O 0O NOUL B WN -

WINNNNNNNNNNRRRPRPRPRRPRRPR P
O WO NOOUDPDWNRPRPOWOLOMNOOOUDWNIERO

Title: Idiosyncratic epistasis leads to global fitness-correlated trends

Authors: Christopher W. Bakerlee™'>?, Alex N. Nguyen Ba™'>* Yekaterina Shulgina®, Jose I. Rojas
Echenique', and Michael M. Desai !>’

Affiliations:
"Department of Organismic and Evolutionary Biology, Harvard University; Cambridge, MA, USA.
2Quantitative Biology Initiative, Harvard University; Cambridge, MA, USA.
3Department of Molecular and Cellular Biology, Harvard University; Cambridge, MA, USA.
*Department of Cell and Systems Biology, University of Toronto; Toronto, Canada.
SNSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University;
Cambridge, MA, USA.
SDepartment of Molecular Genetics, University of Toronto; Toronto, Canada.
"Department of Physics, Harvard University; Cambridge, MA, USA.

"These authors contributed equally to this work
*Corresponding author. Email: mdesai@oeb.harvard.edu

Abstract: Epistasis can dramatically affect evolutionary trajectories. In recent decades, protein-level
fitness landscapes have revealed extensive idiosyncratic epistasis among specific mutations. In contrast,
other work has found ubiquitous and apparently non-specific patterns of global diminishing-returns and
increasing-costs epistasis among mutations across the genome. Here, we use a hierarchical CRISPR gene
drive system to construct all combinations of 10 missense mutations from across the genome in budding
yeast and measure their fitness in six environments. We show that the resulting fitness landscapes exhibit
global fitness-correlated trends, but that these trends emerge from specific idiosyncratic interactions. We
thus provide experimental validation of recent theoretical work that has argued that fitness-correlated
trends can emerge as the generic consequence of idiosyncratic epistasis.

One-Sentence Summary: A genome-spanning fitness landscape reveals how idiosyncratic genetic
interactions lead to global epistatic patterns.
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Main Text: Epistatic interactions have important consequences for the design and evolution of genetic
systems (/—3). Significant work in recent decades has studied these interactions by measuring empirical
fitness landscapes, most often at “shallow” depth for genome-scale studies (e.g., by quantifying pairwise
but not higher order epistasis between all gene deletions or mutations) or at “narrow” breadth (such as
complete landscapes at the scale of small select regions in single genes, for example by quantifying all
orders of epistatic interactions among few amino acid residues) (4—/8). These studies have often found
many epistatic interactions among specific mutations at both lower (i.e., among few mutations) and higher
orders (i.e., among many mutations). These reflect particular biological and physical interactions among
the mutations involved; following recent work (79, 20) we refer to them as “idiosyncratic” epistasis, as
they involve the specific details of these mutations. Overall, this body of work has highlighted the
potential for epistasis to create historical contingency that tightly constrains the distribution of adaptive
trajectories accessible to natural selection.

In contrast, other work examining adaptive trajectories that implicate loci across the genome has found
patterns of apparently “global” epistasis, in which the fitness effect of a mutation varies systematically
with the fitness of the genetic background on which it occurs (2/-28). Typically, this manifests as either
diminishing returns for beneficial mutations or increasing costs for deleterious mutations, with mutations
having a less positive or more negative effect on fitter backgrounds. These consistent patterns of global
epistasis may give rise to the dominant evolutionary trend of declining adaptability, and in contrast to the
complexity of idiosyncratic interactions, they suggest that historical contingency could be less critical in
constraining adaptive trajectories (29).

Despite their importance, these dual descriptions of epistasis have not been satisfactorily unified. In one
view, global epistasis results from non-specific fitness-mediated interactions among mutations (24). Such
interactions may for example emerge from the topology of metabolic networks, which generates overall
patterns of diminishing returns and increasing costs that eclipse the specific details of idiosyncratic
interactions (30). In contrast, other recent theoretical work has proposed an alternative view,
hypothesizing that apparent fitness-mediated epistasis can instead emerge as the generic consequence of
idiosyncratic interactions, provided they are sufficiently numerous and widespread (79, 20). These two
models have substantially different implications for the structure of fitness landscapes, which in turn
influence our expectations of the repeatability and predictability of evolution and of the effect of chance
and contingency on adaptation at both the genotypic and phenotypic level. Thus, this dichotomy plays a
central role in understanding of how epistasis affects evolutionary dynamics.

Thus far, however, empirical work has been unable to distinguish between these perspectives. The key
difficulty is that testing these ideas requires both depth and breadth: we must analyze landscapes
involving enough loci that we sample idiosyncratic interactions that can potentially give rise to overall
fitness-mediated trends, and we must survey possible combinations of these mutations at sufficient depth
to quantify the role of higher-order interactions (including potential “global” non-specific fitness-
mediated interactions). Importantly, larger landscapes are also necessary to reduce the influence of
measurement error on the inference of epistasis and analysis of fitness-correlated trends (see
Supplementary Materials, section 6.3). Achieving this depth and breadth is technically challenging,
because it requires us to synchronize many mutations across the genome.

Here, we overcome this challenge by developing a method that exploits Cre-Lox recombination to create
a combinatorially expanding CRISPR guide-RNA (gRNA) array in Saccharomyces cerevisiae, which
allows us to iteratively generate mutations at distant loci via a gene drive mechanism (Fig. 1A). Briefly,
strains of opposite mating type containing inducible Cre recombinase and SpCas9 genes are mutated at
one of two loci (4 or B), and DNA encoding guide-RNAs (gRNAs) specific to the wild-type alleles at
these loci are integrated into their genomes (Fig. S1). After mating to produce a diploid heterozygous at A
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and B, we induce a gene drive to make the loci homozygous. This begins with expressing Cas9 and
generating gRNA-directed double-strand breaks at the wild-type 4 and B alleles. These breaks are then
repaired by the mutated regions of homologous chromosomes, making the diploid homozygous at these
loci with at least 95% efficiency. Simultaneously, we express Cre to induce recombination that brings
gRNAs into physical proximity on the same chromosome by way of flanking Lox sites, in a strategy
similar to that described previously (37) (Fig. 1B). We then sporulate diploids and select haploids bearing
the linked gRNAs from both parents. In parallel, we carry out this process with “pseudo-WT” versions of
these loci, which contain synonymous changes that abolish gRNA recognition, but lack the non-
synonymous change of interest. This creates a set of four strains, with all possible genotypes at loci 4 and
B. Concurrently, we create separate sets of four strains with all possible genotypes at other pairs of loci
(e.g., Cand D).

By iterating this process, we can rapidly assemble an exponentially expanding, combinatorially complete
genotype library. We mate separate sets of four genotypes bearing all combinations of mutations at two
loci each in an all-against-all cross, drive their mutations, recombine their gRNAs, and sporulate to
produce a 16-strain library bearing all 4-locus mutation combinations. Repeating these steps in a third
cycle with two 4-locus libraries of opposite mating type yields a 256-strain 8-locus library, and a
complete landscape of up to 16 mutations (2'¢ strains) can be constructed in just four cycles.

We sought to use this method to construct a complete fitness landscape that would shed light on the
structure of epistasis: are fitness-correlated trends primarily the product of a global coupling of mutations
via fitness, or do they emerge as the consequence of idiosyncratic epistasis? To do so, we surveyed
studies of natural variation (e.g., (32-36)) and experimental evolution (e.g., (37-39)) to identify mutations
potentially relevant to adaptation in the laboratory strain. We selected a set of mutations that sample a
wide range of cellular functions, such as membrane stress response, mitochondrial stability, and nutrient
sensing. Our goal in making this choice was to maximize fitness variance while minimizing pathway-
specific idiosyncratic interactions. We note that alternative choices of mutations, particularly if they were
focused on a specific protein or pathway (or limited to those that accumulated along the line of descent in
a single lineage), might exhibit very different patterns of epistasis, which would be characteristic of the
particular details of that specific protein or pathway (or that specific adaptive trajectory). However, our
goal here is to analyze potentially global patterns of epistasis among mutations across the genome that are
relevant to fitness in a variety of conditions and hence represent an overall fitness landscape for the
laboratory strain.

We thus implemented our gene-drive system to construct a near-complete landscape spanning 10
missense mutations in 10 genes (including essential genes) on 8§ chromosomes: AKLI (S176P), BUL2
(L883F), FASI (G588A), MKT1 (D30G), NCS2 (H71L), PMAI (S234C), RHOS5 (G10S), RPI1 (E102D),
SCHY (P220S), and WHI2 (L2625) (Fig. 1C, Table S1). We found that a landscape of about this size is
required to distinguish the two models (see SI section 6.3). Immediately before the final mating cycle, all
strains were transformed with a unique DNA barcode next to the LYS2 locus to enable high-throughput,
sequencing-based competitive fitness assays (Fig. S2, S3). All strains in each replicate haploid library
were genotyped at all 10 loci to confirm presence of the desired alleles (this step also ensures presence in
the diploid libraries). After excluding strains due to gene drive failure, 875 out of 1024 (85.4%) genotypes
remained in at least one library (and 407 in both biological replicates). We also performed whole genome
sequencing of 96 randomly selected strains to rule out pervasive aneuploidies or influential but spurious
background mutations. One aneuploidy was identified, and 3 spurious background mutations were
observed at >5% frequency. Subsequent analysis showed that these were unlikely to systematically
influence our findings (Table S2, and SI section 5.1).
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To obtain fitness landscapes, we conducted replicate bulk barcode-based fitness assays on both pooled
haploid and homozygous diploid versions of the genotype library in 6 distinctly stressful media
environments: YPD + 0.4% acetic acid, YPD + 6 mM guanidium chloride, YPD + 35 uM suloctidil, YPD
@ 37°C, YPD + 0.8 M NaCl, and SD + 10 ng/mL 4NQO (Fig. 1D). For each of 7 days, pools were
allowed 7 generations of growth, and aliquots were sampled and sequenced at the barcode locus at
generations 7, 14, 28, 42, and 49. We estimated the relative fitness of each genotype from changes in
barcode frequencies through time, achieving consistent measurements across technical and biological
replicates (Fig. 1E,F, S4). From these data, we inferred the background-averaged additive and epistatic
effects of each mutation and combination of mutations, respectively (using LASSO regularization, see
SD).

We found that our six environments yield substantially different landscapes, as demonstrated by the
relatively low between-environment correlations of genotype fitnesses (Fig. 2A), the additive effects of
each mutation (Fig. 2B), and the pairwise interactions between them (Fig. 2C). Haploid and homozygous
diploid landscapes were largely correlated, but there were several notable exceptions, particularly in the
suloctidil environment (Fig. 2A,B). And although some pairwise interactions remain roughly constant in
strength, even as the corresponding additive effects vary considerably (e.g., RHOS5 and WHI2), most wax
and wane across environments (Fig. 2C). Nevertheless, the overall contribution from different epistatic
orders shows some similarities across ploidies and environments (the magnitudes do differ; Fig. 2D), with
additive and pairwise terms explaining most of the variance in the data, third-order terms contributing
minorly, and the remaining orders making little difference, consistent with earlier studies (40). Across all
epistatic orders, inferred effects were highly skewed, with a small number of terms explaining
disproportionate variance (Fig. 2E).

