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scalar auxiliary variables, the original PDE problems are reformulated into equivalent
PDE problems. The advantages of the SAV approach, such as linearity, unconditionally
energy stability, and easy-to-implement, are prevalent. However, there is still an open
issue unresolved, i.e., the numerical schemes resulting from the SAV method preserve a

Is(zgfrjz;(mary variable (SAV) “modified” energy law according to the auxiliary variables instead of the original variables.
Energy stable Truncation errors are introduced during numerical calculations so that the numerical
Phase field models solutions of the auxiliary variables are no longer equivalent to their original continuous
Gradient flow system definitions. In other words, even though the SAV scheme satisfies a modified energy law, it
Relaxation technique does not necessarily satisfy the energy law of the original PDE models. This paper presents

one essential relaxation technique to overcome this issue, which we named the relaxed-
SAV (RSAV) method. Our RSAV method penalizes the numerical errors of the auxiliary
variables by a relaxation technique. In general, the RSAV method keeps all the advantages
of the baseline SAV method and improves its accuracy and consistency noticeably. Several
examples have been presented to demonstrate the effectiveness of the RSAV approach.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Many physical problems, such as interface dynamics [2,24,45], crystallization [12,33], thin films [19,38], polymers [11,18],
and liquid crystallization [16,17] could be modeled by gradient flow systems which also agree with the second law of
thermodynamics. If the total free energy is known, the gradient flow model could be obtained according to the mobility
and the variation of free energy. Because of the nonlinear terms in the governing equation, neither the exact solution nor
the numerical solution is easy to obtain. In general, consider the spatial-temporal domain €; := Q x (0, T]. The dissipative
dynamics of the state variable ¢ is driven by

)
dpx,t) = -G£

M,(xﬂe%, (11)
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where G is a semi-positive definite operator known as the mobility operator, and £ is a functional of ¢ known as the free
energy. The triplet (¢, G, £) uniquely defines the dissipative system (gradient flow dynamics). For instance, given G =1 and
E=Jq %lV(ﬂ2 + 1(¢? — 1)%dx, with ¢ as a model parameter, we obtain the following Allen-Cahn equation

dp=6>Ap— > + . (12)

If we consider G = —A and £ = [, §|V¢|2 + 1(¢* — 1)%dx, we obtain the Cahn-Hilliard equation

0p=A(—e*Ap +¢° — ). (13)
Given G=1and £ = fQ D|V¢|*dx, we have the heat equation

0t =DAg, (1.4)

where D is the diffusion coefficient.
All these models discussed above have an energy dissipation property. Mainly,

Se) =220 - (% 6% <o,
dt ¢ ot 3¢ T 8¢

given the boundary terms are diminished to zero. Here we have used the inner product notation (f,g) = fQ fgadx,

Vf, g e L*(2). Numerical algorithms that solve such models shall also preserve the energy dissipation structure, i.e., follow

the thermodynamic physical laws. Numerical schemes that preserve the energy dissipation structure are known as energy

stable schemes. And if such structure-preserving doesn’t depend on the time step, the numerical schemes are known as

unconditionally energy stable.

Many energy stable numerical schemes are proposed to approach the solutions of gradient flow models or dissipative
systems. The classical approaches are the fully implicit schemes [15]. Though some of them are unconditionally energy
stable, solving such fully implicit schemes is not trivial. Nonlinear problems have to be solved in each time step. However,
the existence and uniqueness of the solution usually have strong restrictions on the time step, which prevent those fully
implicit numerical schemes from being widely used. One remedy is the convex splitting method [13], which splits the non-
linear terms of free energy into the subtraction of two convex functions. It is easy to check that the convex-splitting schemes
are unconditionally energy stable and uniquely solvable. However, the general type of second-order convex splitting schemes
is not available. So far, it is only possible to design second-order convex-splitting schemes case-by-case [5,35,38,39]. Mean-
while, there are many other unconditionally energy stable methods, such as stabilization method [33,41], exponential time
discretization method [8,29,40]. The stabilization method represents the nonlinear terms explicitly and adds some regular-
ization terms to relax strict constraints for the time step. Similarly, with the convex splitting method, it is usually limited to
first-order accuracy. The exponential time discretization (ETD) method shows high-order accuracy by integrating the govern-
ing equation over a single time step and uses polynomial interpolations for the nonlinear terms. But the theoretical proofs
for energy stability properties of high-order ETD schemes are still missing.

Recently, the numerical method named invariant energy quadratization(IEQ) or energy quadratization(EQ) is proposed
[21,22,42-44,46-48]. It is a generalization of the method of Lagrange multipliers or auxiliary variables from [4,23]. The IEQ
approach permits us to construct linear, second-order, unconditionally energy stable schemes, and furthermore arbitrarily
high-order unconditionally energy stable schemes [20,21]. With many advantages of the IEQ or EQ approach, it usually
leads to a coupled system with time-dependent coefficients. As a remedy, the SAV approach [25,30-32,34,36,37] has been
proposed by introducing scalar auxiliary variables instead of auxiliary function variables. The SAV method also can be
applied to a large class of gradient flow systems, which keeps the advantages of the EQ approach but usually leads to
decoupled systems with constant coefficients. These properties make the SAV method easier to implement, so it is highly
efficient. Besides, when the researchers applied the SAV approach to many different systems, several modified schemes were
developed. Multiple scalar auxiliary variable (MSAV) approach [9] was proposed to solve the phase-field vesicle membrane
model where two auxiliary variables were introduced to match two additional penalty terms enforcing the volume and
surface area. If using the introduced scalar variable to control both the nonlinear and the explicit linear terms, one highly
efficient SAV approach was developed [26], which spent half of the time compared with the original SAV approach while
keeping all its other advantages. One stabilized-scalar auxiliary variable (S-SAV) [27] approach was proposed to solve the
phase-field surfactant model, which is a decoupled scheme and allowed to be solved step by step. For the phase-field
surfactant model, the authors in [50] also presented certain subtle explicit-implicit treatments for stress and convective
terms to construct the linear, decoupled, unconditionally energy stable schemes based on the classical SAV approach.

