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The scalar auxiliary variable (SAV) method was introduced by Shen et al. in [36] and 
has been broadly used to solve thermodynamically consistent PDE problems. By utilizing 
scalar auxiliary variables, the original PDE problems are reformulated into equivalent 
PDE problems. The advantages of the SAV approach, such as linearity, unconditionally 
energy stability, and easy-to-implement, are prevalent. However, there is still an open 
issue unresolved, i.e., the numerical schemes resulting from the SAV method preserve a 
“modified” energy law according to the auxiliary variables instead of the original variables. 
Truncation errors are introduced during numerical calculations so that the numerical 
solutions of the auxiliary variables are no longer equivalent to their original continuous 
definitions. In other words, even though the SAV scheme satisfies a modified energy law, it 
does not necessarily satisfy the energy law of the original PDE models. This paper presents 
one essential relaxation technique to overcome this issue, which we named the relaxed-
SAV (RSAV) method. Our RSAV method penalizes the numerical errors of the auxiliary 
variables by a relaxation technique. In general, the RSAV method keeps all the advantages 
of the baseline SAV method and improves its accuracy and consistency noticeably. Several 
examples have been presented to demonstrate the effectiveness of the RSAV approach.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Many physical problems, such as interface dynamics [2,24,45], crystallization [12,33], thin films [19,38], polymers [11,18], 
and liquid crystallization [16,17] could be modeled by gradient flow systems which also agree with the second law of 
thermodynamics. If the total free energy is known, the gradient flow model could be obtained according to the mobility 
and the variation of free energy. Because of the nonlinear terms in the governing equation, neither the exact solution nor 
the numerical solution is easy to obtain. In general, consider the spatial-temporal domain �t := � × (0, T ]. The dissipative 
dynamics of the state variable φ is driven by

∂tφ(x, t) = −G
δE
δφ

, (x, t) ∈ �t, (1.1)
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where G is a semi-positive definite operator known as the mobility operator, and E is a functional of φ known as the free 
energy. The triplet (φ, G, E) uniquely defines the dissipative system (gradient flow dynamics). For instance, given G = 1 and 
E = ∫

�
ε2

2 |∇φ|2 + 1
4 (φ2 − 1)2dx, with ε as a model parameter, we obtain the following Allen-Cahn equation

∂tφ = ε2�φ − φ3 + φ. (1.2)

If we consider G = −� and E = ∫
�

ε2

2 |∇φ|2 + 1
4 (φ2 − 1)2dx, we obtain the Cahn-Hilliard equation

∂tφ = �(−ε2�φ + φ3 − φ). (1.3)

Given G = 1 and E = ∫
�
D|∇φ|2dx, we have the heat equation

∂tφ = D�φ, (1.4)

where D is the diffusion coefficient.
All these models discussed above have an energy dissipation property. Mainly,

d

dt
E(φ) = −(

δE
δφ

,
δφ

δt
) = −

( δE
δφ

,G
δE
δφ

)
≤ 0, (1.5)

given the boundary terms are diminished to zero. Here we have used the inner product notation ( f , g) = ∫
�

f gdx, 
∀ f , g ∈ L2(�). Numerical algorithms that solve such models shall also preserve the energy dissipation structure, i.e., follow 
the thermodynamic physical laws. Numerical schemes that preserve the energy dissipation structure are known as energy 
stable schemes. And if such structure-preserving doesn’t depend on the time step, the numerical schemes are known as 
unconditionally energy stable.

Many energy stable numerical schemes are proposed to approach the solutions of gradient flow models or dissipative 
systems. The classical approaches are the fully implicit schemes [15]. Though some of them are unconditionally energy 
stable, solving such fully implicit schemes is not trivial. Nonlinear problems have to be solved in each time step. However, 
the existence and uniqueness of the solution usually have strong restrictions on the time step, which prevent those fully 
implicit numerical schemes from being widely used. One remedy is the convex splitting method [13], which splits the non-
linear terms of free energy into the subtraction of two convex functions. It is easy to check that the convex-splitting schemes 
are unconditionally energy stable and uniquely solvable. However, the general type of second-order convex splitting schemes 
is not available. So far, it is only possible to design second-order convex-splitting schemes case-by-case [5,35,38,39]. Mean-
while, there are many other unconditionally energy stable methods, such as stabilization method [33,41], exponential time 
discretization method [8,29,40]. The stabilization method represents the nonlinear terms explicitly and adds some regular-
ization terms to relax strict constraints for the time step. Similarly, with the convex splitting method, it is usually limited to 
first-order accuracy. The exponential time discretization (ETD) method shows high-order accuracy by integrating the govern-
ing equation over a single time step and uses polynomial interpolations for the nonlinear terms. But the theoretical proofs 
for energy stability properties of high-order ETD schemes are still missing.

Recently, the numerical method named invariant energy quadratization(IEQ) or energy quadratization(EQ) is proposed 
[21,22,42–44,46–48]. It is a generalization of the method of Lagrange multipliers or auxiliary variables from [4,23]. The IEQ 
approach permits us to construct linear, second-order, unconditionally energy stable schemes, and furthermore arbitrarily 
high-order unconditionally energy stable schemes [20,21]. With many advantages of the IEQ or EQ approach, it usually 
leads to a coupled system with time-dependent coefficients. As a remedy, the SAV approach [25,30–32,34,36,37] has been 
proposed by introducing scalar auxiliary variables instead of auxiliary function variables. The SAV method also can be 
applied to a large class of gradient flow systems, which keeps the advantages of the EQ approach but usually leads to 
decoupled systems with constant coefficients. These properties make the SAV method easier to implement, so it is highly 
efficient. Besides, when the researchers applied the SAV approach to many different systems, several modified schemes were 
developed. Multiple scalar auxiliary variable (MSAV) approach [9] was proposed to solve the phase-field vesicle membrane 
model where two auxiliary variables were introduced to match two additional penalty terms enforcing the volume and 
surface area. If using the introduced scalar variable to control both the nonlinear and the explicit linear terms, one highly 
efficient SAV approach was developed [26], which spent half of the time compared with the original SAV approach while 
keeping all its other advantages. One stabilized-scalar auxiliary variable (S-SAV) [27] approach was proposed to solve the 
phase-field surfactant model, which is a decoupled scheme and allowed to be solved step by step. For the phase-field 
surfactant model, the authors in [50] also presented certain subtle explicit-implicit treatments for stress and convective 
terms to construct the linear, decoupled, unconditionally energy stable schemes based on the classical SAV approach.

