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Abstract: Epistasis can dramatically affect evolutionary trajectories. In recent decades, protein-level 19 
fitness landscapes have revealed extensive idiosyncratic epistasis among specific mutations. In contrast, 20 

other work has found ubiquitous and apparently non-specific patterns of global diminishing-returns and 21 
increasing-costs epistasis among mutations across the genome. Here, we use a hierarchical CRISPR gene 22 
drive system to construct all combinations of 10 missense mutations from across the genome in budding 23 

yeast and measure their fitness in six environments. We show that the resulting fitness landscapes exhibit 24 
global fitness-correlated trends, but that these trends emerge from specific idiosyncratic interactions. We 25 

thus provide experimental validation of recent theoretical work that has argued that fitness-correlated 26 

trends can emerge as the generic consequence of idiosyncratic epistasis. 27 

 28 
One-Sentence Summary: A genome-spanning fitness landscape reveals how idiosyncratic genetic 29 

interactions lead to global epistatic patterns. 30 



2 
Main Text: Epistatic interactions have important consequences for the design and evolution of genetic 31 
systems (1–3). Significant work in recent decades has studied these interactions by measuring empirical 32 

fitness landscapes, most often at “shallow” depth for genome-scale studies (e.g., by quantifying pairwise 33 
but not higher order epistasis between all gene deletions or mutations) or at “narrow” breadth (such as 34 

complete landscapes at the scale of small select regions in single genes, for example by quantifying all 35 
orders of epistatic interactions among few amino acid residues) (4–18). These studies have often found 36 
many epistatic interactions among specific mutations at both lower (i.e., among few mutations) and higher 37 
orders (i.e., among many mutations). These reflect particular biological and physical interactions among 38 
the mutations involved; following recent work (19, 20) we refer to them as “idiosyncratic” epistasis, as 39 

they involve the specific details of these mutations. Overall, this body of work has highlighted the 40 
potential for epistasis to create historical contingency that tightly constrains the distribution of adaptive 41 
trajectories accessible to natural selection.  42 
 43 
In contrast, other work examining adaptive trajectories that implicate loci across the genome has found 44 

patterns of apparently “global” epistasis, in which the fitness effect of a mutation varies systematically 45 
with the fitness of the genetic background on which it occurs (21–28). Typically, this manifests as either 46 

diminishing returns for beneficial mutations or increasing costs for deleterious mutations, with mutations 47 
having a less positive or more negative effect on fitter backgrounds. These consistent patterns of global 48 

epistasis may give rise to the dominant evolutionary trend of declining adaptability, and in contrast to the 49 
complexity of idiosyncratic interactions, they suggest that historical contingency could be less critical in 50 
constraining adaptive trajectories (29). 51 

 52 
Despite their importance, these dual descriptions of epistasis have not been satisfactorily unified. In one 53 

view, global epistasis results from non-specific fitness-mediated interactions among mutations (24). Such 54 
interactions may for example emerge from the topology of metabolic networks, which generates overall 55 
patterns of diminishing returns and increasing costs that eclipse the specific details of idiosyncratic 56 

interactions (30). In contrast, other recent theoretical work has proposed an alternative view, 57 

hypothesizing that apparent fitness-mediated epistasis can instead emerge as the generic consequence of 58 
idiosyncratic interactions, provided they are sufficiently numerous and widespread (19, 20). These two 59 
models have substantially different implications for the structure of fitness landscapes, which in turn 60 

influence our expectations of the repeatability and predictability of evolution and of the effect of chance 61 
and contingency on adaptation at both the genotypic and phenotypic level. Thus, this dichotomy plays a 62 

central role in understanding of how epistasis affects evolutionary dynamics. 63 

 64 
Thus far, however, empirical work has been unable to distinguish between these perspectives. The key 65 

difficulty is that testing these ideas requires both depth and breadth: we must analyze landscapes 66 
involving enough loci that we sample idiosyncratic interactions that can potentially give rise to overall 67 
fitness-mediated trends, and we must survey possible combinations of these mutations at sufficient depth 68 

to quantify the role of higher-order interactions (including potential “global” non-specific fitness-69 
mediated interactions). Importantly, larger landscapes are also necessary to reduce the influence of 70 

measurement error on the inference of epistasis and analysis of fitness-correlated trends (see 71 
Supplementary Materials, section 6.3). Achieving this depth and breadth is technically challenging, 72 
because it requires us to synchronize many mutations across the genome. 73 
 74 
Here, we overcome this challenge by developing a method that exploits Cre-Lox recombination to create 75 

a combinatorially expanding CRISPR guide-RNA (gRNA) array in Saccharomyces cerevisiae, which 76 
allows us to iteratively generate mutations at distant loci via a gene drive mechanism (Fig. 1A). Briefly, 77 
strains of opposite mating type containing inducible Cre recombinase and SpCas9 genes are mutated at 78 

one of two loci (A or B), and DNA encoding guide-RNAs (gRNAs) specific to the wild-type alleles at 79 
these loci are integrated into their genomes (Fig. S1). After mating to produce a diploid heterozygous at A 80 
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and B, we induce a gene drive to make the loci homozygous. This begins with expressing Cas9 and 81 
generating gRNA-directed double-strand breaks at the wild-type A and B alleles. These breaks are then 82 

repaired by the mutated regions of homologous chromosomes, making the diploid homozygous at these 83 
loci with at least 95% efficiency. Simultaneously, we express Cre to induce recombination that brings 84 

gRNAs into physical proximity on the same chromosome by way of flanking Lox sites, in a strategy 85 
similar to that described previously (31) (Fig. 1B). We then sporulate diploids and select haploids bearing 86 
the linked gRNAs from both parents. In parallel, we carry out this process with “pseudo-WT” versions of 87 
these loci, which contain synonymous changes that abolish gRNA recognition, but lack the non-88 
synonymous change of interest. This creates a set of four strains, with all possible genotypes at loci A and 89 

B. Concurrently, we create separate sets of four strains with all possible genotypes at other pairs of loci 90 
(e.g., C and D). 91 
 92 
By iterating this process, we can rapidly assemble an exponentially expanding, combinatorially complete 93 
genotype library. We mate separate sets of four genotypes bearing all combinations of mutations at two 94 

loci each in an all-against-all cross, drive their mutations, recombine their gRNAs, and sporulate to 95 
produce a 16-strain library bearing all 4-locus mutation combinations. Repeating these steps in a third 96 

cycle with two 4-locus libraries of opposite mating type yields a 256-strain 8-locus library, and a 97 
complete landscape of up to 16 mutations (216 strains) can be constructed in just four cycles. 98 

 99 
We sought to use this method to construct a complete fitness landscape that would shed light on the 100 
structure of epistasis: are fitness-correlated trends primarily the product of a global coupling of mutations 101 

via fitness, or do they emerge as the consequence of idiosyncratic epistasis? To do so, we surveyed 102 
studies of natural variation (e.g., (32–36)) and experimental evolution (e.g., (37–39)) to identify mutations 103 

potentially relevant to adaptation in the laboratory strain. We selected a set of mutations that sample a 104 
wide range of cellular functions, such as membrane stress response, mitochondrial stability, and nutrient 105 
sensing. Our goal in making this choice was to maximize fitness variance while minimizing pathway-106 

specific idiosyncratic interactions. We note that alternative choices of mutations, particularly if they were 107 

focused on a specific protein or pathway (or limited to those that accumulated along the line of descent in 108 
a single lineage), might exhibit very different patterns of epistasis, which would be characteristic of the 109 
particular details of that specific protein or pathway (or that specific adaptive trajectory). However, our 110 

goal here is to analyze potentially global patterns of epistasis among mutations across the genome that are 111 
relevant to fitness in a variety of conditions and hence represent an overall fitness landscape for the 112 

laboratory strain.  113 

 114 
We thus implemented our gene-drive system to construct a near-complete landscape spanning 10 115 

missense mutations in 10 genes (including essential genes) on 8 chromosomes: AKL1 (S176P), BUL2 116 
(L883F), FAS1 (G588A), MKT1 (D30G), NCS2 (H71L), PMA1 (S234C), RHO5 (G10S), RPI1 (E102D), 117 
SCH9 (P220S), and WHI2 (L262S) (Fig. 1C, Table S1). We found that a landscape of about this size is 118 

required to distinguish the two models (see SI section 6.3). Immediately before the final mating cycle, all 119 
strains were transformed with a unique DNA barcode next to the LYS2 locus to enable high-throughput, 120 

sequencing-based competitive fitness assays (Fig. S2, S3). All strains in each replicate haploid library 121 
were genotyped at all 10 loci to confirm presence of the desired alleles (this step also ensures presence in 122 
the diploid libraries). After excluding strains due to gene drive failure, 875 out of 1024 (85.4%) genotypes 123 
remained in at least one library (and 407 in both biological replicates). We also performed whole genome 124 
sequencing of 96 randomly selected strains to rule out pervasive aneuploidies or influential but spurious 125 

background mutations. One aneuploidy was identified, and 3 spurious background mutations were 126 
observed at >5% frequency. Subsequent analysis showed that these were unlikely to systematically 127 
influence our findings (Table S2, and SI section 5.1). 128 

 129 
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To obtain fitness landscapes, we conducted replicate bulk barcode-based fitness assays on both pooled 130 
haploid and homozygous diploid versions of the genotype library in 6 distinctly stressful media 131 

environments: YPD + 0.4% acetic acid, YPD + 6 mM guanidium chloride, YPD + 35 μM suloctidil, YPD 132 
@ 37°C, YPD + 0.8 M NaCl, and SD + 10 ng/mL 4NQO (Fig. 1D). For each of 7 days, pools were 133 

allowed 7 generations of growth, and aliquots were sampled and sequenced at the barcode locus at 134 
generations 7, 14, 28, 42, and 49. We estimated the relative fitness of each genotype from changes in 135 
barcode frequencies through time, achieving consistent measurements across technical and biological 136 
replicates (Fig. 1E,F, S4). From these data, we inferred the background-averaged additive and epistatic 137 
effects of each mutation and combination of mutations, respectively (using LASSO regularization, see 138 

SI). 139 
 140 
We found that our six environments yield substantially different landscapes, as demonstrated by the 141 
relatively low between-environment correlations of genotype fitnesses (Fig. 2A), the additive effects of 142 
each mutation (Fig. 2B), and the pairwise interactions between them (Fig. 2C). Haploid and homozygous 143 

diploid landscapes were largely correlated, but there were several notable exceptions, particularly in the 144 
suloctidil environment (Fig. 2A,B). And although some pairwise interactions remain roughly constant in 145 

strength, even as the corresponding additive effects vary considerably (e.g., RHO5 and WHI2), most wax 146 
and wane across environments (Fig. 2C). Nevertheless, the overall contribution from different epistatic 147 

orders shows some similarities across ploidies and environments (the magnitudes do differ; Fig. 2D), with 148 
additive and pairwise terms explaining most of the variance in the data, third-order terms contributing 149 
minorly, and the remaining orders making little difference, consistent with earlier studies (40). Across all 150 

epistatic orders, inferred effects were highly skewed, with a small number of terms explaining 151 
disproportionate variance (Fig. 2E). 152 

 153 
We next sought to investigate potential patterns of global fitness-mediated epistasis. To do so, for each 154 
locus in each ploidy and environment, we plotted the fitness of a genotype with the mutated allele, φMut, 155 

against the fitness of the same genotype with the WT allele, φWT. A regression slope, b, different from 1 156 

in these plots signifies a fitness-correlated trend (FCT) (Fig. 3A, left; see SI). We note that some previous 157 
work has instead plotted the fitness effect of a mutation, ∆φ, as a function of background fitness φWT. The 158 
advantage of our formulation here is that it does not privilege a specific allele as the “wild-type.” Instead, 159 

regression in our plots translates intuitively when reversing direction to treat the reversion as the 160 
mutation: brev = 1/borig by weighted-total least squares; see expanded discussion in the Supplementary 161 