However, there is still a big gap for the IEQ or SAV method, making them not as perfect as expected. Mainly, these
two methods preserve a “modified” energy law according to the auxiliary variables instead of the original variables. This
inconsistency introduces errors during the computation. In the end, even though the IEQ or SAV schemes preserve the
“modified” energy law, they are not necessarily preserving the original energy law, i.e., the energy law for the original
PDE models might be violated by the numerical solutions. This is known in the community, but so far, no good remedy
is available yet for the SAV schemes, with the IEQ schemes partially addressed in [49]. This motivates our research in this
paper. With a novel relaxation step, we effectively penalize the inconsistency between numerical solutions for the auxiliary

(1.5)
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variables and their continuous definitions. Thus we name this new approach the relaxed-SAV (RSAV) method. Through the
RSAV method, we are able to design novel linear, second-order, unconditionally energy stable schemes, which keep the
advantages of the baseline SAV method and preserve the original energy law. It turns out that the relaxation approach
effectively improves the accuracy and consistency of the SAV method noticeably.

The rest of this paper is organized as follows. In Section 2, we revisit the baseline SAV method for the general gradient
flow system. After that, we propose our remedy: the relaxed SAV method, which we named the RSAV method. The energy
stability properties of the RSAV method are proved rigorously in Section 3. Then, we briefly illustrate that the relaxation
technique can be easily applied to variations of the SAV method in Section 4. Then in Section 5, several specific examples
and numerical tests are provided to verify the accuracy and effectiveness of the proposed relaxed SAV numerical schemes.
In the end, we give a brief conclusion.

2. A brief review of the SAV method

Consider the general gradient flow model

9 _ g% (2.1)
at 3¢
where ¢ is the state variable, £ is the free energy, and G is a semi-positive definite operator for dissipative systems (and
a skew-symmetric operator for reversible systems or Hamiltonian systems). In the rest of this paper, we consider periodic
boundary conditions for simplicity, though all our results can be applied to models with thermodynamically consistent
boundary conditions.
For the general gradient flow model (2.1), it has the following energy law

d 8 9¢ 8§ _6&
@) =G o =595 ). (22)
dt 8¢ ot 8¢ " ¢
When G is semi-positive definite, we have ‘fj—f <0, and when G is a skew-symmetric operator, we have % = 0. Here we
use the notation, (f, g) = fQ fgdx, Vf, g € L2(Q). The induced norm will be denoted as || f|| =+/(f, f).
Following the notations in [36], we start with a simplified free energy
1
e= [ (Goc0+F@)ix (23)

Q

where L is a linear operator, and F is the bulk free energy density. Also, we denote the identity operator as I that will be
used in the rest of this paper. Then the gradient flow model in (2.1) is specified as

dhp =—G(Lp + F'(9)), (2.4)
with the following energy law
e (€3¢ , B , ,
- —f 5 00 %= (Lo +F©).0wo 4+ F @), (2.5)
Q

For the SAV method, a scalar auxiliary variable q(t) is introduced as

1
40 = Q(¢) = / (F@) ~ 5 7002)dx+Co. (2.6)
Q

where Cop > 0 is a constant making sure Q (¢) is well-defined, i.e., fQ(F(tp) — %ymj)z)dx—i— Co > 0. Here yp is a regular-
ization parameter that was first introduced in [7]. With the scalar auxiliary variable q(t), the gradient flow model (2.4) is
reformulated into an equivalent form

0 q(t)

=Lt o+ V@), (272)

dgry 1 e

TRl WQ/V@)&M& V(¢) =F(¢) — vod. (2.7p)
Denote the modified energy E as

A 1 1

E= f <5¢E¢ + 5Vo¢2)dX+q2 — Co. (2.8)

Q
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The reformulated model (2.7) has the following energy law

dE [ 8E 3¢ SE dgq
= St et (292
Q
q(®) q(®)
=—(L —V(¢$),G(L —V . 2.9b
(20470045 g5V #. GO+ 70+ 5 V(@) (2:9b)

Remark 2.1. With the SAV transformation, numerical algorithms can be introduced to solve the equivalent model in (2.7)
that in turn solve the original model in (2.4), since (2.7) and (2.4) are equivalent.

Consider the time domain [0, T], and we discretize it into equally distanced meshes 0 =ty <t; <--- <ty =T, with
ti = idt and 6t = % Then we use (e)™*! to represent the numerical approximation of (e) at t,{. With these notations, we
recall the second-order numerical schemes designed for the reformulated model in (2.7). In particular, the following two

schemes can be easily obtained.

Scheme 2.1 (Second-order SAV-BDF2 Scheme).
3¢n+] _ 4¢n + ¢n—1

n+1
o gu, (2.10a)
n+1 n+1 n+1 g —n+1
W =L+ v+ —g Ve ), (2.10Db)
Q@ )
n+1 _ gqgn n—1 v —n+1 n+1 _ g0 n—1
34 2; 4 :/ (¢_n+1) 3¢ 26¢ +o dx, (2.10c)
20" ) t

Q
n+1

where ¢"*' = 3¢" — 1" and V@ = F@") - yod
The SAV-BDF2 Scheme 2.1 has the following discrete energy law.
Theorem 2.1. The Scheme 2.1 is unconditionally energy stable in the sense that [37]
%[(45”“, (L +70Dd™ ) +2¢" ! — @™, (L + 1D " —¢™)] + %[(q"“)2 +(2¢" —qM?]
- %[(qs”, (L+10Dd") + (29" —¢" 1, (L + 1D 2" —¢" )] — %[(q")2 +Qq" —q" ]
< St .

Secondly, if we use the semi-implicit Crank-Nicolson method for the time discretization, we will have the SAV-CN scheme
as below.

