

1 Binding affinity landscapes constrain 2 the evolution of broadly neutralizing 3 anti-influenza antibodies

4 **Angela M. Phillips^{1†}, Katherine R. Lawrence^{1,2,3,4†}, Alief Moulana¹, Thomas Dupic¹,**
5 **Jeffrey Chang⁵, Milo S. Johnson¹, Ivana Cvijović⁶, Thierry Mora⁷, Aleksandra M.**
6 **Walczak⁷, Michael M. Desai^{1,2,3,5*}**

*For correspondence:

mdesai@oeb.harvard.edu (MMD)

[†]These authors contributed
equally to this work

7 ¹Department of Organismic and Evolutionary Biology, Harvard University, Cambridge
8 MA 02138; ²NSF-Simons Center for Mathematical and Statistical Analysis of Biology,
9 Harvard University, Cambridge MA 02138; ³Quantitative Biology Initiative, Harvard
10 University, Cambridge MA 02138; ⁴Department of Physics, Massachusetts Institute of
11 Technology, Cambridge MA 02139; ⁵Department of Physics, Harvard University,
12 Cambridge, MA 02138; ⁶Department of Applied Physics, Stanford University, Stanford
13 CA 94305; ⁷Laboratoire de physique de l'École normale supérieure, CNRS, PSL
14 University, Sorbonne Université, and Université de Paris, 75005 Paris, France

15

16 **Abstract** Over the past two decades, several broadly neutralizing antibodies (bnAbs) that
17 confer protection against diverse influenza strains have been isolated. Structural and
18 biochemical characterization of these bnAbs has provided molecular insight into how they bind
19 distinct antigens. However, our understanding of the evolutionary pathways leading to bnAbs,
20 and thus how best to elicit them, remains limited. Here, we measure equilibrium dissociation
21 constants of combinatorially complete mutational libraries for two naturally isolated influenza
22 bnAbs (CR9114, 16 heavy-chain mutations; CR6261, 11 heavy-chain mutations), reconstructing all
23 possible evolutionary intermediates back to the unmutated germline sequences. We find that
24 these two libraries exhibit strikingly different patterns of breadth: while many variants of CR6261
25 display moderate affinity to diverse antigens, those of CR9114 display appreciable affinity only in
26 specific, nested combinations. By examining the extensive pairwise and higher-order epistasis
27 between mutations, we find key sites with strong synergistic interactions that are highly similar
28 across antigens for CR6261 and different for CR9114. Together, these features of the binding
29 affinity landscapes strongly favor sequential acquisition of affinity to diverse antigens for CR9114,
30 while the acquisition of breadth to more similar antigens for CR6261 is less constrained. These
31 results, if generalizable to other bnAbs, may explain the molecular basis for the widespread
32 observation that sequential exposure favors greater breadth, and such mechanistic insight will be
33 essential for predicting and eliciting broadly protective immune responses.

34

35 **Introduction**

36 Vaccination harnesses the adaptive immune system, which responds to new pathogens by mutating
37 antibody-encoding genes and selecting for variants that bind the pathogen of interest. How-
38 ever, influenza remains a challenging target for immunization: most antibodies elicited by vaccines
39 provide protection against only a subset of strains, largely due to the rapid evolution of the in-
40 fluenza surface protein hemagglutinin (HA) (Wiley *et al.*, 1981; Smith *et al.*, 2004). After nearly two

41 decades of studies, numerous broadly neutralizing antibodies (bnAbs) have been isolated from hu-
42 mans, with varying degrees of cross-protection against diverse strains (*Corti et al., 2017; Throsby*
43 *et al., 2008; Dreyfus et al., 2012; Corti et al., 2011; Schmidt et al., 2015*). Still, we do not fully under-
44 stand many factors affecting how and when bnAbs are produced. In particular, affinity is acquired
45 through a complex process of mutation and selection (*Victora and Nussenzweig, 2012*), but the
46 effects of mutations on binding affinity to diverse antigens are not well characterized.

47 For example, consider two well-studied influenza bnAbs that display varying levels of breadth:
48 CR9114 is one of the broadest anti-influenza antibodies ever found, neutralizing strains from both
49 groups of influenza A and strains from influenza B, while CR6261 is limited to neutralizing strains
50 from Group 1 of influenza A (*Throsby et al., 2008; Dreyfus et al., 2012; Ekiert et al., 2009; Ling-*
51 *wood et al., 2012*). Both antibodies were isolated from vaccinated donors, derive from very similar
52 germline sequences (IGHV1-69 andIGHJ6), and bind the conserved HA stem epitope (*Figure 1-*
53 *Figure Supplement 3*) (*Throsby et al., 2008; Dreyfus et al., 2012; Ekiert et al., 2009*). Each antibody
54 heavy chain has many mutations (18 amino acid changes for CR9114, 14 for CR6261, *Figure 1A*),
55 including seven positions that are mutated in both, yet the contributions of these mutations to
56 affinity against different antigens remain unclear (*Dreyfus et al., 2012; Avnir et al., 2014*).

57 Beyond single mutational effects, it remains unknown whether there are correlated effects or
58 strong trade-offs between binding to different antigens (pleiotropy), or non-additive interactions
59 between mutations (epistasis). Such epistatic and pleiotropic effects can constrain the mutational
60 pathways accessible under selection, as has been observed for other proteins (*Weinreich et al.,*
61 *2006; Starr et al., 2017; Ortlund et al., 2007; Podgornaia and Laub, 2015; Gong et al., 2013; Sailer*
62 *and Harms, 2017a; Miton and Tokuriki, 2016; Poelwijk et al., 2019; Bank et al., 2015*). Epistasis
63 in antibody-antigen interactions remains significantly understudied (*Adams et al., 2019; Pappas*
64 *et al., 2014; Braden et al., 1998*) and most deep mutational scanning studies have focused on anti-
65 gens (*Doud et al., 2018; Wu et al., 2020; Starr et al., 2021*). In contrast to typical protein evolution,
66 antibody affinity maturation proceeds by discrete rounds of mutation and selection (*Victora and*
67 *Nussenzweig, 2012*), typically with more than one nucleotide mutation occurring between selective
68 rounds (*Unniraman and Schatz, 2007*). In addition, antibodies are inherently mutationally tolerant
69 (*Braden et al., 1998; Chen et al., 1999; Burks et al., 1997; Corti and Lanzavecchia, 2013; Klein et al.,*
70 *2013*), generating opportunities for interactions that scale combinatorially. Thus, if epistatic and
71 pleiotropic constraints exist for antibodies, they could affect the likelihood of producing bnAbs
72 under different antigen selection regimes (*Pappas et al., 2014*) and may account for the low fre-
73 quencies of bnAbs in natural repertoires (*Corti et al., 2017*). Characterizing the prevalence of these
74 constraints on bnAb evolution may provide valuable insight for improving vaccination strategies
75 (*Yewdell, 2013; Henry et al., 2018*).

76 To date, studies of antibody binding have been limited to small numbers of individual sequences,
77 deep mutational scans of single mutations, and mutagenesis of small regions (*Pappas et al., 2014;*
78 *Braden et al., 1998; Burks et al., 1997; Adams et al., 2016; Koenig et al., 2017; Forsyth et al., 2013;*
79 *Wu et al., 2017; Xu et al., 2015; Madan et al., 2021; Schmidt et al., 2015*), due in part to practi-
80 cal constraints on library scale and the throughput of affinity assays. This has limited our ability to
81 comprehensively characterize binding landscapes for naturally isolated bnAbs, which often involve
82 many mutations spanning framework (FW) and complementarity-determining regions (CDR) (*Corti*
83 *et al., 2017; Corti and Lanzavecchia, 2013; Klein et al., 2013*).

84 We overcome these challenges by generating combinatorially complete libraries of up to $\sim 10^5$
85 antibody sequences and assaying their binding affinities in a high-throughput yeast-display system
86 (*Adams et al., 2016*). This approach enables us to infer the contributions of individual mutations
87 as well as hundreds of pairwise and higher-order interactions between mutations, revealing that
88 these interactions can restrict evolutionary pathways leading to greater breadth. In particular, we
89 find that mutational effects on binding affinity to diverse antigens display a nested structure, where
90 increasingly large groups of specific mutations are required to gain affinity to divergent antigens,
91 resulting in highly constrained paths to broad affinity. This pattern is not observed for more similar

92 antigens, where many mutational paths to broad affinity are accessible. Further, these nested pat-
93 terns of mutational effects provide new molecular insight into why sequential exposure to diverse
94 antigens often favors greater breadth (Wang et al., 2010; Krammer et al., 2012; Wang et al., 2015;
95 Wang, 2017; Sachdeva et al., 2020; Molari et al., 2020; Sprenger et al., 2020). Together, this work
96 provides the first comprehensive characterization of antibody affinity landscapes and advances
97 our understanding of the molecular constraints on bnAb evolution.

98 Results

99 Binding affinity landscapes of CR9114 and CR6261

100 Here we characterize the binding affinity landscapes of the two well-studied bnAbs noted above:
101 CR9114 and CR6261. Specifically, we made all combinations of a set of mutations separating the
102 germline and somatic sequences for CR9114 (16 mutations totaling 65,536 variants) and CR6261
103 (11 mutations totaling 2,048 variants). These libraries include all heavy-chain mutations in these
104 antibodies, except a few select mutations distant from the paratope (Figure 1, Figure 1-Figure
105 Supplement 7, and see Methods). Both antibodies engage antigens solely through their heavy-
106 chain regions (Dreyfus et al., 2012; Ekiert et al., 2009), and thus are well-suited for yeast display as
107 single-chain variable fragments (see Methods) (Boder and Wittrup, 1997).

108 We use the Tite-Seq method (Adams et al., 2016), which integrates flow cytometry and sequenc-
109 ing (Figure 1-Figure Supplement 1), to assay equilibrium binding affinities of each scFv sequence
110 in these libraries against select antigens that span the breadth of binding for each antibody (Fig-
111 ure 1B). For CR6261, we chose two divergent group 1 HA subtypes (H1 and H9; see Figure 1-Figure
112 Supplement 1), while for CR9114, we chose the three highly divergent subtypes present in the
113 vaccine (H1 from group 1, H3 from group 2, and influenza B; see Figure 1-Figure Supplement 1)
114 (Throsby et al., 2008). Inferred affinities outside our titration boundaries ($10^{-11} - 10^{-6}$ M for H3
115 and influenza B, $10^{-12} - 10^{-7}$ M for H1 and H9) are pinned to the boundary, as deviations beyond
116 these boundaries are likely not physiologically relevant (Batista and Neuberger, 1998). Antibody
117 expression is not strongly impacted by sequence identity, although some mutations have modest
118 effects that may be inversely correlated with their effect on affinity (Figure 1-Figure Supplement 5).
119 Affinities obtained by Tite-Seq are reproducible across biological triplicates (Figure 1-Figure Supple-
120 ment 2; average standard error of 0.047 $-\log K_D$ units across antibody-antigen pairs) and are highly
121 accurate as verified for select variants by isogenic flow cytometry (Figure 1-Figure Supplement 2)
122 and by solution-based affinity measurements made by others (Throsby et al., 2008; Dreyfus et al.,
123 2012; Lingwood et al., 2012; Pappas et al., 2014).

124 We begin by examining the distribution of binding affinities across antigens for each antibody li-
125 brary (Figure 1). We observe that most CR9114 variants have measurable affinity to H1 (97%), fewer
126 to H3 (11%), and still fewer to influenza B (0.3%) (Figure 1C,D). For H1, only a few mutations are
127 needed to improve from the germline affinity. In contrast, variants are not able to bind H3 unless
128 they have several more mutations, and many more for influenza B. This hierarchical structure is in
129 striking contrast to the CR6261 library, in which most variants can bind both antigens (92% for H1,
130 81% for H9), variants have a similar K_D distribution, and many variants display intermediate affin-
131 ity to both antigens (Figure 1E,F). To visualize how genotypes give rise to the hierarchical structure
132 of CR9114 binding affinities, we represent the binding affinities for H1 as a force-directed graph.
133 Here, each variant is a node connected to its 16 single-mutation neighbors, with edge weights in-
134 versely proportional to the change in H1 binding affinity, such that variants with similar genotype
135 and K_D tend to form clusters (Figure 1G, Figure 1-Figure Supplement 4). Coloring this genotype-to-
136 phenotype map by the $-\log K_D$ to each of the three antigens, we see that sequences that bind H3
137 and influenza B are highly localized and overlapping, meaning that they share specific mutations.
138 Thus, while many CR9114 variants strongly bind H1, only a specific subset bind multiple antigens.

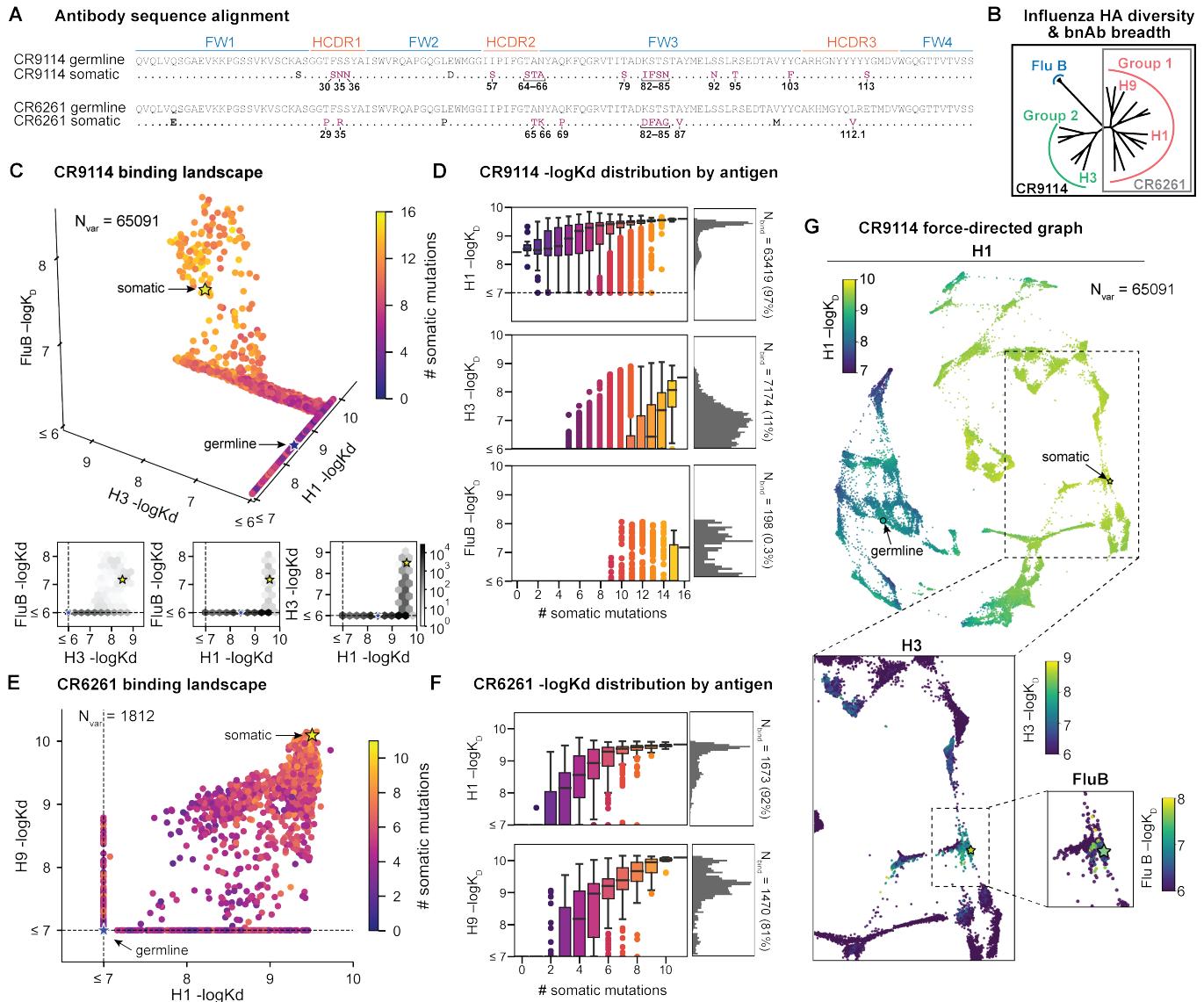


Figure 1. Binding landscapes. (A), Sequence alignment comparing somatic heavy chains to reconstructed germline sequences. Mutations under study (purple, numbered) and excluded mutations (black) are indicated; residues are numbered by IMGT unique numbering. (B), Influenza hemagglutinin phylogenetic tree with selected antigens and breadth of CR9114 (black box) and CR6261 (gray box) indicated. (C, E), Scatterplots of the (C) CR9114 library binding affinities against three antigens, with 2D planes shown below, and (E) CR6261 library binding affinities against two antigens. (D, F), Distributions of library binding affinities for (D) CR9114 and (F) CR6261 for each antigen (grey histogram, right) separated by number of somatic mutations (boxplots, left). Numbers and percentages of variants with measurable binding are indicated at right. (G), Force-directed graph of CR9114 H1 -logK_D. Each variant (node) is connected to its 16 single-mutation neighbors (edges not shown for clarity); edges are weighted such that variants with similar genotypes and -logK_D tend to cluster. Nodes are colored by binding affinity to H1 (top; showing all 65,091 nodes), H3 (lower left inset; showing only the region containing nodes with -logK_D > 6), and Flu B (lower right inset; showing only the region containing nodes with -logK_D > 6).

Figure 1-Figure supplement 1. Experimental design and Tite-Seq workflow

Figure 1-Figure supplement 2. Tite-Seq data quality

Figure 1-Figure supplement 3. Antibody-antigen co-crystal structures

Figure 1-Figure supplement 4. Force-directed graph for CR6261

Figure 1-Figure supplement 5. Expression of antibody libraries

Figure 1-Figure supplement 6. Tite-Seq gating strategy

Figure 1-Figure supplement 7. Reversions of excluded mutations

Figure 1-source data 1. CR9114 library -logK_D to H1, H3, and influenza B

Figure 1-source data 2. CR6261 library -logK_D to H1 and H9

Figure 1-source data 3. Isogenic flow cytometry measurements of -logK_D for select CR9114 and CR6261 variants.

139 **Mutational effects on binding to diverse antigens**

140 To dissect how mutations drive the structure of these binding landscapes, we next infer specific
141 mutational effects. We first log-transform binding affinities such that they are proportional to free
142 energy changes ($\Delta G_{\text{binding}}$), which should combine additively under the natural null expectation
143 (Wells, 1990; Olson *et al.*, 2014). We then define a linear model with single mutational effects and
144 interaction terms up to a specified order (defined relative to the unmutated germline sequence,
145 see Appendix 2 for alternatives), and fit coefficients by ordinary least squares regression. We use
146 cross-validation to identify the maximal order of interaction for each antigen and report coeffi-
147 cients at each order from these best-fitting models (CR9114: fifth order for H1, fourth for H3, first
148 for influenza B; CR6261: fourth order for H1 and H9; see Methods). We note that the maximum
149 order of interactions is affected by our inference power, particularly by the number of sequences
150 with appreciable binding, and so we interpret these models as showing strong evidence of epista-
151 sis at least up to the order indicated. We explored the possibility of “global” epistasis by inferring a
152 nonlinear transformation of the $-\log K_D$ values (Sailer and Harms, 2017b; Otwinowski *et al.*, 2018),
153 but found that this approach did not significantly reduce the order or number of specific interac-
154 tion coefficients needed to explain the data (see Appendix 2). We also explored inferring epistasis
155 up to full order using Walsh-Hadamard transformations; results are qualitatively similar but less
156 conservative than cross-validated regression (see Appendix 2).

157 Examining the effect of individual mutations on the germline background (Figure 2A,B), we ob-
158 serve several mutations that enhance binding to all antigens (e.g. S83F for CR9114), and mutations
159 that confer trade-offs for binding distinct antigens (e.g. F30S in CR9114 reduces affinity for H1
160 but enhances affinity for influenza B). Generally, large-effect mutations are at sites that contact
161 HA (Figure 2C, Figure 2–Figure Supplement 1) (Dreyfus *et al.*, 2012; Ekiert *et al.*, 2009). Consistent
162 with prior biochemical and structural work, mutations essential for CR9114 breadth are spread
163 throughout FW3 and the CDRs, forming hydrophobic contacts and hydrogen bonds with residues
164 in the conserved HA stem epitope (Dreyfus *et al.*, 2012; Avnir *et al.*, 2014). We observe three spe-
165 cific mutations that are required for binding to H3 (present at over 90% frequency in the set of
166 binding sequences), likely because they form hydrophobic contacts with HA (K82I and S83F) and
167 reorient the CDR2 loop (I57S), which interacts with residues and a glycan in H3 that are distinct
168 from those in H1 (Dreyfus *et al.*, 2012). We also observe eight specific mutations that are required
169 for binding to influenza B. Many of these breadth-conferring mutations are absent in CR6261, par-
170 ticularly those in CDR2 (Dreyfus *et al.*, 2012; Ekiert *et al.*, 2009). Notably, these sets of required
171 mutations in CR9114 exhibit a nested structure: mutations beneficial for H1 are required for H3,
172 and mutations required for H3 are required for influenza B, giving rise to the hierarchical structure
173 of the binding landscape (Figure 1C).

174 Beyond these exceptionally synergistic interactions between required mutations, we find that
175 epistasis is widespread, accounting for 18–33 percent of explained variance depending on the
176 antibody-antigen pair (except influenza B, see Methods, Appendix 2). Pairwise interactions are
177 dominated by a few mutations (e.g. F30S for CR9114 and S35R for CR6261) that exhibit many in-
178 teractions, both positive and negative, with other mutations (Figure 2D,E). Overall, mutations with
179 strong pairwise interactions tend to be close in the crystal structure, though there are long-range
180 pairwise interactions that are likely mediated by interactions with the antigen or conformational
181 rearrangements (Figure 2F, Figure 2–Figure Supplement 1) (Dreyfus *et al.*, 2012; Ekiert *et al.*, 2009;
182 Avnir *et al.*, 2014).

183 **High-order epistasis is dominated by a subset of mutations**

184 Our dataset also allows us to resolve higher-order epistasis. In addition to the required mutations,
185 our models identify numerous strong 3rd to 5th order interactions, with a subset of mutations par-
186 ticipating in many mutual interactions at all orders. For CR9114 binding to H1, this subset consists
187 of five mutations, distributed across three different regions of the heavy chain (Figure 3A,B). Some
188 of these mutations likely generate (K82I, S83F) or abrogate (F30S) contacts to HA, and others (I57S,

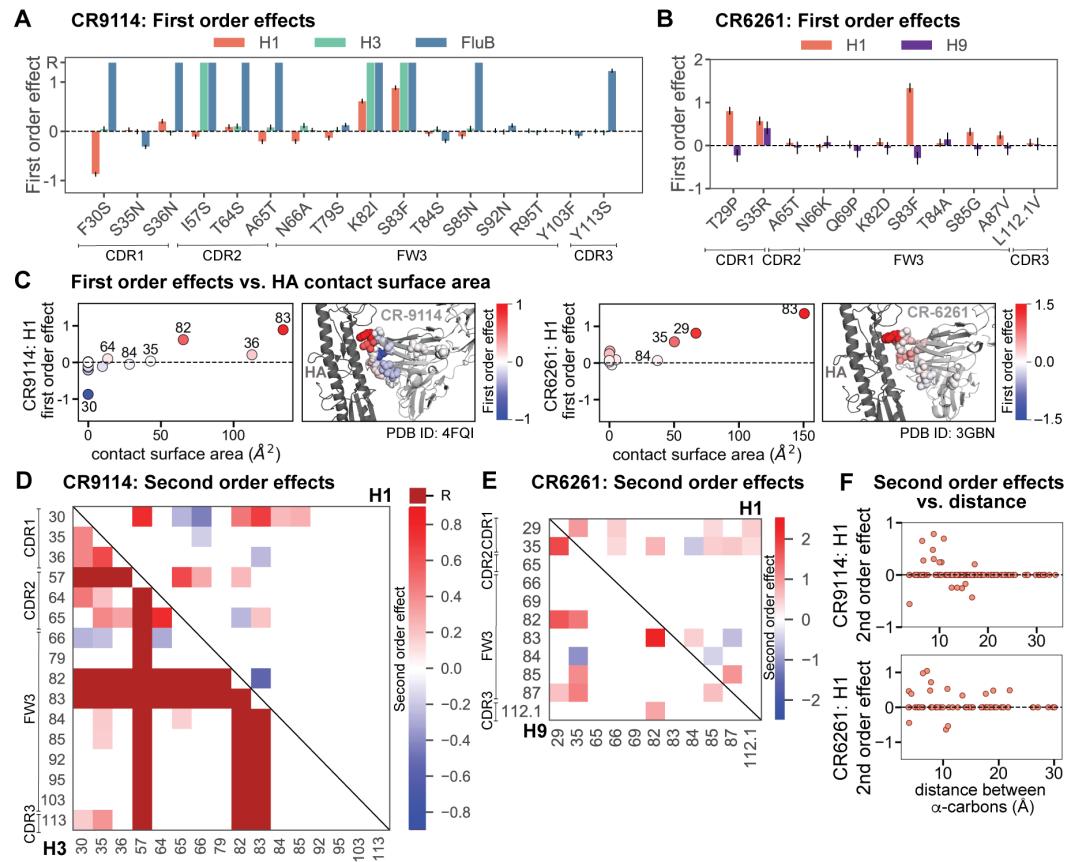


Figure 2. First and second order effects. **(A, B)** First order effects inferred in best-fitting epistatic interaction models for **(A)** CR9114 and **(B)** CR6261. Mutations required for binding (present at over 90% frequency in binding sequences) have effect sizes denoted as 'R' and are removed from inference. Error bars indicate standard error. **(C)**, First order effects for each site plotted against the contact surface area between the corresponding somatic residue and HA (left, CR9114; right, CR6261). Sites with notable contact area or effect size are labeled. Cocrystal structures are also shown; mutations are colored by first-order effect size. **(D)**, Significant second-order epistatic interaction coefficients for CR9114 mutations (bottom left, H3; top right, H1). Interactions involving required mutations are shown in dark red. **(E)**, Significant second order coefficients for CR6261 mutations (bottom left, H9; top right, H1). Significance in **(D)**, **(E)** indicates Bonferroni-corrected p-value < 0.05, see Methods. **(F)**, Second-order coefficients for H1 -logK_D plotted against the distance between the respective α -carbons in the crystal structures.

