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Abstract Over the past two decades, several broadly neutralizing antibodies (bnAbs) that16

confer protection against diverse influenza strains have been isolated. Structural and17

biochemical characterization of these bnAbs has provided molecular insight into how they bind18

distinct antigens. However, our understanding of the evolutionary pathways leading to bnAbs,19

and thus how best to elicit them, remains limited. Here, we measure equilibrium dissociation20

constants of combinatorially complete mutational libraries for two naturally isolated influenza21

bnAbs (CR9114, 16 heavy-chain mutations; CR6261, 11 heavy-chain mutations), reconstructing all22

possible evolutionary intermediates back to the unmutated germline sequences. We find that23

these two libraries exhibit strikingly different patterns of breadth: while many variants of CR626124

display moderate affinity to diverse antigens, those of CR9114 display appreciable affinity only in25

specific, nested combinations. By examining the extensive pairwise and higher-order epistasis26

between mutations, we find key sites with strong synergistic interactions that are highly similar27

across antigens for CR6261 and different for CR9114. Together, these features of the binding28

affinity landscapes strongly favor sequential acquisition of affinity to diverse antigens for CR9114,29

while the acquisition of breadth to more similar antigens for CR6261 is less constrained. These30

results, if generalizable to other bnAbs, may explain the molecular basis for the widespread31

observation that sequential exposure favors greater breadth, and such mechanistic insight will be32

essential for predicting and eliciting broadly protective immune responses.33

34

Introduction35

Vaccination harnesses the adaptive immune system, which responds to new pathogens by mutat-36

ing antibody-encoding genes and selecting for variants that bind the pathogen of interest. How-37

ever, influenza remains a challenging target for immunization: most antibodies elicited by vaccines38

provide protection against only a subset of strains, largely due to the rapid evolution of the in-39

fluenza surface protein hemagglutinin (HA) (Wiley et al., 1981; Smith et al., 2004). After nearly two40
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decades of studies, numerous broadly neutralizing antibodies (bnAbs) have been isolated from hu-41

mans, with varying degrees of cross-protection against diverse strains (Corti et al., 2017; Throsby42

et al., 2008; Dreyfus et al., 2012; Corti et al., 2011; Schmidt et al., 2015). Still, we do not fully under-43

stand many factors affecting how and when bnAbs are produced. In particular, affinity is acquired44

through a complex process of mutation and selection (Victora and Nussenzweig, 2012), but the45

effects of mutations on binding affinity to diverse antigens are not well characterized.46

For example, consider two well-studied influenza bnAbs that display varying levels of breadth:47

CR9114 is one of the broadest anti-influenza antibodies ever found, neutralizing strains from both48

groups of influenza A and strains from influenza B, while CR6261 is limited to neutralizing strains49

from Group 1 of influenza A (Throsby et al., 2008; Dreyfus et al., 2012; Ekiert et al., 2009; Ling-50

wood et al., 2012). Both antibodies were isolated from vaccinated donors, derive from very similar51

germline sequences (IGHV1–69 and IGHJ6), and bind the conserved HA stem epitope (Figure 1–52

Figure Supplement 3) (Throsby et al., 2008; Dreyfus et al., 2012; Ekiert et al., 2009). Each antibody53

heavy chain has many mutations (18 amino acid changes for CR9114, 14 for CR6261, Figure 1A),54

including seven positions that are mutated in both, yet the contributions of these mutations to55

affinity against different antigens remain unclear (Dreyfus et al., 2012; Avnir et al., 2014).56

Beyond single mutational effects, it remains unknown whether there are correlated effects or57

strong trade-offs between binding to different antigens (pleiotropy), or non-additive interactions58

between mutations (epistasis). Such epistatic and pleiotropic effects can constrain the mutational59

pathways accessible under selection, as has been observed for other proteins (Weinreich et al.,60

2006; Starr et al., 2017; Ortlund et al., 2007; Podgornaia and Laub, 2015; Gong et al., 2013; Sailer61

and Harms, 2017a; Miton and Tokuriki, 2016; Poelwijk et al., 2019; Bank et al., 2015). Epistasis62

in antibody-antigen interactions remains significantly understudied (Adams et al., 2019; Pappas63

et al., 2014; Braden et al., 1998) and most deep mutational scanning studies have focused on anti-64

gens (Doud et al., 2018;Wu et al., 2020; Starr et al., 2021). In contrast to typical protein evolution,65

antibody affinity maturation proceeds by discrete rounds of mutation and selection (Victora and66

Nussenzweig, 2012), typically withmore than one nucleotidemutation occurring between selective67

rounds (Unniraman and Schatz, 2007). In addition, antibodies are inherently mutationally tolerant68

(Braden et al., 1998; Chen et al., 1999; Burks et al., 1997; Corti and Lanzavecchia, 2013; Klein et al.,69

2013), generating opportunities for interactions that scale combinatorially. Thus, if epistatic and70

pleiotropic constraints exist for antibodies, they could affect the likelihood of producing bnAbs71

under different antigen selection regimes (Pappas et al., 2014) and may account for the low fre-72

quencies of bnAbs in natural repertoires (Corti et al., 2017). Characterizing the prevalence of these73

constraints on bnAb evolution may provide valuable insight for improving vaccination strategies74

(Yewdell, 2013; Henry et al., 2018).75

Todate, studies of antibody binding have been limited to small numbers of individual sequences,76

deep mutational scans of single mutations, and mutagenesis of small regions (Pappas et al., 2014;77

Braden et al., 1998; Burks et al., 1997; Adams et al., 2016; Koenig et al., 2017; Forsyth et al., 2013;78

Wu et al., 2017; Xu et al., 2015; Madan et al., 2021; Schmidt et al., 2015), due in part to practi-79

cal constraints on library scale and the throughput of affinity assays. This has limited our ability to80

comprehensively characterize binding landscapes for naturally isolated bnAbs, which often involve81

manymutations spanning framework (FW) and complementarity-determining regions (CDR) (Corti82

et al., 2017; Corti and Lanzavecchia, 2013; Klein et al., 2013).83

We overcome these challenges by generating combinatorially complete libraries of up to ∼ 10584

antibody sequences and assaying their binding affinities in a high-throughput yeast-display system85

(Adams et al., 2016). This approach enables us to infer the contributions of individual mutations86

as well as hundreds of pairwise and higher-order interactions between mutations, revealing that87

these interactions can restrict evolutionary pathways leading to greater breadth. In particular, we88

find thatmutational effects on binding affinity to diverse antigens display a nested structure, where89

increasingly large groups of specific mutations are required to gain affinity to divergent antigens,90

resulting in highly constrained paths to broad affinity. This pattern is not observed formore similar91
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antigens, where many mutational paths to broad affinity are accessible. Further, these nested pat-92

terns of mutational effects provide newmolecular insight into why sequential exposure to diverse93

antigens often favors greater breadth (Wang et al., 2010; Krammer et al., 2012;Wang et al., 2015;94

Wang, 2017; Sachdeva et al., 2020; Molari et al., 2020; Sprenger et al., 2020). Together, this work95

provides the first comprehensive characterization of antibody affinity landscapes and advances96

our understanding of the molecular constraints on bnAb evolution.97

Results98

Binding affinity landscapes of CR9114 and CR626199

Here we characterize the binding affinity landscapes of the two well-studied bnAbs noted above:100

CR9114 and CR6261. Specifically, we made all combinations of a set of mutations separating the101

germline and somatic sequences for CR9114 (16 mutations totaling 65,536 variants) and CR6261102

(11 mutations totaling 2,048 variants). These libraries include all heavy-chain mutations in these103

antibodies, except a few select mutations distant from the paratope (Figure 1, Figure 1–Figure104

Supplement 7, and see Methods). Both antibodies engage antigens solely through their heavy-105

chain regions (Dreyfus et al., 2012; Ekiert et al., 2009), and thus are well-suited for yeast display as106

single-chain variable fragments (see Methods) (Boder and Wittrup, 1997).107

We use the Tite-Seqmethod (Adams et al., 2016), which integrates flow cytometry and sequenc-108

ing (Figure 1–Figure Supplement 1), to assay equilibrium binding affinities of each scFv sequence109

in these libraries against select antigens that span the breadth of binding for each antibody (Fig-110

ure 1B). For CR6261, we chose two divergent group 1 HA subtypes (H1 and H9; see Figure 1–Figure111

Supplement 1), while for CR9114, we chose the three highly divergent subtypes present in the112

vaccine (H1 from group 1, H3 from group 2, and influenza B; see Figure 1–Figure Supplement 1)113

(Throsby et al., 2008). Inferred affinities outside our titration boundaries (10−11 – 10−6 M for H3114

and influenza B, 10−12 – 10−7 M for H1 and H9) are pinned to the boundary, as deviations beyond115

these boundaries are likely not physiologically relevant (Batista and Neuberger, 1998). Antibody116

expression is not strongly impacted by sequence identity, although some mutations have modest117

effects that may be inversely correlated with their effect on affinity (Figure 1–Figure Supplement 5).118

Affinities obtained by Tite-Seq are reproducible across biological triplicates (Figure 1–Figure Supple-119

ment 2; average standard error of 0.047 -logKD units across antibody-antigen pairs) and are highly120

accurate as verified for select variants by isogenic flow cytometry (Figure 1–Figure Supplement 2)121

and by solution-based affinity measurements made by others (Throsby et al., 2008; Dreyfus et al.,122

2012; Lingwood et al., 2012; Pappas et al., 2014).123

We begin by examining the distribution of binding affinities across antigens for each antibody li-124

brary (Figure 1). We observe thatmost CR9114 variants havemeasurable affinity to H1 (97%), fewer125

to H3 (11%), and still fewer to influenza B (0.3%) (Figure 1C,D). For H1, only a few mutations are126

needed to improve from the germline affinity. In contrast, variants are not able to bind H3 unless127

they have several more mutations, and many more for influenza B. This hierarchical structure is in128

striking contrast to the CR6261 library, in which most variants can bind both antigens (92% for H1,129

81% for H9), variants have a similar KD distribution, and many variants display intermediate affin-130

ity to both antigens (Figure 1E,F). To visualize how genotypes give rise to the hierarchical structure131

of CR9114 binding affinities, we represent the binding affinities for H1 as a force-directed graph.132

Here, each variant is a node connected to its 16 single-mutation neighbors, with edge weights in-133

versely proportional to the change in H1 binding affinity, such that variants with similar genotype134

and KD tend to form clusters (Figure 1G, Figure 1–Figure Supplement 4). Coloring this genotype-to-135

phenotype map by the –logKD to each of the three antigens, we see that sequences that bind H3136

and influenza B are highly localized and overlapping, meaning that they share specific mutations.137

Thus, while many CR9114 variants strongly bind H1, only a specific subset bind multiple antigens.138
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Figure 1. Binding landscapes. (A), Sequence alignment comparing somatic heavy chains to reconstructed germline sequences. Mutations understudy (purple, numbered) and excluded mutations (black) are indicated; residues are numbered by IMGT unique numbering. (B), Influenzahemagglutinin phylogenetic tree with selected antigens and breadth of CR9114 (black box) and CR6261 (gray box) indicated. (C, E), Scatterplotsof the (C) CR9114 library binding affinities against three antigens, with 2D planes shown below, and (E) CR6261 library binding affinities againsttwo antigens. (D, F), Distributions of library binding affinities for (D) CR9114 and (F) CR6261 for each antigen (grey histogram, right) separated bynumber of somatic mutations (boxplots, left). Numbers and percentages of variants with measurable binding are indicated at right. (G),Force-directed graph of CR9114 H1 –logKD. Each variant (node) is connected to its 16 single-mutation neighbors (edges not shown for clarity);edges are weighted such that variants with similar genotypes and –logKD tend to cluster. Nodes are colored by binding affinity to H1 (top;showing all 65,091 nodes), H3 (lower left inset; showing only the region containing nodes with –logKD > 6), and Flu B (lower right inset; showingonly the region containing nodes with –logKD > 6).
Figure 1–Figure supplement 1. Experimental design and Tite-Seq workflow
Figure 1–Figure supplement 2. Tite-Seq data quality
Figure 1–Figure supplement 3. Antibody-antigen co-crystal structures
Figure 1–Figure supplement 4. Force-directed graph for CR6261
Figure 1–Figure supplement 5. Expression of antibody libraries
Figure 1–Figure supplement 6. Tite-Seq gating strategy
Figure 1–Figure supplement 7. Reversions of excluded mutations
Figure 1–source data 1. CR9114 library –logKD to H1, H3, and influenza B
Figure 1–source data 2. CR6261 library –logKD to H1 and H9
Figure 1–source data 3. Isogenic flow cytometry measurements of –logKD for select CR9114 and CR6261 variants.
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Mutational effects on binding to diverse antigens139

To dissect how mutations drive the structure of these binding landscapes, we next infer specific140

mutational effects. We first log-transform binding affinities such that they are proportional to free141

energy changes (ΔGbinding), which should combine additively under the natural null expectation142

(Wells, 1990; Olson et al., 2014). We then define a linear model with single mutational effects and143

interaction terms up to a specified order (defined relative to the unmutated germline sequence,144

see Appendix 2 for alternatives), and fit coefficients by ordinary least squares regression. We use145

cross-validation to identify the maximal order of interaction for each antigen and report coeffi-146

cients at each order from these best-fitting models (CR9114: fifth order for H1, fourth for H3, first147

for influenza B; CR6261: fourth order for H1 and H9; see Methods). We note that the maximum148

order of interactions is affected by our inference power, particularly by the number of sequences149

with appreciable binding, and so we interpret these models as showing strong evidence of epista-150

sis at least up to the order indicated. We explored the possibility of “global” epistasis by inferring a151

nonlinear transformation of the -logKD values (Sailer and Harms, 2017b; Otwinowski et al., 2018),152

but found that this approach did not significantly reduce the order or number of specific interac-153

tion coefficients needed to explain the data (see Appendix 2). We also explored inferring epistasis154

up to full order using Walsh-Hadamard transformations; results are qualitatively similar but less155

conservative than cross-validated regression (see Appendix 2).156

Examining the effect of individual mutations on the germline background (Figure 2A,B), we ob-157

serve several mutations that enhance binding to all antigens (e.g. S83F for CR9114), andmutations158

that confer trade-offs for binding distinct antigens (e.g. F30S in CR9114 reduces affinity for H1159

but enhances affinity for influenza B). Generally, large-effect mutations are at sites that contact160