Scheme 2.2 (Second-order SAV-CN Scheme).

n+1 _ n
% —_gumt, (212a)
n+1 a1
Mn+%:£¢n+%+y0¢n+%+ q 21 V(¢n+2), (2.12b)
Q@™ )
qn+1 _qn V($n+%) ¢ﬂ+] _¢n
M / . —ax (2120)
o 2Q@ %)

where 3" = 3¢7 — 1¢"1 and V@) = F @) — yod™ 2.
The SAV-CN scheme has the following discrete energy law.
Theorem 2.2. The Scheme 2.2 is unconditionally energy stable in the sense that [37]
%(qs”“, (£ + 10" + (@72 — %(cp", (L + 100" — (@H* = =st@Gu™!, u™*h.

4
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3. Our remedy: the relaxed SAV (RSAV) method

Notice the definition in (2.6) tells us % = 1. Hence, we can observe the two energies (2.3) and (2.8) are equivalent
in the PDE level. Meanwhile, the two PDE models (2.4) and (2.7) are equivalent. However, after temporal discretization, the
numerical results of q(t) and Q (¢) are not equal anymore, which means the discrete energies of (2.3) and (2.8) are not
necessarily equivalent anymore. The major issue is that ¢™t! is no longer equal to Q (¢™t') numerically. Thus, an energy
stable scheme that satisfies the modified energy law in (2.8) does not necessarily satisfy the original energy law in (2.3).

To fix the inconsistency issue for ¢"t! and Q (¢™t1) (that are supposed to be equal as introduced in (2.6)), we propose
a relaxation technique to penalize the difference between ¢"t! and Q (¢"*1). As will be clear in the following sections, the
RSAV method introduces negligible extra computational cost, but it inherits all the baseline SAV method’s good properties.

If we utilize the semi-implicit BDF2 time marching method, we have the following RSAV-BDF2 scheme.

Scheme 3.1 (Second-order RSAV-BDF2 Scheme). We can update ¢™+! via the following two steps:

e Step 1. Calculate the intermediate solution (¢™+!, §"*1) from the baseline SAV method.

39" 4" " e

) 3.1
268t (313)
~n+1 .
W = =G (L™ + g™+ — v @), (31b)
Q@ )
3qn+1 _4qn +q"71 V(an-H) 3¢n+1 _4¢n +¢n7]
25t = —n+1 25t dx, (3.1c)
2 206"
Where "' = 3¢" — 1" 1 and V@"H = F@") - 0",
e Step 2. Update the scalar auxiliary variable ¢"*! via a relaxation step as
=60 + (1 -50)Q "), EeV. (32)
Here, V is a set defined by V = V; NV,, where
Vi ={§1§ €10, 11}, (3.3a)
1 1 . -
Vo= {81510 + 4" =g - 1@ + @4 - ¢
=8m@u™ ! W, @ =6+ (1 -9 Q "] (3.3b)

Here, 1 € [0, 1] is an artificial parameter that can be manually assigned.
Several vital observations for Scheme 3.1 are given as follows.
Remark 3.1. We emphasis that the set V' in (3.2) is non-empty by noticing 1 € V.

Remark 3.2. Scheme 3.1 is second-order accurate in time. In particular, the relaxation step in (3.2) does not affect the order
of accuracy in time. Notice §""! = Q (¢ (X, tyy1)) + 0(5t2) and Q (¢" 1) = Q (@ (X, ty11)) + O (5t%). Hence

¢ =" + (1 - £0)Q (") = QP (X, tat1)) + O(5t2).

Remark 3.3 (Optimal choice for & ). Here we explain the optimal choice for the relaxation parameter & in (3.2). & can be
chosen as a solution of the following optimization problem,

. 1 1 . .
fo= min £ st 5[(q”“)2 + g™ — g - 5[(q”“>2 + 3" — g < sen@Gu™, wh, (3.4)

with g™t = g1 + (1 — £)Q (¢™+"). This can be simplified as

= i 2 <
) 516111(1{1”5, s.t.aé“ +b& +c <0, (3.5)

where the coefficients are
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5 .
a= 5(q“+1 — Q"%
b=@"" - Q"N(5Q (") —2¢M,

1 - -
c= 5[(Q(¢”“))2 +2Q@@"H —g? — @H2 = 4" — g - stp(Gu T, wtth.

Notice the fact 8tn(Gu™ ', u*1) >0, and a+ b + c < 0. Given a # 0, the optimization problem in (3.5) can be solved as

—b — /b2 — 4ac
&0 = max{0, T}

Remark 3.4. The RSAV method could refrain the SAV from constantly deviating from the original definition. As presented
in Step 2, we could see that £ < [0,1], when & =1, i.e., g"T! =g"*!, this is the original SAV method; when & =0, ¢"t! =
Q (¢"t1) and the discrete energies of (2.3) and (2.8) are equivalent, and when & €(0,1), then g"*! is a linear combination
of ¢"t1 and Q (¢™*1). This will bring the discrete energy of (2.8) closer to the discrete energy of (2.3) by penalizing the
difference between the numerical approximation of the scalar auxiliary variable, ¢**! and its original definition, Q (¢™*1).

Theorem 3.1. The Scheme 3.1 is unconditionally energy stable.

Proof. According to the Theorem 2.1, we could get
1 n+1 n+1 n+1 n n+1 n 1 ~n+142 ~n+1 ny2
Z[(¢ (L4+yoDe )+ Q¢ — ¢ (L+ DR — ¢ ))]+5[(q )+ QT —q)7]

1 1
= 21" L+ noD¢" + 29" - " (L + Yo" — " )]~ 5[(q”>2 + (29" =" %]
< —(St(gﬂn-‘rl, Mn-&-l)’

for the first step of the Scheme 3.1. At the same time, we could get

1 1 . ~
SU@H? 4@ =) = S + @ - gHM < tmGuT, 1,

from (3.2). Adding the above two equations together, we could have
1 n+1 n+1 n+1 n n+1 n 1 n+1,2 n+1 ny2
Z[(qb LYY )+ 29T = (L oD@ — ¢ ))]+§[(q Y +@qg T —q)7]

1 1
= 310" (L+yohe" + 20" - " (L + pD) (29" — 9" )]~ 5[((1”)2 +Qq"—q""H
< —8t(1 —(Gu"*t, ™ <o,
since 1 — 1 > 0. This completes the proof. O

Scheme 3.2 (Second-order RSAV-CN Scheme). We update ¢"*! via the following two steps:

e Step 1. Calculate the intermediate solution (¢"*!, g"*1) using the baseline SAV-CN method as below.