Figure 2-Figure supplement 1. Structural context of first and second order effects

Figure 2-source data 1. Interaction model coefficients for CR9114.

Figure 2-source data 2. Interaction model coefficients for CR6261.

Figure 2-source data 3. Tabulated contact surface area, number of HA contacts, and pairwise distances for mutations in CR9114 and CR6261.

189 A65T) may indirectly impact HA binding by reorienting contact residues in CDR2 (Dreyfus *et al.*,
190 2012; Avnir *et al.*, 2014). Within this set of five residues, we first illustrate two examples of 3rd
191 order epistasis by grouping sequences by their genotypes at these five sites (*Figure 3C*). Intriguingly,
192 some mutations that are deleterious in the germline background ('-' annotations) are beneficial
193 in doubly-mutated backgrounds ('+' annotations). For example, mutation F30S is significantly less
194 deleterious in backgrounds with S83F than in the germline background, suggesting that new hy-
195 drophobic contacts in FW3 may be able to compensate for the potential loss of contacts in CDR1.
196 Yet F30S unexpectedly becomes beneficial after an additional mutation I57S in CDR2, indicating
197 more complex interactions between flexible CDR and FW loop regions (*Figure 3B,C*) (Dreyfus *et al.*,

198 2012).

199 To see how these high-order interactions drive the overall structure of the binding affinity land-
200 scape, we return to the force-directed graph, now colored by genotype at these five key sites (*Fig-*
201 *ure 3D*; only points corresponding to genotypes shown in *Figure 3C* are colored). We see that
202 these five sites largely determine the overall structure of the map: points of the same color tend
203 to cluster together, despite varying in their genotypes at the other 11 sites. However, we observe
204 that interactions with other mutations do exist, as evidenced by separate clusters with the same
205 color (e.g. the two clusters in teal for 57,65 are distinguished by a positive third-order interaction
206 with site 64, *Figure 3E*). These patterns are not confined to the genotypes shown in *Figure 3C*; if
207 we color all 32 possible genotypes at the five key sites, we observe the same general patterns (*Fig-*
208 *ure 3-Figure Supplement 1*; an interactive data browser for exploring these patterns of epistasis
209 in CR9114 is available [here](#)). Interactions between these five sites are also enriched for significant
210 epistatic coefficients ($p < 10^{-3}$; 26 of 31 possible terms are significant, compared to an average of
211 4 terms among all sets of five sites, *Figure 3-Figure Supplement 1*), including the fifth order inter-
212 action between all five residues (*Figure 3F*). Remarkably, these five mutations underlie significant
213 high-order epistasis for other antigens as well: all five are either required for binding or participate
214 extensively in interactions for H3 and influenza B (*Figure 3-Figure Supplement 3*).

215 Higher-order epistasis in CR6261 is similarly dominated by a subset of mutations in CDR1 and
216 FW3, at identical or neighboring positions as some key sites for CR9114 (*Figure 4A*). These muta-
217 tions exhibit strong diminishing returns epistasis at third and fourth order, counteracting their
218 synergistic pairwise effects, in a similar manner across both antigens (*Figure 4B*, *Figure 4-Figure*
219 *Supplement 1*, *Figure 4-Figure Supplement 2*). Many fourth-order combinations of these mutations
220 display interaction coefficients of similar magnitude (*Figure 4-Figure Supplement 1*), though they
221 may be signatures of even higher-order interactions that we are underpowered to infer.

222 A common approach to quantify how epistasis constrains mutational trajectories is to count “up-
223 hill” paths (i.e. where affinity improves at every mutational step from the germline to the somatic
224 sequence). We find that only a small fraction of potential paths are uphill (0.00005% +/- 0.00004%
225 for CR9114 binding H1, and 0.2% +/- 0.04% for CR6261 binding H1, as estimated by bootstrap, see
226 Methods). However, we note that for all antibody-antigen combinations, the somatic sequence is
227 not the global maximum of the landscape (the best-binding sequence) and some mutations have
228 deleterious effects on average. Hence, strictly uphill paths are only possible due to sign epistasis,
229 where normally deleterious mutations have beneficial effects in specific genetic backgrounds.

230 Overall, we see that mutational effects and interactions between them explain the affinity land-
231 scapes we observe. For CR9114, binding affinity to H1 can be achieved through different sets of few
232 mutations with complex interactions. In contrast, a specific set of many mutations with strong syn-
233 ergistic interactions is required to bind H3, and to an even greater extent, influenza B (*Figure 2A*),
234 giving rise to the landscape’s hierarchical structure (*Figure 1C*). For CR6261, the higher-order inter-
235 actions are more similar between H1 and H9, which is consistent with the more correlated patterns
236 of binding affinities between these two antigens (*Figure 1E*).

237 **Affinity to diverse antigens was likely acquired sequentially**

238 The hierarchical nature of the CR9114 landscape suggests that this lineage developed affinity to
239 each antigen sequentially. Considering the maximum $-\log K_D$ achieved by sequences with a given
240 number of mutations (a proxy for time), we see that improvements in H1 binding can be realized
241 early on, whereas improvements in H3 binding are not possible until later, and even later for in-
242 fluenza B (*Figure 5A*). In fact, the nested structure of affinity-enhancing mutations forces improve-
243 ments in binding affinity to occur sequentially. If selection pressures were also experienced in this
244 sequence, mutations that improve binding to the current antigen would lead to the genotypes re-
245 quired to begin improving binding to the next. Indeed, we find that for CR9114, there are more
246 uphill paths leading to the somatic sequence if selection acts first on binding to H1 and later to H3
247 and influenza B (*Figure 5C*). In contrast, for CR6261, improvements in binding can occur early on

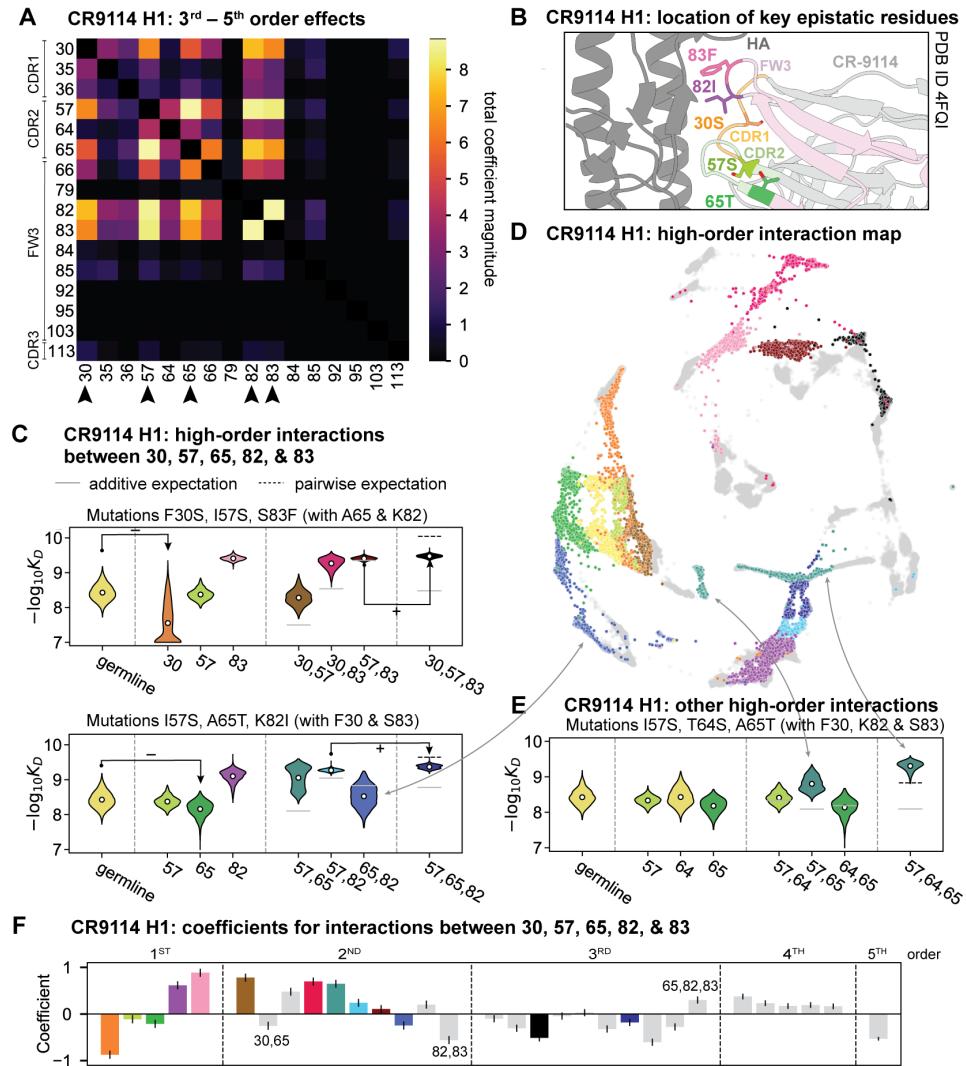


Figure 3. High-order epistasis for CR9114. **(A)**, Total higher-order epistatic contributions of CR9114 mutation pairs for binding H1. Color bar indicates the sum of absolute values of significant higher-order interaction coefficients involving each pair of mutations; key epistatic residues indicated by arrows. Significance is given by Bonferroni-corrected p-value < 0.05 , see Methods. **(B)**, Location of key epistatic residues in the CR9114-HA co-crystal structure colored by region. **(C)**, $-\log_{10} K_D$ distributions for genotypes grouped by their identity at the five residues indicated in **(A)**, **(B)**, with means indicated as white dots ($N = 8,192$ genotypes per violin). Annotations indicate notable deleterious ('-') and beneficial ('+') mutational effects. **(D)**, CR9114 force-directed graph from **Figure 1G**, colored as in **(C)** by the genotype at the five sites indicated in **(A)**, **(B)**. Genotypes not shown in **(C)** are shown in light grey. Data are also available in an interactive data browser at https://yodabrowser.netlify.app/yoda_browser/. **(E)**, Third-order interaction involving site 64 accounts for distinct clusters (teal) corresponding to genotypes with mutations 57 and 65 in **(D)**. Colors correspond to mutation groups in **(C)**, **(D)** ($N = 4,096$ genotypes per violin). **(F)**, Epistatic interaction coefficients among the five key sites from **(A)**, **(B)**. Colors for certain groups as in **(C)**, **(D)**; other groups denoted in gray, with notable terms labeled.

Figure 3-Figure supplement 1. CR9114: interactions between five key sites

Figure 3-Figure supplement 2. CR9114: interactions between other sets of five sites

Figure 3-Figure supplement 3. High-order epistasis for CR9114 binding to H3

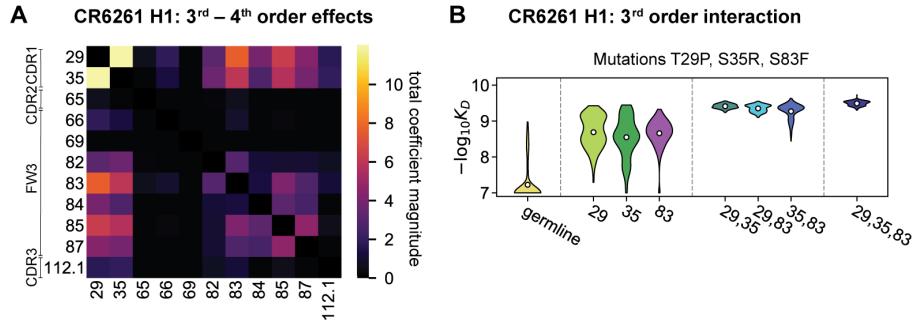


Figure 4. High-order epistasis for CR6261. **(A)**, Total significant epistatic contributions of CR6261 mutation pairs for binding H1, as in *Figure 3A*. Significance is given by Bonferroni-corrected p -value < 0.05 , see Methods. **(B)**, Third-order interaction for CR6261 H1 binding between mutations T29P, S35R, and S83F ($N = 256$ genotypes per violin).

Figure 4-Figure supplement 1. CR6261: interactions between four sites

Figure 4-Figure supplement 2. High-order epistasis for CR6261 binding to H9

248 for both antigens (*Figure 5B*) and the number of uphill paths is more similar across single-antigen
249 and sequential selection pressures (*Figure 5D*).

250 To compare antigen selection scenarios more generally, we developed a framework that evaluates
251 the total probability of all possible mutational pathways from germline to somatic, under an
252 array of antigen selection scenarios (individual, sequential, and mixed). Our framework assumes
253 that the probability of any mutational step is higher if $-\log K_D$ increases, but does not necessarily
254 forbid neutral or deleterious steps; we evaluate a variety of specific forms of this step probability
255 and find that our major results are consistent (*Figure 5-Figure Supplement 1A*, see Methods). We
256 assume that each amino acid substitution occurs in a single mutational step; though there are
257 amino acid substitutions that must proceed by multiple nucleotide mutations that may occur in a
258 single round, or over multiple rounds, of somatic hypermutation (*Spisak et al., 2020; Unniraman*
259 *and Schatz, 2007*). Mixed antigen regimes approximate exposure to a cocktail of antigens. We
260 model these with two approaches: (1) “average”, using the average $-\log K_D$ across all antigens, and
261 (2) “random,” using $-\log K_D$ for a randomly selected antigen at each step (note that using the maximum
262 $-\log K_D$ across antigens would always be trivially favored) (*Wang et al., 2015*). While these
263 models simplify the complexities of affinity maturation *in vivo* (*Victora and Nussenzweig, 2012*),
264 especially how affinity relates to B cell lineage dynamics and the mutational bias at the nucleotide
265 level (*Spisak et al., 2020*), they provide insight into the relative probabilities of mutational paths
266 under distinct antigen selection scenarios.

267 Again we find that the vast majority of likely antigen selection scenarios for CR9114 involve first
268 H1, followed by H3, followed by influenza B (*Figure 5E, Figure 5-Figure Supplement 1B*). These results
269 are underscored by examining improvement in $-\log K_D$ along the most likely mutational paths
270 for each scenario (*Figure 5G*): in the optimal sequential scenario, $-\log K_D$ can improve substantially
271 for each antigen in turn, while in an H1-only scenario, the improvements in H1 binding at each step
272 are much more gradual, reducing the likelihood. The average mixed scenario shows qualitatively
273 similar paths to the optimal sequential scenario, although with lower overall probability. In the
274 random mixed scenario, even the best pathways are often unable to improve affinity to the ran-
275 domly selected antigen, and affinity to antigens not under selection often declines, making these
276 scenarios much less likely.

277 Given the optimal sequential selection scenario, the vast majority of genotypes are unlikely evo-
278 lutionary intermediates to the somatic sequence (*Figure 5-Figure Supplement 2*). We visualize the
279 impact of epistasis on mutational order by considering the probability of each mutation to occur
280 at each mutational step (*Figure 5I; Figure 5-Figure Supplement 3*). The three antigen exposure
281 epochs exhibit clear differences in favored mutations. Mutations I57S, K82I, and S83F must occur

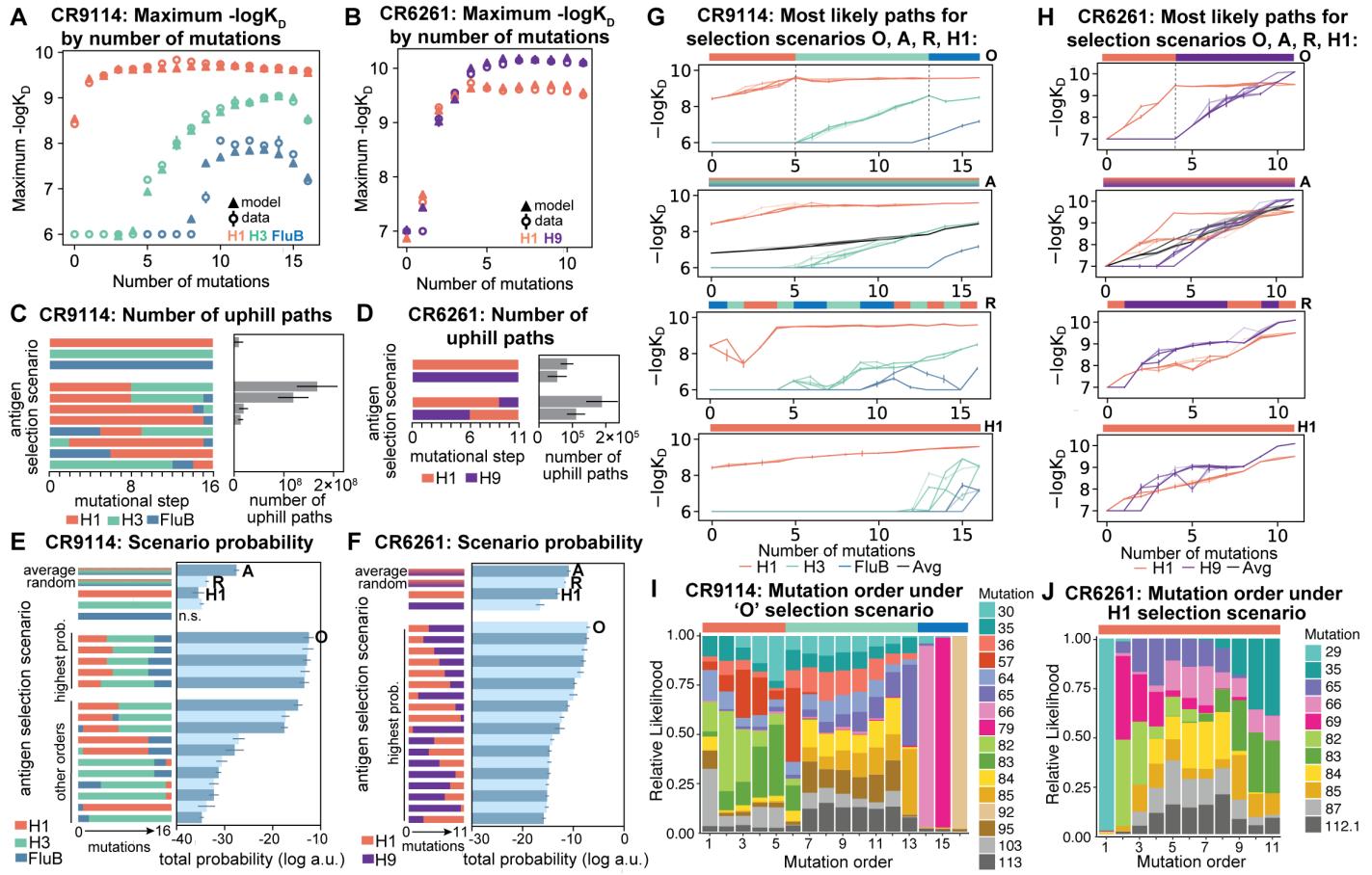


Figure 5. Antigen selection scenarios and likely mutational pathways. **(A, B)**, Maximum binding affinity achievable for sequences with a given number of mutations. For each antigen for **(A)** CR9114 and **(B)** CR6261, the maximum observed (circles) and model-predicted (triangles) affinity for each number of somatic mutations is shown. **(C, D)**, Total number of 'uphill' paths for select antigen selection scenarios (colored bars) for **(C)** CR9114 and **(D)** CR6261. Error bars indicate standard error obtained through bootstrap, see Methods. **(E, F)**, Total log probability (in arbitrary units) of mutational trajectories from germline to somatic sequence for **(E)** CR9114 and **(F)** CR6261 under different antigen selection scenarios, in a moderate selection model. Error bars indicate standard error obtained through bootstrap, see Methods. **(G, H)**, 25 most likely paths for **(G)** CR9114 and **(H)** CR6261, from select scenarios in **(E, F)**; $-\log K_D$ plotted for each antigen. For the random mixed scenario ('R'), a representative case is shown. 'A' indicates the average mixed scenario; 'O' indicates the optimal scenario. **(I, J)**, Probability of mutation order under optimal antigen selection scenario 'O' for CR9114 **(I)** and H1 for CR6261 **(J)**. Selection scenarios are as in **(E, F)** and shown in colored bar at top; the total probability (through all possible paths) for each mutation to occur at each mutational step is shown as stacked colored bars.

Figure 5-Figure supplement 1. Selection models

Figure 5-Figure supplement 2. Variant probabilities for CR9114 under the optimal ('O') selection model

Figure 5-Figure supplement 3. Probability of mutation order assuming moderate selection, under other antigen selection scenarios

Figure 5-source data 1. Total probability of mutational trajectories for CR9114 under different antigen selection scenarios.

Figure 5-source data 2. Total probability of mutational trajectories for CR6261 under different antigen selection scenarios.

282 early, due to their strong synergistic interactions for all three antigens. In addition, we see that F30S
283 is unlikely to happen very early (due to its sign epistasis under H1 selection) as well as unlikely to
284 happen very late (due to its strong benefit under influenza B selection).

285 In contrast, for CR6261, all selection scenarios have relatively similar likelihood (*Figure 5F, Figure 5–Figure Supplement 1C*). Among sequential scenarios, however, those beginning with H1 are
286 more likely than those beginning with H9, as the first two mutational steps can improve affinity to
287 H1 more than H9, and mutations late in maturation can improve affinity to H9 more than H1 (*Figure 1F, Figure 5B*). Still, unlike CR9114, in both single antigen and mixed scenarios, there are many
288 likely paths that continually improve in binding to both antigens (*Figure 5H*). Initially the order of
289 mutations is highly constrained due to strong synergistic epistasis, and differences between selec-
290 tion scenarios reflect differences in mutational effects between antigens (*Figure 5J, Figure 5–Figure*
291 *Supplement 3*). We note that T29P is highly likely to occur first in scenarios that begin with H1, as
292 this is the only single mutation that can improve H1 affinity, albeit rather modestly.
293

295 Discussion

296 Overall, we find that evolutionary pathways to bnAbs can be highly contingent on epistatic and
297 pleiotropic effects of mutations. Specifically, the acquisition of breadth for CR9114 is extremely
298 constrained and is likely to have occurred through exposure to diverse antigens in a specific or-
299 der, due to the structure of correlations and interactions between mutational effects. In contrast,
300 CR6261 could have acquired affinity to H1 and H9 in a continuous and simultaneous manner, per-
301 haps because these antigens are more similar; since H9 is not a commonly circulating strain, this
302 breadth was likely acquired by chance (*Pappas et al., 2014*).

303 We note that we cannot conclusively determine how CR9114 and CR6261 evolved *in vivo*. The
304 isolation of these specific antibodies from phage display libraries (*Throsby et al., 2008; Dreyfus*
305 *et al., 2012*) was likely biased by the HA subtypes used for screening, and although unlikely, may
306 have introduced mutations during PCR amplification. Regardless, these antibody sequences oc-
307 cupy regions of sequence space that are useful for understanding the relationship between se-
308 quence, affinity, and breadth. By characterizing their binding landscapes, we find that epistasis
309 and trade-offs constrain the mutational pathways to these specific somatic sequences and their
310 associated breadth. Indeed, we find that not all of the observed mutations are required to con-
311 fer broad affinity, and future work is needed to explore what alternative pathways to breadth
312 might be accessible through other mutations. It is also worth noting that selection pressure to
313 bind the HA stem epitope on virions may be different from pressure to bind soluble recombinant
314 HA, though several studies have found anti-stem antibody affinity to recombinant HA to be indica-
315 tive of viral neutralization (*Dreyfus et al., 2012; Corti et al., 2011; Lingwood et al., 2012*). Further,
316 stem-targeting bnAbs and their germline precursors have been characterized as polyreactive (*Ba-*
317 *jic et al., 2019; Guthmiller et al., 2020*) and thus likely experience additional selection pressures
318 that are not captured by our measurements and models, such as negative selection against au-
319 toreactivity. Though we cannot determine which specific antigens were involved in the selection
320 of these antibodies *in vivo*, the diverse HA subtypes we employ capture variation representative
321 of circulating influenza strains and thus serve as useful probes of varying levels of breadth (*Corti*
322 *et al., 2017*). Future work integrating these measurements of affinity and breadth with mea-
323 surements of stability and polyreactivity will provide important insight into the molecular constraints
324 of bnAb evolution.

325 Notably, the landscapes characterized here are among the largest combinatorially complete
326 collections of mutations published to date. In some respects, our observations of high-order inter-
327 actions are consistent with earlier work in other proteins. In particular, epistasis has been found
328 to affect function and constrain evolutionarily accessible pathways across functionally and struc-
329 turally distinct proteins (*Weinreich et al., 2006; Starr et al., 2017; Ortlund et al., 2007; Podgornaia*
330 *and Laub, 2015; Gong et al., 2013; Sailer and Harms, 2017a; Miton and Tokuriki, 2016; Poelwijk*
331 *et al., 2019; Bank et al., 2015*). Further, pairwise and high-order epistasis appear to be common

332 features of binding interfaces, such as enzyme-substrate and receptor-ligand interactions (Wein-
333 reich *et al.*, 2006; Starr *et al.*, 2017; Ortlund *et al.*, 2007; Podgornaia and Laub, 2015; Sailer and
334 Harms, 2017a; Miton and Tokuriki, 2016), and interacting mutations are often spaced in both se-
335 quence and structure, underscoring the complexity of protein-protein interfaces (Podgornaia and
336 Laub, 2015; Adams *et al.*, 2019; Braden *et al.*, 1998; Esmaielbeiki *et al.*, 2016; Rotem *et al.*, 2018). On
337 the other hand, the strongly synergistic, nested mutations crucial for CR9114 breadth are unusual,
338 perhaps due to the nature of antibody-antigen interfaces or to the unique dynamics of affinity mat-
339 uration (Victoria and Nussenzweig, 2012). Together, these observations suggest that interactions
340 between multiple mutations, such as those we characterize here, could play a substantial role in
341 affinity maturation and may contribute to the rarity of bnAbs in natural repertoires.

