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Abstract Over the past two decades, several broadly neutralizing antibodies (bnAbs) that
confer protection against diverse influenza strains have been isolated. Structural and
biochemical characterization of these bnAbs has provided molecular insight into how they bind
distinct antigens. However, our understanding of the evolutionary pathways leading to bnAbs,
and thus how best to elicit them, remains limited. Here, we measure equilibrium dissociation
constants of combinatorially complete mutational libraries for two naturally isolated influenza
bnAbs (CR9114, 16 heavy-chain mutations; CR6261, 11 heavy-chain mutations), reconstructing all
possible evolutionary intermediates back to the unmutated germline sequences. We find that
these two libraries exhibit strikingly different patterns of breadth: while many variants of CR6261
display moderate affinity to diverse antigens, those of CR9114 display appreciable affinity only in
specific, nested combinations. By examining the extensive pairwise and higher-order epistasis
between mutations, we find key sites with strong synergistic interactions that are highly similar
across antigens for CR6261 and different for CR9114. Together, these features of the binding
affinity landscapes strongly favor sequential acquisition of affinity to diverse antigens for CR9114,
while the acquisition of breadth to more similar antigens for CR6261 is less constrained. These
results, if generalizable to other bnAbs, may explain the molecular basis for the widespread
observation that sequential exposure favors greater breadth, and such mechanistic insight will be
essential for predicting and eliciting broadly protective immune responses.

Introduction

Vaccination harnesses the adaptive immune system, which responds to new pathogens by mutat-
ing antibody-encoding genes and selecting for variants that bind the pathogen of interest. How-
ever, influenza remains a challenging target for immunization: most antibodies elicited by vaccines
provide protection against only a subset of strains, largely due to the rapid evolution of the in-
fluenza surface protein hemagglutinin (HA) (Wiley et al., 1981; Smith et al., 2004). After nearly two
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decades of studies, numerous broadly neutralizing antibodies (bnAbs) have been isolated from hu-
mans, with varying degrees of cross-protection against diverse strains (Corti et al., 2017; Throsby
et al., 2008; Dreyfus et al., 2012; Corti et al., 2011; Schmidt et al., 2015). Still, we do not fully under-
stand many factors affecting how and when bnAbs are produced. In particular, affinity is acquired
through a complex process of mutation and selection (Victora and Nussenzweig, 2012), but the
effects of mutations on binding affinity to diverse antigens are not well characterized.

For example, consider two well-studied influenza bnAbs that display varying levels of breadth:
CR9114 is one of the broadest anti-influenza antibodies ever found, neutralizing strains from both
groups of influenza A and strains from influenza B, while CR6261 is limited to neutralizing strains
from Group 1 of influenza A (Throshy et al., 2008; Dreyfus et al., 2012; Ekiert et al., 2009; Ling-
wood et al., 2012). Both antibodies were isolated from vaccinated donors, derive from very similar
germline sequences (IGHV1-69 and IGHJ6), and bind the conserved HA stem epitope (Figure 1-
Figure Supplement 3) (Throsby et al., 2008; Dreyfus et al., 2012; Ekiert et al., 2009). Each antibody
heavy chain has many mutations (18 amino acid changes for CR9114, 14 for CR6261, Figure 1A),
including seven positions that are mutated in both, yet the contributions of these mutations to
affinity against different antigens remain unclear (Dreyfus et al., 2012; Avnir et al., 2014).

Beyond single mutational effects, it remains unknown whether there are correlated effects or
strong trade-offs between binding to different antigens (pleiotropy), or non-additive interactions
between mutations (epistasis). Such epistatic and pleiotropic effects can constrain the mutational
pathways accessible under selection, as has been observed for other proteins (Weinreich et al.,
2006; Starr et al., 2017; Ortlund et al., 2007; Podgornaia and Laub, 2015; Gong et al., 2013; Sailer
and Harms, 2017a; Miton and Tokuriki, 2016; Poelwijk et al., 2019; Bank et al., 2015). Epistasis
in antibody-antigen interactions remains significantly understudied (Adams et al., 2019; Pappas
et al., 2014; Braden et al., 1998) and most deep mutational scanning studies have focused on anti-
gens (Doud et al., 2018; Wu et al., 2020; Starr et al., 2021). In contrast to typical protein evolution,
antibody affinity maturation proceeds by discrete rounds of mutation and selection (Victora and
Nussenzweig, 2012), typically with more than one nucleotide mutation occurring between selective
rounds (Unniraman and Schatz, 2007). In addition, antibodies are inherently mutationally tolerant
(Braden et al., 1998; Chen et al., 1999; Burks et al., 1997, Corti and Lanzavecchia, 2013; Klein et al.,
2013), generating opportunities for interactions that scale combinatorially. Thus, if epistatic and
pleiotropic constraints exist for antibodies, they could affect the likelihood of producing bnAbs
under different antigen selection regimes (Pappas et al., 2074) and may account for the low fre-
quencies of bnAbs in natural repertoires (Corti et al., 2017). Characterizing the prevalence of these
constraints on bnAb evolution may provide valuable insight for improving vaccination strategies
(Yewdell, 2013; Henry et al., 2018).

To date, studies of antibody binding have been limited to small numbers of individual sequences,
deep mutational scans of single mutations, and mutagenesis of small regions (Pappas et al., 2014;
Braden et al., 1998; Burks et al., 1997; Adams et al., 2016; Koenig et al., 2017; Forsyth et al., 2013;
Wu et al., 2017; Xu et al., 2015; Madan et al., 2021; Schmidt et al., 2015), due in part to practi-
cal constraints on library scale and the throughput of affinity assays. This has limited our ability to
comprehensively characterize binding landscapes for naturally isolated bnAbs, which often involve
many mutations spanning framework (FW) and complementarity-determining regions (CDR) (Corti
et al., 2017; Corti and Lanzavecchia, 2013; Klein et al., 2013).

We overcome these challenges by generating combinatorially complete libraries of up to ~ 10°
antibody sequences and assaying their binding affinities in a high-throughput yeast-display system
(Adams et al., 2016). This approach enables us to infer the contributions of individual mutations
as well as hundreds of pairwise and higher-order interactions between mutations, revealing that
these interactions can restrict evolutionary pathways leading to greater breadth. In particular, we
find that mutational effects on binding affinity to diverse antigens display a nested structure, where
increasingly large groups of specific mutations are required to gain affinity to divergent antigens,
resulting in highly constrained paths to broad affinity. This pattern is not observed for more similar
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antigens, where many mutational paths to broad affinity are accessible. Further, these nested pat-
terns of mutational effects provide new molecular insight into why sequential exposure to diverse
antigens often favors greater breadth (Wang et al., 2010; Krammer et al., 2012; Wang et al., 2015;
Wang, 2017, Sachdeva et al., 2020; Molari et al., 2020; Sprenger et al., 2020). Together, this work
provides the first comprehensive characterization of antibody affinity landscapes and advances
our understanding of the molecular constraints on bnAb evolution.

Results

Binding affinity landscapes of CR9114 and CR6261

Here we characterize the binding affinity landscapes of the two well-studied bnAbs noted above:
CR9114 and CR6261. Specifically, we made all combinations of a set of mutations separating the
germline and somatic sequences for CR9114 (16 mutations totaling 65,536 variants) and CR6261
(11 mutations totaling 2,048 variants). These libraries include all heavy-chain mutations in these
antibodies, except a few select mutations distant from the paratope (Figure 1, Figure 1-Figure
Supplement 7, and see Methods). Both antibodies engage antigens solely through their heavy-
chain regions (Dreyfus et al., 2012; Ekiert et al., 2009), and thus are well-suited for yeast display as
single-chain variable fragments (see Methods) (Boder and Wittrup, 1997).

We use the Tite-Seq method (Adams et al., 2016), which integrates flow cytometry and sequenc-
ing (Figure 1-Figure Supplement 1), to assay equilibrium binding affinities of each scFv sequence
in these libraries against select antigens that span the breadth of binding for each antibody (Fig-
ure 1B). For CR6261, we chose two divergent group 1 HA subtypes (H1 and H9; see Figure 1-Figure
Supplement 1), while for CR9114, we chose the three highly divergent subtypes present in the
vaccine (H1 from group 1, H3 from group 2, and influenza B; see Figure 1-Figure Supplement 1)
(Throshy et al., 2008). Inferred affinities outside our titration boundaries (10~'! - 10-% M for H3
and influenza B, 10'2 - 1077 M for H1 and H9) are pinned to the boundary, as deviations beyond
these boundaries are likely not physiologically relevant (Batista and Neuberger, 1998). Antibody
expression is not strongly impacted by sequence identity, although some mutations have modest
effects that may be inversely correlated with their effect on affinity (Figure 1-Figure Supplement 5).
Affinities obtained by Tite-Seq are reproducible across biological triplicates (Figure 1-Figure Supple-
ment 2; average standard error of 0.047 -logK, units across antibody-antigen pairs) and are highly
accurate as verified for select variants by isogenic flow cytometry (Figure 1-Figure Supplement 2)
and by solution-based affinity measurements made by others (Throshy et al., 2008; Dreyfus et al.,
2012; Lingwood et al., 2012; Pappas et al., 2014).

We begin by examining the distribution of binding affinities across antigens for each antibody li-
brary (Figure 7). We observe that most CR9114 variants have measurable affinity to H1 (97%), fewer
to H3 (11%), and still fewer to influenza B (0.3%) (Figure 1C,D). For H1, only a few mutations are
needed to improve from the germline affinity. In contrast, variants are not able to bind H3 unless
they have several more mutations, and many more for influenza B. This hierarchical structure is in
striking contrast to the CR6261 library, in which most variants can bind both antigens (92% for H1,
81% for H9), variants have a similar K, distribution, and many variants display intermediate affin-
ity to both antigens (Figure 1E,F). To visualize how genotypes give rise to the hierarchical structure
of CR9114 binding affinities, we represent the binding affinities for H1 as a force-directed graph.
Here, each variant is a node connected to its 16 single-mutation neighbors, with edge weights in-
versely proportional to the change in H1 binding affinity, such that variants with similar genotype
and K; tend to form clusters (Figure 1G, Figure 1-Figure Supplement 4). Coloring this genotype-to-
phenotype map by the -logK, to each of the three antigens, we see that sequences that bind H3
and influenza B are highly localized and overlapping, meaning that they share specific mutations.
Thus, while many CR9114 variants strongly bind H1, only a specific subset bind multiple antigens.
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Figure 1. Binding landscapes. (A), Sequence alignment comparing somatic heavy chains to reconstructed germline sequences. Mutations under
study (purple, numbered) and excluded mutations (black) are indicated; residues are numbered by IMGT unique numbering. (B), Influenza
hemagglutinin phylogenetic tree with selected antigens and breadth of CR9114 (black box) and CR6261 (gray box) indicated. (C, E), Scatterplots
of the (C) CR9114 library binding affinities against three antigens, with 2D planes shown below, and (E) CR6261 library binding affinities against
two antigens. (D, F), Distributions of library binding affinities for (D) CR9114 and (F) CR6261 for each antigen (grey histogram, right) separated by
number of somatic mutations (boxplots, left). Numbers and percentages of variants with measurable binding are indicated at right. (G),
Force-directed graph of CR9114 H1 -logKp. Each variant (node) is connected to its 16 single-mutation neighbors (edges not shown for clarity);
edges are weighted such that variants with similar genotypes and -logKp, tend to cluster. Nodes are colored by binding affinity to H1 (top;
showing all 65,091 nodes), H3 (lower left inset; showing only the region containing nodes with -logKp > 6), and Flu B (lower right inset; showing
only the region containing nodes with -logKp > 6).

Figure 1-Figure supplement 1. Experimental design and Tite-Seq workflow

Figure 1-Figure supplement 2. Tite-Seq data quality

Figure 1-Figure supplement 3. Antibody-antigen co-crystal structures

Figure 1-Figure supplement 4. Force-directed graph for CR6261

Figure 1-Figure supplement 5. Expression of antibody libraries

Figure 1-Figure supplement 6. Tite-Seq gating strategy

Figure 1-Figure supplement 7. Reversions of excluded mutations

Figure 1-source data 1. CR9114 library -logKp to H1, H3, and influenza B

Figure 1-source data 2. CR6261 library -logKy to H1 and H9

Figure 1-source data 3. Isogenic flow cytometry measurements of -logKp, for select CR9114 and CR6261 variants.
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Mutational effects on binding to diverse antigens

To dissect how mutations drive the structure of these binding landscapes, we next infer specific
mutational effects. We first log-transform binding affinities such that they are proportional to free
energy changes (AGynging): Which should combine additively under the natural null expectation
(Wells, 1990; Olson et al., 2014). We then define a linear model with single mutational effects and
interaction terms up to a specified order (defined relative to the unmutated germline sequence,
see Appendix 2 for alternatives), and fit coefficients by ordinary least squares regression. We use
cross-validation to identify the maximal order of interaction for each antigen and report coeffi-
cients at each order from these best-fitting models (CR9114: fifth order for H1, fourth for H3, first
for influenza B; CR6261: fourth order for H1 and H9; see Methods). We note that the maximum
order of interactions is affected by our inference power, particularly by the number of sequences
with appreciable binding, and so we interpret these models as showing strong evidence of epista-
sis at least up to the order indicated. We explored the possibility of “global” epistasis by inferring a
nonlinear transformation of the -logKy values (Sailer and Harms, 2017b; Otwinowski et al., 2018),
but found that this approach did not significantly reduce the order or number of specific interac-
tion coefficients needed to explain the data (see Appendix 2). We also explored inferring epistasis
up to full order using Walsh-Hadamard transformations; results are qualitatively similar but less
conservative than cross-validated regression (see Appendix 2).