HA (Figure 2C, Figure 2–Figure Supplement 1) (Dreyfus et al., 2012; Ekiert et al., 2009). Consistent161

with prior biochemical and structural work, mutations essential for CR9114 breadth are spread162

throughout FW3 and the CDRs, forming hydrophobic contacts and hydrogen bonds with residues163

in the conserved HA stem epitope (Dreyfus et al., 2012; Avnir et al., 2014). We observe three spe-164

cific mutations that are required for binding to H3 (present at over 90% frequency in the set of165

binding sequences), likely because they form hydrophobic contacts with HA (K82I and S83F) and166

reorient the CDR2 loop (I57S), which interacts with residues and a glycan in H3 that are distinct167

from those in H1 (Dreyfus et al., 2012). We also observe eight specific mutations that are required168

for binding to influenza B. Many of these breadth-conferring mutations are absent in CR6261, par-169

ticularly those in CDR2 (Dreyfus et al., 2012; Ekiert et al., 2009). Notably, these sets of required170

mutations in CR9114 exhibit a nested structure: mutations beneficial for H1 are required for H3,171

andmutations required for H3 are required for influenza B, giving rise to the hierarchical structure172

of the binding landscape (Figure 1C).173

Beyond these exceptionally synergistic interactions between required mutations, we find that174

epistasis is widespread, accounting for 18–33 percent of explained variance depending on the175

antibody-antigen pair (except influenza B, see Methods, Appendix 2). Pairwise interactions are176

dominated by a few mutations (e.g. F30S for CR9114 and S35R for CR6261) that exhibit many in-177

teractions, both positive and negative, with other mutations (Figure 2D,E). Overall, mutations with178

strong pairwise interactions tend to be close in the crystal structure, though there are long-range179

pairwise interactions that are likely mediated by interactions with the antigen or conformational180

rearrangements (Figure 2F, Figure 2–Figure Supplement 1) (Dreyfus et al., 2012; Ekiert et al., 2009;181

Avnir et al., 2014).182

High-order epistasis is dominated by a subset of mutations183

Our dataset also allows us to resolve higher-order epistasis. In addition to the required mutations,184

our models identify numerous strong 3rd to 5th order interactions, with a subset of mutations par-185

ticipating in many mutual interactions at all orders. For CR9114 binding to H1, this subset consists186

of five mutations, distributed across three different regions of the heavy chain (Figure 3A,B). Some187

of these mutations likely generate (K82I, S83F) or abrogate (F30S) contacts to HA, and others (I57S,188
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Figure 2. First and second order effects. (A, B) First order effects inferred in best-fitting epistatic interactionmodels for (A) CR9114 and (B) CR6261. Mutations required for binding (present at over 90% frequency inbinding sequences) have effect sizes denoted as ‘R’ and are removed from inference. Error bars indicatestandard error. (C), First order effects for each site plotted against the contact surface area between thecorresponding somatic residue and HA (left, CR9114; right, CR6261). Sites with notable contact area or effectsize are labeled. Cocrystal structures are also shown; mutations are colored by first-order effect size. (D),Significant second-order epistatic interaction coefficients for CR9114 mutations (bottom left, H3; top right,H1). Interactions involving required mutations are shown in dark red. (E), Significant second order coefficientsfor CR6261 mutations (bottom left, H9; top right, H1). Significance in (D), (E) indicates Bonferroni-correctedp-value < 0.05, see Methods. (F), Second-order coefficients for H1 –logKD plotted against the distancebetween the respective �-carbons in the crystal structures.
Figure 2–Figure supplement 1. Structural context of first and second order effects
Figure 2–source data 1. Interaction model coefficients for CR9114.
Figure 2–source data 2. Interaction model coefficients for CR6261.
Figure 2–source data 3. Tabulated contact surface area, number of HA contacts, and pairwise distances for
mutations in CR9114 and CR6261.

A65T) may indirectly impact HA binding by reorienting contact residues in CDR2 (Dreyfus et al.,189

2012; Avnir et al., 2014). Within this set of five residues, we first illustrate two examples of 3rd or-190

der epistasis by grouping sequences by their genotypes at these five sites (Figure 3C). Intriguingly,191

some mutations that are deleterious in the germline background (‘–’ annotations) are beneficial192

in doubly-mutated backgrounds (‘+’ annotations). For example, mutation F30S is significantly less193

deleterious in backgrounds with S83F than in the germline background, suggesting that new hy-194

drophobic contacts in FW3 may be able to compensate for the potential loss of contacts in CDR1.195

Yet F30S unexpectedly becomes beneficial after an additional mutation I57S in CDR2, indicating196

more complex interactions between flexible CDR and FW loop regions (Figure 3B,C) (Dreyfus et al.,197

6 of 41



2012).198

To see how these high-order interactions drive the overall structure of the binding affinity land-199

scape, we return to the force-directed graph, now colored by genotype at these five key sites (Fig-200

ure 3D; only points corresponding to genotypes shown in Figure 3C are colored). We see that201

these five sites largely determine the overall structure of the map: points of the same color tend202

to cluster together, despite varying in their genotypes at the other 11 sites. However, we observe203

that interactions with other mutations do exist, as evidenced by separate clusters with the same204

color (e.g. the two clusters in teal for 57,65 are distinguished by a positive third-order interaction205

with site 64, Figure 3E). These patterns are not confined to the genotypes shown in Figure 3C; if206

we color all 32 possible genotypes at the five key sites, we observe the same general patterns (Fig-207

ure 3–Figure Supplement 1; an interactive data browser for exploring these patterns of epistasis208

in CR9114 is available here). Interactions between these five sites are also enriched for significant209

epistatic coefficients (p < 10−3; 26 of 31 possible terms are significant, compared to an average of210

4 terms among all sets of five sites, Figure 3–Figure Supplement 1), including the fifth order inter-211

action between all five residues (Figure 3F). Remarkably, these five mutations underlie significant212

high-order epistasis for other antigens as well: all five are either required for binding or participate213

extensively in interactions for H3 and influenza B (Figure 3–Figure Supplement 3).214

Higher-order epistasis in CR6261 is similarly dominated by a subset of mutations in CDR1 and215

FW3, at identical or neighboring positions as some key sites for CR9114 (Figure 4A). These mu-216

tations exhibit strong diminishing returns epistasis at third and fourth order, counteracting their217

synergistic pairwise effects, in a similar manner across both antigens (Figure 4B, Figure 4–Figure218

Supplement 1,Figure 4–Figure Supplement 2). Many fourth-order combinations of thesemutations219

display interaction coefficients of similar magnitude (Figure 4–Figure Supplement 1), though they220

may be signatures of even higher-order interactions that we are underpowered to infer.221

A commonapproach to quantify howepistasis constrainsmutational trajectories is to count “up-222

hill” paths (i.e. where affinity improves at every mutational step from the germline to the somatic223

sequence). We find that only a small fraction of potential paths are uphill (0.00005% +/- 0.00004%224

for CR9114 binding H1, and 0.2% +/- 0.04% for CR6261 binding H1, as estimated by bootstrap, see225

Methods). However, we note that for all antibody-antigen combinations, the somatic sequence is226

not the global maximum of the landscape (the best-binding sequence) and some mutations have227

deleterious effects on average. Hence, strictly uphill paths are only possible due to sign epistasis,228

where normally deleterious mutations have beneficial effects in specific genetic backgrounds.229

Overall, we see that mutational effects and interactions between them explain the affinity land-230

scapeswe observe. For CR9114, binding affinity to H1 can be achieved through different sets of few231

mutations with complex interactions. In contrast, a specific set of many mutations with strong syn-232

ergistic interactions is required to bind H3, and to an even greater extent, influenza B (Figure 2A),233

giving rise to the landscape’s hierarchical structure (Figure 1C). For CR6261, the higher-order inter-234

actions aremore similar betweenH1 andH9, which is consistent with themore correlated patterns235

of binding affinities between these two antigens (Figure 1E).236

Affinity to diverse antigens was likely acquired sequentially237

The hierarchical nature of the CR9114 landscape suggests that this lineage developed affinity to238

each antigen sequentially. Considering the maximum –logKD achieved by sequences with a given239

number of mutations (a proxy for time), we see that improvements in H1 binding can be realized240

early on, whereas improvements in H3 binding are not possible until later, and even later for in-241

fluenza B (Figure 5A). In fact, the nested structure of affinity-enhancing mutations forces improve-242

ments in binding affinity to occur sequentially. If selection pressures were also experienced in this243

sequence, mutations that improve binding to the current antigen would lead to the genotypes re-244

quired to begin improving binding to the next. Indeed, we find that for CR9114, there are more245

uphill paths leading to the somatic sequence if selection acts first on binding to H1 and later to H3246

and influenza B (Figure 5C). In contrast, for CR6261, improvements in binding can occur early on247
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Figure 3. High-order epistasis for CR9114. (A), Total higher-order epistatic contributions of CR9114 mutationpairs for binding H1. Color bar indicates the sum of absolute values of significant higher-order interactioncoefficients involving each pair of mutations; key epistatic residues indicated by arrows. Significance is givenby Bonferroni-corrected p-value < 0.05, see Methods. (B), Location of key epistatic residues in the CR9114–HAco-crystal structure colored by region. (C), –logKD distributions for genotypes grouped by their identity at thefive residues indicated in (A), (B), with means indicated as white dots (N = 8, 192 genotypes per violin).Annotations indicate notable deleterious (‘-’) and beneficial (‘+’) mutational effects. (D), CR9114 force-directedgraph from Figure 1G, colored as in (C) by the genotype at the five sites indicated in (A), (B). Genotypes notshown in (C) are shown in light grey. Data are also available in an interactive data browser at
https://yodabrowser.netlify.app/yoda_browser/. (E), Third-order interaction involving site 64 accounts fordistinct clusters (teal) corresponding to genotypes with mutations 57 and 65 in (D). Colors correspond tomutation groups in (C), (D) (N = 4, 096 genotypes per violin). (F), Epistatic interaction coefficients among thefive key sites from (A), (B). Colors for certain groups as in (C), (D); other groups denoted in gray, with notableterms labeled.
Figure 3–Figure supplement 1. CR9114: interactions between five key sites
Figure 3–Figure supplement 2. CR9114: interactions between other sets of five sites
Figure 3–Figure supplement 3. High-order epistasis for CR9114 binding to H3
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Figure 4. High-order epistasis for CR6261. (A), Total significant epistatic contributions of CR6261 mutationpairs for binding H1, as in Figure 3A. Significance is given by Bonferroni-corrected p-value < 0.05, see Methods.(B), Third-order interaction for CR6261 H1 binding between mutations T29P, S35R, and S83F (N = 256genotypes per violin).
Figure 4–Figure supplement 1. CR6261: interactions between four sites
Figure 4–Figure supplement 2. High-order epistasis for CR6261 binding to H9

for both antigens (Figure 5B) and the number of uphill paths is more similar across single-antigen248

and sequential selection pressures (Figure 5D).249

To compare antigen selection scenarios more generally, we developed a framework that evalu-250

ates the total probability of all possible mutational pathways from germline to somatic, under an251

array of antigen selection scenarios (individual, sequential, and mixed). Our framework assumes252

that the probability of any mutational step is higher if –logKD increases, but does not necessarily253

forbid neutral or deleterious steps; we evaluate a variety of specific forms of this step probability254

and find that our major results are consistent (Figure 5–Figure Supplement 1A, see Methods). We255

assume that each amino acid substitution occurs in a single mutational step; though there are256

amino acid substitutions that must proceed by multiple nucleotide mutations that may occur in a257

single round, or over multiple rounds, of somatic hypermutation (Spisak et al., 2020; Unniraman258

and Schatz, 2007). Mixed antigen regimes approximate exposure to a cocktail of antigens. We259

model these with two approaches: (1) “average”, using the average –logKD across all antigens, and260

(2) “random,” using –logKD for a randomly selected antigen at each step (note that using the max-261

imum –logKD across antigens would always be trivially favored) (Wang et al., 2015). While these262

models simplify the complexities of affinity maturation in vivo (Victora and Nussenzweig, 2012),263

especially how affinity relates to B cell lineage dynamics and the mutational bias at the nucleotide264

level (Spisak et al., 2020), they provide insight into the relative probabilities of mutational paths265

under distinct antigen selection scenarios.266

Again we find that the vast majority of likely antigen selection scenarios for CR9114 involve first267

H1, followed by H3, followed by influenza B (Figure 5E, Figure 5–Figure Supplement 1B). These re-268

sults are underscored by examining improvement in –logKD along themost likely mutational paths269

for each scenario (Figure 5G): in the optimal sequential scenario, –logKD can improve substantially270

for each antigen in turn, while in an H1-only scenario, the improvements in H1 binding at each step271

are much more gradual, reducing the likelihood. The average mixed scenario shows qualitatively272

similar paths to the optimal sequential scenario, although with lower overall probability. In the273

random mixed scenario, even the best pathways are often unable to improve affinity to the ran-274

domly selected antigen, and affinity to antigens not under selection often declines, making these275

scenarios much less likely.276

Given the optimal sequential selection scenario, the vast majority of genotypes are unlikely evo-277

lutionary intermediates to the somatic sequence (Figure 5–Figure Supplement 2). We visualize the278

impact of epistasis on mutational order by considering the probability of each mutation to occur279

at each mutational step (Figure 5I; Figure 5–Figure Supplement 3). The three antigen exposure280

epochs exhibit clear differences in favored mutations. Mutations I57S, K82I, and S83F must occur281
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Figure 5. Antigen selection scenarios and likely mutational pathways. (A, B), Maximum binding affinity achievable for sequences with a givennumber of mutations. For each antigen for (A) CR9114 and (B) CR6261, the maximum observed (circles) and model-predicted (triangles) affinityfor each number of somatic mutations is shown. (C, D), Total number of ‘uphill’ paths for select antigen selection scenarios (colored bars) for (C)CR9114 and (D) CR6261. Error bars indicate standard error obtained through bootstrap, see Methods. (E, F), Total log probability (in arbitraryunits) of mutational trajectories from germline to somatic sequence for (E) CR9114 and (F) CR6261 under different antigen selection scenarios,in a moderate selection model. Error bars indicate standard error obtained through bootstrap, see Methods. (G, H), 25 most likely paths for (G)CR9114 and (H) CR6261, from select scenarios in (E, F); –logKD plotted for each antigen. For the random mixed scenario (‘R’), a representativecase is shown. ’A’ indicates the average mixed scenario; ’O’ indicates the optimal scenario. (I, J) Probability of mutation order under optimalantigen selection scenario ‘O’ for CR9114 (I) and H1 for CR6261 (J). Selection scenarios are as in (E, F) and shown in colored bar at top; the totalprobability (through all possible paths) for each mutation to occur at each mutational step is shown as stacked colored bars.
Figure 5–Figure supplement 1. Selection models
Figure 5–Figure supplement 2. Variant probabilities for CR9114 under the optimal (’O’) selection model
Figure 5–Figure supplement 3. Probability of mutation order assuming moderate selection, under other antigen selection scenarios
Figure 5–source data 1. Total probability of mutational trajectories for CR9114 under different antigen selection scenarios.
Figure 5–source data 2. Total probability of mutational trajectories for CR6261 under different antigen selection scenarios.
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early, due to their strong synergistic interactions for all three antigens. In addition, we see that F30S282

is unlikely to happen very early (due to its sign epistasis under H1 selection) as well as unlikely to283

happen very late (due to its strong benefit under influenza B selection).284

In contrast, for CR6261, all selection scenarios have relatively similar likelihood (Figure 5F, Fig-285

ure 5–Figure Supplement 1C). Among sequential scenarios, however, those beginning with H1 are286

more likely than those beginning with H9, as the first two mutational steps can improve affinity to287