We next sought to investigate potential patterns of global fitness-mediated epistasis. To do so, for each
locus in each ploidy and environment, we plotted the fitness of a genotype with the mutated allele, @mut,
against the fitness of the same genotype with the WT allele, pwr. A regression slope, b, different from 1
in these plots signifies a fitness-correlated trend (FCT) (Fig. 3A, left; see SI). We note that some previous
work has instead plotted the fitness effect of a mutation, A, as a function of background fitness wr. The
advantage of our formulation here is that it does not privilege a specific allele as the “wild-type.” Instead,
regression in our plots translates intuitively when reversing direction to treat the reversion as the
mutation: brev = 1/borig by weighted-total least squares; see expanded discussion in the Supplementary
Material, Fig. S5-S8.

We found that FCTs are common in our landscapes: across all ploidies, environments, and loci, ~44% of
regression slopes deviate substantially from 1 (i.e., » < 0.9 or 5> 0.9"'; these deviations are all significant;
Fig. 3B, see histogram; Fig. S13 and S14). However, FCTs were not universal for fitness-affecting
mutations: of the 49 examples across ploidies and environments of mutations with additive effects of
magnitude > 0.5%, 18 were associated with 0.9 < b < 0.9 (Fig. 3B).

By partitioning background genotypes by the presence or absence of specific mutations, we can determine
whether FCTs are truly “global” (i.e., they transcend these partitions and any corresponding idiosyncratic
interactions; Fig. 3A, middle), or are instead fundamentally idiosyncratic (i.e., they emerge from
regression across partitions shifted in mut versus @wr space by sparse interactions with specific
background loci; Fig. 3A, right). When we partitioned FCTs by the presence or absence of interacting
mutations in the background, we found several instances where the idiosyncratic model clearly explains
the fitness-correlated trend. For example, the effect of the G10S mutation in RHOS at 37°C exhibits a
clear FCT (b =0.76) (Fig. 3C). However, we can partition points by the presence of interacting WHI2 and
AKL]I alleles in the background. Doing so shows that pairwise interactions with these alleles cause
systematic shifts in @10s vs @10 space, with each partition assuming a slope near 1. Thus, over a range of
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background fitnesses, a FCT in the effect of the G10S emerges from these specific idiosyncratic
interactions (Fig. 3C, S11). In the case of the homozygous AKLI S176P mutation in suloctidil, we
observe a similar decomposition of a FCT (b = 1.29) when partitioning genotypes according to the
presence of three interacting loci in the background (MKT1, RHOS, and WHI2) (Fig. 3D, S11). However,
in other cases it is less clear whether the FCT can be partitioned in this way, and since deeper partitions
tend to reduce background fitness variance and limit our confidence in regression slopes, a different
approach is required to characterize the extent to which idiosyncratic terms cause FCTs across our data.

To investigate this question, we therefore analyzed the effect of removing specific idiosyncratic epistatic
terms on the overall fitness-correlated trends. To do so, for each focal locus (in each ploidy and
environment) we first calculated the weighted sum of squared errors (47) of observed fitnesses from the
global regression line (SSEx—giobal) and from a fitted line of slope 1 (SSEs-1, which corresponds to no
FCT). We then set the largest epistatic term to zero and recalculated the expected fitness of each resulting
genotype (assuming all other terms and residuals are non-zero), again obtaining both SSEs—giobal and
SSEs-1. If the fitness-correlated trend arose from a global effect, we expect that SSEs—giobal would be less
than SSE;-1 even as terms are removed. Instead, we found that, after removing the effect of just a few
terms, a regression with a fixed slope of =1 typically fit the data better than the b=global FCT slope (Fig.
3E, S11, with FCT threshold set to » < 0.9 or 0.8)), approaching the fit of an unconstrained regression that
minimizes SSE (i.e., the final slope approaches 1, Fig. S10). This indicates that the apparent FCT arises
from these few idiosyncratic interactions, even for global slopes very different from 1. Although we also
documented cases where h=global fit the data better than »=1 even after removing many terms, we expect
most if not all these instances may be due to measurement error, since they tend to arise in ploidies and
environments where the data is noisier (Fig. S17).

To further evaluate whether idiosyncratic interactions between these mutations are sufficient to generate
FCTs, we performed the converse analysis, this time with genotype fitnesses as predicted by our model of
additive and idiosyncratic epistatic terms. Instead of removing the effects of epistatic terms one at a time,
we first stripped from the model all interactions involving the focal locus, yielding perfectly linear points
of slope 1 when plotting emut vs @wt. We then added interactions one by one to our fitness prediction,
from largest to smallest, and examined the resulting slopes. As shown in Fig. 3F for the haploid PMA1
S234C mutation in 4NQO, adding just a handful of terms associated with 3 background loci recapitulates
a strong FCT. Repeating this analysis with all our mutations shows that, on average, just 4 idiosyncratic
interactions (primarily pairwise) are sufficient to recapitulate the full-model FCTs (a slope within 0.01 of
the global slope, Fig. 3G, orange; see SM), which is far lower than the total number of inferred terms
(median of 53) but represents on average 89% of the potential variance explained that could have been
added (Fig. S12). Thus, although fitness-correlated trends are real and likely have important biological
consequences, our data demonstrate that apparent fitness-mediated epistasis can readily emerge from
remarkably few low-order idiosyncratic interactions.

Since the landscapes we study here have no natural polarization (i.e., neither allele is the assumed
wildtype), we cannot comment directly on why earlier studies of global epistasis have more commonly
found negative than positive FCTs (when plotting A versus @wr). However, this distribution of FCT
directions is important because it may underly the ubiquitous trend of declining adaptability observed
across laboratory evolution experiments (29). The observed bias towards negative trends may arise from
asymmetries in the average sign of epistatic interactions between mutations away from extant high-fitness
genotypes relative to their reversions, which theory has predicted should arise from idiosyncratic
interactions (79, 20). In addition, we note that choosing polarizations at random will lead to more negative
than positive FCTs across the full parameter space (see extended discussion in the SI).
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Regardless of the cause of any asymmetry in the direction of fitness-correlated trends, our results support
recent theoretical arguments that fitness-mediated epistasis can emerge as the generic consequence of
widespread idiosyncratic interactions, rather than reflecting a global fitness-mediated coupling of
mutations. Indeed, at least in our system, we see that fitness-correlated trends can arise even from a
relatively small number of low-order interactions. We note that landscapes involving other types of
variation (e.g., within a single protein or pathway or along the line of descent in a single lineage (2/)) may
exhibit different patterns, though we may expect these scenarios to involve an even stronger role for
idiosyncratic interactions. More generally, we emphasize that idiosyncratic epistasis and global fitness-
mediated effects are not mutually exclusive, and although fitness-correlated trends can be explained by
the former in our system, in other cases both effects may contribute. However, our results suggest that
nonspecific global epistasis may not be the primary driver of patterns of declining adaptability in
laboratory evolution experiments, and this has general implications for the ways in which epistasis
constrains evolutionary trajectories.
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Figure Captions

Fig. 1. Recombining CRISPR-gene drive system. (A) Experimental design. Strains of opposite mating
type carrying known mutations and corresponding guide-RNAs (gRNAs) mate to form heterozygous
diploids. Cas9 expression “drives” these mutations, and site-specific recombination links gRNAs.
Homozygous diploids are sporulated, haploids with linked gRNAs are selected, and the process repeats,
incorporating exponentially increasing numbers of mutations. (B) Recombining gene drive system.
gRNAs targeting heterozygotic loci are flanked by selection markers and two of three orthogonal Lox
sites (colored triangles), which are inactivated through recombination (red triangles). Cas9 “drives”
targeted mutations, whereas Cre-Lox recombination brings like markers to the same chromosome and
activates a URA3 gene interrupted by an artificial intron. Following sporulation, the chromosome with
gRNAs is selected using the markers of interest whereas the other is counterselected using 5-FOA. (C)
Cross design. A complete fitness landscape is produced in parallel by distinct cross designs that yield final
homozygous diploids and haploids in biological replicates with unique DNA barcodes. (D) Bulk-fitness
assays. Pooled strains are assayed in replicate for competitive fitness in several environments by
sequencing barcodes to obtain strain frequencies over time. (E) Repeatability of technical replicate
competitive fitness measurements. (F) Repeatability of biological replicate competitive fitness
measurements.

Fig. 2. Fitness landscapes. (A) Correlation in observed fitness (upper right) and predicted fitness (from
inferred model, lower left, see SI section 5.1) across ploidies and environments. (B) Background-averaged
additive effect of each locus across ploidies and environments. Error bars represent 95% confidence
intervals. (C) Background-averaged pairwise epistatic effects between loci across ploidies and
environments. Weights of edges connecting loci represent the proportion of pairwise variance explained
by each interaction. Heights of bars on the perimeter correspond to the proportion of additive variance
explained by each locus in each environment. (D) Variance partitioning of broad-sense heritability from
additive and epistatic orders across ploidies and environments. (E) Cumulative distribution of the epistatic
variance explained by rank-ordered epistatic terms of all orders.

Fig. 3. Fitness-correlated trends (FCTs). (A) Schematic contrasting how global or idiosyncratic
epistasis could produce FCTs. Inset shows FCT analyzed as the effect of a mutation (Ag) on backgrounds
of different fitnesses. (B) Histogram and scatterplot of regression slopes, b, between omu and wr, and
corresponding absolute additive effects of mutations. Polarity adopted such that < 1. Total error bar
length is twice the standard error of the slope. (C) Fitness effect of RHOS5 mutation (G10S) (¢mu versus
owrt) in all haploid backgrounds at 37°C (left) and partitioned by genotypes at WHI2 (L262S) (middle)
and WHI2 and AKLI (S176P) (right). Initial SSEs—1 / SSEp=global 1s 1.21. (D) Fitness effect of AKL1
mutation in all homozygote backgrounds in the suloctidil environment, partitioned by genotypes at MKT]
(D30G), RHOS, and WHI2. Initial SSEp-1 / SSEp=gliobal 1s 1.31. (E) Median relative fit ratio between
regressions with fixed slope of b=1 and b=global, as function of number of epistatic terms removed from
observed phenotypes. Vertical lines represent interquartile range. Polarity adopted such that b < 1. (F)
Inferred fitness effect of PMAI S234C mutation in 4NQO environment across all haploid backgrounds.
Epistatic terms interacting with PMA 1 are completely removed from genotype fitnesses, then added back
sequentially (from largest to smallest). Bottom-right: full-model (inferred) and observed genotype
fitnesses, respectively. Grey line is regression slope. (G) Scatterplot and histograms of FCT regression
slopes for all data, and number of epistatic terms sufficient to recapitulate them. Horizontal lines in
histogram indicate means. Arrows, letters indicate populations presented in previous panels. Polarity
adopted such that b < 1.
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1 Design and construction of the combinatorial CRISPR gene-drive
system and library

1.1 Strains

The two parental strains used in this study, YAN548 and YAN564, differ at their mating type and
are derived from the BY4742 [13] (S288C: MATa, his3A1, ura3A0, leu2A0, lys2A0) with several
modifications required for our combinatorial CRISPR gene-drive strategy. We chose to work in this
background due to its history in studies of epistasis in yeast [1] and ease of transformation [44].