Examining the effect of individual mutations on the germline background (Figure 2A,B), we ob-
serve several mutations that enhance binding to all antigens (e.g. S83F for CR9114), and mutations
that confer trade-offs for binding distinct antigens (e.g. F30S in CR9114 reduces affinity for H1
but enhances affinity for influenza B). Generally, large-effect mutations are at sites that contact
HA (Figure 2C, Figure 2-Figure Supplement 1) (Dreyfus et al., 2012; Ekiert et al., 2009). Consistent
with prior biochemical and structural work, mutations essential for CR9114 breadth are spread
throughout FW3 and the CDRs, forming hydrophobic contacts and hydrogen bonds with residues
in the conserved HA stem epitope (Dreyfus et al., 2012; Avnir et al., 2014). We observe three spe-
cific mutations that are required for binding to H3 (present at over 90% frequency in the set of
binding sequences), likely because they form hydrophobic contacts with HA (K82l and S83F) and
reorient the CDR2 loop (I57S), which interacts with residues and a glycan in H3 that are distinct
from those in H1 (Dreyfus et al., 2012). We also observe eight specific mutations that are required
for binding to influenza B. Many of these breadth-conferring mutations are absent in CR6261, par-
ticularly those in CDR2 (Dreyfus et al., 2012; Ekiert et al., 2009). Notably, these sets of required
mutations in CR9114 exhibit a nested structure: mutations beneficial for H1 are required for H3,
and mutations required for H3 are required for influenza B, giving rise to the hierarchical structure
of the binding landscape (Figure 1C).

Beyond these exceptionally synergistic interactions between required mutations, we find that
epistasis is widespread, accounting for 18-33 percent of explained variance depending on the
antibody-antigen pair (except influenza B, see Methods, Appendix 2). Pairwise interactions are
dominated by a few mutations (e.g. F30S for CR9114 and S35R for CR6261) that exhibit many in-
teractions, both positive and negative, with other mutations (Figure 2D,E). Overall, mutations with
strong pairwise interactions tend to be close in the crystal structure, though there are long-range
pairwise interactions that are likely mediated by interactions with the antigen or conformational
rearrangements (Figure 2F, Figure 2-Figure Supplement 1) (Dreyfus et al., 2012; Ekiert et al., 2009;
Avnir et al., 2014).

High-order epistasis is dominated by a subset of mutations

Our dataset also allows us to resolve higher-order epistasis. In addition to the required mutations,
our models identify numerous strong 3" to 5" order interactions, with a subset of mutations par-
ticipating in many mutual interactions at all orders. For CR9114 binding to H1, this subset consists
of five mutations, distributed across three different regions of the heavy chain (Figure 3A,B). Some
of these mutations likely generate (K82I, S83F) or abrogate (F30S) contacts to HA, and others (I57S,
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Figure 2. First and second order effects. (A, B) First order effects inferred in best-fitting epistatic interaction
models for (A) CR9114 and (B) CR6261. Mutations required for binding (present at over 90% frequency in
binding sequences) have effect sizes denoted as ‘R’ and are removed from inference. Error bars indicate
standard error. (C), First order effects for each site plotted against the contact surface area between the
corresponding somatic residue and HA (left, CR9114; right, CR6261). Sites with notable contact area or effect
size are labeled. Cocrystal structures are also shown; mutations are colored by first-order effect size. (D),
Significant second-order epistatic interaction coefficients for CR9114 mutations (bottom left, H3; top right,
H1). Interactions involving required mutations are shown in dark red. (E), Significant second order coefficients
for CR6261 mutations (bottom left, H9; top right, H1). Significance in (D), (E) indicates Bonferroni-corrected
p-value < 0.05, see Methods. (F), Second-order coefficients for H1 -logKp plotted against the distance
between the respective a-carbons in the crystal structures.

Figure 2-Figure supplement 1. Structural context of first and second order effects

Figure 2-source data 1. Interaction model coefficients for CR9114.

Figure 2-source data 2. Interaction model coefficients for CR6261.

Figure 2-source data 3. Tabulated contact surface area, number of HA contacts, and pairwise distances for
mutations in CR9114 and CR6261.

A65T) may indirectly impact HA binding by reorienting contact residues in CDR2 (Dreyfus et al.,
2012; Avnir et al., 2014). Within this set of five residues, we first illustrate two examples of 3™ or-
der epistasis by grouping sequences by their genotypes at these five sites (Figure 3C). Intriguingly,
some mutations that are deleterious in the germline background (‘- annotations) are beneficial
in doubly-mutated backgrounds (‘+' annotations). For example, mutation F30S is significantly less
deleterious in backgrounds with S83F than in the germline background, suggesting that new hy-
drophobic contacts in FW3 may be able to compensate for the potential loss of contacts in CDR1.
Yet F30S unexpectedly becomes beneficial after an additional mutation 157S in CDR2, indicating
more complex interactions between flexible CDR and FW loop regions (Figure 3B,C) (Dreyfus et al.,
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To see how these high-order interactions drive the overall structure of the binding affinity land-
scape, we return to the force-directed graph, now colored by genotype at these five key sites (Fig-
ure 3D; only points corresponding to genotypes shown in Figure 3C are colored). We see that
these five sites largely determine the overall structure of the map: points of the same color tend
to cluster together, despite varying in their genotypes at the other 11 sites. However, we observe
that interactions with other mutations do exist, as evidenced by separate clusters with the same
color (e.g. the two clusters in teal for 57,65 are distinguished by a positive third-order interaction
with site 64, Figure 3E). These patterns are not confined to the genotypes shown in Figure 3C; if
we color all 32 possible genotypes at the five key sites, we observe the same general patterns (Fig-
ure 3-Figure Supplement 1; an interactive data browser for exploring these patterns of epistasis
in CR9114 is available here). Interactions between these five sites are also enriched for significant
epistatic coefficients (p < 107%; 26 of 31 possible terms are significant, compared to an average of
4 terms among all sets of five sites, Figure 3-Figure Supplement T), including the fifth order inter-
action between all five residues (Figure 3F). Remarkably, these five mutations underlie significant
high-order epistasis for other antigens as well: all five are either required for binding or participate
extensively in interactions for H3 and influenza B (Figure 3-Figure Supplement 3).

Higher-order epistasis in CR6261 is similarly dominated by a subset of mutations in CDR1 and
FW3, at identical or neighboring positions as some key sites for CR9114 (Figure 4A). These mu-
tations exhibit strong diminishing returns epistasis at third and fourth order, counteracting their
synergistic pairwise effects, in a similar manner across both antigens (Figure 4B, Figure 4-Figure
Supplement 1,Figure 4-Figure Supplement 2). Many fourth-order combinations of these mutations
display interaction coefficients of similar magnitude (Figure 4-Figure Supplement 1), though they
may be signatures of even higher-order interactions that we are underpowered to infer.

A common approach to quantify how epistasis constrains mutational trajectories is to count “up-
hill” paths (i.e. where affinity improves at every mutational step from the germline to the somatic
sequence). We find that only a small fraction of potential paths are uphill (0.00005% +/- 0.00004%
for CR9114 binding H1, and 0.2% +/- 0.04% for CR6261 binding H1, as estimated by bootstrap, see
Methods). However, we note that for all antibody-antigen combinations, the somatic sequence is
not the global maximum of the landscape (the best-binding sequence) and some mutations have
deleterious effects on average. Hence, strictly uphill paths are only possible due to sign epistasis,
where normally deleterious mutations have beneficial effects in specific genetic backgrounds.

Overall, we see that mutational effects and interactions between them explain the affinity land-
scapes we observe. For CR9114, binding affinity to H1 can be achieved through different sets of few
mutations with complex interactions. In contrast, a specific set of many mutations with strong syn-
ergistic interactions is required to bind H3, and to an even greater extent, influenza B (Figure 2A),
giving rise to the landscape’s hierarchical structure (Figure 1C). For CR6261, the higher-order inter-
actions are more similar between H1 and H9, which is consistent with the more correlated patterns
of binding affinities between these two antigens (Figure TE).

Affinity to diverse antigens was likely acquired sequentially

The hierarchical nature of the CR9114 landscape suggests that this lineage developed affinity to
each antigen sequentially. Considering the maximum -logK, achieved by sequences with a given
number of mutations (a proxy for time), we see that improvements in H1 binding can be realized
early on, whereas improvements in H3 binding are not possible until later, and even later for in-
fluenza B (Figure 5A). In fact, the nested structure of affinity-enhancing mutations forces improve-
ments in binding affinity to occur sequentially. If selection pressures were also experienced in this
sequence, mutations that improve binding to the current antigen would lead to the genotypes re-
quired to begin improving binding to the next. Indeed, we find that for CR9114, there are more
uphill paths leading to the somatic sequence if selection acts first on binding to H1 and later to H3
and influenza B (Figure 5C). In contrast, for CR6261, improvements in binding can occur early on
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Figure 3. High-order epistasis for CR9114. (A), Total higher-order epistatic contributions of CR9114 mutation
pairs for binding H1. Color bar indicates the sum of absolute values of significant higher-order interaction
coefficients involving each pair of mutations; key epistatic residues indicated by arrows. Significance is given
by Bonferroni-corrected p-value < 0.05, see Methods. (B), Location of key epistatic residues in the CR9114-HA
co-crystal structure colored by region. (C), -logKp distributions for genotypes grouped by their identity at the
five residues indicated in (A), (B), with means indicated as white dots (N = 8, 192 genotypes per violin).
Annotations indicate notable deleterious (') and beneficial (+') mutational effects. (D), CR9114 force-directed
graph from Figure 1G, colored as in (C) by the genotype at the five sites indicated in (A), (B). Genotypes not
shown in (C) are shown in light grey. Data are also available in an interactive data browser at
https://yodabrowser.netlify.app/yoda browser/. (E), Third-order interaction involving site 64 accounts for
distinct clusters (teal) corresponding to genotypes with mutations 57 and 65 in (D). Colors correspond to
mutation groups in (C), (D) (N = 4,096 genotypes per violin). (F), Epistatic interaction coefficients among the
five key sites from (A), (B). Colors for certain groups as in (C), (D); other groups denoted in gray, with notable
terms labeled.

Figure 3-Figure supplement 1. CR9114: interactions between five key sites
Figure 3-Figure supplement 2. CR9114: interactions between other sets of five sites
Figure 3-Figure supplement 3. High-order epistasis for CR9114 binding to H3
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Figure 4. High-order epistasis for CR6261. (A), Total significant epistatic contributions of CR6261 mutation
pairs for binding H1, as in Figure 3A. Significance is given by Bonferroni-corrected p-value < 0.05, see Methods.
(B), Third-order interaction for CR6261 H1 binding between mutations T29P, S35R, and S83F (N = 256
genotypes per violin).

Figure 4-Figure supplement 1. CR6261: interactions between four sites

Figure 4-Figure supplement 2. High-order epistasis for CR6261 binding to H9

for both antigens (Figure 5B) and the number of uphill paths is more similar across single-antigen
and sequential selection pressures (Figure 5D).

To compare antigen selection scenarios more generally, we developed a framework that evalu-
ates the total probability of all possible mutational pathways from germline to somatic, under an
array of antigen selection scenarios (individual, sequential, and mixed). Our framework assumes
that the probability of any mutational step is higher if -logK, increases, but does not necessarily
forbid neutral or deleterious steps; we evaluate a variety of specific forms of this step probability
and find that our major results are consistent (Figure 5-Figure Supplement 1A, see Methods). We
assume that each amino acid substitution occurs in a single mutational step; though there are
amino acid substitutions that must proceed by multiple nucleotide mutations that may occur in a
single round, or over multiple rounds, of somatic hypermutation (Spisak et al., 2020; Unniraman
and Schatz, 2007). Mixed antigen regimes approximate exposure to a cocktail of antigens. We
model these with two approaches: (1) “average”, using the average -logK, across all antigens, and
(2) “random,” using -logK, for a randomly selected antigen at each step (note that using the max-
imum -logK, across antigens would always be trivially favored) (Wang et al., 2015). While these
models simplify the complexities of affinity maturation in vivo (Victora and Nussenzweig, 2012),
especially how affinity relates to B cell lineage dynamics and the mutational bias at the nucleotide
level (Spisak et al., 2020), they provide insight into the relative probabilities of mutational paths
under distinct antigen selection scenarios.

Again we find that the vast majority of likely antigen selection scenarios for CR9114 involve first
H1, followed by H3, followed by influenza B (Figure 5E, Figure 5-Figure Supplement 1B). These re-
sults are underscored by examining improvement in -logK, along the most likely mutational paths
for each scenario (Figure 5G): in the optimal sequential scenario, -logKy can improve substantially
for each antigen in turn, while in an H1-only scenario, the improvements in H1 binding at each step
are much more gradual, reducing the likelihood. The average mixed scenario shows qualitatively
similar paths to the optimal sequential scenario, although with lower overall probability. In the
random mixed scenario, even the best pathways are often unable to improve affinity to the ran-
domly selected antigen, and affinity to antigens not under selection often declines, making these
scenarios much less likely.

Given the optimal sequential selection scenario, the vast majority of genotypes are unlikely evo-
lutionary intermediates to the somatic sequence (Figure 5-Figure Supplement 2). We visualize the
impact of epistasis on mutational order by considering the probability of each mutation to occur
at each mutational step (Figure 51; Figure 5-Figure Supplement 3). The three antigen exposure
epochs exhibit clear differences in favored mutations. Mutations 157S, K82I, and S83F must occur
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Figure 5. Antigen selection scenarios and likely mutational pathways. (A, B), Maximum binding affinity achievable for sequences with a given
number of mutations. For each antigen for (A) CR9114 and (B) CR6261, the maximum observed (circles) and model-predicted (triangles) affinity
for each number of somatic mutations is shown. (C, D), Total number of ‘uphill’ paths for select antigen selection scenarios (colored bars) for (C)
CR9114 and (D) CR6261. Error bars indicate standard error obtained through bootstrap, see Methods. (E, F), Total log probability (in arbitrary
units) of mutational trajectories from germline to somatic sequence for (E) CR9114 and (F) CR6261 under different antigen selection scenarios,
in a moderate selection model. Error bars indicate standard error obtained through bootstrap, see Methods. (G, H), 25 most likely paths for (G)
CR9114 and (H) CR6261, from select scenarios in (E, F); -logK plotted for each antigen. For the random mixed scenario ('R’), a representative
case is shown. ‘A’ indicates the average mixed scenario; 'O’ indicates the optimal scenario. (1, J) Probability of mutation order under optimal
antigen selection scenario ‘O’ for CR9114 (1) and H1 for CR6261 (J). Selection scenarios are as in (E, F) and shown in colored bar at top; the total
probability (through all possible paths) for each mutation to occur at each mutational step is shown as stacked colored bars.

