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We study a spatial (two-dimensional) Rosenzweig-MacArthur model under the 
following assumptions: (1) prey spread follows a nonlinear diffusion rule, (2) preys 
have a refuge zone (sometimes called “protection zone”) where predators cannot 
enter, (3) predators move following linear diffusion. We present a bifurcation analysis 
for the system that shows the existence of positive solutions at the steady state. 
We complement the theoretical results with numerical computations and compare 
our results with those obtained in the case of having linear diffusion for the prey 
movement. Our results show that both models, with linear and nonlinear diffusion 
for the prey, have the same bifurcation point and the positive solution curves are 
virtually the same in a neighborhood of this point, but they get drastically different 
as the bifurcation parameter approaches zero.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

It seems completely natural to expect the effects of density-dependent dispersal on spatially distributed 
predator-prey systems [18]; for instance, reduced amounts of resources at fixed spatial locations due to a 
high level of aggregation might drive the dispersal for searching and acquiring new resources for survival at 
locations with less competition. Other adaptive responses could also be observed in some prey and predator 
populations, like keeping away from crowds to be less visible to predators and avoiding encounters with 
conspecific individuals in active searching of prey to decrease interference [9].

A theoretical framework for density-dependence dispersal includes diffusivity as a function of the popula-
tion density in a reaction-diffusion equation, which could also contain additional nonlinear terms regarding 
other relevant aspects of the system. Here we are interested in studying the effects of nonlinear diffusion 
by the prey under two specific circumstances: (1) there is predator saturation on prey consumption (we use 
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a Holling type II function) and (2) the prey habitat contains a refuge zone where their predation is not 
possible and can be thought as a mechanism for conservation [25]. For the nonlinearity in the diffusion, we 
assume the simple form ∇ · u∇u (u represents the prey population), which is a particular case of a more 
general model discussed in [18], see also [7].

Although there are variants of the model presented here that have been extensively studied in recent 
years, see for instance [29] and [6], we have not found in the literature results that directly compare the 
effects of density-dependence dispersal with those from linear diffusion, under the conditions (1) and (2) 
mentioned above. To understand how the differences in the dynamics depend on the model parameters 
might become relevant when attempting the modeling in real scenarios, as could be in the case of pest 
suppression efforts through biological control.

We start by showing the existence of nontrivial solutions in the steady state via bifurcation analysis. 
Then we compare numerically the effects of the nonlinearity in the diffusion with its linear counterpart. 
There are studies involving the simultaneous effects of nonlinearities in the reaction part (in particular, the 
predator saturation) and refuge, see for instance [27] and [30], but the introduction of nonlinear diffusion 
requires the development of alternative theoretical tools.

Our particular model of interest is defined over a bounded domain Ω ⊂ R2, which is the representation of 
a closed environment where predators and preys live. We consider an additional domain, the “refuge zone”, 
Ω0 ⊂ Ω, where predators cannot enter. We assume that Ω and Ω0 have sufficiently smooth boundaries, that 
Ω0 ⊂ Ω, and define Ω1 = Ω \ Ω0. Let us consider the following system of parabolic equations for the prey 
and predator populations, denoted by u and v respectively,

∂tu = Du∇ · u∇u + ru
(

1 − u

λ

)
− b(x)uv

1 + mu
in Ω,

∂tv = DvΔv − μv + cuv

1 + mu
in Ω1,

v ≡ 0 in Ω \ Ω1,

(1.1)

with boundary and initial conditions given by

∂nu = 0 on ∂Ω,

∂nv = 0 on ∂Ω1,

u(x, 0) = u0(x) ≥ 0 for x ∈ Ω,

v(x, 0) = v0(x) ≥ 0 for x ∈ Ω1.