S288C is a poor sporulator [15], and we introduced the RME1 promoter allele known to in-
crease sporulation efficiency (ins-108A) in BY4742, creating YAN404. YAN407 was generated
from YAN404 by mating-type switching using a centromeric plasmid carrying the HO endonuclease
(pPAN216a_pGAL1-HO_pSTE2-HIS3_pSTE3_LEU2). We then introduced the Cre recombinase un-
der the control of the galactose promoter at the YBR209W locus using Delitto Perfetto [16], yielding
YAN525 and YAN526. The CAN1 gene was subsequently replaced with a mating type reporter
construct [17] (pSTE2-SpHIS5-pSTE3-LEU2) which expresses the HIS5 gene from Schizosaccha-
romyces pombe (orthologous to the S. cerevisiae HIS3) in MATa cells, and the LEU2 gene in MAT«
cells.

Cas9 was introduced close to the HO locus under the control of an estradiol-inducible promoter
[18] (HO::SpCas9-B112-ER), generating the final strains YAN548 and YAN564. Preliminary work
has shown that 2 1M S-estradiol is sufficient for robust Cas9 induction.

Starting strains containing specific mutations were constructed using dsDNA oligo-mediated re-
pair using Cas9-mediated double-strand break. To do so, we created a centromeric plasmid carrying
the URA3 gene that expressed the guide-RNA. Yeast cells were grown with S-estradiol to induce
Cas9, and transformed at log-phase with the guide-RNA expressing plasmid and a double-stranded
DNA oligonucleotide with the desired mutation. Cells were then recovered on SD-URA with (-
estradiol to maintain expression of Cas9 and the guide-RNA. A parallel transformation can be done
to assess the targetting efficiency as an efficient guide-RNA usually leads to far fewer surviving
colonies during the transformation due to the toxicity of unrepaired Cas9-mediated double-strand
break. Large colonies from the transformation were then grown in YPD overnight and spread on
media containing 5-FOA (1 g/L) to counterselect the plasmid expressing the guide-RNA. All strains
were then verified by Sanger sequencing.

1.2 Mutations and their selection

Mutations for our combinatorially-complete fitness landscape were chosen based on several factors.
First, we used prior information from published and unpublished experiments that suggested fitness
effects for our mutations in at least one environment. Second, due to the need to minimize guide-
RNA recognition after the desired mutation is made, we focused on amino acid changes because
synonymous mutations could also be incorporated. Third, mutations were chosen that would
target a variety of cellular processes to maximize our ability to detect global epistasis. Finally,
mutations were chosen that could be efficiently made and not negatively impact our CRISPR-Cas9
system described here (i.e., mutations should not make strains sterile, impair sporulation, or impact
galactose metabolism).

] Mutation ‘ Sequence Information ‘ Reference‘
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49

50

51

WHI2 1.262S Guide RNA: ATGGATATGTTGTGCTCCTC [37]
Chr XV L2625 DNA: GAcATGagtTGtTCCTCCGGA

L262L DNA: GAcATGcTaTGtTCCTCCGGA
PMA1 S234C Guide RNA: TGCTATTACTGGTGAATCTT [38]
Chr VII S5234C DNA: ACTGGTGAATgecTtGCTGTC
Essential gene S5234S DNA: ACTGGTGAATCecTtGCTGTC
MKT1 D30G Guide RNA: ATGGTTGACGTCTATATCCA [35]
Chr XIV D30G DNA: ACCCTGGgaATtGAtGTtAAC

D30D DNA: ACCCTGGAcATtGAtGTtAAC
RHO5 G10S Guide RNA: ATAATTGGTGATGGTGCAGT Our lab
Chr XIV G10S DNA: ATatcaGAcGGaGCAGTAGGT

G10G DNA: ATaGGaGAcGGaGCAGTAGGT
AKL1 S176P Guide RNA: TCGCGATGGATCAAGGACAC [33]
Chr II S176P DNA: CCTGTGcCtcTaATtCAcaGa

S176S DNA: CCTGTGTCtcTaATtCAcaGa
BUL2 L883F Guide RNA: CACAAACACGTTTCAAGATT [34]
Chr XIII L883F DNA: TGCCCAATtTcGAgACtTGT

L883L DNA: TGCCCAATtTgGAgACtTGT
FAS1 G588A Guide RNA: AATCGGTAGACCACCTTTAT [36]
Chr XI G588A DNA: ATCGecacGtCCtCCaTTATT
Essential gene G5H88G DNA: ATCGGacGtCCtCCaTTATT
NCS2 H71L Guide RNA: CTGAATCAGAATGTGATAAG [32]
Chr XIV H71L DNA: CTCCCCTTgagtttgagtGA

H71H DNA: CTCCCCTTgagtCAcagtGA
SCH9 P220S Guide RNA: TCTAATGGTCCTGAGTCACT [39]
Chr VIII P220S DNA: AAcGGatCaGAaTCACTAGGC

P220P DNA: AAcGGaCCaGAaTCACTAGGC
RPI1 E102D Guide RNA: GTAATGAATGCTATATCCTC Our lab
Chr IX E102D DNA: GAGCCTGAcGACATtGCtTTC

E102E DNA: GAGCCTGAaGAcATtGCtTTC

Table S1: Mutations constructed in the experiment. Lower case letters represent mutated sequences
with respect to the wild-type DNA.

1.3 Construction of guide crRNA plasmids

Our combinatorial CRISPR. gene-drive system allows a hierarchical construction of guide crRNA
arrays into a benign locus, by taking advantage of Cre-Lox recombination. Previously, we identified
three orthogonal and unidirectional recombination sites that are necessary for our design. Briefly,
our gene-drive system makes use of three types of recombining plasmids with three distinct pairs of
drug markers, which we refer to as type HygMX-KanMX, KanMX-NatMX, and NatMX-HygMX.
The three drug markers - HygMX, KanMX, and NatMX - are resistance cassettes for hygromycin
B, G418, and nourseothricin, respectively, and differ additionally by the use of paralogous TEF
promoters and synthetic terminators as in [31]. Each type is based on an HO-targeting plasmid
pAN3HOa (Figure S1), which contains the two drug marker cassettes for selection as well as ho-
mologous sequences that lead to integration of insert sequences with high efficiency. The insert
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Figure S1: gRNA integration plasmids. We use three integration plasmids with different drug
markers, Lox sites, and URA3 frameshift configurations as explained in Section 1.3.

sequences between the two drug cassettes contain one of 10 guide-RNA cassettes (each with an
SNR52 promoter mutated at non-functional regions to reduce the rate of unintended homologous
recombination, the guide-RNA, the structural RNA element and the SUP4 terminator [19]). In
addition, each drug marker is linked to their own half of URA3 (frameshifted for each drug such
that the first half of URAS3 only functions properly when the correctly framed second half of URA3
is used) which contains a splice donor or acceptor (from QCR10 [50]) and their own orthogonal
Lox site (LoxP, Lox2272, or Lox5171, with arm mutations to allow only a single recombination
event between them [31]). In the configuration found at integration, the URA3 is not functional.
However, when recombined properly by Cre recombinase, a configuration which brings like drug
markers on the same chromosome (HygMX-HygMX, for example) will produce a functional URA3,
which we can select with media lacking uracil and counterselect with media containing 5-FOA.

This system allows diploids created by mating two strains with compatible marker configurations
to be selected on media containing all three drugs (described later in section Section 1.5). Compat-
ible configurations will always include a common drug that will yield a functional URA3 after re-
combination. For example, the HygMX-KanMX configuration is compatible with KanMX-NatMX
(which will form HygMX-NatMX and KanMX-KanMX after recombination) or with NatMX-
HygMX (which will form NatMX-KanMX and HygMX-HygMX after recombination). The re-
combined ’landing pads’ are thus compatible with each other (for example, HygMX-NatMX is
compatible with NatMX-KanMX, which when recombined will form HygMX-KanMX and NatMX-
NatMX).

1.4 Final barcoding procedure

To allow bulk phenotyping of the strains, we introduced a 22mer DNA barcode (16 random nu-
cleotides and 6 known spacer nucleotides) alongside a complete LYS2 ORF at the LYS2 locus via
homologous recombination in the AKL1-RPI1 double-mutant strains prior to the final mating step.

To produce a library of uniquely barcoded plasmids, we generated an entry vector with 702 bp
homologous region upstream of the LYS2 deletion, the deleted 293 bp region immediately upstream
of the ORF, the 4179 bp LYS2 ORF, and then a 39 bp tGuol synthetic terminator. Downstream
of this terminator was a primer-binding site, pBC1, followed by the ccdB gene, which is toxic in
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Figure S2: Barcoding plasmid before barcode insertion. We integrate a random barcode at the
LYS2 locus to uniquely tag each individual in the pool.

E. coli strain DH10B. This gene was followed by 300 bp of semi-random DNA sequence (used as
“filler” for obtaining PCR bands distinct from primer dimer bands), the pBC2 primer-binding site,
and 589bp homologous to the region immediately downstream of the LYS2 deletion. Barcodes
were cloned into this plasmid at the ccdB locus via Golden Gate assembly [51, 52] in 8 independent
replicates, separately cloning in DH10B via electroporation and selecting on LB4+Ampicillin sodium
salt (100 pg/mL) agar plates (1% tryptone, 0.5% yeast extract, 0.5% sodium chloride, 1.5% agar)
after an hour of recovery in SOC media (2% tryptone, 0.5% yeast extract, 8.56mM sodium chloride,
2.5mM potassium chloride, 10mM magnesium chloride, 10mM magnesium sulfate, 20mM glucose).
Plates, which bore at least 30,000-40,000 transformant colonies each, were each scraped and cultured
in 5mL; LB4+Amp media prior to miniprepping to isolate plasmid.

To barcode AKL1-RPI1 double mutants, we first isolated 10 individual colonies of each of the
4 possible double-mutant genotypes. We split these 10 colonies into two sets of 5. Each set of
5 colonies was cultured, pooled, and transformed with one of the eight barcode plasmid libraries,
which had previously been cut with Pmel to linearize the region for integration. Transformants
were selected on SD-Lys agar plates and, to the best of our abilities, individually picked into SD-Lys
media for continued purifying growth.