Figure 5-Figure supplement 1. Selection models

Figure 5-Figure supplement 2. Variant probabilities for CR9114 under the optimal ('O’) selection model

Figure 5-Figure supplement 3. Probability of mutation order assuming moderate selection, under other antigen selection scenarios
Figure 5-source data 1. Total probability of mutational trajectories for CR9114 under different antigen selection scenarios.

Figure 5-source data 2. Total probability of mutational trajectories for CR6261 under different antigen selection scenarios.
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early, due to their strong synergistic interactions for all three antigens. In addition, we see that F30S
is unlikely to happen very early (due to its sign epistasis under H1 selection) as well as unlikely to
happen very late (due to its strong benefit under influenza B selection).

In contrast, for CR6261, all selection scenarios have relatively similar likelihood (Figure 5F, Fig-
ure 5-Figure Supplement 1C). Among sequential scenarios, however, those beginning with H1 are
more likely than those beginning with H9, as the first two mutational steps can improve affinity to
H1 more than H9, and mutations late in maturation can improve affinity to H9 more than H1 (Fig-
ure 1F, Figure 5B). Still, unlike CR9114, in both single antigen and mixed scenarios, there are many
likely paths that continually improve in binding to both antigens (Figure 5H). Initially the order of
mutations is highly constrained due to strong synergistic epistasis, and differences between selec-
tion scenarios reflect differences in mutational effects between antigens (Figure 5), Figure 5-Figure
Supplement 3). We note that T29P is highly likely to occur first in scenarios that begin with H1, as
this is the only single mutation that can improve H1 affinity, albeit rather modestly.

Discussion

Overall, we find that evolutionary pathways to bnAbs can be highly contingent on epistatic and
pleiotropic effects of mutations. Specifically, the acquisition of breadth for CR9114 is extremely
constrained and is likely to have occurred through exposure to diverse antigens in a specific or-
der, due to the structure of correlations and interactions between mutational effects. In contrast,
CR6261 could have acquired affinity to H1 and H9 in a continuous and simultaneous manner, per-
haps because these antigens are more similar; since H9 is not a commonly circulating strain, this
breadth was likely acquired by chance (Pappas et al., 2014).

We note that we cannot conclusively determine how CR9114 and CR6261 evolved in vivo. The
isolation of these specific antibodies from phage display libraries (Throsby et al., 2008; Dreyfus
et al., 2012) was likely biased by the HA subtypes used for screening, and although unlikely, may
have introduced mutations during PCR amplification. Regardless, these antibody sequences oc-
cupy regions of sequence space that are useful for understanding the relationship between se-
quence, affinity, and breadth. By characterizing their binding landscapes, we find that epistasis
and trade-offs constrain the mutational pathways to these specific somatic sequences and their
associated breadth. Indeed, we find that not all of the observed mutations are required to con-
fer broad affinity, and future work is needed to explore what alternative pathways to breadth
might be accessible through other mutations. It is also worth noting that selection pressure to
bind the HA stem epitope on virions may be different from pressure to bind soluble recombinant
HA, though several studies have found anti-stem antibody affinity to recombinant HA to be indica-
tive of viral neutralization (Dreyfus et al., 2012; Corti et al., 2011; Lingwood et al., 2012). Further,
stem-targeting bnAbs and their germline precursors have been characterized as polyreactive (Ba-
jJic et al., 2019; Guthmiller et al., 2020) and thus likely experience additional selection pressures
that are not captured by our measurements and models, such as negative selection against au-
toreactivity. Though we cannot determine which specific antigens were involved in the selection
of these antibodies in vivo, the diverse HA subtypes we employ capture variation representative
of circulating influenza strains and thus serve as useful probes of varying levels of breadth (Corti
et al., 2017). Future work integrating these measurements of affinity and breadth with measure-
ments of stability and polyreactivity will provide important insight into the molecular constraints
of bnAb evolution.

Notably, the landscapes characterized here are among the largest combinatorially complete
collections of mutations published to date. In some respects, our observations of high-order inter-
actions are consistent with earlier work in other proteins. In particular, epistasis has been found
to affect function and constrain evolutionarily accessible pathways across functionally and struc-
turally distinct proteins (Weinreich et al., 2006; Starr et al., 2017; Ortlund et al., 2007; Podgornaia
and Laub, 2015; Gong et al., 2013; Sailer and Harms, 2017a; Miton and Tokuriki, 2016; Poelwijk
et al., 2019; Bank et al., 2015). Further, pairwise and high-order epistasis appear to be common
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features of binding interfaces, such as enzyme-substrate and receptor-ligand interactions (Wein-
reich et al., 2006; Starr et al., 2017; Ortlund et al., 2007; Podgornaia and Laub, 2015; Sailer and
Harms, 2017a; Miton and Tokuriki, 2016), and interacting mutations are often spaced in both se-
qguence and structure, underscoring the complexity of protein-protein interfaces (Podgornaia and
Laub, 2015; Adams et al., 2019; Braden et al., 1998; Esmaielbeiki et al., 2016; Rotem et al., 2018). On
the other hand, the strongly synergistic, nested mutations crucial for CR9114 breadth are unusual,
perhaps due to the nature of antibody-antigen interfaces or to the unique dynamics of affinity mat-
uration (Victora and Nussenzweig, 2012). Together, these observations suggest that interactions
between multiple mutations, such as those we characterize here, could play a substantial role in
affinity maturation and may contribute to the rarity of bnAbs in natural repertoires.

Our findings provide molecular insight into the emerging picture of how selection can elicit
broad affinity, illustrated by a substantial recent body of work ranging from in vivo experimental
approaches (Krammer et al., 2012; Wang et al., 2010) to quantitative modeling of immune sys-
tem dynamics (Wang et al., 2015; Wang, 2017; Sachdeva et al., 2020; Molari et al., 2020; Sprenger
et al., 2020). These diverse studies often find that mixed-antigen regimens are less effective than
sequential regimens at eliciting bnAbs. Our results demonstrate that, at least in part, this may be
due to the intrinsic structure of the mutational landscape, defined by the complex interactions of
mutational effects across antigens. With more studies of binding landscapes for diverse antibodies,
we could better understand how such features generalize between different germline sequences,
somatic mutation profiles, and antigen molecules. These insights will be valuable for leveraging
germline sequence data and antigen exposure information to predict, design, and elicit bnAbs for
therapeutic and immunization applications.
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Methods and Materials

Antibody library production

Germline sequence reconstructions

For CR9114, we obtained the somatic heavy chain nucleotide sequence from Dreyfus et al. (2012)
(GenBank JX213639.1) and reconstructed the germline nucleotide sequence using IMGT (Giudicelli
et al., 2006) and IgBLAST (Ye et al., 2013). Both methods assigned the same V-gene and J-gene
alleles (IGHV1-69*06 and IGH)6*02), but there is ambiguity in the D-gene assignment and at the
V-D junction, particularly at site 109. The preferred IMGT junction alignment assigns a mutation
here, ST09N, while a different junction alignment from IgBLAST does not. Because of the inherent
difficulty of reconstructing mutations in the junction region, especially in antibodies with a short
D region, we chose the alignment without the mutation at site 109. Our reconstructed germline
nucleotide sequence is available in Supplemental File 12. We then took the resulting germline and
somatic amino acid sequences, as shown in Figure 1A, and constructed new nucleotide sequences
codon-optimized for yeast.

For CR6261, the somatic and reconstructed germline heavy chain amino acid sequences were
publishedin Lingwood et al. (2012). We used these sequences, similarly constructing codon-optimized
nucleotide sequences for expression in yeast. The original somatic nucleotide sequence is also
available (GenBank HI919029.1).

We note that all antibody libraries and clonal strains were constructed using somatic forms of
the light chain, as these antibodies were isolated by combinatorial phage display (Throshy et al.,
2008; Dreyfus et al., 2012), and so it is not possible to infer the naturally paired germline light
chain sequence. Additionally, the CR9114 and CR6261 light chains were previously determined
not to impact binding (Lingwood et al., 2012; Dreyfus et al., 2012; Ekiert et al., 2009). The somatic
light chain sequence for CR9114 was obtained from Dreyfus et al. (2012) (GenBank JX213640.1),
and that for CR6261 was obtained from Throsby et al. (2008) (GenBank HI919031.1).

Mutation selection

CR9114 contains a total of 18 amino acid substitutions between the somatic variant and the re-
constructed germline sequence. However, a library of 2'% = 262, 144 variants would be costly and
time-consuming to produce and assay via our methods. We therefore identified 2 mutations that
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were distant from antigen contacts in the crystal structure: A25S and E51D (Dreyfus et al., 2012).
We measured binding affinities for somatic sequences with and without these two mutations, and
found that these variants had comparable affinities for both H1 and H3 (Figure 1-Figure Supple-
ment 7). Although these mutations may have some small impact on binding, especially in combi-
nation with others, excluding them allowed for a simpler cloning strategy and a more manageable
library size.

Similar to the CR9114 library design, we reduced the number of mutations present in the
CR6261 library by excluding 3 mutations that were distant from antigen contacts in the crystal struc-
ture: 6QE, L50P, and V101M (Ekiert et al., 2009). We validated the marginal contribution of these
mutations to binding by measuring the binding affinities for the somatic sequence with and with-
out these mutations reverted to the respective germline residue (Figure 1-Figure Supplement 7).

Yeast display plasmid and strains
To generate clonal yeast display strains and libraries for CR9114, we cloned scFv constructs (V, -
Ser(Gly,Ser);-V-Myc) into the pCT302 plasmid (Midelfort et al., 2004) (kind gift from Dane Wittrup;
Addgene, Watertown, MA, #41845). For the clonal CR9114 somatic and germline strains, gene
blocks corresponding to the somatic or inferred germline sequences were cloned into pCT302 by
Gibson Assembly (Gibson et al., 2009) (plasmid maps in Supplemental Files 4-5). For producing the
plasmid backbone required for Golden Gate library generation (described below), we removed an
existing Bsa-1 site from the pCT302 plasmid by site-directed mutagenesis (Agilent, Santa Clara, CA,
#200521) and replaced the V, domain with the ccdB gene. To generate clonal yeast strains, Gibson
Assembly products were transformed into electrocompetent DH10B E. coli cells, and the resulting
plasmids were mini-prepped and Sanger sequenced. Following sequence confirmation, plasmids
were transformed into EBY100 yeast cells (ATCC #MYA-4941) as described in the high efficiency
yeast transformation protocol (Gietz and Schiestl, 2007). Transformants were plated on SDCAA-
agar (1.71 g/L YNB without amino acids and ammonium sulfate (Sigma-Aldrich #Y1251), 5 g/L am-
monium sulfate (Sigma-Aldrich #A4418), 2% dextrose (VWR #90000-904), 5 g/L Bacto casamino
acids (VWR #223050), 100 pg/L ampicillin (VWR #V0339), 2% Difco Noble Agar (VWR #90000-774))
and incubated at 30°C for 48 h, single colonies were restruck on SDCAA-agar and again incubated
at 30°C for 48 h, and the resulting clonal yeast strains were verified to have the construct of interest
by colony PCR. Construction of the yeast libraries is described below. All yeast strains were grown
to saturation in SDCAA at 30°C, supplemented with 5% glycerol, and stored at -80°C.

CR6261 clonal yeast display strains and libraries were generated in an identical manner to that
of CR9114, except where noted below (see Supplemental Files 6-7 for plasmid maps corresponding
to the germline and somatic sequences).

Golden Gate assembly
For CR9114, due to the number of mutations required and their positions along the heavy chain
coding sequence, we designed a library cloning strategy using Golden Gate combinatorial assembly
(Engler et al., 2008). We divided the heavy chain coding region into 5 roughly equal fragments,
ranging from 79 to 85 bp and each containing between 1 and 5 mutations. We added Bsal sites and
additional overhangs to both ends of each fragment sequence, with cut sites carefully chosen so
that the 5 fragments will assemble uniquely in their proper order within the plasmid backbone. For
each fragment with » mutations, we then ordered 2" individual DNA duplexes with each possible
combination of mutations (ranging from 2 to 32 versions for each fragment, a total of 66 fragments)
from IDT (Coralville, 1A) (see Supplemental File 2). By pooling the versions of each fragment in
equal volumes, then pooling the 5 fragment pools in equimolar ratios, we obtained a randomized
fragment mix containing all 2!¢ sequences present at approximately equal frequencies.

In addition to the fragment mix, we prepared the plasmid backbone for the Golden Gate reac-
tion. We created a version of the yeast display plasmid with the counter-selection marker ccdB in
place of the heavy chain sequence, with flanking Bsal sites (see above). We performed Golden Gate
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cloning using Bsal-HFv2 (NEB, Ipswich, MA, #R3733) following the manufacturer recommended
protocol, with a 5:1 molar ratio of the fragment insert pool to plasmid backbone.

We transformed the assembly mix into electrocompetent E. coli (DH10B) via electroporation in
10 x 50 pL cell aliquots. We recovered each transformation in 5 mL SOC (2% tryptone, 0.5% yeast
extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl,, 10 mM MgSO,, 20 mM glucose) at 37°C for 1h, and
then transferred each to 100 mL of molten LB (1% tryptone, 0.5% yeast extract, 1% NaCl) containing
0.3% SeaPrep agarose (VWR, Radnor, PA #12001-922) spread into a thin layer in a 1L baffled flask
(about 1 cm deep). The mixture was allowed to set on ice for an hour, after which it was kept for
18 hours at 37°C to allow for dispersed growth of colonies in 3D. We observed ~ 3 x 10’ colonies
per aliquot, for a total of ~ 3 million transformants. After mixing the flasks by shaking for 1h, we
pelleted the cells and prepared plasmid by standard midiprep (Zymo Research, Irvine, CA, D4201),
from which we obtained >120 pg of purified plasmid.

