respect to the beam
output objectives, providing a starting point for fine tuning
optimizations using beam dynamics simulation tools. Using
these methods combined reduces the total computational need
of RFQ optimization and allows to quickly explore different
possible qualitative solution approaches.

4 DISCUSSION

The created surrogate models quickly proved to be a reliable
rapid-use tool for observing the effects of input beam variations
on the output beam properties of a given RFQ. This has been a
useful tool in optimizing the LEBT design, and could be as much
as useful during commissioning and tuning of the LEBT/RFQ
system. Ultimately, we found that highly accurate (< 1% mean
average error, MAE) RFQ surrogate models can be obtained for
the optimization of only the input beam Twiss parameters (2

DVARs).This also matches our experience from previous studies
on the simplistic test case of modelling the beam dynamics in a
FODO lattice under variation of only the beam input parameters.
For this highly simplified case, an optimization based on the
surrogate model could also be performed with small deviations of
the results to the beam dynamics simulation.In general, the use of
neural networks (NN) seems to lead to more accurate surrogate
models compared to polynomial chaos expansion (PCE).

On the other hand, however, the application of the developed
techniques to the full RFQ beam dynamics design optimization
proved problematic due to increased errors in predicted emittance
whenever the space of design variables was expanded to include
physical changes to the RFQ. This problem also already occurred in
the case of the FODO cell. As shown in Figure 6 and summarized in
Table 6, models that include structural changes of the accelerator
hardware system, such as variation of the FODO cell focusing
strengths and the full RFQ optimization, suffer from errors in the
emittances prediction > 10%.In none of the problematic cases did
the error values improve significantly by switching off space charge
(beam dynamics simulation with zero-current). When comparing
the FODO cell example with the full RFQ optimization, it seems that
the higher errors result not from a larger number of design variables,
but are only introduced in case that the design variables affect the
structure of the accelerator itself. While the yielded errors are too high
to do a full hardware optimization of the RFQ system, surrogate
modelling still proved useful to eliminate large areas of the design
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parameter space. With a reduced design space, the accelerator can
then be fine tuned using more accurate, computationally expensive
models in the region of interest. Similar behaviour of the SM’s are
reported in [35]. For example, Figure 13 and Figure 14 (in [35]) show
a comparable difference in accuracy.Future work will include the
investigation of our systems with regards to hidden variables and the
use of other neural network topologies that are not fully connected. It
seems possible that the errors may be further reduced by altering the
structure of the neural network, while maintaining the high
computational speed.

As depicted in Figure 7, the surrogate model lends itself to
perform sensitivity analyses investigating the impact of DVAR
variation on the optimization objectives.

Eventually, this allows for an evaluation of the cell properties
parameterization model and to reduce the number of DVARs by
omitting design variables with little effect on the crucial
optimization objectives.

In case of our specific RFQ, the sensitivity chart (Figure 7) reaveals
that variation of DVARs 9, 10 and 13 (all relating to the function ¢(z)
of the synchronous phase) have the most significant influence on the
transverse emittances, while the longitudinal emittance seems to be
most sensitive to DVAR5 (value of the modulation factor m(z) at the
end of the exponential shaping section). Potential DVAR variations
that might be omitted for the optimization procedure apparently
relate to DVARI (value of the transverse focusing parameter B(z) =
const.) and DVARs 2 and 4 (properties of m(z) in the slow linear
shaping section) as well as DVARs 3 and 6 (properties of m(z) in the
exponential shaping section).

5 CONCLUSION

In this paper, we applied a recently developed surrogate
modelling technique to the optimization of the beam output
quality of RFQ linear accelerators for the first time. We tested our
method on a simple FODO cell (having similar transverse
focusing properties) first and on the IsoDAR RFQ thereafter.
To create the surrogate models, we used polynomial chaos
expansion and deep neural networks. We compared the results
and found that we could very accurately predict the beam
behaviour from varying input beam parameters as it goes
through a fixed accelerator structure, which initially was our
main goal. The trained model is intended to be used as an online
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