342 Our findings provide molecular insight into the emerging picture of how selection can elicit
343 broad affinity, illustrated by a substantial recent body of work ranging from *in vivo* experimental
344 approaches (Krammer *et al.*, 2012; Wang *et al.*, 2010) to quantitative modeling of immune sys-
345 tem dynamics (Wang *et al.*, 2015; Wang, 2017; Sachdeva *et al.*, 2020; Molari *et al.*, 2020; Sprenger
346 *et al.*, 2020). These diverse studies often find that mixed-antigen regimens are less effective than
347 sequential regimens at eliciting bnAbs. Our results demonstrate that, at least in part, this may be
348 due to the intrinsic structure of the mutational landscape, defined by the complex interactions of
349 mutational effects across antigens. With more studies of binding landscapes for diverse antibodies,
350 we could better understand how such features generalize between different germline sequences,
351 somatic mutation profiles, and antigen molecules. These insights will be valuable for leveraging
352 germline sequence data and antigen exposure information to predict, design, and elicit bnAbs for
353 therapeutic and immunization applications.

354 Key Resources Table

Resource	Designation	Source	Identifiers	Additional Information
strain, strain background (<i>Saccharomyces cerevisiae</i>)	EBY100	ATCC	Cat#:MYA-4941	
cell line (<i>Spodoptera frugiperda</i>)	Sf9	ThermoFisher	Cat#:B82501	Cell line for production of baculovirus
cell line (<i>Trichoplusia ni</i>)	High-Five	ThermoFisher	Cat#:B85502	Cell line for HA expression
antibody	Anti-cMyc-FITC (Mouse monoclonal)	Miltenyi Biotec	Cat#:130-116-485	FACS (1:50)
recombinant DNA reagent	pCT302 (plasmid)	Addgene	Cat#:41845	
recombinant DNA reagent	pCT302_CR9114_germline (plasmid)	This paper		Plasmid map in Supplemental File 4
recombinant DNA reagent	pCT302_CR9114_somatic (plasmid)	This paper		Plasmid map in Supplemental File 5
recombinant DNA reagent	pCT302_CR6261_germline (plasmid)	This paper		Plasmid map in Supplemental File 6
recombinant DNA reagent	pCT302_CR6261_somatic (plasmid)	This paper		Plasmid map in Supplemental File 7
recombinant DNA reagent	pET21a-BirA (plasmid)	Addgene	Cat#:20857	
sequence-based reagent	CR9114 golden gate dsDNA fragments	IDT		Sequences listed in Supplemental File 2
sequence-based reagent	CR6261 Golden Gate primers	IDT		Sequences listed in Supplemental File 3
sequence-based reagent	Illumina sequencing primers	IDT		Sequences listed in Supplemental File 1
peptide, recombinant protein	Streptavidin-RPE	ThermoFisher	Cat#:S866	FACS (1:100)
peptide, recombinant protein	Biotinylated A/New Caledonia/99 (H1) ectodomain	This paper		Plasmid sequence in Supplemental File 8
peptide, recombinant protein	Biotinylated A/Hong Kong/99 (H9) ectodomain	This paper		Plasmid sequence in Supplemental File 9

peptide, recombinant protein	Biotinylated A/Wisconsin/05 (H3) ectodomain	This paper	Plasmid sequence in Supplemental File 10
peptide, recombinant protein	Biotinylated B/Ohio/05 (Flu B) ectodomain	This paper	Plasmid sequence in Supplemental File 11
commercial assay or kit	Bac-to-Bac Kit	ThermoFisher	Cat#:10359016
commercial assay or kit	Zymo Yeast Plasmid Miniprep II	Zymo Research	Re- Cat#:D2004
software, algorithm	Custom code	This paper	https://github.com/klawrence26/bnab-landscapes
software, algorithm	Interactive CR9114 data browser	This paper	https://yodabrowser.netlify.app/yoda_browser/

355 Methods and Materials

356 Antibody library production

357 Germline sequence reconstructions

358 For CR9114, we obtained the somatic heavy chain nucleotide sequence from *Dreyfus et al. (2012)* (GenBank JX213639.1) and reconstructed the germline nucleotide sequence using IMGT (*Giudicelli et al., 2006*) and IgBLAST (*Ye et al., 2013*). Both methods assigned the same V-gene and J-gene alleles (IGHV1-69*06 andIGHJ6*02), but there is ambiguity in the D-gene assignment and at the V-D junction, particularly at site 109. The preferred IMGT junction alignment assigns a mutation here, S109N, while a different junction alignment from IgBLAST does not. Because of the inherent difficulty of reconstructing mutations in the junction region, especially in antibodies with a short D region, we chose the alignment without the mutation at site 109. Our reconstructed germline nucleotide sequence is available in Supplemental File 12. We then took the resulting germline and somatic amino acid sequences, as shown in **Figure 1A**, and constructed new nucleotide sequences codon-optimized for yeast.

369 For CR6261, the somatic and reconstructed germline heavy chain amino acid sequences were published in *Lingwood et al. (2012)*. We used these sequences, similarly constructing codon-optimized nucleotide sequences for expression in yeast. The original somatic nucleotide sequence is also available (GenBank HI919029.1).

373 We note that all antibody libraries and clonal strains were constructed using somatic forms of the light chain, as these antibodies were isolated by combinatorial phage display (*Throsby et al., 2008; Dreyfus et al., 2012*), and so it is not possible to infer the naturally paired germline light chain sequence. Additionally, the CR9114 and CR6261 light chains were previously determined not to impact binding (*Lingwood et al., 2012; Dreyfus et al., 2012; Ekiert et al., 2009*). The somatic light chain sequence for CR9114 was obtained from *Dreyfus et al. (2012)* (GenBank JX213640.1), and that for CR6261 was obtained from *Throsby et al. (2008)* (GenBank HI919031.1).

380 Mutation selection

381 CR9114 contains a total of 18 amino acid substitutions between the somatic variant and the reconstructed germline sequence. However, a library of $2^{18} = 262,144$ variants would be costly and time-consuming to produce and assay via our methods. We therefore identified 2 mutations that

384 were distant from antigen contacts in the crystal structure: A25S and E51D (Dreyfus *et al.*, 2012).
385 We measured binding affinities for somatic sequences with and without these two mutations, and
386 found that these variants had comparable affinities for both H1 and H3 (Figure 1-Figure Supple-
387 *ment 7*). Although these mutations may have some small impact on binding, especially in combi-
388 nation with others, excluding them allowed for a simpler cloning strategy and a more manageable
389 library size.

390 Similar to the CR9114 library design, we reduced the number of mutations present in the
391 CR6261 library by excluding 3 mutations that were distant from antigen contacts in the crystal struc-
392 ture: 6QE, L50P, and V101M (Ekiert *et al.*, 2009). We validated the marginal contribution of these
393 mutations to binding by measuring the binding affinities for the somatic sequence with and with-
394 out these mutations reverted to the respective germline residue (Figure 1-Figure Supplement 7).

395 Yeast display plasmid and strains

396 To generate clonal yeast display strains and libraries for CR9114, we cloned scFv constructs (V_L -
397 Ser(Gly₄Ser)₅- V_H -Myc) into the pCT302 plasmid (Midelfort *et al.*, 2004) (kind gift from Dane Wittrup;
398 Addgene, Watertown, MA, #41845). For the clonal CR9114 somatic and germline strains, gene
399 blocks corresponding to the somatic or inferred germline sequences were cloned into pCT302 by
400 Gibson Assembly (Gibson *et al.*, 2009) (plasmid maps in Supplemental Files 4-5). For producing the
401 plasmid backbone required for Golden Gate library generation (described below), we removed an
402 existing Bsa-I site from the pCT302 plasmid by site-directed mutagenesis (Agilent, Santa Clara, CA,
403 #200521) and replaced the V_H domain with the *ccdB* gene. To generate clonal yeast strains, Gibson
404 Assembly products were transformed into electrocompetent DH10B *E. coli* cells, and the resulting
405 plasmids were mini-prepped and Sanger sequenced. Following sequence confirmation, plasmids
406 were transformed into EBY100 yeast cells (ATCC #MYA-4941) as described in the high efficiency
407 yeast transformation protocol (Gietz and Schiestl, 2007). Transformants were plated on SDCAA-
408 agar (1.71 g/L YNB without amino acids and ammonium sulfate (Sigma-Aldrich #Y1251), 5 g/L am-
409 monium sulfate (Sigma-Aldrich #A4418), 2% dextrose (VWR #90000-904), 5 g/L Bacto casamino
410 acids (VWR #223050), 100 μ g/L ampicillin (VWR #V0339), 2% Difco Noble Agar (VWR #90000-774))
411 and incubated at 30°C for 48 h, single colonies were re streaked on SDCAA-agar and again incubated
412 at 30°C for 48 h, and the resulting clonal yeast strains were verified to have the construct of interest
413 by colony PCR. Construction of the yeast libraries is described below. All yeast strains were grown
414 to saturation in SDCAA at 30°C, supplemented with 5% glycerol, and stored at -80°C.

415 CR6261 clonal yeast display strains and libraries were generated in an identical manner to that
416 of CR9114, except where noted below (see Supplemental Files 6-7 for plasmid maps corresponding
417 to the germline and somatic sequences).

418 Golden Gate assembly

419 For CR9114, due to the number of mutations required and their positions along the heavy chain
420 coding sequence, we designed a library cloning strategy using Golden Gate combinatorial assembly
421 (Engler *et al.*, 2008). We divided the heavy chain coding region into 5 roughly equal fragments,
422 ranging from 79 to 85 bp and each containing between 1 and 5 mutations. We added BsaI sites and
423 additional overhangs to both ends of each fragment sequence, with cut sites carefully chosen so
424 that the 5 fragments will assemble uniquely in their proper order within the plasmid backbone. For
425 each fragment with n mutations, we then ordered 2^n individual DNA duplexes with each possible
426 combination of mutations (ranging from 2 to 32 versions for each fragment, a total of 66 fragments)
427 from IDT (Coralville, IA) (see Supplemental File 2). By pooling the versions of each fragment in
428 equal volumes, then pooling the 5 fragment pools in equimolar ratios, we obtained a randomized
429 fragment mix containing all 2^{16} sequences present at approximately equal frequencies.

430 In addition to the fragment mix, we prepared the plasmid backbone for the Golden Gate reac-
431 tion. We created a version of the yeast display plasmid with the counter-selection marker *ccdB* in
432 place of the heavy chain sequence, with flanking BsaI sites (see above). We performed Golden Gate

433 cloning using Bsal-HFv2 (NEB, Ipswich, MA, #R3733) following the manufacturer recommended
434 protocol, with a 5:1 molar ratio of the fragment insert pool to plasmid backbone.

435 We transformed the assembly mix into electrocompetent *E. coli* (DH10B) via electroporation in
436 10 x 50 μ L cell aliquots. We recovered each transformation in 5 mL SOC (2% tryptone, 0.5% yeast
437 extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl₂, 10 mM MgSO₄, 20 mM glucose) at 37°C for 1h, and
438 then transferred each to 100 mL of molten LB (1% tryptone, 0.5% yeast extract, 1% NaCl) containing
439 0.3% SeaPrep agarose (VWR, Radnor, PA #12001-922) spread into a thin layer in a 1L baffled flask
440 (about 1 cm deep). The mixture was allowed to set on ice for an hour, after which it was kept for
441 18 hours at 37°C to allow for dispersed growth of colonies in 3D. We observed $\sim 3 \times 10^5$ colonies
442 per aliquot, for a total of ~ 3 million transformants. After mixing the flasks by shaking for 1h, we
443 pelleted the cells and prepared plasmid by standard midiprep (Zymo Research, Irvine, CA, D4201),
444 from which we obtained >120 μ g of purified plasmid.

445 For CR6261, we designed a library cloning strategy also using Golden Gate combinatorial assem-
446 bly, but with fragments created by PCR instead of purchased. We divided the heavy chain coding
447 region into 3 roughly equal fragments, each containing between 2 and 5 mutations. We designed
448 these fragments such that the mutations they contain are close to the 3' or 5' ends and can thus
449 be easily incorporated by PCR. PCR primers included mutations, Bsal sites, and unique overhangs
450 chosen so that the 3 fragments would assemble uniquely in their proper order within the plasmid
451 backbone. For each version of the three fragments, we generated dsDNA by PCR (52 PCR reactions
452 in total; see Supplemental File 3 for primer sequences). By pooling all versions of each fragment
453 in equal volumes, then pooling the 3 fragment pools in equimolar ratios, we obtain a randomized
454 fragment mix that, when ligated in the Golden Gate reaction, produces all of the 2^{11} sequences
455 present at approximately equal frequencies.

456 In addition to the fragment mix, we prepared the plasmid backbone for the Golden Gate reac-
457 tion. We created a version of the yeast display plasmid with the counter-selection marker *ccdB* in
458 place of the 3-fragment sequence, with flanking Bsal sites. We performed Golden Gate cloning us-
459 ing Bsal-HFv2 (NEB #R3733) following the manufacturer recommended protocol, with a 7:1 molar
460 ratio of fragment inserts to plasmid backbone.

461 The transformation of the CR6261 library into *E. coli* was conducted in a similar fashion to that
462 of CR9114, except that 8x50 μ L cell aliquots were transformed, and 600,000 colonies were pooled
463 for plasmid midiprep.

464 Yeast library production

465 We then transformed the CR9114 plasmid library into EBY100 cells by standard high-efficiency pro-
466 tocols (*Gietz and Schiestl, 2007*). We recovered transformants in molten SDCAA (1.71 g/L YNB with-
467 out amino acids and ammonium sulfate (Sigma-Aldrich #Y1251), 5 g/L ammonium sulfate (Sigma-
468 Aldrich, St. Louis, MO, #A4418), 2% dextrose (VWR #90000-904), 5 g/L Bacto casamino acids (VWR
469 #223050), 100 μ g/L ampicillin (VWR # V0339)) containing 0.35% SeaPrep agarose (VWR #12001-
470 922) spread into a thin layer (about 1 cm deep). The mixture was allowed to set on ice for an hour,
471 after which it was kept for 48 hours at 30°C to allow for dispersed growth of colonies in 3D. From 5
472 such flasks, we obtained $\sim 700,000$ colonies (>10 times the library diversity). After mixing the flasks
473 thoroughly by shaking for 1h, we grew cells in 5-mL tubes of liquid SDCAA for 5 generations and
474 froze the saturated culture in 1-mL aliquots with 5% glycerol.

475 The CR6261 yeast library was generated in a manner identical to that of CR9114, except that
476 $\sim 60,000$ colonies were pooled due to the smaller library size.

477 Isogenic strain production

478 In addition to the full library, for both CR9114 and CR6261 we assayed a small number of variants by
479 low-throughput flow cytometry for Tite-Seq validation. Any individual variant in the library can be
480 produced in the same manner as described above: we simply selected the DNA duplex fragments
481 corresponding to each desired variant and set up an individual Golden Gate reaction. The resulting

482 assembled plasmid was transformed into *E. coli*, mini-prepped, and transformed into EBY100 in
483 the same manner as described above. We verified the sequence identity of each variant by Sanger
484 sequencing the entire scFv sequence.

485 We also constructed isogenic strains for validation experiments with genotypes that are not
486 present in the full library. For CR9114, to test the impact of excluding mutations A24S and E46D,
487 we constructed a strain containing the remaining 16 somatic mutations by cloning a gene block of
488 the corresponding V_H sequence into the germline CR9114 pCT302 plasmid via Gibson Assembly
489 (*Figure 1–Figure Supplement 7*). For CR6261, we similarly constructed a strain with the Q6E, L50P,
490 and V101M mutations reverted.

491 **Antigen production**

492 Choice of HA antigens

493 CR9114 was isolated from pooled PBMC from three donors who had received the trivalent 2006 in-
494 fluenza vaccine (*Throsby et al., 2008; Dreyfus et al., 2012*), which contained A/New Caledonia/20/1999
495 (H1N1), A/Wisconsin/67/2005 (H3N2), and B/Malaysia/2506/2004 (Victoria lineage) (*Ekert et al.,*
496 **2011**). CR6261 was isolated from pooled PBMC from the same three donors, plus an additional
497 seven donors who did not receive the vaccine (*Throsby et al., 2008*). Because PBMC were iso-
498 lated only 7 days after vaccination, though it is possible that CR6261 and CR9114 matured in re-
499 sponse to these specific antigens, it is more likely that the vaccine elicited memory recall of these
500 antibodies (*Victoria and Nussenzweig, 2012*). Here, we chose to measure binding affinities to di-
501 verse antigens spanning the range of breadth for both CR9114 and CR6261. CR9114 neutralizes
502 strains across influenza A (groups 1 and 2) and influenza B, so we measured affinities to one strain
503 from each of these groups, and selected vaccine-like strains: A/New Caledonia/20/1999 (H1N1),
504 A/Wisconsin/67/2005 (H3N2), and B/Ohio/1/2005 (Victoria lineage). CR6261 neutralizes strains
505 across influenza A group 1, thus we measured affinities to two strains from distinct subtypes within
506 group 1: A/New Caledonia/20/1999 (H1N1) and A/Hong Kong/1073/1999 (H9N2). We note that
507 CR9114 indeed binds A/Hong Kong/1073/1999 (H9N2) (*Dreyfus et al., 2012*), but CR9114 variant
508 affinities for this strain were not measured here, as we prioritized measurements to antigens that
509 span the breadth of each antibody.

510 HA cloning, expression, and purification.

511 Trimeric hemagglutinin (HA) antigen was produced as previously described (*Ekert et al., 2011;*
512 *Dreyfus et al., 2012; Margine et al., 2013*). Briefly, the HA ectodomain (Influenza A: residues 11–329
513 of HA1 and 1–176 of HA2 (H3 numbering); Influenza B: residues 1–523) of Influenza A/New Cale-
514 donia/1999 H1, Influenza A/Hong Kong/1999 H9, Influenza A/Wisconsin/2005 H3, and Influenza
515 B/Ohio/2005, with N-terminal gp67 signal peptide and C-terminal biotinylation site (GGGLNDIFEAQKIEWHE),
516 thrombin cleavage site, trimerization domain and His₆ tag, were cloned into pFastbac (plasmid
517 maps in Supplemental Files 8–11). Recombinant bacmid was generated using the ThermoFisher
518 Bac-to-Bac kit (ThermoFisher, Waltham, MA, #10359016). Sf9 cells (ThermoFisher #B82501, not au-
519 thenticated but verified to be mycoplasma-negative) were then transfected (ThermoFisher #A38915,
520 not authenticated but verified to be mycoplasma-negative) with the resulting bacmids, and P0 HA-
521 baculovirus was harvested 7 days post-transfection by clarifying viral supernatant at 1,000 x g for
522 10 min. HA-baculovirus was then amplified twice by successively infecting 187 million Sf9 cells
523 with 100 μ L of viral supernatant and incubating in a humidified incubator at 28°C for 12 days. To
524 induce HA expression, 105 million High-Five cells (ThermoFisher #B85502) were resuspended with
525 15 mL P2 HA-baculovirus, incubated for 20 minutes at room temperature, and then transferred to
526 a 1 L non-baffled flask with 200 mL Corning Express-Five media (ThermoFisher #10486025) sup-
527 plemented with 18 mM L-glutamine (VWR #45000-676). Expression cultures were incubated in a
528 shaking incubator at 28°C and 110 rpm for 48 hours, after which HA-containing media was clari-
529 fied by spinning first at 1,000 x g for 5 min at 4°C, and then by spinning the resulting supernatant
530 again at 4,000 x g for 20 min at 4°C. The clarified media was then dialyzed into PBS (VWR #45000-

531 448) by performing 4 x 2-hour 10-fold buffer exchanges to remove metal chelators from culture
532 media. Dialyzed media was then combined with 10 mL equilibrated NiNTA resin (ThermoFisher
533 #R90101), gently shaken for 3 hours at 4°C, and loaded onto a column. The resin was washed first
534 with 15 column volumes Wash Buffer 1 (50 mM Tris pH 8 at 4°C, 300 mM KCl, 10 mM imidazole)
535 and subsequently with 15 column volumes Wash Buffer 2 (50 mM Tris pH 8 at 4°C, 300 mM KCl,
536 20 mM imidazole). HA was eluted from the resin after 10 minutes incubation with Elution Buffer
537 (50 mM Tris pH 8 at 4°C, 300 mM KCl, 250 mM imidazole). HA was then buffer exchanged into PBS
538 using 10 KDa Amicon Ultra Centrifugal Filters (Millipore Sigma, Burlington, MA #UFC901008) and
539 concentrated to at least 1 mg/mL for downstream biotinylation.

540 **BirA expression and purification.**

541 BirA was expressed and purified as previously described (*Ekiert et al., 2011*). Briefly, pET21a-BirA
542 expression plasmid (*Howarth et al., 2005*) (kind gift from Alice Ting; Addgene #20857) was trans-
543 formed into BL21 (DE3). Transformed BL21 cells were grown in 4 L baffled flasks with 1 L low-salt
544 LB medium (5 g/L NaCl, 5 g/L yeast extract (VWR #90000-722), 10 g/L tryptone (VWR #90000-286))
545 at 37°C to an OD (600 nm) of ~0.8. The culture was then moved into cold water to bring it to 23°C,
546 IPTG was added to a final concentration of 1 mM, and the culture was incubated at 23°C for ~16
547 hours. The culture was then harvested by centrifugation (3,000 x g, 10 min), resuspended in 30
548 mL lysis buffer (50 mM Tris pH 8 at 4°C, 300 mM KCl, 10 mM imidazole, EDTA-free protease in-
549 hibitor cocktail tablet (Millipore Sigma #4693159001)), lysed by sonication (Branson Sonifier 450),
550 and shaken at 4°C for 30 min. Lysate was clarified by spinning at 25,000 x g for 1h, and then the
551 supernatant was incubated with 5 mL NiNTA resin at 4°C for 3 h with gentle shaking. The resin
552 was pelleted by spinning at 500 x g for 5 min and washed twice by gentle shaking with 35 mL lysis
553 buffer at 4°C for 30 min. Protein was eluted with 20 mL Elution Buffer (50 mM Tris pH 8 at 4°C, 300
554 mM KCl, 250 mM imidazole), buffer exchanged into Storage Buffer (50 mM Tris pH 7.5 at 4°C, 200
555 mM KCl, 5% glycerol) using 10 KDa Amicon Ultra Centrifugal Filters (Millipore Sigma #UFC901008),
556 flash frozen in liquid nitrogen, and stored in single-use aliquots at -80°C.

557 **Biotinylation and HA-biotin quality control.**

558 Purified hemagglutinin was biotinylated as previously described (*Fairhead and Howarth, 2015*;
559 *Ekiert et al., 2011*). Briefly, 100 µL HA (> 1 mg/mL) was incubated with 0.5 µL 1 M MgCl₂, 2 µL
560 100 mM ATP, 0.5 µL 50 mM biotin, and 2.5 µL BirA (10 mg/mL). This was mixed by gentle pipetting
561 and incubated at 30°C with gentle rocking. After 1 h incubation, equivalent amounts of ATP, BirA,
562 and biotin were added to the reaction, which was incubated for an additional hour at 30°C. Follow-
563 ing the 2 h incubation, the 100 µL reaction was exchanged thrice into 15 mL PBS using a 50 KDa
564 MWCO buffer exchange column (Millipore Sigma #UFC905008). The degree of biotinylation was
565 then assessed by a streptavidin gel-shift assay, as previously described (*Fairhead and Howarth,*
566 *2015*). Briefly, 10-fold molar excess streptavidin (Millipore Sigma #189730) was added to 4 µg bi-
567 otinylated HA and incubated at room temperature for 5 minutes prior to running on SDS-PAGE.
568 Gels were transferred to nitrocellulose membranes and probed with mouse anti-His monoclonal
569 antibodies (ThermoFisher #R930-25) and Goat-anti-mouse secondary antibodies (LiCor, Lincoln,
570 NE, Cat#925-32210). HA was verified to be > 80% biotinylated by densitometry.

571 **Tite-Seq assays**

572 Tite-Seq was performed essentially as previously described (*Adams et al., 2016*), with some mod-
573 ifications as detailed below. For each antibody-antigen pair, three replicate Tite-Seq assays were
574 performed on different days.

575 **Induction of antibody expression**

576 On day 1, yeast scFv libraries, as well as germline and somatic clonal strains, were thawed by in-
577 oculating 5 mL SDCAA (1.71 g/L YNB without amino acids and ammonium sulfate (Sigma-Aldrich

578 #Y1251), 5 g/L ammonium sulfate (Sigma-Aldrich #A4418), 2% dextrose (VWR #90000-904), 5 g/L
579 Bacto casamino acids (VWR #223050), 100 µg/L ampicillin (VWR # V0339)) with 150 µL glycerol
580 stock (saturated culture with 5% glycerol) and rotated at 30°C for 20 h. On day 2, yeast cultures
581 were back-diluted to OD600 = 0.2 in 5 mL SDCAA and rotated at 30°C for approximately 4 h, or until
582 reaching log phase (OD600 = 0.4 - 0.8). 1.5 mL log-phase cells were then pelleted, resuspended in
583 4 mL SGDCAA (1.71 g/L YNB without amino acids and ammonium sulfate (Sigma-Aldrich #Y1251),
584 5 g/L ammonium sulfate (Sigma-Aldrich #A4418), 0.2% dextrose (VWR #90000-904), 1.8% galac-
585 tose (Sigma-Aldrich #G0625), 5 g/L Bacto casamino acids (VWR #223050), 100 µg/L ampicillin (VWR
586 #V0339)), and rotated at room temperature for 20-22 h.