H1 more than H9, and mutations late in maturation can improve affinity to H9 more than H1 (Fig-288

ure 1F, Figure 5B). Still, unlike CR9114, in both single antigen and mixed scenarios, there are many289

likely paths that continually improve in binding to both antigens (Figure 5H). Initially the order of290

mutations is highly constrained due to strong synergistic epistasis, and differences between selec-291

tion scenarios reflect differences inmutational effects between antigens (Figure 5J, Figure 5–Figure292

Supplement 3). We note that T29P is highly likely to occur first in scenarios that begin with H1, as293

this is the only single mutation that can improve H1 affinity, albeit rather modestly.294

Discussion295

Overall, we find that evolutionary pathways to bnAbs can be highly contingent on epistatic and296

pleiotropic effects of mutations. Specifically, the acquisition of breadth for CR9114 is extremely297

constrained and is likely to have occurred through exposure to diverse antigens in a specific or-298

der, due to the structure of correlations and interactions between mutational effects. In contrast,299

CR6261 could have acquired affinity to H1 and H9 in a continuous and simultaneous manner, per-300

haps because these antigens are more similar; since H9 is not a commonly circulating strain, this301

breadth was likely acquired by chance (Pappas et al., 2014).302

We note that we cannot conclusively determine how CR9114 and CR6261 evolved in vivo. The303

isolation of these specific antibodies from phage display libraries (Throsby et al., 2008; Dreyfus304

et al., 2012) was likely biased by the HA subtypes used for screening, and although unlikely, may305

have introduced mutations during PCR amplification. Regardless, these antibody sequences oc-306

cupy regions of sequence space that are useful for understanding the relationship between se-307

quence, affinity, and breadth. By characterizing their binding landscapes, we find that epistasis308

and trade-offs constrain the mutational pathways to these specific somatic sequences and their309

associated breadth. Indeed, we find that not all of the observed mutations are required to con-310

fer broad affinity, and future work is needed to explore what alternative pathways to breadth311

might be accessible through other mutations. It is also worth noting that selection pressure to312

bind the HA stem epitope on virions may be different from pressure to bind soluble recombinant313

HA, though several studies have found anti-stem antibody affinity to recombinant HA to be indica-314

tive of viral neutralization (Dreyfus et al., 2012; Corti et al., 2011; Lingwood et al., 2012). Further,315

stem-targeting bnAbs and their germline precursors have been characterized as polyreactive (Ba-316

jic et al., 2019; Guthmiller et al., 2020) and thus likely experience additional selection pressures317

that are not captured by our measurements and models, such as negative selection against au-318

toreactivity. Though we cannot determine which specific antigens were involved in the selection319

of these antibodies in vivo, the diverse HA subtypes we employ capture variation representative320

of circulating influenza strains and thus serve as useful probes of varying levels of breadth (Corti321

et al., 2017). Future work integrating these measurements of affinity and breadth with measure-322

ments of stability and polyreactivity will provide important insight into the molecular constraints323

of bnAb evolution.324

Notably, the landscapes characterized here are among the largest combinatorially complete325

collections of mutations published to date. In some respects, our observations of high-order inter-326

actions are consistent with earlier work in other proteins. In particular, epistasis has been found327

to affect function and constrain evolutionarily accessible pathways across functionally and struc-328

turally distinct proteins (Weinreich et al., 2006; Starr et al., 2017; Ortlund et al., 2007; Podgornaia329

and Laub, 2015; Gong et al., 2013; Sailer and Harms, 2017a; Miton and Tokuriki, 2016; Poelwijk330

et al., 2019; Bank et al., 2015). Further, pairwise and high-order epistasis appear to be common331
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features of binding interfaces, such as enzyme-substrate and receptor-ligand interactions (Wein-332

reich et al., 2006; Starr et al., 2017; Ortlund et al., 2007; Podgornaia and Laub, 2015; Sailer and333

Harms, 2017a; Miton and Tokuriki, 2016), and interacting mutations are often spaced in both se-334

quence and structure, underscoring the complexity of protein-protein interfaces (Podgornaia and335

Laub, 2015;Adamset al., 2019;Braden et al., 1998; Esmaielbeiki et al., 2016;Rotemet al., 2018). On336

the other hand, the strongly synergistic, nested mutations crucial for CR9114 breadth are unusual,337

perhaps due to the nature of antibody-antigen interfaces or to the unique dynamics of affinity mat-338

uration (Victora and Nussenzweig, 2012). Together, these observations suggest that interactions339

between multiple mutations, such as those we characterize here, could play a substantial role in340

affinity maturation and may contribute to the rarity of bnAbs in natural repertoires.341

Our findings provide molecular insight into the emerging picture of how selection can elicit342

broad affinity, illustrated by a substantial recent body of work ranging from in vivo experimental343

approaches (Krammer et al., 2012; Wang et al., 2010) to quantitative modeling of immune sys-344

tem dynamics (Wang et al., 2015;Wang, 2017; Sachdeva et al., 2020;Molari et al., 2020; Sprenger345

et al., 2020). These diverse studies often find that mixed-antigen regimens are less effective than346

sequential regimens at eliciting bnAbs. Our results demonstrate that, at least in part, this may be347

due to the intrinsic structure of the mutational landscape, defined by the complex interactions of348

mutational effects across antigens. Withmore studies of binding landscapes for diverse antibodies,349

we could better understand how such features generalize between different germline sequences,350

somatic mutation profiles, and antigen molecules. These insights will be valuable for leveraging351

germline sequence data and antigen exposure information to predict, design, and elicit bnAbs for352

therapeutic and immunization applications.353
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Key Resources Table354

Resource Designation Source Identifiers Additional Informa-
tion

strain, strain back-
ground (Saccha-
romyces cerevisiae)

EBY100 ATCC Cat#:MYA-
4941

cell line (Spodoptera
frugiperda) Sf9 ThermoFisher Cat#:B82501 Cell line for produc-

tion of baculovirus
cell line (Trichoplusia
ni) High-Five ThermoFisher Cat#:B85502 Cell line for HA ex-

pression
antibody

Anti-cMyc-
FITC (Mouse
monoclonal)

Miltenyi
Biotec

Cat#:130-
116-485 FACS (1:50)

recombinant DNA
reagent

pCT302 (plas-
mid) Addgene Cat#:41845

recombinant DNA
reagent

pCT302_CR9114
_germline
(plasmid)

This paper Plasmid map in Sup-
plemental File 4

recombinant DNA
reagent

pCT302_CR9114
_somatic (plas-
mid)

This paper Plasmid map in Sup-
plemental File 5

recombinant DNA
reagent

pCT302_CR6261
_germline
(plasmid)

This paper Plasmid map in Sup-
plemental File 6

recombinant DNA
reagent

pCT302_CR6261
_somatic (plas-
mid)

This paper Plasmid map in Sup-
plemental File 7

recombinant DNA
reagent

pET21a-BirA
(plasmid) Addgene Cat#:20857

sequence-based
reagent

CR9114 golden
gate dsDNA
fragments

IDT Sequences listed in
Supplemental File 2

sequence-based
reagent

CR6261
Golden Gate
primers

IDT Sequences listed in
Supplemental File 3

sequence-based
reagent

Illumina se-
quencing
primers

IDT Sequences listed in
Supplemental File 1

peptide, recombi-
nant protein

Streptavidin-
RPE ThermoFisher Cat#:S866 FACS (1:100)

peptide, recombi-
nant protein

Biotinylated
A/New Cale-
donia/99 (H1)
ectodomain

This paper Plasmid sequence in
Supplemental File 8

peptide, recombi-
nant protein

Biotinylated
A/Hong
Kong/99 (H9)
ectodomain

This paper Plasmid sequence in
Supplemental File 9
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peptide, recombi-
nant protein

Biotinylated
A/Wisconsin/05
(H3)
ectodomain

This paper
Plasmid sequence
in Supplemental File
10

peptide, recombi-
nant protein

Biotinylated
B/Ohio/05 (Flu
B) ectodomain

This paper
Plasmid sequence
in Supplemental File
11

commercial assay or
kit Bac-to-Bac Kit ThermoFisher Cat#:10359016

commercial assay or
kit

Zymo Yeast
Plasmid
Miniprep
II

Zymo Re-
search Cat#:D2004

software, algorithm Custom code This paper
https://github.com/
klawrence26/bnab-
landscapes

software, algorithm
Interactive
CR9114 data
browser

This paper
https://yodabrowser.
netlify.app/
yoda_browser/

Methods and Materials355

Antibody library production356

Germline sequence reconstructions357

For CR9114, we obtained the somatic heavy chain nucleotide sequence from Dreyfus et al. (2012)358

(GenBank JX213639.1) and reconstructed the germline nucleotide sequence using IMGT (Giudicelli359

et al., 2006) and IgBLAST (Ye et al., 2013). Both methods assigned the same V-gene and J-gene360

alleles (IGHV1-69*06 and IGHJ6*02), but there is ambiguity in the D-gene assignment and at the361

V-D junction, particularly at site 109. The preferred IMGT junction alignment assigns a mutation362

here, S109N, while a different junction alignment from IgBLAST does not. Because of the inherent363

difficulty of reconstructing mutations in the junction region, especially in antibodies with a short364

D region, we chose the alignment without the mutation at site 109. Our reconstructed germline365

nucleotide sequence is available in Supplemental File 12. We then took the resulting germline and366

somatic amino acid sequences, as shown in Figure 1A, and constructed new nucleotide sequences367

codon-optimized for yeast.368

For CR6261, the somatic and reconstructed germline heavy chain amino acid sequences were369

published in Lingwoodet al. (2012). Weused these sequences, similarly constructing codon-optimized370

nucleotide sequences for expression in yeast. The original somatic nucleotide sequence is also371

available (GenBank HI919029.1).372

We note that all antibody libraries and clonal strains were constructed using somatic forms of373

the light chain, as these antibodies were isolated by combinatorial phage display (Throsby et al.,374

2008; Dreyfus et al., 2012), and so it is not possible to infer the naturally paired germline light375

chain sequence. Additionally, the CR9114 and CR6261 light chains were previously determined376

not to impact binding (Lingwood et al., 2012; Dreyfus et al., 2012; Ekiert et al., 2009). The somatic377

light chain sequence for CR9114 was obtained from Dreyfus et al. (2012) (GenBank JX213640.1),378

and that for CR6261 was obtained from Throsby et al. (2008) (GenBank HI919031.1).379

Mutation selection380

CR9114 contains a total of 18 amino acid substitutions between the somatic variant and the re-381

constructed germline sequence. However, a library of 218 = 262, 144 variants would be costly and382

time-consuming to produce and assay via our methods. We therefore identified 2 mutations that383
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were distant from antigen contacts in the crystal structure: A25S and E51D (Dreyfus et al., 2012).384

Wemeasured binding affinities for somatic sequences with and without these two mutations, and385

found that these variants had comparable affinities for both H1 and H3 (Figure 1–Figure Supple-386

ment 7). Although these mutations may have some small impact on binding, especially in combi-387

nation with others, excluding them allowed for a simpler cloning strategy and a more manageable388

library size.389

Similar to the CR9114 library design, we reduced the number of mutations present in the390

CR6261 library by excluding 3mutations thatwere distant fromantigen contacts in the crystal struc-391

ture: 6QE, L50P, and V101M (Ekiert et al., 2009). We validated the marginal contribution of these392

mutations to binding by measuring the binding affinities for the somatic sequence with and with-393

out these mutations reverted to the respective germline residue (Figure 1–Figure Supplement 7).394

Yeast display plasmid and strains395

To generate clonal yeast display strains and libraries for CR9114, we cloned scFv constructs (VL -396

Ser(Gly4Ser)5-VH-Myc) into the pCT302 plasmid (Midelfort et al., 2004) (kind gift from DaneWittrup;397

Addgene, Watertown, MA, #41845). For the clonal CR9114 somatic and germline strains, gene398

blocks corresponding to the somatic or inferred germline sequences were cloned into pCT302 by399

Gibson Assembly (Gibson et al., 2009) (plasmid maps in Supplemental Files 4-5). For producing the400

plasmid backbone required for Golden Gate library generation (described below), we removed an401

existing Bsa-I site from the pCT302 plasmid by site-directed mutagenesis (Agilent, Santa Clara, CA,402

#200521) and replaced the VH domain with the ccdB gene. To generate clonal yeast strains, Gibson403

