Commun. Comput. Phys. Vol. x, No. x, pp. 1-33
doi: 10.4208/ cicp.OA-2020-0244 xxx 20xx

Numerical Approximations of Phase Field Models
using a General Class of Linear Time-Integration Schemes

Lizhen Chen!, Zengyan Zhang? and Jia Zhao?*

1 Beijing Computational Science Research Center, Beijing, P.R. China.
2 Department of Mathematics & Statistics, Utah State University, Logan, UT, USA.

Received 3 December 2020; Accepted (in revised version) 2 June 2021

Abstract. In this paper, we develop a new class of linear time-integration schemes for
phase-field models. The newly proposed schemes extend the recently developed en-
ergy quadratization technique by introducing extra free parameters to further stabilize
the schemes and improve their accuracy. The freshly proposed schemes have several
advantages. First of all, they are rather generic such that they apply to most exist-
ing phase-field models in the literature. The resulted schemes are also linear in time,
which means only a linear system needs to be solved during each time marching step.
Thus, it significantly reduces the computational cost. Besides, they are unconditionally
energy stable such that a larger time step size is practical. What is more, the solution
existence and uniqueness in each time step are guaranteed without any dependence on
the time step size. To demonstrate the generality of the proposed schemes, we apply
them to several typical examples, including the widely-used molecular beam epitaxy
(MBE) model, the Cahn-Hilliard equation, and the diblock copolymer model. Numer-
ical tests reveal that the proposed schemes are accurate and efficient. This new family
of linear and unconditionally energy stable schemes provides insights in developing
numerical approximations for general phase field models.

AMS subject classifications: 65M06, 656M12, 65M70

Key words: Phase field, linear scheme, energy stable, Cahn-Hilliard, diblock copolymer, molecu-
lar beam epitaxy growth.

1 Introduction

As an approach to solve interfacial problems, the phase field model has witnessed its
popularity in the past decade. It has been widely applied to various fields, including
vesicle dynamics, crystal growth, microstructure evolution, brittle fracture, and many
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others in material science and engineering. In general, the phase field models are driven
by dissipative mechanisms, where the free energy is decreasing in time for isothermal
systems. When the temperature changes can’t be ignored, entropy is usually considered
instead. These could be better explained by embracing the generalized Onsager principle
[37,38,53,59].

Generically, the dynamics of the phase field variable ®, which may be a vector, takes

the form of
OE

oM
where E is the effective free energy in the system that could be a functional of the phase
variable @ and its high-order gradient terms. Here G is a semi positive-definite operator,
known as the mobility operator. In other words, the triplet (®,G,E) uniquely determines
a thermodynamically consistent phase field model. When there is no flux contribution
from the boundary, the dynamics of the phase field model (1.1) satisfies the following
energy dissipation law

9P=—G (1.1)

O0E OE

dE (5E (M)):_(g(s?)’ﬁ)SO' (1.2)

dt — \5o’ 5t
Here the inner product is defined by

(£8)=1 [ fisu2

In the literature, many existing thermodynamically consistent phase field models could
be reformulated into the general form in (1.1), including the Allen-Cahn model, Cahn-
Hilliard model, phase-field crystal model, molecular beam epitaxy growth model, sur-
factant model, diblock copolymer model, and many others [2, 3,15, 16,46].

Due to the extensive applications of phase field models in various fields, many novel
approaches of developing numerical approximations for the phase field PDE models are
introduced in the literature. However, most numerical schemes are tailed specifically for
a particular model, making their applications restricted. Among the existing numerical
schemes published in the literature, if the numerical algorithms preserving the energy
dissipation property of (1.2) in the discrete or semi-discrete level, they are known as en-
ergy stable algorithms. Furthermore, if such energy-stable property does not depend
on the choice of the time-step size, they are usually named unconditionally energy sta-
ble. Such unconditionally energy stable schemes are always desirable and sometimes
mandatory for solving the phase field models numerically. The energy stability prop-
erties guarantee the numerical solution’s stability in certain norms. Theoretically, the
solution’s existence and uniqueness can usually be derived based on the discrete energy
dissipation law. Meanwhile, since the energy dissipation of (1.2) is an intrinsic physical
property for phase field models, unconditionally energy stable schemes usually guaran-
tee long time stability with large time marching steps, though we shall point out uncondi-
tionally energy stable schemes do not necessarily guarantee solution accuracy [50]. Thus
high-order energy stable schemes are more desired than first-order ones.
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Over the past few decades, many novel energy-stable schemes to solve the phase field
models are proposed. At present, the commonly used methods include the convex split-
ting approach [12,17,18,27,47,48], stabilized implicit-explicit approach [6,36,44,49,52,56,
58,60], discrete gradient method, discrete energy variation approach, the invariant energy
quadratization (IEQ) approach [54,59], the scalar auxiliary variable (SAV) approach [42]
and many others [4,8,13,24-26,31,34,35]. Next, we give a brief review. For details, please
check the references cited and the references therein.

The convex splitting approach dates back to the seminal work by Eyre [18], where a
generic unconditionally energy stable one-step scheme is developed for the phase field
models. The Cahn-Hilliard equation is specifically used to illustrate the idea [18]. The
convex splitting method’s major novelty is splitting the nonlinear terms in the free en-
ergy into a summation of a convex and a concave part. Then the convex part is dis-
cretized implicitly, and the concave part is discretized explicitly. Thanks to convex func-
tions” property, the resulted schemes could be shown to be unconditional energy stable
and uniquely solvable without any dependence on the time step size. This idea has been
widely applied to solve a great deal of phase field models, including the Cahn-Hilliard
models, epitaxial growth model, and phase-field crystal models [12,40,47,48]. Many im-
provements have been established ever since. In particular, convex splitting Runge-Kutta
methods have been proposed to solve the phase-field models [45]. A predictor-corrector
technique is utilized to improve the accuracy of the convex splitting method [19]. More-
over, the convex splitting idea has also been utilized to solve nonlocal models [23]. Mean-
while, by treating the convex term implicitly, it usually produces some nonlinear systems.
This makes the calculation tricky, especially for long-time numerical simulation. For in-
stance, iterative Newton’s method has to be used for each time step. In addition, there
is no systematical clue on how to split the free energies as a summation of a convex part
and a concave part, making the applications of the convex splitting idea limited.