587 **Primary antigen labeling**

588 On day 3, 20-22 hours post-induction, yeast cultures were pelleted, washed twice with 0.1% PBSA
589 (VWR #45001-130; GoldBio, St. Louis, MO, #A-420-50), and resuspended to an OD600 of 1. 700 µL
590 of OD1 yeast cells were labeled with biotinylated HA at each of eleven antigen concentrations (half-
591 log increments spanning 1 pM - 100 nM for H1 and H9, and 10 pM - 1 µM for H3 and influenza B, as
592 well as no HA), with volumes adjusted such that the number of antigen molecules was in ten-fold
593 excess of antibody molecules (assuming 50,000 scFv/cell). Yeast-HA mixtures were rocked at 4°C
594 for 24 h.

595 **Secondary labeling**

596 On day 4, yeast-HA complexes were pelleted by spinning at 3,000 x g for 10 minutes at 4°C, washed
597 twice with 5% PBSA + 2 mM EDTA, and simultaneously labeled with Streptavidin-RPE (1:100, Thermo
598 Fisher #S866) and anti-cMyc-FITC (1:50, Miltenyi Biotec, Somerville, MA, #130-116-485) at 4°C for
599 45 minutes. Following secondary labeling, yeast were washed twice with 5% PBSA + 2 mM EDTA,
600 and left on ice in the dark until sorting.

601 **Sorting and recovery**

602 Yeast were sorted on a BD FACS Aria Illu, equipped with 405 nm, 440 nm, 488 nm, 561 nm, and
603 635 nm lasers, and an 85 micron fixed nozzle. Prior to sorting, single-color controls were used
604 to compensate for the minimal FITC overlap with PE. Single cells were gated by FSC vs SSC, and
605 then this population was sorted either by expression (FITC) or by expression and binding (PE). For
606 all sorts, at least ten-fold excess of the library diversity was sorted (~1.6 million cells for CR9114;
607 ~500,000 cells for CR6261). For the expression sorts, singlets were sorted into 8 equivalent FITC log-
608 spaced gates. For the binding sorts, FITC-positive cells were sorted into 4 PE bins (the PE-negative
609 population comprised bin 1, and the PE-positive population was split into three equivalent log-
610 spaced bins 2-4; see *Figure 1-Figure Supplement 6*). Polypropylene collection tubes were coated
611 and filled with 1 mL YPD supplemented with 1% BSA and placed on ice until recovery. Sorted cells
612 were pelleted by spinning at 3,000 x g for 10 minutes, and supernatant was removed by pipette
613 to avoid disturbing the pellets. Pellets were then resuspended in 4 mL SDCAA, a small amount
614 was plated on SDCAA-agar to quantify recovery efficiency, and cultures were rocked at 30°C until
615 reaching late-log phase (OD600 = 0.6 - 1.2).

616 **Sequencing library preparation**

617 1.5 mL of late-log yeast cultures were pelleted and scFv plasmid was extracted using Zymo Yeast
618 Plasmid Miniprep II (Zymo Research # D2004), per the manufacturer's instructions, and eluted in
619 10 µL elution buffer. Heavy-chain amplicon sequencing libraries were prepared by a two-step PCR
620 as previously described (*Ba et al., 2019*). In the first PCR, unique molecular identifiers (UMI), inline
621 indices, and partial Illumina adapters were appended to the heavy chain through 3-5 amplification
622 cycles to minimize PCR amplification bias. In the second PCR, the remainder of the Illumina adapter
623 and sample-specific Illumina i5 and i7 indices were appended through 35 amplification cycles (see
624 Supplemental File 1 for primer sequences). The first PCR used 5 µL plasmid DNA as template in
625 a 25 µL reaction volume, with Q5 polymerase according to the manufacturer's instructions (NEB

626 # M0491L), and was incubated in a thermocycler with the following program: 1. 60s at 98°C, 2.
 627 10s at 98°C, 3. 30s at 66°C, 4. 30s at 72°C, 5. GOTO 2, 2-4x, 6. 60s at 72°C. PCR products were
 628 then combined with carrier RNA and purified by 1.1X Aline beads (Aline Biosciences #C-1003-5),
 629 and eluted in 35 μ L elution buffer. 33 μ L of the elution was used as input for the second PCR,
 630 in a total volume of 50 μ L using Kapa polymerase (Kapa Biosystems #KK2502) according to the
 631 manufacturer's instructions, and incubated in a thermocycler with the following program: 1. 30s
 632 at 98°C, 2. 20s at 98°C, 3. 30s at 62°C, 4. 30s at 72°C, 5. GOTO 2, 34x, 6. 300s at 72°C. The resulting
 633 sequencing libraries were purified by 0.85X Aline beads, amplicon size was verified to be ~500 bp
 634 by running on a 1% agarose gel, and amplicon concentration was quantified by a fluorescent DNA-
 635 binding dye (Biotium, Fremont, CA, #31068, per manufacturer's instructions). Amplicons were then
 636 pooled for each gate according to the number of sorted cells to ensure even sequencing coverage.
 637 The pool was further size-selected by a two-sided Aline bead cleanup (0.55-0.85X), and the final pool
 638 size was verified by Tapestation 5000 HS and 1000 HS. Final sequencing library concentration was
 639 determined by Qubit fluorometer and sequenced on an Illumina NovaSeq S2 or MiSeq v3 (2x150)
 640 with 5% PhiX.

641 Sequencing data processing

642 We first processed our raw sequencing reads to identify and extract the indexes and mutational
 643 sites, discarding priming regions and the constant regions between mutations. To do so, we de-
 644 veloped custom Python scripts using the approximate regular expression library *regex* (**Barnett,**
 645 **2013**), which allowed us to handle complications in sequence parsing that arise from the irregular
 646 lengths of the indices and from sequencing errors. We accept sequences that match the entire
 647 read (with no restrictions on bases at mutational sites) within the following mismatch tolerances:
 648 2 mismatches in the multiplexing index, 2 mismatches in the priming site, and 15 substitution mis-
 649 matches within the 170 bases of constant antibody sequence.

650 We then examine the mutational sites to call germline or somatic alleles, producing binary geno-
 651 types ('0' for germline or '1' for somatic at each position). We require the exact germline or somatic
 652 sequence at every site: if there are any substitution errors in any of the mutation sites, the entire
 653 read is rejected. While it is possible to perform error correction based on Hamming distance to
 654 rescue reads with a few substitution errors, we find that on average only <8% of reads per sample
 655 contain any errors, and so we adopt the conservative approach of requiring perfect matching.

656 We next discarded sequencing reads with any mismatched indices (four total indices from the
 657 two PCR reactions), as well as reads with duplicate UMI sequences. Counts for each genotype
 658 were then tabulated, producing the final counts used for binding affinity inference (see below). On
 659 average, across all antigens and replicates, we obtain a mean coverage of ~350 for CR9114 and
 660 ~950 for CR6261, and a median coverage of ~250 for CR9114 and ~900 for CR6261.

661 Isogenic validation

662 Induction of scFv surface display, primary labeling, and secondary labeling of isogenic strains were
 663 performed identically to the Tite-Seq assay, except yeast cell and antigen volumes were scaled
 664 down by a factor of 10. Yeast cell FITC (scFv expression) and R-PE (HA binding) fluorescence inten-
 665 sity was assayed on a BD LSR Fortessa equipped with 4 lasers (440, 488, 561, and 633 nm). The
 666 equilibrium binding affinities (K_D) for each variant are inferred by fitting the log of a Hill function
 667 to the mean log R-PE fluorescence of scFv-expressing (FITC+) singlet yeast cells:

$$\text{mean log fluorescence} = \log_{10} \left(A_s \frac{c}{c + K_{D,s}} + B_s \right), \quad (1)$$

668 where c is the antigen concentration in molar units, A_s is the increase in fluorescence due to sat-
 669 uration with antigen, B_s is the background fluorescence, and $K_{D,s}$ is the equilibrium binding affinity.
 670 All isogenic measurements were performed in 2-3 biological replicates; see Figure 1 – Source Data
 671 File 3 for isogenic – $\log_{10} K_D$.

672 **Tite-Seq binding affinity inference**

673 Mean-bin approach

674 To infer binding affinities using a simple mean-bin approach (**Peterman and Levine, 2016**), we in-
675 corporate sequencing data (the unique read counts of each genotype sequence s in bin b at concen-
676 tration c , $R_{b,s,c}$) with flow cytometry data (the mean and standard deviation of \log_{10} -fluorescence of
677 sorted cells in each bin b at concentration c , $F_{b,c}$ and $\sigma_{F_{b,c}}$ respectively, and cell counts for each bin
678 b at each concentration c , $C_{b,c}$).

679 The mean log-fluorescence of each genotype sequence at each of the twelve antigen concen-
680 trations is calculated as:

$$\bar{F}_{s,c} = \sum_b F_{b,c} p_{b,s|c}, \quad (2)$$

681 where $p_{b,s|c}$ is the probability a cell with sequence s would be sorted into bin b at concentration c .
682 $p_{b,s|c}$ is estimated from the sequencing read counts as:

$$p_{b,s|c} = \frac{\frac{R_{b,s,c}}{\sum_{s'} R_{b,s',c}} \cdot C_{b,c}}{\sum_{b'} \left(\frac{R_{b',s,c}}{\sum_{s'} R_{b',s',c}} \cdot C_{b',c} \right)}, \quad (3)$$

683 in other words, the fraction of total reads in the bin corresponding to sequence s , scaled by the
684 number of sorted cells in that bin, normalized over the 4 bins for each concentration.

685 The uncertainty in the mean bin inference was propagated as:

$$\delta \bar{F}_{s,c} = \sqrt{\sum_b \left(\delta F_{b,c}^2 p_{b,s|c}^2 + F_{b,c}^2 \delta p_{b,s|c}^2 \right)}. \quad (4)$$

686 Here, $\delta F_{b,c}$ represents the spread in log-fluorescence values of cells sorted into the same bin b .
687 While we could estimate this value using the bin width, in practice we find that the distribution
688 of cell log-fluorescence values in a bin is far from uniform across the bin width. The distribution
689 is often not normal either, but we find that approximating $\delta F_{b,c} \approx \sigma_{F_{b,c}}$, or the standard deviation
690 in \log_{10} -fluorescence of cells sorted into bin b at concentration c , adequately captures the typical
691 variation. The error in $p_{b,s|c}$ arises largely from the sampling process of sequencing, which can be
692 approximated as a Poisson process when read counts are relatively high. This gives

$$\delta p_{b,s|c} = \frac{p_{b,s|c}}{\sqrt{R_{b,s,c}}}. \quad (5)$$

693 Thus, $\delta \bar{F}_{s,c}$ can be written as

$$\delta \bar{F}_{s,c} = \sqrt{\sum_b \left(\sigma_{F_{b,c}}^2 p_{b,s|c}^2 + F_{b,c}^2 \frac{p_{b,s|c}^2}{R_{b,s,c}} \right)}. \quad (6)$$

694 The equilibrium binding affinities (K_D) for each variant are inferred by fitting the logarithm of a
695 Hill function to the resulting mean \log_{10} -fluorescence across the twelve antigen concentrations:

$$\bar{F}_{s,c} = \log_{10} \left(A_s \frac{c}{c + K_{D,s}} + B_s \right), \quad (7)$$

696 where c is the antigen concentration in molar units, A_s is the increase in fluorescence due to sat-
697 uration with antigen, B_s is the background fluorescence, and $K_{D,s}$ is the binding affinity. Fitting was
698 performed with the `curve_fit` function of the Python package `scipy.optimize`. Reasonable bounds on
699 the values of A ($10^3 - 10^5$), B ($10^0 - 10^3$), and K_D ($10^{-14} - 10^{-5}$) were imposed. Sequences leading to a
700 failed optimization were deemed “non-binding”.

701 Inferred K_D outside of the titration boundaries were then pinned to the boundaries (10^{-12} and
702 10^{-7} for H1 and H9; 10^{-11} and 10^{-6} for H3 and Flub). Inferred K_D with high error (standard deviation
703 of $\log_{10} K_D > 1.0$) or resulting from a poor fit ($r^2 < 0.8$) were removed from the data set prior to
704 averaging $-\log_{10} K_D$ values across biological replicates.

705 We also explored an alternative maximum-likelihood framework for inferring binding affinities
 706 (see Appendix 1), but found it to be less accurate than the mean-bin approach when compared to
 707 isogenic flow cytometry measurements. Thus we restricted our analysis to the simpler and more
 708 robust mean-bin inference presented here.

709 Force-directed layouts

710 To represent the high-dimensional binding affinity landscape in two dimensions, we use a force-
 711 directed graph layout approach. Each sequence in the antibody library is a node, connected by
 712 edges to its single-mutation neighbors (sequences that can be reached by one additional somatic
 713 mutation). An edge between two sequences s and t is given the weight

$$w_{s,t} = \frac{1}{0.01 + |\log_{10}(K_{D,s}^{\text{ag}}) - \log_{10}(K_{D,t}^{\text{ag}})|}, \quad (8)$$

714 where K_D^{ag} represent binding affinities to a particular antigen, ag. In the layouts shown in the main
 715 text, we use binding affinities to H1 for both CR6261 and CR9114. In force-directed layouts, edge
 716 weights correspond to the effective spring constant that tends to pull nodes closer together. Thus,
 717 a mutation from sequence s to t that has little impact on binding will cause that edge weight to be
 718 large, and the nodes will be pulled strongly together. A mutation from sequence s to t that causes a
 719 large difference in binding affinity (positive or negative) to the antigen will reduce the edge weight,
 720 moving those nodes further apart. After assigning all edge weights, we use the layout function
 721 *layout_drl* from the Python package *iGraph*, with default settings, to obtain the layout coordinates
 722 for each variant.

723 Expression data

724 As noted above, antibody libraries were sorted into eight bins along the FITC-A fluorescence axis
 725 (where FITC-A fluorescence is proportional to expression), each comprising 12.5% of the total sin-
 726 glet population (**Figure 1–Figure Supplement 6**). The mean expression log-fluorescence was com-
 727 puted for each variant using the corresponding variant counts and fluorescence data, as described
 728 above for the mean-bin K_D inference. These expression values were then averaged across all bio-
 729 logical replicates for each antibody (9 replicates for CR9114, 6 replicates for CR6261), and corre-
 730 lation between biological replicates, as well as with $-\log_{10} K_D$ values, are illustrated in **Figure 1–Figure**
 731 **Supplement 5**. For the isogenic flow cytometry measurements, variant expression was computed
 732 as the mean log FITC-A fluorescence.

733 **Epistasis analysis**

734 Linear interaction models

735 To infer specific mutational effects, we begin with simple linear models where the effects of muta-
 736 tions (and mutation combinations) add to produce phenotypes. Our log-transformed phenotypes
 737 for each variant s , $y_s = -\log_{10}(K_{D,s})$, are proportional to free-energy changes, and thus a natural
 738 null expectation is that they combine additively (**Wells, 1990; Olson et al., 2014**) (although we also
 739 consider nonadditive epistatic interactions between individual loci here, and analyze the effects of
 740 an overall nonlinear transformation of this data in Appendix 2). Our additive-only model is

$$y_s = \beta_0 + \sum_{i=1}^L \beta_i x_{i,s} + \epsilon, \quad (9)$$

741 where L is the number of mutations for a given antibody, β_0 is an intercept term, β_i is the effect of
 742 the mutation at site i , $x_{i,s}$ is the genotype of variant s at site i , and ϵ represents independently and
 743 identically distributed errors. Our general linear interaction models are

$$y_s = \beta_0 + \sum_i \beta_i x_{i,s} + \sum_{i < j} \beta_{ij} x_{i,s} x_{j,s} + \sum_{i < j < k} \beta_{ijk} x_{i,s} x_{j,s} x_{k,s} + \dots + \epsilon \quad (10)$$

744 where β_{ij} represent second-order interaction coefficients between distinct sites i and j , β_{ijk} represent
745 third-order interaction coefficients, and so on up to the desired maximum order of interaction.

746 There are multiple alternative coding systems for the binary genotypes $x_{i,s}$ that affect the values
747 of inferred effects β as well as their interpretation. Two common choices are (1) $x_{i,s} \in \{0, 1\}$, often
748 called "biochemical" or "local" epistasis, and (2) $x_{i,s} \in \{-1, 1\}$, often called "statistical" or "ensemble"
749 epistasis (Poelwijk et al., 2016). These frameworks are equivalent and related by a simple linear
750 transformation, but the values of the coefficients vary between frameworks and have different
751 interpretations. For ease of interpretation, in the Main Text and Figures we always show results
752 obtained from inference in the biochemical epistasis framework. In Appendix 2, we discuss the
753 differences between these two frameworks, and present results from inference in the statistical
754 epistasis framework.

755 For an antibody with L mutations, there are L possible orders of interactions, with a total of 2^L
756 epistatic coefficients β . From a measurement of y for all 2^L possible sequences, there is a simple
757 linear transformation to calculate the resulting $2^L \beta$ parameters (Poelwijk et al., 2016). This is
758 a simple and fast approach to the calculation of epistasis that is widely used (Sailer and Harms,
759 2017a; Poelwijk et al., 2019), and we explore this approach in Appendix 2. However, we may instead
760 wish to restrict our model to a lower order and examine whether it can explain the data with far
761 fewer than 2^L parameters, as a conservative approach to detecting high-order epistasis.

762 Specifically, we truncate the model above at a maximum order n and then fit and evaluate the
763 resulting model. We begin with $n = 1$ and continue to increase n until the optimal model has been
764 identified. There are multiple strategies for selecting between models with different numbers of
765 parameters, such as AIC and BIC; here we take a cross-validation approach. For each fold, we
766 hold out 10% of the dataset, train models at each maximum order on the remaining 90%, and
767 evaluate the prediction performance (R^2) of the model on the held-out test set. After averaging
768 the performances across all 10 folds for each truncated model, we choose the order that maxi-
769 mizes the test set performance as the optimal maximal order of interaction. We then re-train the
770 model truncated at this order on the full dataset to obtain the final coefficients. We find that the
771 optimal model identified by cross-validation for each antibody-antigen pair satisfies $p < N$ by ~ 1
772 order of magnitude, where p is the total number of model coefficients and N the number of data
773 points with measurable binding affinity. This gives confidence that our parameter estimates are
774 well constrained by the data, even in the absence of other regularization (such as Lasso or Ridge
775 regularization approaches).

776 To train a model of given order on a set of sequences, we use ordinary least squares (OLS) re-
777 gression with the Python package *statsmodels*. From this, we obtain the coefficient values β with
778 their standard errors and p -values. To define significance of coefficients, we use a p -value cutoff
779 of 0.05 with Bonferroni correction by the total number of model parameters. Coefficients, stan-
780 dard errors, p -values, and Bonferroni-corrected 95% confidence intervals are reported in Figure 1
781 – source data files 1 and 2. We also predict phenotypes \hat{y} for each sequence from the coefficients
782 and use these values in **Figure 5A,B**.

783 For CR9114 binding to influenza B, the number of sequences used for inference is far fewer
784 than other antibody-antigen pairs ($N = 256$), due to the large number of required mutations. We
785 therefore use a 5-fold rather than 10-fold split to reduce the test set noise. Nevertheless, the cross-
786 validation procedure identifies a first-order (additive) model as optimal, due to the smaller sample
787 size.

788 Structural analysis of epistatic coefficients

789 To examine the structural context of linear and pairwise coefficients, we performed three simple
790 analyses. (1) First, we used ChimeraX (Pettersen et al., 2021) to calculate the buried surface area
791 between HA and each mutated residue in CR9114 and CR6261, using the measure buriedarea
792 function and the default probeRadius of 1.4 angstroms to approximate a water molecule. We
793 plot this "contact surface area" vs the linear effect of the corresponding mutation on HA binding

794 (Figure 2C; Figure 2-Figure Supplement 1A). (2) We used PyMol (Schrodinger, LLC, 2015) to count
 795 the number of HA residues within six angstroms of each antibody mutation site. Six angstroms was
 796 chosen as an upper limit to capture potential antibody-antigen interactions (Bondi, 1964; Baker and
 797 Hubbard, 1984; Israelachvili and Pashley, 1982; Ekiert et al., 2009; Dreyfus et al., 2012), though we
 798 note that this analysis is robust to other distance thresholds. (3) We also used PyMol to measure
 799 the distances between α -carbons for all mutation pairs, and plotted these distances against the
 800 corresponding pairwise epistatic terms (Figure 2F; Figure 2-Figure Supplement 1B). We note that
 801 each of these analyses were performed with co-crystal structures of the somatic antibodies with
 802 HA (PDB ID: 4FQI (CR9114-H5; CR9114-H1 crystal structure not available) (Dreyfus et al., 2012);
 803 4FQY (CR9114-H3) (Dreyfus et al., 2012); 3GBN (CR6261-H1) (Ekiert et al., 2009)).

804 Pathway analysis

805 Selection models

806 To study the likelihood of various mutational pathways leading from the germline to the somatic
 807 sequence, we must assume a selection model. Selection in germinal centers is considerably more
 808 complex than in classical population genetics models, involving spatial structure, changing popula-
 809 tion sizes, and T-cell mediated selection, among other factors (Mesin et al., 2016). Capturing these
 810 aspects in quantitative models is an active field of research (Amitai et al., 2017). However, here we
 811 wish to adopt an extremely simple model of selection as a first step in understanding the impacts
 812 of the binding affinity landscape on antibody selection, with the goal of understanding the impli-
 813 cations of the expectation that mutational steps become more probable as their effect on binding
 814 affinity becomes more positive. Combining the more realistic models of immune selection with our
 815 detailed characterization of mutational effects on antigen binding affinity remains an interesting
 816 avenue for future work.

817 Here, we restrict to the weak-mutation regime where mutation fixation events occur indepen-
 818 dently of one another. Selection proceeds as a Markov process, where the population is charac-
 819 terized by a single sequence that acquires a single mutation at each discrete step (McCandlish,
 820 2011). We choose a simple form for the fixation probability of a mutation from sequence s to se-
 821 quence t , as discussed below. This then determines the transition probability for the population
 822 to move from s to t . We assume that sequences cannot back-mutate (i.e. a residue changing from
 823 the somatic allele to the germline allele), and do not acquire multiple mutations in the same step.
 824 The absence of back-mutation is justified by the relatively large number of possible mutation sites
 825 compared to the total number of mutation events.

826 We define the transition probability of a single mutational step from the classical fixation prob-
 827 ability for a mutation with selection coefficient σ in a population of size N (Kimura, 1962):

$$p_{\text{step}}(\sigma, N) = \frac{1 - e^{-\sigma}}{1 - e^{-N\sigma}}. \quad (11)$$

828 Here we define the selection coefficient σ to be proportional to the difference in log binding affini-
 829 ties to a particular antigen between the two sequences s and t :

$$\sigma = \gamma \Delta_{s,t}^{\text{ag}} = \gamma(-\log_{10} K_{D,t}^{\text{ag}} - (-\log_{10} K_{D,s}^{\text{ag}})). \quad (12)$$

830 This model has two tunable parameters: N represents the effective population size and γ repre-
 831 sents how strongly differences in binding affinity impact fitness. We chose three parameter values
 832 to span a range of selection strengths (see Figure 5-Figure Supplement 1): moderate, with $N = 1000$
 833 and $\gamma = 1$; weak, with $N = 20$ and $\gamma = 0.5$; and strong, with $N \rightarrow \infty$ and $\gamma \rightarrow \infty$ such that p_{step} reduces
 834 to a step function (1 if $\Delta > 0$ and 0 otherwise). These three models all show similar results, with
 835 differences between selection scenarios becoming more exaggerated with stronger selection and
 836 less exaggerated with weaker selection, as expected (see Figure 5-Figure Supplement 1).

837 From the fixation probabilities for a given parameter regime, we have the transition probability
 838 (up to a constant factor) for all sequences s, t over all antigens ag,

$$P_{s,t}^{\text{ag}} = \begin{cases} p_{\text{step}}(\Delta_{s,t}^{\text{ag}}, \gamma, N) & \text{if } t \text{ has one more somatic mutation than } s \\ 0 & \text{otherwise} \end{cases}, \quad (13)$$

839 which we use for all of the calculations described below for results presented in **Figure 5** and sup-
 840 plements.

841 Scenario, mutation, and variant probabilities

842 It is particularly useful to store the probabilities $P_{s,t}^{\text{ag}}$ as (sparse) transition matrices P^{ag} of dimension
 843 $2^N \times 2^N$ for each antigen, where entries are nonzero only where sequence t has one more somatic
 844 mutation than s .

845 First, we wish to obtain a measure of total probability for a particular antigen scenario, as shown
 846 in **Figure 5E,F**. We calculate this by computing the matrix product over all mutational steps i for a
 847 particular sequence of antigen contexts $\{\text{ag}_1, \dots, \text{ag}_L\}$:

$$\mathcal{P}_{\text{tot}} = \sum_{\text{paths}} \left(\prod_{\text{steps}} P_{\text{step}} \right) = \left[\prod_{i=1}^L P^{\text{ag}_i} \right]_{s_g, s_s}, \quad (14)$$

848 where $[\cdot]_{s,s'}$ corresponds to taking the matrix element in the row corresponding to variant s and
 849 column corresponding to variant s' . In the right-most term, the products are matrix operations
 850 and s_g, s_s are respectively the indices of the germline and somatic variants.

851 We note that the transition probabilities P^{ag_i} are not normalized at each step. In practice, this
 852 means that mutations are optional: many outcomes will not reach the somatic sequence and the
 853 likelihood encodes the probability of reaching the somatic state. This makes it possible to com-
 854 pare different scenarios, as some scenarios are more likely than others to reach the somatic state.
 855 However, because these values do not represent true probabilities — the units are arbitrary —
 856 they cannot be compared between antibodies or between selection models. The exception is for
 857 the strong scenario, where the total probability for each path is 1 if all steps are uphill ($\Delta_{s,t}^{\text{ag}} > 0$)
 858 and 0 otherwise. Thus, here \mathcal{P}_{tot} has a natural interpretation as the total number of uphill paths.
 859 When we present results from the strong model (**Figure 5C,D**, **Figure 5–Figure Supplement 1**, and
 860 numbers of uphill paths for H1-only scenarios as discussed in the text), we represent uphill path
 861 numbers on a linear scale without log-transforming.