Assembly products were transformed into electrocompetent DH10B E. coli cells, and the resulting404

plasmids were mini-prepped and Sanger sequenced. Following sequence confirmation, plasmids405

were transformed into EBY100 yeast cells (ATCC #MYA-4941) as described in the high efficiency406

yeast transformation protocol (Gietz and Schiestl, 2007). Transformants were plated on SDCAA-407

agar (1.71 g/L YNB without amino acids and ammonium sulfate (Sigma-Aldrich #Y1251), 5 g/L am-408

monium sulfate (Sigma-Aldrich #A4418), 2% dextrose (VWR #90000-904), 5 g/L Bacto casamino409

acids (VWR #223050), 100 µg/L ampicillin (VWR #V0339), 2% Difco Noble Agar (VWR #90000-774))410

and incubated at 30°C for 48 h, single colonies were restruck on SDCAA-agar and again incubated411

at 30°C for 48 h, and the resulting clonal yeast strains were verified to have the construct of interest412

by colony PCR. Construction of the yeast libraries is described below. All yeast strains were grown413

to saturation in SDCAA at 30°C, supplemented with 5% glycerol, and stored at -80°C.414

CR6261 clonal yeast display strains and libraries were generated in an identical manner to that415

of CR9114, except where noted below (see Supplemental Files 6-7 for plasmidmaps corresponding416

to the germline and somatic sequences).417

Golden Gate assembly418

For CR9114, due to the number of mutations required and their positions along the heavy chain419

coding sequence, we designed a library cloning strategy usingGoldenGate combinatorial assembly420

(Engler et al., 2008). We divided the heavy chain coding region into 5 roughly equal fragments,421

ranging from 79 to 85 bp and each containing between 1 and 5mutations. We added BsaI sites and422

additional overhangs to both ends of each fragment sequence, with cut sites carefully chosen so423

that the 5 fragments will assemble uniquely in their proper order within the plasmid backbone. For424

each fragment with n mutations, we then ordered 2n individual DNA duplexes with each possible425

combination ofmutations (ranging from2 to 32 versions for each fragment, a total of 66 fragments)426

from IDT (Coralville, IA) (see Supplemental File 2). By pooling the versions of each fragment in427

equal volumes, then pooling the 5 fragment pools in equimolar ratios, we obtained a randomized428

fragment mix containing all 216 sequences present at approximately equal frequencies.429

In addition to the fragment mix, we prepared the plasmid backbone for the Golden Gate reac-430

tion. We created a version of the yeast display plasmid with the counter-selection marker ccdB in431

place of the heavy chain sequence, with flanking BsaI sites (see above). We performedGolden Gate432
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cloning using BsaI-HFv2 (NEB, Ipswich, MA, #R3733) following the manufacturer recommended433

protocol, with a 5:1 molar ratio of the fragment insert pool to plasmid backbone.434

We transformed the assembly mix into electrocompetent E. coli (DH10B) via electroporation in435

10 x 50 µL cell aliquots. We recovered each transformation in 5 mL SOC (2% tryptone, 0.5% yeast436

extract, 10 mMNaCl, 2.5 mM KCl, 10 mMMgCl2, 10 mMMgSO4, 20 mM glucose) at 37°C for 1h, and437

then transferred each to 100mL ofmolten LB (1% tryptone, 0.5% yeast extract, 1%NaCl) containing438

0.3% SeaPrep agarose (VWR, Radnor, PA #12001-922) spread into a thin layer in a 1L baffled flask439

(about 1 cm deep). The mixture was allowed to set on ice for an hour, after which it was kept for440

18 hours at 37°C to allow for dispersed growth of colonies in 3D. We observed ∼ 3 × 105 colonies441

per aliquot, for a total of ∼ 3 million transformants. After mixing the flasks by shaking for 1h, we442

pelleted the cells and prepared plasmid by standard midiprep (Zymo Research, Irvine, CA, D4201),443

from which we obtained >120µg of purified plasmid.444

For CR6261, we designed a library cloning strategy also using GoldenGate combinatorial assem-445

bly, but with fragments created by PCR instead of purchased. We divided the heavy chain coding446

region into 3 roughly equal fragments, each containing between 2 and 5 mutations. We designed447

these fragments such that the mutations they contain are close to the 3’ or 5’ ends and can thus448

be easily incorporated by PCR. PCR primers included mutations, BsaI sites, and unique overhangs449

chosen so that the 3 fragments would assemble uniquely in their proper order within the plasmid450

backbone. For each version of the three fragments, we generated dsDNA by PCR (52 PCR reactions451

in total; see Supplemental File 3 for primer sequences). By pooling all versions of each fragment452

in equal volumes, then pooling the 3 fragment pools in equimolar ratios, we obtain a randomized453

fragment mix that, when ligated in the Golden Gate reaction, produces all of the 211 sequences454

present at approximately equal frequencies.455

In addition to the fragment mix, we prepared the plasmid backbone for the Golden Gate reac-456

tion. We created a version of the yeast display plasmid with the counter-selection marker ccdB in457

place of the 3-fragment sequence, with flanking BsaI sites. We performed Golden Gate cloning us-458

ing BsaI-HFv2 (NEB #R3733) following the manufacturer recommended protocol, with a 7:1 molar459

ratio of fragment inserts to plasmid backbone.460

The transformation of the CR6261 library into E. coli was conducted in a similar fashion to that461

of CR9114, except that 8x50 µL cell aliquots were transformed, and 600,000 colonies were pooled462

for plasmid midiprep.463

Yeast library production464

We then transformed the CR9114 plasmid library into EBY100 cells by standard high-efficiency pro-465

tocols (Gietz and Schiestl, 2007). We recovered transformants in molten SDCAA (1.71 g/L YNB with-466

out amino acids and ammonium sulfate (Sigma-Aldrich #Y1251), 5 g/L ammonium sulfate (Sigma-467

Aldrich, St. Louis, MO, #A4418), 2% dextrose (VWR #90000-904), 5 g/L Bacto casamino acids (VWR468

#223050), 100 µg/L ampicillin (VWR # V0339)) containing 0.35% SeaPrep agarose (VWR #12001-469

922) spread into a thin layer (about 1 cm deep). The mixture was allowed to set on ice for an hour,470

after which it was kept for 48 hours at 30°C to allow for dispersed growth of colonies in 3D. From 5471

such flasks, we obtained ∼700,000 colonies (>10 times the library diversity). After mixing the flasks472

thoroughly by shaking for 1h, we grew cells in 5-mL tubes of liquid SDCAA for 5 generations and473

froze the saturated culture in 1-mL aliquots with 5% glycerol.474

The CR6261 yeast library was generated in a manner identical to that of CR9114, except that475

∼60,000 colonies were pooled due to the smaller library size.476

Isogenic strain production477

In addition to the full library, for both CR9114 andCR6261we assayed a small number of variants by478

low-throughput flow cytometry for Tite-Seq validation. Any individual variant in the library can be479

produced in the same manner as described above: we simply selected the DNA duplex fragments480

corresponding to each desired variant and set up an individual Golden Gate reaction. The resulting481
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assembled plasmid was transformed into E. coli, mini-prepped, and transformed into EBY100 in482

the samemanner as described above. We verified the sequence identity of each variant by Sanger483

sequencing the entire scFv sequence.484

We also constructed isogenic strains for validation experiments with genotypes that are not485

present in the full library. For CR9114, to test the impact of excluding mutations A24S and E46D,486

we constructed a strain containing the remaining 16 somatic mutations by cloning a gene block of487

the corresponding VH sequence into the germline CR9114 pCT302 plasmid via Gibson Assembly488

(Figure 1–Figure Supplement 7). For CR6261, we similarly constructed a strain with the Q6E, L50P,489

and V101M mutations reverted.490

Antigen production491

Choice of HA antigens492

CR9114 was isolated from pooled PBMC from three donors who had received the trivalent 2006 in-493

fluenza vaccine (Throsby et al., 2008;Dreyfus et al., 2012), which containedA/NewCaledonia/20/1999494

(H1N1), A/Wisconsin/67/2005 (H3N2), and B/Malaysia/2506/2004 (Victoria lineage) (Ekiert et al.,495

2011). CR6261 was isolated from pooled PBMC from the same three donors, plus an additional496

seven donors who did not receive the vaccine (Throsby et al., 2008). Because PBMC were iso-497

lated only 7 days after vaccination, though it is possible that CR6261 and CR9114 matured in re-498

sponse to these specific antigens, it is more likely that the vaccine elicited memory recall of these499

antibodies (Victora and Nussenzweig, 2012). Here, we chose to measure binding affinities to di-500

verse antigens spanning the range of breadth for both CR9114 and CR6261. CR9114 neutralizes501

strains across influenza A (groups 1 and 2) and influenza B, so wemeasured affinities to one strain502

from each of these groups, and selected vaccine-like strains: A/New Caledonia/20/1999 (H1N1),503

A/Wisconsin/67/2005 (H3N2), and B/Ohio/1/2005 (Victoria lineage). CR6261 neutralizes strains504

across influenza A group 1, thus wemeasured affinities to two strains fromdistinct subtypes within505

group 1: A/New Caledonia/20/1999 (H1N1) and A/Hong Kong/1073/1999 (H9N2). We note that506

CR9114 indeed binds A/Hong Kong/1073/1999 (H9N2) (Dreyfus et al., 2012), but CR9114 variant507

affinities for this strain were not measured here, as we prioritized measurements to antigens that508

span the breadth of each antibody.509

HA cloning, expression, and purification.510

Trimeric hemagglutinin (HA) antigen was produced as previously described (Ekiert et al., 2011;511

Dreyfus et al., 2012;Margine et al., 2013). Briefly, the HA ectodomain (Influenza A: residues 11–329512

of HA1 and 1–176 of HA2 (H3 numbering); Influenza B: residues 1-523) of Influenza A/New Cale-513

donia/1999 H1, Influenza A/Hong Kong/1999 H9, Influenza A/Wisconsin/2005 H3, and Influenza514

B/Ohio/2005, withN-terminal gp67 signal peptide andC-terminal biotinylation site (GGGLNDIFEAQKIEWHE),515

thrombin cleavage site, trimerization domain and His6 tag, were cloned into pFastbac (plasmid516

maps in Supplemental Files 8-11). Recombinant bacmid was generated using the ThermoFisher517

Bac-to-Bac kit (ThermoFisher, Waltham, MA, #10359016). Sf9 cells (ThermoFisher #B82501, not au-518

thenticatedbut verified to bemycoplasma-negative)were then transfected (ThermoFisher #A38915,519

not authenticated but verified to be mycoplasma-negative) with the resulting bacmids, and P0 HA-520

baculovirus was harvested 7 days post-transfection by clarifying viral supernatant at 1,000 x g for521

10 min. HA-baculovirus was then amplified twice by successively infecting 187 million Sf9 cells522

with 100µL of viral supernatant and incubating in a humidified incubator at 28°C for 12 days. To523

induce HA expression, 105 million High-Five cells (ThermoFisher #B85502) were resuspended with524

15 mL P2 HA-baculovirus, incubated for 20 minutes at room temperature, and then transferred to525

a 1 L non-baffled flask with 200 mL Corning Express-Five media (ThermoFisher #10486025) sup-526

plemented with 18 mM L-glutamine (VWR #45000-676). Expression cultures were incubated in a527

shaking incubator at 28°C and 110 rpm for 48 hours, after which HA-containing media was clari-528

fied by spinning first at 1,000 x g for 5 min at 4°C, and then by spinning the resulting supernatant529

again at 4,000 x g for 20 min at 4°C. The clarified media was then dialyzed into PBS (VWR #45000-530
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448) by performing 4 x 2-hour 10-fold buffer exchanges to remove metal chelators from culture531

media. Dialyzed media was then combined with 10 mL equilibrated NiNTA resin (ThermoFisher532

#R90101), gently shaken for 3 hours at 4°C, and loaded onto a column. The resin was washed first533

with 15 column volumes Wash Buffer 1 (50 mM Tris pH 8 at 4°C, 300 mM KCl, 10 mM imidazole)534

and subsequently with 15 column volumes Wash Buffer 2 (50 mM Tris pH 8 at 4°C, 300 mM KCl,535

20 mM imidazole). HA was eluted from the resin after 10 minutes incubation with Elution Buffer536

(50 mM Tris pH 8 at 4°C, 300 mM KCl, 250 mM imidazole). HA was then buffer exchanged into PBS537

using 10 KDa Amicon Ultra Centrifugal Filters (Millipore Sigma, Burlington, MA #UFC901008) and538

concentrated to at least 1 mg/mL for downstream biotinylation.539

BirA expression and purification.540

BirA was expressed and purified as previously described (Ekiert et al., 2011). Briefly, pET21a-BirA541

expression plasmid (Howarth et al., 2005) (kind gift from Alice Ting; Addgene #20857) was trans-542

formed into BL21 (DE3). Transformed BL21 cells were grown in 4 L baffled flasks with 1 L low-salt543

LB medium (5 g/L NaCl, 5 g/L yeast extract (VWR #90000-722), 10 g/L tryptone (VWR #90000-286))544

at 37°C to an OD (600 nm) of ∼0.8. The culture was then moved into cold water to bring it to 23°C,545

IPTG was added to a final concentration of 1 mM, and the culture was incubated at 23°C for ∼16546

hours. The culture was then harvested by centrifugation (3,000 x g, 10 min), resuspended in 30547

mL lysis buffer (50 mM Tris pH 8 at 4°C, 300 mM KCl, 10 mM imidazole, EDTA-free protease in-548

hibitor cocktail tablet (Millipore Sigma #4693159001)), lysed by sonication (Branson Sonifier 450),549

and shaken at 4°C for 30 min. Lysate was clarified by spinning at 25,000 x g for 1h, and then the550

supernatant was incubated with 5 mL NiNTA resin at 4°C for 3 h with gentle shaking. The resin551

was pelleted by spinning at 500 x g for 5 min and washed twice by gentle shaking with 35 mL lysis552

buffer at 4°C for 30 min. Protein was eluted with 20 mL Elution Buffer (50 mM Tris pH 8 at 4°C, 300553

mM KCl, 250 mM imidazole), buffer exchanged into Storage Buffer (50 mM Tris pH 7.5 at 4°C, 200554

mM KCl, 5% glycerol) using 10 KDa Amicon Ultra Centrifugal Filters (Millipore Sigma #UFC901008),555

flash frozen in liquid nitrogen, and stored in single-use aliquots at -80°C.556

Biotinylation and HA-biotin quality control.557

Purified hemagglutinin was biotinylated as previously described (Fairhead and Howarth, 2015;558