1.5 Hierarchical mating procedure

The basic procedure for a cycle of mating, drive, recombination, and sporulation is as follows:
Strains with compatible guide-RNA “landing pads” and opposite mating type were mixed to
generate diploids in YPD plus ampicillin (100 pg/mL) via mating for 12-24 hours. Cells were then
passaged to YPG (1% yeast extract, 2% peptone, 2% galactose) plus ampicillin liquid media con-
taining hygromycin B (at 300 pg/mL), geneticin (at 200 pg/mL), and nourseothricin (at 100 ng/mL)
to select for diploids, with selection sustained for at least 3 generations. Cells were then transferred
to YPG containing all four drugs and at least 2uM (-Estradiol to induce Cre-recombinase and
Cas9, with selection for at least 10 generations. This generates homozygous diploids at the loci
targetted by Cas9, and combines the guide-RNA from the homologous HO loci onto the same
chromosome. The cells were then grown in SD-Ura with $-estradiol for at least 15 generations to
select for successful Cre-Lox recombinants. They then were induced to sporulate by 16-24 h growth
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in YPA (1% yeast extract, 2% peptone, 1% potassium acetate) followed by culture in SPO media
(1% potassium acetate, 0.005% zinc acetate). After 3-5 days of sporulation, haploids containing all
the mutated loci and recombined gRNA loci were selected with at least 15 generations of growth
in S/MSG-D (1.67% yeast nitrogen base lacking ammonium sulfate, 1% monosodium glutamate,
2% dextrose) lacking histidine or leucine (selecting for MATa and MAT« respectively), containing
two of the three antibiotic drugs (depending on the landing pad configuration) and 1g/L 5-FOA
to counterselect diploids. Finally, selected populations were screened for “leakers” by growing a
single colony or a small number of cells (less than about 1000) in YPD, followed by a transfer into
YPD containing the drug to which the desired haploids should not be resistant. Only specimens
sensitive to this third drug were preserved as a frozen archive and then passaged into the next
mating-drive-recombination-sporulation step.

In practice, this procedure included a variety of manipulations. This range of manipulations
demonstrates that our method is flexible and can be adapted to work within various technical
constraints. For example, when handling few strains, microtiter plates are not necessary and the
protocol can be performed in standard culture tubes. In the case of the initial double-mutant
mating, for instance, mating was in most cases conducted on YPD-agar patches, which were then
scraped and transferred into the YPG diploid selection media. All other matings were conducted
in about 90 nL. YPD liquid media in wells of 96-well round-bottom microtiter plates. Similarly,
selection of haploids after sporulation was sometimes conducted in microtiter plates (128 nL total
volume), and other times by streaking to individual colonies on SD-Leu or SD-His agar plates (with-
out 5-FOA counterselection). For all cycles except the experiment’s final cycle, individual colonies
were isolated and screened at the conclusion. Finally, depending on the scale of the cycle, diploid
selection, recombinant selection, presporulation, and sporulation steps were conducted in either
microtiter plates (shallow for selections (128 pL. media), 2-mL deep-well plates for presporulation
and sporulation) or test tubes (5 mL media unless otherwise stated).

Presporulation: Microtiter plate-based presporulation was carried out by pipetting 20 pL sat-
urated SD-Ura culture into 480 pL of YPA. Plates were shaken at 1050 rpm at 30°C for 24 hours
under a breathable membrane (VWR, 60941-086) before sporulation. Tube-based presporulation
was carried out by inoculating 5 mL YPA with 150 pL saturated SD-Ura culture and incubating
on a roller drum at 30°C for 16-24 hours.

Sporulation: Microtiter plate-based sporulation was carried out by pelleting presporulated cells
at 2000 g for 2 min, washing by resuspension in 400 nL. water, pelleting once again, and resuspending
in 400 pLL sporulation media. These plates were sealed with a breathable membrane, secured with
tape to plate shakers, and shaken at 1350 rpm at room temperature for 4-5 days. Tube-based
sporulation was carried out by pelleting tube-presporulated cell cultures and resuspending in 2 mL
sporulation media, incubating at room temperature on a roller drum for 3-4 days.

Homozygotes from the final cycle were incubated for 5 generations in YPD+Amp prior to
archival freezing, but only after fully selecting for recombination of the landing pad loci with SD-
Ura+ (-estradiol.

The final 20 generations of haploid selection in the final cycle were conducted in typical haploid
selection media, but lacking lysine, in order to select only for those haploids which retained the
barcode next to the LYS2 marker (which segregated in a Mendelian fashion).
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Figure S3: Parallel mating scheme. Biological replicates of the final strains were created via different
mating paths.

2 Genotype verification

2.1 Whole-genome sequencing

To verify the lack of systematic off-target Cas9-mediated modifications, and to rule out pervasive
aneuploidies, we performed whole-genome sequencing on 96 random clones (3 random wells from
each of 32 plates which contained 64 different strains based on the mating procedure outlined in
Section 1.5) [53] and sequenced each to approximately 100x coverage. This identified a single case
of aneuploidy with elevated read counts at three chromosomes that were consistent with disomy
[54]. In addition, it identified five credible non-synonymous mutations occurring on more than 1
strain (strongly indicating that the mutations were introduced in the hierarchical mating scheme
described in Section 1.5). Two of these (in ERG6 and QRI7) were present in just two strains each,
and the other three (in SPT7, HSL7, and FRS1) were present in 5, 6, and 33 strains, respectively.
In addition, some extra mutations were identified in single clones, which is not inconsistent given
the rate of mutations during meiosis (70% of clones had no mutations, 10% had one, 5% had two,
and the rest had poor sequencing coverage leading to what we believe are bad variant calling).
These results suggest that Cas9 does not introduce a gross excess of off-target mutations in the
genome, and that although unintended mutations do occur in our system (due to Cas9 or meiosis)
these mutations are unlikely to dominate the estimation of parameters for modeling the fitness
landscape. Notably, as explained in Main Text, biological replicates (independent crosses) were
typically in agreement with each other.

To understand whether the mutations in SPT7, HSL7, and FRS1 may have systematic effects on
our genotypes, we looked at whether they were present exclusively on any single- or double-mutant
backgrounds. We found that the FRS1 mutation was present across most backgrounds, but the
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mutations in SPT7 and HSL7 were only present on specific AKL1-RPI1 backgrounds. Notably,
fewer than half of the instances of these backgrounds in our WGS data bore these mutations.

2.2 Locus-specific multiplex PCR

To genotype the entire haploid library at all 10 primary loci and 3 putative segregating off-target
loci (FRS1, SPT7, and HSL7), we pursued a multiplexed strategy. We began by lysing all 2048
wells (not all of which contained cells) with 20 pL. yeast lysis buffer (5mg/mL Zymolyase 20T,
100 mM Sodium Phosphate pH 7.4, 10mM DTT) and 5 pL of cells straight from the freezer stock.
The enzymatic reaction was placed at 37°C for at least 45 min and then at 95°C for 2 min. The
released DNA could then be stored in the freezer overnight.

Immediately prior to the first-round PCR, we boiled these products for a minute to mix the
lysates. We then added and mixed in 25 pL. of water to the lysis products to dilute and facilitate
liquid handling. Then, we added 2l of this lysis product to the PCR master mix for the first
round PCR, mixing after addition. This master mix was for a 25 ulL Phire reaction and contained
1.3 pLL of pooled 100 pM primers. These primers represented all 13 loci. The 13 primers that added
N7 adapters to the amplicons were common across all wells. The 13 primers that added S5 adapters
contained 6 bp inline indices. These indices existed in 8 versions, each unique to a different set of
4 plates in the library (54°C annealing, 45s extension). These primers may be found in Data Table
S1.

The following day, PCR round 1 products were combined into 4 pools, taking 4 pL from each
well. We cleaned up these pools with a 1x bead purification step (AMPure beads by Beckman
Coulter) (starting volume = 42 L | eluted in 35uL ). We used KAPA polymerase for a second
round of 25 uL. PCRs to anneal unique pairs of S5/N7 indices to the amplicons across 4 reaction
plates, using 2 pL of purified round 1 product (63°C annealing, 45s extension). Several unsuccessful
reactions were repeated as necessary with diluted template.

Round 2 reaction products were then pooled and cleaned via gel extraction, followed by a final
bead purification step to remove any remaining small fragments.

The library was sequenced on a NextSeq mid output lane resulting in an average coverage of
about 2700x per locus per well in the genotype library. Loci varied in their overall coverage: the
average coverage per BUL2 locus was just about 80x, whereas the average coverage for WHI2 was
about 7300x. Other than BUL2, all other loci had an average coverage of at least 400x.

Some loci for specific wells were missing from our dataset, or otherwise had very low coverage.
To patch these holes in our genotyping data, we amplified with locus-appropriate primers in a first-
round reaction to anneal S5/N7 adapters. This reaction used Phire polymerase (54°C annealing,
45s extension) and 2uL of diluted lysate as template. These reaction products were cleaned up
with 1x Ampure beads and eluted in 30 pL. water. We took 2 nL of this reaction product into the
second round KAPA Hifi PCR reaction, which annealed pairs of S5 and N7 indices unique to each
reaction (63°C annealing, 45s extension). Each reaction product was then cleaned up separately
using 0.8x Ampure beads on 6 nL. of reaction product diluted in 10 pl. water. The final product
was eluted in 25 pL and pooled for sequencing on a MiSeq Nano lane.

2.3 Counting alleles for each locus in each well

Once we received the Illumina reads, we counted the number of reads of each allele at each locus in
each well. To do this, we followed a procedure similar to [25], examining each read in each 8-well
sequencing library (corresponding to individual fastq files) in turn. First, we checked that the first 6
bp of read 1 corresponded to a 6-bp inline index, allowing for 1 bp of mismatch. Then, we evaluated
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read quality by ensuring that the quality score of the 22bp downstream from the inline index was at
least 25. If a read met these conditions, we identified the locus associated with the read by checking
for the presence of a characteristic 8-bp sequence either upstream or downstream of the defined
allele, allowing identical matches only. For reads matching an identifiable locus, we extracted the
20- to 23-bp allele, sequentially using a list of decreasingly stringent regular expressions (using the
python regex module [55]):

‘(left 8bp)(length of allele)(right 8bp)’,

‘(left 8bp)(length of allele-2,length of allele+2)(right 8bp)’,

‘(left 8bp){e<1}(length of allele)(right 8bp){e<1}’,

‘(left 8bp){e<1}(length of allele-2 length of allele+2)(right 8bp){e<1}’,

For lists of the exact alleles and 8-bp sequences searched, see Data Table S1.

Overall, fewer than 0.5% of reads were excluded on the basis of these criteria, with no more
than 1.2% for a single library.

All alleles that occurred at least 10 times in at least one well AND were present at at least 1%
frequency for the corresponding locus in at least one well were given a unique identifier and assigned
as either a W'T, Mut, or Other allele. “WT” alleles included properly repaired pseudo-WT alleles
plus other versions with some or even none of the desired synonymous changes. This includes loci
in which it appears no gene drive occurred (i.e., sequences identical to the unmutated parental BY
sequence). “Mut” alleles included any with the desired missense change, regardless of the presence
or absence of other synonymous alleles. “Other” alleles included those whose amino acid sequence
matched neither the WT nor Mut sequence, including errant missense changes and frameshifts.
Any remaining alleles were grouped together and designated “na.”

2.4 Statistical inference of gene-drive failures

One difficulty of verifying locus correctness by PCR. in the final haploid library is that the strains
are not clonal (they are derived from the Cas9 gene-drive hierarchical mating procedure, see Sec-
tion 1.5). Thus, we needed to remove wells that had evidence of a mixture of genotypes, or strong
evidence of the incorrect genotype. We noticed that our multiplex PCR verification protocol in
Section 2.2 produced evidence of genotype mixtures at a higher rate than anticipated. However, we
observed that these supposedly incorrect wells were found more frequently when post-first-round
PCR pools were “mixed” at a given locus (i.e., were expected to have both WT and Mut alleles
present). This indicated to us that primers from the first-round PCRs were leaking through, thus
incorrectly indexing the reads, and/or PCR chimeras were forming.