(1.2)

The reaction part of this system is the well-known Rosenzweig-MacArthur model, [11,23], where the pa-
rameters are positive and the function b(x), which determines the efficiency of predator attacks, is defined 
by

b(x) =
{

b > 0 if x ∈ Ω1,

0 if x ∈ Ω0,
(1.3)

thus characterizing the refuge zone Ω0. By imposing a non-flux boundary condition on ∂Ω1, we restrict 
predators to the exterior of the refuge zone. In contrast, preys can move freely over the whole domain Ω. 
For the bifurcation analysis in the next Section, it is convenient to consider the model in dimensionless 
form. After a suitable re-scaling, the two equations in (1.1) can be rewritten as
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∂tu = ∇ · u∇u + λu − u2 − b(x)uv

1 + mu
in Ω,

∂tv = dΔv − μv + cuv

1 + mu
in Ω1,

(1.4)

where d = Dv/Du. Please notice that, although we are using the initial notation, the variables and param-
eters now have different interpretations. First we focus on showing the existence of positive steady-state 
solutions for the homogeneous system

∇ · u∇u + λu − u2 − b(x)uv

1 + mu
= 0 in Ω,

Δv − μv + cuv

1 + mu
= 0 in Ω1,

∂nu = 0 on ∂Ω,

∂nv = 0 on ∂Ω1,

(1.5)

where the parameters in the predator’s equation have been redefined accordingly.

2. Bifurcation analysis

In this Section we show the emergence of positive solutions for the problem (1.5) and its counterpart 
that has the laplacian Δu for the prey equation replacing the term ∇ · u∇u. This is achieved by using the 
Crandall-Rabinowitz theorem on bifurcations from simple eigenvalues. In what follows we assume that u is 
bounded away from zero.

2.1. The nonlinear diffusion case

The first step is to establish the nature of the non-negative solutions, which is done in Proposition 1. 
For its proof we first require a Lemma that adapts a maximum principle in [16] to the case of the nonlinear 
diffusion considered here.

Lemma 1. Suppose g ∈ C(Ω ×R) and u ∈ C2(Ω) ∩ C1(Ω), u ≥ 0 in Ω, where Ω is a bounded domain in RN

with smooth boundary.

i. If ∇ · u∇u + g(x, u(x)) ≥ 0 in Ω, ∂nu ≤ 0 on ∂Ω and u(x0) = maxΩ u(x), then g(x0, u(x0)) ≥ 0.

ii. If ∇ · u∇u + g(x, u(x)) ≤ 0 in Ω, ∂nu ≥ 0 on ∂Ω and u(x0) = minΩ u(x), then g(x0, u(x0)) ≤ 0.

Proof. Part (i). Notice that by continuity of u and compactness of Ω, there exists x0 ∈ Ω such that 
u(x0) = maxΩ u(x). If x0 ∈ Ω, then we must have Δu(x0) ≤ 0, and ∇u(x0) = �0. Since u ≥ 0 in Ω, we have

(∇ · u∇u)(x0) + g(x0, u(x0)) = u(x0)Δu(x0) + g(x0, u(x0)) ≥ 0.

From this, we obtain 0 ≥ u(x0)Δu(x0) ≥ −g(x0, u(x0)), hence g(x0, u(x0)) ≥ 0. Now suppose that x0 ∈ ∂Ω
and g(x0, u(x0)) < 0. By the continuity of g and u, there exists a ball B ⊂ Ω such that ∂Ω ∩ ∂B = {x0}. By 
the hypothesis we have

uΔu + |∇u(x)|2 ≥ −g(x, u(x)) > 0. (2.1)

Let us write u(x0) = maxΩ u(x) ≡ M and v = v(x) ≡ M . Notice that the term uΔu + |∇u|2 has the 
form aij(x, u, ∇u)∂2

x u + B(x, u, Du) with aij = 0 if i 	= j, aii(x, u, ∇u) = u and B(x, u, ∇u) = |∇u|2. 