Material, Fig. S5-S8.  162 

 163 
We found that FCTs are common in our landscapes: across all ploidies, environments, and loci, ~44% of 164 

regression slopes deviate substantially from 1 (i.e., b ≤ 0.9 or b ≥ 0.9-1; these deviations are all significant; 165 
Fig. 3B, see histogram; Fig. S13 and S14). However, FCTs were not universal for fitness-affecting 166 
mutations: of the 49 examples across ploidies and environments of mutations with additive effects of 167 

magnitude ≥ 0.5%, 18 were associated with 0.9 < b < 0.9-1 (Fig. 3B). 168 
 169 

By partitioning background genotypes by the presence or absence of specific mutations, we can determine 170 
whether FCTs are truly “global” (i.e., they transcend these partitions and any corresponding idiosyncratic 171 
interactions; Fig. 3A, middle), or are instead fundamentally idiosyncratic (i.e., they emerge from 172 
regression across partitions shifted in φMut versus φWT space by sparse interactions with specific 173 
background loci; Fig. 3A, right).  When we partitioned FCTs by the presence or absence of interacting 174 

mutations in the background, we found several instances where the idiosyncratic model clearly explains 175 
the fitness-correlated trend. For example, the effect of the G10S mutation in RHO5 at 37°C exhibits a 176 
clear FCT (b = 0.76) (Fig. 3C). However, we can partition points by the presence of interacting WHI2 and 177 

AKL1 alleles in the background. Doing so shows that pairwise interactions with these alleles cause 178 
systematic shifts in φ10S vs φ10G space, with each partition assuming a slope near 1. Thus, over a range of 179 
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background fitnesses, a FCT in the effect of the G10S emerges from these specific idiosyncratic 180 
interactions (Fig. 3C, S11). In the case of the homozygous AKL1 S176P mutation in suloctidil, we 181 

observe a similar decomposition of a FCT (b = 1.29) when partitioning genotypes according to the 182 
presence of three interacting loci in the background (MKT1, RHO5, and WHI2) (Fig. 3D, S11). However, 183 

in other cases it is less clear whether the FCT can be partitioned in this way, and since deeper partitions 184 
tend to reduce background fitness variance and limit our confidence in regression slopes, a different 185 
approach is required to characterize the extent to which idiosyncratic terms cause FCTs across our data.  186 
 187 
To investigate this question, we therefore analyzed the effect of removing specific idiosyncratic epistatic 188 

terms on the overall fitness-correlated trends. To do so, for each focal locus (in each ploidy and 189 
environment) we first calculated the weighted sum of squared errors (41) of observed fitnesses from the 190 
global regression line (SSEb=global) and from a fitted line of slope 1 (SSEb=1, which corresponds to no 191 
FCT). We then set the largest epistatic term to zero and recalculated the expected fitness of each resulting 192 
genotype (assuming all other terms and residuals are non-zero), again obtaining both SSEb=global and 193 

SSEb=1. If the fitness-correlated trend arose from a global effect, we expect that SSEb=global would be less 194 
than SSEb=1 even as terms are removed. Instead, we found that, after removing the effect of just a few 195 

terms, a regression with a fixed slope of b=1 typically fit the data better than the b=global FCT slope (Fig. 196 
3E, S11, with FCT threshold set to b ≤ 0.9 or 0.8)), approaching the fit of an unconstrained regression that 197 

minimizes SSE (i.e., the final slope approaches 1, Fig. S10). This indicates that the apparent FCT arises 198 
from these few idiosyncratic interactions, even for global slopes very different from 1. Although we also 199 
documented cases where b=global fit the data better than b=1 even after removing many terms, we expect 200 

most if not all these instances may be due to measurement error, since they tend to arise in ploidies and 201 
environments where the data is noisier (Fig. S17). 202 

 203 
To further evaluate whether idiosyncratic interactions between these mutations are sufficient to generate 204 
FCTs, we performed the converse analysis, this time with genotype fitnesses as predicted by our model of 205 

additive and idiosyncratic epistatic terms. Instead of removing the effects of epistatic terms one at a time, 206 

we first stripped from the model all interactions involving the focal locus, yielding perfectly linear points 207 
of slope 1 when plotting φMut vs φWT. We then added interactions one by one to our fitness prediction, 208 
from largest to smallest, and examined the resulting slopes. As shown in Fig. 3F for the haploid PMA1 209 

S234C mutation in 4NQO, adding just a handful of terms associated with 3 background loci recapitulates 210 
a strong FCT. Repeating this analysis with all our mutations shows that, on average, just 4 idiosyncratic 211 

interactions (primarily pairwise) are sufficient to recapitulate the full-model FCTs (a slope within 0.01 of 212 

the global slope, Fig. 3G, orange; see SM), which is far lower than the total number of inferred terms 213 
(median of 53) but represents on average 89% of the potential variance explained that could have been 214 

added (Fig. S12). Thus, although fitness-correlated trends are real and likely have important biological 215 
consequences, our data demonstrate that apparent fitness-mediated epistasis can readily emerge from 216 
remarkably few low-order idiosyncratic interactions. 217 

 218 
Since the landscapes we study here have no natural polarization (i.e., neither allele is the assumed 219 

wildtype), we cannot comment directly on why earlier studies of global epistasis have more commonly 220 
found negative than positive FCTs (when plotting ∆φ versus φWT). However, this distribution of FCT 221 
directions is important because it may underly the ubiquitous trend of declining adaptability observed 222 
across laboratory evolution experiments (29). The observed bias towards negative trends may arise from 223 
asymmetries in the average sign of epistatic interactions between mutations away from extant high-fitness 224 

genotypes relative to their reversions, which theory has predicted should arise from idiosyncratic 225 
interactions (19, 20). In addition, we note that choosing polarizations at random will lead to more negative 226 
than positive FCTs across the full parameter space (see extended discussion in the SI). 227 

 228 
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Regardless of the cause of any asymmetry in the direction of fitness-correlated trends, our results support 229 
recent theoretical arguments that fitness-mediated epistasis can emerge as the generic consequence of 230 

widespread idiosyncratic interactions, rather than reflecting a global fitness-mediated coupling of 231 
mutations. Indeed, at least in our system, we see that fitness-correlated trends can arise even from a 232 

relatively small number of low-order interactions. We note that landscapes involving other types of 233 
variation (e.g., within a single protein or pathway or along the line of descent in a single lineage (21)) may 234 
exhibit different patterns, though we may expect these scenarios to involve an even stronger role for 235 
idiosyncratic interactions. More generally, we emphasize that idiosyncratic epistasis and global fitness-236 
mediated effects are not mutually exclusive, and although fitness-correlated trends can be explained by 237 

the former in our system, in other cases both effects may contribute. However, our results suggest that 238 
nonspecific global epistasis may not be the primary driver of patterns of declining adaptability in 239 
laboratory evolution experiments, and this has general implications for the ways in which epistasis 240 
constrains evolutionary trajectories.   241 
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Figure Captions 439 
 440 

Fig. 1. Recombining CRISPR-gene drive system. (A) Experimental design. Strains of opposite mating 441 
type carrying known mutations and corresponding guide-RNAs (gRNAs) mate to form heterozygous 442 

diploids. Cas9 expression “drives” these mutations, and site-specific recombination links gRNAs. 443 
Homozygous diploids are sporulated, haploids with linked gRNAs are selected, and the process repeats, 444 
incorporating exponentially increasing numbers of mutations. (B) Recombining gene drive system. 445 
gRNAs targeting heterozygotic loci are flanked by selection markers and two of three orthogonal Lox 446 
sites (colored triangles), which are inactivated through recombination (red triangles). Cas9 “drives” 447 

targeted mutations, whereas Cre-Lox recombination brings like markers to the same chromosome and 448 
activates a URA3 gene interrupted by an artificial intron. Following sporulation, the chromosome with 449 
gRNAs is selected using the markers of interest whereas the other is counterselected using 5-FOA. (C) 450 
Cross design. A complete fitness landscape is produced in parallel by distinct cross designs that yield final 451 
homozygous diploids and haploids in biological replicates with unique DNA barcodes. (D) Bulk-fitness 452 

assays. Pooled strains are assayed in replicate for competitive fitness in several environments by 453 
sequencing barcodes to obtain strain frequencies over time. (E) Repeatability of technical replicate 454 

competitive fitness measurements. (F) Repeatability of biological replicate competitive fitness 455 
measurements. 456 

 457 
Fig. 2. Fitness landscapes. (A) Correlation in observed fitness (upper right) and predicted fitness (from 458 
inferred model, lower left, see SI section 5.1) across ploidies and environments. (B) Background-averaged 459 

additive effect of each locus across ploidies and environments. Error bars represent 95% confidence 460 
intervals. (C) Background-averaged pairwise epistatic effects between loci across ploidies and 461 

environments. Weights of edges connecting loci represent the proportion of pairwise variance explained 462 
by each interaction. Heights of bars on the perimeter correspond to the proportion of additive variance 463 
explained by each locus in each environment. (D) Variance partitioning of broad-sense heritability from 464 

additive and epistatic orders across ploidies and environments. (E) Cumulative distribution of the epistatic 465 

variance explained by rank-ordered epistatic terms of all orders. 466 
 467 
Fig. 3. Fitness-correlated trends (FCTs). (A) Schematic contrasting how global or idiosyncratic 468 

epistasis could produce FCTs. Inset shows FCT analyzed as the effect of a mutation (∆φ) on backgrounds 469 
of different fitnesses. (B) Histogram and scatterplot of regression slopes, b, between φMut and φWT, and 470 

corresponding absolute additive effects of mutations.  Polarity adopted such that b ≤ 1. Total error bar 471 

length is twice the standard error of the slope. (C) Fitness effect of RHO5 mutation (G10S) (φMut versus 472 
φWT) in all haploid backgrounds at 37°C (left) and partitioned by genotypes at WHI2 (L262S) (middle) 473 

and WHI2 and AKL1 (S176P) (right). Initial SSEb=1 / SSEb=global is 1.21. (D) Fitness effect of AKL1 474 
mutation in all homozygote backgrounds in the suloctidil environment, partitioned by genotypes at MKT1 475 
(D30G), RHO5, and WHI2. Initial SSEb=1 / SSEb=global is 1.31. (E) Median relative fit ratio between 476 

regressions with fixed slope of b=1 and b=global, as function of number of epistatic terms removed from 477 
observed phenotypes. Vertical lines represent interquartile range. Polarity adopted such that b ≤ 1. (F) 478 

Inferred fitness effect of PMA1 S234C mutation in 4NQO environment across all haploid backgrounds. 479 
Epistatic terms interacting with PMA1 are completely removed from genotype fitnesses, then added back 480 
sequentially (from largest to smallest). Bottom-right: full-model (inferred) and observed genotype 481 
fitnesses, respectively. Grey line is regression slope. (G) Scatterplot and histograms of FCT regression 482 
slopes for all data, and number of epistatic terms sufficient to recapitulate them. Horizontal lines in 483 

histogram indicate means. Arrows, letters indicate populations presented in previous panels. Polarity 484 
adopted such that b ≤ 1. 485 
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1 Design and construction of the combinatorial CRISPR gene-drive1

system and library2

1.1 Strains3

The two parental strains used in this study, YAN548 and YAN564, differ at their mating type and4

are derived from the BY4742 [43] (S288C: MATa, his3∆1, ura3∆0, leu2∆0, lys2∆0) with several5

modifications required for our combinatorial CRISPR gene-drive strategy. We chose to work in this6

background due to its history in studies of epistasis in yeast [4] and ease of transformation [44].7