We developed a statistical model to accurately estimate the true mixture proportion within
each well. For each post-first-round pool, we calculated the pool-wide frequencies of all alleles in
that pool (based on their unique identifiers). Then, we modeled a pool-wide probability p that a
given read is a “true” read and not a chimeric read. We assume that the expected frequency of
a false allele in a given well will be (1 — p)- the poolwide frequency of that allele, whereas a true
allele in a given well will have an expected frequency of p + (1 — p)- the poolwide frequency of that
allele. For a range of values of p, constraining p to be at least 50%, we calculated the probability
of the data under a multinomial model and obtained the maximum likelihood estimate of p. As
necessary, we constrained the likelihood surface to satisfy the constraint that all alleles must be
present at a frequency between 0 and 1, inclusive.

After obtaining these adjusted allele frequencies, we set out to distinguish which wells were
acceptably versus unacceptably “pure.” Since rates of apparent chimera formation varied signifi-
cantly across loci, we developed a separate purity threshold for each locus. We did this by sorting
wells by the percent of non-dominant alleles at a given locus, excluding “na” alleles. We plotted
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these proportions against the ascending rank on the x axis, forming a “hockey stick”-like curve
that shoots upward at the high end of the distribution. We found the “elbow” of this curve, i.e.,
the proportion of non-dominant allele at which the curve is furthest from a “hypotenuse” line con-
necting the end of the handle to the tip of the blade of the proverbial hockey stick. We obtained
the following thresholds from this approach:

Approximate thresholds

BUL2 3.04%, gives 93.3% pure

FAS1 1.20%, gives 95.1% pure

MKT1 1.13%, gives 96.6% pure

NCS2 1.94%, gives 96.3% pure

PMA1 2.29%, gives 91.8% pure

RHOb5 1.58%, gives 94.8% pure

SCH9 0.64%, gives 94.5% pure

WHI2 0.45%, gives 92.9% pure

AKL1 3.27%, gives 95.3% pure

RPI1 2.36%, gives 95.1% pure

For the sake of comparison, we note that overall drive failure rates inferred from sequencing
the quadruple and octuple mutants — which was not done in a pooled, chimera-genic way — were
close to 2%. In addition, many gene drive events that in fact failed may not be counted here, since
a failed drive event that yields the unmutated W'T allele when the WT allele is desired will be
retained.

All told, 1282 wells matched their expected genotype at all loci (67.8%). Since we had biological
replicates of each genotype, 875 out of 1024 possible genotypes (85.4%) were represented among
these wells. See Data Table S2 for a complete list of wells, barcodes, and genotypes that passed
these filters.

2.5 Other genotyping

In addition to genotyping the final products of the experiment, we genotyped one or more mutated
clones per genotype after each cycle of mating, drive, recombination, and selection before proceeding
with the next cycle.

Genotyping of the double mutants (after cycle 1) was conducted via Sanger sequencing and
visual examination of traces for the expected alleles.

Genotyping of the quadruple mutants (after cycle 2) and octuple mutants (after cycle 3) was
conducted via next generation sequencing.

Quadruple mutants were lysed in 50 pL yeast lysis buffer (5mg/mL Zymolyase 20T (Nacalai
Tesque), 1 M sorbitol, 100 mM sodium phosphate pH 7.4, and 20mM DTT), boiled at 95°C for
2 minutes and 2pul lysed cells were taken into a 25pL Phire polymerase PCR reaction with
1.25 uLL each of the 4 pairs of appropriate primers for 4 loci, respectively (54°C annealing, 30s
extension). After this first round of PCR, we purified the product with 0.8x beads and did a sec-
ond round KAPA Hifi polymerase PCR (25 L ) to append unique S5, N7 indices to each colony
isolate. The final product was purified with 0.8x beads once again and sequenced libraries on MiSeq
Nano 2x150bp.

Octuple mutants were lysed with 5 pLL of saturated culture in 50 nLi yeast lysis buffer as previ-
ously described. The boiled lysis product was diluted two-fold, 2 pLL of the lysis was used in into
24 nLL Phire polymerase PCR reaction containing 1 pL of each of 16 10 pM primers, each of which
add the S5, N7 adapter sequences (54°C annealing, 30s extension). Round 1 PCR products were
purified via bead cleanup at 0.8x beads ratio, and eluted with 25 pl. water. Before cleanup, some
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of wells were diluted with an additional 10 pLi to bring volume up (evaporation of PCR reactions
is frequent), then 12 L taken as starting volume for cleanup. We then performed the round 2
PCR reaction with unique pairs of S5 and N7 primers for each well, taking 2 nL of cleaned up
DNA template into a 25 pL. KAPA reaction (63°C annealing, 45s extension time). Round 2 PCR
products were diluted with an additional 10 pL. water and pooled (3-4 pL of each well). We then
performed a 0.7x bead cleanup and submitted the final purified pool for NextSeq Mid throughput
1x150bp lane.

3 Combinatorial indexing and sequencing of barcodes

3.1 Combinatorial pooling and sequencing

To map the barcodes to individual wells, we took a combinatorial indexing approach. Uniquely
barcoded AKL1-RPI1 double mutants were cultured in the central 64 wells of 32 96-well microtiter
plates (rows A-H, columns 3-10). With the help of a Biomek liquid handler, we took 10 pL of each
well-mixed well culture into either of two new 96-well plates, in which wells had been seeded with
30uL of YPD to facilitate automated liquid dispensing. 70 uL of pooled culture from each well of
these two plates was used to form 8 row-specific pools, and the process was repeated form 8 column
pools. Each pool contained approximately 1.1 mL of culture. Separately, for each of the 32 plates,
20 nL from each of 64 wells was pooled to form 32 plate pools of about 1.3 mL each.

To prepare libraries for sequencing, we extracted genomic DNA from each of the 48 pools,
eluting in 50 pL. water. In an initial PCR step using primers 5xx>pBC1-F and 7xx>pBC2-R, we
amplified the barcode loci in each pool, attaching S5 and N7 adapters to each amplicon. For these
reactions, we used 0.5-5ul of genomic DNA in a 25uL Q5 reaction (34 cycles, 54°C annealing,
45s extension). After purifying amplicons via a cleanup with 0.8x ampure beads and eluting into
33 uL. water, we performed a second round of PCR with 1 pL of purified DNA template and unique
pairs of S5 and N7 primers (KAPA 50 uL reaction, 34 cycles, 63°C annealing, 45s extension). Final
PCR products were pooled, with 2 uL of each plate pool and 8 pL. of each row and column pool
(total volume about 200 pL ). Half of this was taken for a 2-sided bead selection, first with 0.5x
beads, and next with 0.2x more beads for a 0.7x selection.

Libraries were sequenced on a NextSeq mid-output lane yielding an average coverage of about
8700 reads per barcode per pool.

3.2 Barcode assignment to single wells

Combinatorial indexing allows one to uniquely triangulate a barcode to a specific well. However,
errors due to sequencing, apparent cross-contamination due to chimeric reads or lower read cover-
age for some particular combinatorial pool can make some assignments ambiguous. We therefore
performed this assignment using a greedy procedure. First, barcodes that uniquely map to a single
well were identified. This yielded 2332 barcodes (out of 2348) that mapped to 2029 wells. Evidently,
some wells contained multiple barcodes that stem from imprecise colony picking. 16 barcodes ap-
peared to map ambiguously to multiple wells. Manual inspection found that 12 of these could be
explained by spurious reads in other pools, which meant we only had to remove four wells with
conflicting barcodes.

We additionally found about 40 wells that appeared to grow extremely slowly in SD-Ura+ -
estradiol+Amp, perhaps due to picking petite colonies. All were of the same AKL1-RPI1 genotype
(AKL1 176S, RPI1 102D) and from the same barcode transformant pool, leading us to believe this
may be due to private mutations in one of the 5 replicate pooled colonies. We manually identified,
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removed, and repicked these remaining wells from the opposite transformant pool of that same
AKL1-RPI1 genotype, in which we had seen no issues. In addition, we repicked about a dozen
barcode transformant colonies for wells with unassigned barcodes.

The second set of barcodes was assigned again by combinatorial indexing, this time with only
8 rows and 8 columns, and some spurious remaining wells that did not have a well-defined barcode
were also confirmed by Sanger sequencing.

4 Bulk phenotyping

4.1 Growth experiments

The complete frozen pool was grown in 5mL YPD by inoculating approximately 107 total cells
to produce the starting population. We then diluted these populations by 1:27 daily by passaging
781 L into 5mL fresh media (of some particular environment) in 15mL culture tubes on roller
drums. Whole population pellets, obtained from 1.5 mL of saturated culture, were stored imme-
diately at -20°C for later sequencing. As previously described [31], this protocol results in about
7 generations per day, with a daily bottleneck size of about 10® in most assay environments. We
performed two replicates of each assay and sampled for 49 generations (7 timepoints). Only 5
timepoints (representing 7, 14, 28, 42, and 49 generations) were sequenced.

The six environments chosen were: YPD + 0.4% acetic acid (YPDA), YPD + 6 mM guanidium
chloride (gu), YPD + 35pM suloctidil (suloc), YPD + 0.8 M NaCl (salt), YPD at 37°C (37C),
and SD + 10 ng/mL 4NQO (4NQO). (All environments besides 37C were at 30°C.) The YPDA
environment was chosen because preliminary experiments suggested that it had a tendency to reveal
phenotypic variance and it previously had been studied in our lab ([31]). Gu was chosen because of
its known large target size from separate work in our lab which identified a change in sign for the
effect of the MKT1 D30G mutation. Suloc and 4NQO were chosen because previous work in our lab
showed these environments to have low genotype correlation with other YPD-based environments.
37C and salt were chosen because several of the genes under study were previously reported to be
mutated in evolution under that stressor or be a QTL in that stressor (NCS2 in high temperature;
PMA1, RPI1, and RHO5 were all mutated in NaCl evolution experiments; see Table 1.2).

The degree of the stressor in suloc, YPDA, salt, and 4NQO environments was chosen empiri-
cally to maximize the stress while still permitting 7 generations of growth per day over the entire
phenotyping assay.

4.2 Amplicon barcode sequencing

Genomic DNA from cell pellets were processed as in [31]. Briefly, DNA was obtained by zymolyase-
mediated cell lysis (5 mg/mL Zymolyase 20T (Nacalai Tesque), 1 M sorbitol, 100 mM sodium phos-
phate pH 7.4, 10mM EDTA, 0.5% 3-(N,N-Dimethylmyristylammonio)propanesulfonate (Sigma,
T7763), 200 pg/mL RNAse A, and 20mM DTT) and binding on silica mini-preparative columns
with guanidine thiocyanate buffer (4 volumes of 100 mM MES pH 5, 4.125 M guanidine thiocyanate,
25% isopropanol, and 10mM EDTA). After binding, the columns were washed with a first wash
buffer (10% guanidine thiocyanate, 25% isopropanol, 10 mM EDTA) and then a second wash buffer
(80% ethanol, 10mM Tris pH 8), followed by elution into elution buffer (10 mM Tris pH 8.5).
1.5 mL of pelleted cells eluted into 100 pL routinely provided about 1-2 png of total DNA.