However, there is still a big gap for the IEQ or SAV method, making them not as perfect as expected. Mainly, these 
two methods preserve a “modified” energy law according to the auxiliary variables instead of the original variables. This 
inconsistency introduces errors during the computation. In the end, even though the IEQ or SAV schemes preserve the 
“modified” energy law, they are not necessarily preserving the original energy law, i.e., the energy law for the original 
PDE models might be violated by the numerical solutions. This is known in the community, but so far, no good remedy 
is available yet for the SAV schemes, with the IEQ schemes partially addressed in [49]. This motivates our research in this 
paper. With a novel relaxation step, we effectively penalize the inconsistency between numerical solutions for the auxiliary 
2
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variables and their continuous definitions. Thus we name this new approach the relaxed-SAV (RSAV) method. Through the 
RSAV method, we are able to design novel linear, second-order, unconditionally energy stable schemes, which keep the 
advantages of the baseline SAV method and preserve the original energy law. It turns out that the relaxation approach 
effectively improves the accuracy and consistency of the SAV method noticeably.

The rest of this paper is organized as follows. In Section 2, we revisit the baseline SAV method for the general gradient 
flow system. After that, we propose our remedy: the relaxed SAV method, which we named the RSAV method. The energy 
stability properties of the RSAV method are proved rigorously in Section 3. Then, we briefly illustrate that the relaxation 
technique can be easily applied to variations of the SAV method in Section 4. Then in Section 5, several specific examples 
and numerical tests are provided to verify the accuracy and effectiveness of the proposed relaxed SAV numerical schemes. 
In the end, we give a brief conclusion.

2. A brief review of the SAV method

Consider the general gradient flow model

∂φ

∂t
= −G

δE
δφ

, (2.1)

where φ is the state variable, E is the free energy, and G is a semi-positive definite operator for dissipative systems (and 
a skew-symmetric operator for reversible systems or Hamiltonian systems). In the rest of this paper, we consider periodic 
boundary conditions for simplicity, though all our results can be applied to models with thermodynamically consistent 
boundary conditions.

For the general gradient flow model (2.1), it has the following energy law

d

dt
E(φ) = (

δE
δφ

,
∂φ

∂t
) = −

( δE
δφ

,G
δE
δφ

)
. (2.2)

When G is semi-positive definite, we have dE
dt ≤ 0, and when G is a skew-symmetric operator, we have dE

dt = 0. Here we 
use the notation, ( f , g) = ∫

�
f gdx, ∀ f , g ∈ L2(�). The induced norm will be denoted as ‖ f ‖ = √

( f , f ).
Following the notations in [36], we start with a simplified free energy

E =
∫
�

(1

2
φLφ + F (φ)

)
dx, (2.3)

where L is a linear operator, and F is the bulk free energy density. Also, we denote the identity operator as I that will be 
used in the rest of this paper. Then the gradient flow model in (2.1) is specified as

∂tφ = −G(Lφ + F ′(φ)), (2.4)

with the following energy law

dE
dt

=
∫
�

δE
δφ

∂φ

∂t
dx = −

(
Lφ + F ′(φ),G(Lφ + F ′(φ))

)
. (2.5)

For the SAV method, a scalar auxiliary variable q(t) is introduced as

q(t) := Q (φ) =
√√√√

∫
�

(F (φ) − 1

2
γ0φ2)dx+ C0, (2.6)

where C0 > 0 is a constant making sure Q (φ) is well-defined, i.e., 
∫
�
(F (φ) − 1

2γ0φ
2)dx + C0 > 0. Here γ0 is a regular-

ization parameter that was first introduced in [7]. With the scalar auxiliary variable q(t), the gradient flow model (2.4) is 
reformulated into an equivalent form

∂φ

∂t
= −G

(
Lφ + γ0φ + q(t)

Q (φ)
V (φ)

)
, (2.7a)

dq(t)

dt
= 1

2Q (φ)

∫
�

V (φ)∂tφdx, V (φ) = F ′(φ) − γ0φ. (2.7b)

Denote the modified energy Ê as

Ê =
∫ (1

2
φLφ + 1

2
γ0φ

2
)
dx+ q2 − C0. (2.8)
�

3
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The reformulated model (2.7) has the following energy law

dÊ

dt
=

∫
�

δ Ê

δφ

∂φ

∂t
dx+ δ Ê

δq

dq

dt
(2.9a)

= −
(
Lφ + γ0φ + q(t)

Q (φ)
V (φ),G(Lφ + γ0φ + q(t)

Q (φ)
V (φ))

)
. (2.9b)

Remark 2.1. With the SAV transformation, numerical algorithms can be introduced to solve the equivalent model in (2.7)
that in turn solve the original model in (2.4), since (2.7) and (2.4) are equivalent.

Consider the time domain [0, T ], and we discretize it into equally distanced meshes 0 = t0 < t1 < · · · < tN = T , with 
ti = iδt and δt = T

N . Then we use (•)n+1 to represent the numerical approximation of (•) at tn+1. With these notations, we 
recall the second-order numerical schemes designed for the reformulated model in (2.7). In particular, the following two 
schemes can be easily obtained.

Scheme 2.1 (Second-order SAV-BDF2 Scheme).

3φn+1 − 4φn + φn−1

2δt
= −Gμn+1, (2.10a)

μn+1 = Lφn+1 + γ0φ
n+1 + qn+1

Q (φ
n+1

)
V (φ

n+1
), (2.10b)

3qn+1 − 4qn + qn−1

2δt
=

∫
�

V (φ
n+1

)

2Q (φ
n+1

)

3φn+1 − 4φn + φn−1

2δt
dx, (2.10c)

where φn+1 = 3
2φn − 1

2φn−1 and V (φ
n+1

) = F ′(φn+1
) − γ0φ

n+1
.

The SAV-BDF2 Scheme 2.1 has the following discrete energy law.

Theorem 2.1. The Scheme 2.1 is unconditionally energy stable in the sense that [37]

1

4
[(φn+1, (L+ γ0 I)φ

n+1) + (2φn+1 − φn, (L+ γ0 I)(2φ
n+1 − φn))] + 1

2
[(qn+1)2 + (2qn+1 − qn)2]

− 1

4
[(φn, (L+ γ0 I)φ

n) + (2φn − φn−1, (L+ γ0 I)(2φ
n − φn−1))] − 1

2
[(qn)2 + (2qn − qn−1)2]

≤ −δt(Gμn+1,μn+1).

Secondly, if we use the semi-implicit Crank-Nicolson method for the time discretization, we will have the SAV-CN scheme 
as below.

Scheme 2.2 (Second-order SAV-CN Scheme).

φn+1 − φn

δt
= −Gμn+ 1

2 , (2.12a)

μn+ 1
2 = Lφn+ 1

2 + γ0φ
n+ 1

2 + qn+ 1
2

Q (φ
n+ 1

2 )

V (φ
n+ 1

2 ), (2.12b)

qn+1 − qn

δt
=

∫
�

V (φ
n+ 1

2 )

2Q (φ
n+ 1

2 )

φn+1 − φn

δt
dx, (2.12c)

where φn+ 1
2 = 3

2φn − 1
2φn−1 and V (φ

n+ 1
2 ) = F ′(φn+ 1

2 ) − γ0φ
n+ 1

2 .