For CR6261, we designed a library cloning strategy also using Golden Gate combinatorial assem-
bly, but with fragments created by PCR instead of purchased. We divided the heavy chain coding
region into 3 roughly equal fragments, each containing between 2 and 5 mutations. We designed
these fragments such that the mutations they contain are close to the 3’ or 5’ ends and can thus
be easily incorporated by PCR. PCR primers included mutations, Bsal sites, and unique overhangs
chosen so that the 3 fragments would assemble uniquely in their proper order within the plasmid
backbone. For each version of the three fragments, we generated dsDNA by PCR (52 PCR reactions
in total; see Supplemental File 3 for primer sequences). By pooling all versions of each fragment
in equal volumes, then pooling the 3 fragment pools in equimolar ratios, we obtain a randomized
fragment mix that, when ligated in the Golden Gate reaction, produces all of the 2!! sequences
present at approximately equal frequencies.

In addition to the fragment mix, we prepared the plasmid backbone for the Golden Gate reac-
tion. We created a version of the yeast display plasmid with the counter-selection marker ccdB in
place of the 3-fragment sequence, with flanking Bsal sites. We performed Golden Gate cloning us-
ing Bsal-HFv2 (NEB #R3733) following the manufacturer recommended protocol, with a 7:1 molar
ratio of fragment inserts to plasmid backbone.

The transformation of the CR6261 library into E. coli was conducted in a similar fashion to that
of CR9114, except that 8x50 pL cell aliquots were transformed, and 600,000 colonies were pooled
for plasmid midiprep.

Yeast library production
We then transformed the CR9114 plasmid library into EBY100 cells by standard high-efficiency pro-
tocols (Gietz and Schiestl, 2007). We recovered transformants in molten SDCAA (1.71 g/L YNB with-
out amino acids and ammonium sulfate (Sigma-Aldrich #Y1251), 5 g/L ammonium sulfate (Sigma-
Aldrich, St. Louis, MO, #A4418), 2% dextrose (VWR #90000-904), 5 g/L Bacto casamino acids (VWR
#223050), 100 pg/L ampicillin (VWR # V0339)) containing 0.35% SeaPrep agarose (VWR #12001-
922) spread into a thin layer (about 1 cm deep). The mixture was allowed to set on ice for an hour,
after which it was kept for 48 hours at 30°C to allow for dispersed growth of colonies in 3D. From 5
such flasks, we obtained ~700,000 colonies (>10 times the library diversity). After mixing the flasks
thoroughly by shaking for 1h, we grew cells in 5-mL tubes of liquid SDCAA for 5 generations and
froze the saturated culture in 1-mL aliquots with 5% glycerol.

The CR6261 yeast library was generated in a manner identical to that of CR9114, except that
~60,000 colonies were pooled due to the smaller library size.

Isogenic strain production

In addition to the full library, for both CR9114 and CR6261 we assayed a small number of variants by
low-throughput flow cytometry for Tite-Seq validation. Any individual variant in the library can be
produced in the same manner as described above: we simply selected the DNA duplex fragments
corresponding to each desired variant and set up an individual Golden Gate reaction. The resulting
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assembled plasmid was transformed into E. coli, mini-prepped, and transformed into EBY100 in
the same manner as described above. We verified the sequence identity of each variant by Sanger
sequencing the entire scFv sequence.

We also constructed isogenic strains for validation experiments with genotypes that are not
present in the full library. For CR9114, to test the impact of excluding mutations A24S and E46D,
we constructed a strain containing the remaining 16 somatic mutations by cloning a gene block of
the corresponding V,, sequence into the germline CR9114 pCT302 plasmid via Gibson Assembly
(Figure 1-Figure Supplement 7). For CR6261, we similarly constructed a strain with the Q6E, L50P,
and V101M mutations reverted.

Antigen production

Choice of HA antigens

CR9114 was isolated from pooled PBMC from three donors who had received the trivalent 2006 in-
fluenzavaccine (Throsby et al., 2008; Dreyfus et al., 2012), which contained A/New Caledonia/20/1999
(HTN1), A/Wisconsin/67/2005 (H3N2), and B/Malaysia/2506/2004 (Victoria lineage) (Ekiert et al.,
2017). CR6261 was isolated from pooled PBMC from the same three donors, plus an additional
seven donors who did not receive the vaccine (Throshy et al., 2008). Because PBMC were iso-
lated only 7 days after vaccination, though it is possible that CR6261 and CR9114 matured in re-
sponse to these specific antigens, it is more likely that the vaccine elicited memory recall of these
antibodies (Victora and Nussenzweig, 2012). Here, we chose to measure binding affinities to di-
verse antigens spanning the range of breadth for both CR9114 and CR6261. CR9114 neutralizes
strains across influenza A (groups 1 and 2) and influenza B, so we measured affinities to one strain
from each of these groups, and selected vaccine-like strains: A/New Caledonia/20/1999 (H1N1),
A/Wisconsin/67/2005 (H3N2), and B/Ohio/1/2005 (Victoria lineage). CR6261 neutralizes strains
across influenza A group 1, thus we measured affinities to two strains from distinct subtypes within
group 1: A/New Caledonia/20/1999 (H1N1) and A/Hong Kong/1073/1999 (H9N2). We note that
CR9114 indeed binds A/Hong Kong/1073/1999 (HON2) (Dreyfus et al., 2012), but CR9114 variant
affinities for this strain were not measured here, as we prioritized measurements to antigens that
span the breadth of each antibody.

HA cloning, expression, and purification.

Trimeric hemagglutinin (HA) antigen was produced as previously described (Ekiert et al., 2011,
Dreyfus et al., 2012; Margine et al., 2013). Briefly, the HA ectodomain (Influenza A: residues 11-329
of HA1 and 1-176 of HA2 (H3 numbering); Influenza B: residues 1-523) of Influenza A/New Cale-
donia/1999 H1, Influenza A/Hong Kong/1999 H9, Influenza A/Wisconsin/2005 H3, and Influenza

B/Ohio/2005, with N-terminal gp67 signal peptide and C-terminal biotinylation site (GGGLNDIFEAQKIEWHE),

thrombin cleavage site, trimerization domain and His, tag, were cloned into pFastbac (plasmid
maps in Supplemental Files 8-11). Recombinant bacmid was generated using the ThermoFisher
Bac-to-Bac kit (ThermoFisher, Waltham, MA, #10359016). Sf9 cells (ThermoFisher #B82501, not au-
thenticated but verified to be mycoplasma-negative) were then transfected (ThermoFisher #A38915,
not authenticated but verified to be mycoplasma-negative) with the resulting bacmids, and PO HA-
baculovirus was harvested 7 days post-transfection by clarifying viral supernatant at 1,000 x g for
10 min. HA-baculovirus was then amplified twice by successively infecting 187 million Sf9 cells
with 100 pL of viral supernatant and incubating in a humidified incubator at 28°C for 12 days. To
induce HA expression, 105 million High-Five cells (ThermoFisher #B85502) were resuspended with
15 mL P2 HA-baculovirus, incubated for 20 minutes at room temperature, and then transferred to
a 1 L non-baffled flask with 200 mL Corning Express-Five media (ThermoFisher #10486025) sup-
plemented with 18 mM L-glutamine (VWR #45000-676). Expression cultures were incubated in a
shaking incubator at 28°C and 110 rpm for 48 hours, after which HA-containing media was clari-
fied by spinning first at 1,000 x g for 5 min at 4°C, and then by spinning the resulting supernatant
again at 4,000 x g for 20 min at 4°C. The clarified media was then dialyzed into PBS (VWR #45000-
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448) by performing 4 x 2-hour 10-fold buffer exchanges to remove metal chelators from culture
media. Dialyzed media was then combined with 10 mL equilibrated NiNTA resin (ThermoFisher
#R90101), gently shaken for 3 hours at 4°C, and loaded onto a column. The resin was washed first
with 15 column volumes Wash Buffer 1 (50 mM Tris pH 8 at 4°C, 300 mM KCI, 10 mM imidazole)
and subsequently with 15 column volumes Wash Buffer 2 (50 mM Tris pH 8 at 4°C, 300 mM KCl,
20 mM imidazole). HA was eluted from the resin after 10 minutes incubation with Elution Buffer
(50 mM Tris pH 8 at 4°C, 300 mM KCl, 250 mM imidazole). HA was then buffer exchanged into PBS
using 10 KDa Amicon Ultra Centrifugal Filters (Millipore Sigma, Burlington, MA #UFC901008) and
concentrated to at least 1 mg/mL for downstream biotinylation.

BirA expression and purification.

BirA was expressed and purified as previously described (Ekiert et al., 2011). Briefly, pET21a-BirA
expression plasmid (Howarth et al., 2005) (kind gift from Alice Ting; Addgene #20857) was trans-
formed into BL21 (DE3). Transformed BL21 cells were grown in 4 L baffled flasks with 1 L low-salt
LB medium (5 g/L NaCl, 5 g/L yeast extract (VWR #90000-722), 10 g/L tryptone (VWR #90000-286))
at 37°Cto an OD (600 nm) of ~0.8. The culture was then moved into cold water to bring it to 23°C,
IPTG was added to a final concentration of 1 mM, and the culture was incubated at 23°C for ~16
hours. The culture was then harvested by centrifugation (3,000 x g, 10 min), resuspended in 30
mL lysis buffer (50 mM Tris pH 8 at 4°C, 300 mM KCl, 10 mM imidazole, EDTA-free protease in-
hibitor cocktail tablet (Millipore Sigma #4693159001)), lysed by sonication (Branson Sonifier 450),
and shaken at 4°C for 30 min. Lysate was clarified by spinning at 25,000 x g for 1h, and then the
supernatant was incubated with 5 mL NiNTA resin at 4°C for 3 h with gentle shaking. The resin
was pelleted by spinning at 500 x g for 5 min and washed twice by gentle shaking with 35 mL lysis
buffer at 4°C for 30 min. Protein was eluted with 20 mL Elution Buffer (50 mM Tris pH 8 at 4°C, 300
mM KCl, 250 mM imidazole), buffer exchanged into Storage Buffer (50 mM Tris pH 7.5 at 4°C, 200
mM KCl, 5% glycerol) using 10 KDa Amicon Ultra Centrifugal Filters (Millipore Sigma #UFC901008),
flash frozen in liquid nitrogen, and stored in single-use aliquots at -80°C.

Biotinylation and HA-biotin quality control.

Purified hemagglutinin was biotinylated as previously described (Fairhead and Howarth, 2015;
Ekiert et al., 2011). Briefly, 100 pL HA (> 1 mg/mL) was incubated with 0.5 pL 1 M MgCl,, 2 pL
100 mM ATP, 0.5 pL 50 mM biotin, and 2.5 pL BirA (10 mg/mL). This was mixed by gentle pipetting
and incubated at 30°C with gentle rocking. After 1 h incubation, equivalent amounts of ATP, BirA,
and biotin were added to the reaction, which was incubated for an additional hour at 30°C. Follow-
ing the 2 h incubation, the 100 pL reaction was exchanged thrice into 15 mL PBS using a 50 KDa
MWCO buffer exchange column (Millipore Sigma #UFC905008). The degree of biotinylation was
then assessed by a streptavidin gel-shift assay, as previously described (Fairhead and Howarth,
2015). Briefly, 10-fold molar excess streptavidin (Millipore Sigma #189730) was added to 4 pg bi-
otinylated HA and incubated at room temperature for 5 minutes prior to running on SDS-PAGE.
Gels were transferred to nitrocellulose membranes and probed with mouse anti-His monoclonal
antibodies (ThermoFisher #R930-25) and Goat-anti-mouse secondary antibodies (LiCor, Lincoln,
NE, Cat#925-32210). HA was verified to be > 80% biotinylated by densitometry.

Tite-Seq assays

Tite-Seq was performed essentially as previously described (Adams et al., 2016), with some mod-
ifications as detailed below. For each antibody-antigen pair, three replicate Tite-Seq assays were
performed on different days.

Induction of antibody expression
On day 1, yeast scFv libraries, as well as germline and somatic clonal strains, were thawed by in-
oculating 5 mL SDCAA (1.71 g/L YNB without amino acids and ammonium sulfate (Sigma-Aldrich
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#Y1251), 5 g/L ammonium sulfate (Sigma-Aldrich #A4418), 2% dextrose (VWR #90000-904), 5 g/L
Bacto casamino acids (VWR #223050), 100 pg/L ampicillin (VWR # V0339)) with 150 pL glycerol
stock (saturated culture with 5% glycerol) and rotated at 30°C for 20 h. On day 2, yeast cultures
were back-diluted to OD600 = 0.2 in 5 mL SDCAA and rotated at 30°C for approximately 4 h, or until
reaching log phase (OD600 = 0.4 - 0.8). 1.5 mL log-phase cells were then pelleted, resuspended in
4 mL SGDCAA (1.71 g/L YNB without amino acids and ammonium sulfate (Sigma-Aldrich #Y1251),
5 g/L ammonium sulfate (Sigma-Aldrich #A4418), 0.2% dextrose (VWR #90000-904), 1.8% galac-
tose (Sigma-Aldrich #G0625), 5 g/L Bacto casamino acids (VWR #223050), 100 pg/L ampicillin (VWR
#V0339)), and rotated at room temperature for 20-22 h.

Primary antigen labeling

On day 3, 20-22 hours post-induction, yeast cultures were pelleted, washed twice with 0.1% PBSA
(VWR #45001-130; GoldBio, St. Louis, MO, #A-420-50), and resuspended to an OD600 of 1. 700 pL
of OD1 yeast cells were labeled with biotinylated HA at each of eleven antigen concentrations (half-
log increments spanning 1 pM - 100 nM for H1 and H9, and 10 pM - 1 uM for H3 and influenza B, as
well as no HA), with volumes adjusted such that the number of antigen molecules was in ten-fold
excess of antibody molecules (assuming 50,000 scFv/cell). Yeast-HA mixtures were rocked at 4°C
for 24 h.

Secondary labeling

On day 4, yeast-HA complexes were pelleted by spinning at 3,000 x g for 10 minutes at 4°C, washed
twice with 5% PBSA + 2 mM EDTA, and simultaneously labeled with Streptavidin-RPE (1:100, Thermo
Fisher #5866) and anti-cMyc-FITC (1:50, Miltenyi Biotec, Somerville, MA, #130-116-485) at 4°C for
45 minutes. Following secondary labeling, yeast were washed twice with 5% PBSA + 2 mM EDTA,
and left on ice in the dark until sorting.