Ekiert et al., 2011). Briefly, 100 µL HA (> 1 mg/mL) was incubated with 0.5 µL 1 M MgCl2, 2 µL559

100 mM ATP, 0.5 µL 50 mM biotin, and 2.5 µL BirA (10 mg/mL). This was mixed by gentle pipetting560

and incubated at 30°C with gentle rocking. After 1 h incubation, equivalent amounts of ATP, BirA,561

and biotin were added to the reaction, which was incubated for an additional hour at 30°C. Follow-562

ing the 2 h incubation, the 100 µL reaction was exchanged thrice into 15 mL PBS using a 50 KDa563

MWCO buffer exchange column (Millipore Sigma #UFC905008). The degree of biotinylation was564

then assessed by a streptavidin gel-shift assay, as previously described (Fairhead and Howarth,565

2015). Briefly, 10-fold molar excess streptavidin (Millipore Sigma #189730) was added to 4 µg bi-566

otinylated HA and incubated at room temperature for 5 minutes prior to running on SDS-PAGE.567

Gels were transferred to nitrocellulose membranes and probed with mouse anti-His monoclonal568

antibodies (ThermoFisher #R930-25) and Goat-anti-mouse secondary antibodies (LiCor, Lincoln,569

NE, Cat#925-32210). HA was verified to be > 80% biotinylated by densitometry.570

Tite-Seq assays571

Tite-Seq was performed essentially as previously described (Adams et al., 2016), with some mod-572

ifications as detailed below. For each antibody-antigen pair, three replicate Tite-Seq assays were573

performed on different days.574

Induction of antibody expression575

On day 1, yeast scFv libraries, as well as germline and somatic clonal strains, were thawed by in-576

oculating 5 mL SDCAA (1.71 g/L YNB without amino acids and ammonium sulfate (Sigma-Aldrich577
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#Y1251), 5 g/L ammonium sulfate (Sigma-Aldrich #A4418), 2% dextrose (VWR #90000-904), 5 g/L578

Bacto casamino acids (VWR #223050), 100 µg/L ampicillin (VWR # V0339)) with 150 µL glycerol579

stock (saturated culture with 5% glycerol) and rotated at 30°C for 20 h. On day 2, yeast cultures580

were back-diluted to OD600 = 0.2 in 5mL SDCAA and rotated at 30°C for approximately 4 h, or until581

reaching log phase (OD600 = 0.4 - 0.8). 1.5 mL log-phase cells were then pelleted, resuspended in582

4 mL SGDCAA (1.71 g/L YNB without amino acids and ammonium sulfate (Sigma-Aldrich #Y1251),583

5 g/L ammonium sulfate (Sigma-Aldrich #A4418), 0.2% dextrose (VWR #90000-904), 1.8% galac-584

tose (Sigma-Aldrich #G0625), 5 g/L Bacto casamino acids (VWR #223050), 100 µg/L ampicillin (VWR585

#V0339)), and rotated at room temperature for 20-22 h.586

Primary antigen labeling587

On day 3, 20-22 hours post-induction, yeast cultures were pelleted, washed twice with 0.1% PBSA588

(VWR #45001-130; GoldBio, St. Louis, MO, #A-420-50), and resuspended to an OD600 of 1. 700 µL589

of OD1 yeast cells were labeled with biotinylated HA at each of eleven antigen concentrations (half-590

log increments spanning 1 pM – 100 nM for H1 andH9, and 10 pM – 1 µM for H3 and influenza B, as591

well as no HA), with volumes adjusted such that the number of antigen molecules was in ten-fold592

excess of antibody molecules (assuming 50,000 scFv/cell). Yeast-HA mixtures were rocked at 4°C593

for 24 h.594

Secondary labeling595

On day 4, yeast-HA complexes were pelleted by spinning at 3,000 x g for 10minutes at 4°C, washed596

twicewith 5%PBSA+ 2mMEDTA, and simultaneously labeledwith Streptavidin-RPE (1:100, Thermo597

Fisher #S866) and anti-cMyc-FITC (1:50, Miltenyi Biotec, Somerville, MA, #130-116-485) at 4°C for598

45 minutes. Following secondary labeling, yeast were washed twice with 5% PBSA + 2 mM EDTA,599

and left on ice in the dark until sorting.600

Sorting and recovery601

Yeast were sorted on a BD FACS Aria Illu, equipped with 405 nm, 440 nm, 488 nm, 561 nm, and602

635 nm lasers, and an 85 micron fixed nozzle. Prior to sorting, single-color controls were used603

to compensate for the minimal FITC overlap with PE. Single cells were gated by FSC vs SSC, and604

then this population was sorted either by expression (FITC) or by expression and binding (PE). For605

all sorts, at least ten-fold excess of the library diversity was sorted (∼1.6 million cells for CR9114;606

∼500,000 cells for CR6261). For the expression sorts, singlets were sorted into 8 equivalent FITC log-607

spaced gates. For the binding sorts, FITC-positive cells were sorted into 4 PE bins (the PE-negative608

population comprised bin 1, and the PE-positive population was split into three equivalent log-609

spaced bins 2–4; see Figure 1–Figure Supplement 6). Polypropylene collection tubes were coated610

and filled with 1 mL YPD supplemented with 1% BSA and placed on ice until recovery. Sorted cells611

were pelleted by spinning at 3,000 x g for 10 minutes, and supernatant was removed by pipette612

to avoid disturbing the pellets. Pellets were then resuspended in 4 mL SDCAA, a small amount613

was plated on SDCAA-agar to quantify recovery efficiency, and cultures were rocked at 30°C until614

reaching late-log phase (OD600 = 0.6 - 1.2).615

Sequencing library preparation616

1.5 mL of late-log yeast cultures were pelleted and scFv plasmid was extracted using Zymo Yeast617

Plasmid Miniprep II (Zymo Research # D2004), per the manufacturer’s instructions, and eluted in618

10 µL elution buffer. Heavy-chain amplicon sequencing libraries were prepared by a two-step PCR619

as previously described (Ba et al., 2019). In the first PCR, unique molecular identifiers (UMI), inline620

indices, and partial Illumina adapters were appended to the heavy chain through 3-5 amplification621

cycles tominimize PCR amplification bias. In the second PCR, the remainder of the Illumina adapter622

and sample-specific Illumina i5 and i7 indices were appended through 35 amplification cycles (see623

Supplemental File 1 for primer sequences). The first PCR used 5 µL plasmid DNA as template in624

a 25 µL reaction volume, with Q5 polymerase according to the manufactuer’s instructions (NEB625
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# M0491L), and was incubated in a thermocycler with the following program: 1. 60s at 98°C, 2.626

10s at 98°C, 3. 30s at 66°C, 4. 30s at 72°C, 5. GOTO 2, 2-4x, 6. 60s at 72°C. PCR products were627

then combined with carrier RNA and purified by 1.1X Aline beads (Aline Biosciences #C-1003-5),628

and eluted in 35 µL elution buffer. 33 µL of the elution was used as input for the second PCR,629

in a total volume of 50 µL using Kapa polymerase (Kapa Biosystems #KK2502) according to the630

manufacturer’s instructions, and incubated in a thermocycler with the following program: 1. 30s631

at 98°C, 2. 20s at 98°C, 3. 30s at 62°C, 4. 30s at 72°C, 5. GOTO 2, 34x, 6. 300s at 72°C. The resulting632

sequencing libraries were purified by 0.85X Aline beads, amplicon size was verified to be ∼500 bp633

by running on a 1% agarose gel, and amplicon concentration was quantified by a fluorescent DNA-634

binding dye (Biotium, Fremont, CA, #31068, permanufacturer’s instructions). Amplicons were then635

pooled for each gate according to the number of sorted cells to ensure even sequencing coverage.636

The poolwas further size-selected by a two-sidedAline bead cleanup (0.55-0.85X), and the final pool637

size was verified by Tapestation 5000 HS and 1000 HS. Final sequencing library concentration was638

determined by Qubit fluorometer and sequenced on an Illumina NovaSeq S2 or Miseq v3 (2x150)639

with 5% PhiX.640

Sequencing data processing641

We first processed our raw sequencing reads to identify and extract the indexes and mutational642

sites, discarding priming regions and the constant regions between mutations. To do so, we de-643

veloped custom Python scripts using the approximate regular expression library regex (Barnett,644

2013), which allowed us to handle complications in sequence parsing that arise from the irregular645

lengths of the indices and from sequencing errors. We accept sequences that match the entire646

read (with no restrictions on bases at mutational sites) within the following mismatch tolerances:647

2 mismatches in the multiplexing index, 2 mismatches in the priming site, and 15 substitution mis-648

matches within the 170 bases of constant antibody sequence.649

We then examine themutational sites to call germline or somatic alleles, producing binary geno-650

types (‘0’ for germline or ‘1’ for somatic at each position). We require the exact germline or somatic651

sequence at every site: if there are any substitution errors in any of the mutation sites, the entire652

read is rejected. While it is possible to perform error correction based on Hamming distance to653

rescue reads with a few substitution errors, we find that on average only <8% of reads per sample654

contain any errors, and so we adopt the conservative approach of requiring perfect matching.655

We next discarded sequencing reads with any mismatched indices (four total indices from the656

two PCR reactions), as well as reads with duplicate UMI sequences. Counts for each genotype657

were then tabulated, producing the final counts used for binding affinity inference (see below). On658

average, across all antigens and replicates, we obtain a mean coverage of ∼350 for CR9114 and659

∼950 for CR6261, and a median coverage of ∼250 for CR9114 and ∼900 for CR6261.660

Isogenic validation661

Induction of scFv surface display, primary labeling, and secondary labeling of isogenic strains were662

performed identically to the Tite-Seq assay, except yeast cell and antigen volumes were scaled663

down by a factor of 10. Yeast cell FITC (scFv expression) and R-PE (HA binding) fluorescence inten-664

sity was assayed on a BD LSR Fortessa equipped with 4 lasers (440, 488, 561, and 633 nm). The665

equilibrium binding affinities (KD) for each variant are inferred by fitting the log of a Hill function666

to the mean log R-PE fluorescence of scFv-expressing (FITC+) singlet yeast cells:667

mean log fluorescence = log10
(

As
c

c +KD,s
+ Bs

)

, (1)
where c is the antigen concentration in molar units, As is the increase in fluorescence due to satu-668

ration with antigen, Bs is the background fluorescence, and KD,s is the equilibrium binding affinity.669

All isogenic measurements were performed in 2-3 biological replicates; see Figure 1 – Source Data670

File 3 for isogenic − log10KD.671
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Tite-Seq binding affinity inference672

Mean-bin approach673

To infer binding affinities using a simple mean-bin approach (Peterman and Levine, 2016), we in-674

corporate sequencing data (the unique read counts of each genotype sequence s in bin b at concen-675

tration c, Rb,s,c ) with flow cytometry data (the mean and standard deviation of log10-fluorescence of676

sorted cells in each bin b at concentration c, Fb,c and �Fb,c respectively, and cell counts for each bin677

b at each concentration c, Cb,c ).678

The mean log-fluorescence of each genotype sequence at each of the twelve antigen concen-679

trations is calculated as:680

F s,c =
∑

b
Fb,c pb,s|c , (2)

where pb,s|c is the probability a cell with sequence s would be sorted into bin b at concentration c.681

pb,s|c is estimated from the sequencing read counts as:682

pb,s|c =

Rb,s,c
∑

s′ Rb,s′ ,c
⋅ Cb,c

∑

b′

(

Rb′ ,s,c
∑

s′ Rb′ ,s′ ,c
⋅ Cb′ ,c

) , (3)

in other words, the fraction of total reads in the bin corresponding to sequence s, scaled by the683

number of sorted cells in that bin, normalized over the 4 bins for each concentration.684

The uncertainty in the mean bin inference was propagated as:685

�F s,c =
√

∑

b

(

�F 2
b,c p

2
b,s|c + F

2
b,c �p

2
b,s|c

)

. (4)
Here, �Fb,c represents the spread in log-fluorescence values of cells sorted into the same bin b.686

While we could estimate this value using the bin width, in practice we find that the distribution687

of cell log-fluorescence values in a bin is far from uniform across the bin width. The distribution688

is often not normal either, but we find that approximating �Fb,c ≈ �Fb,c , or the standard deviation689

in log10-fluorescence of cells sorted into bin b at concentration c, adequately captures the typical690

variation. The error in pb,s|c arises largely from the sampling process of sequencing, which can be691

approximated as a Poisson process when read counts are relatively high. This gives692

�pb,s|c =
pb,s|c

√

Rb,s,c

. (5)
Thus, �F s,c can be written as693

�F s,c =

√

√

√

√

∑

b

(

�2Fb,c p
2
b,s|c + F

2
b,c

p2b,s|c
Rb,s,c

)

. (6)
The equilibrium binding affinities (KD) for each variant are inferred by fitting the logarithm of a694

Hill function to the resulting mean log10-fluorescence across the twelve antigen concentrations:695

F s,c = log10

(

As
c

c +KD,s
+ Bs

)

, (7)
where c is the antigen concentration in molar units, As is the increase in fluorescence due to satu-696

ration with antigen, Bs is the background fluorescence, and KD,s is the binding affinity. Fitting was697

performed with the curve_fit function of the Python package scipy.optimize. Reasonable bounds on698

the values of A (103 – 105), B (100 – 103), and KD (10−14 – 10−5) were imposed. Sequences leading to a699

failed optimization were deemed “non-binding”.700

Inferred KD outside of the titration boundaries were then pinned to the boundaries (10−12 and701

10−7 for H1 and H9; 10−11 and 10−6 for H3 and FluB). Inferred KD with high error (standard deviation702

of log10KD > 1.0) or resulting from a poor fit (r2 < 0.8) were removed from the data set prior to703

averaging − log10KD values across biological replicates.704
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We also explored an alternative maximum-likelihood framework for inferring binding affinities705