The SAV-CN scheme has the following discrete energy law.

Theorem 2.2. The Scheme 2.2 is unconditionally energy stable in the sense that [37]

1
(φn+1, (L+ γ0 I)φ

n+1) + (qn+1)2 − 1
(φn, (L+ γ0 I)φ

n) − (qn)2 = −δt(Gμn+1,μn+1).

2 2

4
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3. Our remedy: the relaxed SAV (RSAV) method

Notice the definition in (2.6) tells us q(t)
Q (φ)

= 1. Hence, we can observe the two energies (2.3) and (2.8) are equivalent 
in the PDE level. Meanwhile, the two PDE models (2.4) and (2.7) are equivalent. However, after temporal discretization, the 
numerical results of q(t) and Q (φ) are not equal anymore, which means the discrete energies of (2.3) and (2.8) are not 
necessarily equivalent anymore. The major issue is that qn+1 is no longer equal to Q (φn+1) numerically. Thus, an energy 
stable scheme that satisfies the modified energy law in (2.8) does not necessarily satisfy the original energy law in (2.3).

To fix the inconsistency issue for qn+1 and Q (φn+1) (that are supposed to be equal as introduced in (2.6)), we propose 
a relaxation technique to penalize the difference between qn+1 and Q (φn+1). As will be clear in the following sections, the 
RSAV method introduces negligible extra computational cost, but it inherits all the baseline SAV method’s good properties.

If we utilize the semi-implicit BDF2 time marching method, we have the following RSAV-BDF2 scheme.

Scheme 3.1 (Second-order RSAV-BDF2 Scheme). We can update φn+1 via the following two steps:

• Step 1. Calculate the intermediate solution (φn+1, q̃n+1) from the baseline SAV method.

3φn+1 − 4φn + φn−1

2δt
= μn+1, (3.1a)

μn+1 = −G
(
Lφn+1 + γ0φ

n+1 + q̃n+1

Q (φ
n+1

)
V (φ

n+1
)
)
, (3.1b)

3q̃n+1 − 4qn + qn−1

2δt
=

∫
�

V (φ
n+1

)

2Q (φ
n+1

)

3φn+1 − 4φn + φn−1

2δt
dx, (3.1c)

Where φn+1 = 3
2φn − 1

2φn−1 and V (φ
n+1

) = F ′(φn+1
) − γ0φ

n+1
.

• Step 2. Update the scalar auxiliary variable qn+1 via a relaxation step as

qn+1 = ξ0q̃
n+1 + (1− ξ0)Q (φn+1), ξ0 ∈ V. (3.2)

Here, V is a set defined by V = V1 ∩ V2, where

V1 = {ξ |ξ ∈ [0,1]}, (3.3a)

V2 =
{
ξ |1

2
[(qn+1)2 + (2qn+1 − qn)2] − 1

2
[(q̃n+1)2 + (2q̃n+1 − qn)2]

≤ δtη(Gμn+1,μn+1), qn+1 = ξ q̃n+1 + (1− ξ)Q (φn+1)
}
. (3.3b)

Here, η ∈ [0, 1] is an artificial parameter that can be manually assigned.

Several vital observations for Scheme 3.1 are given as follows.

Remark 3.1. We emphasis that the set V in (3.2) is non-empty by noticing 1 ∈ V .

Remark 3.2. Scheme 3.1 is second-order accurate in time. In particular, the relaxation step in (3.2) does not affect the order 
of accuracy in time. Notice q̃n+1 = Q (φ(x, tn+1)) + O (δt2) and Q (φn+1) = Q (φ(x, tn+1)) + O (δt2). Hence

qn+1 = ξ0q̃
n+1 + (1− ξ0)Q (φn+1) = Q (φ(x, tn+1)) + O (δt2).

Remark 3.3 (Optimal choice for ξ0). Here we explain the optimal choice for the relaxation parameter ξ0 in (3.2). ξ0 can be 
chosen as a solution of the following optimization problem,

ξ0 = min
ξ∈[0,1] ξ, s.t.

1

2
[(qn+1)2 + (2qn+1 − qn)2] − 1

2
[(q̃n+1)2 + (2q̃n+1 − qn)2] ≤ δtη(Gμn+1,μn+1), (3.4)

with qn+1 = ξ q̃n+1 + (1 − ξ)Q (φn+1). This can be simplified as

ξ0 = min
ξ∈[0,1] ξ, s.t. aξ2 + bξ + c ≤ 0, (3.5)

where the coefficients are
5
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a = 5

2
(q̃n+1 − Q (φn+1))2,

b = (q̃n+1 − Q (φn+1))(5Q (φn+1) − 2qn),

c = 1

2
[(Q (φn+1))2 + (2Q (φn+1) − qn)2 − (q̃n+1)2 − (2q̃n+1 − qn)2] − δtη(Gμn+1,μn+1).

Notice the fact δtη(Gμn+1, μn+1) ≥ 0, and a + b + c ≤ 0. Given a �= 0, the optimization problem in (3.5) can be solved as

ξ0 = max{0, −b − √
b2 − 4ac

2a
}.

Remark 3.4. The RSAV method could refrain the SAV from constantly deviating from the original definition. As presented 
in Step 2, we could see that ξ0 ∈ [0,1], when ξ0 =1, i.e., qn+1 = q̃n+1, this is the original SAV method; when ξ0 =0, qn+1 =
Q (φn+1) and the discrete energies of (2.3) and (2.8) are equivalent, and when ξ0 ∈(0,1), then qn+1 is a linear combination 
of q̃n+1 and Q (φn+1). This will bring the discrete energy of (2.8) closer to the discrete energy of (2.3) by penalizing the 
difference between the numerical approximation of the scalar auxiliary variable, q̃n+1 and its original definition, Q (φn+1).

Theorem 3.1. The Scheme 3.1 is unconditionally energy stable.

Proof. According to the Theorem 2.1, we could get

1

4
[(φn+1, (L+ γ0 I)φ

n+1) + (2φn+1 − φn, (L+ γ0 I)(2φ
n+1 − φn))] + 1

2
[(q̃n+1)2 + (2q̃n+1 − qn)2]

− 1

4
[(φn, (L+ γ0 I)φ

n) + (2φn − φn−1, (L+ γ0 I)(2φ
n − φn−1))] − 1

2
[(qn)2 + (2qn − qn−1)2]

≤ −δt(Gμn+1,μn+1),

for the first step of the Scheme 3.1. At the same time, we could get

1

2
[(qn+1)2 + (2qn+1 − qn)2] − 1

2
[(q̃n+1)2 + (2q̃n+1 − qn)2] ≤ δtη(Gμn+1,μn+1), (3.8)

from (3.2). Adding the above two equations together, we could have

1

4
[(φn+1, (L+ γ0 I)φ

n+1) + (2φn+1 − φn, (L+ γ0 I)(2φ
n+1 − φn))] + 1

2
[(qn+1)2 + (2qn+1 − qn)2]

− 1

4
[(φn, (L+ γ0 I)φ

n) + (2φn − φn−1, (L+ γ0 I)(2φ
n − φn−1))] − 1

2
[(qn)2 + (2qn − qn−1)2]

≤ −δt(1− η)(Gμn+1,μn+1) ≤ 0,

since 1 − η ≥ 0. This completes the proof. �
Scheme 3.2 (Second-order RSAV-CN Scheme). We update φn+1 via the following two steps:

• Step 1. Calculate the intermediate solution (φn+1, q̃n+1) using the baseline SAV-CN method as below.