¢n+1 _ ¢l’l _

n+%
st ’

—Gu
4+l
ILH% = £¢"+% + V0¢"+% + qizlv@n%),
Q@)
@ g [ V@) ¢ —gn
= dx.
ot l
ot 2 20 (¢n+2) ot

e Step 2. Update the scalar auxiliary variable g"t1 as

" =57+ (1 -E)Q@"), &eV,

with the feasible set V defined as V =V; N,, where
Vi ={§1§ €10, 11},
- 1 1 -
Vo = {1@")? = @) 8@ ), ¢ =6+ (1 - 9"}

6

(3.8)

(3.10a)

(3.10b)

(3.10c)

(3.11)

(3.12a)
(3.12b)
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Similarly, we have the following critical observations for Scheme 3.2.
Remark 3.5. The set V in (3.11) is non-empty, given that 1 € V.

Remark 3.6. The Scheme 3.2 is second-order accurate in time. Because the relaxation step in (3.11) doesn’t not affect the
order of accuracy. Notice §™*! = Q (¢ (X, tus1)) + 0(5t2) and Q (™) = Q (¢ (X, trr1)) + O(5t2). Hence

" =5+ (1 - £0)Q @) = QP (X, ty1)) + O(5E7).

Remark 3.7 (Optimal choice for &y). Here we elaborate the optimal choice for the relaxation parameter &. We can choose &p
as the solution of the following optimization problem

fo=min & st.@H?— @ < Stn(u™tz, gute). (313)
€l0,

This can be simplified as

go= min &, stagf’+bE+c<0, (3.14)
£€[0,1]

where the coefficients are

a=@"" - Q"% b=2(""-Q@")QE"™. (3.15a)
c=[Q@" NP — @) — sen(utE, gut ). (3.15b)
Notice a + b + ¢ < 0. Given a # 0, the solution to (3.13) is given as
—b— P2 —4ac
SO = maX{O, W}

Theorem 3.2. The Scheme 3.2 is unconditionally energy stable.
Proof. For the step in 3.10, thanks to the Theorem 2.2, we could get
%(qs”“, (L+yoD¢™ ) + @) - %w”, (L +yohg") — (@)% = —St(Gu" 2, ). (3.16)
From (3.11), we know
@12 — @) < SIH(QILH%,MH%)- (317)
Adding two equations (3.16) and (3.17), and acknowledging the inequality 1 — n > 0, we could arrive at
%<¢““, (L+ o™ + (@)% — %«p“, (L + D™ — (@?

< —5t(1 —mGu™ 7, ) <0,
This completes the proof. O

4. Relaxation techniques for the variations of the SAV method

Given the popularity of the SAV method, several variations are proposed to apply in different situations [3,9,10,14,20,28].
Since our proposed relaxation technique doesn’t restrict the specific form of the scalar auxiliary variables, our RSAV method
can be easily extended to some SAV variations.

As one example, we explain the idea based on the multiple scalar auxiliary variable (MSAV) method [9]. To present the
MSAV method [9], we consider a more general form of the free energy

k
1
e= [ (s0c0+ Y Fio)ax (1)
Q i=1
where L is a linear operator, and F;(¢), i =1,2,---,k are the bulk potentials. Then the general gradient flow model is

given as
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¢
L =—glLe+ Z Fi@)]. (42)
which has the following energy law
5 0 k k
= / /
LD =g 50 = ([ﬁqb+;F,(¢)],g[£¢+;ﬁ(¢)])- (43)
When G is semi-positive definite, we have & E <0, and when G is a skew-symmetric operator, we have ‘é—f = 0. For the

problem in (4.2), multiple scalar auxiliary variables are introduced as

1
qi(t) == Qi(p) = /(Fi(¢) - 5Vi¢2)dX+Ci, i=12.- .k (4.4)
Q

Here C; are positive constants that make sure g;(t) are well defined. And y; are the regularization constants [7]. With the
scalar auxiliary variables q;(t), the gradient flow model (4.2) can be reformulated into an equivalent form

d i(t

¢ =—g(Lo+ Z yo giiqu) Vi), (4.52)
dq; (t) .

it 20, (¢)/V](¢)3t¢>dx =12,k (4.5b)

where Vi(¢) = F{(¢) — yid, i=1,....k
With the introduction of the multiple scalar auxiliary variables in (4.4), we can get the modified free energy as:

ko k
E:/(%¢£¢+Z%¢2)dx+2(q? - C). (4.6)
Q i=1 i=1

For the reformulated model (4.5), it has the following energy law

dE SE 3¢ SE dg;
E‘/&p at X+Zaql dt

Q

' ~ 4i() : ~ 4i)
_([ﬁqb‘f‘;)’iﬁb‘f'i:] N ],g[c¢+i§w¢+i=1 a0V 1@])

In a similar manner, we introduce the relaxation technique to the MASV method to fix the inconsistency issues between
qi(t) and Q;(¢) after discretization. The two second-order MSAV schemes could be improved as follows.

Scheme 4.1 (Second-order RMSAV-BDF2 Scheme). We update ¢"t! via the following two steps:

e Step 1, Calculate the intermediate solution (¢"+!, g"*1) using the MSAV-BDF2 method as below.