Meanwhile, a stabilization technique was introduced to solve phase field models,
particularly the Allen-Cahn equation and Cahn-Hilliard equation [43]. The stabilized
implicit-explicit technique is simple and easy to apply. Only the constant-coefficient
equations need to be solved for each time step. However, in the stabilized implicit-
explicit approach, the nonlinear function is treated full-explicitly. A stable term must
be added to balance the influence of explicit terms in order to obtain the energy stability
result, making this method conditionally energy stable. Besides, it needs a restriction on
the explicit terms, i.e., the Hessian matrix of the explicit term should be bounded. Re-
cently, Li, Qiao, and Tang [32, 33] constructed a new stabilization method to reduce or
eliminate this assumption, but it is still conditionally stable.

In addition, there are several other widely used approaches for developing energy
stable schemes for phase field models. One popular approach is the discrete gradient
method, which has been widely utilized in solving Hamiltonian systems but also phase
field models. Though the discrete gradient method preserves the energy dissipation for
solving phase field models, the resulted numerical schemes are usually highly nonlinear.
This makes the numerical algorithms computationally expensive to solve and adds a
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substantial restriction on the time-step size for the solution’s existence and uniqueness
in each time step. The exponential time integrator (ETD) method is also exploited to
solve phase field models effectively [14, 30]. Though the ETD schemes are efficient, a
general theoretical framework is still lacking. Among many ETD schemes in literature
for solving the phase field models, only several numerical schemes can be theoretically
shown to be energy stable. When the nonlinear terms are polynomials, energy stable
multistep schemes could be developed [11]. Unfortunately, the nonlinear terms in most
of the phase field models are not polynomial, making the multistep strategy very limited.
Note, besides preserving the energy dissipation property, the schemes are sometimes
desired to preserve more features, such as the maximum principle of the solution and
total mass conservation [7].

Recently, based on the Lagrange multiplier method [1, 24], Yang et al. [54, 55, 59]
proposed the invariant energy quadratization (IEQ) method. By introducing auxiliary
variables, the IEQ method transforms the original nonlinear potential function into a
quadratic form of the new variables. Instead of solving the original PDE models, the
IEQ method solves the equivalent PDE models in terms of the new variables. By do-
ing so, the resulted numerical schemes are linear, unconditionally energy stable, and
uniquely solvable for each time stepping without any dependence of the time step. This
IEQ method has been widely applied to many phase field models. Notice it is neces-
sary to assume that the quadratized nonlinear potential energy density, for instance, the
double-well potential for the Cahn-Hilliard equation, is bounded from below. Besides,
due to the special construction of quadratic functions, it involves solving complicated
variable coefficient equations. Shen et al. [41] introduce a scalar auxiliary variable in-
stead of a spatially-dependent variable. The proposed scalar auxiliary variable (SAV)
approach is also linear and unconditionally energy stable. Besides, this method has the
advantage that only the constant-coefficient equation needs to be solved. A regulariza-
tion technique is introduced in [5] to further stabilize the IEQ schemes. Meanwhile, by
combing the IEQ/SAV methods with the Runge-Kutta method and Gaussian colloca-
tion method, arbitrarily high-order unconditionally energy stable schemes for phase field
models have been developed [20-22]. Recently, a relaxation technique is introduced to
remedy the inconsistency issue of the modified energy and the original energy for the
IEQ/SAV methods [28,57].

In this paper, we improve the accuracy and stability of the IEQ method for solving the
general phase field model (1.1) by proposing a new family of linear and unconditionally
energy stable schemes that are partially inspired by the work [13,29,59]. The free parame-
ters in the general scheme could be further tuned based on the specific phase field models
to improve accuracy and stability. However, the optimal choice (dependence) of the free
parameters on the particular free energies is still an open problem to be investigated. The
proposed method opens a new approach to developing energy-stable schemes for phase
field models. Besides, the proposed schemes have several other advantages. First of all,
they are generic. It applies to most existing phase field models; the resulted schemes
are linear in time. In each time marching step, only a linear system needs to be solved.
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Also, the resulted schemes are unconditionally energy stable such that a larger time step
size is practical to be used. Several examples are presented, including the widely-used
molecular beam epitaxy (MBE) equation, the Cahn-Hilliard equation, and the diblock
copolymer model. Numerical tests demonstrate that the proposed schemes are accurate
and efficient. This new family of linear and unconditionally energy stable schemes pro-
vides insights into the numerical approximations for phase field models. This idea could
also be applied to develop energy stable numerical schemes for thermodynamically con-
sistent models that satisfy the second law of thermodynamics.

The rest of this paper is organized as follows. In Section 2, we reformulate the general
phase field models into an equivalent form by introducing auxiliary variables. Then in
Section 3, we introduce the time discretization technique to obtain the linear semi-discrete
schemes; Afterward, we present its applications in several examples, including the MBE
model, the Cahn-Hilliard model, and the diblock copolymer model to demonstrate the
effectiveness of the newly proposed scheme. The numerical results are shown in Section
4. In the end, a brief conclusion is presented.

2 General phase field models and their energy dissipation
structures

2.1 The general phase field model

First of all, we briefly recall the general formulation for phase field models that is based
on the generalized Onsager principle [37, 38, 53,59]. We use ® = (¢1,- ~-,<pd)T to denote
the thermodynamic variables, with d the dimension. The kinetic equation in domain (),
stemming from the Onsager linear response theory, is given by

O0E
atq)(x,t) = —gﬁ,

C(®(x,t))=0, onoaQ, (2.1b)

in (), (2.1a)

where C is a trace operator, G is the mobility operator and % is the variational derivative
of E, known as the chemical potential. In general, we can split the mobility operators
into two parts: G = G,+7,. Here Gs is a semi positive-definite operator that controls
the irreversible dynamics and G, is skew-symmetric operator that controls the reversible
dynamics. The triplet (®,G,E) uniquely defines a thermodynamically consistent model.
One intrinsic property of (2.1) owing to the thermodynamical consistency is the energy
dissipation law

dE OE 0® .
q (5%) +Esury
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where E,,,, 7 is due to the boundary contribution. The bulk contribution with the dissipa-
tion property is given as

. 0E _ OE
Epuik=— (56,%56) <0. (2.2)
Several remarks follow as below.