φn+1 − φn

δt
= −Gμn+ 1

2 , (3.10a)

μn+ 1
2 = Lφn+ 1

2 + γ0φ
n+ 1

2 + q̃n+ 1
2

Q (φ
n+ 1

2 )

V (φ
n+ 1

2 ), (3.10b)

q̃n+1 − qn

δt
=

∫
�

V (φ
n+ 1

2 )

2Q (φ
n+ 1

2 )

φn+1 − φn

δt
dx. (3.10c)

• Step 2. Update the scalar auxiliary variable qn+1 as

qn+1 = ξ0q̃
n+1 + (1− ξ0)Q (φn+1), ξ0 ∈ V, (3.11)

with the feasible set V defined as V = V1 ∩ V2, where

V1 = {ξ |ξ ∈ [0,1]}, (3.12a)

V2 =
{
ξ |(qn+1)2 − (q̃n+1)2 ≤ δtη(Gμn+ 1

2 ,μn+ 1
2 ), qn+1 = ξ q̃n+1 + (1− ξ)Q (φn+1)

}
. (3.12b)
6
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Similarly, we have the following critical observations for Scheme 3.2.

Remark 3.5. The set V in (3.11) is non-empty, given that 1 ∈ V .

Remark 3.6. The Scheme 3.2 is second-order accurate in time. Because the relaxation step in (3.11) doesn’t not affect the 
order of accuracy. Notice q̃n+1 = Q (φ(x, tn+1)) + O (δt2) and Q (�n+1) = Q (φ(x, tn+1)) + O (δt2). Hence

qn+1 = ξ0q̃
n+1 + (1− ξ0)Q (φn+1) = Q (φ(x, tn+1)) + O (δt2).

Remark 3.7 (Optimal choice for ξ0). Here we elaborate the optimal choice for the relaxation parameter ξ0. We can choose ξ0
as the solution of the following optimization problem

ξ0 = min
ξ∈[0,1] ξ, s.t. (qn+1)2 − (q̃n+1)2 ≤ δtη(μn+ 1

2 ,Gμn+ 1
2 ). (3.13)

This can be simplified as

ξ0 = min
ξ∈[0,1] ξ, s.t. aξ2 + bξ + c ≤ 0, (3.14)

where the coefficients are

a = (q̃n+1 − Q (φn+1))2, b = 2
(
q̃n+1 − Q (φn+1)

)
Q (φn+1), (3.15a)

c = [Q (φn+1)]2 − (q̃n+1)2 − δtη(μn+ 1
2 ,Gμn+ 1

2 ). (3.15b)

Notice a + b + c < 0. Given a �= 0, the solution to (3.13) is given as

ξ0 = max{0, −b − √
b2 − 4ac

2a
}.

Theorem 3.2. The Scheme 3.2 is unconditionally energy stable.

Proof. For the step in 3.10, thanks to the Theorem 2.2, we could get

1

2
(φn+1, (L+ γ0 I)φ

n+1) + (q̃n+1)2 − 1

2
(φn, (L+ γ0 I)φ

n) − (qn)2 = −δt(Gμn+ 1
2 ,μn+ 1

2 ). (3.16)

From (3.11), we know

(qn+1)2 − (q̃n+1)2 ≤ δtη(Gμn+ 1
2 ,μn+ 1

2 ). (3.17)

Adding two equations (3.16) and (3.17), and acknowledging the inequality 1 − η ≥ 0, we could arrive at

1

2
(φn+1, (L+ γ0 I)φ

n+1) + (qn+1)2 − 1

2
(φn, (L+ γ0 I)φ

n) − (qn)2

≤ −δt(1− η)(Gμn+ 1
2 ,μn+ 1

2 ) ≤ 0.

This completes the proof. �
4. Relaxation techniques for the variations of the SAV method

Given the popularity of the SAV method, several variations are proposed to apply in different situations [3,9,10,14,20,28]. 
Since our proposed relaxation technique doesn’t restrict the specific form of the scalar auxiliary variables, our RSAV method 
can be easily extended to some SAV variations.

As one example, we explain the idea based on the multiple scalar auxiliary variable (MSAV) method [9]. To present the 
MSAV method [9], we consider a more general form of the free energy

E =
∫
�

(1

2
φLφ +

k∑
i=1

Fi(φ)
)
dx, (4.1)

where L is a linear operator, and Fi(φ), i = 1, 2, · · · , k are the bulk potentials. Then the general gradient flow model is 
given as
7
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∂φ

∂t
= −G

[
Lφ +

k∑
i=1

F ′
i (φ)

]
, (4.2)

which has the following energy law

d

dt
E(φ) = (

δE
δφ

,
∂φ

∂t
) = −

([
Lφ +

k∑
i=1

F ′
i (φ)

]
,G

[
Lφ +

k∑
i=1

F ′
i (φ)

])
. (4.3)

When G is semi-positive definite, we have dE
dt ≤ 0, and when G is a skew-symmetric operator, we have dE

dt = 0. For the 
problem in (4.2), multiple scalar auxiliary variables are introduced as

qi(t) := Q i(φ) =
√√√√

∫
�

(Fi(φ) − 1

2
γiφ

2)dx+ Ci, i = 1,2, · · · ,k. (4.4)

Here Ci are positive constants that make sure qi(t) are well defined. And γi are the regularization constants [7]. With the 
scalar auxiliary variables qi(t), the gradient flow model (4.2) can be reformulated into an equivalent form

∂φ

∂t
= −G

(
Lφ +

k∑
i=1

γiφ +
k∑

i=1

qi(t)

Q i(φ)
Vi(φ)

)
, (4.5a)

dq j(t)

dt
= 1

2Q j(φ)

∫
�

V j(φ)∂tφdx, j = 1,2, · · · ,k, (4.5b)

where Vi(φ) = F ′
i (φ) − γiφ, i = 1, ..., k.

With the introduction of the multiple scalar auxiliary variables in (4.4), we can get the modified free energy as:

Ê =
∫
�

(1

2
φLφ +

k∑
i=1

γi

2
φ2

)
dx+

k∑
i=1

(q2i − Ci). (4.6)

For the reformulated model (4.5), it has the following energy law

dÊ

dt
=

∫
�

δ Ê

δφ

∂φ

∂t
dx+

k∑
i=1

δ Ê

δqi

dqi
dt

= −
([

Lφ +
k∑

i=1

γiφ +
k∑

i=1

qi(t)

Q i(φ)
Vi(φ)

]
,G

[
Lφ +

k∑
i=1

γiφ +
k∑

i=1

qi(t)

Q i(φ)
Vi(φ)

])
.