ij
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Furthermore, since u ∈ C2(Ω) ∩ C1(Ω), the matrix [aij ] is continuous and continuously differentiable with 
respect to its second and third arguments in the set Ω ×R ×RN , also B(x, z, ζ) = |ζ|2, ζ ∈ Rn is continuously 
differentiable with respect to ζ in RN . The inequality (2.1) implies that u is an elliptic solution in the sense 
described in [19] (section 2.2), as well as v ≡ M , since vΔv + |∇v|2 ≤ 0. Let K be a compact subset of 
Ω × R × RN and choose z̃ > z, the inequality B(x, ̃z, ζ) − B(x, z, ζ) ≥ −κ(z̃ − z) for some κ > 0, follows 
from the fact that B(x, ̃z, ζ) − B(x, z, ζ) = 0 > −(z̃ − z) with κ = 1, hence B is lower Lipschitz continuous 
in the variable z in K. Notice that u < v in Ω and u = v exactly at x0 ∈ ∂Ω, then by Theorem 2.7.1 in [19]
we have ∂nu(x0) > ∂nv(x0) ≡ 0, contradicting the boundary condition ∂nu(x0) ≤ 0. Therefore, we must 
have g(x0, u(x0)) ≥ 0 as needed. Part (ii) of the Lemma is proved by a similar argument but reversing the 
inequalities. �
Proposition 1. Let u, v ∈ C2(Ω) ∩ C1(Ω), the non-negative trivial and semi-trivial solutions (u, v) of the 
system (1.5), are either (0, 0) or (λ, 0) respectively.

Proof. Suppose v ≡ 0, then we want to show that either u ≡ 0 or u ≡ λ. Suppose u 	≡ 0, then u > 0
in some bounded subset A of Ω of positive measure. By continuity of u, there exists x0 ∈ Ω such that 
0 < u(x0) = maxΩ u(x). We have that ∂nu ≤ 0 on ∂Ω and uΔu + |∇u|2 + u(λ − u) ≥ 0 in Ω, then by 
Lemma 1, u(x0)(λ − u(x0)) ≥ 0, which implies that λ ≥ u(x0) ≥ u in Ω. On the other hand, since u is 
continuous, there exists x′ ∈ Ω such that u(x′) = minΩ u(x). We also have uΔu + |∇u|2 + u(λ − u) ≤ 0
in Ω and ∂nu ≥ 0 on ∂Ω, then by Lemma 1 we conclude u(x′)(λ − u(x′)) ≤ 0. If u(x′) = 0, then the last 
inequality would imply λ ≤ 0 which is not possible since we assume λ > 0, thus we must have u(x′) > 0
and λ ≤ u(x′) ≤ u in Ω. Finally, we have λ ≤ u ≤ λ in Ω, and therefore u ≡ λ in Ω as needed. �

Proposition 1 is the first step to study the presence of a bifurcation along the semi-trivial solutions given 
by the curve Γu = {(μ, u, v) = (μ, λ, 0) : μ > 0}, see [29] and [6]. We can now proceed to investigate positive 
solutions to the system (1.5). Although the analysis below follows the mathematical framework presented 
in [29], [6], and Section 3.4.2 of [1], we have tried to provide a more detailed account with the hope of 
facilitating the reading.

Let us start defining the spaces

XΩ = {u ∈ W 2,p(Ω) : ∂nu = 0 on ∂Ω}, YΩ = Lp(Ω),

XΩ1 = {u ∈ W 2,p(Ω1) : ∂nu = 0 on ∂Ω1}, YΩ1 = Lp(Ω1),

where we assume p > 2 so that Theorem 3.3 (together with Remark 3.4.1) in [24] can be applied. We are 
interested in analyzing how nontrivial solutions, i.e. v > 0, bifurcate in a neighborhood of (μ, λ, 0). Consider 
the function w = λ − u and define the operator F : R × XΩ × XΩ1 → YΩ × YΩ1 by

F (μ, w, v) =

⎛⎜⎝−∇ · w∇w + λΔw − λw + w2 + b(x)(λ−w)v
1+m(λ−w)

Δv − μv + c(λ−w)v
1+m(λ−w)

⎞⎟⎠
T

. (2.2)

Since we aim to use Theorem 1.7 in [4], we linearize the operator in (2.2) by computing

F(w,v)(μ, w, v)[α, β] = d

dε
F (μ, w + εα, v + εβ)|ε=0.