Remark 2.1. When G, =0, (2.1) is a purely dissipative system; while G; =0, it is a purely
dispersive system. Ej,, £ vanishes only for suitable boundary conditions, which include
periodic and certain physical boundary conditions.

Remark 2.2. When the mass, momentum, and total energy conservation are present in
hydrodynamic models, these conservation laws are viewed as constraints imposed on
the hydrodynamic variables. Then, the energy dissipation rate will have to be calculated
subject to the constraints.

For simplicity of notation, we only focus on periodic boundary conditions in the rest
of this paper. However, we emphasize that all of the results work for physical boundary
conditions that result in Esu,f =0. We call (2.1) the generalized Onsager form. Many
phase-field models can be cast into the generalized Onsager form.

2.2 Model reformulation using the energy quadratization method

We next introduce a paradigm to derive energy-stable numerical approximations for
models in generalized Onsager form (2.1). We illustrate the idea using the energy density
e l.e.,

E= /Q e(¢,VP)dQ, (2.3)

where e contains a quadratic gradient term %|£%®|2 with £ a self-adjoint linear differ-
ential operator. More general cases can be handled analogously. We transform the free
energy density into a quadratic one by introducing an auxiliary variable

1 1 AO
= 5 P|2
q \/2(6 |L2| +|Q|>’ (2.4)

where Ap>0is constant such that g is a well defined real variable. Here we have assumed

that e— 3 |£%q>|2 has a lower bound. The total energy is rewritten as
E(d,q)= (1q> L)+ <1q 7) — Ao. (2.5)
7 2 7 2 7
Assuming g=gq(®,VP) and denoting

_9q _9q
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we reformulate (2.1) into an equivalent form

{ 3P =—(Ga+Gs) [£<I>+qg(<1>)—v'(qh(q’>)}' (2.6)

Stq :g(q)) atqD—Fh(VCI)) :VatCI),

along with the consistent initial condition

1, .1 Ag
— . 24 7Y
q’t—o—\/2<€ 2]EZCI>] —|—| |>

Now, instead of dealing with (2.1) directly, we develop energy-stable schemes for (2.6).
The advantage of using model (2.6) over model (2.1) is that the energy density is trans-
formed into a quadratic one as shown in (2.5).

t=0

2.3 Reformulated models in a compact form

Furthermore, we rewrite (2.6) into a compact form as

3¥=—N(¥)BY, with sz, B:['g (1)] (2.72)
N = A (Gt G) A, A=(Iy (®)+h(®): V)gurn, @)

where A* is the adjoint operator of A and B is a self-adjoint operator. We name the
compact form in (2.7) the Onsager-Q model. When Ej,, £=0, the energy dissipation law
can be calculated as

dEd(;F) - (j—i, %—‘f) =~ ( BY.N(¥)BY) =~ (ABY,G.ABY) <. 2.8)
Remark 2.3. Reformulating (2.1) into (2.6) or (2.7) is called the energy quadratization
(EQ) reformulation or method. It could be observed that (2.1) is equivalent to (2.6) and
(2.7). Thus solving (2.6) or (2.7) will in turn solve (2.1). Note that the energy in the
Onsager-Q model is quadratized so that we can develop a paradigm to derive linear,
energy stable numerical schemes for the model.

2.4 Model reformulation for specific phase field models

To illustrate the generality of the energy quadratization method explained in the previous
sub-section, we provide several specific examples of widely-used phase field models.
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2.4.1 Cahn-Hilliard equation

First of all, we consider the widely used Cahn-Hilliard equation as an example that reads
as

gr=MA( 8¢+ (@*~1)¢). (2.9)

Here ¢ represents the local volume difference between two phases, ¢ is a model param-
eter to control the interface width, and M is the mobility coefficient. The Cahn-Hilliard
equation in (2.9) is a special case of the general phase field model in (2.1) with the triplet
(¢,G,E) given as

2
¢, G=—MA, E((,b):/Q(%|V¢]2+i(¢2—1)2>d0. (2.10)

With the periodic boundary condition or any other proper boundary condition that can
satisfy the flux free condition at the boundary, such as dn¢|30 =0 and dnAP|30 =0 (Where
n is the unit outward normal on the boundary), we have the mass conservation property

d
o /Q ¢(x,1)dQ =0, 2.11)

And the model is thermodynamically consistent, in the sense that its free energy is dissi-
pative in time. As a matter of fact, we can calculate the free energy dissipation rate

dE [ 6Eép , . ’ ’ 2
E_/Qﬁﬁdﬂ_ /QM(V( Eap+(97—1)p)| 40 2.12)
After introducing the auxiliary variable and notations

7

1% 8)= 5 (P=(14), 8(0)= 50 =V,

with o > 0 a regularization parameter [5], the original Cahn-Hilliard equation (2.9) is
transformed into

_ 2
{sbt =MA[—eAp+19+43(9)], 213
q=8(¢)Pt,
with consistent initial conditions
¢li—0=¢o,
V2 (2.14)

alh-o="-(#3-(1+7)).