39" —4g" + "1 n1
- _ , 4.8a
25t Gu (4.8a)
k k q~ n+1
=™ 4y i 4y Vi@, (4.8b)
i=1 i Qi )
3q~-"'H —4q" -|-q’!’1 Vi Zn+1 3"+ _ 4pn n—1
] — :/ 10 ) 3T TR g =12k (4.80)
26t 2Q;@" ) 26t
where ¢" = 3¢" — 191 and Vig"h = F{(E"H) — y,~$n+1, i=1,2,--- k.
e Step 2, update the k scalar auxiliary variables as
g =EG" + (1 - £0)Qi@"), i=1.2. k. EeV, (49)
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where the feasible set V is defined as V = V; NV, with

Vi ={§1§ €10, 11}, (4.10a)
k
1
Vo= {e15 o[ @2+ @t - — @2+ @it - o))
i=1

<sm@u™t w6 + (1 - HQ@ i =12, k|, nel01l (4.10b)

Remark 4.1 (Optimal choice for &y). Similarly, we can propose an optimal choice for the relaxation parameter & as the solution
to an optimization problem. And in the end,

—b — +/b% — 4ac
§o = max{0, T},

with the coefficients given by

k
5 -
=5 2 @" = Q™2
i=1
k
b= "@G"" - Qi@ (GQi@"") — 24,

k
1 ~n ~n n n n
=5 2 [Qi@")? + Q@™ —g)? = @"H? - @@" — gy’ = stn(@Gu T um .

i=1
Theorem 4.1. The Scheme 4.1 is unconditionally energy stable.

Proof. For the first step of the Scheme 4.1, we could get

k k
1 n n n n n n
i L+ e + M — ¢ (L + DD 2™ — ™))

i=1 i=1

k k
1
— L@ (L4 Y pDEN + 26" — ¢ L+ Y nDES" - ¢ )]

i=1 i=1

k
n ~n n 1 n n n—
+5 Z[(q 2+ @it -l - 5;[@- )2+ Qqi" —qi" )]
< —8t(gﬂn+], Mn+1).

At the same time, we know from (4.9), we could know

—Z[(q”“) +q"" g1 - = Z[C"“) +Q4M — M < stp@utt . (413)
i=1 i=1

Adding the above two equations together, we could have

k k
1 n n n n n n
2L@TLL D D™ + " = ¢ (L4 D yiD @™ — ¢M)]

i=1 i=1

k k
1 n n n n— n n—
—Z[<¢,(c+;y,-l>¢)+<2¢ —¢ 1,(£+;Vﬂ)(2¢> —¢" )]
k

+= ZW“) +Qg" — g™ -5 Z[(q,> +Qq" —ai" %

i=1
< —8t(1—m(Gu"t, u"h <o,
by using the fact 1 — n > 0. This completes the proof. O
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Then, if we use the semi-implicit CN time discretization, we can obtain the following second-order scheme.

Scheme 4.2 (Second-order RMSAV-CN Scheme). We update ¢™+! via the following two steps:

e Step 1. Calculate the intermediate solution

n+1 n
o -9 — G, (4.15a)
st
~n+2 ]
= L¢3 +Zy¢"+z +271v1<$”+7>, (4.15b)
i=1 i= 1Q(¢ i)
1
qn'H —q" Viat? n+1 _ 4n
J o 1:/ i +1) ¢ m ¢ dx, j=1,2,---,k. (4.15¢)
o+l
o 2Qj@ )
e Step 2. Update the scalar auxiliary variable as
=53+ (1 -E)Qi(@™), i=1,2,---k &€V, (416)

with the feasible set V defined as V =V; N),, where

V1 = {£1€ €[0, 1]}, (417a)
va= el Z (@ = @] < stngu s e,

At =Eg + (1 -5Q ", i:1,2,~--,k], ne[0,1]. (4.17b)

Remark 4.2. Similarly, the optimal choice for the relaxation parameter can be calculated as & = max{0, =b=vb*—dac VZZZ_““C} with
the coefficients given by

!

a= Z(~n+1 Qi(¢n+1))27 b= Z ( n+1 Q (¢n+1))Q (¢n+1) (4188)
i=1

c= Z[Q (@™ — ZC"“ —Stn(utE, G ). (4.18b)

Theorem 4.2. The Scheme 4.2 is unconditionally energy stable.

Proof. For the first step of (4.15), we could get

k k k
@ L+ ) yihe"™ ) + ZC”“)Z — @ L+ Y yiDe") = Y@M =—stGuE, u ).

i=1 i=1 i=1 i=1

From (4.16), we know

k
> @™y Z(q”“) <ot(Gu"TE, D). (419)

Adding above two equations, and using 1 — 1 > 0, we could arrive at

k k k

@™ L+ vihe" T + Z(”‘“ — @ (LY pD¢" = > @™ < —5t(1 - p)(GuTE, ptE) <o,

i=1 i=1 i=1 i=1

This completes the proof. O
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As another example, the relaxation technique can be easily applied to the Runge-Kutta SAV methods [1,20]. The details
are omitted for brevity. Interested readers are encouraged to explore the schemes.

Meanwhile, there are still some open problems to be addressed. The SAV method has also been extended for solving
the dispersive equations like the Schrédinger/Gross-Pitaevaskii equation [3,14]. Applying this relaxation technique to such
problems doesn’t seem straightforward since the dispersive equations require the preservation of the invariants. How to
refrain the difference between the scalar auxiliary variable and its original definition numerically for the dispersive equations
is still an open problem. Besides, the SAV method has also been extended to study the time and space fractional PDEs
[10,28]. How to resolve the inconsistency issues of the SAV method for these fractional problems also brings huge challenges
and opportunities. We plan to address these issues in our future research.

5. Numerical results

In this section, we implement the proposed numerical algorithms and apply them to several classical phase-field models
that include the Allen-Cahn (AC) equation, the Cahn-Hilliard (CH) equation, the Molecular Beam Epitaxy (MBE) model, the
phase-field crystal (PFC) model and the diblock copolymer model.