This gives
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F(w,v)(μ, w, v)[α, β] =

⎛⎜⎝−∇ · α∇w − ∇ · w∇α + λΔα − λα + 2wα + b(x)β(λ−w)
1+m(λ−w) − b(x)αv

(1+m(λ−w))2

Δβ − μβ + c(λ−w)β
1+m(λ−w) − cvα

(1+m(λ−w))2

⎞⎟⎠
T

. (2.3)

Around (λ, 0), i.e. λ = u and v = 0, we have that (2.3) becomes

F(w,v)(μ, 0, 0)[α, β] =

⎛⎝λΔα − λα + b(x)λβ
1+mλ

Δβ − μβ + cλβ
1+mλ

⎞⎠T

. (2.4)

Since we are interested in nontrivial solutions to (1.5) we look for the values of μ for which F(w,v)(μ, 0, 0)[α, β] =
(0, 0) has no trivial solutions and dim(ker

(
F(w,v)(μ, 0, 0)

)
) = 1. Notice that (α, β) = (0, 0) is always a solu-

tion to F(w,v)(μ, 0, 0)[α, β] = (0, 0). First We look if (α, 0) with α 	= 0 is also a solution. If that is the case, 
then λΔα − λα = 0 in Ω and ∂nα = 0 on ∂Ω. Then, since λ > 0, the weak formulation of the associated 
partial differential equation gives − 

∫
Ω ∇α · ∇ψdx =

∫
Ω αψdx. For any ψ ∈ XΩ, in particular for ψ = α, we 

get − 
∫

Ω |∇α|2dx =
∫

Ω α2dx, which holds only if α = 0. Thus, we look at solutions of the form (0, β) with 
β 	= 0.

We recall that the Neumann eigenvalues for the Laplacian can be characterized by the min-max formula, 
see [3] or [10] for instance,

μN
k (Ω) = min

Sk⊂H1(Ω)
max

φ∈Sk,φ �=0

∫
Ω |∇φ|2dx∫

Ω φ2dx
, (2.5)

where Sk are subspaces of dimension k of the Sobolev space H1(Ω) and the minimum is achieved by 
choosing Sk to be the subspace spanned by the first k eigenfunctions φ1, φ2, . . . , φk. Notice that μN

1 (Ω) = 0
is a consequence of (2.5), corresponding to the constant eigenfunction φ1 (constant at least on a connected 
component of Ω). This can be justified as follows. First, notice that μN

k (Ω) ≥ 0 and that zero is achieved 
whenever maxφ∈Sk,φ �=0

(∫
Ω |∇φ|2dx/

∫
Ω φ2dx

)
= 0, which is possible only if 

∫
Ω |∇φ|2dx/ 

∫
Ω φ2dx = 0, and 

hence we must have 
∫

Ω |∇φ|2dx = 0, which implies that |∇φ| = 0 a.e. on Ω, if Ω is connected then we have 
φ is constant a.e. on Ω.

Now, consider the boundary value problem determined by the second component of (2.4),

−Δβ =
(

−μ + cλ

1 + mλ

)
β in Ω1,

∂nβ = 0 on ∂Ω1.

(2.6)

From (2.5) we have that only when μλ = cλ/(1 +mλ), β does not change sign on Ω1 (since this corresponds 
to the zero eigenvalue). More precisely, β ≥ 0 implies that β is a positive constant. Therefore, μλ is the 
unique bifurcation point along Γu from which positive solutions of (1.5) emerge.

The argument above also shows that ker
(
F(w,v)(μλ, 0, 0)

)
= span{(αμλ

, 1)}, where αμλ
solves the bound-

ary value problem

Δα − α + b(x)
1 + mλ

= 0 in Ω, (2.7)

∂nα = 0 in ∂Ω. (2.8)

Notice that by choosing β = 1, with λ = μλ/(c − mμλ), we get αμλ
= (−Δ + I)−1 [b(x)/(1 + mλ)]. On 

the other hand, if we consider the non-homogeneous problem F(w,v)(μλ, 0, 0)[α, β] = [f(x), g(x)] then the 
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Range(F(w,v)(μλ, 0, 0)) =
{

(f, g) ∈ YΩ × YΩ1 |
∫

Ω1
g(x)dx = 0

}
. To see this, from the weak formulation we 

must have

−
∫
Ω

∇α · ∇udx −
∫
Ω

αudx +
∫

Ω1

b
1

1 + mλ
udx =

∫
Ω

f

λ
udx, (2.9)

−
∫

Ω1

∇β · ∇vdx − μλ

∫
Ω1

βvdx +
∫

Ω1

cλ

1 + mλ
βvdx =

∫
Ω1

gvdx, (2.10)

for any (u, v) ∈ XΩ ×XΩ1 . In particular, if we choose (u, v) = (αμλ
, 1), we get the condition 