The reformulated Cahn-Hilliard equation in (2.13) can be easily reformulated in the com-
pact form of (2.7) as

0 . (2.15a)

NW¥)=A"GA, A=(1,5(¢)), G=-MA. (2.15b)

¥, =N (Y)BY, ‘I’:[(ﬂ B:[_EZAH 0],



L. Chen, Z. Zhang and J. Zhao / Commun. Comput. Phys., x (20xx), pp. 1-33 9

2.4.2 Phase field models for diblock copolymers

Next, we consider the phase field diblock copolymer model [9, 39]. With ¢ an order
parameter representing the local concentration difference of the components, the diblock
copolymer model reads as

(Pt:MA<—82A<p+((p2—1)(p) — Ma(¢p—), (2.16)

followed with the periodic boundary condition. Here M > 0 is the mobility parameter,
¢>0 and a >0 are model parameters, and ¢ is the volume-averaged value for ¢, i.e. p=
ﬁ Jo¢dQ). Ttis easy to show that ¢ is a constant, and the total mass for each component

is conserved, i.e., % Ja¢(x,£)dQ2=0.
One can easily show that the model (2.16) is a special case of the general phase field
model in (2.1) with the triplet (¢,G,E) defined by

2 1
¢ G=—Mb, E(9)= [ (FIVeP+7(@*-1P+3IVyP)an,  @17)

where 1 is the solution for the problem Ay = (¢ —¢) with a periodic boundary condition.
The energy dissipation rate can be calculated as

E;_If:/Q(;—gi—(fdﬂz—/QM‘V(sZAqb—(gi)z—l)(p—km/J)‘2dQ. (2.18)

Similarly, we can reformulate the model (2.16) using the energy quadratization (EQ)

method. We introduce the auxiliary variable g = \/75 (¢*—(147)) with >0 a regular-

ization parameter [5], and the notation g(¢):= g—g =1/2¢. The original phase field diblock
copolymer model (2.16) is transformed into

{sbt = M[8(—ap+¢-+a3(9) ) —a(9—)], 219)
q=8(¢)Pr,
with consistent initial conditions
{<Pto =¢o,
5 (2.20)
o= 2 (#-(1+7)).

Also, one can easily rewrite the reformulated model in (2.19) into the compact form of
(2.7) as

[s] .21
0 1 (2.21a)

N¥)=A*GA, A=(1,¢(¢)), G=-MA. (2.21b)

¥:=-N(¥)BY, ‘P:[‘ﬂ B:[—SZAJF“Y—“A”(-—L[QMQ) 0]
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2.4.3 Phase field models for molecular beam epitaxy (MBE) growth

In the third example, we consider the MBE model with slope selection, given as
pr=—M(28%-V-((IV9~1)Vg)), (2.22)

with periodic boundary condition. Here ¢ represents the epitaxy surface height, ¢ is
a model parameter, and M is the mobility coefficient. We have the mass conservation

property
d
E/{;p(x,t)dﬂ:o.

Similarly as previous examples, we can easily identify that the MBE model in (2.22) is a
special case of the general phase field model in (2.1), with the triplet (¢,G,E) given by

2
¢, G=M, E(¢)= /Q (%(A¢>2+}L<W¢IZ—1>2)dO. (2.23)

The energy dissipation property is calculated as
dE SE 6¢ - ) )
_ = [ — _ . o < ' '
dt /054; 520 /QM<€ A p=V-((IV¢] 1)V4>)> A0 <0 (2.24)

Therefore, one would like to propose discrete numerical schemes to preserve the prop-
erties: mass conservation and energy dissipation. By introducing the auxiliary variable

q= 4 (|V¢[*—(147)) with v >0 constant the regularization parameter [5], and the no-

tation G(V¢):= aav—4> =1/2V¢, we can derive the equivalent form

{(PtM[gZAZ(p’yAgbV'(qG(V‘P))}/ (2.25)

7:=G(V¢)-Vor,

with consistent initial conditions

¢li—0=¢o,
(2.26)
qli=0= ? <W¢0|2—(1+’7)>-

In a similar manner, the compact form for the reformulated system in (2.25) is written as

(2.27a)

¥, =—N(¥)BY, ‘I’:[(ﬂ B:[EW—% 0]/

0o 1
N(¥)=A"GA, A= (1,—V-(-G(V¢))), G=M. (2.27b)
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3 Linear time-integration schemes for phase field models

In this section, we introduce a new family of second-order numerical schemes to solve
the general model (2.7), which in turn solves the general gradient model. Then we apply
it on several specific phase field models.

Consider the time domain (0,T], and we discretize it into equally distanced intervals
O=ty<th<---<tny=T with t; = i% and N a positive integer. Hence t; =iAt, At = %
the time-step size. Then we denote ¥"*! as the numerical solution/approximation for
Y(ty41)-

3.1 A new family of linear time-integration schemes

Now we are ready to introduce the main numerical scheme of this paper to solve the

reformulated model (2.7) that is equivalent to the originally general phase field model
(2.1).

Scheme 3.1 (A general second-order scheme). Suppose ¥"~! and ¥" are known, ¥"+! could
be updated via the following scheme

é [(9+ %)‘I’”” — 20"+ (0 %)‘Y”‘l} ——NF"BY"?, (3.1)

where ¥ = (14+-0)¥" — %"~ and the ¥+ can be approximated by one of the two cases.
e Case 1: define ¥ as

W”+9:9‘{f”+1+(1—9)‘{’”+59[‘I’””—Ti’”—i—‘{’”_l], 0>, B>0. (3.2)

N —

e Case 2: define "9 as
Yl — g9 (1-0)¥" 4 (6 — %)(1 —0) [‘I’”“ —2y" +‘I’”_1], % <6< g (3.3)

Here the left side of (3.1) is a second-order approximation of d;¥Y at t,.y, 7l —

(14+6)¥Y" —0¥" ! is a second-order extrapolation for ¥ at t,,, 9, and ¥"*% is a linear com-
bination of ¥, ¥ and ¥"~! as a second-order approximation for ¥ at #,.

One immediately notice that both (3.2) and (3.3) are second-order approximation of
Y at t,. 9. We note similar ideas have been used in [13,29]. Applying them to (3.1) would
reduce to a semi-discrete scheme of second order in time for the reformulated model (2.7),
which in turn solves the general phase field model (2.1).