Sorting and recovery

Yeast were sorted on a BD FACS Aria lllu, equipped with 405 nm, 440 nm, 488 nm, 561 nm, and
635 nm lasers, and an 85 micron fixed nozzle. Prior to sorting, single-color controls were used
to compensate for the minimal FITC overlap with PE. Single cells were gated by FSC vs SSC, and
then this population was sorted either by expression (FITC) or by expression and binding (PE). For
all sorts, at least ten-fold excess of the library diversity was sorted (~1.6 million cells for CR9114;
~500,000 cells for CR6261). For the expression sorts, singlets were sorted into 8 equivalent FITC log-
spaced gates. For the binding sorts, FITC-positive cells were sorted into 4 PE bins (the PE-negative
population comprised bin 1, and the PE-positive population was split into three equivalent log-
spaced bins 2-4; see Figure 1-Figure Supplement 6). Polypropylene collection tubes were coated
and filled with 1 mL YPD supplemented with 1% BSA and placed on ice until recovery. Sorted cells
were pelleted by spinning at 3,000 x g for 10 minutes, and supernatant was removed by pipette
to avoid disturbing the pellets. Pellets were then resuspended in 4 mL SDCAA, a small amount
was plated on SDCAA-agar to quantify recovery efficiency, and cultures were rocked at 30°C until
reaching late-log phase (OD600 = 0.6 - 1.2).

Sequencing library preparation

1.5 mL of late-log yeast cultures were pelleted and scFv plasmid was extracted using Zymo Yeast
Plasmid Miniprep Il (Zymo Research # D2004), per the manufacturer’s instructions, and eluted in
10 pL elution buffer. Heavy-chain amplicon sequencing libraries were prepared by a two-step PCR
as previously described (Ba et al., 2019). In the first PCR, unique molecular identifiers (UMI), inline
indices, and partial Illumina adapters were appended to the heavy chain through 3-5 amplification
cycles to minimize PCR amplification bias. In the second PCR, the remainder of the lllumina adapter
and sample-specific lllumina i5 and i7 indices were appended through 35 amplification cycles (see
Supplemental File 1 for primer sequences). The first PCR used 5 pL plasmid DNA as template in
a 25 pL reaction volume, with Q5 polymerase according to the manufactuer’s instructions (NEB
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# M0491L), and was incubated in a thermocycler with the following program: 1. 60s at 98°C, 2.
10s at 98°C, 3. 30s at 66°C, 4. 30s at 72°C, 5. GOTO 2, 2-4x, 6. 60s at 72°C. PCR products were
then combined with carrier RNA and purified by 1.1X Aline beads (Aline Biosciences #C-1003-5),
and eluted in 35 pL elution buffer. 33 pL of the elution was used as input for the second PCR,
in a total volume of 50 pL using Kapa polymerase (Kapa Biosystems #KK2502) according to the
manufacturer’s instructions, and incubated in a thermocycler with the following program: 1. 30s
at 98°C, 2. 20s at 98°C, 3. 30s at 62°C, 4. 30s at 72°C, 5. GOTO 2, 34x, 6. 300s at 72°C. The resulting
sequencing libraries were purified by 0.85X Aline beads, amplicon size was verified to be ~500 bp
by running on a 1% agarose gel, and amplicon concentration was quantified by a fluorescent DNA-
binding dye (Biotium, Fremont, CA, #31068, per manufacturer’s instructions). Amplicons were then
pooled for each gate according to the number of sorted cells to ensure even sequencing coverage.
The pool was further size-selected by a two-sided Aline bead cleanup (0.55-0.85X), and the final pool
size was verified by Tapestation 5000 HS and 1000 HS. Final sequencing library concentration was
determined by Qubit fluorometer and sequenced on an Illlumina NovaSeq S2 or Miseq v3 (2x150)
with 5% PhiX.

Sequencing data processing

We first processed our raw sequencing reads to identify and extract the indexes and mutational
sites, discarding priming regions and the constant regions between mutations. To do so, we de-
veloped custom Python scripts using the approximate regular expression library regex (Barnett,
2013), which allowed us to handle complications in sequence parsing that arise from the irregular
lengths of the indices and from sequencing errors. We accept sequences that match the entire
read (with no restrictions on bases at mutational sites) within the following mismatch tolerances:
2 mismatches in the multiplexing index, 2 mismatches in the priming site, and 15 substitution mis-
matches within the 170 bases of constant antibody sequence.

We then examine the mutational sites to call germline or somatic alleles, producing binary geno-
types ('0’ for germline or ‘1’ for somatic at each position). We require the exact germline or somatic
sequence at every site: if there are any substitution errors in any of the mutation sites, the entire
read is rejected. While it is possible to perform error correction based on Hamming distance to
rescue reads with a few substitution errors, we find that on average only <8% of reads per sample
contain any errors, and so we adopt the conservative approach of requiring perfect matching.

We next discarded sequencing reads with any mismatched indices (four total indices from the
two PCR reactions), as well as reads with duplicate UMI sequences. Counts for each genotype
were then tabulated, producing the final counts used for binding affinity inference (see below). On
average, across all antigens and replicates, we obtain a mean coverage of ~350 for CR9114 and
~950 for CR6261, and a median coverage of ~250 for CR9114 and ~900 for CR6261.

Isogenic validation

Induction of scFv surface display, primary labeling, and secondary labeling of isogenic strains were
performed identically to the Tite-Seq assay, except yeast cell and antigen volumes were scaled
down by a factor of 10. Yeast cell FITC (scFv expression) and R-PE (HA binding) fluorescence inten-
sity was assayed on a BD LSR Fortessa equipped with 4 lasers (440, 488, 561, and 633 nm). The
equilibrium binding affinities (K,)) for each variant are inferred by fitting the log of a Hill function
to the mean log R-PE fluorescence of scFv-expressing (FITC+) singlet yeast cells:

mean log fluorescence =1 A ¢ +B, |, 1
g Oglt)( SC+KD,5 s ( )

where ¢ is the antigen concentration in molar units, A, is the increase in fluorescence due to satu-
ration with antigen, B, is the background fluorescence, and K, ; is the equilibrium binding affinity.
All isogenic measurements were performed in 2-3 biological replicates; see Figure 1 - Source Data
File 3 for isogenic —log,, K 5.
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Tite-Seq binding affinity inference
Mean-bin approach
To infer binding affinities using a simple mean-bin approach (Peterman and Levine, 2016), we in-
corporate sequencing data (the unique read counts of each genotype sequence s in bin b at concen-
tration ¢, R, ) with flow cytometry data (the mean and standard deviation of log,,-fluorescence of
sorted cells in each bin b at concentration ¢, F,, and o, respectively, and cell counts for each bin
b at each concentration ¢, C, ).

The mean log-fluorescence of each genotype sequence at each of the twelve antigen concen-
trations is calculated as:

Fs,c = 2 Fb,c pb,slc’ (2)
b

where p, . is the probability a cell with sequence s would be sorted into bin b at concentration c.
Py 1S €stimated from the sequencing read counts as:

Rpse .
Xy Ry be

pb,s|c = R )
b s.c C
/ > »_ /
Z, <z Rpge P )

in other words, the fraction of total reads in the bin corresponding to sequence s, scaled by the
number of sorted cells in that bin, normalized over the 4 bins for each concentration.
The uncertainty in the mean bin inference was propagated as:

6Fs,c = \/Z (6szc pi,:\c + sz,c api,s\c)' (4)
b

Here, 6F,, represents the spread in log-fluorescence values of cells sorted into the same bin b.
While we could estimate this value using the bin width, in practice we find that the distribution
of cell log-fluorescence values in a bin is far from uniform across the bin width. The distribution
is often not normal either, but we find that approximating 6F,,  ~ oy, , or the standard deviation
in log,,-fluorescence of cells sorted into bin b at concentration ¢, adequately captures the typical
variation. The error in p, . arises largely from the sampling process of sequencing, which can be
approximated as a Poisson process when read counts are relatively high. This gives

pb,s\c

\/ Rb,s,c .

2
- ph sle
— 2 2 2 >
§F,, = \J Z <th_€ P+ FL r > (6)
b ,8,C

The equilibrium binding affinities (K ,) for each variant are inferred by fitting the logarithm of a
Hill function to the resulting mean log,,-fluorescence across the twelve antigen concentrations:

3)

©)

5pb,x|£ =

Thus, 6F,, can be written as

Fs,c = 10g10 <AYC+;K + By) > (7)
D.s

where ¢ is the antigen concentration in molar units, A, is the increase in fluorescence due to satu-
ration with antigen, B, is the background fluorescence, and K, ; is the binding affinity. Fitting was
performed with the curve_fit function of the Python package scipy.optimize. Reasonable bounds on
the values of A (10° - 10°), B (10° - 10%), and K, (10~!* - 10~%) were imposed. Sequences leading to a
failed optimization were deemed “non-binding".

Inferred K, outside of the titration boundaries were then pinned to the boundaries (107! and
1077 for H1 and H9; 10~ and 10-¢ for H3 and FluB). Inferred K, with high error (standard deviation
of log,, K, > 1.0) or resulting from a poor fit (2 < 0.8) were removed from the data set prior to
averaging —log,, K, values across biological replicates.
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We also explored an alternative maximum-likelihood framework for inferring binding affinities
(see Appendix 1), but found it to be less accurate than the mean-bin approach when compared to
isogenic flow cytometry measurements. Thus we restricted our analysis to the simpler and more
robust mean-bin inference presented here.

Force-directed layouts

To represent the high-dimensional binding affinity landscape in two dimensions, we use a force-
directed graph layout approach. Each sequence in the antibody library is a node, connected by
edges to its single-mutation neighbors (sequences that can be reached by one additional somatic
mutation). An edge between two sequences s and ¢ is given the weight

1
W, = ag ag,|’
0.01 + |log,o(K ) —log,o(K )

.S Dt

8

where K78 represent binding affinities to a particular antigen, ag. In the layouts shown in the main
text, we use binding affinities to H1 for both CR6261 and CR9114. In force-directed layouts, edge
weights correspond to the effective spring constant that tends to pull nodes closer together. Thus,
a mutation from sequence s to ¢ that has little impact on binding will cause that edge weight to be
large, and the nodes will be pulled strongly together. A mutation from sequence s to ¢ that causes a
large difference in binding affinity (positive or negative) to the antigen will reduce the edge weight,
moving those nodes further apart. After assigning all edge weights, we use the layout function
layout_drl from the Python package iGraph, with default settings, to obtain the layout coordinates
for each variant.

Expression data

As noted above, antibody libraries were sorted into eight bins along the FITC-A fluorescence axis
(where FITC-A fluorescence is proportional to expression), each comprising 12.5% of the total sin-
glet population (Figure 1-Figure Supplement 6). The mean expression log-fluorescence was com-
puted for each variant using the corresponding variant counts and fluorescence data, as described
above for the mean-bin K, inference. These expression values were then averaged across all bio-
logical replicates for each antibody (9 replicates for CR9114, 6 replicates for CR6261), and correla-
tion between biological replicates, as well as with —log,, K}, values, areillustrated in Figure 1-Figure
Supplement 5. For the isogenic flow cytometry measurements, variant expression was computed
as the mean log FITC-A fluorescence.

Epistasis analysis

Linear interaction models

To infer specific mutational effects, we begin with simple linear models where the effects of muta-
tions (and mutation combinations) add to produce phenotypes. Our log-transformed phenotypes
for each variant s, y, = —log,,(Kp ), are proportional to free-energy changes, and thus a natural
null expectation is that they combine additively (Wells, 1990; Olson et al., 2014) (although we also
consider nonadditive epistatic interactions between individual loci here, and analyze the effects of
an overall nonlinear transformation of this data in Appendix 2). Our additive-only model is

L
yo=By+ Y Bxp, +E, ©9)
i=1

where L is the number of mutations for a given antibody, g, is an intercept term, g is the effect of
the mutation at site i, x, , is the genotype of variant s at site i, and ¢ represents independently and
identically distributed errors. Our general linear interaction models are

L L
V. =P+ Z Bix;, + Z Bijxi X + z BijkXi X Xps + .+ E (10)
i

i<j i<j<k
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where g,; represent second-order interaction coefficients between distinct sites i and j, g, repre-
sent third-order interaction coefficients, and so on up to the desired maximum order of interaction.

There are multiple alternative coding systems for the binary genotypes x, ; that affect the values
of inferred effects g as well as their interpretation. Two common choices are (1) x,, € {0,1}, often
called “biochemical” or “local” epistasis, and (2) x; ; € {—1, 1}, often called “statistical” or “ensemble”
epistasis (Poelwijk et al., 2016). These frameworks are equivalent and related by a simple linear
transformation, but the values of the coefficients vary between frameworks and have different
interpretations. For ease of interpretation, in the Main Text and Figures we always show results
obtained from inference in the biochemical epistasis framework. In Appendix 2, we discuss the
differences between these two frameworks, and present results from inference in the statistical
epistasis framework.

For an antibody with L mutations, there are L possible orders of interactions, with a total of 2-
epistatic coefficients g. From a measurement of y for all 2¢ possible sequences, there is a simple
linear transformation to calculate the resulting 2& g parameters (Poelwijk et al., 2016). This is
a simple and fast approach to the calculation of epistasis that is widely used (Sailer and Harms,
2017a; Poelwijk et al., 2019), and we explore this approach in Appendix 2. However, we may instead
wish to restrict our model to a lower order and examine whether it can explain the data with far
fewer than 2L parameters, as a conservative approach to detecting high-order epistasis.