S288C is a poor sporulator [45], and we introduced the RME1 promoter allele known to in-8

crease sporulation efficiency (ins-108A) in BY4742, creating YAN404. YAN407 was generated9

from YAN404 by mating-type switching using a centromeric plasmid carrying the HO endonuclease10

(pAN216a pGAL1-HO pSTE2-HIS3 pSTE3 LEU2). We then introduced the Cre recombinase un-11

der the control of the galactose promoter at the YBR209W locus using Delitto Perfetto [46], yielding12

YAN525 and YAN526. The CAN1 gene was subsequently replaced with a mating type reporter13

construct [47] (pSTE2-SpHIS5-pSTE3-LEU2) which expresses the HIS5 gene from Schizosaccha-14

romyces pombe (orthologous to the S. cerevisiae HIS3) in MATa cells, and the LEU2 gene in MATα15

cells.16

Cas9 was introduced close to the HO locus under the control of an estradiol-inducible promoter17

[48] (HO::SpCas9-B112-ER), generating the final strains YAN548 and YAN564. Preliminary work18

has shown that 2 µM β-estradiol is sufficient for robust Cas9 induction.19

Starting strains containing specific mutations were constructed using dsDNA oligo-mediated re-20

pair using Cas9-mediated double-strand break. To do so, we created a centromeric plasmid carrying21

the URA3 gene that expressed the guide-RNA. Yeast cells were grown with β-estradiol to induce22

Cas9, and transformed at log-phase with the guide-RNA expressing plasmid and a double-stranded23

DNA oligonucleotide with the desired mutation. Cells were then recovered on SD-URA with β-24

estradiol to maintain expression of Cas9 and the guide-RNA. A parallel transformation can be done25

to assess the targetting efficiency as an efficient guide-RNA usually leads to far fewer surviving26

colonies during the transformation due to the toxicity of unrepaired Cas9-mediated double-strand27

break. Large colonies from the transformation were then grown in YPD overnight and spread on28

media containing 5-FOA (1 g/L) to counterselect the plasmid expressing the guide-RNA. All strains29

were then verified by Sanger sequencing.30

1.2 Mutations and their selection31

Mutations for our combinatorially-complete fitness landscape were chosen based on several factors.32

First, we used prior information from published and unpublished experiments that suggested fitness33

effects for our mutations in at least one environment. Second, due to the need to minimize guide-34

RNA recognition after the desired mutation is made, we focused on amino acid changes because35

synonymous mutations could also be incorporated. Third, mutations were chosen that would36

target a variety of cellular processes to maximize our ability to detect global epistasis. Finally,37

mutations were chosen that could be efficiently made and not negatively impact our CRISPR-Cas938

system described here (i.e., mutations should not make strains sterile, impair sporulation, or impact39

galactose metabolism).40

Mutation Sequence Information Reference

3



WHI2 L262S
Chr XV

Guide RNA: ATGGATATGTTGTGCTCCTC
L262S DNA: GAcATGagtTGtTCCTCCGGA
L262L DNA: GAcATGcTaTGtTCCTCCGGA

[37]

PMA1 S234C
Chr VII
Essential gene

Guide RNA: TGCTATTACTGGTGAATCTT
S234C DNA: ACTGGTGAATgccTtGCTGTC
S234S DNA: ACTGGTGAATCccTtGCTGTC

[38]

MKT1 D30G
Chr XIV

Guide RNA: ATGGTTGACGTCTATATCCA
D30G DNA: ACCCTGGgaATtGAtGTtAAC
D30D DNA: ACCCTGGAcATtGAtGTtAAC

[35]

RHO5 G10S
Chr XIV

Guide RNA: ATAATTGGTGATGGTGCAGT
G10S DNA: ATatcaGAcGGaGCAGTAGGT
G10G DNA: ATaGGaGAcGGaGCAGTAGGT

Our lab

AKL1 S176P
Chr II

Guide RNA: TCGCGATGGATCAAGGACAC
S176P DNA: CCTGTGcCtcTaATtCAcaGa
S176S DNA: CCTGTGTCtcTaATtCAcaGa

[33]

BUL2 L883F
Chr XIII

Guide RNA: CACAAACACGTTTCAAGATT
L883F DNA: TGCCCAATtTcGAgACtTGT
L883L DNA: TGCCCAATtTgGAgACtTGT

[34]

FAS1 G588A
Chr XI
Essential gene

Guide RNA: AATCGGTAGACCACCTTTAT
G588A DNA: ATCGcacGtCCtCCaTTATT
G588G DNA: ATCGGacGtCCtCCaTTATT

[36]

NCS2 H71L
Chr XIV

Guide RNA: CTGAATCAGAATGTGATAAG
H71L DNA: CTCCCCTTgagtttgagtGA
H71H DNA: CTCCCCTTgagtCAcagtGA

[32]

SCH9 P220S
Chr VIII

Guide RNA: TCTAATGGTCCTGAGTCACT
P220S DNA: AAcGGatCaGAaTCACTAGGC
P220P DNA: AAcGGaCCaGAaTCACTAGGC

[39]

RPI1 E102D
Chr IX

Guide RNA: GTAATGAATGCTATATCCTC
E102D DNA: GAGCCTGAcGAcATtGCtTTC
E102E DNA: GAGCCTGAaGAcATtGCtTTC

Our lab

Table S1: Mutations constructed in the experiment. Lower case letters represent mutated sequences
with respect to the wild-type DNA.

1.3 Construction of guide crRNA plasmids41

Our combinatorial CRISPR gene-drive system allows a hierarchical construction of guide crRNA42

arrays into a benign locus, by taking advantage of Cre-Lox recombination. Previously, we identified43

three orthogonal and unidirectional recombination sites that are necessary for our design. Briefly,44

our gene-drive system makes use of three types of recombining plasmids with three distinct pairs of45

drug markers, which we refer to as type HygMX-KanMX, KanMX-NatMX, and NatMX-HygMX.46

The three drug markers - HygMX, KanMX, and NatMX - are resistance cassettes for hygromycin47

B, G418, and nourseothricin, respectively, and differ additionally by the use of paralogous TEF48

promoters and synthetic terminators as in [31]. Each type is based on an HO-targeting plasmid49

pAN3H0a (Figure S1), which contains the two drug marker cassettes for selection as well as ho-50

mologous sequences that lead to integration of insert sequences with high efficiency. The insert51
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Figure S1: gRNA integration plasmids. We use three integration plasmids with different drug
markers, Lox sites, and URA3 frameshift configurations as explained in Section 1.3.

sequences between the two drug cassettes contain one of 10 guide-RNA cassettes (each with an52

SNR52 promoter mutated at non-functional regions to reduce the rate of unintended homologous53

recombination, the guide-RNA, the structural RNA element and the SUP4 terminator [49]). In54

addition, each drug marker is linked to their own half of URA3 (frameshifted for each drug such55

that the first half of URA3 only functions properly when the correctly framed second half of URA356

is used) which contains a splice donor or acceptor (from QCR10 [50]) and their own orthogonal57

Lox site (LoxP, Lox2272, or Lox5171, with arm mutations to allow only a single recombination58

event between them [31]). In the configuration found at integration, the URA3 is not functional.59

However, when recombined properly by Cre recombinase, a configuration which brings like drug60

markers on the same chromosome (HygMX-HygMX, for example) will produce a functional URA3,61

which we can select with media lacking uracil and counterselect with media containing 5-FOA.62

This system allows diploids created by mating two strains with compatible marker configurations63

to be selected on media containing all three drugs (described later in section Section 1.5). Compat-64

ible configurations will always include a common drug that will yield a functional URA3 after re-65

combination. For example, the HygMX-KanMX configuration is compatible with KanMX-NatMX66

(which will form HygMX-NatMX and KanMX-KanMX after recombination) or with NatMX-67

HygMX (which will form NatMX-KanMX and HygMX-HygMX after recombination). The re-68

combined ’landing pads’ are thus compatible with each other (for example, HygMX-NatMX is69

compatible with NatMX-KanMX, which when recombined will form HygMX-KanMX and NatMX-70

NatMX).71

1.4 Final barcoding procedure72

To allow bulk phenotyping of the strains, we introduced a 22mer DNA barcode (16 random nu-73

cleotides and 6 known spacer nucleotides) alongside a complete LYS2 ORF at the LYS2 locus via74

homologous recombination in the AKL1-RPI1 double-mutant strains prior to the final mating step.75

To produce a library of uniquely barcoded plasmids, we generated an entry vector with 702 bp76

homologous region upstream of the LYS2 deletion, the deleted 293 bp region immediately upstream77

of the ORF, the 4179 bp LYS2 ORF, and then a 39 bp tGuo1 synthetic terminator. Downstream78

of this terminator was a primer-binding site, pBC1, followed by the ccdB gene, which is toxic in79
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Figure S2: Barcoding plasmid before barcode insertion. We integrate a random barcode at the
LYS2 locus to uniquely tag each individual in the pool.

E. coli strain DH10B. This gene was followed by 300 bp of semi-random DNA sequence (used as80

“filler” for obtaining PCR bands distinct from primer dimer bands), the pBC2 primer-binding site,81

and 589bp homologous to the region immediately downstream of the LYS2 deletion. Barcodes82

were cloned into this plasmid at the ccdB locus via Golden Gate assembly [51, 52] in 8 independent83

replicates, separately cloning in DH10B via electroporation and selecting on LB+Ampicillin sodium84

salt (100 µg/mL) agar plates (1% tryptone, 0.5% yeast extract, 0.5% sodium chloride, 1.5% agar)85

after an hour of recovery in SOC media (2% tryptone, 0.5% yeast extract, 8.56mM sodium chloride,86

2.5mM potassium chloride, 10mM magnesium chloride, 10mM magnesium sulfate, 20mM glucose).87

Plates, which bore at least 30,000-40,000 transformant colonies each, were each scraped and cultured88

in 5mL LB+Amp media prior to miniprepping to isolate plasmid.89

To barcode AKL1-RPI1 double mutants, we first isolated 10 individual colonies of each of the90

4 possible double-mutant genotypes. We split these 10 colonies into two sets of 5. Each set of91

5 colonies was cultured, pooled, and transformed with one of the eight barcode plasmid libraries,92

which had previously been cut with PmeI to linearize the region for integration. Transformants93

were selected on SD-Lys agar plates and, to the best of our abilities, individually picked into SD-Lys94

media for continued purifying growth.95

1.5 Hierarchical mating procedure96

The basic procedure for a cycle of mating, drive, recombination, and sporulation is as follows:97

Strains with compatible guide-RNA “landing pads” and opposite mating type were mixed to98

generate diploids in YPD plus ampicillin (100 µg/mL) via mating for 12-24 hours. Cells were then99

passaged to YPG (1% yeast extract, 2% peptone, 2% galactose) plus ampicillin liquid media con-100

taining hygromycin B (at 300 µg/mL), geneticin (at 200 µg/mL), and nourseothricin (at 100 µg/mL)101

to select for diploids, with selection sustained for at least 3 generations. Cells were then transferred102

to YPG containing all four drugs and at least 2 µM β-Estradiol to induce Cre-recombinase and103

Cas9, with selection for at least 10 generations. This generates homozygous diploids at the loci104

targetted by Cas9, and combines the guide-RNA from the homologous HO loci onto the same105

chromosome. The cells were then grown in SD-Ura with β-estradiol for at least 15 generations to106

select for successful Cre-Lox recombinants. They then were induced to sporulate by 16-24 h growth107
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in YPA (1% yeast extract, 2% peptone, 1% potassium acetate) followed by culture in SPO media108