Remark 3.1. For the Case 2 in (3.3), when 6 = %, scheme 3.1 reduces to a second-order
scheme based on a semi-implicit Crank-Nicolson time discretization. In the meanwhile,

when 6 =1,scheme 3.1 reduces to a second order semi-implicit BDF2 scheme. Also, if we

choose = w, Case 1 in (3.2) reduces to Case 2 in (3.3).
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Consider the domain Q). For any ¥;,¥, € [LZ(Q)] 1 with d+1 the dimension of ¥’s,
and A € RUFTD* (@) positive definite, define the operator-induced norm of the vector
function ¥ and inner products of the vector functions ¥; and ¥ as

2 _ _

I¥15=(2,A%), (¥1¥2) =(¥1,4%), (3.4)
respectively, where (¥1,%2) = [ ¥1-¥24Q, V¥1,¥2 € [L*(Q)] 1 With a little abuse of
notations, we also utilize the notation above when A is semi positive definite, which will
induce a semi-norm.

Then, we introduce the following two lemmas, which are essential to prove the energy
stability of the proposed scheme in (3.1).

Lemma 3.1. Given ¥"~1,9",9"*1 ¢ [L2(Q)]**, and
1
¥ — gyt (1—0) 9" + B0 [‘I’”“ —2‘Im+‘¥”*1}, 0=5, p=20, (3.5)
and a semi positive definite operator B, it holds that

(B*{f””,(@%)lf”“—29T”+(9— %)Y”*l)

Tn+l 2 yn 2 1 _ 2
[ Il o [l -z G

where the operators G and F are defined as

o=(ilemin-y s [+ |4 Tes e
F=(6(20-1)+46°)B, (3.7b)

with & represents the Kronecker product.

Proof. 1t is easy to show that the matrix

1[ 6(20+3) —(9+1)(29—1)} %[1 —1}

4|—(0+1)(20-1) 0(20—1) 2 1-1 1 (3.8)

is semi positive definite, given 6 > % and B >0. On the one hand, by calculating carefully,
we can derive the left hand side of (3.6) as

(B‘f”+9, (9+%>‘F”“ —20%"+ (0 %)‘F1>
=0(043) (1+8)(BY",¥"+1)~20(1-0(1+2)) (B¥" ¥")
+9(0—%)[5(B‘I’”*1,‘Y”’1)+ (—4925—392+§—95+%) (BY™+L,9m)
3

+9(29/3+9— %) (B, g1 4 (59—92—%%5—4925) (BE"¥"1).  (3.9)
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On the other hand, by plugging the expression of (3.7a) and (3.7b) into the right hand
side of (3.6), we have

e v
_0(20—1)+46%p

(BY"H, 9" )+ (0(20—1)+46%B) (BY", ¥")

6(20—1)+46%B
4
6(20—1)+46%B

.

+ (B‘I’”‘l,‘lf”‘l) —(0(20—1) +46°B) (BY" ™, ¥")

+ (BY"™¥") = (6(20—1)+46°B) (BY",¥" ), (310)

I e ]I

29""‘?}) 295 (BlIﬂ’l“rl Tn+l)
(6+1)(20—1)+26B
2
0(20—1)+268
_f

0(20—1)+208 . .
(B

(B\Ifﬂ“rl,lifﬂ) _ 9(29—’_2) +295 (B‘f”/‘{’”)

(0+1)(20—1)+20p8

2
— 9(29—’_‘1) +295 (BTH+1ITn+l) —G(B‘fm,‘fm) .

(64+1)(20-1)+268
2

(BTn_l,Tn_l)—F (Blfm,lim_l)

6(20—1)+268

1
(0+1)(20—1)+20p8
2

(Bximfl,qul)

(BY" 1, 9") + (BY", 1. (3.11)

Therefore, we have

R T | et

=0 (9+%) (1+B8)(BY" 1, "1 —20(1—-6(1+2B8)) (BY", ¥")
0 1
= n—1 wn-1 _AP2p_ap2 ., 7 - n+1 wn
+9(9 2),8(8‘1’ S ( 46°8—30°+3 9,B+2)(B‘I’ ¥
3 1

_ - n+1 wn—1 Yn_p2_ — —1p2 n yn—1
+6(20B+6 2)(5’? ¥ )+(29 6~ 2+ 46°B) (BY" YY) (312)
Thus, (3.6) holds. This completes this proof. O

Lemma 3.2. Given ¥"~1,9",9"*1 ¢ [L>(Q)]**, and

‘f"+9:9‘1f”+1+(1—9)‘f”+(9—%)(1—9) [‘F”“—Z‘I’”—Pi’”_l , , (313)

N =
IN
e
VAN

N W
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and B a semi positive definite operator, it holds that
1 1
1_Irn+9 - 1I;n+1 209" _ - 1_Irn—1
(B ’ (9 2) 20 (9 2) )

R g |

pn Tnfl ’
where the operators G and F are defined by
1/3 10 1 1 4 =2
G_<§(§—9> [ 0 0 :|+§<9—§> { o D@B, (3.14a)
1\ /3
F:49<9—§) (5—9)5, (3.14b)

with & represents the Kronecker product.

The proof of this lemma is very similar to the proof of the previous one. As a matter

. . . . . oy (6-1)(1-8)
of fact, we can verify this lemma by replacing § in the previous proof with ~—25—.

Next, we are ready to present the major theorem of this paper.
Theorem 3.1. The proposed scheme 3.1 with ¥"+9 defined either in (3.2) or (3.3) is uncondition-

ally energy stable. In particular, they satisfy the energy dissipation law as

yn+l 2 yn 2 1 il " a1 2
H [ v ] HG_H [ yr-l ] HG+ZHT B HF

+At(5‘1m+9,/\/(?”+9)5‘f"+9) =0, (3.15)

where, G and F are defined in (3.7a) and (3.7b) for Y7 +0 in (3.2), G and F are defined in (3.14a)
and (3.14b) for ¥+% in (3.3).