∫
Ω1

g(x)dx = 0. 
Therefore

dim(ker
(
F(w,v)(μλ, 0, 0)

)
) = codim(Range

(
F(w,v)(μλ, 0, 0)

)
) = 1. (2.11)

Notice also that Fμ(μ, w, v) = (0, −v) and Fμ(w,v)(μ, w, v)[α, β] = (0, −β). Therefore,

Fμ(w,v)(μλ, 0, 0)[αμλ
, 1] = (0, −1). (2.12)

In particular, (0, −1) /∈ Range
(
F(w,v)(μλ, 0, 0)

)
. By the classical result on bifurcations from simple eigen-

values of Crandall and Rabinowitz [4], we conclude that the positive solutions of the system (1.5) form a 
smooth curve given by

{(μ, u, v) = (μλ(s), λ − sαμλ
(x) + o(|s|), s + o(|s|)) : s ∈ (0, a)} (2.13)

for some a > 0, bifurcating from Γu at (μλ, λ, 0) and such that μλ(0) = cλ/(1 + mλ).
Along the branch (μ(s), w(s), v(s)) given by (2.13) the operator defined in (2.2) depends on the variable 

s. Thus we compute Fss(μ(s), w(s), v(s)), which is given by

⎛⎜⎜⎜⎜⎜⎝
−wssΔw − 2wsΔws − wΔwss − 2∇w · ∇wss − 2|∇ws|2 + λΔwss − λwss + 2w2

s + 2wwss−
2mb(x)w2

sv(s)
(1+m(λ−w(s)))3 − b(x)wssv(s)

(1+m(λ−w(s)))2 − 2b(x)wsvs

(1+m(λ−w(s)))2 + b(x)(λ−w(s))vss

1+m(λ−w(s))

Δvss − μ′′(s)v − 2μ′(s)vs − μvss − 2mcw2
sv(s)

(1+m(λ−w(s)))3 − cwssv(s)
(1+m(λ−w(s)))2 − 2cwsvs

(1+m(λ−w(s)))2 +
c(λ−w(s))vss

1+m(λ−w(s))

⎞⎟⎟⎟⎟⎟⎠

T

. (2.14)

Using subscripts to denote the first and second derivative of v and w, respectively, and using the fact that 
w(s) = λ − u(s) = λ − (λ − sαμλ

(x) + o(|s|)), v(s) = s + o(|s|), we have that at s = 0, v(0) = 0, vs(0) = 1, 
vss(0) = 0, w(0) = 0, ws(0) = αμλ

, wss(0) = 0. Therefore, with β = 1, the expression (2.14) becomes

Fss(μλ(0), 0, 0) =

⎛⎝−2∇ · (αμλ
∇αμλ

) + 2α2
μλ

− 2b(x)
(1+mλ)2 αμλ

β

−2μ′
λ(0) − 2c

(1+mλ)2 αμλ
β

⎞⎠T

, (2.15)

where μ′
λ represents the derivative of μλ(s) with respect to s.

Furthermore, notice that F(w,v)(w,v)(μλ, w, v)[αμλ
, β]2 is equal to

⎛⎝−2∇ · (αμλ
∇αμλ

) + 2α2
μλ

− 2b(x)
(1+m(λ−w))2 αμλ

β − 2mb(x)
(1+m(λ−w))3 α2

μλ
v

−2c α β − 2mc α2 v

⎞⎠T

, (2.16)

(1+m(λ−w))2 μλ (1+m(λ−w))3 μλ
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and at (μλ, 0, 0),

F(w,v)(w,v)(μλ, 0, 0)[αμλ
, β]2 =

⎛⎝−2∇ · (αμλ
∇αμλ

) + 2α2
μλ

− 2b(x)
(1+mλ)2 αμλ

β

−2c
(1+mλ)2 αμλ

β

⎞⎠T

. (2.17)

As long as F(w,v)(w,v)(μλ, 0, 0) /∈ Range(F(w,v)(μλ, 0, 0)) we use formula I.6.3 in [8] to compute an explicit 
expression for μ′