(see Appendix 1), but found it to be less accurate than the mean-bin approach when compared to706

isogenic flow cytometry measurements. Thus we restricted our analysis to the simpler and more707

robust mean-bin inference presented here.708

Force-directed layouts709

To represent the high-dimensional binding affinity landscape in two dimensions, we use a force-710

directed graph layout approach. Each sequence in the antibody library is a node, connected by711

edges to its single-mutation neighbors (sequences that can be reached by one additional somatic712

mutation). An edge between two sequences s and t is given the weight713

ws,t =
1

0.01 + |

|

|

log10(K
ag
D,s) − log10(K

ag
D,t)

|

|

|

, (8)

where Kag
D represent binding affinities to a particular antigen, ag. In the layouts shown in the main714

text, we use binding affinities to H1 for both CR6261 and CR9114. In force-directed layouts, edge715

weights correspond to the effective spring constant that tends to pull nodes closer together. Thus,716

a mutation from sequence s to t that has little impact on binding will cause that edge weight to be717

large, and the nodes will be pulled strongly together. Amutation from sequence s to t that causes a718

large difference in binding affinity (positive or negative) to the antigen will reduce the edge weight,719

moving those nodes further apart. After assigning all edge weights, we use the layout function720

layout_drl from the Python package iGraph, with default settings, to obtain the layout coordinates721

for each variant.722

Expression data723

As noted above, antibody libraries were sorted into eight bins along the FITC-A fluorescence axis724

(where FITC-A fluorescence is proportional to expression), each comprising 12.5% of the total sin-725

glet population (Figure 1–Figure Supplement 6). The mean expression log-fluorescence was com-726

puted for each variant using the corresponding variant counts and fluorescence data, as described727

above for the mean-bin KD inference. These expression values were then averaged across all bio-728

logical replicates for each antibody (9 replicates for CR9114, 6 replicates for CR6261), and correla-729

tion between biological replicates, aswell aswith− log10KD values, are illustrated in Figure 1–Figure730

Supplement 5. For the isogenic flow cytometry measurements, variant expression was computed731

as the mean log FITC-A fluorescence.732

Epistasis analysis733

Linear interaction models734

To infer specific mutational effects, we begin with simple linear models where the effects of muta-735

tions (and mutation combinations) add to produce phenotypes. Our log-transformed phenotypes736

for each variant s, ys = − log10(KD,s), are proportional to free-energy changes, and thus a natural737

null expectation is that they combine additively (Wells, 1990; Olson et al., 2014) (although we also738

consider nonadditive epistatic interactions between individual loci here, and analyze the effects of739

an overall nonlinear transformation of this data in Appendix 2). Our additive-only model is740

ys = �0 +
L
∑

i=1
�ixi,s + ", (9)

where L is the number of mutations for a given antibody, �0 is an intercept term, �i is the effect of741

the mutation at site i, xi,s is the genotype of variant s at site i, and " represents independently and742

identically distributed errors. Our general linear interaction models are743

ys = �0 +
∑

i
�ixi,s +

L
∑

i<j
�ijxi,sxj,s +

L
∑

i<j<k
�ijkxi,sxj,sxk,s +…+ " (10)
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where �ij represent second-order interaction coefficients between distinct sites i and j, �ijk repre-744

sent third-order interaction coefficients, and so on up to the desiredmaximumorder of interaction.745

There aremultiple alternative coding systems for the binary genotypes xi,s that affect the values746

of inferred effects � as well as their interpretation. Two common choices are (1) xi,s ∈ {0, 1}, often747

called “biochemical” or “local” epistasis, and (2) xi,s ∈ {−1, 1}, often called “statistical” or “ensemble”748

epistasis (Poelwijk et al., 2016). These frameworks are equivalent and related by a simple linear749

transformation, but the values of the coefficients vary between frameworks and have different750

interpretations. For ease of interpretation, in the Main Text and Figures we always show results751

obtained from inference in the biochemical epistasis framework. In Appendix 2, we discuss the752

differences between these two frameworks, and present results from inference in the statistical753

epistasis framework.754

For an antibody with Lmutations, there are L possible orders of interactions, with a total of 2L755

epistatic coefficients �. From a measurement of y for all 2L possible sequences, there is a simple756

linear transformation to calculate the resulting 2L � parameters (Poelwijk et al., 2016). This is757

a simple and fast approach to the calculation of epistasis that is widely used (Sailer and Harms,758

2017a;Poelwijk et al., 2019), andweexplore this approach in Appendix 2. However, wemay instead759

wish to restrict our model to a lower order and examine whether it can explain the data with far760

fewer than 2L parameters, as a conservative approach to detecting high-order epistasis.761

Specifically, we truncate the model above at a maximum order n and then fit and evaluate the762

resulting model. We begin with n = 1 and continue to increase n until the optimal model has been763

identified. There are multiple strategies for selecting between models with different numbers of764

parameters, such as AIC and BIC; here we take a cross-validation approach. For each fold, we765

hold out 10% of the dataset, train models at each maximum order on the remaining 90%, and766

evaluate the prediction performance (R2) of the model on the held-out test set. After averaging767

the performances across all 10 folds for each truncated model, we choose the order that maxi-768

mizes the test set performance as the optimal maximal order of interaction. We then re-train the769

model truncated at this order on the full dataset to obtain the final coefficients. We find that the770

optimal model identified by cross-validation for each antibody-antigen pair satisfies p < N by ∼1771

order of magnitude, where p is the total number of model coefficients and N the number of data772

points with measurable binding affinity. This gives confidence that our parameter estimates are773

well constrained by the data, even in the absence of other regularization (such as Lasso or Ridge774

regularization approaches).775

To train a model of given order on a set of sequences, we use ordinary least squares (OLS) re-776

gression with the Python package statsmodels. From this, we obtain the coefficient values � with777

their standard errors and p-values. To define significance of coefficients, we use a p-value cutoff778

of 0.05 with Bonferroni correction by the total number of model parameters. Coefficients, stan-779

dard errors, p-values, and Bonferroni-corrected 95% confidence intervals are reported in Figure 1780

– source data files 1 and 2. We also predict phenotypes ŷ for each sequence from the coefficients781

and use these values in Figure 5A,B.782

For CR9114 binding to influenza B, the number of sequences used for inference is far fewer783

than other antibody-antigen pairs (N = 256), due to the large number of required mutations. We784

therefore use a 5-fold rather than 10-fold split to reduce the test set noise. Nevertheless, the cross-785

validation procedure identifies a first-order (additive) model as optimal, due to the smaller sample786

size.787

Structural analysis of epistatic coefficients788

To examine the structural context of linear and pairwise coefficients, we performed three simple789

analyses. (1) First, we used ChimeraX (Pettersen et al., 2021) to calculate the buried surface area790

between HA and each mutated residue in CR9114 and CR6261, using the measure buriedarea791

function and the default probeRadius of 1.4 angstroms to approximate a water molecule. We792

plot this "contact surface area" vs the linear effect of the corresponding mutation on HA binding793
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(Figure 2C; Figure 2–Figure Supplement 1A). (2) We used PyMol (Schrodinger, LLC, 2015) to count794

the number of HA residueswithin six angstroms of each antibodymutation site. Six angstromswas795

chosen as an upper limit to capture potential antibody-antigen interactions (Bondi, 1964;Baker and796

Hubbard, 1984; Israelachvili and Pashley, 1982; Ekiert et al., 2009; Dreyfus et al., 2012), though we797

note that this analysis is robust to other distance thresholds. (3) We also used PyMol to measure798

the distances between �-carbons for all mutation pairs, and plotted these distances against the799

corresponding pairwise epistatic terms (Figure 2F; Figure 2–Figure Supplement 1B). We note that800

each of these analyses were performed with co-crystal structures of the somatic antibodies with801

HA (PDB ID: 4FQI (CR9114–H5; CR9114–H1 crystal structure not available) (Dreyfus et al., 2012);802

4FQY (CR9114–H3) (Dreyfus et al., 2012); 3GBN (CR6261–H1) (Ekiert et al., 2009)).803

Pathway analysis804

Selection models805

To study the likelihood of various mutational pathways leading from the germline to the somatic806

sequence, we must assume a selection model. Selection in germinal centers is considerably more807

complex than in classical population genetics models, involving spatial structure, changing popula-808

tion sizes, and T-cell mediated selection, among other factors (Mesin et al., 2016). Capturing these809

aspects in quantitative models is an active field of research (Amitai et al., 2017). However, here we810

wish to adopt an extremely simple model of selection as a first step in understanding the impacts811

of the binding affinity landscape on antibody selection, with the goal of understanding the impli-812

cations of the expectation that mutational steps become more probable as their effect on binding813

affinity becomesmore positive. Combining themore realisticmodels of immune selectionwith our814

detailed characterization of mutational effects on antigen binding affinity remains an interesting815

avenue for future work.816

Here, we restrict to the weak-mutation regime where mutation fixation events occur indepen-817

dently of one another. Selection proceeds as a Markov process, where the population is charac-818

terized by a single sequence that acquires a single mutation at each discrete step (McCandlish,819

2011). We choose a simple form for the fixation probability of a mutation from sequence s to se-820

quence t, as discussed below. This then determines the transition probability for the population821

to move from s to t. We assume that sequences cannot back-mutate (i.e. a residue changing from822

the somatic allele to the germline allele), and do not acquire multiple mutations in the same step.823

The absence of back-mutation is justified by the relatively large number of possible mutation sites824

compared to the total number of mutation events.825

We define the transition probability of a single mutational step from the classical fixation prob-826

ability for a mutation with selection coefficient � in a population of size N (Kimura, 1962):827

pstep(�,N) = 1 − e−�
1 − e−N�

. (11)
Here we define the selection coefficient � to be proportional to the difference in log binding affini-828

ties to a particular antigen between the two sequences s and t:829

� = 
Δag
s,t = 
(− log10K

ag
D,t − (− log10K

ag
D,s)). (12)

This model has two tunable parameters: N represents the effective population size and 
 repre-830

sents how strongly differences in binding affinity impact fitness. We chose three parameter values831

to span a range of selection strengths (see Figure 5–Figure Supplement 1): moderate, withN = 1000832

and 
 = 1; weak, withN = 20 and 
 = 0.5; and strong, withN → ∞ and 
 → ∞ such that pstep reduces833

to a step function (1 if Δ > 0 and 0 otherwise). These three models all show similar results, with834

differences between selection scenarios becoming more exaggerated with stronger selection and835

less exaggerated with weaker selection, as expected (see Figure 5–Figure Supplement 1).836
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From the fixation probabilities for a given parameter regime, we have the transition probability837

(up to a constant factor) for all sequences s, t over all antigens ag,838

P ag
s,t =

⎧

⎪

⎨

⎪

⎩

pstep(Δag
s,t , 
,N) if t has one more somatic mutation than s

0 otherwise , (13)

which we use for all of the calculations described below for results presented in Figure 5 and sup-839

plements.840

Scenario, mutation, and variant probabilities841

It is particularly useful to store the probabilities P ag
s,t as (sparse) transitionmatrices P ag of dimension842

2N × 2N for each antigen, where entries are nonzero only where sequence t has one more somatic843

mutation than s.844

First, wewish to obtain ameasure of total probability for a particular antigen scenario, as shown845

in Figure 5E,F. We calculate this by computing the matrix product over all mutational steps i for a846

particular sequence of antigen contexts {ag1,… ,agL}:847

tot =
∑

paths

(

∏

steps
Pstep

)

=

[

L
∏

i=1
P agi

]

sg ,ss
, (14)

where [⋅]s,s′ corresponds to taking the matrix element in the row corresponding to variant s and848

column corresponding to variant s′. In the right-most term, the products are matrix operations849

and sg, ss are respectively the indices of the germline and somatic variants.850

We note that the transition probabilities P agi are not normalized at each step. In practice, this851

means that mutations are optional: many outcomes will not reach the somatic sequence and the852

likelihood encodes the probability of reaching the somatic state. This makes it possible to com-853

pare different scenarios, as some scenarios are more likely than others to reach the somatic state.854

However, because these values do not represent true probabilities — the units are arbitrary —855

they cannot be compared between antibodies or between selection models. The exception is for856

the strong scenario, where the total probability for each path is 1 if all steps are uphill (Δag
s,t > 0)857

and 0 otherwise. Thus, here tot has a natural interpretation as the total number of uphill paths.858

When we present results from the strong model (Figure 5C,D, Figure 5–Figure Supplement 1, and859

numbers of uphill paths for H1-only scenarios as discussed in the text), we represent uphill path860

numbers on a linear scale without log-transforming.861

Although there are many possible antigen exposure scenarios, we restrict our analysis to sev-862

eral classes. First, in single-antigen scenarios, all steps i use the same antigen. Second, for sequen-863

tial scenarios, antigen exposures must occur in non-repeating segments (for example, H1 - H3 - H1864

is not allowed), although we consider all possible lengths and orders of segments.865

Mixed scenarios are more complicated, as we do not fully understand the nature of B cell inter-866

actionswithmultiple antigens in the same germinal center (Wang et al., 2015;Wang, 2017; Kuraoka867

et al., 2016). One option is to assume that the B cell engages the antigen for which it has the highest868

affinity and define Δ by the maximum binding affinity across all possible antigens at each step, but869

this definition would trivially imply that themixed scenario has the highest probability. Instead, we870

choose two alternatives: first, “average” mixed, where we assume the B cell engages all antigens871

and use the average binding affinity change over all three (for CR9114) or two (for CR6261) antigens,872

Δmixed = 1
Nag

∑

ag Δag; and second, “random” mixed, where we assume the B cell randomly engages873

a single antigen and hence the antigen at each mutational step is chosen randomly. For the latter874

definition, we calculate tot as described above for 1000 randomly drawn scenarios and average875

the resulting log probability. When we illustrate mutational paths andmutation orders, we choose876

a representative scenario (with close to median probability) from the 1000 random draws.877

We estimate the error of these probabilities by bootstrapping. Specifically, for 10 bootstrap878

iterations, we resample each binding affinity − log10Kag
D,s from a normal distribution according to879
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its value and standard deviation. We then recalculate the total probability tot, average over the 10880

values to obtain mean and s.e.m. values, and transform by the natural log for plotting, as shown881

in Figure 5 and Figure 5–Figure Supplement 1. We note that for the strong selection scenario882