Proof. The proof is straightforward. If we take inner product of Eq. (3.1) with By"+?
on both side, we will directly obtain (3.15), by taking advantages of (3.6), based on the
choices of ¥"*?. In addition, the choices of G and F are based on the choices of ¥"*?.
This completes the proof. O

Remark 3.2. Given B a positive definite operator, the proposed scheme 3.1 is uniquely
solvable for any time step At >0 [59].

3.2 Linear time integration schemes for specific phase field models

We emphasize that the proposed scheme 3.1 is rather general so that it applies to various
phase field models. In the rest of this section, we apply it to several specific cases to better
explain its capability in developing energy stable schemes for phase field models.

In particular, we present three specific examples to illustrate the power of the pro-
posed generic numerical technique, namely the Cahn-Hilliard equation, the diblock
copolymer model, and the molecular beam epitaxy model that is one specific case of
the Allen-Cahn type equations.
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3.2.1 Numerical approximations for the Cahn-Hilliard equation

First of all, we focus on the Cahn-Hilliard equation given in (2.9). After energy quadra-
tization, we have (2.13) with the consistent initial condition (2.14). Then, a new family of
second-order schemes could be introduced by following the general strategy in scheme
3.1 as shown below.

Scheme 3.2. Assuming that (¢",q"), and (¢"~1,q"~1) are already calculated with n >1, we
then compute (¢"+1,q" 1) from the following temporal discrete system:

e o L

—MA(—0¢" 19" g (")), (3.16a)

il (02 20+ (o=3)a

Sl o], o

—n+6
=

where (-) 14+0) ()" —0()""1, g(¢) =V2¢, and (-)"*+? is defined in either (3.2) or (3.3).

Remark 3.3. In practice, we compute (¢',4') from the following first-order Euler scheme:
1_ 40
PP —ma(~2ag -+ +q's(4")), (3.17a)

9—q9"_ ¢ —¢°
7—8(4’ )T' (3.17b)

Theorem 3.2. The proposed scheme 3.2 is unconditionally energy stable, and it satisfies the fol-
lowing energy dissipation law

2
E"l_E"< _AtM / ‘v <52A<p”+9 —7" 0~ ("0 ( 0, n>1. (3.18)
o)
Here E"1, E" and B are defined as

1Im+1 2 yn
el |l E=l] e ]

1IJ'1’l
with G defined in (3.7a) for the case of (3.2), and G defined in (3.14a) for the case of (3.3).

2 —e?A+y 0
s [ o

As the proof is similar to the one in Theorem 3.1, we omit it for brevity.
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3.2.2 Numerical approximations for the phase field diblock-copolymer model

Next, we utilize the numerical idea to approximation the phase field diblock copolymer
model is given in (2.16). After equivalent transformation using the energy quadratization
method, we obtain (2.19) along with the consistent initial condition (2.20). Thus the pro-
posed numerical strategy in scheme 3.1 applies as well. Following the general numerical
strategy, a new family of second-order schemes for the diblock copolymer model could
be introduced as follows.

Scheme 3.3. Assuming that (¢",q"), and (¢"~1,q" 1) are already calculated with n>1, we
then compute (¢"+1,q" 1) from the following temporal discrete system:

(0+3)¢" ! —20¢"+(0—3)9" "

=M (A {_82A¢n+A9t+IY¢n+9+qn+9g@n+9)} +“(¢n+9 _4—))> ) (3.20a)
(6+3)g" 1 —20"+(6—3)q""!
At
gy _2i(€n+(9_ 0 (3.20b)
where an =(140)(-)"—0(-)"1, g(¢) = \/§4> and (-)"*+9 is defined in either (3.2) or (3.3).

Remark 3.4. Similarly as the previous scheme, We compute (¢!,4') from the following
first-order Euler scheme:

4)1_4)0 _
E = M(—28% 489" +A(q"g(¢°) —a(9' =) ) (3.21a)

ql _ qO B ('bl _(PO
L A i (3.21b)

The unconditional energy stability of this scheme directly follows the results in pre-
vious sections.

Theorem 3.3. The proposed scheme 3.3 is unconditionally energy stable, and it satisfies the fol-
lowing energy dissipation law

2
E"1_E"< AtM / ‘V (2ag" g+ — g 0@ ) +ayt?) ‘ iQ, n>1, (3.22)
0
where "1 :=(—A)"1(¢" 1 —¢). Here E'Y, E" and B are defined as
w2 b 2 —&2A+y 0
n+1 __ n__ _ Y
e[ B el e[ e

Y G 0 1
with G defined in (3.7a) for the case of (3.2), and G defined in (3.14a) for the case of (3.3).
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As the proof is similar to the one in Theorem 3.1, we thus omit the details. In addition,
the scheme 3.3 also has the following mass conservation property.

Theorem 3.4. The scheme 3.3 preserves the total mass, in the discrete sense that

/Q ¢"d0— /Q $0d0, Vn>1. (3.24)

Proof. Taking the inner product of (3.21a) with 1 over the domain (), we have

(Pl_('b() _ 1 = __L 0
SR d0=—Ma [ (¢' =900, F=1 [ 90, (3.25)

which gives us

(At+M‘X / ¢prdQ= (éﬂLMa) /Q ¢%dQ. (3.26)

Given the fact Ma >0, we have [, ¢ laQ = ngbOdQ.
Next, assuming [, ¢"dQ= [,¢"1dQ= [¢°dQ with n>1, we will show [, ¢"1dQ=
Ja ¢°dQ). Taking the inner product of (3.20a) with 1 over the domain (), we have

(0+3)p" 1 —20¢"+(0—5)p"
IA i

There are two scenarios for the discretization of ¢

A0 = —Ma / (¢ —H)dQ. (3.27)

"+ For the case in (3.2), we have

2 Ma(o+p0)] [ a0
:_i_‘i_M (1—9—259)]/(2¢”d0+[—%—1\4a59 /¢” 1dQ+sz/ ¢%d0)
::GZ—EjLMa(M—ﬁG)] / 0. (3.28)

Given the fact 22 +Mtx(9+59) >0, we have [¢""dQ = [,¢°dQ). For the case in (3.3),
we have

b <e+<e——><1 0 / g
6

|
[2

- = _ n
——Ma(1-0- 2(9 /4>d0
+[—9_—_—M¢x(9—— )(1-0) /¢”*1dQ+M¢x/ $0d0)
At Q
_0+} .
2+ Ma (9+<9——)(1 0)) /<de (3.29)
Given the fact $ <0< 3, we have [QAtz—ksz(G—i—(G—%)(l—G))] >0, we have [,¢""1dQ=

[,9%dO.
Therefore, it holds f aP"dQ = f a gbon, Vn >1. This completes the proof. O
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3.2.3 Numerical approximations for molecular beam epitaxy model with slope
selection

In a similar manner, we can obtain the numerical schemes for the MBE model in (2.22).
The numerical scheme is given below.