In a similar manner, we introduce the relaxation technique to the MASV method to fix the inconsistency issues between 
qi(t) and Q i(φ) after discretization. The two second-order MSAV schemes could be improved as follows.

Scheme 4.1 (Second-order RMSAV-BDF2 Scheme). We update φn+1 via the following two steps:

• Step 1, Calculate the intermediate solution (φn+1, q̃n+1) using the MSAV-BDF2 method as below.

3φn+1 − 4φn + φn−1

2δt
= −Gμn+1, (4.8a)

μn+1 = Lφn+1 +
k∑

i=1

γiφ
n+1 +

k∑
i

q̃i
n+1

Q i(φ
n+1

)
Vi(φ

n+1
), (4.8b)

3q̃ j
n+1 − 4qnj + qn−1

j

2δt
=

∫
�

V j(φ
n+1

)

2Q j(φ
n+1

)

3φn+1 − 4φn + φn−1

2δt
dx, j = 1,2, · · · ,k, (4.8c)

where φn+1 = 3
2φn − 1

2φn−1 and Vi(φ
n+1

) = F ′
i (φ

n+1
) − γiφ

n+1
, i = 1, 2, · · · , k.

• Step 2, update the k scalar auxiliary variables as

qn+1 = ξ0q̃i
n+1 + (1− ξ0)Q i(φ

n+1), i = 1,2, · · · ,k, ξ0 ∈ V, (4.9)
i

8
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where the feasible set V is defined as V = V1 ∩ V2 with

V1 = {ξ |ξ ∈ [0,1]}, (4.10a)

V2 =
{
ξ |1

2

k∑
i=1

[
(qn+1

i )2 + (2qn+1
i − qni )

2 − ((q̃n+1
i )2 + (2q̃n+1

i − qni )
2)

]

≤ δtη(Gμn+1,μn+1), qn+1
i = ξ q̃n+1

i + (1 − ξ)Q (φn+1), i = 1,2, · · · ,k
}
, η ∈ [0,1]. (4.10b)

Remark 4.1 (Optimal choice for ξ0). Similarly, we can propose an optimal choice for the relaxation parameter ξ0 as the solution 
to an optimization problem. And in the end,

ξ0 = max{0, −b − √
b2 − 4ac

2a
},

with the coefficients given by

a = 5

2

k∑
i=1

(q̃i
n+1 − Q i(φ

n+1))2,

b =
k∑

i=1

(q̃i
n+1 − Q i(φ

n+1))(5Q i(φ
n+1) − 2qni ),

c = 1

2

k∑
i=1

[(Q i(φ
n+1))2 + (2Q i(φ

n+1) − qni )
2 − (q̃i

n+1
)2 − (2q̃i

n+1 − qni )
2] − δtη(Gμn+1,μn+1).

Theorem 4.1. The Scheme 4.1 is unconditionally energy stable.

Proof. For the first step of the Scheme 4.1, we could get

1

4
[(φn+1, (L+

k∑
i=1

γi I)φ
n+1) + (2φn+1 − φn, (L+

k∑
i=1

γi I)(2φ
n+1 − φn))]

− 1

4
[(φn, (L+

k∑
i=1

γi I)φ
n) + (2φn − φn−1, (L+

k∑
i=1

γi I)(2φ
n − φn−1))]

+ 1

2

k∑
i=1

[(q̃n+1
i )2 + (2q̃n+1

i − qi
n)2] − 1

2

k∑
i=1

[(qin)2 + (2qi
n − qi

n−1)2]

≤ −δt(Gμn+1,μn+1).

At the same time, we know from (4.9), we could know

1

2

k∑
i=1

[(qin+1)2 + (2qi
n+1 − qn)2] − 1

2

k∑
i=1

[(q̃n+1
i )2 + (2q̃n+1

i − qi
n)2] ≤ δtη(Gμn+1,μn+1). (4.13)

Adding the above two equations together, we could have

1

4
[(φn+1, (L+

k∑
i=1

γi I)φ
n+1) + (2φn+1 − φn, (L+

k∑
i=1

γi I)(2φ
n+1 − φn))]

− 1

4
[(φn, (L+

k∑
i=1

γi I)φ
n) + (2φn − φn−1, (L+

k∑
i=1

γi I)(2φ
n − φn−1))]

+ 1

2

k∑
i=1

[(qin+1)2 + (2qi
n+1 − qi

n)2] − 1

2

k∑
i=1

[(qin)2 + (2qi
n − qi

n−1)2]

≤ −δt(1− η)(Gμn+1,μn+1) ≤ 0,

by using the fact 1 − η ≥ 0. This completes the proof. �

9
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Then, if we use the semi-implicit CN time discretization, we can obtain the following second-order scheme.

Scheme 4.2 (Second-order RMSAV-CN Scheme). We update φn+1 via the following two steps:

• Step 1. Calculate the intermediate solution

φn+1 − φn

δt
= −Gμn+ 1

2 , (4.15a)

μn+ 1
2 = Lφn+ 1

2 +
k∑

i=1

γiφ
n+ 1

2 +
k∑

i=1

q̃
n+ 1

2
i

Q i(φ
n+ 1

2 )

Vi(φ
n+ 1

2 ), (4.15b)

q̃n+1
j − qnj

δt
=

∫
�

V j(φ
n+ 1

2 )

2Q j(φ
n+ 1

2 )

φn+1 − φn

δt
dx, j = 1,2, · · · ,k. (4.15c)

• Step 2. Update the scalar auxiliary variable as

qi
n+1 = ξ0q̃

n+1
i + (1− ξ0)Q i(φ

n+1), i = 1,2, · · · ,k, ξ0 ∈ V, (4.16)

with the feasible set V defined as V = V1 ∩ V2, where

V1 = {ξ |ξ ∈ [0,1]}, (4.17a)

V2 =
{
ξ |

k∑
i=1

[
(qn+1

i )2 − (q̃n+1
i )2

]
≤ δtη(Gμn+ 1

2 ,μn+ 1
2 ),

qn+1
i = ξ q̃n+1

i + (1− ξ)Q (φn+1), i = 1,2, · · · ,k
}
, η ∈ [0,1]. (4.17b)

Remark 4.2. Similarly, the optimal choice for the relaxation parameter can be calculated as ξ0 = max{0, −b−
√
b2−4ac
2a } with 

the coefficients given by

a =
k∑

i=1

(q̃n+1
i − Q i(φ

n+1))2, b =
k∑

i=1

2
(
q̃n+1
i − Q i(φ

n+1)
)
Q i(φ

n+1), (4.18a)

c =
k∑

i=1

[Q i(φ
n+1)]2 −

k∑
i=1

(q̃n+1
i )2 − δtη(μn+ 1

2 ,Gμn+ 1
2 ). (4.18b)

Theorem 4.2. The Scheme 4.2 is unconditionally energy stable.