(1% potassium acetate, 0.005% zinc acetate). After 3-5 days of sporulation, haploids containing all109

the mutated loci and recombined gRNA loci were selected with at least 15 generations of growth110

in S/MSG-D (1.67% yeast nitrogen base lacking ammonium sulfate, 1% monosodium glutamate,111

2% dextrose) lacking histidine or leucine (selecting for MATa and MATα respectively), containing112

two of the three antibiotic drugs (depending on the landing pad configuration) and 1g/L 5-FOA113

to counterselect diploids. Finally, selected populations were screened for “leakers” by growing a114

single colony or a small number of cells (less than about 1000) in YPD, followed by a transfer into115

YPD containing the drug to which the desired haploids should not be resistant. Only specimens116

sensitive to this third drug were preserved as a frozen archive and then passaged into the next117

mating-drive-recombination-sporulation step.118

In practice, this procedure included a variety of manipulations. This range of manipulations119

demonstrates that our method is flexible and can be adapted to work within various technical120

constraints. For example, when handling few strains, microtiter plates are not necessary and the121

protocol can be performed in standard culture tubes. In the case of the initial double-mutant122

mating, for instance, mating was in most cases conducted on YPD-agar patches, which were then123

scraped and transferred into the YPG diploid selection media. All other matings were conducted124

in about 90 µL YPD liquid media in wells of 96-well round-bottom microtiter plates. Similarly,125

selection of haploids after sporulation was sometimes conducted in microtiter plates (128 µL total126

volume), and other times by streaking to individual colonies on SD-Leu or SD-His agar plates (with-127

out 5-FOA counterselection). For all cycles except the experiment’s final cycle, individual colonies128

were isolated and screened at the conclusion. Finally, depending on the scale of the cycle, diploid129

selection, recombinant selection, presporulation, and sporulation steps were conducted in either130

microtiter plates (shallow for selections (128 µL media), 2-mL deep-well plates for presporulation131

and sporulation) or test tubes (5 mL media unless otherwise stated).132

Presporulation: Microtiter plate-based presporulation was carried out by pipetting 20 µL sat-133

urated SD-Ura culture into 480 µL of YPA. Plates were shaken at 1050 rpm at 30°C for 24 hours134

under a breathable membrane (VWR, 60941-086) before sporulation. Tube-based presporulation135

was carried out by inoculating 5 mL YPA with 150 µL saturated SD-Ura culture and incubating136

on a roller drum at 30°C for 16-24 hours.137

Sporulation: Microtiter plate-based sporulation was carried out by pelleting presporulated cells138

at 2000 g for 2 min, washing by resuspension in 400 µL water, pelleting once again, and resuspending139

in 400 µL sporulation media. These plates were sealed with a breathable membrane, secured with140

tape to plate shakers, and shaken at 1350 rpm at room temperature for 4-5 days. Tube-based141

sporulation was carried out by pelleting tube-presporulated cell cultures and resuspending in 2 mL142

sporulation media, incubating at room temperature on a roller drum for 3-4 days.143

Homozygotes from the final cycle were incubated for 5 generations in YPD+Amp prior to144

archival freezing, but only after fully selecting for recombination of the landing pad loci with SD-145

Ura+β-estradiol.146

The final 20 generations of haploid selection in the final cycle were conducted in typical haploid147

selection media, but lacking lysine, in order to select only for those haploids which retained the148

barcode next to the LYS2 marker (which segregated in a Mendelian fashion).149
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Figure S3: Parallel mating scheme. Biological replicates of the final strains were created via different
mating paths.

2 Genotype verification150

2.1 Whole-genome sequencing151

To verify the lack of systematic off-target Cas9-mediated modifications, and to rule out pervasive152

aneuploidies, we performed whole-genome sequencing on 96 random clones (3 random wells from153

each of 32 plates which contained 64 different strains based on the mating procedure outlined in154

Section 1.5) [53] and sequenced each to approximately 100x coverage. This identified a single case155

of aneuploidy with elevated read counts at three chromosomes that were consistent with disomy156

[54]. In addition, it identified five credible non-synonymous mutations occurring on more than 1157

strain (strongly indicating that the mutations were introduced in the hierarchical mating scheme158

described in Section 1.5). Two of these (in ERG6 and QRI7) were present in just two strains each,159

and the other three (in SPT7, HSL7, and FRS1) were present in 5, 6, and 33 strains, respectively.160

In addition, some extra mutations were identified in single clones, which is not inconsistent given161

the rate of mutations during meiosis (70% of clones had no mutations, 10% had one, 5% had two,162

and the rest had poor sequencing coverage leading to what we believe are bad variant calling).163

These results suggest that Cas9 does not introduce a gross excess of off-target mutations in the164

genome, and that although unintended mutations do occur in our system (due to Cas9 or meiosis)165

these mutations are unlikely to dominate the estimation of parameters for modeling the fitness166

landscape. Notably, as explained in Main Text, biological replicates (independent crosses) were167

typically in agreement with each other.168

To understand whether the mutations in SPT7, HSL7, and FRS1 may have systematic effects on169

our genotypes, we looked at whether they were present exclusively on any single- or double-mutant170

backgrounds. We found that the FRS1 mutation was present across most backgrounds, but the171
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mutations in SPT7 and HSL7 were only present on specific AKL1-RPI1 backgrounds. Notably,172

fewer than half of the instances of these backgrounds in our WGS data bore these mutations.173

2.2 Locus-specific multiplex PCR174

To genotype the entire haploid library at all 10 primary loci and 3 putative segregating off-target175

loci (FRS1, SPT7, and HSL7), we pursued a multiplexed strategy. We began by lysing all 2048176

wells (not all of which contained cells) with 20 µL yeast lysis buffer (5mg/mL Zymolyase 20T,177

100 mM Sodium Phosphate pH 7.4, 10 mM DTT) and 5 µL of cells straight from the freezer stock.178

The enzymatic reaction was placed at 37°C for at least 45 min and then at 95°C for 2 min. The179

released DNA could then be stored in the freezer overnight.180

Immediately prior to the first-round PCR, we boiled these products for a minute to mix the181

lysates. We then added and mixed in 25 µL of water to the lysis products to dilute and facilitate182

liquid handling. Then, we added 2 µL of this lysis product to the PCR master mix for the first183

round PCR, mixing after addition. This master mix was for a 25 µL Phire reaction and contained184

1.3 µL of pooled 100 µM primers. These primers represented all 13 loci. The 13 primers that added185

N7 adapters to the amplicons were common across all wells. The 13 primers that added S5 adapters186

contained 6 bp inline indices. These indices existed in 8 versions, each unique to a different set of187

4 plates in the library (54°C annealing, 45s extension). These primers may be found in Data Table188

S1.189

The following day, PCR round 1 products were combined into 4 pools, taking 4 µL from each190

well. We cleaned up these pools with a 1x bead purification step (AMPure beads by Beckman191

Coulter) (starting volume = 42 µL , eluted in 35 µL ). We used KAPA polymerase for a second192

round of 25 µL PCRs to anneal unique pairs of S5/N7 indices to the amplicons across 4 reaction193

plates, using 2 µL of purified round 1 product (63°C annealing, 45s extension). Several unsuccessful194

reactions were repeated as necessary with diluted template.195

Round 2 reaction products were then pooled and cleaned via gel extraction, followed by a final196

bead purification step to remove any remaining small fragments.197

The library was sequenced on a NextSeq mid output lane resulting in an average coverage of198

about 2700x per locus per well in the genotype library. Loci varied in their overall coverage: the199

average coverage per BUL2 locus was just about 80x, whereas the average coverage for WHI2 was200

about 7300x. Other than BUL2, all other loci had an average coverage of at least 400x.201

Some loci for specific wells were missing from our dataset, or otherwise had very low coverage.202

To patch these holes in our genotyping data, we amplified with locus-appropriate primers in a first-203

round reaction to anneal S5/N7 adapters. This reaction used Phire polymerase (54°C annealing,204

45s extension) and 2 µL of diluted lysate as template. These reaction products were cleaned up205

with 1x Ampure beads and eluted in 30 µL water. We took 2 µL of this reaction product into the206

second round KAPA Hifi PCR reaction, which annealed pairs of S5 and N7 indices unique to each207

reaction (63°C annealing, 45s extension). Each reaction product was then cleaned up separately208

using 0.8x Ampure beads on 6 µL of reaction product diluted in 10 µL water. The final product209

was eluted in 25 µL and pooled for sequencing on a MiSeq Nano lane.210

2.3 Counting alleles for each locus in each well211

Once we received the Illumina reads, we counted the number of reads of each allele at each locus in212

each well. To do this, we followed a procedure similar to [25], examining each read in each 8-well213

sequencing library (corresponding to individual fastq files) in turn. First, we checked that the first 6214

bp of read 1 corresponded to a 6-bp inline index, allowing for 1 bp of mismatch. Then, we evaluated215
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read quality by ensuring that the quality score of the 22bp downstream from the inline index was at216

least 25. If a read met these conditions, we identified the locus associated with the read by checking217

for the presence of a characteristic 8-bp sequence either upstream or downstream of the defined218

allele, allowing identical matches only. For reads matching an identifiable locus, we extracted the219

20- to 23-bp allele, sequentially using a list of decreasingly stringent regular expressions (using the220

python regex module [55]):221

‘(left 8bp)(length of allele)(right 8bp)’,222

‘(left 8bp)(length of allele-2,length of allele+2)(right 8bp)’,223

‘(left 8bp){e≤1}(length of allele)(right 8bp){e≤1}’,224

‘(left 8bp){e≤1}(length of allele-2,length of allele+2)(right 8bp){e≤1}’,225

For lists of the exact alleles and 8-bp sequences searched, see Data Table S1.226

Overall, fewer than 0.5% of reads were excluded on the basis of these criteria, with no more227

than 1.2% for a single library.228

All alleles that occurred at least 10 times in at least one well AND were present at at least 1%229

frequency for the corresponding locus in at least one well were given a unique identifier and assigned230

as either a WT, Mut, or Other allele. “WT” alleles included properly repaired pseudo-WT alleles231

plus other versions with some or even none of the desired synonymous changes. This includes loci232

in which it appears no gene drive occurred (i.e., sequences identical to the unmutated parental BY233

sequence). “Mut” alleles included any with the desired missense change, regardless of the presence234

or absence of other synonymous alleles. “Other” alleles included those whose amino acid sequence235

matched neither the WT nor Mut sequence, including errant missense changes and frameshifts.236

Any remaining alleles were grouped together and designated “na.”237

2.4 Statistical inference of gene-drive failures238

One difficulty of verifying locus correctness by PCR in the final haploid library is that the strains239

are not clonal (they are derived from the Cas9 gene-drive hierarchical mating procedure, see Sec-240

tion 1.5). Thus, we needed to remove wells that had evidence of a mixture of genotypes, or strong241

evidence of the incorrect genotype. We noticed that our multiplex PCR verification protocol in242

Section 2.2 produced evidence of genotype mixtures at a higher rate than anticipated. However, we243

observed that these supposedly incorrect wells were found more frequently when post-first-round244