λ(0). Consider the projection acting on F(w,v)(w,v)(μλ, 0, 0)[αμλ
, β]2, and Fμ(w,v)(μλ, 0, 0)

respectively and defined by

〈F(w,v)(w,v)(μλ, 0, 0)[αμλ
, β]2, π1〉 =

∫
Ω1

−2c

(1 + mλ)2 αμλ
βdx (2.18)

〈Fμ(w,v)(μλ, 0, 0)[αμλ
, β], π1〉 =

∫
Ω1

(−β)dx. (2.19)

Then,

μ′
λ(0) = −1

2
〈F(w,v)(w,v)(μλ, 0, 0)[αμλ

, β]2, π1〉
〈Fμ(w,v)(μλ, 0, 0)[αμλ

, β], π1〉 (2.20)

= − c

|Ω1|(1 + mλ)2

∫
Ω1

αμλ
dx < 0. (2.21)

Notice that the condition F(w,v)(w,v)(μλ, 0, 0) /∈ Range(F(w,v)(μλ, 0, 0)) guarantees that the integral over Ω1
of the second component of (2.17) does not vanish, so μ′

λ(0) will not be zero.
To determine the values of μ > 0 for which the system (1.5) has either a unique positive solution, at least 

one positive solution, or no positive solutions, we use a unilateral global bifurcation result for Fredholm 
operators due to Shi and Wang (see Theorem 4.4 of [24]), which is based on a result due to Lopez-Gomez 
(Theorem 6.4.3 page 188 in [14]). This updates Rabinowitz’s Theorem 1.27, presented originally in [20]. 
Consider the operator F0 : R × XΩ × XΩ1 → YΩ × YΩ1 , associated to (1.5) and defined by

F0(μ, u, v) =
(

u − λ

v

)T

−

⎛⎝(−N + I)−1(u − λ + λu − u2 − b(x)uv/(1 + mu))

(−Δ + I)−1
Ω1

(v − μv + cuv/(1 + mu))

⎞⎠T

, (2.22)

where N = N(u) = ∇ · u∇u. Then F0(μ, u, v) = �0 is equivalent to the system (1.5). Let S ⊂ R × XΩ × XΩ1

be the set of non-negative solutions of (1.5) determined by (2.13), and let C be the connected component 
of the set S ∪ {(μλ, λ, 0)} emanating from (μλ, λ, 0) such that C ⊂ {(μ, u, v) ∈ R × XΩ × XΩ1 \ {(μλ, λ, 0)} :
F0(μ, u, v) = �0}.

From the above computations, all conditions of Theorem 4.3 in [24] are satisfied and it can be seen from 
equations (2.3) and (2.12) that F(u,v)(μ, λ, 0) is continuously differentiable in μ for (μ, λ, 0) in R ×XΩ ×XΩ1 . 
The C1 condition of the corresponding norm function (u, v) �→ ‖(u, v)‖XΩ×XΩ1

is guaranteed in [21] (see also 
[24]) and, by properties of quasilinear elliptic operators, we have that kF(u,v)(μ, u, v) + (1 − k)F(u,v)(μ, λ, 0)
for k ∈ (0, 1) is Fredholm (see Sec 3. in [24]). Then, by Theorem 4.4 in [24] (see also [14], Theorem 6.4.3, 
page 188) the set C satisfies one of the following alternatives:

(i) it is unbounded in R × XΩ × XΩ1 , or
(ii) it contains (μ∗, λ, 0), where μ∗ 	= μλ and (μ∗, λ, 0) also solves F0(μ, u, v) = �0, or
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(iii) it contains a point (μ, λ + z, z), where z 	= 0 and z is in the complement of ker(F(u,v)(μ, λ, 0)) in 
XΩ × XΩ1 .