PCR of the barcodes was performed using a two-stage procedure previously described to attach
unique molecular identifiers (UMIs) to PCR fragments (see [31] for a detailed protocol). Primers
used in the first-stage PCR contained a priming sequence, a 7-12-nucleotide multiplexing index,
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8 random nucleotides as UMIs, and an overhang that matched the Tnb transposome. These
two primers had the configurations P1 = TCGTCG GCAGCG TCAGAT GTGTAT AAGAGA
CAGNNN NNNNNY YYYYYY AAGGTA CGATTC TGACGC A, P2 = GTCTCG TGGGCT
CGGAGA TGTGTA TAAGAG ACAGNN NNNNNN YYYYYY YAGTTG TCTCTG CTCTCG
CTA. Here N corresponds to degenerate bases used as UMIs, and Y corresponds to multiplexing
indexes.

These primers anneal on either side of the barcode sequence integrated just downstream of
LYS2, at the pBC1 and pBC2 sites, respectively. After attachment of molecular identifiers to
template molecules during three PCR cycles (20 nL. Q5 Polymerase reaction, 50°C annealing, 30s
extension), the first-stage amplicons were cleaned using Ampure beads using an automated liquid
handling protocol established for a Biomek FXp, with 1.25x Ampure beads, eluting in 35 puL . Of
the elution of this clean-up, 30 uL. was used directly as template for the second-stage PCR with
primers that contained multiplexing indexes and adapters that anneal to the Illumina flowcells (P5
and P7 primers). After 35 PCR cycles (50 pL. KAPA Hifi Polymerase reaction, 63°C annealing, 30s
extension), these final products were then purified using Ampure beads, quantified, and pooled to
approximately equimolar concentration. The PCR products were sequenced with a NovaSeq S1 full
flow cell (Illumina) by paired-end sequencing (2 x 50 bp, reading 80 bp from the P1 direction and
20 bp from the P2 direction).

We first processed our raw sequencing reads to identify and extract the indices and barcode
sequences as in [31]. Using the barcodes previously identified in Section 3.2, we can make “correc-
tions” to reads with sequencing errors by direct lookup of the lowest Levenshtein distance to the
dictionary of verified barcodes.

Finally, we can calculate the counts of each error-corrected true barcode by removing duplicate
reads, using the unique molecular identifiers from the first-stage PCRs. Frequencies calculated
from these counts are used to infer fitnesses for all segregants, as explained in Section 4.3. After
all filtering, our final mean sequencing coverages were over 1500 reads per barcode per timepoint
per replicate (averaged across all assays).

4.3 Fitness inference for time-dependent barcode frequencies

Strain fitnesses can be inferred from relative barcode frequencies over time (see Refs. [31] and
[56] for expanded information on joint inference of fitnesses using barcode frequencies). Briefly,
fitnesses are regressed as the change in relative log frequencies of strains against a selected ref-
erence per generation. This parameter is approximately the difference in instantaneous growth
rate between lineages under exponential growth. Most genotypes in our data are represented by
more than one barcode in the same assay (representing biological replicates), and each barcode was
measured in two technical replicates. In theory, we could jointly infer the biological replicates and
constrain their fitnesses to be equal. This would yield, for a combinatorially complete landscape,
exactly 2%V fitnesses which could be fit exactly with 2V coefficients (later described in Section 5.1).
However, strains with the same desired genotype may not always be identical at all other loci in
the genome (due to new mutations or off-target effects). By only performing the joint inference
on technical replicates, variance left unexplained by a full model containing 2V coefficients can
be regarded as biological variation at other loci and some measurement error (described in more
detail in Section 5.2). This joint inference is intuitively similar to a weighted average of the two
technical measurements, with weights proportional to the evidence within each replicate (which is
a combination of the number of reads and the number of timepoints measured). A standard error
for the inferred fitness parameter can be obtained through the inference process by the square root
of the inverse of the Fisher information at the maximum likelihood. This standard error can be
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interpreted as the error that can be attributed to the (overdispersed) binomial sampling error. For
our analyses, we removed datapoints with standard error above 1.

4.4 Comparison between technical, biological replicates

As shown in Figure S3, biological replicates were made for all final strains in the experiment by
proceeding through a parallel mating scheme. However, due to gene-drive failures, some strains were
not found in replicate, and it may be useful to ask the following questions: 1) How trustworthy
are the strains without replicates? and 2) What is the average effect of unintended mutations
introduced within our cross? To answer these questions, we can compare the inferred fitnesses of
technical (comparing the same barcode across assays) and biological replicates (comparing barcodes
that correspond to the same expected genotype).

Decomposing the observed phenotypic variance due to measurement error can be done by the
standard reliability estimates. The Pearson’s correlation coefficient between two technical replicates
is an estimate of the R? between the true fitness value and one fitness measurement for the barcode.
If one takes the mean of the r technical replicates, then:

O-grr/r _ 1- <:07"i,7"j>
Ogen + Ugrr/r 1+ (T - 1)<p7“z‘77‘j>

Decomposing the phenotypic variance due to extra variance in the genetic component can be
done by a similar process, by comparing the measurement values between strains bearing different
barcodes but expected to have the same genotype. Here, to perform this calculation, we constrain
ourselves to pairs of strains with the same genotype that each have a single barcode in their well
so that a single comparison can be made. The correlation coefficient between biological replicates
can be interpreted in a similar way to technical replicates, but the deviation from 1 here will reflect
both error due to extra variation in the genome and error due to measurement error (but without
tube-to-tube variation). For the purpose of our manuscript, we assume that this tube-to-tube
variation is negligible.

In plots of technical and biological replicates, density-based coloration was determined by cal-
culating each point’s mean distance to its five nearest neighbors. Distances were transformed using
the scikit MinMaxScaler() function and plotted with normalized colors based on a reversed viridis
colormap.

Technical and biological replicate comparisons for all data can be viewed in Fig. S4.

(1)
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5 Quantitative analysis of epistasis

5.1 Estimation of parameters

We model fitness ¢ as a function of the the underlying genotype which can be expressed as a sum

of combinations of N biallelic loci x1, x9,..., x that take on values z; = £1.
¢=0¢+ Z 8iTi + Z SijTiTj + Z SijkTiTiTh + ... (2)
i i>j i>j>k

This modeling framework casts additive first-order terms as the background-average effect of the
mutation, which is distinct from the effect of the mutation on some arbitrary wild-type genotype.
The terms s represent half the fitness difference between groups of individuals with and without the
mutation, or alternatively the expected deviation from the mean, positive or negative, for groups
with or without the mutation respectively. Pairwise epistatic effects are the background-average
perturbation that can be fit beyond the additive first-order term, and higher order epistatic terms
are similarly modeled. This view offers several advantages: 1) if one decides to choose a particular
genotype as the “wild-type”, only the signs of the terms need to change; 2) each coefficient is
estimated by partitioning half of the genotypes (each coefficient corresponds to a distinct slice
of the data), meaning each coefficient is equally powered; and 3) the coefficients are in principle
orthogonal from each other (there is no expected collinearity between the genotypic values of any
pair or combination of coefficients). This means that there is no “order” of coefficient fitting (one
does not have to fit the additive terms first), and fitting one coefficient does not influence another.

Coeflicients from the equation above can always be estimated by least-squares regression when
all 2V genotypes have a phenotypic measurement, though we note that we have in practice on aver-
age more than 1 phenotypic measurement per genotypes due to our biological replicates. However,
we may expect this formula to be sparser: not all mutations should have an effect, and not all pairs
of mutations should have a pairwise epistatic effect. We can regularize the estimation procedure to
yield a sparse subset using the LASSO procedure, which penalizes the least-squares regression by
the sum of absolute magnitudes of coefficients:

min, {]1¢ = &l[3 + Allslh } (3)

In the absence of collinearity (as stated above, our formulation has no collinearity between
parameters), the LASSO operation is known to be consistent and asymptotically selects the correct
subset of non-zero parameters [57]. Sparsity is controlled by the A parameter, which can be found
by cross-validation (in our case, 5-fold cross-validation was performed to reduce the extent of
overfitting). This approach removes coefficients that are approximately the same scale as the
noise. To provide 95% confidence intervals on the LASSO estimates, we performed 500 bootstrap
resampling with replacement of the data followed by model selection.

As discussed previously in Section 2.1, we identified extra mutations present in multiple strains
(FRS1, SPT7, HSLT7). Because the SPT7 and HSL7 mutations likely occurred during the mating
process (Section 1.5), they may lead to specific signals of epistasis if they themselves have an effect.
We briefly assessed this possibility by plotting the distribution of fitnesses for individuals with and
without the mutation (constraining on the backgrounds in which the mutations were identified).
In visually examining these plots, we were unable to find evidence of a systematic effect for these
mutations. Therefore, these mutations were removed from consideration before building the model
by LASSO. On the other hand, FRS1 was likely present in one of the original parents of the
experiment and thus was found in approximately 50% of final strains. Though we did identify a
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possible effect for this mutation in some environments, because it is not systematically distributed
across the library, it is only expected to affect one of the higher order epistatic terms. (We cannot
distinguish the effect of the epistatic term for the combination of strains that have FRS1 mutated
and the effect of the FRS1 mutation). However, note that we have produced strains in replicate.
Thus, the effect of the FRS1 mutation is unlikely to be consistently found in the same strains, and
its signal will therefore be unlikely to dominate the epistatic term.

In general, the broad-sense heritability captured by the model is very high as both biological
and technical replicates show high correlation (see Fig. S4). Thus, correlation of fitness measure-
ments between environments can reveal the similarities between model coefficients. If measurement
noise was too great such that it would dilute the correlation coefficients, then comparison between
the predicted fitnesses may provide a better picture of environmental similarities (given that the
coefficients were adequately estimated).

5.2 Variance partitioning

The phenotypic variability in the dataset can be partitioned into various components to quantify
their relative importance. In our experiment, we are interested in not just the broad-sense heri-
tability due to our focal loci (H?, or the variability due to genetic components), but also in the
heritability due to specific additive and epistatic components. When the model coefficients are
orthogonal, the phenotypic variance due to genetic components is trivially obtained by the sum of
squares of each coefficient:

2 2 2 2
Ooen =D 5t + D sh+ D shpt.. (4)
i i>j i>j>k

Partitioning the variance by subsets of coefficients — for example partitioning by first order
terms or pairwise epistatic terms — is therefore straightforward.

2 D Sz2

O1st = 2 (5)
gen
S s2
Ugnd = ;27323 (6)
gen

However, we note that the coefficients are estimated from the data, and variance partitioning
in this manner produces a bias. Removal of this bias is the major motivation behind mixed linear
models that estimate narrow-sense heritability [58]. This caveat is not a major concern for our
study, though, since extra sources of variation are either negligible (all the phenotypes are measured
simultaneously in the same tube) or can be well estimated (measurement error can be estimated by
replication). None of these extra sources of variation are expected to fundamentally alter only some
of the coefficients or some subset of coefficients, and thus these relative partitions are expected to
be unbiased.