862 Although there are many possible antigen exposure scenarios, we restrict our analysis to sev-
 863 eral classes. First, in single-antigen scenarios, all steps i use the same antigen. Second, for sequen-
 864 tial scenarios, antigen exposures must occur in non-repeating segments (for example, H1 - H3 - H1
 865 is not allowed), although we consider all possible lengths and orders of segments.

866 Mixed scenarios are more complicated, as we do not fully understand the nature of B cell inter-
 867 actions with multiple antigens in the same germinal center ([Wang et al., 2015](#); [Wang, 2017](#); [Kuraoka](#)
 868 [et al., 2016](#)). One option is to assume that the B cell engages the antigen for which it has the highest
 869 affinity and define Δ by the maximum binding affinity across all possible antigens at each step, but
 870 this definition would trivially imply that the mixed scenario has the highest probability. Instead, we
 871 choose two alternatives: first, “average” mixed, where we assume the B cell engages all antigens
 872 and use the average binding affinity change over all three (for CR9114) or two (for CR6261) antigens,
 873 $\Delta_{\text{mixed}} = \frac{1}{N_{\text{ag}}} \sum_{\text{ag}} \Delta_{\text{ag}}$; and second, “random” mixed, where we assume the B cell randomly engages
 874 a single antigen and hence the antigen at each mutational step is chosen randomly. For the latter
 875 definition, we calculate \mathcal{P}_{tot} as described above for 1000 randomly drawn scenarios and average
 876 the resulting log probability. When we illustrate mutational paths and mutation orders, we choose
 877 a representative scenario (with close to median probability) from the 1000 random draws.

878 We estimate the error of these probabilities by bootstrapping. Specifically, for 10 bootstrap
 879 iterations, we resample each binding affinity — $\log_{10} K_{D,s}^{\text{ag}}$ from a normal distribution according to

its value and standard deviation. We then recalculate the total probability P_{tot} , average over the 10 values to obtain mean and s.e.m. values, and transform by the natural log for plotting, as shown in **Figure 5** and **Figure 5–Figure Supplement 1**. We note that for the strong selection scenario (where probabilities represent total numbers of uphill paths), values are not log-transformed, and many scenarios have total path numbers of exactly zero. We refrain from studying the “average” mixed scenario for strong selection because it is essentially equivalent to choosing the antigen with maximum improvement: the quantitative effect of averaging is undone when the transition probability is binarized. For CR6261, all mutations at the first mutational step are neutral (with the exception of one mutation that improves affinity for H1 only), and so we allow all mutations with equal probability for the first step in the strong selection model.

Next, to identify the most likely paths under a given exposure scenario, we reframe this Markov process as a directed weighted graph. Each sequence s is a node, and a directed edge exists towards all sequences t that can be reached by one additional somatic mutation. The edge weight is calculated from the transition probability, $w_{s \rightarrow t} = -\log(P_{s,t}^{\text{ag}} + \epsilon)$, where ϵ is an extremely small value to ensure weights are finite. In this graph framework, we can use fast algorithms to obtain the “shortest” paths from the germline to the somatic node (those for which the sum of weights is lowest, i.e. the total probability is highest). Specifically, we use the `shortest_simple_paths` function from the Python package `networkx` (*Hagberg et al., 2008*) to compute the k shortest paths, as shown in **Figure 5G,H**. This method is exact and uses the algorithm described in *Yen (1971)*.

Next, we wish to obtain the probability that a mutation at site m happened at a specific step j (**Figure 5I,J**). As we are focusing on one antigen context, we can normalize the transition matrices and define:

$$\tilde{P}_{s,t}^{\text{ag}} = P_{s,t}^{\text{ag}} \times \left(\sum_t P_{s,t}^{\text{ag}} \right)^{-1}, \quad (15)$$

if $P_{s,t}^{\text{ag}} \neq 0$ and 0 otherwise. We can further restrict the transition matrix at step j , $\tilde{P}_{s,t}^{\text{ag}_j}$, to have nonzero probability only when the mutation that occurs is at a particular residue α , $\tilde{P}_{\alpha}^{\text{ag}_j}$. The total relative probability for that site at that mutational step under an antigen exposure scenario is then

$$P_{j,\alpha} = \left[\left(\prod_{i=1}^{j-1} \tilde{P}_{s_i}^{\text{ag}_i} \right) \cdot \tilde{P}_{\alpha}^{\text{ag}_j} \cdot \left(\prod_{i=j+1}^L \tilde{P}_{s_i}^{\text{ag}_i} \right) \right]_{s_g, s_s}, \quad (16)$$

where, again, products are matrix operations. Because a sequence of L steps starting from the germline can only lead to the somatic state, \tilde{P} verifies $\left[\prod_{i=1}^L \tilde{P}_{s_i}^{\text{ag}_i} \right]_{s_g, s_s} = 1$. With the relation $\sum_{\alpha} \tilde{P}_{\alpha}^{\text{ag}_j} = \tilde{P}^{\text{ag}_j}$, this implies that these probabilities are already normalized: $\sum_{\alpha} P_{j,\alpha} = 1$.

Finally, we wish to determine the total probability of each variant (**Figure 5–Figure Supplement 2**), i.e. the sum of probabilities of all paths passing through that variant, for a given selection scenario. For a variant s that contains j somatic mutations, we calculate

$$P_s = \left(\left[\prod_{i=1}^j \tilde{P}_{s_i}^{\text{ag}_i} \right]_{s_g, s_s} \right) \cdot \left(\left[\prod_{i=j+1}^L \tilde{P}_{s_i}^{\text{ag}_i} \right]_{s_s, s_s} \right), \quad (17)$$

where the first term is the probability of reaching sequence s at mutational step j , and the second term is the probability of reaching the somatic sequence after passing through sequence s . When representing this number we add an additional normalisation factor, $P'_s = P_s \times n_j$, where $n_j = \binom{L}{j}$ is the number of sequences with j mutations, so that variants with different numbers of mutations have comparable values. P'_s thus represents the ratio of the probability in a selective model to the probability in a neutral model (which is $1/n_j$). Thus, sequences with $\log_{10}(P'_s) > 0$ are favored by the given selection scenario, and those with $\log_{10}(P'_s) < 0$ are disfavored, as shown in **Figure 5–Figure Supplement 2** for moderate selection under the optimal sequential scenario.

920 **Acknowledgments**

921 We thank Rhys Adams for helpful discussion of the Tite-Seq experiments, Zach Niziolek for assis-
922 tance with flow cytometry, Kevin McCarthy for help with antigen production, Matt Melissa for help
923 acquiring strains and protocols, and Tyler Starr and members of the Denic, Gaudet, and Wittrup
924 labs for help with experimental protocols. We also thank Jesse Bloom, Andrew Murray, and Michael
925 Laub for helpful discussion and members of the Desai lab for comments on the manuscript. The
926 computations in this paper were run on the FASRC Cannon cluster supported by the FAS Division
927 of Science Research Computing Group at Harvard University.

928 **Additional Files**

929 **Supplemental files**

- 930 • Figure 1—source data 1. CR9114 library $-\log K_D$ to H1, H3, and influenza B. Biological triplicates, mean, and standard error reported.
- 931 • Figure 1—source data 2. CR6261 library $-\log K_D$ to H1 and H9. Biological triplicates, mean, and standard error reported.
- 932 • Figure 1—source data 3. Isogenic flow cytometry measurements of $-\log K_D$ for select CR9114 and CR6261 variants. Inferred $-\log K_D$ and standard deviation for each replicate of isogenic FACS, alongside inferred $-\log K_D$ mean and SEM from Tite-Seq using the mean bin and maximum likelihood (ML, shown only for CR9114) inference methods.
- 933 • Figure 2—source data 1. Interaction model coefficients for CR9114. Coefficients are reported with standard errors, p-values, and confidence intervals (95% with Bonferroni correction by the number of parameters).
- 934 • Figure 2—source data 2. Interaction model coefficients for CR6261. Coefficients are reported with standard errors, p-values, and confidence intervals (95% with Bonferroni correction by the number of parameters).
- 935 • Figure 2—source data 3. Tabulated contact surface area, number of HA contacts, and pairwise distances for mutations in CR9114 and CR6261. For each mutated position, the contact surface area with HA (as plotted in Figure 2C and Figure 2—Figure supplement 1) and the number of HA residues within 6 angstroms is tabulated for CR9114-H5 (4FQI), CR9114-H3 (4FQY), and CR6261-H1 (3GBN). Distances between alpha-carbons plotted in Figure 2F and Figure 2—Figure supplement 1 are also tabulated here alongside the corresponding second order effects.
- 936 • Figure 5—source data 1. Total probability of mutational trajectories for CR9114 under different antigen selection scenarios. Mean and standard error across 10 bootstrap samples are reported for moderate, weak, and strong selection strengths.
- 937 • Figure 5—source data 2. Total probability of mutational trajectories for CR6261 under different antigen selection scenarios. Mean and standard error across 10 bootstrap samples are reported for moderate, weak, and strong selection strengths.
- 938 • Supplemental File 1. Primer sequences for sequencing library preparation.
- 939 • Supplemental File 2. Fragment sequences for Golden Gate construction of the CR9114 library.
- 940 • Supplemental File 3. Primer sequences for Golden Gate construction of the CR6261 library.
- 941 • Supplemental File 4. Plasmid map of pCT302 with CR9114 germline sequence.
- 942 • Supplemental File 5. Plasmid map of pCT302 with CR9114 somatic sequence.
- 943 • Supplemental File 6. Plasmid map of pCT302 with CR6261 germline sequence.
- 944 • Supplemental File 7. Plasmid map of pCT302 with CR6261 somatic sequence.
- 945 • Supplemental File 8. Plasmid map of pFastBac with influenza A/New Caldeonia/1999 H1 ectodomain.
- 946 • Supplemental File 9. Plasmid map of pFastBac with influenza A/Hong Kong/1999 H9 ectodomain.
- 947 • Supplemental File 10. Plasmid map of pFastBac with influenza A/Wisconsin/2005 H3 ectodomain.
- 948 • Supplemental File 11. Plasmid map of pFastBac with influenza B/Ohio/2005 HA ectodomain.

969 • Supplemental File 12. Inferred CR9114 VH germline nucleotide sequence

970 **Data availability**

971 Data and code used for this study are available at <https://github.com/klawrence26/bnab-landscapes>.
972 CR9114 data are also available in an interactive data browser at https://yodabrowser.netlify.app/yoda_browser/. FASTQ files from high-throughput sequencing have been deposited in the NCBI BioProject
974 database with accession number PRJNA741613, and will be publicly released upon acceptance.

975 **References**

976 Adams RM, Kinney JB, Walczak AM, Mora T. Epistasis in a fitness landscape defined by antibody-antigen binding
977 free energy. *Cell Systems*. 2019; 8(1):86–93.

978 Adams RM, Mora T, Walczak AM, Kinney JB. Measuring the sequence-affinity landscape of antibodies with
979 massively parallel titration curves. *Elife*. 2016; 5.

980 Amitai A, Mesin L, Victora GD, Kardar M, Chakraborty AK. A Population Dynamics Model for Clonal Diversity in
981 a Germinal Center. *Frontiers in Microbiology*. 2017; 8. doi: <https://doi.org/10.3389/fmicb.2017.01693>.

982 Avnir Y, Tallarico AS, Zhu Q, Bennett AS, Connelly G, Sheehan J, Sui J, Fahmy A, Huang Cy, Cadwell G, et al.
983 Molecular signatures of hemagglutinin stem-directed heterosubtypic human neutralizing antibodies against
984 influenza A viruses. *PLoS pathogens*. 2014; 10(5):e1004103.

985 Ba ANN, Cvijović I, Echenique JIR, Lawrence KR, Rego-Costa A, Liu X, Levy SF, Desai MM. High-resolution lineage
986 tracking reveals travelling wave of adaptation in laboratory yeast. *Nature*. 2019; 575(7783):494–499.

987 Bajic G, van der Poel CE, Kuraoka M, Schmidt AG, Carroll MC, Kelsoe G, Harrison SC. Autoreactivity profiles of
988 influenza hemagglutinin broadly neutralizing antibodies. *Scientific reports*. 2019; 9(1):1–9.

989 Baker EN, Hubbard RE. Hydrogen bonding in globular proteins. *Progress in Biophysics and Molecular Biology*.
990 1984; 44(2):97–179.

991 Bank C, Hietpas RT, Jensen JD, Bolon DNA. A Systematic Survey of an Intragenic Epistatic Landscape. *Molecular
992 Biology and Evolution*. 2015; 32(1):229–238. doi: <https://doi.org/10.1093/molbev/msu301>.

993 Barnett M, Regex; 2013. <https://pypi.org/project/regex/>.

994 Batista FD, Neuberger MS. Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and
995 the importance of off-rate. *Immunity*. 1998; 8(6):751–9.

996 Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. *Nature Biotechnology*.
997 1997; 15(6):553–557. doi: <https://doi.org/10.1038/nbt0697-553>.

998 Bondi Av. van der Waals volumes and radii. *The Journal of Physical Chemistry*. 1964; 68(3):441–451.

999 Braden BC, Goldman ER, Mariuzza RA, Poljak RJ. Anatomy of an antibody molecule: structure, kinetics, thermo-
1000 dynamics and mutational studies of the anti-lysozyme antibody D1.3. *Immunological Reviews*. 1998; 163:45–
1001 57.

1002 Burks EA, Chen G, Georgiou G, Iverson BL. In vitro scanning saturation mutagenesis of an antibody binding
1003 pocket. *Proceedings of the National Academy of Sciences of the United States of America*. 1997; 94(2):412.

1004 Chen G, Dubrawsky I, Mendez P, Georgiou G, Iverson BL. In vitro scanning saturation mutagenesis of all the
1005 specificity determining residues in an antibody binding site. *Protein Engineering*. 1999; 12(4):349–56.

1006 Corti D, Cameroni E, Guarino B, Kallewaard NL, Zhu Q, Lanzavecchia A. Tackling influenza with broadly neutral-
1007 izing antibodies. *Current Opinion in Virology*. 2017; 24:60–69.

1008 Corti D, Lanzavecchia A. Broadly neutralizing antiviral antibodies. *Annual Review of Immunology*. 2013; 31:705–
1009 42.

1010 Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, Jarrossay D, Vachieri SG, Pinna D, Minola A, Vanzetta F, Silacci
1011 C, Fernandez-Rodriguez BM, Agatic G, Bianchi S, Giacchettino-Sasselli I, Calder L, Sallusto F, Collins P, Haire LF,
1012 Temperton N, et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2
1013 influenza A hemagglutinins. *Science*. 2011; 333(6044):850–6.

1014 Domingo J, Baeza-Centurion P, Lehner B. The Causes and Consequences of Genetic Interactions (Epistasis). Annual Review of Genomics and Human Genetics. 2019; 20(1):433–460. doi: <https://doi.org/10.1146/annurev-genom-083118-014857>.

1017 Doud MB, Lee JM, Bloom JD. How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin. Nature Communications. 2018; 9(1):1386. doi: <https://doi.org/10.1038/s41467-018-03665-3>.

1020 Dreyfus C, Laursen NS, Kwaks T, Zuidgeest D, Khayat R, Ekiert DC, Lee JH, Metlagel Z, Bujny MV, Jongeneelen M, van der Vlugt R, Lamrani M, Korse HJWM, Geelen E, Sahin Ö, Sieuwerts M, Brakenhoff JP, Vogels R, Li OTW, Poon LLM, et al. Highly Conserved Protective Epitopes on Influenza B Viruses. Science. 2012; 337(6100):1343.

1023 Ekiert DC, Bhabha G, Elsiger MA, Friesen RH, Jongeneelen M, Throsby M, Goudsmit J, Wilson IA. Antibody recognition of a highly conserved influenza virus epitope. Science. 2009; 324(5924):246–51.

1025 Ekiert DC, Friesen RH, Bhabha G, Kwaks T, Jongeneelen M, Yu W, Ophorst C, Cox F, Korse HJ, Brandenburg B, et al. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science. 2011; 333(6044):843–850.

1028 Engler C, Kandzia R, Marillonnet S. A One Pot, One Step, Precision Cloning Method with High Throughput Capability. PLOS ONE. 2008; 11; 3(11):1–7. doi: <https://doi.org/10.1371/journal.pone.0003647>.

1030 Esmaielbeiki R, Krawczyk K, Knapp B, Nebel JC, Deane CM. Progress and challenges in predicting protein interfaces. Briefings in Bioinformatics. 2016; 17(1):117–131. doi: <https://doi.org/10.1093/bib/bbv027>.

1032 Fairhead M, Howarth M. Site-specific biotinylation of purified proteins using BirA. In: *Site-Specific Protein Labeling* Springer; 2015.p. 171–184.

1034 Forsyth CM, Juan V, Akamatsu Y, DuBridge RB, Doan M, Ivanov AV, Ma Z, Polakoff D, Razo J, Wilson K, Powers DB. Deep mutational scanning of an antibody against epidermal growth factor receptor using mammalian cell display and massively parallel pyrosequencing. MAbs. 2013; 5(4):523–32.

1037 Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods. 2009; 6(5):343–345.

1039 Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols. 2007; 2(1):31–34.

1041 Giudicelli V, Duroux P, Ginestoux C, Folch G, Jabado-Michaloud J, Chaume D, Lefranc MP. IMGT/LIGM-DB, the IMGT® comprehensive database of immunoglobulin and T cell receptor nucleotide sequences. Nucleic Acids Research. 2006; 34:D781–D784.

1044 Gong LI, Suchard MA, Bloom JD. Stability-mediated epistasis constrains the evolution of an influenza protein. eLife. 2013; 2:e00631. doi: <https://doi.org/10.7554/eLife.00631>.

1046 Guthmiller JJ, Lan LYL, Fernández-Quintero ML, Han J, Utset HA, Bitar DJ, Hamel NJ, Stovicek O, Li L, Tepora M, et al. Polyreactive broadly neutralizing B cells are selected to provide defense against pandemic threat influenza viruses. Immunity. 2020; 53(6):1230–1244.

1049 Hagberg AA, Schult DA, Swart PJ. Exploring Network Structure, Dynamics, and Function using NetworkX. In: Varoquaux G, Vaught T, Millman J, editors. *Proceedings of the 7th Python in Science Conference* Pasadena, CA USA; 2008. p. 11 – 15.

1052 Henry C, Palm AKE, Krammer F, Wilson PC. From Original Antigenic Sin to the Universal Influenza Virus Vaccine. Trends in Immunology. 2018; 39(1):70–79.

1054 Howarth M, Takao K, Hayashi Y, Ting AY. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102(21):7583–7588.

1057 Israelachvili J, Pashley R. The hydrophobic interaction is long range, decaying exponentially with distance. Nature. 1982; 300(5890):341–342.

1059 Kimura M. On the Probability of Fixation of Mutant Genes in a Population. Genetics. 1962 Jun; 47(6):713–719.

1060 Klein F, Diskin R, Scheid JF, Gaebler C, Mouquet H, Georgiev IS, Pancera M, Zhou T, Incesu RB, Fu BZ, Gnanaprasam PNP, Oliveira TY, Seaman MS, Kwong PD, Bjorkman PJ, Nussenzweig MC. Somatic Mutations of the Immunoglobulin Framework Are Generally Required for Broad and Potent HIV-1 Neutralization. *Cell*. 2013; 153(1):126–138. doi: <https://doi.org/10.1016/j.cell.2013.03.018>.

1064 Koenig P, Lee CV, Walters BT, Janakiraman V, Stinson J, Patapoff TW, Fuh G. Mutational landscape of antibody variable domains reveals a switch modulating the interdomain conformational dynamics and antigen binding. *Proceedings of the National Academy of Sciences of the United States of America*. 2017; 114(4):e486–e495.

1068 Krammer F, Pica N, Hai R, Tan GS, Palese P. Hemagglutinin Stalk-Reactive Antibodies Are Boosted following Sequential Infection with Seasonal and Pandemic H1N1 Influenza Virus in Mice. *Journal of Virology*. 2012; 86(19):10302.

1071 Kuraoka M, Schmidt AG, Nojima T, Feng F, Watanabe A, Kitamura D, Harrison SC, Kepler TB, Kelsoe G. Complex antigens drive permissive clonal selection in germinal centers. *Immunity*. 2016; 44(3):542–552.

1073 Lingwood D, McTamney PM, Yassine HM, Whittle JRR, Guo X, Boyington JC, Wei CJ, Nabel GJ. Structural and genetic basis for development of broadly neutralizing influenza antibodies. *Nature*. 2012; 489(7417):566–570. doi: <https://doi.org/10.1038/nature11371>.

1076 Madan B, Zhang B, Xu K, Chao CW, O'Dell S, Wolfe JR, Chuang GY, Fahad AS, Geng H, Kong R, Louder MK, Nguyen TD, Rawi R, Schön A, Sheng Z, Nimrana R, Wang Y, Zhou T, Lin BC, Doria-Rose NA, et al. Mutational fitness landscapes reveal genetic and structural improvement pathways for a vaccine-elicited HIV-1 broadly neutralizing antibody. *Proceedings of the National Academy of Sciences of the United States of America*. 2021; 118(10):e2011653118.

1081 Margine I, Palese P, Krammer F. Expression of functional recombinant hemagglutinin and neuraminidase proteins from the novel H7N9 influenza virus using the baculovirus expression system. *Journal of Visualized Experiments*. 2013; (81):e51112.

1084 McCandlish DM. VISUALIZING FITNESS LANDSCAPES. *Evolution*. 2011; 65(6):1544–1558. doi: <https://doi.org/10.1111/j.1558-5646.2011.01236.x>.

1086 Mesin L, Ersching J, Victora GD. Germinal center B-cell dynamics. *Immunity*. 2016 Sep; 45(3):471–482. doi: <https://doi.org/10.1016/j.immuni.2016.09.001>.

1088 Midelfort KS, Hernandez HH, Lippow SM, Tidor B, Drennan CL, Wittrup KD. Substantial Energetic Improvement with Minimal Structural Perturbation in a High Affinity Mutant Antibody. *Journal of Molecular Biology*. 2004; 343(3):685–701. doi: <https://doi.org/10.1016/j.jmb.2004.08.019>.

1091 Miton C, Tokuriki N. How mutational epistasis impairs predictability in protein evolution and design. *Protein Science*. 2016; 25.

1093 Molari M, Eyer K, Baudry J, Cocco S, Monasson R. Quantitative modeling of the effect of antigen dosage on B-cell affinity distributions in maturing germinal centers. *Elife*. 2020; 9.

1095 Olson CA, Wu NC, Sun R. A comprehensive biophysical description of pairwise epistasis throughout an entire protein domain. *Current Biology*. 2014; 24(22):2643–51.

1097 Ortlund EA, Bridgham JT, Redinbo MR, Thornton JW. Crystal Structure of an Ancient Protein: Evolution by Conformational Epistasis. *Science*. 2007; 317(5844):1544.

1099 Otwinowski J. Biophysical Inference of Epistasis and the Effects of Mutations on Protein Stability and Function. *Molecular Biology and Evolution*. 2018 08; 35(10):2345–2354. doi: <https://doi.org/10.1093/molbev/msy141>.

1101 Otwinowski J, McCandlish DM, Plotkin JB. Inferring the shape of global epistasis. *Proceedings of the National Academy of Sciences of the United States of America*. 2018; 115(32):E7550–E7558. doi: <https://doi.org/10.1073/pnas.1804015115>.

1104 Pappas L, Foglierini M, Piccoli L, Kallewaard NL, Turrini F, Silacci C, Fernandez-Rodriguez B, Agatic G, Giacchetto-Sasselli I, Pellicciotta G, Sallusto F, Zhu Q, Vicenzi E, Corti D, Lanzavecchia A. Rapid development of broadly influenza neutralizing antibodies through redundant mutations. *Nature*. 2014; 516(7531):418–422.

1107 Peterman N, Levine E. Sort-seq under the hood: implications of design choices on large-scale characterization of sequence-function relations. *BMC Genomics*. 2016; 17(1):206.

1109 **Pettersen EF**, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. *Protein Science*. 2021; 30(1):70–82.

1110

1111 **Podgornaia AI**, Laub MT. Pervasive degeneracy and epistasis in a protein-protein interface. *Science*. 2015; 347(6222):673.

1112

1113 **Poelwijk FJ**, Krishna V, Ranganathan R. The Context-Dependence of Mutations: A Linkage of Formalisms. *PLOS Computational Biology*. 2016 06; 12(6):1–19. doi: <https://doi.org/10.1371/journal.pcbi.1004771>.

1114

1115 **Poelwijk FJ**, Socolich M, Ranganathan R. Learning the pattern of epistasis linking genotype and phenotype in a protein. *Nature Communications*. 2019; 10(1):4213. doi: <https://doi.org/10.1038/s41467-019-12130-8>.

1116

1117 **Rotem A**, Serohijos AWR, Chang CB, Wolfe JT, Fischer AE, Mehoke TS, Zhang H, Tao Y, Lloyd Ung W, Choi JM, Rodrigues JV, Kolawole AO, Koehler SA, Wu S, Thielen PM, Cui N, Demirev PA, Giacobbi NS, Julian TR, Schwab K, et al. Evolution on the Biophysical Fitness Landscape of an RNA Virus. *Molecular biology and evolution*. 2018; 35(10):2390–2400. doi: <https://doi.org/10.1093/molbev/msy131>.

1118

1119

1120

1121 **Sachdeva V**, Husain K, Sheng J, Wang S, Murugan A. Tuning environmental timescales to evolve and maintain generalists. *Proceedings of the National Academy of Sciences of the United States of America*. 2020; 117(23):12693–12699.

1122

1123

1124 **Sailer ZR**, Harms MJ. High-order epistasis shapes evolutionary trajectories. *PLoS Computational Biology*. 2017; 13(5):e1005541.

1125

1126 **Sailer ZR**, Harms MJ. Detecting High-Order Epistasis in Nonlinear Genotype-Phenotype Maps. *Genetics*. 2017; 205(3):1079–1088. doi: <https://doi.org/10.1534/genetics.116.195214>.