PCR pools were “mixed” at a given locus (i.e., were expected to have both WT and Mut alleles245

present). This indicated to us that primers from the first-round PCRs were leaking through, thus246

incorrectly indexing the reads, and/or PCR chimeras were forming.247

We developed a statistical model to accurately estimate the true mixture proportion within248

each well. For each post-first-round pool, we calculated the pool-wide frequencies of all alleles in249

that pool (based on their unique identifiers). Then, we modeled a pool-wide probability p that a250

given read is a “true” read and not a chimeric read. We assume that the expected frequency of251

a false allele in a given well will be (1 − p)· the poolwide frequency of that allele, whereas a true252

allele in a given well will have an expected frequency of p+ (1− p)· the poolwide frequency of that253

allele. For a range of values of p, constraining p to be at least 50%, we calculated the probability254

of the data under a multinomial model and obtained the maximum likelihood estimate of p. As255

necessary, we constrained the likelihood surface to satisfy the constraint that all alleles must be256

present at a frequency between 0 and 1, inclusive.257

After obtaining these adjusted allele frequencies, we set out to distinguish which wells were258

acceptably versus unacceptably “pure.” Since rates of apparent chimera formation varied signifi-259

cantly across loci, we developed a separate purity threshold for each locus. We did this by sorting260

wells by the percent of non-dominant alleles at a given locus, excluding “na” alleles. We plotted261
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these proportions against the ascending rank on the x axis, forming a “hockey stick”-like curve262

that shoots upward at the high end of the distribution. We found the “elbow” of this curve, i.e.,263

the proportion of non-dominant allele at which the curve is furthest from a “hypotenuse” line con-264

necting the end of the handle to the tip of the blade of the proverbial hockey stick. We obtained265

the following thresholds from this approach:266

Approximate thresholds267

BUL2 3.04%, gives 93.3% pure268

FAS1 1.20%, gives 95.1% pure269

MKT1 1.13%, gives 96.6% pure270

NCS2 1.94%, gives 96.3% pure271

PMA1 2.29%, gives 91.8% pure272

RHO5 1.58%, gives 94.8% pure273

SCH9 0.64%, gives 94.5% pure274

WHI2 0.45%, gives 92.9% pure275

AKL1 3.27%, gives 95.3% pure276

RPI1 2.36%, gives 95.1% pure277

For the sake of comparison, we note that overall drive failure rates inferred from sequencing278

the quadruple and octuple mutants – which was not done in a pooled, chimera-genic way – were279

close to 2%. In addition, many gene drive events that in fact failed may not be counted here, since280

a failed drive event that yields the unmutated WT allele when the WT allele is desired will be281

retained.282

All told, 1282 wells matched their expected genotype at all loci (67.8%). Since we had biological283

replicates of each genotype, 875 out of 1024 possible genotypes (85.4%) were represented among284

these wells. See Data Table S2 for a complete list of wells, barcodes, and genotypes that passed285

these filters.286

2.5 Other genotyping287

In addition to genotyping the final products of the experiment, we genotyped one or more mutated288

clones per genotype after each cycle of mating, drive, recombination, and selection before proceeding289

with the next cycle.290

Genotyping of the double mutants (after cycle 1) was conducted via Sanger sequencing and291

visual examination of traces for the expected alleles.292

Genotyping of the quadruple mutants (after cycle 2) and octuple mutants (after cycle 3) was293

conducted via next generation sequencing.294

Quadruple mutants were lysed in 50 µL yeast lysis buffer (5 mg/mL Zymolyase 20T (Nacalai295

Tesque), 1 M sorbitol, 100 mM sodium phosphate pH 7.4, and 20 mM DTT), boiled at 95°C for296

2 minutes and 2 µL lysed cells were taken into a 25 µL Phire polymerase PCR reaction with297

1.25 µL each of the 4 pairs of appropriate primers for 4 loci, respectively (54°C annealing, 30s298

extension). After this first round of PCR, we purified the product with 0.8x beads and did a sec-299

ond round KAPA Hifi polymerase PCR (25 µL ) to append unique S5, N7 indices to each colony300

isolate. The final product was purified with 0.8x beads once again and sequenced libraries on MiSeq301

Nano 2x150bp.302

Octuple mutants were lysed with 5 µL of saturated culture in 50 µL yeast lysis buffer as previ-303

ously described. The boiled lysis product was diluted two-fold, 2 µL of the lysis was used in into304

24 µL Phire polymerase PCR reaction containing 1 µL of each of 16 10 µM primers, each of which305

add the S5, N7 adapter sequences (54°C annealing, 30s extension). Round 1 PCR products were306

purified via bead cleanup at 0.8x beads ratio, and eluted with 25 µL water. Before cleanup, some307
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of wells were diluted with an additional 10 µL to bring volume up (evaporation of PCR reactions308

is frequent), then 12 µL taken as starting volume for cleanup. We then performed the round 2309

PCR reaction with unique pairs of S5 and N7 primers for each well, taking 2 µL of cleaned up310

DNA template into a 25 µL KAPA reaction (63°C annealing, 45s extension time). Round 2 PCR311

products were diluted with an additional 10 µL water and pooled (3-4 µL of each well). We then312

performed a 0.7x bead cleanup and submitted the final purified pool for NextSeq Mid throughput313

1x150bp lane.314

3 Combinatorial indexing and sequencing of barcodes315

3.1 Combinatorial pooling and sequencing316

To map the barcodes to individual wells, we took a combinatorial indexing approach. Uniquely317

barcoded AKL1-RPI1 double mutants were cultured in the central 64 wells of 32 96-well microtiter318

plates (rows A-H, columns 3-10). With the help of a Biomek liquid handler, we took 10 µL of each319

well-mixed well culture into either of two new 96-well plates, in which wells had been seeded with320

30 µL of YPD to facilitate automated liquid dispensing. 70 µL of pooled culture from each well of321

these two plates was used to form 8 row-specific pools, and the process was repeated form 8 column322

pools. Each pool contained approximately 1.1 mL of culture. Separately, for each of the 32 plates,323

20 µL from each of 64 wells was pooled to form 32 plate pools of about 1.3 mL each.324

To prepare libraries for sequencing, we extracted genomic DNA from each of the 48 pools,325

eluting in 50 µL water. In an initial PCR step using primers 5xx>pBC1-F and 7xx>pBC2-R, we326

amplified the barcode loci in each pool, attaching S5 and N7 adapters to each amplicon. For these327

reactions, we used 0.5-5 µL of genomic DNA in a 25 µL Q5 reaction (34 cycles, 54°C annealing,328

45s extension). After purifying amplicons via a cleanup with 0.8x ampure beads and eluting into329

33 µL water, we performed a second round of PCR with 1 µL of purified DNA template and unique330

pairs of S5 and N7 primers (KAPA 50 µL reaction, 34 cycles, 63°C annealing, 45s extension). Final331

PCR products were pooled, with 2 µL of each plate pool and 8 µL of each row and column pool332

(total volume about 200 µL ). Half of this was taken for a 2-sided bead selection, first with 0.5x333

beads, and next with 0.2x more beads for a 0.7x selection.334

Libraries were sequenced on a NextSeq mid-output lane yielding an average coverage of about335

8700 reads per barcode per pool.336

3.2 Barcode assignment to single wells337

Combinatorial indexing allows one to uniquely triangulate a barcode to a specific well. However,338

errors due to sequencing, apparent cross-contamination due to chimeric reads or lower read cover-339

age for some particular combinatorial pool can make some assignments ambiguous. We therefore340

performed this assignment using a greedy procedure. First, barcodes that uniquely map to a single341

well were identified. This yielded 2332 barcodes (out of 2348) that mapped to 2029 wells. Evidently,342

some wells contained multiple barcodes that stem from imprecise colony picking. 16 barcodes ap-343

peared to map ambiguously to multiple wells. Manual inspection found that 12 of these could be344

explained by spurious reads in other pools, which meant we only had to remove four wells with345

conflicting barcodes.346

We additionally found about 40 wells that appeared to grow extremely slowly in SD-Ura+β-347

estradiol+Amp, perhaps due to picking petite colonies. All were of the same AKL1-RPI1 genotype348

(AKL1 176S, RPI1 102D) and from the same barcode transformant pool, leading us to believe this349

may be due to private mutations in one of the 5 replicate pooled colonies. We manually identified,350
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removed, and repicked these remaining wells from the opposite transformant pool of that same351

AKL1-RPI1 genotype, in which we had seen no issues. In addition, we repicked about a dozen352

barcode transformant colonies for wells with unassigned barcodes.353

The second set of barcodes was assigned again by combinatorial indexing, this time with only354

8 rows and 8 columns, and some spurious remaining wells that did not have a well-defined barcode355

were also confirmed by Sanger sequencing.356

4 Bulk phenotyping357

4.1 Growth experiments358

The complete frozen pool was grown in 5 mL YPD by inoculating approximately 107 total cells359

to produce the starting population. We then diluted these populations by 1:27 daily by passaging360

781 µL into 5 mL fresh media (of some particular environment) in 15 mL culture tubes on roller361

drums. Whole population pellets, obtained from 1.5 mL of saturated culture, were stored imme-362

diately at -20°C for later sequencing. As previously described [31], this protocol results in about363

7 generations per day, with a daily bottleneck size of about 108 in most assay environments. We364

performed two replicates of each assay and sampled for 49 generations (7 timepoints). Only 5365

timepoints (representing 7, 14, 28, 42, and 49 generations) were sequenced.366

The six environments chosen were: YPD + 0.4% acetic acid (YPDA), YPD + 6 mM guanidium367

chloride (gu), YPD + 35 µM suloctidil (suloc), YPD + 0.8 M NaCl (salt), YPD at 37°C (37C),368

and SD + 10 ng/mL 4NQO (4NQO). (All environments besides 37C were at 30°C.) The YPDA369

environment was chosen because preliminary experiments suggested that it had a tendency to reveal370

phenotypic variance and it previously had been studied in our lab ([31]). Gu was chosen because of371

its known large target size from separate work in our lab which identified a change in sign for the372

effect of the MKT1 D30G mutation. Suloc and 4NQO were chosen because previous work in our lab373

showed these environments to have low genotype correlation with other YPD-based environments.374

37C and salt were chosen because several of the genes under study were previously reported to be375

mutated in evolution under that stressor or be a QTL in that stressor (NCS2 in high temperature;376

PMA1, RPI1, and RHO5 were all mutated in NaCl evolution experiments; see Table 1.2).377

The degree of the stressor in suloc, YPDA, salt, and 4NQO environments was chosen empiri-378

cally to maximize the stress while still permitting 7 generations of growth per day over the entire379

phenotyping assay.380

4.2 Amplicon barcode sequencing381

Genomic DNA from cell pellets were processed as in [31]. Briefly, DNA was obtained by zymolyase-382

mediated cell lysis (5 mg/mL Zymolyase 20T (Nacalai Tesque), 1 M sorbitol, 100 mM sodium phos-383

phate pH 7.4, 10 mM EDTA, 0.5% 3-(N,N-Dimethylmyristylammonio)propanesulfonate (Sigma,384

T7763), 200 µg/mL RNAse A, and 20 mM DTT) and binding on silica mini-preparative columns385

with guanidine thiocyanate buffer (4 volumes of 100 mM MES pH 5, 4.125 M guanidine thiocyanate,386

25% isopropanol, and 10 mM EDTA). After binding, the columns were washed with a first wash387

buffer (10% guanidine thiocyanate, 25% isopropanol, 10 mM EDTA) and then a second wash buffer388

(80% ethanol, 10 mM Tris pH 8), followed by elution into elution buffer (10 mM Tris pH 8.5).389

1.5 mL of pelleted cells eluted into 100 µL routinely provided about 1-2 µg of total DNA.390

PCR of the barcodes was performed using a two-stage procedure previously described to attach391

unique molecular identifiers (UMIs) to PCR fragments (see [31] for a detailed protocol). Primers392

used in the first-stage PCR contained a priming sequence, a 7-12-nucleotide multiplexing index,393
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8 random nucleotides as UMIs, and an overhang that matched the Tn5 transposome. These394

two primers had the configurations P1 = TCGTCG GCAGCG TCAGAT GTGTAT AAGAGA395

CAGNNN NNNNNY YYYYYY AAGGTA CGATTC TGACGC A, P2 = GTCTCG TGGGCT396

CGGAGA TGTGTA TAAGAG ACAGNN NNNNNN YYYYYY YAGTTG TCTCTG CTCTCG397

CTA. Here N corresponds to degenerate bases used as UMIs, and Y corresponds to multiplexing398

indexes.399

These primers anneal on either side of the barcode sequence integrated just downstream of400