(where probabilities represent total numbers of uphill paths), values are not log-transformed, and883

many scenarios have total path numbers of exactly zero. We refrain from studying the “average”884

mixed scenario for strong selection because it is essentially equivalent to choosing the antigen885

with maximum improvement: the quantitative effect of averaging is undone when the transition886

probability is binarized. For CR6261, all mutations at the first mutational step are neutral (with the887

exception of one mutation that improves affinity for H1 only), and so we allow all mutations with888

equal probability for the first step in the strong selection model.889

Next, to identify themost likely paths under a given exposure scenario, we reframe this Markov890

process as a directed weighted graph. Each sequence s is a node, and a directed edge exists to-891

wards all sequences t that can be reached by one additional somatic mutation. The edge weight is892

calculated from the transition probability, ws→t = − log(P
ag
s,t + �), where � is an extremely small value893

to ensure weights are finite. In this graph framework, we can use fast algorithms to obtain the894

“shortest” paths from the germline to the somatic node (those for which the sum of weights is low-895

est, i.e. the total probability is highest). Specifically, we use the shortest_simple_paths function from896

the Python package networkx (Hagberg et al., 2008) to compute the k shortest paths, as shown in897

Figure 5G,H. This method is exact and uses the algorithm described in Yen (1971).898

Next, we wish to obtain the probability that a mutation at site m happened at a specific step j899

(Figure 5I,J). As we are focusing on one antigen context, we can normalize the transition matrices900

and define:901

P̃ ag
s,t = P

ag
s,t ×

(

∑

t
P ag
s,t

)−1

, (15)
if P ag

s,t ≠ 0 and 0 otherwise. We can further restrict the transition matrix at step j, P̃ agj , to have902

nonzero probability only when the mutation that occurs is at a particular residue �, P̃ agj
� . The total903

relative probability for that site at that mutational step under an antigen exposure scenario is then904

905

j,� =

[(

j−1
∏

i=1
P̃ agi

)

⋅ P̃
agj
� ⋅

(

L
∏

i=j+1
P̃ agi

)]

sg ,ss
, (16)

where, again, products are matrix operations. Because a sequence of L steps starting from the906

germline can only lead to the somatic state, P̃ verifies [∏L
i=1 P̃

agi
]

sg ,ss
=1. With the relation∑

� P̃
agj
� =907

P̃ agj this implies that these probabilities are already normalized: ∑� j,� = 1.908

Finally, we wish to determine the total probability of each variant (Figure 5–Figure Supple-909

ment 2), i.e. the sum of probabilities of all paths passing through that variant, for a given selection910

scenario. For a variant s that contains j somatic mutations, we calculate911

s =
⎛

⎜

⎜

⎝

[

j
∏

i=1
P̃ agi

]

sg ,s

⎞

⎟

⎟

⎠

⋅
⎛

⎜

⎜

⎝

[

L
∏

i=j+1
P̃ agi

]

s,ss

⎞

⎟

⎟

⎠

, (17)

where the first term is the probability of reaching sequence s at mutational step j, and the second912

term is the probability of reaching the somatic sequence after passing through sequence s. When913

representing this number we add an additional normalisation factor,  ′
s = s × nj , where nj = (L

j

) is914

the number of sequences with j mutations, so that variants with different numbers of mutations915

have comparable values.  ′
s thus represents the ratio of the probability in a selective model to the916

probability in a neutral model (which is 1∕nj). Thus, sequences with log10( ′
s) > 0 are favored by the917

given selection scenario, and those with log10( ′
s) < 0 are disfavored, as shown in Figure 5–Figure918

Supplement 2 for moderate selection under the optimal sequential scenario.919
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Appendix 11180

Maximum likelihood approach to binding affinity inference1181

In this approachwemake the assumption that the fluorescence emitted by cells of a specific
genotype is distributed log-normally, with parameters �s,c and �s,c (the mean and standard
deviation of the associated normal distribution respectively). At concentration c, a cell with
genotype s will fall into the bin b (log10-fluorescence values fs,c ranging from lb to ℎb) withprobability:

P
[

lb < fs,c < ℎb
]

= ∫

ℎb

lb

1
√

2��2s,c
e
− 12

(

fs,c−�s,c
�s,c

)2

dfs,c (18)

= 1
2

(

erf

(

ℎb − �s,c

�s,c
√

2

)

− erf

(

lb − �s,c

�s,c
√

2

))

. (19)
Each cell sorted is an independent event, so the number of cells in each bin will be multi-
nomially distributed, and thus the likelihood of sorting nb,s|c cells of sequence s into bin b atconcentration c is given by

 =
∏

s,c

(

P
[

lb < fs,c < ℎb
])nb,s|c , (20)

and the log-likelihood is
log =

∑

s,c,b
nb,s|c logP

[

lb < fs,c < ℎb
]

∝
∑

s,c,b
pb,s|c logP

[

lb < fs,c < ℎb
]

. (21)
The probability pb,s|c is estimated as in the mean-bin approach (see Methods) and the log-
likelihood is then maximized as a function of �s,c and �s,c (BFGS method). The values of A,
KD, and B are then estimated similarly as the mean-bin approach (see Methods), replacing
F s,c by �s,c .
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The − log10KD inferred by this maximum likelihood (ML) approach correlate well with
isogenic flow cytometry − log10KD (see Appendix 1 Fig. 1), but not as well as those inferred
by themean-bin approach (Figure 1–Figure Supplement 2B). TheML approach is predicated
on the assumption that the fluorescence distribution for each variant is log-normal, which is
often not the case (see Appendix 1 Fig. 2). For these reasons, in addition to favoring a simple
approach, we performed all analyses with − log10KD inferred by the mean-bin approach.

1204

1205

1206

1207

1208

1209

1210

Appendix 1 Figure 1. Correlation between − log10 KD from ML inference on Tite-Seq data vs.
− log10 KD from isogenic flow cytometry. − log10 KD to H1 (salmon), H3 (green), and Flu B (blue) shownfor select variants, identical to those shown in Figure 1–Figure Supplement 2B. Pearson’s r = 0.97.
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1215

Appendix 1 Figure 2. Distributions of PE-A fluorescence (HA binding) for isogenic CR9114 strainsincubated with H3. PE-A fluorescence distributions from flow cytometry of isogenic CR9114 germline(left) and somatic (right) strains following incubation with 1 µM, 100 nM, and 10 nM H3, as describedin Methods. Shape of distribution varies for different clones and is not strictly log-normal, hencedeviating from assumptions made in the maximum-likelihood binding affinity inference.
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Appendix 21222

Alternative approaches to epistasis inference1223

Statistical epistasis and variance partitioning1224

The contrast between biochemical and statistical frameworks for epistasis is well described
in Poelwijk et al. (2016). In particular, a biochemical epistasis approach highlights one partic-
ular sequence as the “wildtype” or reference sequence and measures effects relative to its
phenotype, whereas a statistical epistasis approachmeasures effects relative to the average
phenotype of all variants included. The biochemical approach benefits from easier interpre-
tation of the coefficient values, particularly when there is a natural or relevant choice of ref-
erence sequence, but the coefficients at different orders are not statistically independent.
The statistical approach allows for correct variance partitioning between interaction orders,
but the interpretation of the coefficients can be sensitive to the set of sequences, partic-
ularly when not all possible sequences are represented or when a majority of sequences
exhibit some uninteresting phenotype (e.g. lethal).
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Here, we perform inference of statistical epistasis exactly as described above for bio-
chemical epistasis (see Methods), except that genotypes xi,s are coded as {−1, 1} instead of
{0, 1}. The results from this statistical epistasis inference are shown in Appendix 2 Fig. 1 for
CR9114 and Appendix 2 Fig. 2 for CR6261, in plots analogous to those in Figure 3, Figure 4
and supplements. We find that the patterns of site participation in interactions are similar
(although the coefficient magnitudes and signs are of course scaled differently). The group
of five key sites discussed in Figure 3 (sites 30, 57, 65, 82, and 83 for CR9114 binding to H1)
exhibit coefficients that are significant for all 31 mutation combinations, consistent with the
result from biochemical epistasis. Overall, the numbers of significant coefficients inferred
in statistical epistasis models tends to be somewhat higher than for biochemical epistasis
models, perhaps due to the effect of background averaging in reducing coefficient standard
errors, but neither framework is a substantially more compact representation of epistasis
than the other.
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In the statistical epistasis framework, we can also partition the variance explained by
the model according to the interaction order. Here, we take the final inferred model at
the optimal interaction order and evaluate the prediction performance (R2) of each order
as a fraction of the total performance of the full model. As shown in Appendix 2 Fig. 3,
we find that epistasis explains a substantial fraction of variance (18% - 33%, depending on
antibody-antigen pair). Variance explained tends to decline with increasing order, as is also
observed in some other protein epistasis datasets (Sailer and Harms, 2017a). This indicates
that interactions at higher order are more rare (compared to the total number of terms at
each order, which scales combinatorially) and/or smaller in magnitude than those at lower
order. However, this does not imply that rare, strong interactions of even higher order do
not exist; for example, there may be some strong sixth-order interaction terms for CR9114
binding to H1, but not enough to compensate for themany nonsignificant sixth-order terms
in our cross-validation framework.
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1262

Appendix 2 Figure 1. Results from statistical epistasis models for CR9114. (A), First-order effects, asin Figure 2A. ‘R’ indicates required mutations. (B), Second-order effects for H1 (top right) and H3(lower left), as in Figure 2D. Interactions with required mutations for H3 are noted in dark red. (C),Cumulative higher-order effects for CR9114 binding to H1, as in Figure 3A. (D), Cumulativehigher-order effects for CR9114 binding to H3, as in Figure 3–Figure Supplement 3. (E), Inferredinteraction coefficients for the set of five key epistatic loci, as in Figure 3–Figure Supplement 1B withcorresponding colors. Note the different y-axis scales for the two subplots. Different interactionorders are separated by dotted lines. (F), Number of significant coefficients at all orders for thebiochemical and statistical epistasis models. The maximal order of interaction for each model isindicated in parentheses.
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1274

Appendix 2 Figure 2. Results from statistical epistasis models for CR6261. (A), First-order effects, asin Figure 2B. (B), Second-order effects for H1 (top right) and H9 (lower left), as in Figure 2E. (C),Cumulative higher-order effects for CR6261 binding to H1, as in Figure 4A. (D), cumulativehigher-order effects for CR9114 binding to H9, as in Figure 4–Figure Supplement 2A. (E), number ofsignificant coefficients at all orders for the biochemical and statistical epistasis models. The maximalorder of interaction for each model is indicated in parentheses.
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Appendix 2 Figure 3. Variance partitioning of statistical epistasis models. (A), Variance partitioningfor CR9114 binding to H1 (left) and H3 (right). (B), Variance partitioning for CR9114 binding to H1 andH9, denoted by colors as indicated.
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In particular, another alternative approach to the inference of epistasis is to infer a full
Lth-ordermodel rather than truncating to lower order. This approach calculates 2L epistatic
coefficients, one for every datapoint, which allows for the detection of strong interactions at
any order with the caveat that many coefficients may simply reflect experimental noise, es-
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pecially for higher-order terms. We explore this approach by following Poelwijk et al. (2019):
we calculate epistatic coefficients using a Walsh-Hadamard transform of the − log10KD val-
ues, and calculate standard errors on each coefficient via error propagation using the stan-
dard errors of the data. We define significant coefficients by a p-value cutoff of 0.05, with
Bonferroni correction by the total number of parameters in the model (here 2L). We find
that for all antibody-antigen combinations, this approach findsmore significant coefficients
than the optimal truncated models, many of which are at higher interaction orders than al-
lowed in the truncated model (Appendix 2 Fig 4). This analysis requires a measurement of
− log10KD for every single variant, so we use data that has not been filtered for goodness-
of-fit or error in the inference of binding affinity (see Methods), including some sequences
that have substantial error. Therefore we prefer to use the more conservative regression
approach for our in-depth analysis of epistasis; this inference at full order confirms the exis-
tence, strength, and identity of the high-order interactions we discuss from the regression
approach, while also indicating that additional and even higher-order terms may yet exist.

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

Appendix 2 Figure 4. Epistasis inference at full order. (A,B), Numbers of significant coefficients forthe full-order inference compared to optimal truncated regression models for (A) CR9114 and (B)CR6261. Significance for both model types is determined by p < 0.05 with Bonferroni correction by thenumber of model parameters. (C,D), Distribution of interaction orders of significant coefficients for (C)CR9114 and (D) CR6261.
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Nonlinear models1312

An alternative approach to understanding epistasis is to view nonlinearities in observed
phenotype data as arising from a simple nonlinear transformation applied to an under-
lying, unobserved additive phenotype. In this view, a simple nonlinear “global epistasis”
function with few parameters may describe the landscape as well or better than models of
the sort described above, with their large number of “idiosyncratic epistasis” parameters.
Many studies in other proteins have attempted to disentangle such global epistasis from
idiosyncratic effects (Sailer and Harms, 2017b; Domingo et al., 2019; Sarkisyan et al., 2016;
Otwinowski et al., 2018; Otwinowski, 2018; Adams et al., 2019).
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We already implement one global nonlinear transformation, by log-transforming our
binding affinity measurements so that they are proportional to free energy changes, as de-
scribed above. However, it is possible that another nonlinear transformation would capture
the effects of many specific interaction coefficients, if there is a single underlying additive
scale. In this section, we explore this possibility following the approach taken by (Sailer and
Harms, 2017b): we infer a nonlinear transformation that fits the phenotype data, invert it
to “linearize” the phenotypes, re-fit interaction models on the linearized phenotypes, and
then compare those model coefficients to the original coefficients to evaluate the role of
the nonlinear transformation.
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Our new model is
ys = Φ

(

ys,add; km
)

= Φ

(

�0 +
L
∑

i
�ixi,s; km

)

, (22)
where ys are the observed phenotypes (− log10KD values), Φ is a nonlinear function with
a small number of associated parameters km, and ys,add are the underlying additive-scale
phenotypes, parametrized as before by additive coefficients �i.
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To specify Φ, we must choose a family of nonlinear functions. Typical choices include
splines (Otwinowski et al., 2018) or power transforms (Sailer and Harms, 2017a,b). We
found that logistic (sigmoid) functions fit our data better than power transforms or splines,
and they are monotonic and invertible. Specifically, our logistic function with four parame-
ters is

Φ(y;A,B, �, �) = A

1 + e
(y−�)
�

+ B. (23)
Logistic functions capture two features that we observe: first, there is a saturation effect at
low values of − log10KD, corresponding to nonspecific binding that our measurements are
unable to distinguish (Batista andNeuberger, 1998); and second, formost antibody-antigen
combinations we observe a saturation effect at moderately high values of − log10KD. Thislatter effect is not due to limits on our measurement capabilities, as illustrated by higher
values of − log10KD measured for the CR6261 library to H9 compared to values of − log10KDmeasured for the CR9114 library to H1, but instead due to widespread “diminishing returns”
epistasis.
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After specifying the functional form of Φ, we must fit both the nonlinear parameters
km and underlying linear parameters �i. In principle, one could fit all parameters jointly,
using for example a maximum likelihood approach (Otwinowski et al., 2018). However,
we take the simpler approach as implemented in the software package from Sailer and
Harms (2017b), which first infers the additive parameters �i from the observed phenotypes
and then infers the nonlinear function parameters km. We show the resulting fit of Φ in
Appendix 2 Fig. 5a for two representative examples, by plotting our estimate of the additive
phenotypes ys,add on the x-axis and our observed phenotypes from data on the y-axis. We
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found that this simple procedure identified well-fitting Φ in a single step, and successive
iterations did not significantly improve the fit.