Proof. For the first step of (4.15), we could get

(φn+1, (L+
k∑

i=1

γi I)φ
n+1) +

k∑
i=1

(q̃n+1
i )2 − (φn, (L+

k∑
i=1

γi I)φ
n) −

k∑
i=1

(qi
n)2 = −δt(Gμn+ 1

2 ,μn+ 1
2 ).

From (4.16), we know

k∑
i=1

(qi
n+1)2 −

k∑
i=1

(q̃n+1
i )2 ≤ δtη(Gμn+ 1

2 ,μn+ 1
2 ). (4.19)

Adding above two equations, and using 1 − η ≥ 0, we could arrive at

(φn+1, (L+
k∑

i=1

γi I)φ
n+1) +

k∑
i=1

(q̃n+1
i )2 − (φn, (L+

k∑
i=1

γi I)φ
n) −

k∑
i=1

(qi
n)2 ≤ −δt(1 − η)(Gμn+ 1

2 ,μn+ 1
2 ) ≤ 0.

This completes the proof. �

10
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As another example, the relaxation technique can be easily applied to the Runge-Kutta SAV methods [1,20]. The details 
are omitted for brevity. Interested readers are encouraged to explore the schemes.

Meanwhile, there are still some open problems to be addressed. The SAV method has also been extended for solving 
the dispersive equations like the Schrödinger/Gross-Pitaevaskii equation [3,14]. Applying this relaxation technique to such 
problems doesn’t seem straightforward since the dispersive equations require the preservation of the invariants. How to 
refrain the difference between the scalar auxiliary variable and its original definition numerically for the dispersive equations 
is still an open problem. Besides, the SAV method has also been extended to study the time and space fractional PDEs 
[10,28]. How to resolve the inconsistency issues of the SAV method for these fractional problems also brings huge challenges 
and opportunities. We plan to address these issues in our future research.

5. Numerical results

In this section, we implement the proposed numerical algorithms and apply them to several classical phase-field models 
that include the Allen-Cahn (AC) equation, the Cahn-Hilliard (CH) equation, the Molecular Beam Epitaxy (MBE) model, the 
phase-field crystal (PFC) model and the diblock copolymer model.

For simplicity, we only consider the phase-field models with periodic boundary conditions. However, we emphasize that 
our proposed algorithms apply to other thermodynamically consistent boundary conditions that satisfy the energy dissi-
pation laws. Given the periodic boundary conditions, we use the Fourier pseudo-spectral method for spatial discretization. 
Let Nx, Ny be two positive even integers. The spatial domain � = [0, Lx] × [0, L y] is uniformly partitioned with mesh size 
hx = Lx/Nx, hy = L y/Ny and

�h = {
(x j, yk)|x j = jhx, yk = khy, 0 ≤ j ≤ Nx − 1,0 ≤ k ≤ Ny − 1

}
.

The details for spatial discretization are omitted. Interested readers can refer to our previous work [6]. Also, given the BDF2 
and CN schemes are both second-order accurate, we only compare the baseline SAV-CN scheme and the RSAV-CN scheme 
in this paper.

5.1. Allen-Cahn equation

In the first example, we consider the Allen-Cahn equation. Consider the free energy E = ∫
�

ε2

2 |∇φ|2 + 1
4 (φ2 −1)2dx, with 

mobility operator G = 1, the general gradient flow model in (2.1) reduces to the corresponding Allen-Cahn equation

∂tφ = −λ(−ε2�φ + φ3 − φ). (5.1)

In the SAV formulation, we introduce the scalar auxiliary variable

q(t) := Q (φ(x, t)) =
√√√√

∫
�

1

4
(φ2 − 1− γ0)2dx+ C .

Then the SAV reformulated equations read as

∂tφ = −λ
[
− ε2�φ + γ0φ + q(t)

Q (φ)
V (φ)

]
, V (φ) = φ(φ2 − 1− γ0), (5.2a)

d

dt
q(t) =

∫
�

V (φ)

2Q (φ)
∂tφdx. (5.2b)

We verify that the relaxed SAV-CN scheme is second-order accurate in time. Consider the domain � = [0, 1]2, and we 
pick the smooth initial condition

φ(x, y, t = 0) = 0.01cos(2πx) cos(2π y), (5.3)

and set the model parameters: ε = 0.01 and λ = 1. To solve the AC equation in (5.2), we use uniform meshes Nx = Ny = 128, 
and numerical parameters C0 = 1, η = 0.95, and γ0 = 1.

Given the analytical solutions are unknown, we calculate the error as the difference between the numerical solutions 
using the current time step and the numerical solutions using the adjacent finer time step. The numerical errors in L2 norm 
with various time steps are summarized in Fig. 5.1. A second-order convergence for the numerical solutions of φ and q are 
both observed.

Next, we conduct a detailed comparison between the baseline SAV-CN scheme and the RSAV-CN scheme. We use the 
same parameters as in the example above. Consider the domain � = [0, Lx] × [0, L y], and choose the initial condition as
11
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Fig. 5.1. Time step mesh refinement tests of RSAV-CN scheme for solving the Allen-Cahn equation. This figure indicates that the proposed RSAV-CN algorithm 
is second-order accuracy in time when solving the Allen-Cahn equation.

Fig. 5.2. A comparison between the baseline SAV method and the relaxed SAV method in solving the Allen-Cahn equation. In (a) the numerical energies 
using the baseline SAV and the relaxed SAV are shown. The RSAV-CN scheme provides accurate result even with a much larger time step than the baseline 
SAV-CN scheme. In (b), the numerical results for q(t) − Q (φ(x, t)) are shown, where we observe that the baseline SAV introduces numerical errors for 
q(t) − Q (φ(x, t)), but the relaxed SAV method shows better consistency between qn+1 and Q (φn+1).

φ(x, y) = tanh
1.5+ 1.2cos(6θ) − 2πr√

2ε
, (5.4a)

θ = arctan
y − 0.5L y

x− 0.5Lx
, r =

√
(x− Lx

2
)2 + (y − L y

2
)2. (5.4b)

In this example, we set Lx = L y = 1. We observe that the RSAV-CN method is more accurate than the baseline SAV-CN 
method, even with a larger time step. In addition, the numerical errors between qn+1 and Q (φn+1) are shown in Fig. 5.2(b). 
We observe that the RSAV method can effectively reduce the numerical errors between qn+1 and Q (φn+1). This is essential 
for preserving the consistency between the modified energy and the original energy after temporal discretization.