LYS2, at the pBC1 and pBC2 sites, respectively. After attachment of molecular identifiers to401

template molecules during three PCR cycles (20 µL Q5 Polymerase reaction, 50°C annealing, 30s402

extension), the first-stage amplicons were cleaned using Ampure beads using an automated liquid403

handling protocol established for a Biomek FXp, with 1.25x Ampure beads, eluting in 35 µL . Of404

the elution of this clean-up, 30 µL was used directly as template for the second-stage PCR with405

primers that contained multiplexing indexes and adapters that anneal to the Illumina flowcells (P5406

and P7 primers). After 35 PCR cycles (50 µL KAPA Hifi Polymerase reaction, 63°C annealing, 30s407

extension), these final products were then purified using Ampure beads, quantified, and pooled to408

approximately equimolar concentration. The PCR products were sequenced with a NovaSeq S1 full409

flow cell (Illumina) by paired-end sequencing (2 x 50 bp, reading 80 bp from the P1 direction and410

20 bp from the P2 direction).411

We first processed our raw sequencing reads to identify and extract the indices and barcode412

sequences as in [31]. Using the barcodes previously identified in Section 3.2, we can make “correc-413

tions” to reads with sequencing errors by direct lookup of the lowest Levenshtein distance to the414

dictionary of verified barcodes.415

Finally, we can calculate the counts of each error-corrected true barcode by removing duplicate416

reads, using the unique molecular identifiers from the first-stage PCRs. Frequencies calculated417

from these counts are used to infer fitnesses for all segregants, as explained in Section 4.3. After418

all filtering, our final mean sequencing coverages were over 1500 reads per barcode per timepoint419

per replicate (averaged across all assays).420

4.3 Fitness inference for time-dependent barcode frequencies421

Strain fitnesses can be inferred from relative barcode frequencies over time (see Refs. [31] and422

[56] for expanded information on joint inference of fitnesses using barcode frequencies). Briefly,423

fitnesses are regressed as the change in relative log frequencies of strains against a selected ref-424

erence per generation. This parameter is approximately the difference in instantaneous growth425

rate between lineages under exponential growth. Most genotypes in our data are represented by426

more than one barcode in the same assay (representing biological replicates), and each barcode was427

measured in two technical replicates. In theory, we could jointly infer the biological replicates and428

constrain their fitnesses to be equal. This would yield, for a combinatorially complete landscape,429

exactly 2N fitnesses which could be fit exactly with 2N coefficients (later described in Section 5.1).430

However, strains with the same desired genotype may not always be identical at all other loci in431

the genome (due to new mutations or off-target effects). By only performing the joint inference432

on technical replicates, variance left unexplained by a full model containing 2N coefficients can433

be regarded as biological variation at other loci and some measurement error (described in more434

detail in Section 5.2). This joint inference is intuitively similar to a weighted average of the two435

technical measurements, with weights proportional to the evidence within each replicate (which is436

a combination of the number of reads and the number of timepoints measured). A standard error437

for the inferred fitness parameter can be obtained through the inference process by the square root438

of the inverse of the Fisher information at the maximum likelihood. This standard error can be439
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interpreted as the error that can be attributed to the (overdispersed) binomial sampling error. For440

our analyses, we removed datapoints with standard error above 1.441

4.4 Comparison between technical, biological replicates442

As shown in Figure S3, biological replicates were made for all final strains in the experiment by443

proceeding through a parallel mating scheme. However, due to gene-drive failures, some strains were444

not found in replicate, and it may be useful to ask the following questions: 1) How trustworthy445

are the strains without replicates? and 2) What is the average effect of unintended mutations446

introduced within our cross? To answer these questions, we can compare the inferred fitnesses of447

technical (comparing the same barcode across assays) and biological replicates (comparing barcodes448

that correspond to the same expected genotype).449

Decomposing the observed phenotypic variance due to measurement error can be done by the450

standard reliability estimates. The Pearson’s correlation coefficient between two technical replicates451

is an estimate of the R2 between the true fitness value and one fitness measurement for the barcode.452

If one takes the mean of the r technical replicates, then:453

σ2err/r

σ2gen + σ2err/r
=

1− 〈ρri,rj 〉
1 + (r − 1)〈ρri,rj 〉

. (1)

Decomposing the phenotypic variance due to extra variance in the genetic component can be454

done by a similar process, by comparing the measurement values between strains bearing different455

barcodes but expected to have the same genotype. Here, to perform this calculation, we constrain456

ourselves to pairs of strains with the same genotype that each have a single barcode in their well457

so that a single comparison can be made. The correlation coefficient between biological replicates458

can be interpreted in a similar way to technical replicates, but the deviation from 1 here will reflect459

both error due to extra variation in the genome and error due to measurement error (but without460

tube-to-tube variation). For the purpose of our manuscript, we assume that this tube-to-tube461

variation is negligible.462

In plots of technical and biological replicates, density-based coloration was determined by cal-463

culating each point’s mean distance to its five nearest neighbors. Distances were transformed using464

the scikit MinMaxScaler() function and plotted with normalized colors based on a reversed viridis465

colormap.466

Technical and biological replicate comparisons for all data can be viewed in Fig. S4.467
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Figure S4: Comparison of technical and biological replicates for all ploidies and assay environments
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5 Quantitative analysis of epistasis468

5.1 Estimation of parameters469

We model fitness φ as a function of the the underlying genotype which can be expressed as a sum470

of combinations of N biallelic loci x1, x2,. . . , xN that take on values xi = ±1.471

φ = φ+
∑
i

sixi +
∑
i>j

sijxixj +
∑

i>j>k

sijkxixjxk + ... (2)

This modeling framework casts additive first-order terms as the background-average effect of the472

mutation, which is distinct from the effect of the mutation on some arbitrary wild-type genotype.473

The terms s represent half the fitness difference between groups of individuals with and without the474

mutation, or alternatively the expected deviation from the mean, positive or negative, for groups475

with or without the mutation respectively. Pairwise epistatic effects are the background-average476

perturbation that can be fit beyond the additive first-order term, and higher order epistatic terms477

are similarly modeled. This view offers several advantages: 1) if one decides to choose a particular478

genotype as the “wild-type”, only the signs of the terms need to change; 2) each coefficient is479

estimated by partitioning half of the genotypes (each coefficient corresponds to a distinct slice480

of the data), meaning each coefficient is equally powered; and 3) the coefficients are in principle481

orthogonal from each other (there is no expected collinearity between the genotypic values of any482

pair or combination of coefficients). This means that there is no “order” of coefficient fitting (one483

does not have to fit the additive terms first), and fitting one coefficient does not influence another.484

Coefficients from the equation above can always be estimated by least-squares regression when485

all 2N genotypes have a phenotypic measurement, though we note that we have in practice on aver-486

age more than 1 phenotypic measurement per genotypes due to our biological replicates. However,487

we may expect this formula to be sparser: not all mutations should have an effect, and not all pairs488

of mutations should have a pairwise epistatic effect. We can regularize the estimation procedure to489

yield a sparse subset using the LASSO procedure, which penalizes the least-squares regression by490

the sum of absolute magnitudes of coefficients:491

mins

{
||φ− φ̂||22 + λ||s||1

}
. (3)

In the absence of collinearity (as stated above, our formulation has no collinearity between492

parameters), the LASSO operation is known to be consistent and asymptotically selects the correct493

subset of non-zero parameters [57]. Sparsity is controlled by the λ parameter, which can be found494

by cross-validation (in our case, 5-fold cross-validation was performed to reduce the extent of495

overfitting). This approach removes coefficients that are approximately the same scale as the496

noise. To provide 95% confidence intervals on the LASSO estimates, we performed 500 bootstrap497

resampling with replacement of the data followed by model selection.498

As discussed previously in Section 2.1, we identified extra mutations present in multiple strains499

(FRS1, SPT7, HSL7). Because the SPT7 and HSL7 mutations likely occurred during the mating500

process (Section 1.5), they may lead to specific signals of epistasis if they themselves have an effect.501

We briefly assessed this possibility by plotting the distribution of fitnesses for individuals with and502

without the mutation (constraining on the backgrounds in which the mutations were identified).503

In visually examining these plots, we were unable to find evidence of a systematic effect for these504

mutations. Therefore, these mutations were removed from consideration before building the model505

by LASSO. On the other hand, FRS1 was likely present in one of the original parents of the506

experiment and thus was found in approximately 50% of final strains. Though we did identify a507
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possible effect for this mutation in some environments, because it is not systematically distributed508

across the library, it is only expected to affect one of the higher order epistatic terms. (We cannot509

distinguish the effect of the epistatic term for the combination of strains that have FRS1 mutated510

and the effect of the FRS1 mutation). However, note that we have produced strains in replicate.511

Thus, the effect of the FRS1 mutation is unlikely to be consistently found in the same strains, and512

its signal will therefore be unlikely to dominate the epistatic term.513

In general, the broad-sense heritability captured by the model is very high as both biological514

and technical replicates show high correlation (see Fig. S4). Thus, correlation of fitness measure-515

ments between environments can reveal the similarities between model coefficients. If measurement516

noise was too great such that it would dilute the correlation coefficients, then comparison between517

the predicted fitnesses may provide a better picture of environmental similarities (given that the518

coefficients were adequately estimated).519

5.2 Variance partitioning520

The phenotypic variability in the dataset can be partitioned into various components to quantify521

their relative importance. In our experiment, we are interested in not just the broad-sense heri-522

tability due to our focal loci (H2, or the variability due to genetic components), but also in the523

heritability due to specific additive and epistatic components. When the model coefficients are524

orthogonal, the phenotypic variance due to genetic components is trivially obtained by the sum of525

squares of each coefficient:526

σ2gen =
∑
i

s2i +
∑
i>j

s2ij +
∑

i>j>k

s2ijk + ... (4)

Partitioning the variance by subsets of coefficients – for example partitioning by first order527

terms or pairwise epistatic terms – is therefore straightforward.528

σ21st =

∑
i s

2
i

σ2gen
(5)

σ22nd =

∑
i>j s

2
ij

σ2gen
(6)

However, we note that the coefficients are estimated from the data, and variance partitioning529

in this manner produces a bias. Removal of this bias is the major motivation behind mixed linear530

models that estimate narrow-sense heritability [58]. This caveat is not a major concern for our531

study, though, since extra sources of variation are either negligible (all the phenotypes are measured532

simultaneously in the same tube) or can be well estimated (measurement error can be estimated by533

replication). None of these extra sources of variation are expected to fundamentally alter only some534

of the coefficients or some subset of coefficients, and thus these relative partitions are expected to535

be unbiased.536

6 Analysis of fitness-correlated trends537

All epistatic interactions are ultimately the consequence of biophysical, physiological, or functional538

interactions, which depend on the specific details of the mutations involved. However, recent work539

has suggested that overall statistical patterns of epistasis follow regular and predictable fitness-540

mediated trends. In this section, we describe the framework we use to study these fitness-correlated541
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trends, and analyze the extent to which they can emerge as the consequence of specific idiosyncratic542

interactions, instead of from “global” effects involving non-specific fitness-mediated interactions543

among mutations.544

6.1 Fitting regression slopes to determine fitness-correlated trends545

Fitness-correlated trends (FCTs), such as diminishing returns or increasing costs, have often been546

analyzed by regressing the fitness effect of a mutation, s = ∆φ = φmut − φwt, against the fitness547

of the background in which it occurs, φwt. We refer to this as the ∆φ formulation: we say that548

there is no FCT if ∆φ is constant over a wide range of background fitness, while a negative rela-549

tionship between ∆φ and φwt corresponds to diminishing returns/increasing costs (and a positive550

relationship corresponds to increasing returns/diminishing costs). However, care must be taken551

when performing this analysis, because when we regress ∆φ against φwt, measurement errors in552