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

After fitting the nonlinear transformation, we apply the inverse transformation to our
observed phenotypes to obtain “linearized” phenotypes ys,lin:

ys,lin = Φ−1 (ys, km
)

. (24)
Because the fit of Φ is not perfect, the linearized phenotypes ys,lin are not exactly equal
to the estimated additive phenotypes ys,add, although linear regression on both quantities
produces extremely similar values of �i. For values that lie above the domain of Φ−1, we pin
them to the largest estimated additive phenotype.
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Finally, we can take our linearized phenotypes ys,lin and infer interaction model coeffi-
cients �′ of various orders, exactly as described above for the untransformed “raw” pheno-
types:

ys,lin = �′0 +
∑

i
�′ixi,s +

L
∑

i<j
�′ijxi,sxj,s +

L
∑

i<j<k
�′ijkxi,sxj,sxk,s +…+ ". (25)

We again perform this analysis in both the biochemical and statistical epistasis frameworks.
If the inverse transformation has removedmost or all of the nonlinearity, then the resulting
optimal interaction models should be smaller (lower maximum order of interaction and/or
fewer significant interaction coefficients).
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Instead, we find that in all cases, the optimal order of interaction is unchanged or only
decreased by one when inferring on linearized vs raw phenotypes. Specifically, the new
(vs old) optimal orders are: 4th (vs 5th) for CR9114 binding to H1, 4th (vs 4th) for CR9114
binding to H3, 3rd (vs 4th) for CR6261 binding to H1, 3rd (vs 4th) for CR6261 binding to
H9 in the biochemical epistasis framework, and 4th (vs 4th) for CR6261 binding to H9 in
the statistical epistasis framework. We can compare the numbers of significant coefficients
in these optimal models inferred on linearized phenotypes to the models with the same
maximum order inferred on raw phenotypes (Appendix 2 Fig. 5d,e), where we see that the
numbers are relatively comparable.
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We next examine changes in the individual coefficients between these models. In Ap-
pendix 2 Fig. 5b, we show two representative scatterplots between the raw phenotype co-
efficients � and the linearized phenotype coefficients �′, where only significant coefficients
are shown for clarity. While some coefficients show dramatic changes, overall the two sets
of coefficients are quite well correlated. To see which sites are involved in strong changes,
we can also represent coefficient changes in a heatmap format (Appendix 2 Fig. 5c). Here,
diagonal cells show the change in coefficient for single sites (�′i − �i), while off-diagonal cellsshow the sum of coefficient changes over all pairwise and higher terms involving each pair
of mutations. We observe that for some antibody-antigen pairs, such as CR9114 binding
to H1, the strongest net changes are negative, though not negative enough to remove the
many significant coefficients. For other antibody-antigen pairs such as CR6261 binding to
H1, there are both positive and negative net changes, indicating that the nonlinear transfor-
mation is changing the epistatic landscape rather than correcting for it.
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1404

Appendix 2 Figure 5. Results from epistasis models with nonlinear transformations. (A), Fittinglogistic functions to additive predicted phenotypes. Red lines indicate the optimized logistic function
Φ, with R2 as indicated. (B), Scatterplot of coefficients �′ from the optimal order model inferred onlinearized data (after inverting the best-fit nonlinear transformation) against original coefficients � forthe model with the same maximum order. (C), Net changes of coefficients by site. Diagonal cells showchanges in linear coefficients. Off-diagonal cells show the sum of changes over terms at all orders(2nd and above) in which the given pair of mutations is involved. For (A-C), we show tworepresentative antibody-antigen combinations: CR9114 binding to H1, top, and CR6261 binding to H1,bottom. (D,E), Number of significant coefficients in optimal order models fit to phenotypestransformed by the inverse nonlinear function (light bars), compared to original coefficients fromlinear models with the same maximal order (dark bars), for (D) CR9114 and (E) CR6261. The epistasistype and model order are indicated on the x-axis.
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In summary, we find that nonlinear logistic transformations can account for a portion of
the nonlinearities observed in our data, sometimes reducing the maximal order of interac-
tion by one. However, all antigen-antibody pairs still exhibit strong idiosyncratic epistasis
up to at least third order after correcting for global epistasis, and the resulting numbers and
magnitudes of significant coefficients are not drastically changed. Thus, it does not appear
that global epistasis can explain our data much more simply than models with individual
interactions, and so we confine our main analysis to idiosyncratic epistasis models.
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Figure 1–Figure supplement 1. Experimental design and Tite-Seq workflow. (A), Experimental design. Amino acid sequence
percent identity of the entire HA ectodomain and the stem epitope (Dreyfus et al., 2012) are shown between each pair of antigens
tested for both antibodies. (B), Tite-Seq assay. Surface display single-chain variable fragment (scFv) libraries are transformed into
yeast and labeled with fluorescent antigen, followed by FACS into bins and sequencing. Dissociation constants are inferred from
changes in mean bin fluorescence across 12 antigen concentrations, see Methods.



Figure 1–Figure supplement 2. Tite-Seq data quality. (A, C), Correlation of (A) CR9114 and (C) CR6261 KD measurements be-
tween biological replicates. (B, D), Validation of (B) CR9114 and (D) CR6261 Tite-Seq KD measurements by isogenic flow cytometry
measurements for a subset of variants and antigens.



Figure 1–Figure supplement 3. Antibody-antigen co-crystal structures. (A), Alignment of co-crystal structure of CR9114 with H5
(light hues; PDB ID 4FQI) and CR9114 with H3 (dark hues; PDB ID 4FQY). Mutated residues shown as gray spheres. (B), Co-crystal
structure of CR6261 with H1 (PDB ID 3GBN); mutated residues shown as gray spheres.

Figure 1–Figure supplement 4. Force-directed graph for CR6261. (A, B), Force-directed graph for CR6261 H1 –logKD, as in Fig-
ure 1G. Nodes are colored by binding affinity to (A) H1 and (B) H9.



Figure 1–Figure supplement 5. Expression of antibody libraries. (A), Correlation of mean expression across Tite-Seq biological
replicates for CR9114 library (left, red) and CR6261 library (right, blue). (B), Correlation between Tite-Seq mean expression and
isogenic expression fluorescence for select CR9114 (left, red) and CR6261 (right, blue) variants. (C), Change in expression upon
mutation for a given number of background somatic mutations. (D), Correlation between mean expression and –logKD. Averagevalues across biological replicates (N–logKD = 3; Nexp ≥ 6) are plotted. (E), Change in expression upon mutation at a specific site.
Violin plots (left) and residues in co-crystal structure (right) are colored by mean change in expression for each site. Asterisks
above violins indicate p-values for two-sided t-test between the distribution means and zero (p < 0.01 (*), < 0.001 (**), < 0.0001
(***); N9114 = 32, 768, N6261 = 1, 024). (F), Correlation between mean change in expression and mean change in –logKD (summed
across all antigens) by mutation position. Select mutations with large impacts on expression and –logKD are labeled; all points
are colored by mean change in expression, as in (F). Dark gray line indicates best-fit linear regression (95% confidence intervals
in light gray).



Figure 1–Figure supplement 6. Tite-Seq gating strategy. First, single yeast cells were gated by forward scatter (FSC) and side
scatter (SSC) (step 1). Single cells were then either gated by scFv expression or HA binding. For the expression sort (step 2B),
single cells were gated into eight bins along the log(FITC-A) axis, each containing 12.5% of the population. For the binding sort
(steps 2A and 3A), scFv-expressing (scFv+) single cells were sorted into four bins along the log(PE-A) axis, with bin 1 comprising all
HA- cells, and bins 2–4 each comprising 33% of the HA+ population.

Figure 1–Figure supplement 7. Reversions of excluded mutations. (A), Reversion of A24S and E46D in CR9114 (somatic-16) does
not substantially impact binding affinity compared to the fully somatic version of CR9114 (somatic-18) to either H1 (orange) or
H3 (turquoise); these mutations are thus excluded from the CR9114 library. (B), Reversion of Q6E, L50P, and V101M in CR6261
(somatic-11) does not substantially impact binding affinity compared to the fully somatic version of CR6261 (somatic-14) to ei-
ther H1 (orange) or H9 (purple); these mutations are thus excluded from the CR6261 library. Measurements made in biological
duplicate; mean +/- standard error shown.



Figure 2–Figure supplement 1. Structural context of first and second order effects. (A), Left: first order effects for each site,
colored by effect size and plotted against the contact surface area between the corresponding somatic residue and HA (top,
CR9114 with H3; bottom, CR6261 with H9); Right: co-crystal structures with mutation sites colored by first order effects, as in
Figure 2C. (B), Second-order coefficients for CR9114 with H3 (top) and CR6261 with H9 (bottom) plotted against the distance
between the respective �-carbons in the crystal structures, as in Figure 2F.



Figure 3–Figure supplement 1. CR9114: interactions between five key sites. (A), CR9114 force-directed graph, as in Figure 3D,
colored bymutation groups of sites 30, 57, 65, 82, and 83 (32 total groups). The dashed line emphasizes the observed separation of
genotypes with S83F (upper right) from thosewithout S83F (lower left). (B), Coefficients for terms in the epistatic interactionmodel
corresponding tomutation groups of sites 30, 57, 65, 82, and 83 (31 total groups, excluding the germline), colored according to (A)
and grouped by order. Error bars indicate standard error. (C), Distribution of the number of significant coefficients for mutation
groups in every possible set of 5 sites chosen from the 16 sites (up to 31 terms for each group, for 4,368 groups). Significance is
given by Bonferroni-corrected p-value < 0.05, see Methods. The value for the group illustrated in (A), (B) is indicated in red (26
significant terms, empirical p-value < 10−3).



Figure 3–Figure supplement 2. CR9114: interactions between other sets of five sites. (A), CR9114 force-directed graph, as in
Figure 3D, but colored by mutation groups of a different set of 5 sites with fewer strong epistatic interactions (35, 36, 64, 66, and
85). (B), CR9114 force-directed graph, colored by mutation groups of a different set of 5 sites with no strong linear contributions
or epistatic interactions (79, 84, 92, 95, and 103).



Figure 3–Figure supplement 3. High-order epistasis for CR9114 binding to H3. A), Higher-order significant epistatic contributions
of CR9114 mutation pairs, as in Figure 3A, for binding H3. Light yellow columns indicate required mutations (sites 57, 82, and 83).
Significance is given by Bonferroni-corrected p-value < 0.05, see Methods.



Figure 4–Figure supplement 1. CR6261: interactions between four sites. (a), CR6261 force-directed graph, as in Figure 1–Figure
Supplement 4, colored by mutation groups of sites 29, 35, 82, and 83 (16 total groups). (B), Top, coefficients for terms in the
epistatic interaction model corresponding to the mutation groups illustrated in (a) (15 total groups, excluding the germline), col-
ored according to (a) and grouped by order. Bottom, the largest fourth-order coefficients observed in the epistatic interaction
model, with sites indicated. In both, error bars indicate standard error. (C), CR6261 force-directed graph, colored by a different
set of 4 sites with the fewest strong linear effects and epistatic interactions (65, 66, 69, and 112.1).



Figure 4–Figure supplement 2. High-order epistasis for CR6261binding toH9. (A), Higher-order significant epistatic contributions
of CR6261 mutation pairs, as in Figure 4A, for binding H9. (B), Scatterplot of significant epistatic interaction model coefficients
for binding to H1 and H9. Terms at different orders are colored and sized as indicated. Selected coefficients are annotated.
Significance in (A), (B) is given by Bonferroni-corrected p-value < 0.05, see Methods.



Figure 5–Figure supplement 1. Selection models. (A), Functional form of mutation step probability, illustrated for parameters
chosen to represent strong, moderate, and weak selection models. (B, C), Total log probability of the mutational trajectories
between germline and somatic sequences for (B) CR9114 and (C) CR6261 under different antigen selection scenarios, assuming
strong (left) or weak (right) selection, as shown for moderate selection in Figure 5E,F. Strong selection scenarios are shown on a
linear scale, as total probability is equal to the number of uphill paths. The “average” mixed scenario is not evaluated for strong
selection, as the quantitative effect of averaging is undone by the binarizing effect of the transition probability. Error bars indicate
standard errors obtained through bootstrap, see Methods.



Figure 5–Figure supplement 2. Variant probabilities for CR9114 under the optimal (’O’) selection model. (A), Histogram of the
total probability of all pathways passing through each variant in the optimal selection scenario, divided by the total probability
in a model with no selection, transformed to log10 scale (see Methods). Dotted line indicates the 11% of variants favored in the
selective model (log probability ratio greater than zero). (B), Favored variants are shown on the force-directed graph for CR9114
H1 –logKD, as in Figure 1G, with darker color according to the log probability ratio. Other variants with log probability ratio less
than zero are shown in light yellow.



Figure 5–Figure supplement 3. Probability of mutation order assuming moderate selection, under other antigen selection sce-
narios. H1 (A) and ‘R’ (B) for CR9114 and ‘O’ (C) and ‘R’ (D) for CR6261, as in Figure 5I,J. For the random mixed scenario ’R’, the
representative cases from Figure 5G,H are shown.
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