5.2. Cahn-Hilliard equation

In the second example, we consider the well-known Cahn-Hilliard equation with a double-well potential. Mainly, consider 
the free energy E = ∫

�
ε2

2 |∇φ|2 + 1
4 (φ2 − 1)2dx, and mobility operator, G = −λ�. The general gradient flow model in (2.1)

reduces to the corresponding Cahn-Hilliard equation

∂tφ = λ�μ, (5.5a)

μ = −ε2�φ + φ3 − φ. (5.5b)
12
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In the SAV formulation, we introduce the scalar auxiliary variable

q(t) := Q (φ(x, t)) =
√√√√

∫
�

1

4
(φ2 − 1− γ0)2dx+ C .

Then the reformulated equations are obtained as

∂tφ = λ�μ, (5.6a)

μ = −ε2�φ + γ0φ + q(t)

Q (φ)
V (φ), V (φ) = φ(φ2 − 1− γ0), (5.6b)

d

dt
q(t) =

∫
�

V (φ)

2Q (φ)
∂tφdx. (5.6c)

First of all, we conduct the mesh refinement tests to check the order of temporal convergence. We use the same initial 
condition as the AC case in (5.3) for the time mesh refinement tests. We consider the domain � = [0, 1]2 and model 
parameters λ = 0.01, ε = 0.01. To solve the problem, we choose the numerical parameters C0 = 1, γ0 = 4, η = 0.95, and 
Nx = Ny = 128. Then we calculate the numerical solutions to t = 0.5 with various time steps. The L2 errors for numerical 
solutions (using strategies explained in the AC case) are calculated. The results are summarized in Fig. 5.3. A second-order 
temporal convergence for both φ and q is observed.

Fig. 5.3. Time step mesh refinement tests of RSAV-CN method for solving the Cahn-Hilliard equation. This figure indicates that the proposed RSAV-CN 
algorithm is second-order accuracy in time when solving the Cahn-Hilliard equation.

After we verify that the RSAV-CN scheme is second-order accurate, we compare the accuracy of the baseline SAV-CN 
scheme and the RSAV-CN scheme for solving the Cahn-Hilliard equation. We use the same initial conditions as in (5.4). The 
model parameters used are λ = 0.1, ε = 0.01, γ0 = 4. And to solve the problem, we choose the numerical parameters C0 = 1, 
η = 0.95, and Nx = Ny = 128. The comparison of calculated energies is shown in Fig. 5.4(a), and the numerical errors for 
q(t) − Q (φ(x, t))) using both the baseline SAV-CN scheme and the relaxed SAV-CN schemes are shown in Fig. 5.4(b). We 
observe that the relaxation step improves the accuracy significantly. In addition, the relaxation guarantees the consistency of 
numerical solution qn+1 with its original definition Q (φn+1), which indicates the numerical consistency of modified energy 
and the original energy.

Next, we investigate the coarsening dynamics driven by the Cahn-Hilliard equation. We consider the domain � = [0, 4]2, 
and set λ = 0.1, ε = 0.01. Set the initial condition as φ(x, y, t = 0) = φ̂0 + 0.05rand(x, y), where rand(x, y) generates 
rand numbers between −1 and 1, and φ̂0 is a constant. We use the relaxed SAV-CN scheme to solve it with meshes 
Nx = Ny = 512, model parameters γ0 = 4, C0 = 1, η = 0.95 and time step δt = 0.001. The results are summarized in 
Fig. 5.5. It is observed that when the volume difference between two phases is small, saying in Fig. 5.5(a), the spinodal 
decomposition dynamics takes place; when the volume difference between two phases is larger, saying in Fig. 5.5(b), the 
nucleation dynamics takes place.

5.3. Molecular beam epitaxy model with slope selection

In the next example, we consider the molecular beam epitaxy (MBE) model with slope selection. Given φ denoting the 
MBE thickness, the free energy is defined as E = ∫

�
ε2

2 (�φ)2 + 1
4 (|∇φ|2 − 1)2dx, with the mobility operator, G = 1, the 

general gradient flow model in (2.1) is specified as the MBE model with slope selection, which reads as
13
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Fig. 5.4. A comparison between the baseline SAV method and the relaxed SAV method for solving the Cahn-Hilliard equation. In (a) the numerical energies 
using the baseline SAV and the relaxed SAV are shown. The RSAV method provides accurate result even with larger time step than the baseline SAV method. 
In (b), the numerical results for q(t) − Q (φ(x, t)) are shown, where we observe that the baseline SAV introduces numerical errors for q(t) − Q (φ(x, t)), but 
the relaxed SAV has properly relaxed the error close to 0.

Fig. 5.5. Coarsening dynamics driven by the Cahn-Hilliard equation. In (a), we set φ̂0 = 0, and the profiles of φ at t = 0.1, 0.5, 5, 50 are shown; (b) we set 
φ̂0 = 0.4, and the profiles of φ at t = 0.1, 0.5, 5, 50 are shown.

∂tφ = −ε2�2φ + ∇ · (|∇φ|2 − 1)∇φ). (5.7)

With the similar idea as the previous examples, we introduce the scalar auxiliary variable

q(t) := Q (φ(x, t)) =
√√√√1

4

∫
�

(|∇φ|2 − 1− γ0)2dx+ C0, (5.8)

then the reformulated model reads as

∂tφ = −ε2�2φ + γ0�φ + ∇ · ( q(t) ∇φ), (5.9a)

Q (φ)

14
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d

dt
q(t) =

∫
�

∇φ · ∇∂tφ

2Q (φ)
dx. (5.9b)

As a routine, we test the temporal convergence of the relaxed SAV-CN scheme for the MBE model. Consider the do-
main � = [0, 1]2, and the model parameter ε = 0.1. We use the same initial condition as before, i.e. φ(x, y, t = 0) =
0.01 cos(2πx) cos(2π y). We choose Nx = Ny = 128, γ0 = 4, C0 = 0, and η = 0.95. The numerical errors at t = 0.5 are 
calculated and summarized in Fig. 5.6. A second-order convergence for both φ and q are observed, when the time step is 
not too large.

Fig. 5.6. Time step mesh refinement tests of RSAV-CN method for solving the MBE model. This figure indicates that the proposed RSAV-CN algorithm is 
second-order accuracy in time when solving the MBE model.

Then, we compare the accuracy between the baseline SAV-CN method and the relaxed SAV-CN method for solving the 
MBE model. We use the classical benchmark problem for the MBE model. Mainly we consider the domain � = [0, 2π ]2, 
with ε2 = 0.1. We solve the problem with Nx = Ny = 128, γ0 = 4, C0 = 1, η = 0.95. The numerical comparisons between 
the baseline SAV-CN scheme and the relaxed SAV-CN scheme are summarized in Fig. 5.7. We observe that the relaxation step 
increases the numerical accuracy and guarantees the numerical consistency between qn+1 and Q (φn+1). Here we emphasize 
that the relaxation step is computationally negligible.