Specifically, we truncate the model above at a maximum order n and then fit and evaluate the
resulting model. We begin with n = 1 and continue to increase n until the optimal model has been
identified. There are multiple strategies for selecting between models with different numbers of
parameters, such as AIC and BIC; here we take a cross-validation approach. For each fold, we
hold out 10% of the dataset, train models at each maximum order on the remaining 90%, and
evaluate the prediction performance (R?) of the model on the held-out test set. After averaging
the performances across all 10 folds for each truncated model, we choose the order that maxi-
mizes the test set performance as the optimal maximal order of interaction. We then re-train the
model truncated at this order on the full dataset to obtain the final coefficients. We find that the
optimal model identified by cross-validation for each antibody-antigen pair satisfies p < N by ~1
order of magnitude, where p is the total number of model coefficients and N the number of data
points with measurable binding affinity. This gives confidence that our parameter estimates are
well constrained by the data, even in the absence of other regularization (such as Lasso or Ridge
regularization approaches).

To train a model of given order on a set of sequences, we use ordinary least squares (OLS) re-
gression with the Python package statsmodels. From this, we obtain the coefficient values g with
their standard errors and p-values. To define significance of coefficients, we use a p-value cutoff
of 0.05 with Bonferroni correction by the total number of model parameters. Coefficients, stan-
dard errors, p-values, and Bonferroni-corrected 95% confidence intervals are reported in Figure 1
- source data files 1 and 2. We also predict phenotypes j for each sequence from the coefficients
and use these values in Figure 5A,B.

For CR9114 binding to influenza B, the number of sequences used for inference is far fewer
than other antibody-antigen pairs (N = 256), due to the large number of required mutations. We
therefore use a 5-fold rather than 10-fold split to reduce the test set noise. Nevertheless, the cross-
validation procedure identifies a first-order (additive) model as optimal, due to the smaller sample
size.

Structural analysis of epistatic coefficients

To examine the structural context of linear and pairwise coefficients, we performed three simple
analyses. (1) First, we used ChimeraX (Pettersen et al., 2021) to calculate the buried surface area
between HA and each mutated residue in CR9114 and CR6261, using the measure buriedarea
function and the default probeRadius of 1.4 angstroms to approximate a water molecule. We
plot this "contact surface area" vs the linear effect of the corresponding mutation on HA binding
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(Figure 2C; Figure 2-Figure Supplement 1A). (2) We used PyMol (Schrodinger, LLC, 2015) to count
the number of HA residues within six angstroms of each antibody mutation site. Six angstroms was
chosen as an upper limit to capture potential antibody-antigen interactions (Bondi, 1964; Baker and
Hubbard, 1984; Israelachvili and Pashley, 1982; Ekiert et al., 2009; Dreyfus et al., 2012), though we
note that this analysis is robust to other distance thresholds. (3) We also used PyMol to measure
the distances between a-carbons for all mutation pairs, and plotted these distances against the
corresponding pairwise epistatic terms (Figure 2F; Figure 2-Figure Supplement 1B). We note that
each of these analyses were performed with co-crystal structures of the somatic antibodies with
HA (PDB ID: 4FQI (CR9114-H5; CR9114-H1 crystal structure not available) (Dreyfus et al., 2012);
4FQY (CR9114-H3) (Dreyfus et al., 2012); 3GBN (CR6261-H1) (Ekiert et al., 2009)).

Pathway analysis

Selection models

To study the likelihood of various mutational pathways leading from the germline to the somatic
sequence, we must assume a selection model. Selection in germinal centers is considerably more
complex than in classical population genetics models, involving spatial structure, changing popula-
tion sizes, and T-cell mediated selection, among other factors (Mesin et al., 2016). Capturing these
aspects in quantitative models is an active field of research (Amitai et al., 2017). However, here we
wish to adopt an extremely simple model of selection as a first step in understanding the impacts
of the binding affinity landscape on antibody selection, with the goal of understanding the impli-
cations of the expectation that mutational steps become more probable as their effect on binding
affinity becomes more positive. Combining the more realistic models of immune selection with our
detailed characterization of mutational effects on antigen binding affinity remains an interesting
avenue for future work.

Here, we restrict to the weak-mutation regime where mutation fixation events occur indepen-
dently of one another. Selection proceeds as a Markov process, where the population is charac-
terized by a single sequence that acquires a single mutation at each discrete step (McCandlish,
2011). We choose a simple form for the fixation probability of a mutation from sequence s to se-
quence ¢, as discussed below. This then determines the transition probability for the population
to move from s to . We assume that sequences cannot back-mutate (i.e. a residue changing from
the somatic allele to the germline allele), and do not acquire multiple mutations in the same step.
The absence of back-mutation is justified by the relatively large number of possible mutation sites
compared to the total number of mutation events.

We define the transition probability of a single mutational step from the classical fixation prob-
ability for a mutation with selection coefficient ¢ in a population of size N (Kimura, 1962):

1—e®
1 —eNe'

pstep(o-’ N) = (1 1)

Here we define the selection coefficient ¢ to be proportional to the difference in log binding affini-
ties to a particular antigen between the two sequences s and r:

o= yA?f = y(—logy, Kg‘i — (—logy, Kg‘i)). (12)

This model has two tunable parameters: N represents the effective population size and y repre-
sents how strongly differences in binding affinity impact fitness. We chose three parameter values
to span arange of selection strengths (see Figure 5-Figure Supplement 1): moderate, with N = 1000
andy = 1; weak, with N =20 and y = 0.5; and strong, with N - oo and y — oo such thatpStep reduces
to a step function (1 if A > 0 and 0 otherwise). These three models all show similar results, with
differences between selection scenarios becoming more exaggerated with stronger selection and
less exaggerated with weaker selection, as expected (see Figure 5-Figure Supplement 7).
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From the fixation probabilities for a given parameter regime, we have the transition probability
(up to a constant factor) for all sequences s, ¢ over all antigens ag,

%% _ Pstep(AsE, 7, N)  if t has one more somatic mutation than s 13)

s,t s

otherwise

which we use for all of the calculations described below for results presented in Figure 5 and sup-
plements.

Scenario, mutation, and variant probabilities
Itis particularly useful to store the probabilities P® as (sparse) transition matrices P2 of dimension
2N x 2N for each antigen, where entries are nonzero only where sequence ¢ has one more somatic
mutation than s.

First, we wish to obtain a measure of total probability for a particular antigen scenario, as shown
in Figure 5E,F. We calculate this by computing the matrix product over all mutational steps i for a

particular sequence of antigen contexts {ag,, ...,ag, }:
L
Pu= D (H Pstep> = [HPagf] , (14)
paths \ steps i=1

sg+Ss
where [-],, corresponds to taking the matrix element in the row corresponding to variant s and
column corresponding to variant s’. In the right-most term, the products are matrix operations
and sg, s; are respectively the indices of the germline and somatic variants.

We note that the transition probabilities P2 are not normalized at each step. In practice, this
means that mutations are optional: many outcomes will not reach the somatic sequence and the
likelihood encodes the probability of reaching the somatic state. This makes it possible to com-
pare different scenarios, as some scenarios are more likely than others to reach the somatic state.
However, because these values do not represent true probabilities — the units are arbitrary —
they cannot be compared between antibodies or between selection models. The exception is for
the strong scenario, where the total probability for each path is 1 if all steps are uphill (A% > 0)
and 0 otherwise. Thus, here P,, has a natural interpretation as the total number of uphill paths.
When we present results from the strong model (Figure 5C,D, Figure 5-Figure Supplement 1, and
numbers of uphill paths for H1-only scenarios as discussed in the text), we represent uphill path
numbers on a linear scale without log-transforming.

Although there are many possible antigen exposure scenarios, we restrict our analysis to sev-
eral classes. First, in single-antigen scenarios, all steps i use the same antigen. Second, for sequen-
tial scenarios, antigen exposures must occur in non-repeating segments (for example, H1 - H3 - H1
is not allowed), although we consider all possible lengths and orders of segments.

Mixed scenarios are more complicated, as we do not fully understand the nature of B cell inter-
actions with multiple antigens in the same germinal center (Wang et al., 2015; Wang, 2017; Kuraoka
et al., 2016). One option is to assume that the B cell engages the antigen for which it has the highest
affinity and define A by the maximum binding affinity across all possible antigens at each step, but
this definition would trivially imply that the mixed scenario has the highest probability. Instead, we
choose two alternatives: first, “average” mixed, where we assume the B cell engages all antigens
and use the average binding affinity change over all three (for CR9114) or two (for CR6261) antigens,
Apived = N%g Zag Aagi and second, “random” mixed, where we assume the B cell randomly engages

a single antigen and hence the antigen at each mutational step is chosen randomly. For the latter
definition, we calculate P, as described above for 1000 randomly drawn scenarios and average
the resulting log probability. When we illustrate mutational paths and mutation orders, we choose
a representative scenario (with close to median probability) from the 1000 random draws.

We estimate the error of these probabilities by bootstrapping. Specifically, for 10 bootstrap

iterations, we resample each binding affinity —log,, K5, from a normal distribution according to
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its value and standard deviation. We then recalculate the total probability P, average over the 10
values to obtain mean and s.e.m. values, and transform by the natural log for plotting, as shown
in Figure 5 and Figure 5-Figure Supplement 1. We note that for the strong selection scenario
(where probabilities represent total numbers of uphill paths), values are not log-transformed, and
many scenarios have total path numbers of exactly zero. We refrain from studying the “average”
mixed scenario for strong selection because it is essentially equivalent to choosing the antigen
with maximum improvement: the quantitative effect of averaging is undone when the transition
probability is binarized. For CR6261, all mutations at the first mutational step are neutral (with the
exception of one mutation that improves affinity for H1 only), and so we allow all mutations with
equal probability for the first step in the strong selection model.

Next, to identify the most likely paths under a given exposure scenario, we reframe this Markov
process as a directed weighted graph. Each sequence s is a node, and a directed edge exists to-
wards all sequences ¢ that can be reached by one additional somatic mutation. The edge weight is
calculated from the transition probability, w,_, = —log(P;® +¢), where ¢ is an extremely small value
to ensure weights are finite. In this graph framework, we can use fast algorithms to obtain the
“shortest” paths from the germline to the somatic node (those for which the sum of weights is low-
est, i.e. the total probability is highest). Specifically, we use the shortest simple_paths function from
the Python package networkx (Hagberg et al., 2008) to compute the k shortest paths, as shown in
Figure 5G,H. This method is exact and uses the algorithm described in Yen (1977).

Next, we wish to obtain the probability that a mutation at site m happened at a specific step j
(Figure 51,)). As we are focusing on one antigen context, we can normalize the transition matrices
and define:

-1
P = P2 x (Z Pff) : (15)
t

if Pf,g # 0 and 0 otherwise. We can further restrict the transition matrix at step j, P, to have
nonzero probability only when the mutation that occurs is at a particular residue a, 2% . The total
relative probability for that site at that mutational step under an antigen exposure scenario is then

) (16)

j-1 L
5ag; 538 Hag;
Pj,az [(I Ipag,> - P < I I p38,>
i=1 i=j+1 sgoss

where, again, products are matrix operations. Because a sequence of L steps starting from the
germline can only lead to the somatic state, P verifies [Hle i’agi] =1. With the relation 3, 2% =

5gsSs

P2 this implies that these probabilities are already normalized: ¥, 7, = 1.

Finally, we wish to determine the total probability of each variant (Figure 5-Figure Supple-
ment 2), i.e. the sum of probabilities of all paths passing through that variant, for a given selection
scenario. For a variant s that contains j somatic mutations, we calculate

J L
P = [H f)ag[:| . [H pagi] , (17)
- sg,s 8,8

i=j+1

where the first term is the probability of reaching sequence s at mutational step j, and the second
term is the probability of reaching the somatic sequence after passing through sequence s. When
representing this number we add an additional normalisation factor, P! = P, xn;, where n; = (f) is
the number of sequences with j mutations, so that variants with different numbers of mutations
have comparable values. P’ thus represents the ratio of the probability in a selective model to the
probability in a neutral model (which is 1/n,). Thus, sequences with log,,(P!) > 0 are favored by the
given selection scenario, and those with log,,(P!) < 0 are disfavored, as shown in Figure 5-Figure
Supplement 2 for moderate selection under the optimal sequential scenario.
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Supplemental files

Figure 1—source data 1. CR9114 library -logKy to H1, H3, and influenza B. Biological tripli-
cates, mean, and standard error reported.

Figure 1T—source data 2. CR6261 library -logK, to H1 and H9. Biological triplicates, mean, and
standard error reported.

Figure 1—source data 3. Isogenic flow cytometry measurements of -logK, for select CR9114
and CR6261 variants. Inferred -logK, and standard deviation for each replicate of isogenic
FACS, alongside inferred -logK, mean and SEM from Tite-Seq using the mean bin and maxi-
mum likelihood (ML, shown only for CR9114) inference methods.

Figure 2—source data 1. Interaction model coefficients for CR9114. Coefficients are reported
with standard errors, p-values, and confidence intervals (95% with Bonferroni correction by
the number of parameters).

Figure 2—source data 2. Interaction model coefficients for CR6261. Coefficients are reported
with standard errors, p-values, and confidence intervals (95% with Bonferroni correction by
the number of parameters).

Figure 2—source data 3. Tabulated contact surface area, number of HA contacts, and pair-
wise distances for mutations in CR9114 and CR6261. For each mutated position, the contact
surface area with HA (as plotted in Figure 2C and Figure 2-Figure supplement 1) and the num-
ber of HA residues within 6 angstroms is tabulated for CR9114-H5 (4FQI), CR9114-H3 (4FQY),
and CR6261-H1 (3GBN). Distances between alpha-carbons plotted in Figure 2F and Figure
2-Figure supplement 1 are also tabulated here alongside the corresponding second order
effects.

Figure 5—source data 1. Total probability of mutational trajectories for CR9114 under differ-
ent antigen selection scenarios. Mean and standard error across 10 bootstrap samples are
reported for moderate, weak, and strong selection strengths.

Figure 5—source data 2. Total probability of mutational trajectories for CR6261 under differ-
ent antigen selection scenarios. Mean and standard error across 10 bootstrap samples are
reported for moderate, weak, and strong selection strengths.

Supplemental File 1. Primer sequences for sequencing library preparation.

Supplemental File 2. Fragment sequences for Golden Gate construction of the CR9114 library.
Supplemental File 3. Primer sequences for Golden Gate construction of the CR6261 library.
Supplemental File 4. Plasmid map of pCT302 with CR9114 germline sequence.
Supplemental File 5. Plasmid map of pCT302 with CR9114 somatic sequence.