Scheme 3.4. Assuming that (¢",q"), and (¢"~1,q" 1) are already calculated with n >1, we
then compute (¢"+1,q" 1) from the following temporal discrete system:

(0+3)9" ! —20¢"+(0—3)9" "

At
=M ( — A2 Ly AP LV ("G (v@”*%), (3.30a)
(0+3)g" ' —20"+(0—3)q" "
At
(0+3)9" ' —209"+(0—3)9" "

=G(Vg')-v (3.30b)

At !

where @nw =(1+0)(-)"—0(-)"", G(V¢) =2V and (-)"*Y is defined in either (3.2) or
(3.3).

Remark 3.5. We can compute (¢!,q!) from the following first-order Euler scheme:

1_ 40
(PAt(P - <_€2A‘P1+7A¢1+V-(qu(Vsbo))), (3.31a)
1 0

9= _ et vl —?
Al =G(V¢")-V A (3.31b)

Then, we can easily show that the proposed scheme 3.4 is unconditionally energy
stable and preserve the total mass. The details are omitted for brevity.

4 Numerical examples

In this section, we implement the proposed schemes and present some numerical ex-
amples to demonstrate their effectiveness. The theoretical results will be numerically
verified. Also, given the two cases in (3.2) and (3.3) are similar with proper choices of
6, we only focus on the case in (3.3) in the numerical examples. Thus, the # mentioned
below is chosen for (3.3) unless mentioned specifically.

4.1 Numerical examples for the Cahn-Hilliard model

First of all, we test our proposed numerical scheme for solving a benchmark problem of
the Cahn-Hilliard model, which is proposed in [10]. Consider the domain Q= [0,277] x
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(@) ¢patt=0 (c) patt=2 (d) ¢ at t=150

Figure 1: Time snapshots of coarsening dynamics driven by the Cahn-Hilliard model. The parameters used in
these simulations are set as M =1,6=0.0199 and 8 =1.0 in (3.3). The profiles of ¢ at different time slots are
presented.

[0,277] with the model parameter ¢ =0.0199, M =1, and an initial condition
¢|1=0 =0.05(cos (3x) cos(4y) -+ (cos(4x)cos(3y))*+cos(x —5y) cos(2x —y)). 4.1)

Take computational parameters N =384, 0 =0.75, 6t =10~*. The numerical results are
summarized in Fig. 1, where we plot the time snapshots of coarsening dynamics driven
by the Cahn-Hilliard model at time ¢t =0, 0.05, 2, 150. Our numerical scheme provides
accurate numerical solutions for the benchmark problem.

Also, to highlight the effectiveness of our proposed scheme, we compare it with the
classical stabilized semi-implicit BDF scheme as below

34;71-0—1 _4(P7l +¢n—1
2At

= MA(=Ag" g™ 4§ (1) ). (42

In Fig. 2, we plot the time evolution of the energy for the Cahn-Hilliard model using the
second-order scheme 3.2 and stabilized BDF scheme in (4.2) with ¢ € [0,150] in log-log
scale. In order to check the efficiency of the method, we also plot the reference energy
by the solid red line. As shown in Fig. 2, the energy evolution for different methods is in
good agreement when At is small enough. Fig. 2 indicates that our proposed scheme
has compatible accuracy with the stabilized BDF scheme, but our proposed methods
also automatically guarantee energy stability. We also emphasize that the semi-implicit
BDF scheme without stabilizer, i.e., y =0, shows poor stability (the gray line is the time
evolution of energy with ¢ = 0,6t = 0.0001, while it will blow up with é¢t =0.001,0.01).
Thus, we didn’t use it for comparison purposes.

In the second example, we perform numerical simulations of coarsening dynamics in
the domain ) = [0,47] x [0,477]. The parameters are chosen as M = 0.02,e =0.05, and we
use time step At=10"3. The initial condition for ¢ is ¢ (¢ =0) =rand(—0.001,0.001) + o,
where rand(—0.001,0.001) be a random state by assigning a random number varying
from —0.001 to 0.001 on each grid points and ¢y be a constant. Here we choose the case
in (3.3), and study the At, for various 6. As shown in Table 1, we list At, with =0 and
different 6 for the CH equation using the second order scheme 3.2.
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| |—e—— BDF2,y=0,5t=0.0001
—s—— BDF2,y=2,5t=0.0001
| reference energy [|— —— - BDF2,y=2,5t=0.001
—b—— 6=0.75, 5t=0.0001 — —a— - BDF2,y=2,5t=0.01
——&—— 6=0.75, 5t=0.0002 reference energy
—a— 0=0.75, 5t=0.0005 6=0.5,5t=0.0001
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T Y BT B | el e el
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Figure 2: Time evolution of the energy for the CH model. (a) results using the second order scheme 3.2; and
(b) results using the second order scheme 3.2 and the BDF2 scheme in (4.2). The numerical energies with
t€[0,150] in log-log scale are shown. The red solid line is the reference energy. The parameters are set as

At=10"%2x10"%5x10"%,1073,10"2, y=2 and #=0.5,0.75.

Table 1: At; with y=0 and different 6 for the CH equation using second order scheme 3.2.