1127

1128 **Sarkisyan KS**, Bolotin DA, Meer MV, Usmanova DR, Mishin AS, Sharonov GV, Ivankov DN, Bozhanova NG, Baranov MS, Soylemez O, Bogatyreva NS, Vlasov PK, Egorov ES, Logacheva MD, Kondrashov AS, Chudakov DM, Putintseva EV, Mamedov IZ, Tawfik DS, Lukyanov KA, et al. Local fitness landscape of the green fluorescent protein. *Nature*. 2016; 533(7603):397–401.

1129

1130

1131

1132 **Schmidt AG**, Do KT, McCarthy KR, Kepler TB, Liao HX, Moody MA, Haynes BF, Harrison SC. Immunogenic stimulus for germline precursors of antibodies that engage the influenza hemagglutinin receptor-binding site. *Cell Reports*. 2015; 13(12):2842–2850.

1133

1134

1135 **Schrodinger, LLC**. The PyMOL Molecular Graphics System, Version 1.8; 2015.

1136 **Smith DJ**, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, Osterhaus ADME, Fouchier RAM. Mapping the Antigenic and Genetic Evolution of Influenza Virus. *Science*. 2004; 305(5682):371.

1137

1138 **Spisak N**, Walczak AM, Mora T. Learning the heterogeneous hypermutation landscape of immunoglobulins from high-throughput repertoire data. *Nucleic acids research*. 2020; 48(19):10702–10712.

1139

1140 **Sprenger KG**, Louveau JE, Murugan PM, Chakraborty AK. Optimizing immunization protocols to elicit broadly neutralizing antibodies. *Proceedings of the National Academy of Sciences of the United States of America*. 2020; 117(33):20077.

1141

1142

1143 **Starr TN**, Picton LK, Thornton JW. Alternative evolutionary histories in the sequence space of an ancient protein. *Nature*. 2017; 549(7672):409–413.

1144

1145 **Starr TN**, Greaney AJ, Addetia A, Hannon WW, Choudhary MC, Dingens AS, Li JZ, Bloom JD. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. *Science*. 2021; 371(6531):850.

1146

1147 **Throsby M**, van den Brink E, Jongeneelen M, Poon LLM, Alard P, Cornelissen L, Bakker A, Cox F, van Deventer E, Guan Y, Cinatl J, Meulen Jt, Lasters I, Carselli R, Peiris M, de Kruif J, Goudsmit J. Heterosubtypic Neutralizing Monoclonal Antibodies Cross-Protective against H5N1 and H1N1 Recovered from Human IgM+ Memory B Cells. *PLoS One*. 2008; 3(12):e3942. doi: <https://doi.org/10.1371/journal.pone.0003942>.

1148

1149

1150

1151 **Unniraman S**, Schatz DG. Strand-biased spreading of mutations during somatic hypermutation. *Science*. 2007; 317(5842):1227–30.

1152

1153 **Victora GD**, Nussenzweig MC. Germinal centers. *Annual Review of Immunology*. 2012; 30:429–57.

1154 **Wang S**. Optimal Sequential Immunization Can Focus Antibody Responses against Diversity Loss and Distraction. *PLoS Computational Biology*. 2017; 13(1):e1005336.

1155

1156 **Wang S**, Mata-Fink J, Kriegsman B, Hanson M, Irvine DJ, Eisen HN, Burton DR, Wittrup KD, Kardar M, Chakraborty
1157 AK. Manipulating the selection forces during affinity maturation to generate cross-reactive HIV antibodies.
1158 *Cell*. 2015; 160(4):785–797.

1159 **Wang TT**, Tan GS, Hai R, Pica N, Petersen E, Moran TM, Palese P. Broadly Protective Monoclonal Antibodies
1160 against H3 Influenza Viruses following Sequential Immunization with Different Hemagglutinins. *PLoS*
1161 *Pathogens*. 2010; 6(2):e1000796. doi: <https://doi.org/10.1371/journal.ppat.1000796>.

1162 **Weinreich DM**, Delaney NF, Depristo MA, Hartl DL. Darwinian evolution can follow only very few mutational
1163 paths to fitter proteins. *Science*. 2006; 312(5770):111–114.

1164 **Wells JA**. Additivity of mutational effects in proteins. *Biochemistry*. 1990; 29(37):8509–8517.

1165 **Wiley DC**, Wilson IA, Skehel JJ. Structural identification of the antibody-binding sites of Hong Kong influenza
1166 haemagglutinin and their involvement in antigenic variation. *Nature*. 1981; 289(5796):373–378.

1167 **Wu NC**, Grande G, Turner HL, Ward AB, Xie J, Lerner RA, Wilson IA. In vitro evolution of an influenza broadly
1168 neutralizing antibody is modulated by hemagglutinin receptor specificity. *Nature Communications*. 2017;
1169 8(1):15371. doi: <https://doi.org/10.1038/ncomms15371>.

1170 **Wu NC**, Thompson AJ, Lee JM, Su W, Arlian BM, Xie J, Lerner RA, Yen HL, Bloom JD, Wilson IA. Different genetic
1171 barriers for resistance to HA stem antibodies in influenza H3 and H1 viruses. *Science*. 2020; 368(6497):1335.

1172 **Xu H**, Schmidt AG, O'Donnell T, Therkelsen MD, Kepler TB, Moody MA, Haynes BF, Liao H, Harrison SC, Shaw DE.
1173 Key mutations stabilize antigen-binding conformation during affinity maturation of a broadly neutralizing
1174 influenza antibody lineage. *Proteins*. 2015; 83(4):771–780.

1175 **Ye J**, Ma N, Madden TL, Ostell JM. IgBLAST: an immunoglobulin variable domain sequence analysis tool. *Nucleic
1176 Acids Research*. 2013 05; 41(W1):W34–W40. <https://doi.org/10.1093/nar/gkt382>, doi: 10.1093/nar/gkt382.

1177 **Yen JY**. Finding the K Shortest Loopless Paths in a Network. *Management Science*. 1971; 17(11):712–716.

1178 **Yewdell JW**. To dream the impossible dream: universal influenza vaccination. *Current Opinion in Virology*.
1179 2013; 3(3):316–21.

1180 **Appendix 1**

1181 **Maximum likelihood approach to binding affinity inference**

1182 In this approach we make the assumption that the fluorescence emitted by cells of a specific
 1183 genotype is distributed log-normally, with parameters $\mu_{s,c}$ and $\sigma_{s,c}$ (the mean and standard
 1184 deviation of the associated normal distribution respectively). At concentration c , a cell with
 1185 genotype s will fall into the bin b (\log_{10} -fluorescence values $f_{s,c}$ ranging from l_b to h_b) with
 1186 probability:

$$1187 P[l_b < f_{s,c} < h_b] = \int_{l_b}^{h_b} \frac{1}{\sqrt{2\pi\sigma_{s,c}^2}} e^{-\frac{1}{2}\left(\frac{f_{s,c}-\mu_{s,c}}{\sigma_{s,c}}\right)^2} df_{s,c} \quad (18)$$

$$1188 = \frac{1}{2} \left(\operatorname{erf}\left(\frac{h_b - \mu_{s,c}}{\sigma_{s,c}\sqrt{2}}\right) - \operatorname{erf}\left(\frac{l_b - \mu_{s,c}}{\sigma_{s,c}\sqrt{2}}\right) \right). \quad (19)$$

1190 Each cell sorted is an independent event, so the number of cells in each bin will be multi-
 1191 nomially distributed, and thus the likelihood of sorting $n_{b,s|c}$ cells of sequence s into bin b at
 1192 concentration c is given by

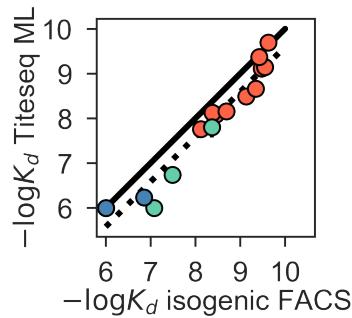
$$1193 \mathcal{L} = \prod_{s,c} (P[l_b < f_{s,c} < h_b])^{n_{b,s|c}}, \quad (20)$$

1194 and the log-likelihood is

$$1195 \log \mathcal{L} = \sum_{s,c,b} n_{b,s|c} \log P[l_b < f_{s,c} < h_b] \propto \sum_{s,c,b} p_{b,s|c} \log P[l_b < f_{s,c} < h_b]. \quad (21)$$

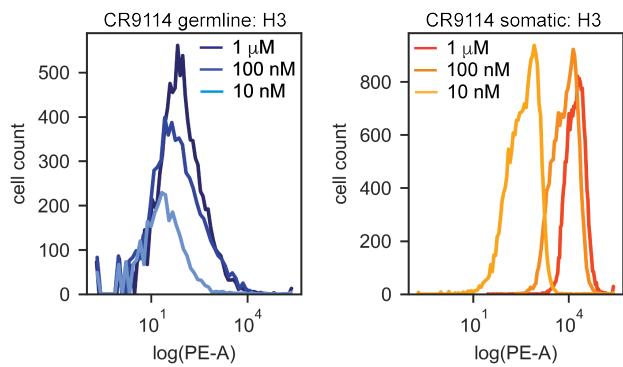
1200 The probability $p_{b,s|c}$ is estimated as in the mean-bin approach (see Methods) and the log-
 1201 likelihood is then maximized as a function of $\mu_{s,c}$ and $\sigma_{s,c}$ (BFGS method). The values of A ,
 1202 K_D , and B are then estimated similarly as the mean-bin approach (see Methods), replacing
 1203 $\bar{F}_{s,c}$ by $\mu_{s,c}$.

1204 The $-\log_{10} K_D$ inferred by this maximum likelihood (ML) approach correlate well with
 1205 isogenic flow cytometry $-\log_{10} K_D$ (see Appendix 1 Fig. 1), but not as well as those inferred
 1206 by the mean-bin approach (Figure 1-Figure Supplement 2B). The ML approach is predicated
 1207 on the assumption that the fluorescence distribution for each variant is log-normal, which is
 1208 often not the case (see Appendix 1 Fig. 2). For these reasons, in addition to favoring a simple
 1209 approach, we performed all analyses with $-\log_{10} K_D$ inferred by the mean-bin approach.



1210 **Appendix 1 Figure 1.** Correlation between $-\log_{10} K_D$ from ML inference on Tite-Seq data vs.
 1211 $-\log_{10} K_D$ from isogenic flow cytometry. $-\log_{10} K_D$ to H1 (salmon), H3 (green), and Flu B (blue) shown
 1212 for select variants, identical to those shown in Figure 1-Figure Supplement 2B. Pearson's $r = 0.97$.

1215
1216
1217
1218
1219
1220



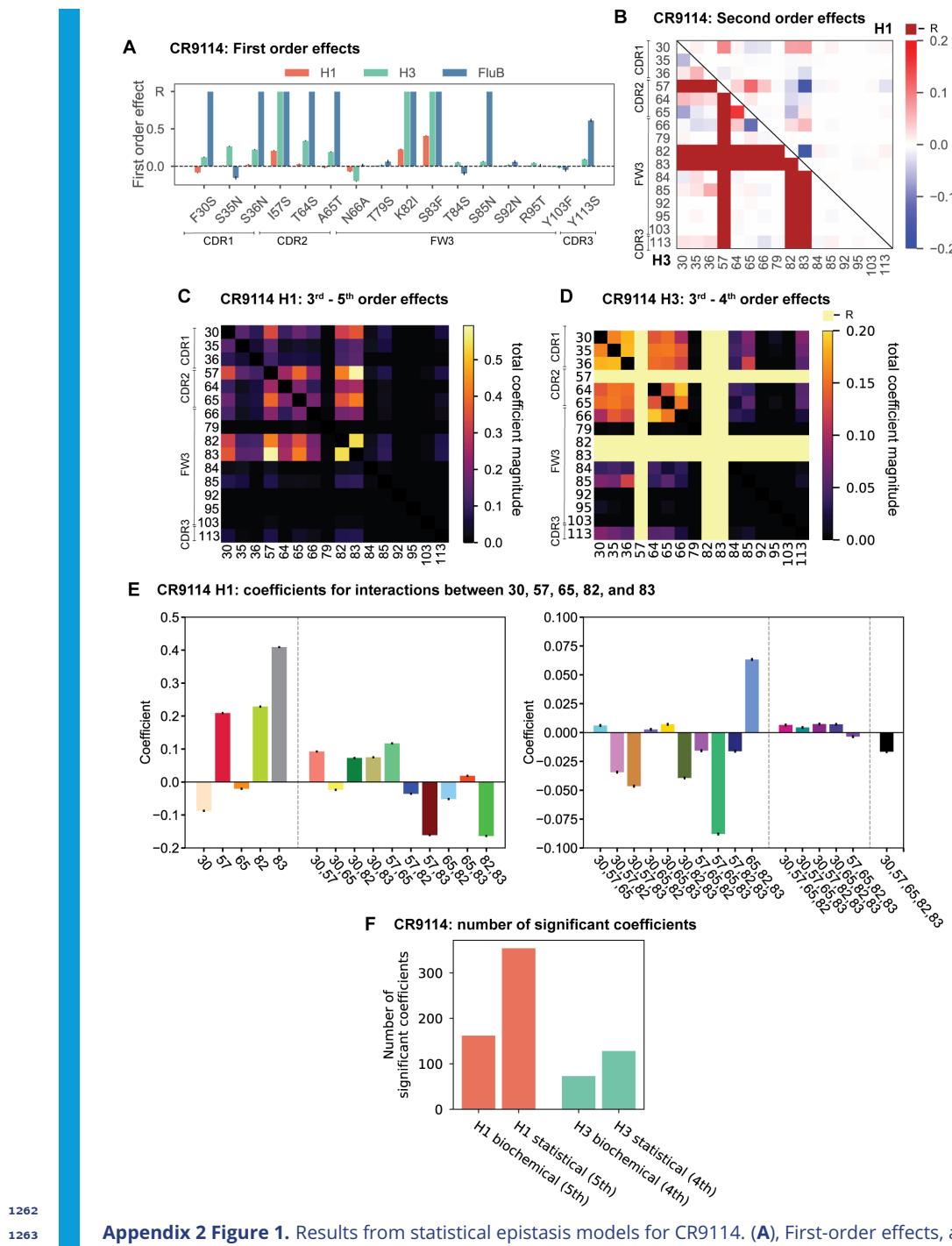
Appendix 1 Figure 2. Distributions of PE-A fluorescence (HA binding) for isogenic CR9114 strains incubated with H3. PE-A fluorescence distributions from flow cytometry of isogenic CR9114 germline (left) and somatic (right) strains following incubation with 1 μ M, 100 nM, and 10 nM H3, as described in Methods. Shape of distribution varies for different clones and is not strictly log-normal, hence deviating from assumptions made in the maximum-likelihood binding affinity inference.

1223
1224 **Alternative approaches to epistasis inference**1225 **Statistical epistasis and variance partitioning**

1226 The contrast between biochemical and statistical frameworks for epistasis is well described
1227 in *Poelwijk et al. (2016)*. In particular, a biochemical epistasis approach highlights one partic-
1228 ular sequence as the “wildtype” or reference sequence and measures effects relative to its
1229 phenotype, whereas a statistical epistasis approach measures effects relative to the average
1230 phenotype of all variants included. The biochemical approach benefits from easier interpre-
1231 tation of the coefficient values, particularly when there is a natural or relevant choice of ref-
1232 erence sequence, but the coefficients at different orders are not statistically independent.
1233 The statistical approach allows for correct variance partitioning between interaction orders,
1234 but the interpretation of the coefficients can be sensitive to the set of sequences, partic-
1235 ularly when not all possible sequences are represented or when a majority of sequences
1236 exhibit some uninteresting phenotype (e.g. lethal).

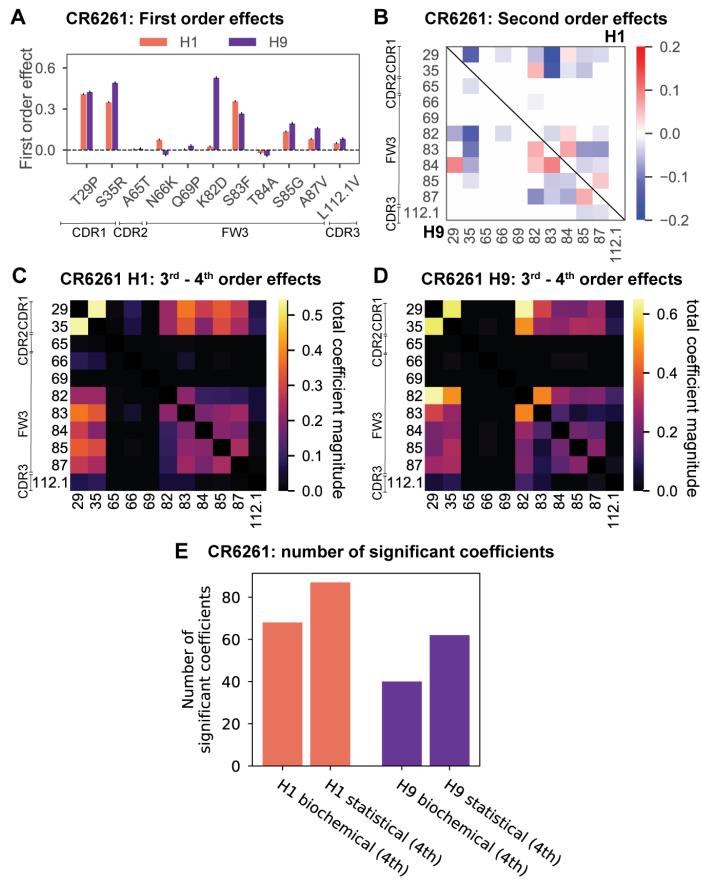
1237 Here, we perform inference of statistical epistasis exactly as described above for bio-
1238 chemical epistasis (see Methods), except that genotypes $x_{i,s}$ are coded as $\{-1, 1\}$ instead of
1239 $\{0, 1\}$. The results from this statistical epistasis inference are shown in Appendix 2 Fig. 1 for
1240 CR9114 and Appendix 2 Fig. 2 for CR6261, in plots analogous to those in **Figure 3**, **Figure 4**
1241 and supplements. We find that the patterns of site participation in interactions are similar
1242 (although the coefficient magnitudes and signs are of course scaled differently). The group
1243 of five key sites discussed in Figure 3 (sites 30, 57, 65, 82, and 83 for CR9114 binding to H1)
1244 exhibit coefficients that are significant for all 31 mutation combinations, consistent with the
1245 result from biochemical epistasis. Overall, the numbers of significant coefficients inferred
1246 in statistical epistasis models tends to be somewhat higher than for biochemical epistasis
1247 models, perhaps due to the effect of background averaging in reducing coefficient standard
1248 errors, but neither framework is a substantially more compact representation of epistasis
1249 than the other.

1250 In the statistical epistasis framework, we can also partition the variance explained by
1251 the model according to the interaction order. Here, we take the final inferred model at
1252 the optimal interaction order and evaluate the prediction performance (R^2) of each order
1253 as a fraction of the total performance of the full model. As shown in Appendix 2 Fig. 3,
1254 we find that epistasis explains a substantial fraction of variance (18% - 33%, depending on
1255 antibody-antigen pair). Variance explained tends to decline with increasing order, as is also
1256 observed in some other protein epistasis datasets (*Sailer and Harms, 2017a*). This indicates
1257 that interactions at higher order are more rare (compared to the total number of terms at
1258 each order, which scales combinatorially) and/or smaller in magnitude than those at lower
1259 order. However, this does not imply that rare, strong interactions of even higher order do
1260 not exist; for example, there may be some strong sixth-order interaction terms for CR9114
1261 binding to H1, but not enough to compensate for the many nonsignificant sixth-order terms
in our cross-validation framework.



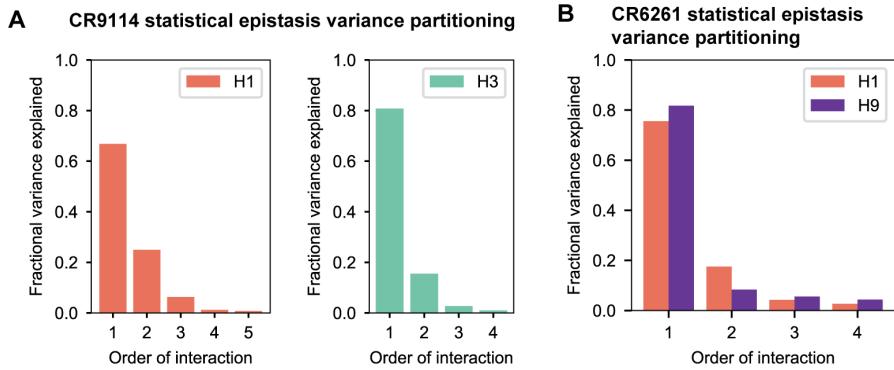
Appendix 2 Figure 1. Results from statistical epistasis models for CR9114. **(A)**, First-order effects, as in *Figure 2A*. 'R' indicates required mutations. **(B)**, Second-order effects for H1 (top right) and H3 (lower left), as in *Figure 2D*. Interactions with required mutations for H3 are noted in dark red. **(C)**, Cumulative higher-order effects for CR9114 binding to H1, as in *Figure 3A*. **(D)**, Cumulative higher-order effects for CR9114 binding to H3, as in *Figure 3–Figure Supplement 3*. **(E)**, Inferred interaction coefficients for the set of five key epistatic loci, as in *Figure 3–Figure Supplement 1B* with corresponding colors. Note the different y-axis scales for the two subplots. Different interaction orders are separated by dotted lines. **(F)**, Number of significant coefficients at all orders for the biochemical and statistical epistasis models. The maximal order of interaction for each model is indicated in parentheses.

1274
1275
1276
1277
1278
1279
1280



Appendix 2 Figure 2. Results from statistical epistasis models for CR6261. **(A)**, First-order effects, as in *Figure 2B*. **(B)**, Second-order effects for H1 (top right) and H9 (lower left), as in *Figure 2E*. **(C)**, Cumulative higher-order effects for CR6261 binding to H1, as in *Figure 4A*. **(D)**, cumulative higher-order effects for CR9114 binding to H9, as in *Figure 4-Figure Supplement 2A*. **(E)**, number of significant coefficients at all orders for the biochemical and statistical epistasis models. The maximal order of interaction for each model is indicated in parentheses.

1282
1283
1284
1285

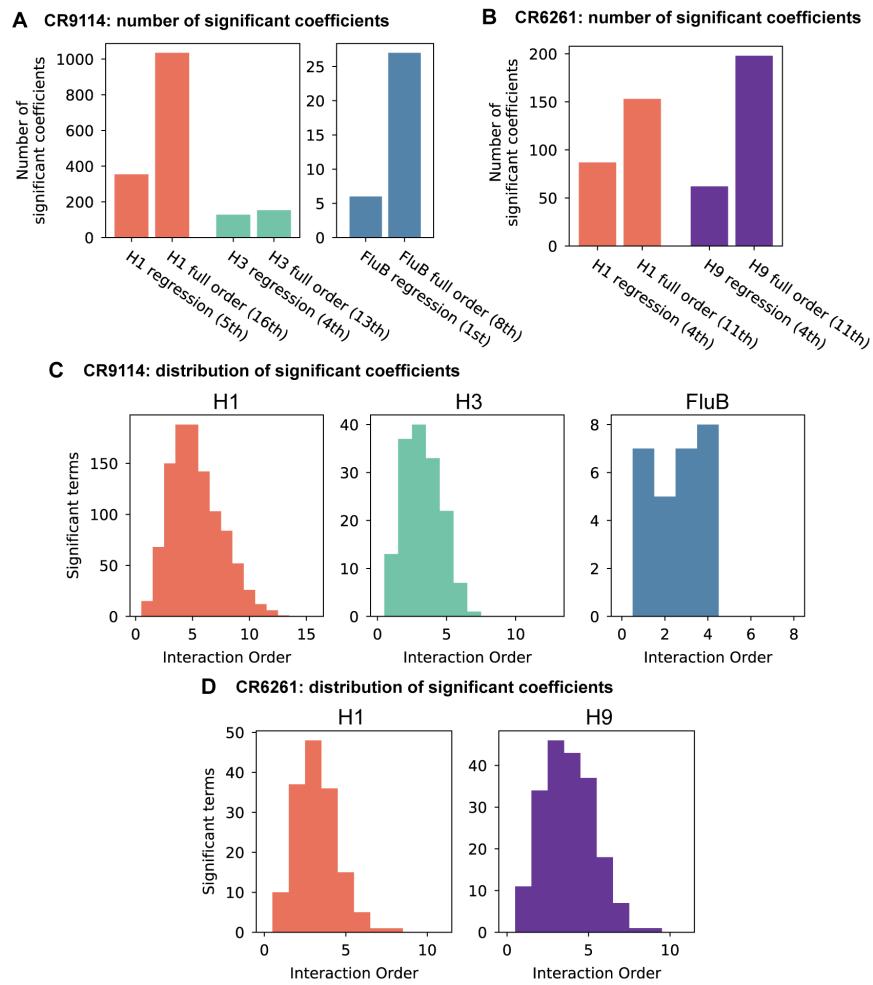


Appendix 2 Figure 3. Variance partitioning of statistical epistasis models. **(A)**, Variance partitioning for CR9114 binding to H1 (left) and H3 (right). **(B)**, Variance partitioning for CR9114 binding to H1 and H9, denoted by colors as indicated.

In particular, another alternative approach to the inference of epistasis is to infer a full L^{th} -order model rather than truncating to lower order. This approach calculates 2^L epistatic coefficients, one for every datapoint, which allows for the detection of strong interactions at any order with the caveat that many coefficients may simply reflect experimental noise, es-

1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304

pecially for higher-order terms. We explore this approach by following [Poelwijk et al. \(2019\)](#): we calculate epistatic coefficients using a Walsh-Hadamard transform of the $-\log_{10} K_D$ values, and calculate standard errors on each coefficient via error propagation using the standard errors of the data. We define significant coefficients by a p -value cutoff of 0.05, with Bonferroni correction by the total number of parameters in the model (here 2^L). We find that for all antibody-antigen combinations, this approach finds more significant coefficients than the optimal truncated models, many of which are at higher interaction orders than allowed in the truncated model (Appendix 2 Fig 4). This analysis requires a measurement of $-\log_{10} K_D$ for every single variant, so we use data that has not been filtered for goodness-of-fit or error in the inference of binding affinity (see Methods), including some sequences that have substantial error. Therefore we prefer to use the more conservative regression approach for our in-depth analysis of epistasis; this inference at full order confirms the existence, strength, and identity of the high-order interactions we discuss from the regression approach, while also indicating that additional and even higher-order terms may yet exist.