Supplemental File 6. Plasmid map of pCT302 with CR6261 germline sequence.
Supplemental File 7. Plasmid map of pCT302 with CR6261 somatic sequence.

Supplemental File 8. Plasmid map of pFastBac with influenza A/New Caldeonia/1999 H1
ectodomain.

Supplemental File 9. Plasmid map of pFastBac with influenza A/Hong Kong/1999 H9 ectodomain.

Supplemental File 10. Plasmid map of pFastBac with influenza A/Wisconsin/2005 H3 ectodomain.

Supplemental File 11. Plasmid map of pFastBac with influenza B/Ohio/2005 HA ectodomain.
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+ Supplemental File 12. Inferred CR9114 VH germline nucleotide sequence

Data availability

Data and code used for this study are available at https://github.com/klawrence26/bnab-landscapes.
CR9114 data are also available in an interactive data browser at https://yodabrowser.netlify.app/yoda
browser/. FASTQ files from high-throughput sequencing have been deposited in the NCBI BioProject
database with accession number PRJINA741613, and will be publicly released upon acceptance.
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uso  Appendix 1

1181 Maximum likelihood approach to binding affinity inference

In this approach we make the assumption that the fluorescence emitted by cells of a specific
genotype is distributed log-normally, with parameters . and o, (the mean and standard
deviation of the associated normal distribution respectively). At concentration ¢, a cell with
genotype s will fall into the bin b (log,,-fluorescence values f, . ranging from /, to k,) with
probability:

1182
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Each cell sorted is an independent event, so the number of cells in each bin will be multi-
nomially distributed, and thus the likelihood of sorting n, . cells of sequence s into bin b at
concentration c is given by

1101
1192
1193
1104 c=[](P[, < £ <h)])™", (20)
1195 s,

1196

and the log-likelihood is

1197

1108 log£ =Y m . log P [l, < fo. <hy) & Y pg.logP[l, < f,, <h. (21)
1100 s.e:b s.e:b
1200 The probability p, . is estimated as in the mean-bin approach (see Methods) and the log-
1201 likelihood is then maximized as a function of y,. and o, (BFGS method). The values of 4,
1202 K, and B are then estimated similarly as the mean-bin approach (see Methods), replacing
1203 FS’C by ;..
1208 The —log,, K, inferred by this maximum likelihood (ML) approach correlate well with
1205 isogenic flow cytometry —log,, K, (see Appendix 1 Fig. 1), but not as well as those inferred
1206 by the mean-bin approach (Figure 1-Figure Supplement 2B). The ML approach is predicated
1207 on the assumption that the fluorescence distribution for each variant is log-normal, which is
1208 often not the case (see Appendix 1 Fig. 2). For these reasons, in addition to favoring a simple
1200 approach, we performed all analyses with —log,, K, inferred by the mean-bin approach.
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1211 Appendix 1 Figure 1. Correlation between —log,, K, from ML inference on Tite-Seq data vs.
1212 —log,o Kp from isogenic flow cytometry. —log,, K, to H1 (salmon), H3 (green), and Flu B (blue) shown
1213 for select variants, identical to those shown in Figure 1-Figure Supplement 2B. Pearson's r = 0.97.
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Appendix 1 Figure 2. Distributions of PE-A fluorescence (HA binding) for isogenic CR9114 strains
incubated with H3. PE-A fluorescence distributions from flow cytometry of isogenic CR9114 germline
(left) and somatic (right) strains following incubation with 1 uM, 100 nM, and 10 nM H3, as described
in Methods. Shape of distribution varies for different clones and is not strictly log-normal, hence
deviating from assumptions made in the maximum-likelihood binding affinity inference.
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1222 Appendix 2

1223 Alternative approaches to epistasis inference

1224 Statistical epistasis and variance partitioning

1225 The contrast between biochemical and statistical frameworks for epistasis is well described
1226 in Poelwijk et al. (2016). In particular, a biochemical epistasis approach highlights one partic-
1227 ular sequence as the “wildtype” or reference sequence and measures effects relative to its
1228 phenotype, whereas a statistical epistasis approach measures effects relative to the average
1220 phenotype of all variants included. The biochemical approach benefits from easier interpre-
1230 tation of the coefficient values, particularly when there is a natural or relevant choice of ref-
1231 erence sequence, but the coefficients at different orders are not statistically independent.
1232 The statistical approach allows for correct variance partitioning between interaction orders,
1233 but the interpretation of the coefficients can be sensitive to the set of sequences, partic-
1234 ularly when not all possible sequences are represented or when a majority of sequences
1235 exhibit some uninteresting phenotype (e.g. lethal).

1236 Here, we perform inference of statistical epistasis exactly as described above for bio-
1237 chemical epistasis (see Methods), except that genotypes x, are coded as {-1,1} instead of
1238 {0,1}. The results from this statistical epistasis inference are shown in Appendix 2 Fig. 1 for
1230 CR9114 and Appendix 2 Fig. 2 for CR6261, in plots analogous to those in Figure 3, Figure 4
1240 and supplements. We find that the patterns of site participation in interactions are similar
1241 (although the coefficient magnitudes and signs are of course scaled differently). The group
1242 of five key sites discussed in Figure 3 (sites 30, 57, 65, 82, and 83 for CR9114 binding to H1)
1243 exhibit coefficients that are significant for all 31 mutation combinations, consistent with the
1248 result from biochemical epistasis. Overall, the numbers of significant coefficients inferred
1245 in statistical epistasis models tends to be somewhat higher than for biochemical epistasis
1246 models, perhaps due to the effect of background averaging in reducing coefficient standard
1247 errors, but neither framework is a substantially more compact representation of epistasis
1248 than the other.

1240 In the statistical epistasis framework, we can also partition the variance explained by
1250 the model according to the interaction order. Here, we take the final inferred model at
1251 the optimal interaction order and evaluate the prediction performance (R?) of each order
1252 as a fraction of the total performance of the full model. As shown in Appendix 2 Fig. 3,
1253 we find that epistasis explains a substantial fraction of variance (18% - 33%, depending on
1258 antibody-antigen pair). Variance explained tends to decline with increasing order, as is also
1255 observed in some other protein epistasis datasets (Sailer and Harms, 2017a). This indicates
1256 that interactions at higher order are more rare (compared to the total number of terms at
1257 each order, which scales combinatorially) and/or smaller in magnitude than those at lower
1258 order. However, this does not imply that rare, strong interactions of even higher order do
1250 not exist; for example, there may be some strong sixth-order interaction terms for CR9114
1260 binding to H1, but not enough to compensate for the many nonsignificant sixth-order terms
1261 in our cross-validation framework.
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Appendix 2 Figure 1. Results from statistical epistasis models for CR9114. (A), First-order effects, as
in Figure 2A. 'R’ indicates required mutations. (B), Second-order effects for H1 (top right) and H3
(lower left), as in Figure 2D. Interactions with required mutations for H3 are noted in dark red. (C),
Cumulative higher-order effects for CR9114 binding to H1, as in Figure 3A. (D), Cumulative
higher-order effects for CR9114 binding to H3, as in Figure 3-Figure Supplement 3. (E), Inferred
interaction coefficients for the set of five key epistatic loci, as in Figure 3-Figure Supplement 1B with
corresponding colors. Note the different y-axis scales for the two subplots. Different interaction
orders are separated by dotted lines. (F), Number of significant coefficients at all orders for the
biochemical and statistical epistasis models. The maximal order of interaction for each model is

indicated in parentheses.

36 of 41



1274

1275

1276

1277

1278

1279

1280

1282

1283

1284

1286

A CR6261: First order effects B
= H1 = H9 =
S 27 29
206 1 Sl 35
o
g 2 e
[} i o 66
503 Il |[ oS
o
S 82
Boo - MM . Bl v-llll'l 2 &3
i —— 77— Ll g4
L LA FLOKL v oA Q 85
PP ngé‘b@ & < & ?‘g’\ \0"\ o 87
A o Ei24
CDR1 CDR2 FW3 COR3 ©  H9o

CDR2CDR1 O

CR6261 H1: 3 - 4" order effects

e 9 o o o
O O N

o
o
apnjiubew JusIole0 |ejo}

CR6261: Second order effects
H

1 [ 0.2
0.1

- 0.0

opnjubew Jusiole09 |ejo}

E CR6261: number of significant coefficients

B (=)} ©
o o o

Number of
significant coefficients
N
o

o

Appendix 2 Figure 2. Results from statistical epistasis models for CR6261. (A), First-order effects, as

in Figure 2B. (B), Second-order effects for H1 (top right) and H9 (lower left), as in Figure 2E. (C),

Cumulative higher-order effects for CR6261 binding to H1, as in Figure 4A. (D), cumulative
higher-order effects for CR9114 binding to H9, as in Figure 4-Figure Supplement 2A. (E), number of

significant coefficients at all orders for the biochemical and statistical epistasis models. The maximal
order of interaction for each model is indicated in parentheses.
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Appendix 2 Figure 3. Variance partitioning of statistical epistasis models. (A), Variance partitioning
for CR9114 binding to H1 (left) and H3 (right). (B), Variance partitioning for CR9114 binding to H1 and
H9, denoted by colors as indicated.

In particular, another alternative approach to the inference of epistasis is to infer a full
L™-order model rather than truncating to lower order. This approach calculates 2* epistatic
coefficients, one for every datapoint, which allows for the detection of strong interactions at
any order with the caveat that many coefficients may simply reflect experimental noise, es-

37 of 41



1287
1288
1289
1290

1201 pecially for higher-order terms. We explore this approach by following Poelwijk et al. (2019):

1202 we calculate epistatic coefficients using a Walsh-Hadamard transform of the —log,, K, val-
1203 ues, and calculate standard errors on each coefficient via error propagation using the stan-
1204 dard errors of the data. We define significant coefficients by a p-value cutoff of 0.05, with
1205 Bonferroni correction by the total number of parameters in the model (here 2£). We find
1206 that for all antibody-antigen combinations, this approach finds more significant coefficients
1207 than the optimal truncated models, many of which are at higher interaction orders than al-
1208 lowed in the truncated model (Appendix 2 Fig 4). This analysis requires a measurement of
1200 —log,, K, for every single variant, so we use data that has not been filtered for goodness-
1300 of-fit or error in the inference of binding affinity (see Methods), including some sequences
1301 that have substantial error. Therefore we prefer to use the more conservative regression
1302 approach for our in-depth analysis of epistasis; this inference at full order confirms the exis-
1303 tence, strength, and identity of the high-order interactions we discuss from the regression
1308 approach, while also indicating that additional and even higher-order terms may yet exist.
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1306 Appendix 2 Figure 4. Epistasis inference at full order. (A,B), Numbers of significant coefficients for
1307 the full-order inference compared to optimal truncated regression models for (A) CR9114 and (B)
1308 CR6261. Significance for both model types is determined by p < 0.05 with Bonferroni correction by the
1300 number of model parameters. (C,D), Distribution of interaction orders of significant coefficients for (C)

1310 CR9114 and (D) CR6261.
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1312 Nonlinear models

1313 An alternative approach to understanding epistasis is to view nonlinearities in observed
1314 phenotype data as arising from a simple nonlinear transformation applied to an under-
1315 lying, unobserved additive phenotype. In this view, a simple nonlinear “global epistasis”
1316 function with few parameters may describe the landscape as well or better than models of
1317 the sort described above, with their large number of “idiosyncratic epistasis” parameters.
1318 Many studies in other proteins have attempted to disentangle such global epistasis from
1310 idiosyncratic effects (Sailer and Harms, 2017b; Domingo et al., 2019; Sarkisyan et al., 2016;
1320 Otwinowski et al., 2018; Otwinowski, 2018; Adams et al., 2019).

1321 We already implement one global nonlinear transformation, by log-transforming our
1322 binding affinity measurements so that they are proportional to free energy changes, as de-
1323 scribed above. However, itis possible that another nonlinear transformation would capture
1324 the effects of many specific interaction coefficients, if there is a single underlying additive
1325 scale. In this section, we explore this possibility following the approach taken by (Sailer and
1326 Harms, 2017b): we infer a nonlinear transformation that fits the phenotype data, invert it
1327 to “linearize” the phenotypes, re-fit interaction models on the linearized phenotypes, and
1328 then compare those model coefficients to the original coefficients to evaluate the role of
1320 the nonlinear transformation.

1330 Our new model is

1331 L

1332 V=@ (ys.add; km) =0 <ﬁ0 + 2 Bix; g km) > (22)
1333 !

1334 where y, are the observed phenotypes (—log,, K, values), ® is a nonlinear function with
1335 a small number of associated parameters k,, and y, .44 are the underlying additive-scale
1336 phenotypes, parametrized as before by additive coefficients ..

1338 To specify ®, we must choose a family of nonlinear functions. Typical choices include
1330 splines (Otwinowski et al., 2018) or power transforms (Sailer and Harms, 2017a,b). We
1340 found that logistic (sigmoid) functions fit our data better than power transforms or splines,
1381 and they are monotonic and invertible. Specifically, our logistic function with four parame-
1342 tersis

1sas ®(y; A, B, , 0) = % +B. 23)
1344 l4+e o

1345 Logistic functions capture two features that we observe: first, there is a saturation effect at
1346 low values of —log,, Kp, corresponding to nonspecific binding that our measurements are
1347 unable to distinguish (Batista and Neuberger, 1998); and second, for most antibody-antigen
1348 combinations we observe a saturation effect at moderately high values of —log,, K;,. This
1340 latter effect is not due to limits on our measurement capabilities, as illustrated by higher
1350 values of —log,, K, measured for the CR6261 library to H9 compared to values of —log,, K,
1351 measured for the CR9114 library to H1, but instead due to widespread “diminishing returns”
1352 epistasis.