φwt will lead to a negative correlation even in the absence of true fitness-correlated trends [59].553

A further complication with this formulation is that the regression slope we obtain depends in554

a complex way on the polarization we choose for the mutation (i.e., which allele is considered the555

wild-type and which is the mutant). To see this, consider the following simple linear model for ∆φ556

as a function of φwt:557

∆φ ≡ φmut − φwt = a1 + b1φwt, (7)

and the analogous model for the fitness effect of the reversion, ∆φ̃, as a function of φmut:558

∆φ̃ ≡ φwt − φmut = a2 + b2φmut. (8)

Fitting data to these models using standard methods for ordinary least-squares, we find that the559

relationship between the regression slopes b1 and b2 is given by560

b2 = − b1 + V

1 + 2b1 + V
, (9)

where we have defined561

V =
Var[∆φ]

Var[φwt]
. (10)

We can use these equations to gain some intuition for the effect of V on the regression slopes562

and their reversions (i.e., a change in polarization). First, V ≥ 0 by construction, and V = 0 only563

if there is no measurement error or no idiosyncratic epistasis, which in some extreme cases could be564

interpreted as measurement error for all measurements. As expected, it is only possible to lack an565

FCT in both polarizations (b1 = b2 = 0) if V = 0. Of note, the numerator of V can be decomposed566

to Var[φmut]+Var[φwt]−2Cov(φmut, φwt), which shows that without a specific relationship between567

fitnesses of individuals with and without the mutation, V > 0, and an FCT will always emerge in568

at least one of the two polarizations.569

Since in practice V is always positive, we can see that, as shown in Figure S5 and from Equa-570

tion 9, when b1 ≥ 0, then b2 < 0, no matter the difference in scale of V and b1. Thus, in practice,571

increasing returns (or diminishing cost) epistasis or no FCT in one polarization of which allele is572

the “WT” always shows as diminishing returns (or increasing cost) in the reversion (when the allele573

is considered to be the “Mut” instead).574

When b1 < 0, or when there is diminishing returns in this polarization, then the behavior of575

b2 depends on the scale of b1 and V . First, some scenarios lead to b2 = 0, or no FCT in the576

reversion, and these scenarios occur at the critical boundary where V = −b1. Another critical577

boundary occurs where V = −1 − 2b1, which leads to an asymptotic boundary where b2 → ±∞.578
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Figure S5: Relevant regimes for slopes and their reversions in the ∆φ formulation. V is from
Equation 10, b1 and b2 are least-squares regression slopes when an allele is labeled as the WT allele
or the mutated allele (i.e., the reversion).

When b1 < 0, only a small region between the critical boundaries leads to b2 > 0 (the reversion579

is increasing returns or diminishing cost epistasis). Outside the critical boundaries, b2 < 0 and580

therefore diminishing returns or increasing costs is found in both polarizations of the allele. Thus,581

across the full space of possible parameters, diminishing returns and increasing costs – both of582

which present as a negative regression slope – are more likely to emerge than positive regression583

slopes in this ∆φ formulation (though we note that biology may not explore this entire parameter584

space uniformly), and slopes when mutations are reverted cannot always be anticipated intuitively.585

We can also ask when b2 = b1: this will happen when b1 = −0.5V . Because V ≥ 0, this will only586

happen when b1 < 0 (and therefore b2 < 0). Another fact from this equality is that if b2 = b1,587

then the denominator of V has to be equal in the reversion. This means that b2 = b1 implies588

Var(φwt) = Var(φmut).589

Note, these complications are still present when using other regression techniques such as total590

least squares that take into account measurement errors in φwt and φmut [41].591

In contrast, we can resolve some of these complications by making two changes to the analysis:592

(1) plotting φmut directly against φwt, and (2) regressing a linear relationship based on the total593

least squares. Firstly, this approach avoids some problems with correlation in measurement errors.594

In this formulation (i.e., the φwt/φmut formulation), measurement errors in both strains (or errors595

in the dependent and independent variable) are taken into account [41] (we use the standard errors596

estimated from Section 4.3), and we have the model functions:597

φmut = a3 + b3φwt (11)
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Figure S6: Comparison of fitness correlated trends for a simple case where the reversion of the focal
mutation is straightforward. Haploid, 4NQO environment.

and the reversion:598

φwt = a4 + b4φmut (12)

Secondly, this framing and regression method (taking into account errors in both axes) also599

behaves far more intuitively: the slope in one direction is always the reciprocal of the other (i.e.,600

b3 = 1/b4).601

To obtain some intuition of how to interpret FCTs in this φwt/φmut formulation, we can first602

attempt to interpret b3 = 1 = b4. This only occurs if Var(φwt) = Var(φmut), a property of the603

regression method. As described earlier, this is the regime where b1 = b2 ≤ 0, and b1 = b2 = 0604

only if Var(φmut − φwt) = 0. Thus, a caveat of this φwt/φmut formulation is that a slope of 1 does605

not always indicate the absence of an FCT. In contrast, when b3 6= 1, then either b1 6= 0 or b2 6= 0.606

This can be shown by the fact that b3 6= 1 only when Var(φwt) 6= Var(φmut). This case necessarily607

implies Var(φmut − φwt) 6= 0, which is the necessary condition for V > 0.608

We summarize these behaviors with some example figures from our data. First, we show an609

example of intuitive behavior, comparing both regressions and with mutational reversions (Fig-610

ure S6). In this simple example, regression of the fitness effect of the PMA1 234C mutation leads611

to a case of diminishing returns and increasing cost epistasis. When the mutation is “reverted,”612

or we regress the effect of the 234S mutation, we obtain the opposite FCT (diminishing costs, or613

increasing returns). These trends are also well-captured in the φwt/φmut formulation.614

On the other hand, many examples are far less intuitive (Figure S7). In this example, regressing615

the effect of the WHI2 262L mutation leads to diminishing returns. However, regressing the effect of616

the reversion (262S) also leads to diminishing returns. In the φwt/φmut formulation, slopes behave617

as expected (the reversion is the reciprocal).618

Examples where FCTs can only be interpreted in one of the mutational orientation are also619

found (Figure S8). In this example, the PMA1 234C mutation apparently shows no FCT, while its620

reversion displays increasing cost epistasis. On the other hand, the φwt/φmut formulation robustly621

shows a slope different from 1 and again behaves as the reciprocal when the mutation is reverted.622

Thus, because different slopes in this formulation do not readily yield an interpretation of the623

type of FCT (diminishing returns vs increasing returns), we refrain from using these plots for this624

purpose. Instead, we focus on this formulation’s ability to robustly identify FCTs when it exists.625
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Figure S7: Comparison of fitness correlated trends for a complicated case where the reversion of
the focal mutation is not intuitive. Haploid, high-temperature environment.
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Figure S8: Comparison of fitness correlated trends for a case where reversion may be interpreted
as having no FCT. Haploid, acetic acid environment.
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For our analysis, a final complication emerges from having biological replicates. In the parameter626

estimation above (Section 5.1), this does not pose a problem (there is simply unexplained variation).627

However, for the purpose of analyzing fitness correlated trends, if strains have two replicates for628

the wild-type and two replicates for the mutant, then there are 4 possible comparisons and it is629

no longer clear how to regress this effect of the mutation. To resolve this, we perform the analysis630

on the average fitness of each genotype, which can be interpreted as the best estimate of the true631

fitness of the genotype. The standard error of the average genotype fitness was computed as the632

mean of the errors associated with the fitnesses that were averaged.633

We have shown that, in general, if slopes different from 1 are obtained in the φwt/φmut formu-634

lation, then we can interpret the data as displaying FCTs. However, what yields slopes different635

from 1? If these formulations are readily interchangeable, then we may expect a single idiosyncratic636

epistatic term involving the focal mutation, positive or negative, to be sufficient. However, we find637

that this is not the case: in this formulation, we find that this epistatic interaction must also involve638

a mutation with a non-zero additive effect.639

To illustrate this, we begin with a simple schematic considering two loci A and B on top of640

a background of other mutations with some fitness variance (Figure S9). We denote alternative641

alleles at these loci as their letter case (A/a, and B/b), and the deviation from the mean fitness642

between genotypes of alternative alleles for locus A as: sA = φA − (φA + φa)/2. When sA = 0,643

sB = 0, and sAB = 0, then plotting φA vs φa must yield a general “cloud” of points with a slope of 1644

(Figure S9, top left panel). Partitioning the cloud of points by genotypes with the B and b alleles,645

respectively, only yields two superimposed clouds (because the effect of having the mutation at646

locus B, sB, is zero). When sA = 0, sB 6= 0, and sAB = 0, then the two clouds separate themselves647

along the 1:1 line (Figure S9, top right panel). The regression slope for φA vs φa is still 1. The648

case where sA = 0, sB = 0, and sAB 6= 0 is more complicated. Setting sAB = E, a constant, we649

find the mean deviation in fitnesses φAB = E, φaB = −E, φAb = −E, and φab = E. If we focus650

on plotting φab against φAb, we find that the negative deviation due to the epistatic coefficient for651

φAb moves the cloud to the left, while the positive deviation due to the epistatic coefficient for φab652

moves the cloud up. These coordinated movements yield a diagonal movement orthogonal to the653

1:1 line. The same logic can be applied to plotting φaB against φAB, however in this case the cloud654

moves to the right and down. Thus, the two clouds separate themselves in the direction of a slope655

of -1 when an epistatic term is present (Figure S9, bottom left panel). The regression slope for656

φA vs φa is still 1 even in this case and will eventually flip to be -1 as clouds separate themselves657

farther and farther. Putting these orthogonal movements together, we find that the non-zero terms658

for sA = 0, sB 6= 0, and sAB 6= 0 lead to joint cloud movements (Figure S9, bottom right panel).659

The regression slope for φA vs φa in this final case will never be one. Because these conditions660

include the sufficient condition for FCTs in the ∆φ formulation, our analyses on FCTs with this661

φwt/φmut formulation are conservative, and we use this formulation for its advantages: 1) errors in662

fitness measurements are taken into account for both φwt and φmut, 2) the slope for the mutation663

reversion is the reciprocal, and 3) slopes different from 1 are always FCTs.664

6.2 Decomposition of fitness-correlated trends665

To understand whether idiosyncratic interactions lead to fitness-correlated trends, we proceeded666

down two analytical avenues.667

In the first, we examined the observed genotype fitnesses and removed epistatic terms one at668

a time to see whether slopes converged to 1. Operationally, this involved first finding the global669

linear regression line that fit the data best for a given locus in a given ploidy and environment.670

We compared that regression to the best-fit line with slope of 1 by looking at the weighted sum of671
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Figure S9: Effect of parameters on global regression in the φwt/φmut formulation. Clouds shown
are for when sA = 0. Top right shows the effect of sB 6= 0, bottom left shows the effect of sAB 6= 0
and bottom right shows the effect of both sb 6= 0 and sAB 6= 0.
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Figure S10: Three panels, one for each b threshold, showing the change in the ratios of the SSE for
lines of slope b =1 and b =global as compared with the SSE for an unconstrained regression that
minimizes SSE. Vertical bars indicate interquartile ranges.

squared errors (SSE), where a lower sum indicates a better fit to the data. After doing this, we672

found the residual difference between the observed genotype fitnesses and the genotype fitnesses673

as predicted by our full model of additive and epistatic terms. Then, we set the largest epistatic674

term involving the focal locus to zero, regenerated the model fitness values, and added the residual675

differences. To this dataset, we fit a line with the original global slope and a line with the slope 1,676

again finding the SSE for each. We also fit a totally new regression line that minimized the SSE.677