6 Analysis of fitness-correlated trends

All epistatic interactions are ultimately the consequence of biophysical, physiological, or functional
interactions, which depend on the specific details of the mutations involved. However, recent work
has suggested that overall statistical patterns of epistasis follow regular and predictable fitness-
mediated trends. In this section, we describe the framework we use to study these fitness-correlated
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trends, and analyze the extent to which they can emerge as the consequence of specific idiosyncratic
interactions, instead of from “global” effects involving non-specific fitness-mediated interactions
among mutations.

6.1 Fitting regression slopes to determine fitness-correlated trends

Fitness-correlated trends (FCTs), such as diminishing returns or increasing costs, have often been
analyzed by regressing the fitness effect of a mutation, s = A¢ = Pyt — dut, against the fitness
of the background in which it occurs, ¢,,:. We refer to this as the A¢ formulation: we say that
there is no FCT if A¢ is constant over a wide range of background fitness, while a negative rela-
tionship between A¢ and ¢, corresponds to diminishing returns/increasing costs (and a positive
relationship corresponds to increasing returns/diminishing costs). However, care must be taken
when performing this analysis, because when we regress A¢ against ¢,;, measurement errors in
¢ut will lead to a negative correlation even in the absence of true fitness-correlated trends [59].

A further complication with this formulation is that the regression slope we obtain depends in
a complex way on the polarization we choose for the mutation (i.e., which allele is considered the
wild-type and which is the mutant). To see this, consider the following simple linear model for A¢
as a function of ¢y

A¢ = ¢mut - ¢wt =a; + b1¢wta (7)
and the analogous model for the fitness effect of the reversion, Ag, as a function of Gpue:

A(g = Pwt — Pmut = a2 + b2@mut- (8)

Fitting data to these models using standard methods for ordinary least-squares, we find that the
relationship between the regression slopes b1 and by is given by

by +V
by = —————
SR T v 9)
where we have defined Var[Ad
ar
V=—x—-. 10
Var[¢>wt] ( )

We can use these equations to gain some intuition for the effect of V' on the regression slopes
and their reversions (i.e., a change in polarization). First, V' > 0 by construction, and V' = 0 only
if there is no measurement error or no idiosyncratic epistasis, which in some extreme cases could be
interpreted as measurement error for all measurements. As expected, it is only possible to lack an
FCT in both polarizations (b = b2 = 0) if V' = 0. Of note, the numerator of V' can be decomposed
to Var[odmut] + Var[owt] —2Cov(Pmut, dwt ), which shows that without a specific relationship between
fitnesses of individuals with and without the mutation, V' > 0, and an FCT will always emerge in
at least one of the two polarizations.

Since in practice V' is always positive, we can see that, as shown in Figure S5 and from Equa-
tion 9, when b; > 0, then b2 < 0, no matter the difference in scale of V' and b;. Thus, in practice,
increasing returns (or diminishing cost) epistasis or no FCT in one polarization of which allele is
the “WT” always shows as diminishing returns (or increasing cost) in the reversion (when the allele
is considered to be the “Mut” instead).

When b; < 0, or when there is diminishing returns in this polarization, then the behavior of
by depends on the scale of b1 and V. First, some scenarios lead to by = 0, or no FCT in the
reversion, and these scenarios occur at the critical boundary where V' = —b;. Another critical
boundary occurs where V' = —1 — 2b1, which leads to an asymptotic boundary where by — +o0.

19



579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

V=-12b1: \V=-b1

Figure S5: Relevant regimes for slopes and their reversions in the A¢ formulation. V is from
Equation 10, b; and by are least-squares regression slopes when an allele is labeled as the WT allele
or the mutated allele (i.e., the reversion).

When b; < 0, only a small region between the critical boundaries leads to ba > 0 (the reversion
is increasing returns or diminishing cost epistasis). Outside the critical boundaries, by < 0 and
therefore diminishing returns or increasing costs is found in both polarizations of the allele. Thus,
across the full space of possible parameters, diminishing returns and increasing costs — both of
which present as a negative regression slope — are more likely to emerge than positive regression
slopes in this A¢ formulation (though we note that biology may not explore this entire parameter
space uniformly), and slopes when mutations are reverted cannot always be anticipated intuitively.
We can also ask when by = by: this will happen when b; = —0.5V. Because V' > 0, this will only
happen when b; < 0 (and therefore by < 0). Another fact from this equality is that if by = by,
then the denominator of V' has to be equal in the reversion. This means that bs = b; implies
Var(¢ye) = Var(dmut)-

Note, these complications are still present when using other regression techniques such as total
least squares that take into account measurement errors in ¢, and @pmy: [11].

In contrast, we can resolve some of these complications by making two changes to the analysis:
(1) plotting ¢ directly against ¢y, and (2) regressing a linear relationship based on the total
least squares. Firstly, this approach avoids some problems with correlation in measurement errors.
In this formulation (i.e., the ¢t/ Pmue formulation), measurement errors in both strains (or errors
in the dependent and independent variable) are taken into account [11] (we use the standard errors
estimated from Section 4.3), and we have the model functions:

(Z)mut =asz+ b3¢wt (1].)
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Figure S6: Comparison of fitness correlated trends for a simple case where the reversion of the focal
mutation is straightforward. Haploid, 4NQO environment.

and the reversion:

Dwt = ag + b4¢mut (12)

Secondly, this framing and regression method (taking into account errors in both axes) also
behaves far more intuitively: the slope in one direction is always the reciprocal of the other (i.e.,
bs = 1/by).

To obtain some intuition of how to interpret FCTs in this ¢u:/dmut formulation, we can first
attempt to interpret b3 = 1 = by. This only occurs if Var(¢y:) = Var(émut), a property of the
regression method. As described earlier, this is the regime where by = by < 0, and b; = by =0
only if Var(¢mur — ¢wt) = 0. Thus, a caveat of this ¢y /dmyr formulation is that a slope of 1 does
not always indicate the absence of an FCT. In contrast, when b3 # 1, then either b; # 0 or by # 0.
This can be shown by the fact that b3 # 1 only when Var(¢y:) # Var(¢mq:). This case necessarily
implies Var(¢mut — ¢wt) # 0, which is the necessary condition for V' > 0.

We summarize these behaviors with some example figures from our data. First, we show an
example of intuitive behavior, comparing both regressions and with mutational reversions (Fig-
ure S6). In this simple example, regression of the fitness effect of the PMA1 234C mutation leads
to a case of diminishing returns and increasing cost epistasis. When the mutation is “reverted,”
or we regress the effect of the 234S mutation, we obtain the opposite FCT (diminishing costs, or
increasing returns). These trends are also well-captured in the ¢y;/dmye formulation.

On the other hand, many examples are far less intuitive (Figure S7). In this example, regressing
the effect of the WHI2 262L mutation leads to diminishing returns. However, regressing the effect of
the reversion (262S) also leads to diminishing returns. In the ¢y /dmu: formulation, slopes behave
as expected (the reversion is the reciprocal).

Examples where FCTs can only be interpreted in one of the mutational orientation are also
found (Figure S8). In this example, the PMA1 234C mutation apparently shows no FCT, while its
reversion displays increasing cost epistasis. On the other hand, the ¢u¢/@mu: formulation robustly
shows a slope different from 1 and again behaves as the reciprocal when the mutation is reverted.
Thus, because different slopes in this formulation do not readily yield an interpretation of the
type of FCT (diminishing returns vs increasing returns), we refrain from using these plots for this
purpose. Instead, we focus on this formulation’s ability to robustly identify FCTs when it exists.
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Figure S7: Comparison of fitness correlated trends for a complicated case where the reversion of
the focal mutation is not intuitive. Haploid, high-temperature environment.

Figure S8: Comparison of fitness correlated trends for a case where reversion may be interpreted
as having no FCT. Haploid, acetic acid environment.
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For our analysis, a final complication emerges from having biological replicates. In the parameter
estimation above (Section 5.1), this does not pose a problem (there is simply unexplained variation).
However, for the purpose of analyzing fitness correlated trends, if strains have two replicates for
the wild-type and two replicates for the mutant, then there are 4 possible comparisons and it is
no longer clear how to regress this effect of the mutation. To resolve this, we perform the analysis
on the average fitness of each genotype, which can be interpreted as the best estimate of the true
fitness of the genotype. The standard error of the average genotype fitness was computed as the
mean of the errors associated with the fitnesses that were averaged.

We have shown that, in general, if slopes different from 1 are obtained in the ¢/ @mue formu-
lation, then we can interpret the data as displaying FCTs. However, what yields slopes different
from 17 If these formulations are readily interchangeable, then we may expect a single idiosyncratic
epistatic term involving the focal mutation, positive or negative, to be sufficient. However, we find
that this is not the case: in this formulation, we find that this epistatic interaction must also involve
a mutation with a non-zero additive effect.

To illustrate this, we begin with a simple schematic considering two loci A and B on top of
a background of other mutations with some fitness variance (Figure S9). We denote alternative
alleles at these loci as their letter case (A/a, and B/b), and the deviation from the mean fitness
between genotypes of alternative alleles for locus A as: sq4 = ¢4 — (¢4 + ¢a)/2. When s4 = 0,
sp =0, and s4p = 0, then plotting ¢4 vs ¢, must yield a general “cloud” of points with a slope of 1
(Figure S9, top left panel). Partitioning the cloud of points by genotypes with the B and b alleles,
respectively, only yields two superimposed clouds (because the effect of having the mutation at
locus B, sp, is zero). When s4 =0, sg # 0, and sap = 0, then the two clouds separate themselves
along the 1:1 line (Figure S9, top right panel). The regression slope for ¢4 vs ¢, is still 1. The
case where sy = 0, sp = 0, and sap # 0 is more complicated. Setting sap = F, a constant, we
find the mean deviation in fitnesses pap = E, ¢up = —FE, ¢pap = —F, and ¢, = E. If we focus
on plotting ¢4 against ¢ 45, we find that the negative deviation due to the epistatic coefficient for
¢ 4p moves the cloud to the left, while the positive deviation due to the epistatic coefficient for ¢
moves the cloud up. These coordinated movements yield a diagonal movement orthogonal to the
1:1 line. The same logic can be applied to plotting ¢,p against ¢ 45, however in this case the cloud
moves to the right and down. Thus, the two clouds separate themselves in the direction of a slope
of -1 when an epistatic term is present (Figure S9, bottom left panel). The regression slope for
¢A VS @ is still 1 even in this case and will eventually flip to be -1 as clouds separate themselves
farther and farther. Putting these orthogonal movements together, we find that the non-zero terms
for sy =0, sp # 0, and s4p # 0 lead to joint cloud movements (Figure S9, bottom right panel).
The regression slope for ¢4 vs ¢, in this final case will never be one. Because these conditions
include the sufficient condition for FCTs in the A¢ formulation, our analyses on FCTs with this
Owt | Omut formulation are conservative, and we use this formulation for its advantages: 1) errors in
fitness measurements are taken into account for both ¢y and ¢, 2) the slope for the mutation
reversion is the reciprocal, and 3) slopes different from 1 are always FCTs.