For simplicity, we only consider the phase-field models with periodic boundary conditions. However, we emphasize that
our proposed algorithms apply to other thermodynamically consistent boundary conditions that satisfy the energy dissi-
pation laws. Given the periodic boundary conditions, we use the Fourier pseudo-spectral method for spatial discretization.
Let Ny, Ny be two positive even integers. The spatial domain Q = [0, Ly] x [0, Ly] is uniformly partitioned with mesh size
hy=Lx/Ny,hy=Ly/Ny and

Qn = {(xj, yi)|xj = jhx, yk =khy, 0< j <Ny —1,0<k <Ny, —1}.
The details for spatial discretization are omitted. Interested readers can refer to our previous work [6]. Also, given the BDF2
and CN schemes are both second-order accurate, we only compare the baseline SAV-CN scheme and the RSAV-CN scheme
in this paper.

5.1. Allen-Cahn equation

In the first example, we consider the Allen-Cahn equation. Consider the free energy £ = jQ % V| + %(d)z —1)2dx, with
mobility operator G = 1, the general gradient flow model in (2.1) reduces to the corresponding Allen-Cahn equation

dp = —r(—&2Ad+¢> — ). (51)

In the SAV formulation, we introduce the scalar auxiliary variable

1
40 = Q(P(x. 1) = fZ@Z 1 yoy2dx 4 C.
Q

Then the SAV reformulated equations read as

_ 2 Q(f) _ 2 1 _
wp =2 —2B0 o+ TEV@] V@O =@ 11, (5.22)
d o_ [ V@
Eq“)_/zQ(@ drpdx. (5.2b)

Q

We verify that the relaxed SAV-CN scheme is second-order accurate in time. Consider the domain €2 = [0, 1]%, and we
pick the smooth initial condition

¢(x,y,t=0)=0.01cos(2mx) cos2my), (5.3)

and set the model parameters: ¢ =0.01 and A = 1. To solve the AC equation in (5.2), we use uniform meshes Ny = N, =128,
and numerical parameters Co =1, n=0.95, and yp = 1.

Given the analytical solutions are unknown, we calculate the error as the difference between the numerical solutions
using the current time step and the numerical solutions using the adjacent finer time step. The numerical errors in L? norm
with various time steps are summarized in Fig. 5.1. A second-order convergence for the numerical solutions of ¢ and q are
both observed.

Next, we conduct a detailed comparison between the baseline SAV-CN scheme and the RSAV-CN scheme. We use the
same parameters as in the example above. Consider the domain = [0, Lx] x [0, Ly], and choose the initial condition as

11
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Fig. 5.1. Time step mesh refinement tests of RSAV-CN scheme for solving the Allen-Cahn equation. This figure indicates that the proposed RSAV-CN algorithm
is second-order accuracy in time when solving the Allen-Cahn equation.
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Fig. 5.2. A comparison between the baseline SAV method and the relaxed SAV method in solving the Allen-Cahn equation. In (a) the numerical energies
using the baseline SAV and the relaxed SAV are shown. The RSAV-CN scheme provides accurate result even with a much larger time step than the baseline
SAV-CN scheme. In (b), the numerical results for q(t) — Q (¢ (x,t)) are shown, where we observe that the baseline SAV introduces numerical errors for
q(t) — Q (¢ (x, 1)), but the relaxed SAV method shows better consistency between ¢"*! and Q (¢"*1).

1.5+ 1.2cos(60) — 2mr
(x, y) =tanh , (5.4a)
¢ V2e
—0.5L L L
f = arctan i—OTL:’ r:\/(x— 3)‘)2-1-()/—75')2. (5.4b)

In this example, we set Ly = Ly = 1. We observe that the RSAV-CN method is more accurate than the baseline SAV-CN
method, even with a larger time step. In addition, the numerical errors between "' and Q (¢™*!) are shown in Fig. 5.2(b).
We observe that the RSAV method can effectively reduce the numerical errors between ¢"*! and Q (¢"t1). This is essential
for preserving the consistency between the modified energy and the original energy after temporal discretization.

5.2. Cahn-Hilliard equation

In the second example, we consider the well-known Cahn-Hilliard equation with a double-well potential. Mainly, consider
the free energy & = fQ %W(j&l2 + %(qﬁ)2 — 1)2dx, and mobility operator, G = —AA. The general gradient flow model in (2.1)
reduces to the corresponding Cahn-Hilliard equation

dd =AAL, (5.5a)
w=—eAp+¢> —¢. (5.5b)

12
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In the SAV formulation, we introduce the scalar auxiliary variable

1
q(t) :=Q(p(x, 1)) = f Z(qbz —1—y0)%dx+C.
Q

Then the reformulated equations are obtained as

e =21AU, (5.6a)
_ 2 q(t) _ 2

n=-e A¢+Vo¢+mv(¢), V) =¢ @ —1- ), (5.6b)

d [ V()

aq(t) —! 20(0) Orpdx. (5.6¢)

First of all, we conduct the mesh refinement tests to check the order of temporal convergence. We use the same initial
condition as the AC case in (5.3) for the time mesh refinement tests. We consider the domain € = [0,1]* and model
parameters A = 0.01, ¢ = 0.01. To solve the problem, we choose the numerical parameters Co =1, Yo =4, n = 0.95, and
Ny = Ny, = 128. Then we calculate the numerical solutions to t = 0.5 with various time steps. The L? errors for numerical
solutions (using strategies explained in the AC case) are calculated. The results are summarized in Fig. 5.3. A second-order
temporal convergence for both ¢ and q is observed.

10-1: —— S —— — — 10'5,
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107 ¢
103 ¢
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(=] [=]
o ° 100
10°°
{ -10
;
10} 0
10»7 . e — — . DU 10-11 i
10 103 102 107 10 10 102 10”
log(s 1) log(s 1)
(a) Temporal mesh refinement test for ¢ (b) Temporal mesh refinement test for g

Fig. 5.3. Time step mesh refinement tests of RSAV-CN method for solving the Cahn-Hilliard equation. This figure indicates that the proposed RSAV-CN
algorithm is second-order accuracy in time when solving the Cahn-Hilliard equation.