If we assume that (ii) holds and that μ < c/m then, by the same argument used to obtain (2.13), we 
cannot have μ∗ > μλ since that would imply negative eigenvalues for the negative Laplacian with Neumann 
boundary conditions (see Eqn. (2.6)). On the other hand, μ∗ < μλ is not possible since μλ is the smallest 
value for which positive solutions bifurcate. Now, let us assume that (iii) holds. Then, there is a point 
(μ, λ + z, z) ∈ C with z 	= 0 and 

∫
Ω1

zαμλ
dx = 0. By the Sobolev’s embedding theorem we can find a 

sequence {(μi, ui, vi)}∞
i=1 in R × C1(Ω) × C1(Ω1) with ui > 0 in Ω, vi > 0 in Ω1 for all i ∈ N with 

F0(μi, ui, vi) = �0, and such that lim
i→∞

(μi, ui, vi) = (μ, λ + z, z). Then, we have that (λ + z, z) is a non-
negative solution of (1.5) with μ = μλ. By Lemma 2.2 in [29] (see also, [15] and [13]) and the Maximum 
Principle for quasilinear elliptic operators (see [19]) we must have

(1) λ + z > 0, z ≡ 0 or (2) λ + z ≡ 0, z ≡ 0 or (3) λ + z ≡ 0, z > 0.

By assumption, neither (1) nor (2) hold. For the last case, the Maximum Principle implies that αμλ
> 0

and therefore 
∫

Ω1
zαμλ

dx > 0, thus obtaining a contradiction. We have thus proved the following Theorem.

Theorem 1. Let λ > 0. Then, there are positive solutions to the system (1.5) bifurcating from {(μ, u, v) =
(μ, λ, 0) : μ > 0} if and only if 0 < μ < μλ, forming a smooth curve given by

{(μ, u, v) = (μλ(s), λ − sαμλ
(x) + o(|s|), s + o(|s|)) : s ∈ (0, a)} (2.23)

for some a > 0 and such that μλ(0) = cλ/(1 + mλ), u(0) = λ, v(0) = 0. Furthermore, if μ > μλ the system 
(1.5) has not positive solutions.

2.2. The linear diffusion case

Now let us consider the system

Δu + λu − u2 − b(x)uv

1 + mu
= 0 in Ω,

Δv − μv + cuv

1 + mu
= 0 in Ω1,

∂nu = 0 on ∂Ω,

∂nv = 0 on ∂Ω1,

(2.24)

which is identical to (1.5) but has the linear diffusion in u. From the maximum principle stated in [16]
(Proposition 2.2), any non-negative solutions to (2.24) are either positive, (0, 0), or (λ, 0). By letting w =
λ − u, we define the operator T : R × XΩ × XΩ1 → YΩ × YΩ1 as

T (μ, w, v) =

⎛⎜⎝Δw − λw + w2 + b(x)(λ−w)v
1+m(λ−w)

Δv − μv + c(λ−w)v
1+m(λ−w)

⎞⎟⎠
T

. (2.25)

As before, we obtain the corresponding expressions for T(w,v)(μ, w, v), T(w,v)(w,v)(μ, w, v) and Tλ(w,v)(μ, w, v),
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T(w,v)(μ, w, v)[α, β] =

⎛⎜⎝Δα − λα + 2wα − b(x)αv
(1+m(λ−w))2 + b(x)(λ−w)β

1+m(λ−w)

Δβ − μβ − cαv
(1+m(λ−w))2 + c(λ−w)β

1+m(λ−w)

⎞⎟⎠
T

, (2.26)

Tμ(w,v)(μ, w, v)[α, β] = (0, −β), (2.27)

T(w,v)(w,v)(μ, w, v)[α, β]2 =

⎛⎝2α2 − 2b(x)
(1+m(λ−w))2 αβ − 2mb(x)

(1+m(λ−w))3 α2v

− 2c
(1+m(λ−w))2 αβ − 2mc

(1+m(λ−w))3 α2v

⎞⎠T

. (2.28)

Therefore, by making w = v = 0,

T(w,v)(μ, 0, 0)[α, β] =

⎛⎝Δα − λα + b(x) λ
1+mλ β

Δβ − μβ + c λ
1+λ β

⎞⎠T

. (2.29)

By the same arguments used for (2.4) we conclude that μλ = cλ/(1 + mλ) is the unique bifurcation along 
the curve Γu from which positive solutions of (2.24) may emerge. Notice also that

T(w,v)(w,v)(μλ, 0, 0)[α̃μλ
, β]2 =

⎛⎝2α̃2
μλ

− 2b(x)
(1+mλ)2 α̃μλ

β

− 2c
(1+mλ)2 α̃μλ

β

⎞⎠T

, (2.30)

where

α̃μλ
= (−Δ + λI)−1 [b(x)λ/(1 + mλ)] .