Fig. 5.7. A comparison between the baseline SAV-CN method and the RSAV-CN method for solving the MBE model. In (a) the comparisons of numerical 
energies are shown. The RSAV method provides more accurate results. In (b), the numerical results for q(t) − Q (φ(x, t)) are shown, where we observe that 
the baseline SAV introduces numerical errors for q(t) − Q (φ(x, t)), but the relaxed SAV guarantees the consistency of q(t) and Q (φ(x, t) numerically.
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5.4. Other phase-field models

Thanks to the SAV method’s generality, the relaxed SAV method also applies to various dissipative PDE models, and 
particularly thermodynamically consistent phase field models. We skip some details of using the RSAV method on other 
models due to space limitation but focus on two more specific applications: (1) the phase-field crystal model; and (2) the 
diblock copolymer model.

First of all, we consider its application to the phase field crystal (PFC) model. Consider the free energy E = ∫
�

1
2φ(a0 +

�)2φ + 1
4φ4 − b0

2 φ2dx where a0 and b0 are model parameters, and the mobility operator G = −λ�. The general gradient 
flow model in (2.1) is reduced to the PFC model, which reads as

∂tφ = λ�μ, (5.10a)

μ = −(a0 + �)2φ + φ3 − b0φ. (5.10b)

If we introduce the scalar auxiliary variable q(t) := Q (φ(x, t)) =
√

1
4

∫
�
(φ2 − b0 − γ0)2dx+ C0, we get the reformulated 

model

∂tφ = λ�μ, (5.11a)

μ = −(a0 + �)2φ + γ0φ + q(t)

Q (φ)
V (φ), V (φ) = φ(φ2 − b0 − γ0), (5.11b)

d

dt
q(t) =

∫
�

V (φ)

2Q (φ)
∂tφdx. (5.11c)

We verify that the RSAV scheme shows second-order convergence in time when solving the PFC model. The results are 
not shown to save space. Then we compare the accuracy between the baseline SAV-CN scheme and the relaxed SAV-CN 
scheme. We consider the domain � = [0, 400]2, and set a0 = 1, b0 = 0.325, λ = 1. To solve the PFC model, we use the 
numerical parameters γ0 = 1, C0 = 1, Nx = Ny = 512, η = 0.95. The initial condition is chosen as shown in Fig. 5.9(a). The 
numerical comparisons between the two schemes are summarized in Fig. 5.8. The RSAV-CN scheme shows more accurate 
results. Most importantly, the results obtained from the RSAV-CN method show the numerical consistency between the 
modified energy and the original energy, since it guarantees the consistency of q(t) with Q (φ(x, t)) as shown in Fig. 5.8(b).

Fig. 5.8. A comparison between the baseline SAV-CN method and the RSAV-CN method for solving the PFC model. In (a) the comparisons of numerical 
energies using different methods are shown. The RSAV-CN method provides more accurate results than the baseline SAV-CN method. In (b), the numerical 
errors for q(t) − Q (φ(x, t)) are shown. We observe that the baseline SAV-CN method introduces numerical errors for q(t) − Q (φ(x, t)), but the RSAV-CN 
method guarantees the consistency of q(t) and Q (φ(x, t) numerically.

Also, the profiles of φ at various times using the relaxed SAV-CN scheme with a time step δt = 0.01 are summarized in 
Fig. 5.9. It indicates the relaxed SAV-CN can be utilized to investigate long-time dynamics and provides accurate numerical 
results.

Furthermore, we use the relaxed SAV-CN scheme to investigate the dynamics driven by the PFC model. In this case, we 
consider the domain � = [0, 100]2, and choose the initial condition φ(x, y, t = 0) = φ̂0 + 0.01rand(x, y), where rand(x, y)
generates random numbers between −1 and 1 and φ̂0 is a constant. To solve the PFC model, we use the numerical settings 
Nx = Ny = 256, γ0 = 1, C0 = 1. The numerical results are summarized in Fig. 5.10. The stripe pattern is observed with 
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Fig. 5.9. Crystal growth dynamics driven by the PFC model. The profiles of φ at various time slots are shown.

Fig. 5.10. Crystal growth pattern formation with different initial conditions governed by the PFC model. (a) φ̂0 = 0; (b) φ̂0 = 0.2.

φ̂0 = 0, and the triangle pattern is observed with φ̂0 = 0.2. These observations are consistent with phase diagram of the PFC 
model as reported in the literature.

In the last example, we examine the diblock copolymer model with the proposed RSAV method. Consider the free energy

E =
∫

ε2

2
|∇φ|2 + 1

4
(φ2 − 1)2dx+ σ

2

∫ ∫
G(x − y)(φ(x) − φ̂0)(φ(y) − φ̂0)dxdy
� � �
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Fig. 5.11. Coarsening dynamics driven by the diblock copolymer model. The profiles of φ at t = 500 are shown under various nonlocal interactions strength 
σ . It shows that more droplets are formed with stronger nonlocal interaction strength σ .

with σ a parameter for the nonlocal interaction strength and the mobility operator G = −λ�. Here G is the Green’s function 
such that �G(x − y) = −δ(x − y) with periodic boundary conditions and δ is a Dirac delta function. The general gradient 
flow model in (2.1) is specified into the phase-field diblock-copolymer model, which reads as

∂tφ = λ
[
�μ − σ(φ − φ̂0)

]
, (5.12a)

μ = −ε2�φ + φ3 − φ. (5.12b)

We consider a domain � = [0, 1]2, and parameters λ = 0.1, ε = 0.01, φ̂0 = 0.4, and initial condition φ(x, y, t = 0) = φ̂0 +
0.05rand(x, y) where rand(x, y) generates random numbers in the range [−1, 1]. To solve the model, we use the numerical 
parameters γ0 = 4, C0 = 1, Nx = Ny = 128. Here we test various nonlocal interaction strength σ . The numerical results at 
t = 500 are summarized in Fig. 5.11. We observe that the number of droplets scales with the nonlocal interaction strength σ .

6. Conclusion

In this paper, we introduce a relaxation technique to improve the accuracy and consistency of the baseline SAV method 
for solving dissipative PDE models (phase-field models in particular). Our relaxed-SAV (RSAV) approach leads to linear, 
second-order, unconditionally energy stable numerical schemes. Most importantly, the RSAV schemes preserve the original 
energy given the relaxation parameter ξ reaches 0. Furthermore, we provide detailed proofs for the energy stability prop-
erties of the RSAV method. Then, we apply the RSAV method to solve the Allen-Cahn (AC) equation, the Cahn-Hilliard (CH) 
equation, the Molecular Beam Epitaxy (MBE) model, the phase-field crystal (PFC) model, and the diblock copolymer model. 
Numerical experiments highlight the accuracy and efficiency of the proposed RSAV method. The numerical comparisons 
between the baseline SAV schemes and the RSAV schemes indicate that the RSAV method is unconditionally energy stable 
according to the original energy law and has better accuracy and consistency over the baseline SAV method.
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