After we verify that the RSAV-CN scheme is second-order accurate, we compare the accuracy of the baseline SAV-CN
scheme and the RSAV-CN scheme for solving the Cahn-Hilliard equation. We use the same initial conditions as in (5.4). The
model parameters used are A = 0.1, € = 0.01, o = 4. And to solve the problem, we choose the numerical parameters Co =1,
n=0.95, and Ny = N, = 128. The comparison of calculated energies is shown in Fig. 5.4(a), and the numerical errors for
q(t) — Q(¢(x,t))) using both the baseline SAV-CN scheme and the relaxed SAV-CN schemes are shown in Fig. 5.4(b). We
observe that the relaxation step improves the accuracy significantly. In addition, the relaxation guarantees the consistency of
numerical solution q"*! with its original definition Q (¢"*!), which indicates the numerical consistency of modified energy
and the original energy.

Next, we investigate the coarsening dynamics driven by the Cahn-Hilliard equation. We consider the domain Q = [0, 412,
and set A =0.1, & = 0.01. Set the initial condition as ¢(x, y,t = 0) = ¢ + 0.05rand(x, y), where rand(x, y) generates
rand numbers between —1 and 1, and <130 is a constant. We use the relaxed SAV-CN scheme to solve it with meshes
Ny = Ny =512, model parameters yp =4, Co =1, n =0.95 and time step 6t = 0.001. The results are summarized in
Fig. 5.5. It is observed that when the volume difference between two phases is small, saying in Fig. 5.5(a), the spinodal
decomposition dynamics takes place; when the volume difference between two phases is larger, saying in Fig. 5.5(b), the
nucleation dynamics takes place.

5.3. Molecular beam epitaxy model with slope selection

In the next example, we consider the molecular beam epitaxy (MBE) model with slope selection. Given ¢ denoting the
MBE thickness, the free energy is defined as £ = fQ %(Aqﬁ)z + %(|V¢|2 — 1)2dx, with the mobility operator, G =1, the
general gradient flow model in (2.1) is specified as the MBE model with slope selection, which reads as

13
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Fig. 5.4. A comparison between the baseline SAV method and the relaxed SAV method for solving the Cahn-Hilliard equation. In (a) the numerical energies
using the baseline SAV and the relaxed SAV are shown. The RSAV method provides accurate result even with larger time step than the baseline SAV method.
In (b), the numerical results for q(t) — Q (¢(x,t)) are shown, where we observe that the baseline SAV introduces numerical errors for q(t) — Q (¢(x, t)), but
the relaxed SAV has properly relaxed the error close to 0.
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Fig. 5.5. Coarsening dynamics driven by the Cahn-Hilliard equation. In (a), we set 430 =0, and the profiles of ¢ at t =0.1,0.5, 5,50 are shown; (b) we set
¢o = 0.4, and the profiles of ¢ at t =0.1,0.5, 5, 50 are shown.

o= —e2A% +V - (IVo|* — 1)V9). (5.7)

With the similar idea as the previous examples, we introduce the scalar auxiliary variable

1
q@t) == Q(p(x, 1)) = 2 /(|V¢|2 —1—y0)?dx + Co, (5.8)
Q
then the reformulated model reads as
dp = —e>A? Ap+v. (10 g , 5.9
k¢ E°A P+ YoAD + (Q(¢) ®) (5.9a)

14



M. Jiang, Z. Zhang and J. Zhao Journal of Computational Physics 456 (2022) 110954

d [ Vé Vg
10 = / 200 dx. (5.9b)

As a routine, we test the temporal convergence of the relaxed SAV-CN scheme for the MBE model. Consider the do-
main € = [0,1]%, and the model parameter £ = 0.1. We use the same initial condition as before, i.e. ¢(x,y,t =0) =
0.01 cos(2mx) cos(2 y). We choose Ny = Ny =128, yp =4, Co =0, and n = 0.95. The numerical errors at t = 0.5 are
calculated and summarized in Fig. 5.6. A second-order convergence for both ¢ and g are observed, when the time step is
not too large.

107
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Fig. 5.6. Time step mesh refinement tests of RSAV-CN method for solving the MBE model. This figure indicates that the proposed RSAV-CN algorithm is
second-order accuracy in time when solving the MBE model.

Then, we compare the accuracy between the baseline SAV-CN method and the relaxed SAV-CN method for solving the
MBE model. We use the classical benchmark problem for the MBE model. Mainly we consider the domain Q = [0, 27712,
with €2 = 0.1. We solve the problem with Ny = Ny =128, yp =4, Cp =1, n =0.95. The numerical comparisons between
the baseline SAV-CN scheme and the relaxed SAV-CN scheme are summarized in Fig. 5.7. We observe that the relaxation step
increases the numerical accuracy and guarantees the numerical consistency between ¢"t! and Q (¢"*1). Here we emphasize
that the relaxation step is computationally negligible.
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Fig. 5.7. A comparison between the baseline SAV-CN method and the RSAV-CN method for solving the MBE model. In (a) the comparisons of numerical
energies are shown. The RSAV method provides more accurate results. In (b), the numerical results for q(t) — Q (¢ (X, t)) are shown, where we observe that
the baseline SAV introduces numerical errors for q(t) — Q (¢ (X, t)), but the relaxed SAV guarantees the consistency of q(t) and Q (¢ (x,t) numerically.
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5.4. Other phase-field models

Thanks to the SAV method’s generality, the relaxed SAV method also applies to various dissipative PDE models, and
particularly thermodynamically consistent phase field models. We skip some details of using the RSAV method on other
models due to space limitation but focus on two more specific applications: (1) the phase-field crystal model; and (2) the
diblock copolymer model.