6.2 Decomposition of fitness-correlated trends

To understand whether idiosyncratic interactions lead to fitness-correlated trends, we proceeded
down two analytical avenues.

In the first, we examined the observed genotype fitnesses and removed epistatic terms one at
a time to see whether slopes converged to 1. Operationally, this involved first finding the global
linear regression line that fit the data best for a given locus in a given ploidy and environment.
We compared that regression to the best-fit line with slope of 1 by looking at the weighted sum of
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Figure S10: Three panels, one for each b threshold, showing the change in the ratios of the SSE for
lines of slope b =1 and b =global as compared with the SSE for an unconstrained regression that
minimizes SSE. Vertical bars indicate interquartile ranges.

squared errors (SSE), where a lower sum indicates a better fit to the data. After doing this, we
found the residual difference between the observed genotype fitnesses and the genotype fitnesses
as predicted by our full model of additive and epistatic terms. Then, we set the largest epistatic
term involving the focal locus to zero, regenerated the model fitness values, and added the residual
differences. To this dataset, we fit a line with the original global slope and a line with the slope 1,
again finding the SSE for each. We also fit a totally new regression line that minimized the SSE.
We then iterated this process, consecutively removing 10 epistatic terms and re-evaluating the fit
of the b =1 and b =global lines each time. Main text Figure 3E shows how the relative fit of these
two lines changes across ploidies, environments, and loci. Figure S10 shows how the SSE for b =1
and b =global compare to the minimized SSE as terms are progressively removed, revealing that
a slope of 1 tends to approach an idealized fit as terms are removed, while the global slope tends
to drift away. Figure S11 provides a more detailed look at how the ratio of SSEs for b =1 and
b =global change as terms are removed for each locus in each ploidy and environment.

In a converse analysis, we examined genotype fitnesses generated by our model of additive
and epistatic terms. For a focal locus in a given ploidy and environment, we first stripped away all
epistatic terms related to interactions between the focal locus and other loci, such that only additive
terms and interactions among background loci contributed to the modeled genotype fitnesses. This
produced a perfectly straight line with a slope of 1 and an intercept proportional to the background-
averaged additive effect of the focal mutation (as described in Section 5.1, this is twice the estimated
parameter s; where i is the focal locus). We ranked the epistatic terms involving the focal mutation
by their effect size. Then, starting with the largest, we incorporated one term at a time into the
modeled genotype fitnesses. After each term was added, we replotted the fitness of genotypes with
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Figure S12: Scatterplot and histograms of regression slopes of FCTs for all data and the percentage
of inferred epistatic (A) terms and (B) variance needed to recapitulate them. Horizontal colored
lines in the histogram illustrate the mean.

and without a mutation at the focal locus and computed the regression slope.

We defined the number of terms sufficient to recapitulate the observed FCT as the number of
added terms required to reach regression slope convergence within 0.01. More specifically, after
adding each term, we asked whether the new regression slope differed from each of the previous
three regression slopes by less than 0.01. If so, the number of terms required to reach that “plateau”
was considered the number of terms sufficient to recapitulate the observed FCT. In a minority of
cases, the final “plateau” slope differs from the full-model slope by greater than 0.01, but only in
5 instances by greater than 0.02. Figure S12 presents the fraction of potential epistatic terms and
potential epistatic variance sufficient to reach this plateau.

Note that, to permit more consistent comparisons, all loci were analyzed in the mutational
direction that placed their regression slopes between -1 and 1. In other words, if plotting genotype
fitness with A on the x axis and genotype fitness with ¢ on the y axis gave a slope greater than 1,
we would flip the axes such that the slopes would be equal to the reciprocal of the original slope
(between 0 and 1).

Plots of ¢uwi/dmue for all loci can be found in Figure S13 and Figure S14.

6.3 Quantifying the effect of landscape size in the analysis of fitness-correlated trends

The size of the fitness landscape we consider has two important effects on our ability to analyze the
origins of fitness-correlated trends. First, as the number of mutations involved increases, the number
of potential epistatic interactions between them increases exponentially. This creates more oppor-
tunities for idiosyncratic interactions to exist and to produce apparent fitness-correlated trends.
We note that this is an average effect: if we happened to choose precisely the set of mutations that
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Figure S13: Scatterplots of ¢y/@mue for all loci in haploid form.
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Figure S14: Scatterplots of ¢/ dmue for all loci in homozygous form.
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had the relevant idiosyncratic interactions, it may be possible to identify the relevant FCT in a
smaller landscape. In general, however, because theory argues that it is the accumulation of many
random idiosyncratic interactions that produces FCTs, we expect that larger landscapes become
more likely to reveal this effect. By random, we mean that idiosyncratic interactions do not obey
regular and predictable statistical patterns such as diminishing returns.

In addition to this, another key effect of landscape size is that the total number of genotypes,
and hence the total number of fitness measurements, also increases exponentially with the number
of mutations in the landscape. This reduces the influence of noise and improves our ability to
identify FCTs and the potential effects of idiosyncratic interactions in producing them. This is
critical, because linear regression analyses are known to be strongly affected by noise, which can
produce outliers: the variance on the slope estimate is (roughly) inversely proportional to the
number of data points used in the regression. Since increasing the number of loci considered in
fitness landscapes leads to an exponential increase in the total number of data points, we expect
that FCTs in significantly smaller landscapes (including landscapes like those examined in previous
studies) would therefore be more affected by noise.

To explore these effects of landscape size on the decomposition of fitness-correlated trends
(FCTs), we analyzed smaller sub-landscapes from the corresponding subsets of our data. By
definition, we cannot disentangle the potential role of idiosyncratic epistasis in creating an FCT
in a landscape consisting of only two loci. We therefore constructed landscapes with all possible
subsets of three or more of our mutations. For each subset, we analyzed the potential FCT using
our decomposition analysis (see Section 6.2). Specifically, for all subsets and all mutations that
had evidence of FCT in the full-dataset (i.e., b < 0.9), we computed the final ratio of sum-squared
errors (SSE) between a model with a slope of 1 (this is the idiosyncratic FCT model) and a model
with the global initial slope (the global FCT model), after removing all relevant epistatic terms.
The idiosyncratic model is supported when this final ratio is below 1. Note that we excluded from
this analysis subsets and mutations for which regressions were based on just 1 or 2 points.

We find that, at smaller subset sizes, there is a wide range of final relative fit ratios, indicating
that the same mutation can be found to display evidence for either the idiosyncratic model or
the global epistasis model driving FCTs. This spread of final SSE ratio can be explained by the
random effects of which mutations happen to be represented in each subset, as well as the increased
influence of noise on regression and on the inference of coefficients. However, we find that as the
subset size increases, the range narrows, with most relative fit ratios dropping below 1 (Figure S15
and Figure S16). This indicates that noise is particularly important in determining whether we can
distinguish between the idiosyncratic epistasis model and the global epistasis model, with smaller
subsets containing exponentially fewer points and hence far fewer measurements of the fitness effect
of mutations (or epistatic terms) with which to perform inference and regression. For our data,
with sparse interactions, a landscape of size greater than 8 appears sufficient to provide strong
support for the idiosyncratic model (Figure S15 and Figure S16).

To further confirm that noise is the primary driver of evidence towards the global epistasis
model (i.e., toward a relative fit ratio > 1), we investigated cases where the final relative fit ratio
remained above 1 even in our largest fitness landscapes. We found that these have a strong tendency
to be mutations in environmental/ploidy combinations with the greatest evidence for noise as
determined by the correlation between biological replicates (Figure S17). This suggests that these
outstanding cases pointing to global epistasis would be resolved toward the idiosyncratic epistasis
explanation with better measurements or with still larger landscapes. We also note that this finding
suggests that apparent differences between environments (e.g. with salt and YPDA environments
suggesting a larger role for global effects) may simply be an artifact of the inherently noisier
fitness measurements in these conditions. These lines of analysis also suggest that previous studies
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Figure S15: Effects of landscape size on the final SSE ratio (with values less than 1 indicating that
FCTs are resolved in terms of idiosyncratic interactions) in 4NQO (haploid). In left panel, each
point represents a subset of the full landscape of the corresponding size, with a particular focal
mutation (indicated by the legend) having a fitness-correlated slope of 5<0.9 (polarity adopted
such that b is < 1). The relative fit (sum-squared error, SSE) ratio between regressions with fixed
slope of b=1 and b=global was computed after all epistatic terms were removed. At right, we
show the fraction of subsets that have a final (all epistasis removed) relative fit ratio lower than 1
for each mutation, indicating support for the idiosyncratic model of fitness-correlated trends. Not
shown are 16 points for which relative fit ratio is greater than 10. Lines show median ratios for
each mutation.
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Figure S16: Effects of landscape size on the final SSE ratio (with values less than 1 indicating that
FCTs are resolved in terms of idiosyncratic interactions) in 37C (haploid). In left panel, each point
represents a subset of the full landscape of the corresponding size, with a particular focal mutation
(indicated by the legend) having a fitness-correlated slope of 5<0.9 (polarity adopted such that b
is < 1). The relative fit (sum-squared error, SSE) ratio between regressions with fixed slope of b=1
and b=global was computed after all epistatic terms were removed. At right, we show the fraction
of subsets that have a final (all epistasis removed) relative fit ratio lower than 1 for each mutation,
indicating support for the idiosyncratic model of fitness-correlated trends. Not shown are 15 points
for which relative fit ratio is greater than 10. Lines show median ratios for each mutation.

with smaller landscape sizes might not have been able to decompose FCTs as being driven by
idiosyncratic epistasis.
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Figure S17: Final relative fit ratio as a function of reproducibility in biological replicates (i.e. the
noise in individual fitness measurements). Each point represents the final sum-squared error ratio
(i.e. the relative SSE ratio between regressions with a fixed slope of b=1 and b=global) for a
given focal mutation (as indicated in legend) and environment (as indicated by arrows above, with
haploids in black and homozygous diploids in blue). Note that SSE ratios greater than 1, which
correspond to evidence for global epistasis, occur more frequently when the data is noisier. Only
loci exhibiting an FCT in at least 3 of the 12 ploidy/environment combinations are presented.

7 Captions for Data Tables

7.1 Data Table S1

Primers used in genotyping, as well as search sequences used in parsing genotypes.

7.2 Data Table S2

Barcode to well to genotype map, and measured competitive fitness of each barcode in each ploidy
and each environment.

The fitness values provided are joint inferred fitnesses from two technical replicates (two separate
fitness assays were performed simultaneously), and the standard error is of the estimate is obtained
from the effect of an overdispersed binomial sampling error on this estimate (see Section 4.3 for
more details). The estimated starting frequency of the barcode in the fitness assay in each technical
replicate is also provided.

The HSL7-SPT7-FRS1 worksheet indicates whether each well was pure for one or the other
allele, or considered impure at a stated threshold.

7.3 Data Table S3

Model parameters for each ploidy in each environment. We provide bootstrap 95% confidence
intervals for the parameters as well.
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