After specifying the functional form of ®, we must fit both the nonlinear parameters
k, and underlying linear parameters g.. In principle, one could fit all parameters jointly,
using for example a maximum likelihood approach (Otwinowski et al., 2018). However,
we take the simpler approach as implemented in the software package from Sailer and
Harms (2017h), which first infers the additive parameters g, from the observed phenotypes
and then infers the nonlinear function parameters k,. We show the resulting fit of @ in
Appendix 2 Fig. 5a for two representative examples, by plotting our estimate of the additive
phenotypes y, .4 ON the x-axis and our observed phenotypes from data on the y-axis. We
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1357
1358
1359
1360
1361 found that this simple procedure identified well-fitting ® in a single step, and successive
1363 iterations did not significantly improve the fit.
After fitting the nonlinear transformation, we apply the inverse transformation to our
observed phenotypes to obtain “linearized” phenotypes y,;,:

1364

1365

1ee Yoin = 7 (5, k,,) - (24)
1367

1368 Because the fit of @ is not perfect, the linearized phenotypes y,;,, are not exactly equal
1360 to the estimated additive phenotypes y, .44, although linear regression on both quantities
1370 produces extremely similar values of g,. For values that lie above the domain of ®-!, we pin
1371 them to the largest estimated additive phenotype.

1372
Finally, we can take our linearized phenotypes y,,, and infer interaction model coeffi-

cients g’ of various orders, exactly as described above for the untransformed “raw” pheno-

1373

1374

e types: . i

1376 Yoiin =By + Z Blx., + 2 B xisXs + 2 BlyXisXjsXps + - € (25)
1377 i i<j i<j<k

1378 We again perform this analysis in both the biochemical and statistical epistasis frameworks.
1370 If the inverse transformation has removed most or all of the nonlinearity, then the resulting
1380 optimal interaction models should be smaller (lower maximum order of interaction and/or
1381 fewer significant interaction coefficients).

1382 Instead, we find that in all cases, the optimal order of interaction is unchanged or only
1383 decreased by one when inferring on linearized vs raw phenotypes. Specifically, the new
1384 (vs old) optimal orders are: 4th (vs 5th) for CR9114 binding to H1, 4th (vs 4th) for CR9114
1385 binding to H3, 3rd (vs 4th) for CR6261 binding to H1, 3rd (vs 4th) for CR6261 binding to
1386 H9 in the biochemical epistasis framework, and 4th (vs 4th) for CR6261 binding to H9 in
1387 the statistical epistasis framework. We can compare the numbers of significant coefficients
1388 in these optimal models inferred on linearized phenotypes to the models with the same
1380 maximum order inferred on raw phenotypes (Appendix 2 Fig. 5d,e), where we see that the
1300 numbers are relatively comparable.

1301 We next examine changes in the individual coefficients between these models. In Ap-
1302 pendix 2 Fig. 5b, we show two representative scatterplots between the raw phenotype co-
1303 efficients g and the linearized phenotype coefficients g, where only significant coefficients
1308 are shown for clarity. While some coefficients show dramatic changes, overall the two sets
1305 of coefficients are quite well correlated. To see which sites are involved in strong changes,
1306 we can also represent coefficient changes in a heatmap format (Appendix 2 Fig. 5c). Here,
1307 diagonal cells show the change in coefficient for single sites (5, — 4,), while off-diagonal cells
1308 show the sum of coefficient changes over all pairwise and higher terms involving each pair
1300 of mutations. We observe that for some antibody-antigen pairs, such as CR9114 binding
1400 to H1, the strongest net changes are negative, though not negative enough to remove the
1401 many significant coefficients. For other antibody-antigen pairs such as CR6261 binding to
1402 H1, there are both positive and negative net changes, indicating that the nonlinear transfor-
1403 mation is changing the epistatic landscape rather than correcting for it.
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Appendix 2 Figure 5. Results from epistasis models with nonlinear transformations. (A), Fitting
logistic functions to additive predicted phenotypes. Red lines indicate the optimized logistic function
@, with R? as indicated. (B), Scatterplot of coefficients #’ from the optimal order model inferred on
linearized data (after inverting the best-fit nonlinear transformation) against original coefficients g for
the model with the same maximum order. (C), Net changes of coefficients by site. Diagonal cells show
changes in linear coefficients. Off-diagonal cells show the sum of changes over terms at all orders
(2nd and above) in which the given pair of mutations is involved. For (A-C), we show two
representative antibody-antigen combinations: CR9114 binding to H1, top, and CR6261 binding to H1,
bottom. (D,E), Number of significant coefficients in optimal order models fit to phenotypes
transformed by the inverse nonlinear function (light bars), compared to original coefficients from
linear models with the same maximal order (dark bars), for (D) CR9114 and (E) CR6261. The epistasis
type and model order are indicated on the x-axis.

In summary, we find that nonlinear logistic transformations can account for a portion of
the nonlinearities observed in our data, sometimes reducing the maximal order of interac-
tion by one. However, all antigen-antibody pairs still exhibit strong idiosyncratic epistasis
up to at least third order after correcting for global epistasis, and the resulting numbers and
magnitudes of significant coefficients are not drastically changed. Thus, it does not appear
that global epistasis can explain our data much more simply than models with individual
interactions, and so we confine our main analysis to idiosyncratic epistasis models.
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Figure 1-Figure supplement 1. Experimental design and Tite-Seq workflow. (A), Experimental design. Amino acid sequence
percent identity of the entire HA ectodomain and the stem epitope (Dreyfus et al., 2012) are shown between each pair of antigens
tested for both antibodies. (B), Tite-Seq assay. Surface display single-chain variable fragment (scFv) libraries are transformed into
yeast and labeled with fluorescent antigen, followed by FACS into bins and sequencing. Dissociation constants are inferred from
changes in mean bin fluorescence across 12 antigen concentrations, see Methods.
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Figure 1-Figure supplement 2. Tite-Seq data quality. (A, C), Correlation of (A) CR9114 and (C) CR6261 K, measurements be-
tween biological replicates. (B, D), Validation of (B) CR9114 and (D) CR6261 Tite-Seq K, measurements by isogenic flow cytometry
measurements for a subset of variants and antigens.



A CR9114 binds HA2 stem epitope B CR6261 binds HA2 stem epitope

1\;' mutated
d residues

S

Figure 1-Figure supplement 3. Antibody-antigen co-crystal structures. (A), Alignment of co-crystal structure of CR9114 with H5
(light hues; PDB ID 4FQI) and CR9114 with H3 (dark hues; PDB ID 4FQY). Mutated residues shown as gray spheres. (B), Co-crystal
structure of CR6261 with H1 (PDB ID 3GBN); mutated residues shown as gray spheres.
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Figure 1-Figure supplement 5. Expression of antibody libraries. (A), Correlation of mean expression across Tite-Seq biological
replicates for CR9114 library (left, red) and CR6261 library (right, blue). (B), Correlation between Tite-Seq mean expression and
isogenic expression fluorescence for select CR9114 (left, red) and CR6261 (right, blue) variants. (C), Change in expression upon
mutation for a given number of background somatic mutations. (D), Correlation between mean expression and -logK,. Average
values across biological replicates (N_ g, = 3; Ney, > 6) are plotted. (E), Change in expression upon mutation at a specific site.
Violin plots (left) and residues in co-crystal structure (right) are colored by mean change in expression for each site. Asterisks
above violins indicate p-values for two-sided t-test between the distribution means and zero (p < 0.01 (*), < 0.001 (**), < 0.0001
(***); Ngj1a = 32,768, Ngog, = 1,024). (F), Correlation between mean change in expression and mean change in -logKy (summed
across all antigens) by mutation position. Select mutations with large impacts on expression and -logKy are labeled; all points
are colored by mean change in expression, as in (F). Dark gray line indicates best-fit linear regression (95% confidence intervals
in light gray).



2A. Gate single cells by scFv expression
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Figure 1-Figure supplement 6. Tite-Seq gating strategy. First, single yeast cells were gated by forward scatter (FSC) and side
scatter (SSC) (step 1). Single cells were then either gated by scFv expression or HA binding. For the expression sort (step 2B),
single cells were gated into eight bins along the log(FITC-A) axis, each containing 12.5% of the population. For the binding sort
(steps 2A and 3A), scFv-expressing (scFv+) single cells were sorted into four bins along the log(PE-A) axis, with bin 1 comprising all
HA- cells, and bins 2-4 each comprising 33% of the HA+ population.
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Figure 1-Figure supplement 7. Reversions of excluded mutations. (A), Reversion of A24S and E46D in CR9114 (somatic-16) does
not substantially impact binding affinity compared to the fully somatic version of CR9114 (somatic-18) to either H1 (orange) or
H3 (turquoise); these mutations are thus excluded from the CR9114 library. (B), Reversion of Q6E, L50P, and V101M in CR6261
(somatic-11) does not substantially impact binding affinity compared to the fully somatic version of CR6261 (somatic-14) to ei-
ther H1 (orange) or H9 (purple); these mutations are thus excluded from the CR6261 library. Measurements made in biological

duplicate; mean +/- standard error shown.



A First order effects vs. HA contact surface area B Second order effects
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Figure 2-Figure supplement 1. Structural context of first and second order effects. (A), Left: first order effects for each site,
colored by effect size and plotted against the contact surface area between the corresponding somatic residue and HA (top,
CR9114 with H3; bottom, CR6261 with H9); Right: co-crystal structures with mutation sites colored by first order effects, as in
Figure 2C. (B), Second-order coefficients for CR9114 with H3 (top) and CR6261 with H9 (bottom) plotted against the distance
between the respective a-carbons in the crystal structures, as in Figure 2F.



A CR9114 H1: interaction map of 30, 57, 65, 82, and 83
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Figure 3-Figure supplement 1. CR9114: interactions between five key sites. (A), CR9114 force-directed graph, as in Figure 3D,
colored by mutation groups of sites 30, 57, 65, 82, and 83 (32 total groups). The dashed line emphasizes the observed separation of
genotypes with S83F (upper right) from those without S83F (lower left). (B), Coefficients for terms in the epistatic interaction model
corresponding to mutation groups of sites 30, 57, 65, 82, and 83 (31 total groups, excluding the germline), colored according to (A)
and grouped by order. Error bars indicate standard error. (C), Distribution of the number of significant coefficients for mutation
groups in every possible set of 5 sites chosen from the 16 sites (up to 31 terms for each group, for 4,368 groups). Significance is

given by Bonferroni-corrected p-value < 0.05, see Methods. The value for the group illustrated in (A), (B) is indicated in red (26
significant terms, empirical p-value < 1073).



A CR9114 H1: interaction map of 35, 36, 64, 66, and 85
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B CR9114 H1: interaction map of 79, 84, 92, 95, and 103
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Figure 3-Figure supplement 2. CR9114: interactions between other sets of five sites. (A), CR9114 force-directed graph, as in
Figure 3D, but colored by mutation groups of a different set of 5 sites with fewer strong epistatic interactions (35, 36, 64, 66, and
85). (B), CR9114 force-directed graph, colored by mutation groups of a different set of 5 sites with no strong linear contributions

or epistatic interactions (79, 84, 92, 95, and 103).



A CR9114 H3: 3 — 4t order effects
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Figure 3-Figure supplement 3. High-order epistasis for CR9114 binding to H3. A), Higher-order significant epistatic contributions
of CR9114 mutation pairs, as in Figure 3A, for binding H3. Light yellow columns indicate required mutations (sites 57, 82, and 83).
Significance is given by Bonferroni-corrected p-value < 0.05, see Methods.
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Figure 4-Figure supplement 1. CR6261: interactions between four sites. (a), CR6261 force-directed graph, as in Figure 1-Figure
Supplement 4, colored by mutation groups of sites 29, 35, 82, and 83 (16 total groups). (B), Top, coefficients for terms in the
epistatic interaction model corresponding to the mutation groups illustrated in (a) (15 total groups, excluding the germline), col-
ored according to (a) and grouped by order. Bottom, the largest fourth-order coefficients observed in the epistatic interaction
model, with sites indicated. In both, error bars indicate standard error. (C), CR6261 force-directed graph, colored by a different
set of 4 sites with the fewest strong linear effects and epistatic interactions (65, 66, 69, and 112.1).



A CR6261 H9: 3" - 4t order effects B CR6261 H1 vs H9 significant coefficients
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Figure 4-Figure supplement 2. High-order epistasis for CR6261 binding to H9. (A), Higher-order significant epistatic contributions
of CR6261 mutation pairs, as in Figure 4A, for binding H9. (B), Scatterplot of significant epistatic interaction model coefficients
for binding to H1 and H9. Terms at different orders are colored and sized as indicated. Selected coefficients are annotated.
Significance in (A), (B) is given by Bonferroni-corrected p-value < 0.05, see Methods.
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Figure 5-Figure supplement 1. Selection models. (A), Functional form of mutation step probability, illustrated for parameters
chosen to represent strong, moderate, and weak selection models. (B, C), Total log probability of the mutational trajectories
between germline and somatic sequences for (B) CR9114 and (C) CR6261 under different antigen selection scenarios, assuming
strong (left) or weak (right) selection, as shown for moderate selection in Figure 5E,F. Strong selection scenarios are shown on a
linear scale, as total probability is equal to the number of uphill paths. The “average” mixed scenario is not evaluated for strong
selection, as the quantitative effect of averaging is undone by the binarizing effect of the transition probability. Error bars indicate

standard errors obtained through bootstrap, see Methods.
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A CR9114: Variant probability
under ‘O’ moderate selection scenario
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Figure 5-Figure supplement 2. Variant probabilities for CR9114 under the optimal ('O’) selection model. (A), Histogram of the
total probability of all pathways passing through each variant in the optimal selection scenario, divided by the total probability
in a model with no selection, transformed to log,, scale (see Methods). Dotted line indicates the 11% of variants favored in the
selective model (log probability ratio greater than zero). (B), Favored variants are shown on the force-directed graph for CR9114

H1 -logKp, as in Figure 1G, with darker color according to the log probability ratio. Other variants with log probability ratio less
than zero are shown in light yellow.
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Figure 5-Figure supplement 3. Probability of mutation order assuming moderate selection, under other antigen selection sce-
narios. H1 (A) and ‘R' (B) for CR9114 and ‘O’ (C) and ‘R’ (D) for CR6261, as in Figure 5l,J. For the random mixed scenario 'R, the
representative cases from Figure 5G,H are shown.
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