First of all, we consider its application to the phase field crystal (PFC) model. Consider the free energy & = ]Q %d)(ao +
Ao+ 1ot — %"qﬁzdx where ag and by are model parameters, and the mobility operator G = —AA. The general gradient
flow model in (2.1) is reduced to the PFC model, which reads as

b = AL, (5.10a)
p=—(ao + A2 +¢> — bog. (5.10b)

If we introduce the scalar auxiliary variable q(t) := Q (¢ (x,t)) = \/}1 [9(452 —bo — Y0)%dx + Co, we get the reformulated
model

o =rAALL, (5.11a)
M=—(ao+A)2¢+Vo¢+%2)V(¢), V(¢) = ¢(¢* —bo — 0), (5.11b)
d [ V()

Eq(t)_Q/ZQ(@de' (5.11¢)

We verify that the RSAV scheme shows second-order convergence in time when solving the PFC model. The results are
not shown to save space. Then we compare the accuracy between the baseline SAV-CN scheme and the relaxed SAV-CN
scheme. We consider the domain €2 = [0, 40012, and set ag = 1, bg = 0.325, » = 1. To solve the PFC model, we use the
numerical parameters yp =1, Co =1, Ny = Ny =512, n = 0.95. The initial condition is chosen as shown in Fig. 5.9(a). The
numerical comparisons between the two schemes are summarized in Fig. 5.8. The RSAV-CN scheme shows more accurate
results. Most importantly, the results obtained from the RSAV-CN method show the numerical consistency between the
modified energy and the original energy, since it guarantees the consistency of q(t) with Q (¢ (x,t)) as shown in Fig. 5.8(b).
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R-SAV error
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(a) Numerical energies (b) Numerical errors for q(t) — Q(¢(x,t))

Fig. 5.8. A comparison between the baseline SAV-CN method and the RSAV-CN method for solving the PFC model. In (a) the comparisons of numerical
energies using different methods are shown. The RSAV-CN method provides more accurate results than the baseline SAV-CN method. In (b), the numerical
errors for q(t) — Q (¢ (x,t)) are shown. We observe that the baseline SAV-CN method introduces numerical errors for q(t) — Q (¢ (X, t)), but the RSAV-CN
method guarantees the consistency of q(t) and Q (¢ (x,t) numerically.

Also, the profiles of ¢ at various times using the relaxed SAV-CN scheme with a time step §t = 0.01 are summarized in
Fig. 5.9. It indicates the relaxed SAV-CN can be utilized to investigate long-time dynamics and provides accurate numerical
results.

Furthermore, we use the relaxed SAV-CN scheme to investigate the dynamics driven by the PFC model. In this case, we
consider the domain € = [0, 100]%, and choose the initial condition ¢(x, y,t =0) = q@o + 0.01rand(x, y), where rand(x, y)
generates random numbers between —1 and 1 and ¢y is a constant. To solve the PFC model, we use the numerical settings
Ny =Ny =256, yp =1, Co = 1. The numerical results are summarized in Fig. 5.10. The stripe pattern is observed with
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oot

(b) ¢ at £=90,100,150,250

Fig. 5.9. Crystal growth dynamics driven by the PFC model. The profiles of ¢ at various time slots are shown.

(b) ¢ at t=1,5,50,200 with ¢y =0.2

Fig. 5.10. Crystal growth pattern formation with different initial conditions governed by the PFC model. (a) $o =0; (b) 430 =0.2.

(130 =0, and the triangle pattern is observed with q§0 =0.2. These observations are consistent with phase diagram of the PFC
model as reported in the literature.
In the last example, we examine the diblock copolymer model with the proposed RSAV method. Consider the free energy

2 1 . R
E= %|V¢|2+Z(¢2—1)2dx+%f/G(X—Y)@(X)—¢0)(¢(Y)—¢o)dXdy
Q Q

Q
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N——"

(f) c=100

Fig. 5.11. Coarsening dynamics driven by the diblock copolymer model. The profiles of ¢ at t =500 are shown under various nonlocal interactions strength
o. It shows that more droplets are formed with stronger nonlocal interaction strength o.

with o a parameter for the nonlocal interaction strength and the mobility operator G = —AA. Here G is the Green’s function
such that AG(x —y) = —8(x —y) with periodic boundary conditions and § is a Dirac delta function. The general gradient
flow model in (2.1) is specified into the phase-field diblock-copolymer model, which reads as

hp =2[Au -6~ o). (5:12a)
w=—->A¢p+¢> —¢. (5.12b)

We consider a domain Q = [0, 1]2, and parameters A = 0.1, & = 0.01, ¢p = 0.4, and initial condition ¢ (x, y,t = 0) = ¢o +
0.05rand(x, y) where rand(x, y) generates random numbers in the range [—1, 1]. To solve the model, we use the numerical
parameters yp =4, Co =1, Ny = Ny, = 128. Here we test various nonlocal interaction strength o. The numerical results at
t =500 are summarized in Fig. 5.11. We observe that the number of droplets scales with the nonlocal interaction strength o.

6. Conclusion

In this paper, we introduce a relaxation technique to improve the accuracy and consistency of the baseline SAV method
for solving dissipative PDE models (phase-field models in particular). Our relaxed-SAV (RSAV) approach leads to linear,
second-order, unconditionally energy stable numerical schemes. Most importantly, the RSAV schemes preserve the original
energy given the relaxation parameter & reaches 0. Furthermore, we provide detailed proofs for the energy stability prop-
erties of the RSAV method. Then, we apply the RSAV method to solve the Allen-Cahn (AC) equation, the Cahn-Hilliard (CH)
equation, the Molecular Beam Epitaxy (MBE) model, the phase-field crystal (PFC) model, and the diblock copolymer model.
Numerical experiments highlight the accuracy and efficiency of the proposed RSAV method. The numerical comparisons
between the baseline SAV schemes and the RSAV schemes indicate that the RSAV method is unconditionally energy stable
according to the original energy law and has better accuracy and consistency over the baseline SAV method.
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