We then iterated this process, consecutively removing 10 epistatic terms and re-evaluating the fit678

of the b =1 and b =global lines each time. Main text Figure 3E shows how the relative fit of these679

two lines changes across ploidies, environments, and loci. Figure S10 shows how the SSE for b =1680

and b =global compare to the minimized SSE as terms are progressively removed, revealing that681

a slope of 1 tends to approach an idealized fit as terms are removed, while the global slope tends682

to drift away. Figure S11 provides a more detailed look at how the ratio of SSEs for b =1 and683

b =global change as terms are removed for each locus in each ploidy and environment.684

In a converse analysis, we examined genotype fitnesses generated by our model of additive685

and epistatic terms. For a focal locus in a given ploidy and environment, we first stripped away all686

epistatic terms related to interactions between the focal locus and other loci, such that only additive687

terms and interactions among background loci contributed to the modeled genotype fitnesses. This688

produced a perfectly straight line with a slope of 1 and an intercept proportional to the background-689

averaged additive effect of the focal mutation (as described in Section 5.1, this is twice the estimated690

parameter si where i is the focal locus). We ranked the epistatic terms involving the focal mutation691

by their effect size. Then, starting with the largest, we incorporated one term at a time into the692

modeled genotype fitnesses. After each term was added, we replotted the fitness of genotypes with693

25



0.5

1.0

1.5

2.0
37

C
Haploid

0.6

0.8

1.0

Homozygous

Locus
BUL2
FAS1

MKT1
NCS2

PMA1
RHO5

SCH9
WHI2

RPI1
AKL1

1

2

4N
Q

O

1

2

3

1.0

1.2

1.4

gu

1.0

1.5

2.0

2.5

0.5

1.0

1.5

sa
lt

0.8

1.0

1.2

0.50

0.75

1.00

1.25

su
lo

c

0.5

1.0

1.5

0 1 2 3 4 5 6 7 8 9 10 all

0.9

1.0

1.1

1.2

YP
D

A

0 1 2 3 4 5 6 7 8 9 10 all

2

4

6

#…terms…removed…(by…rank)

R
el

at
iv

e…
fit

…
ra

tio
,…

SS
E

b
=

1…
/…

SS
E

b
=

gl
ob

al

.

Figure S11: One panel for each ploidy and assay environment showing the change in the ratio of
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Figure S12: Scatterplot and histograms of regression slopes of FCTs for all data and the percentage
of inferred epistatic (A) terms and (B) variance needed to recapitulate them. Horizontal colored
lines in the histogram illustrate the mean.

and without a mutation at the focal locus and computed the regression slope.694

We defined the number of terms sufficient to recapitulate the observed FCT as the number of695

added terms required to reach regression slope convergence within 0.01. More specifically, after696

adding each term, we asked whether the new regression slope differed from each of the previous697

three regression slopes by less than 0.01. If so, the number of terms required to reach that “plateau”698

was considered the number of terms sufficient to recapitulate the observed FCT. In a minority of699

cases, the final “plateau” slope differs from the full-model slope by greater than 0.01, but only in700

5 instances by greater than 0.02. Figure S12 presents the fraction of potential epistatic terms and701

potential epistatic variance sufficient to reach this plateau.702

Note that, to permit more consistent comparisons, all loci were analyzed in the mutational703

direction that placed their regression slopes between -1 and 1. In other words, if plotting genotype704

fitness with A on the x axis and genotype fitness with a on the y axis gave a slope greater than 1,705

we would flip the axes such that the slopes would be equal to the reciprocal of the original slope706

(between 0 and 1).707

Plots of φwt/φmut for all loci can be found in Figure S13 and Figure S14.708

6.3 Quantifying the effect of landscape size in the analysis of fitness-correlated trends709

The size of the fitness landscape we consider has two important effects on our ability to analyze the710

origins of fitness-correlated trends. First, as the number of mutations involved increases, the number711

of potential epistatic interactions between them increases exponentially. This creates more oppor-712

tunities for idiosyncratic interactions to exist and to produce apparent fitness-correlated trends.713

We note that this is an average effect: if we happened to choose precisely the set of mutations that714
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Figure S13: Scatterplots of φwt/φmut for all loci in haploid form.
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Figure S14: Scatterplots of φwt/φmut for all loci in homozygous form.
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had the relevant idiosyncratic interactions, it may be possible to identify the relevant FCT in a715

smaller landscape. In general, however, because theory argues that it is the accumulation of many716

random idiosyncratic interactions that produces FCTs, we expect that larger landscapes become717

more likely to reveal this effect. By random, we mean that idiosyncratic interactions do not obey718

regular and predictable statistical patterns such as diminishing returns.719

In addition to this, another key effect of landscape size is that the total number of genotypes,720

and hence the total number of fitness measurements, also increases exponentially with the number721

of mutations in the landscape. This reduces the influence of noise and improves our ability to722

identify FCTs and the potential effects of idiosyncratic interactions in producing them. This is723

critical, because linear regression analyses are known to be strongly affected by noise, which can724

produce outliers: the variance on the slope estimate is (roughly) inversely proportional to the725

number of data points used in the regression. Since increasing the number of loci considered in726

fitness landscapes leads to an exponential increase in the total number of data points, we expect727

that FCTs in significantly smaller landscapes (including landscapes like those examined in previous728

studies) would therefore be more affected by noise.729

To explore these effects of landscape size on the decomposition of fitness-correlated trends730

(FCTs), we analyzed smaller sub-landscapes from the corresponding subsets of our data. By731

definition, we cannot disentangle the potential role of idiosyncratic epistasis in creating an FCT732

in a landscape consisting of only two loci. We therefore constructed landscapes with all possible733

subsets of three or more of our mutations. For each subset, we analyzed the potential FCT using734

our decomposition analysis (see Section 6.2). Specifically, for all subsets and all mutations that735

had evidence of FCT in the full-dataset (i.e., b ≤ 0.9), we computed the final ratio of sum-squared736

errors (SSE) between a model with a slope of 1 (this is the idiosyncratic FCT model) and a model737

with the global initial slope (the global FCT model), after removing all relevant epistatic terms.738

The idiosyncratic model is supported when this final ratio is below 1. Note that we excluded from739

this analysis subsets and mutations for which regressions were based on just 1 or 2 points.740

We find that, at smaller subset sizes, there is a wide range of final relative fit ratios, indicating741

that the same mutation can be found to display evidence for either the idiosyncratic model or742

the global epistasis model driving FCTs. This spread of final SSE ratio can be explained by the743

random effects of which mutations happen to be represented in each subset, as well as the increased744

influence of noise on regression and on the inference of coefficients. However, we find that as the745

subset size increases, the range narrows, with most relative fit ratios dropping below 1 (Figure S15746

and Figure S16). This indicates that noise is particularly important in determining whether we can747

distinguish between the idiosyncratic epistasis model and the global epistasis model, with smaller748

subsets containing exponentially fewer points and hence far fewer measurements of the fitness effect749

of mutations (or epistatic terms) with which to perform inference and regression. For our data,750

with sparse interactions, a landscape of size greater than 8 appears sufficient to provide strong751

support for the idiosyncratic model (Figure S15 and Figure S16).752

To further confirm that noise is the primary driver of evidence towards the global epistasis753

model (i.e., toward a relative fit ratio > 1), we investigated cases where the final relative fit ratio754

remained above 1 even in our largest fitness landscapes. We found that these have a strong tendency755

to be mutations in environmental/ploidy combinations with the greatest evidence for noise as756

determined by the correlation between biological replicates (Figure S17). This suggests that these757

outstanding cases pointing to global epistasis would be resolved toward the idiosyncratic epistasis758

explanation with better measurements or with still larger landscapes. We also note that this finding759

suggests that apparent differences between environments (e.g. with salt and YPDA environments760

suggesting a larger role for global effects) may simply be an artifact of the inherently noisier761

fitness measurements in these conditions. These lines of analysis also suggest that previous studies762

30



4 6 8 10
subset…size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Fi
na

l…
S

S
E b=

1…
/…

S
S

E
b

=
gl

ob
al

,
al

l…
ep

is
ta

si
s…

re
m

ov
ed

Locus
PMA1
RHO5
SCH9
WHI2
AKL1

4 6 8 10
subset…size

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n…

su
bs

et
s…

w
ith

S
S

E
b

=
1/

S
S

E
b

=
gl

ob
al

…
…

1,
al

l…
ep

is
ta

si
s…

re
m

ov
ed

Figure S15: Effects of landscape size on the final SSE ratio (with values less than 1 indicating that
FCTs are resolved in terms of idiosyncratic interactions) in 4NQO (haploid). In left panel, each
point represents a subset of the full landscape of the corresponding size, with a particular focal
mutation (indicated by the legend) having a fitness-correlated slope of b≤0.9 (polarity adopted
such that b is ≤ 1). The relative fit (sum-squared error, SSE) ratio between regressions with fixed
slope of b=1 and b=global was computed after all epistatic terms were removed. At right, we
show the fraction of subsets that have a final (all epistasis removed) relative fit ratio lower than 1
for each mutation, indicating support for the idiosyncratic model of fitness-correlated trends. Not
shown are 16 points for which relative fit ratio is greater than 10. Lines show median ratios for
each mutation.
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Figure S16: Effects of landscape size on the final SSE ratio (with values less than 1 indicating that
FCTs are resolved in terms of idiosyncratic interactions) in 37C (haploid). In left panel, each point
represents a subset of the full landscape of the corresponding size, with a particular focal mutation
(indicated by the legend) having a fitness-correlated slope of b≤0.9 (polarity adopted such that b
is ≤ 1). The relative fit (sum-squared error, SSE) ratio between regressions with fixed slope of b=1
and b=global was computed after all epistatic terms were removed. At right, we show the fraction
of subsets that have a final (all epistasis removed) relative fit ratio lower than 1 for each mutation,
indicating support for the idiosyncratic model of fitness-correlated trends. Not shown are 15 points
for which relative fit ratio is greater than 10. Lines show median ratios for each mutation.

with smaller landscape sizes might not have been able to decompose FCTs as being driven by763

idiosyncratic epistasis.764
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Figure S17: Final relative fit ratio as a function of reproducibility in biological replicates (i.e. the
noise in individual fitness measurements). Each point represents the final sum-squared error ratio
(i.e. the relative SSE ratio between regressions with a fixed slope of b=1 and b=global) for a
given focal mutation (as indicated in legend) and environment (as indicated by arrows above, with
haploids in black and homozygous diploids in blue). Note that SSE ratios greater than 1, which
correspond to evidence for global epistasis, occur more frequently when the data is noisier. Only
loci exhibiting an FCT in at least 3 of the 12 ploidy/environment combinations are presented.

7 Captions for Data Tables765

7.1 Data Table S1766

Primers used in genotyping, as well as search sequences used in parsing genotypes.767

7.2 Data Table S2768

Barcode to well to genotype map, and measured competitive fitness of each barcode in each ploidy769

and each environment.770

The fitness values provided are joint inferred fitnesses from two technical replicates (two separate771

fitness assays were performed simultaneously), and the standard error is of the estimate is obtained772

from the effect of an overdispersed binomial sampling error on this estimate (see Section 4.3 for773

more details). The estimated starting frequency of the barcode in the fitness assay in each technical774

replicate is also provided.775

The HSL7-SPT7-FRS1 worksheet indicates whether each well was pure for one or the other776

allele, or considered impure at a stated threshold.777

7.3 Data Table S3778

Model parameters for each ploidy in each environment. We provide bootstrap 95% confidence779

intervals for the parameters as well.780
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