Appendix 2 Figure 4. Epistasis inference at full order. **(A,B)**, Numbers of significant coefficients for the full-order inference compared to optimal truncated regression models for **(A)** CR9114 and **(B)** CR6261. Significance for both model types is determined by $p < 0.05$ with Bonferroni correction by the number of model parameters. **(C,D)**, Distribution of interaction orders of significant coefficients for **(C)** CR9114 and **(D)** CR6261.

1305
1306
1307
1308
1309
1310

1312

Nonlinear models

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

An alternative approach to understanding epistasis is to view nonlinearities in observed phenotype data as arising from a simple nonlinear transformation applied to an underlying, unobserved additive phenotype. In this view, a simple nonlinear “global epistasis” function with few parameters may describe the landscape as well or better than models of the sort described above, with their large number of “idiosyncratic epistasis” parameters. Many studies in other proteins have attempted to disentangle such global epistasis from idiosyncratic effects (*Sailer and Harms, 2017b; Domingo et al., 2019; Sarkisyan et al., 2016; Otwinowski et al., 2018; Otwinowski, 2018; Adams et al., 2019*).

We already implement one global nonlinear transformation, by log-transforming our binding affinity measurements so that they are proportional to free energy changes, as described above. However, it is possible that another nonlinear transformation would capture the effects of many specific interaction coefficients, if there is a single underlying additive scale. In this section, we explore this possibility following the approach taken by (*Sailer and Harms, 2017b*): we infer a nonlinear transformation that fits the phenotype data, invert it to “linearize” the phenotypes, re-fit interaction models on the linearized phenotypes, and then compare those model coefficients to the original coefficients to evaluate the role of the nonlinear transformation.

Our new model is

$$y_s = \Phi(y_{s,\text{add}}; k_m) = \Phi\left(\beta_0 + \sum_i^L \beta_i x_{i,s}; k_m\right), \quad (22)$$

where y_s are the observed phenotypes ($-\log_{10} K_D$ values), Φ is a nonlinear function with a small number of associated parameters k_m , and $y_{s,\text{add}}$ are the underlying additive-scale phenotypes, parametrized as before by additive coefficients β_i .

To specify Φ , we must choose a family of nonlinear functions. Typical choices include splines (*Otwinowski et al., 2018*) or power transforms (*Sailer and Harms, 2017a,b*). We found that logistic (sigmoid) functions fit our data better than power transforms or splines, and they are monotonic and invertible. Specifically, our logistic function with four parameters is

$$\Phi(y; A, B, \mu, \sigma) = \frac{A}{1 + e^{\frac{(y-\mu)}{\sigma}}} + B. \quad (23)$$

Logistic functions capture two features that we observe: first, there is a saturation effect at low values of $-\log_{10} K_D$, corresponding to nonspecific binding that our measurements are unable to distinguish (*Batista and Neuberger, 1998*); and second, for most antibody-antigen combinations we observe a saturation effect at moderately high values of $-\log_{10} K_D$. This latter effect is not due to limits on our measurement capabilities, as illustrated by higher values of $-\log_{10} K_D$ measured for the CR6261 library to H9 compared to values of $-\log_{10} K_D$ measured for the CR9114 library to H1, but instead due to widespread “diminishing returns” epistasis.

After specifying the functional form of Φ , we must fit both the nonlinear parameters k_m and underlying linear parameters β_i . In principle, one could fit all parameters jointly, using for example a maximum likelihood approach (*Otwinowski et al., 2018*). However, we take the simpler approach as implemented in the software package from *Sailer and Harms (2017b)*, which first infers the additive parameters β_i from the observed phenotypes and then infers the nonlinear function parameters k_m . We show the resulting fit of Φ in Appendix 2 Fig. 5a for two representative examples, by plotting our estimate of the additive phenotypes $y_{s,\text{add}}$ on the x-axis and our observed phenotypes from data on the y-axis. We

1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

found that this simple procedure identified well-fitting Φ in a single step, and successive iterations did not significantly improve the fit.

After fitting the nonlinear transformation, we apply the inverse transformation to our observed phenotypes to obtain “linearized” phenotypes $y_{s,\text{lin}}$:

$$y_{s,\text{lin}} = \Phi^{-1}(y_s, k_m). \quad (24)$$

Because the fit of Φ is not perfect, the linearized phenotypes $y_{s,\text{lin}}$ are not exactly equal to the estimated additive phenotypes $y_{s,\text{add}}$, although linear regression on both quantities produces extremely similar values of β_i . For values that lie above the domain of Φ^{-1} , we pin them to the largest estimated additive phenotype.

Finally, we can take our linearized phenotypes $y_{s,\text{lin}}$ and infer interaction model coefficients β' of various orders, exactly as described above for the untransformed “raw” phenotypes:

$$y_{s,\text{lin}} = \beta'_0 + \sum_i \beta'_i x_{i,s} + \sum_{i < j} \beta'_{ij} x_{i,s} x_{j,s} + \sum_{i < j < k} \beta'_{ijk} x_{i,s} x_{j,s} x_{k,s} + \dots + \varepsilon. \quad (25)$$

We again perform this analysis in both the biochemical and statistical epistasis frameworks. If the inverse transformation has removed most or all of the nonlinearity, then the resulting optimal interaction models should be smaller (lower maximum order of interaction and/or fewer significant interaction coefficients).

Instead, we find that in all cases, the optimal order of interaction is unchanged or only decreased by one when inferring on linearized vs raw phenotypes. Specifically, the new (vs old) optimal orders are: 4th (vs 5th) for CR9114 binding to H1, 4th (vs 4th) for CR9114 binding to H3, 3rd (vs 4th) for CR6261 binding to H1, 3rd (vs 4th) for CR6261 binding to H9 in the biochemical epistasis framework, and 4th (vs 4th) for CR6261 binding to H9 in the statistical epistasis framework. We can compare the numbers of significant coefficients in these optimal models inferred on linearized phenotypes to the models with the same maximum order inferred on raw phenotypes (Appendix 2 Fig. 5d,e), where we see that the numbers are relatively comparable.

We next examine changes in the individual coefficients between these models. In Appendix 2 Fig. 5b, we show two representative scatterplots between the raw phenotype coefficients β and the linearized phenotype coefficients β' , where only significant coefficients are shown for clarity. While some coefficients show dramatic changes, overall the two sets of coefficients are quite well correlated. To see which sites are involved in strong changes, we can also represent coefficient changes in a heatmap format (Appendix 2 Fig. 5c). Here, diagonal cells show the change in coefficient for single sites ($\beta'_i - \beta_i$), while off-diagonal cells show the sum of coefficient changes over all pairwise and higher terms involving each pair of mutations. We observe that for some antibody-antigen pairs, such as CR9114 binding to H1, the strongest net changes are negative, though not negative enough to remove the many significant coefficients. For other antibody-antigen pairs such as CR6261 binding to H1, there are both positive and negative net changes, indicating that the nonlinear transformation is changing the epistatic landscape rather than correcting for it.



1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424

Appendix 2 Figure 5. Results from epistasis models with nonlinear transformations. **(A)**, Fitting logistic functions to additive predicted phenotypes. Red lines indicate the optimized logistic function Φ , with R^2 as indicated. **(B)**, Scatterplot of coefficients β' from the optimal order model inferred on linearized data (after inverting the best-fit nonlinear transformation) against original coefficients β for the model with the same maximum order. **(C)**, Net changes of coefficients by site. Diagonal cells show changes in linear coefficients. Off-diagonal cells show the sum of changes over terms at all orders (2nd and above) in which the given pair of mutations is involved. For **(A-C)**, we show two representative antibody-antigen combinations: CR9114 binding to H1, top, and CR6261 binding to H1, bottom. **(D,E)**, Number of significant coefficients in optimal order models fit to phenotypes transformed by the inverse nonlinear function (light bars), compared to original coefficients from linear models with the same maximal order (dark bars), for **(D)** CR9114 and **(E)** CR6261. The epistasis type and model order are indicated on the x-axis.

In summary, we find that nonlinear logistic transformations can account for a portion of the nonlinearities observed in our data, sometimes reducing the maximal order of interaction by one. However, all antigen-antibody pairs still exhibit strong idiosyncratic epistasis up to at least third order after correcting for global epistasis, and the resulting numbers and magnitudes of significant coefficients are not drastically changed. Thus, it does not appear that global epistasis can explain our data much more simply than models with individual interactions, and so we confine our main analysis to idiosyncratic epistasis models.

A Experimental design

Antibody library	Antigen x3 rep.	Antigen % identity (epitope % identity)
CR9114	H1	42% (60.9%)
	H3	29% (52.2%)
	FluB	
2^{16} variants		
CR6261	H1	51% (63.6%)
	H9	
2^{11} variants		

B Tite-Seq workflow

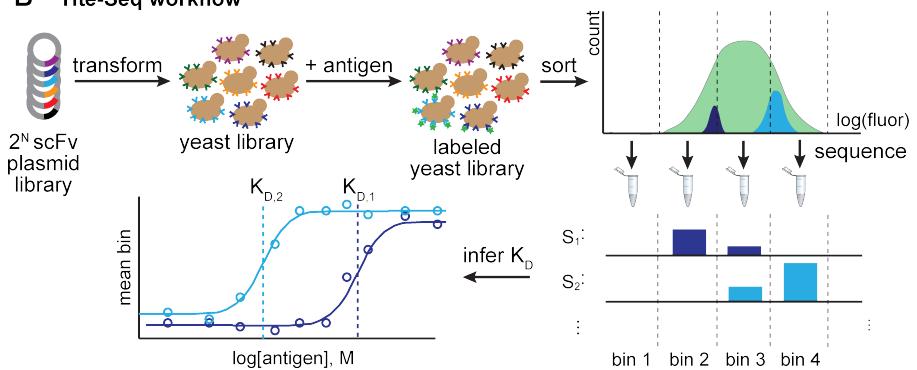


Figure 1–Figure supplement 1. Experimental design and Tite-Seq workflow. **(A)**, Experimental design. Amino acid sequence percent identity of the entire HA ectodomain and the stem epitope (Dreyfus *et al.*, 2012) are shown between each pair of antigens tested for both antibodies. **(B)**, Tite-Seq assay. Surface display single-chain variable fragment (scFv) libraries are transformed into yeast and labeled with fluorescent antigen, followed by FACS into bins and sequencing. Dissociation constants are inferred from changes in mean bin fluorescence across 12 antigen concentrations, see Methods.

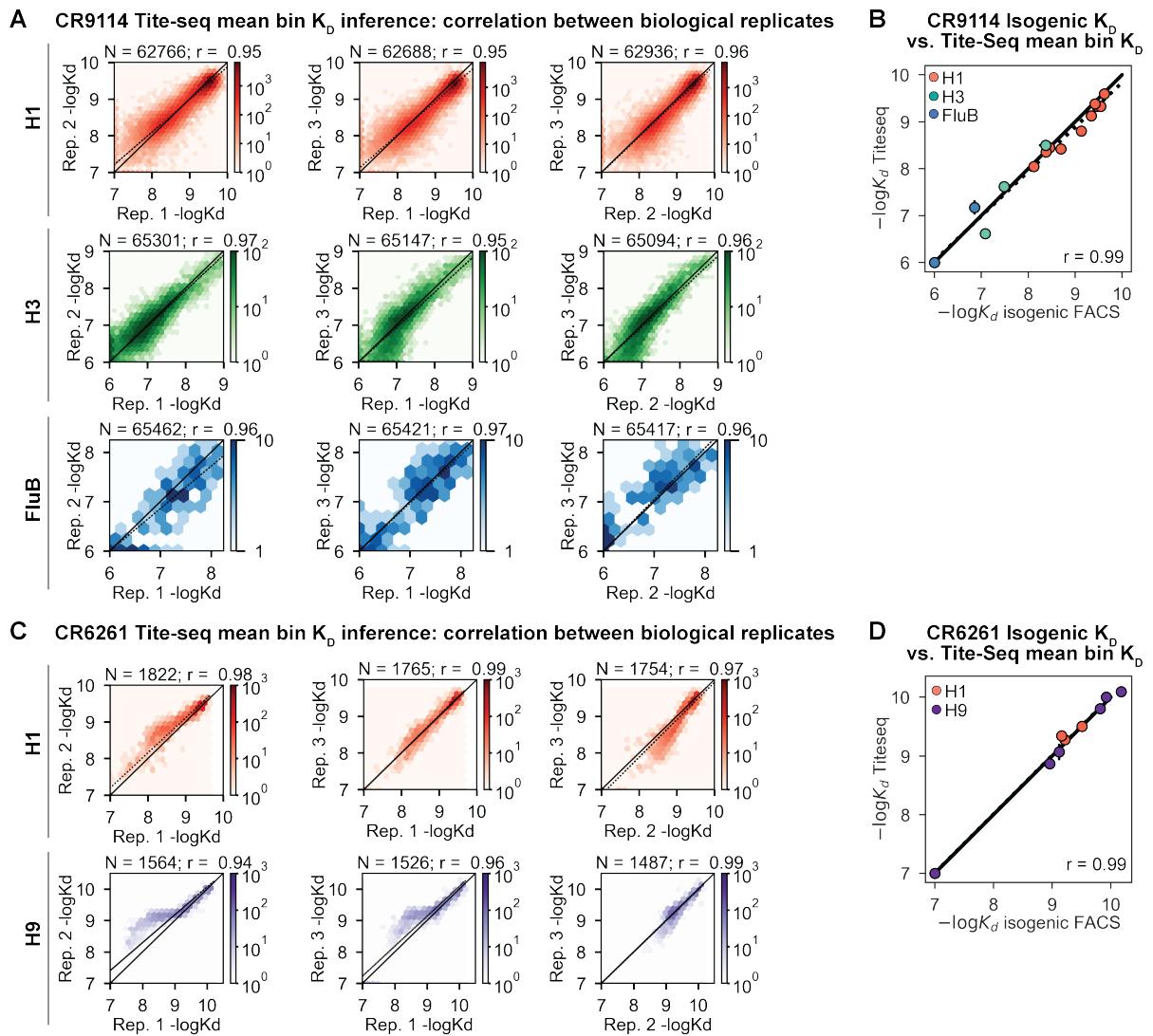


Figure 1–Figure supplement 2. Tite-Seq data quality. **(A, C)**, Correlation of **(A)** CR9114 and **(C)** CR6261 K_D measurements between biological replicates. **(B, D)**, Validation of **(B)** CR9114 and **(D)** CR6261 Tite-Seq K_D measurements by isogenic flow cytometry measurements for a subset of variants and antigens.

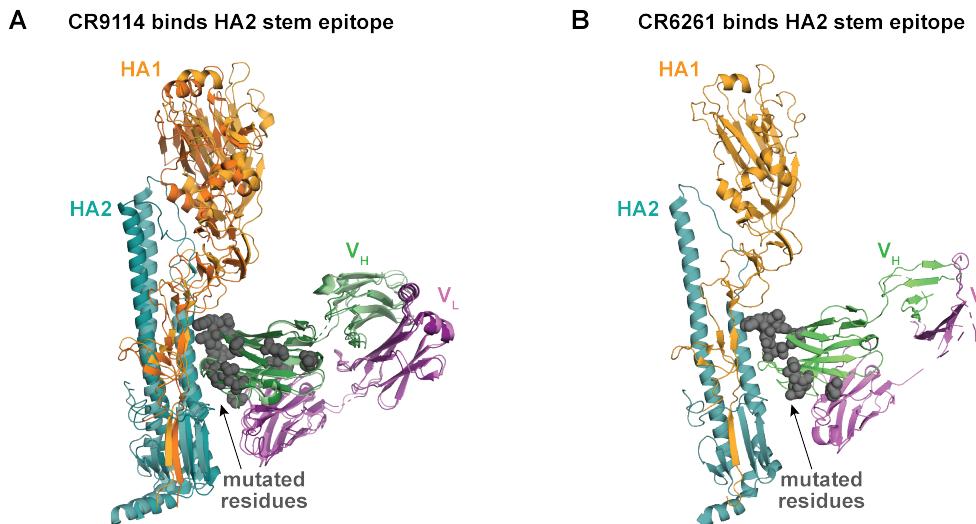


Figure 1-Figure supplement 3. Antibody-antigen co-crystal structures. **(A)**, Alignment of co-crystal structure of CR9114 with H5 (light hues; PDB ID 4FQI) and CR9114 with H3 (dark hues; PDB ID 4FQY). Mutated residues shown as gray spheres. **(B)**, Co-crystal structure of CR6261 with H1 (PDB ID 3GBN); mutated residues shown as gray spheres.

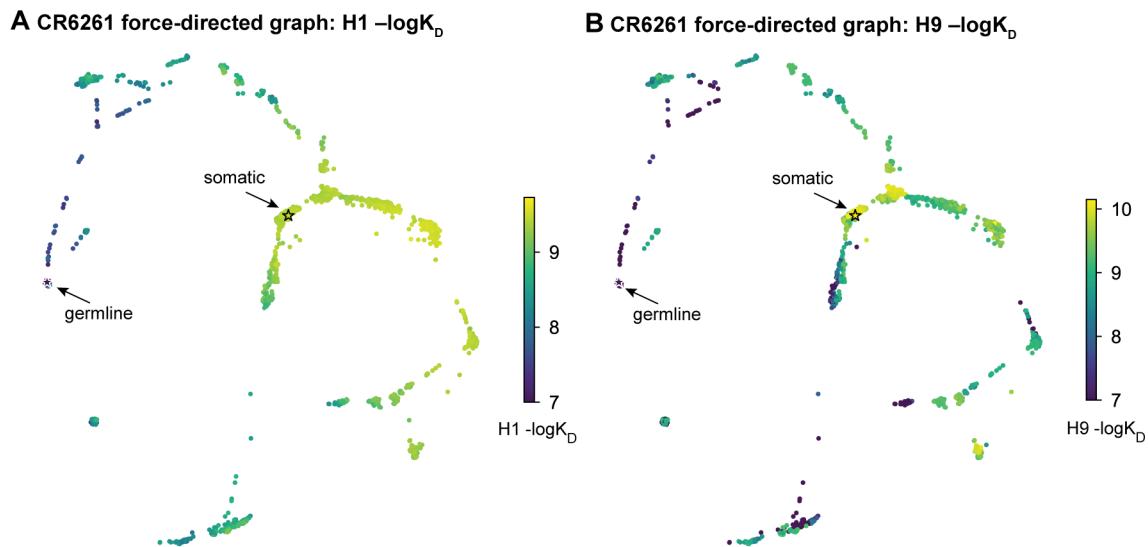


Figure 1-Figure supplement 4. Force-directed graph for CR6261. **(A, B)**, Force-directed graph for CR6261 H1 $-\log K_D$, as in Figure 1G. Nodes are colored by binding affinity to **(A)** H1 and **(B)** H9.

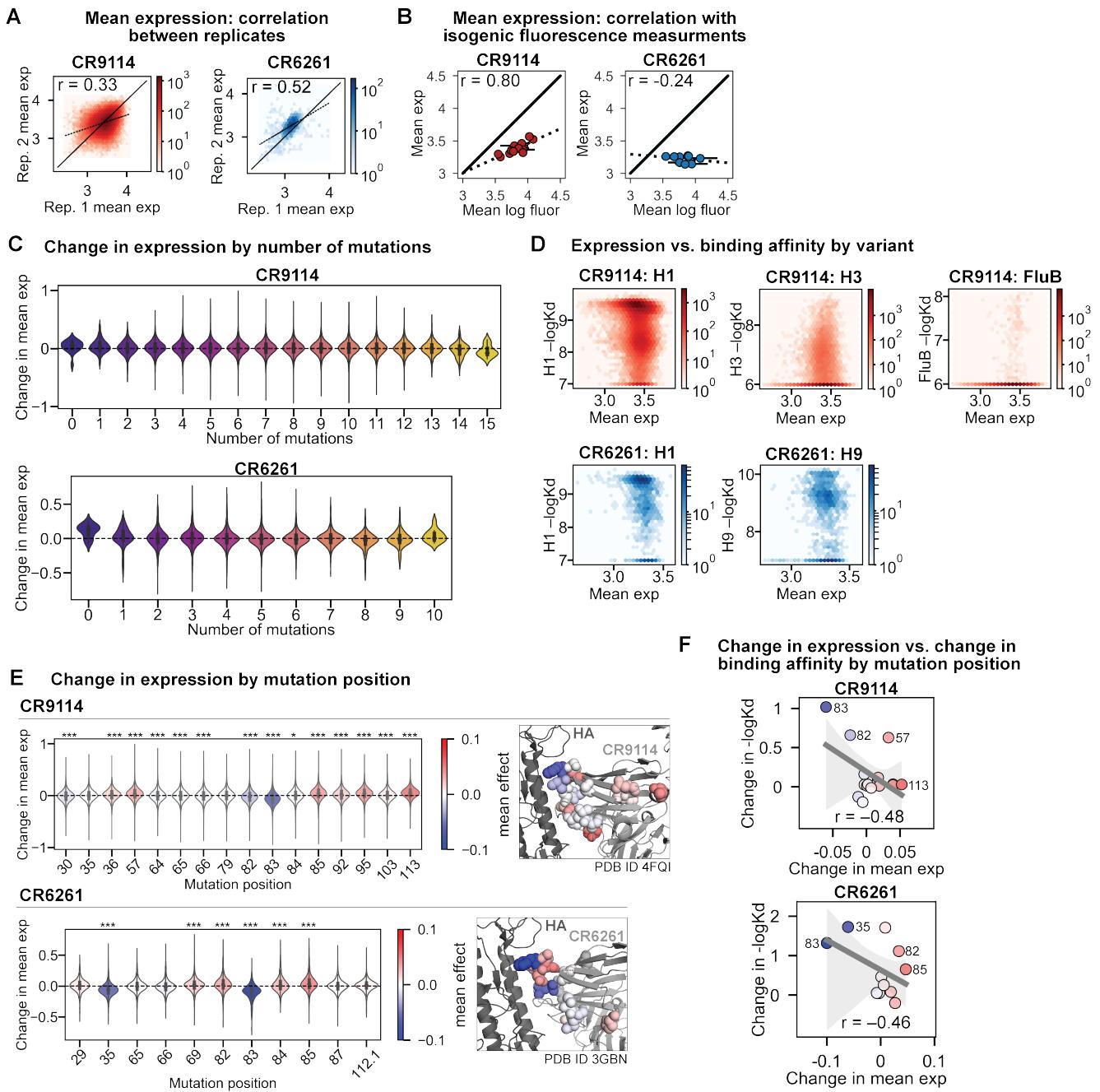


Figure 1–Figure supplement 5. Expression of antibody libraries. (A) Correlation of mean expression across Tite-Seq biological replicates for CR9114 library (left, red) and CR6261 library (right, blue). (B) Correlation between Tite-Seq mean expression and isogenic expression fluorescence for select CR9114 (left, red) and CR6261 (right, blue) variants. (C) Change in expression upon mutation for a given number of background somatic mutations. (D) Correlation between mean expression and $-\log K_D$. Average values across biological replicates ($N_{-\log K_D} = 3$; $N_{\text{exp}} \geq 6$) are plotted. (E) Change in expression upon mutation at a specific site. Violin plots (left) and residues in co-crystal structure (right) are colored by mean change in expression for each site. Asterisks above violins indicate p-values for two-sided t-test between the distribution means and zero ($p < 0.01$ (*), < 0.001 (**), < 0.0001 (***) $; N_{9114} = 32,768$, $N_{6261} = 1,024$). (F) Correlation between mean change in expression and mean change in $-\log K_D$ (summed across all antigens) by mutation position. Select mutations with large impacts on expression and $-\log K_D$ are labeled; all points are colored by mean change in expression, as in (F). Dark gray line indicates best-fit linear regression (95% confidence intervals in light gray).

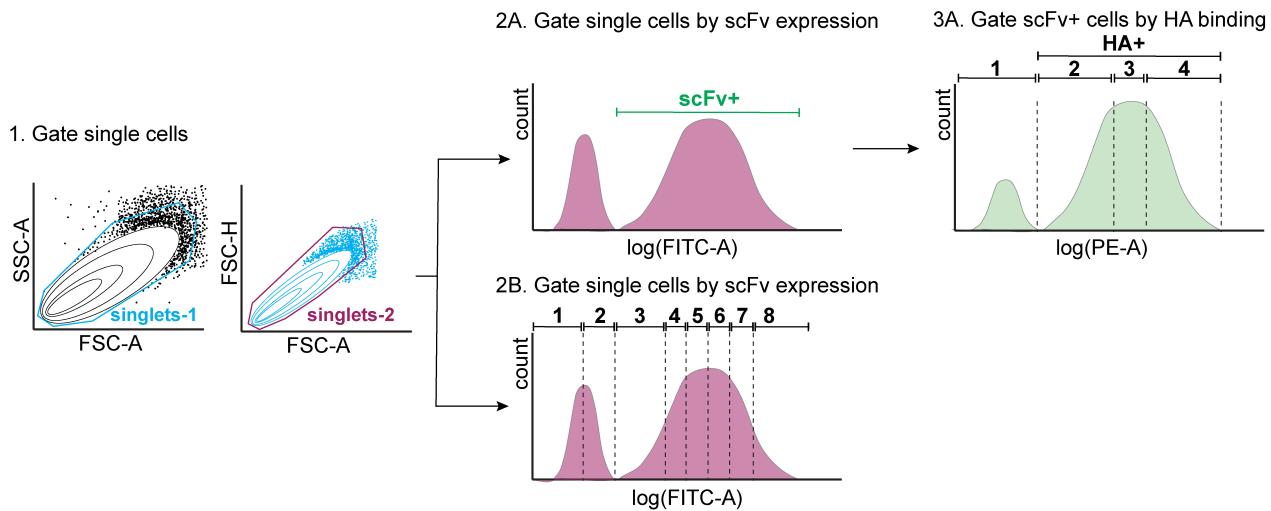


Figure 1-Figure supplement 6. Tite-Seq gating strategy. First, single yeast cells were gated by forward scatter (FSC) and side scatter (SSC) (step 1). Single cells were then either gated by scFv expression or HA binding. For the expression sort (step 2B), single cells were gated into eight bins along the log(FITC-A) axis, each containing 12.5% of the population. For the binding sort (steps 2A and 3A), scFv-expressing (scFv+) single cells were sorted into four bins along the log(PE-A) axis, with bin 1 comprising all HA- cells, and bins 2–4 each comprising 33% of the HA+ population.