Similarly as in the case of (2.20), but this time using T(w,v)(w,v)(μλ, 0, 0) /∈ Range(T(w,v)(μλ, 0, 0)), we use 
formula I.6.3 in [8] to obtain

μ′
λ(0) = −1

2
〈T(w,v)(w,v)(μλ, 0, 0)[α̃μλ

, β]2, π1〉
〈Tμ(w,v)(μλ, 0, 0)[α̃μλ

, β], π1〉 (2.31)

= − c

|Ω1|(1 + mλ)2

∫
Ω1

α̃μλ
dx < 0. (2.32)

By defining F1 : R × XΩ × XΩ1 → YΩ × YΩ1 as

F1(μ, u, v) =
(

u − λ

v

)T

−

⎛⎝(−Δ + I)−1(u − λ + λu − u2 − b(x)uv/(1 + mu))

(−Δ + I)−1
Ω1

(v − μv + cuv/(1 + mu))

⎞⎠T

, (2.33)

we can use Shi and Wang’s result, [24], (see also [14]), to get an analogous statement to Theorem 1. In 
summary, we have the following result.

Theorem 2. Let λ > 0. Then, there are positive solutions to the system (1.5) bifurcating from {(μ, u, v) =
(μ, λ, 0) : μ > 0} if and only if 0 < μ < μλ, forming a smooth curve given by

{(μ, u, v) = (μλ(s), λ − sα̃μλ
(x) + o(|s|), s + o(|s|)) : s ∈ (0, a)} (2.34)

for some a > 0 and such that μλ(0) = cλ/(1 + mλ), u(0) = λ, v(0) = 0. Furthermore, if μ > μλ the system 
(2.24) has not positive solutions.
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Fig. 1. Bifurcation curves for the density dependent and linear (constant) diffusion, with the predator population v on the vertical 
axis and the parameter μ on the horizontal axis. The curves for the system (1.5) are in blue (×), and for its linear counterpart in 
orange (◦). From left to right, the values of λ are 0.5, 1.0, and 1.5, with c = m = 1 for the three panels. This gives the corresponding 
bifurcation points at μ = 1/3, 1/2, and 3/5. Close to the bifurcation points the curves of positive solutions for the nonlinear and 
linear diffusion are virtually the same but, as the value of μ moves toward 0, the former increases faster. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

3. Numerical verification

Bifurcation curves in the v − μ plane, for the system (1.5) and the linear counterpart, were computed 
for three values of λ and are presented in Fig. 1. The numerical results obtained are in agreement with 
the theoretical findings in the previous Section. The bifurcation points coincide for both systems and the 
emerging curves of positive solutions are virtually identical for values of μ that are below but close to the 
bifurcation point. However, it is observed that as the values of μ move toward 0, the curve associated to 
the nonlinear diffusion eventually starts to increase much faster than that of its linear counterpart.

4. Conclusions and discussion

In this paper, we introduce a simple nonlinear diffusion mechanism in a prey population to model a 
plausible adaptation response that counteracts intraspecific competition for resources. The spatial domain 
for the model contains a refuge zone that excludes predators presence. Predator saturation on prey con-
sumption is also considered and included via a Holling type II function. It is reasonable to imagine this 
scenario as a simplified approximation to biological control or conservation problems where the question 
“how does density-dependent diffusion in the prey affect the dynamics of the system and compares to linear 
diffusion?” is relevant to a modeler of such complex contexts. In this paper we provide a partial answer to 
this general question for a very simple case of nonlinear diffusion. Our theoretical arguments involve a novel 
adaptation of a maximum principle to the nonlinear case and make use of the classical results in bifurcation 
theory to show the existence of positive solutions at the steady state. The analysis is complemented by the 
numerical computation of the bifurcation curves for the nonlinear and linear diffusion cases. In addition, it 
can be shown that the observed bifurcation is transcritical, the details of the proof can be found in [22].

Our study complements the literature on the theme, see for example [2,5,12,16,17,26,28–30], and opens 
some new questions. For instance, it would be of use to find under which circumstances the theoretical 
framework can be extended to more general forms of density dependence, and if so, how do they compare 
with the linear diffusion case. Although interesting, these are out of the scope of this paper.
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