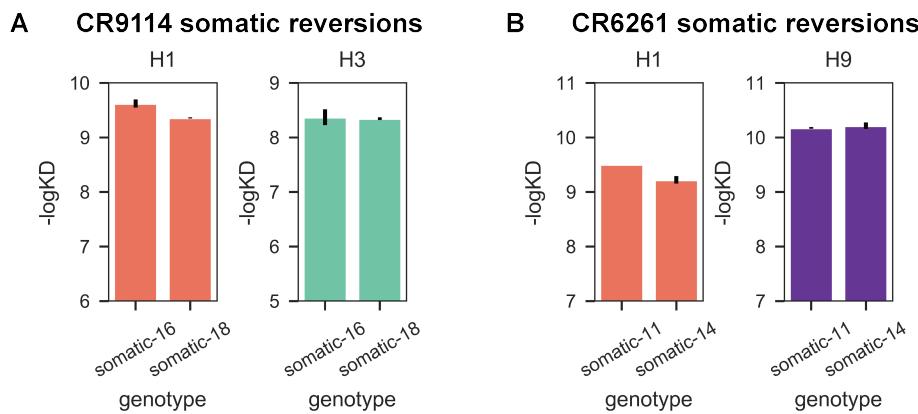


Figure 1-Figure supplement 7. Reversions of excluded mutations. **(A)**, Reversion of A24S and E46D in CR9114 (somatic-16) does not substantially impact binding affinity compared to the fully somatic version of CR9114 (somatic-18) to either H1 (orange) or H3 (turquoise); these mutations are thus excluded from the CR9114 library. **(B)**, Reversion of Q6E, L50P, and V101M in CR6261 (somatic-11) does not substantially impact binding affinity compared to the fully somatic version of CR6261 (somatic-14) to either H1 (orange) or H9 (purple); these mutations are thus excluded from the CR6261 library. Measurements made in biological duplicate; mean +/- standard error shown.

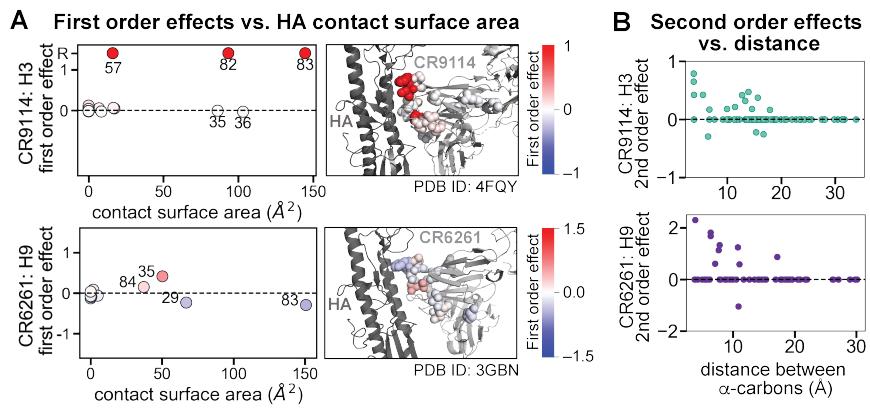
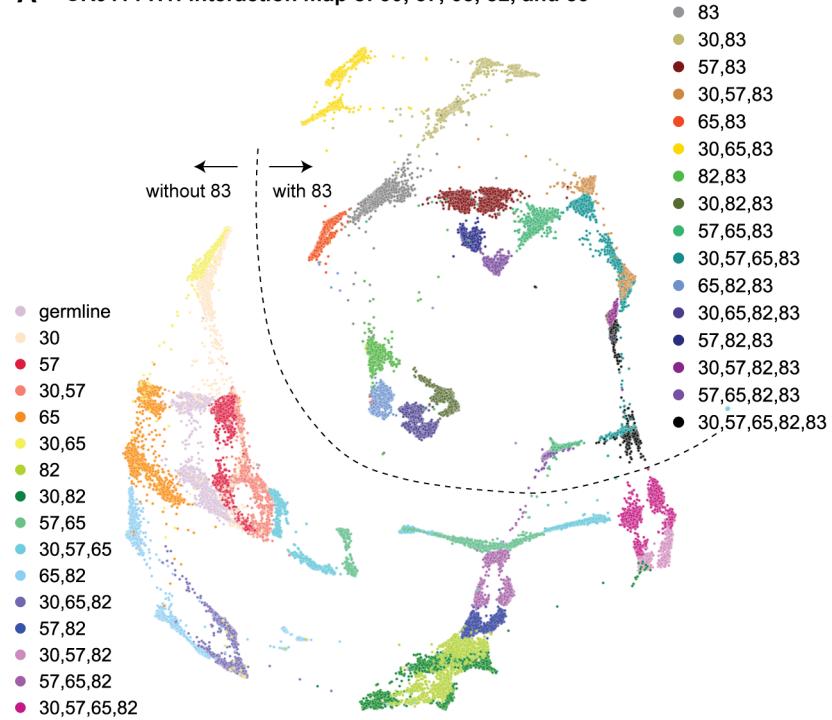
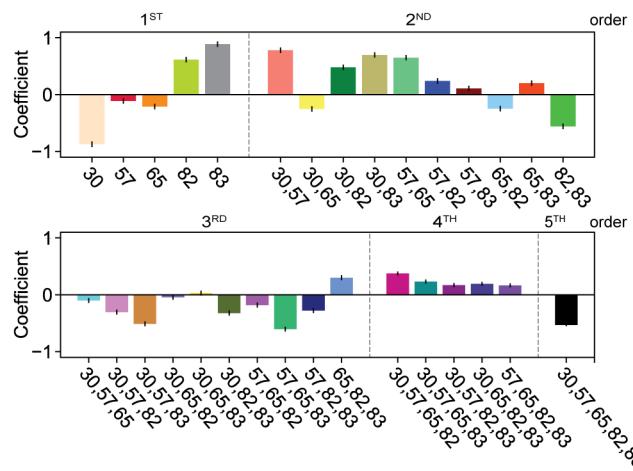


Figure 2-Figure supplement 1. Structural context of first and second order effects. **(A)**, Left: first order effects for each site, colored by effect size and plotted against the contact surface area between the corresponding somatic residue and HA (top, CR9114 with H3; bottom, CR6261 with H9); Right: co-crystal structures with mutation sites colored by first order effects, as in **Figure 2C**. **(B)**, Second-order coefficients for CR9114 with H3 (top) and CR6261 with H9 (bottom) plotted against the distance between the respective α -carbons in the crystal structures, as in **Figure 2F**.

A CR9114 H1: interaction map of 30, 57, 65, 82, and 83



B CR9114 H1: interaction coefficients of 30, 57, 65, 82, and 83



C CR9114 H1: distribution of significant coefficients in 5-mutation groups

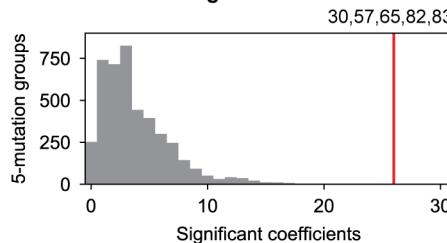
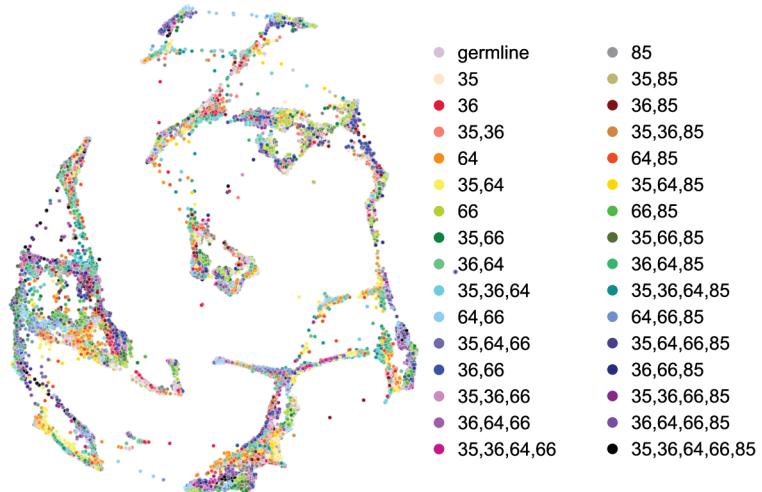


Figure 3-Figure supplement 1. CR9114: interactions between five key sites. **(A)**, CR9114 force-directed graph, as in **Figure 3D**, colored by mutation groups of sites 30, 57, 65, 82, and 83 (32 total groups). The dashed line emphasizes the observed separation of genotypes with S83F (upper right) from those without S83F (lower left). **(B)**, Coefficients for terms in the epistatic interaction model corresponding to mutation groups of sites 30, 57, 65, 82, and 83 (31 total groups, excluding the germline), colored according to **(A)** and grouped by order. Error bars indicate standard error. **(C)**, Distribution of the number of significant coefficients for mutation groups in every possible set of 5 sites chosen from the 16 sites (up to 31 terms for each group, for 4,368 groups). Significance is given by Bonferroni-corrected p-value < 0.05, see Methods. The value for the group illustrated in **(A)**, **(B)** is indicated in red (26 significant terms, empirical p-value < 10^{-3}).

A CR9114 H1: interaction map of 35, 36, 64, 66, and 85



B CR9114 H1: interaction map of 79, 84, 92, 95, and 103

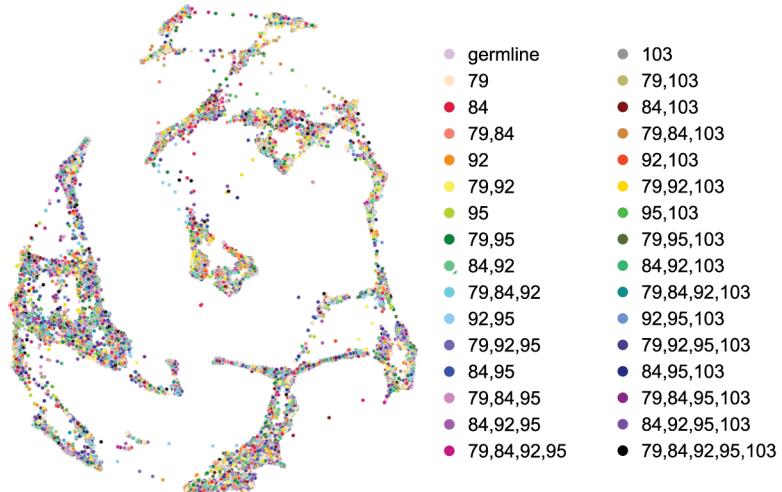


Figure 3–Figure supplement 2. CR9114: interactions between other sets of five sites. **(A)**, CR9114 force-directed graph, as in Figure 3D, but colored by mutation groups of a different set of 5 sites with fewer strong epistatic interactions (35, 36, 64, 66, and 85). **(B)**, CR9114 force-directed graph, colored by mutation groups of a different set of 5 sites with no strong linear contributions or epistatic interactions (79, 84, 92, 95, and 103).

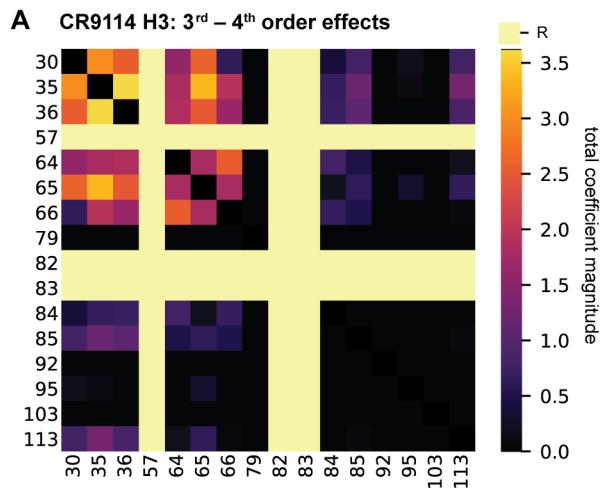
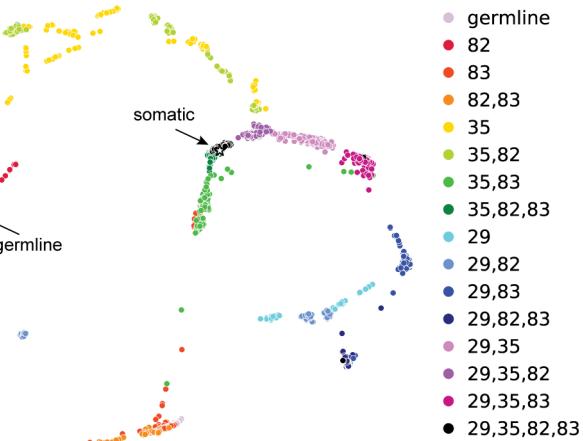
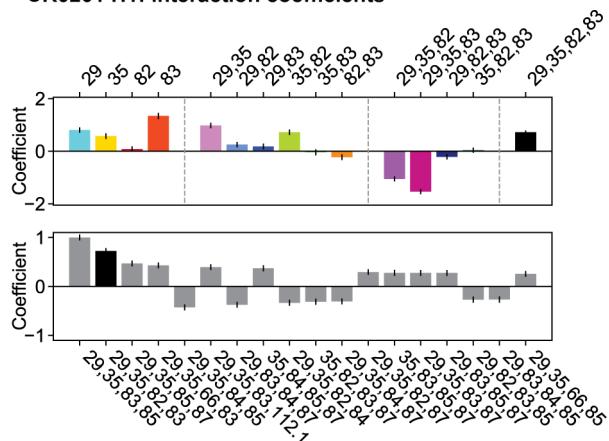


Figure 3-Figure supplement 3. High-order epistasis for CR9114 binding to H3. **A)** Higher-order significant epistatic contributions of CR9114 mutation pairs, as in **Figure 3A**, for binding H3. Light yellow columns indicate required mutations (sites 57, 82, and 83). Significance is given by Bonferroni-corrected p-value < 0.05, see Methods.

A CR6261 H1: interaction map of 29, 35, 82, and 83



B CR6261 H1: interaction coefficients



C CR6261 H1: interaction map of 65, 66, 69, and 112.1

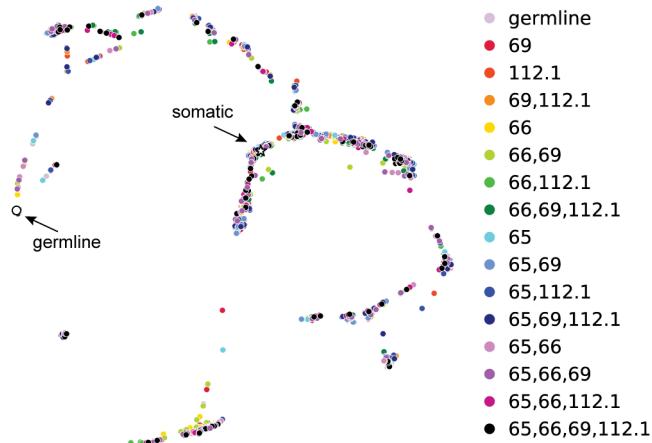


Figure 4–Figure supplement 1. CR6261: interactions between four sites. **(a)**, CR6261 force-directed graph, as in *Figure 1–Figure Supplement 4*, colored by mutation groups of sites 29, 35, 82, and 83 (16 total groups). **(B)**, Top, coefficients for terms in the epistatic interaction model corresponding to the mutation groups illustrated in **(a)** (15 total groups, excluding the germline), colored according to **(a)** and grouped by order. Bottom, the largest fourth-order coefficients observed in the epistatic interaction model, with sites indicated. In both, error bars indicate standard error. **(C)**, CR6261 force-directed graph, colored by a different set of 4 sites with the fewest strong linear effects and epistatic interactions (65, 66, 69, and 112.1).

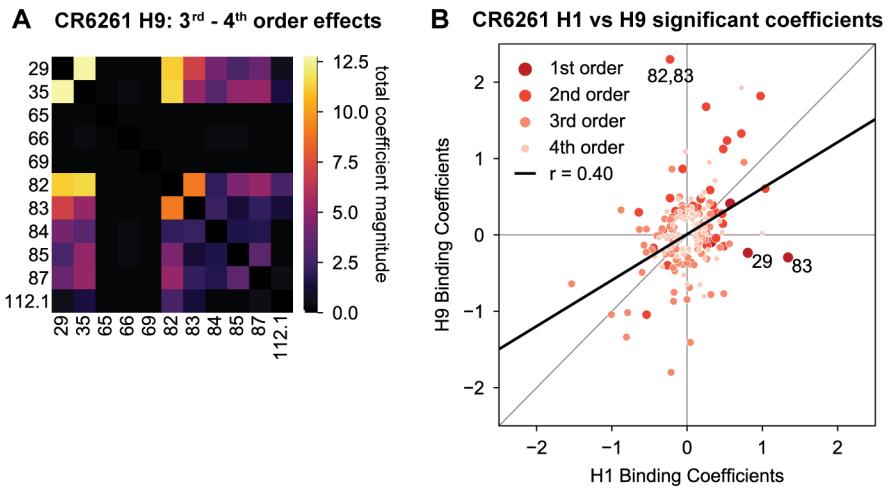
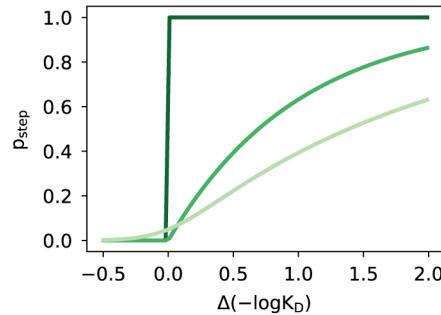


Figure 4–Figure supplement 2. High-order epistasis for CR6261 binding to H9. **(A)**, Higher-order significant epistatic contributions of CR6261 mutation pairs, as in **Figure 4A**, for binding H9. **(B)**, Scatterplot of significant epistatic interaction model coefficients for binding to H1 and H9. Terms at different orders are colored and sized as indicated. Selected coefficients are annotated. Significance in **(A)**, **(B)** is given by Bonferroni-corrected p-value < 0.05, see Methods.

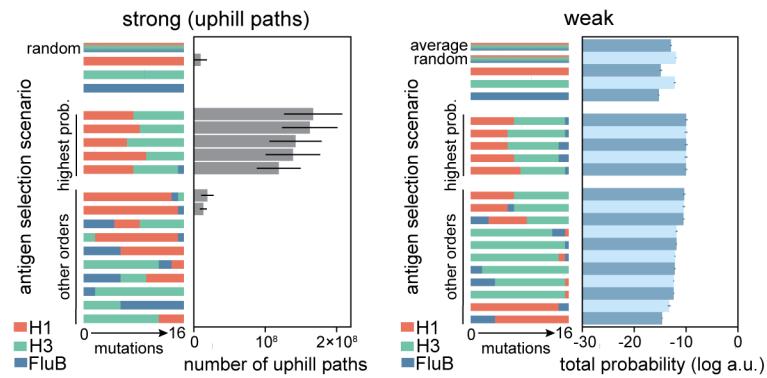
A Selection models

$$p_{\text{step}} = \frac{1 - e^{-\gamma \Delta(-\log_{10} K_D)}}{1 - e^{-N\gamma \Delta(-\log_{10} K_D)}}$$

- strong ($N \rightarrow \infty, \gamma \rightarrow \infty$)
- moderate ($N = 1000, \gamma = 1$)
- weak ($N = 20, \gamma = 0.5$)



B CR9114 alternative selection models



C CR6261 alternative selection models

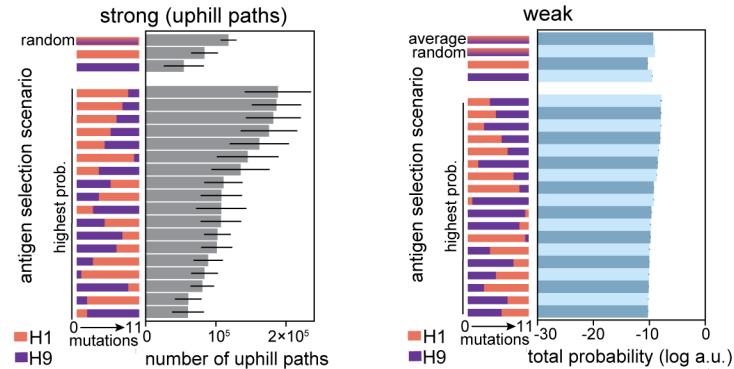


Figure 5–Figure supplement 1. Selection models. **(A)**, Functional form of mutation step probability, illustrated for parameters chosen to represent strong, moderate, and weak selection models. **(B, C)**, Total log probability of the mutational trajectories between germline and somatic sequences for **(B)** CR9114 and **(C)** CR6261 under different antigen selection scenarios, assuming strong (left) or weak (right) selection, as shown for moderate selection in **Figure 5E,F**. Strong selection scenarios are shown on a linear scale, as total probability is equal to the number of uphill paths. The “average” mixed scenario is not evaluated for strong selection, as the quantitative effect of averaging is undone by the binarizing effect of the transition probability. Error bars indicate standard errors obtained through bootstrap, see Methods.

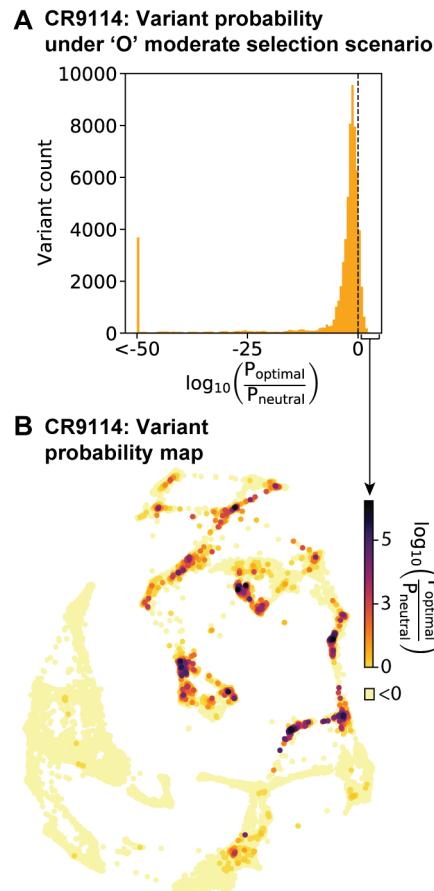


Figure 5-Figure supplement 2. Variant probabilities for CR9114 under the optimal ('O') selection model. **(A)**, Histogram of the total probability of all pathways passing through each variant in the optimal selection scenario, divided by the total probability in a model with no selection, transformed to \log_{10} scale (see Methods). Dotted line indicates the 11% of variants favored in the selective model (log probability ratio greater than zero). **(B)**, Favored variants are shown on the force-directed graph for CR9114 H1 $-\log K_D$, as in **Figure 1G**, with darker color according to the log probability ratio. Other variants with log probability ratio less than zero are shown in light yellow.

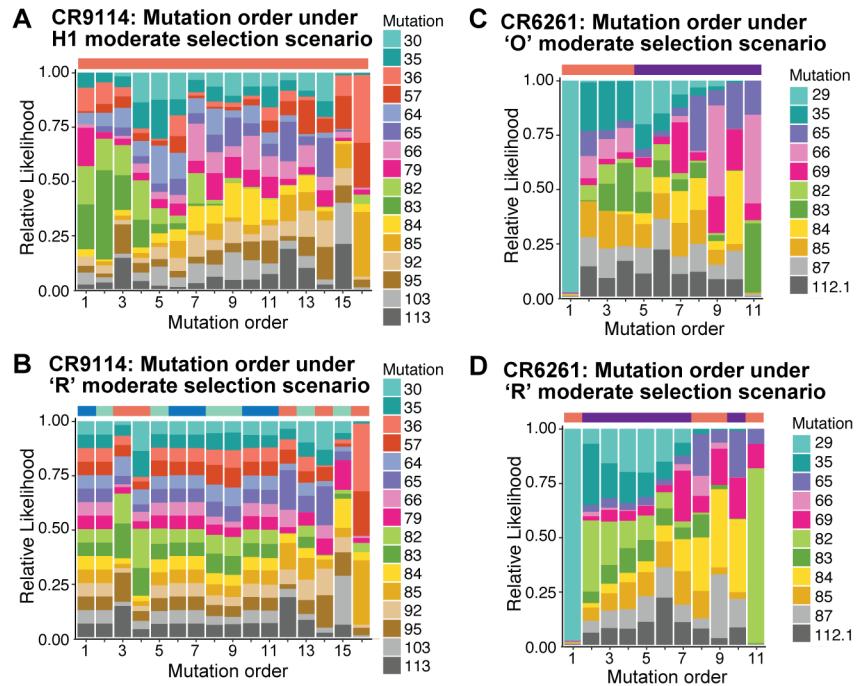


Figure 5-Figure supplement 3. Probability of mutation order assuming moderate selection, under other antigen selection scenarios. H1 (**A**) and 'R' (**B**) for CR9114 and 'O' (**C**) and 'R' (**D**) for CR6261, as in **Figure 5I,J**. For the random mixed scenario 'R', the representative cases from **Figure 5G,H** are shown.