0 0.5 0.75 1.0 1.25 15
At. | (0.24,0.25) | (0.18,0.19) | (0.18,0.19) | (0.2,0.21) | (0.24,0.25)

Then, we study how the initial profile would affect the coarsening dynamics. We
choose ¢|i—o = Po+rand(—0.001,0.001), with ¢ a constant. The profiles of ¢ with vari-
ous ¢y at different time slots are summarized in Fig. 3. As it is shown in Fig. 3, phase
separation dynamics are observed, which is a good indicator of the numerical scheme
producing durable numerical results. Also, we observe that spinodal decomposition dy-
namics are dominant when ¢y =0, and nucleation dynamics are dominant when ¢, =0.4.

In Fig. 4, we plot the time evolution of the energy for the Cahn-Hilliard model using
the second order scheme 3.2 with t € [0,150] in log-log scale. The time step is set at At =
1073, along with the parameters v =0 and 6 =0.5,0.75,1.0,1.25,1.5 for the case in (3.3).
As shown in Fig. 4, the energy evolution for different 6 are in good agreement, i.e. the
schemes with different 6 all guarantee accurate results.

In Fig. 5, the time evolution of the energy for the Cahn-Hilliard model is plotted using
the second order scheme 3.2 with ¢ € [0,150] in log-log scale. The time step is set at At =
1074,1073,1072,101, along with the parameters y =0 and 6 =0.75 for the case in (3.3).
The energy evolution for different At are in good agreement as shown in Fig. 5.
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(b) ¢att—1 10,20,50,150 with 470—04

Figure 3: Time snapshots of coarsening dynamics driven by the Cahn-Hilliard model with various initial condi-
tions. The parameters used in these simulations are set as M =0.02,6=0.05 and 8 =0.5 in (3.3). The profiles
of ¢ at different time slots are presented.

02, 0.14§ p— o
016k 012}
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Figure 4. Time evolution of the energy for the CH model with various initial conditions. (a) ¢(t=0)=
rand(—0.001,0.001) and (b) ¢(t=0) =rand(—0.001,0.001)+0.4. We use the second order scheme 3.2, and

the results for t € [0,150] in log-log scale are shown. The parameters are set as At=10"3 y=0and 8=
0.5,0.75,1.0,1.25,1.5.

4.2 Numerical examples for the diblock-copolymer model

In this subsection, we implement the scheme 3.3 to investigate the diblock-copolymer
model in (2.16). Several numerical tests are summarized. First of all, we use the domain
= [0,47)?, M =0.02, ¢ =0.05, and nonlocal parameter « =5. We choose 8 = 0.5 for the
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Figure 5: Time evolution of the energy for the CH model with different initial conditions. (a) ¢(t=0) =
rand(—0.001,0.001), and (b) ¢(t=0)=rand(—0.001,0.001)+0.4. We use the second order scheme 3.2. The

results with ¢ € [0,150] in log-log scale are shown. The parameters are set as At=10"%10"3,10"2,10"1, y=0
and 6=0.75.

case in (3.3), v =0, and set the initial condition
¢|t=0=co+rand(—0.001,0.001), 4.3)

with ¢p a constant. The effects of initial condition on the coarsening dynamics are in-
vestigated. We choose c¢p =0 and 0.4. With At =103, the numerical profiles of ¢ and
t=1,5,10,20,150 for both cases are summarized in Fig. 6. We observe that the phase
separation dynamics is similar to the Cahn-Hilliard model, but the final phase present
different pattern. The equilibrium is much faster than the numerical result obtained by
the Cahn-Hilliard model.

In Fig. 7, the time evolution of the energy for the phase-field diblock copolymer model
using the second-order scheme 3.3 with ¢ € [0,150] in log-log scale is plotted. It indicates
the scheme performs well with various choices of 6.

The time evolution of the energy for the phase-field diblock copolymer model using
the second-order scheme 3.3 with t € [0,150] in log-log scale is plotted in Fig. 8. Similar to
the above example, the scheme performs well with various At.

Next, we investigate the effect of nonlocal parameter « on the bubble assemble dy-
namics. In this case, we set the domain Q) = [0,471]2, and the model parameters M =1,
¢=0.06. The initial profile is chosen as ¢|;—o=rand(—0.005,0.005)+0.4. For the numerical
parameters, we chose At=0.001, 6=0.5 for the case in (3.3), and we calculate the solution
to t=100. The profiles for ¢ at t =100 are summarized in Fig. 9. We observe that the bub-
bles have roughly the same radius in each case, and the radius decreases as a increases.
As the total volume of the bubbles is conserved, it also means, as « increases, the number
of bubbles in the assemblies grows accordingly.
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(b) ¢ att=1,5,20,20,150 with c)=0.4

Figure 6: Time snapshots of coarsening dynamics driven by the phase field diblock copolymer model with various
initial conditions. The parameters are set as M =0.02,6=0.05, §=0.5 and y=0. The profiles of ¢ at different
time slots t=1,5,10,20,40,150 are presented.
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Figure 7: Time evolution of the energy for the phase field diblock copolymer model with various initial conditions.
In (a), we use ¢(t=0)=rand(—0.001,0.001), and we use ¢(t=0)=rand(—0.001,0.001)+0.4 in (b). The results
using the second order scheme 3.3 with ¢ € [0,150] in log-log scale are presented. The parameters are set as
At=1073, v=0 and 6=0.5,0.75,1.0,1.25,1.5 for the case in Eq. (3.3).

To better understand the scaling relations between bubble numbers and the nonlocal
interaction parameter «, we present a log-log plot of the number of the droplets versus
« in Fig. 10. For a =0.125,0.4,1,2.25,3.6, the corresponding number of double bubbles
are K, =4,9,15,25,34, respectively. The line K, oa?/3 is also plotted for reference. From
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Figure 8: Time evolution of the energy for the phase field diblock copolymer model two different initial conditions:
(a) ¢(t=0) =rand(—0.001,0.001) (left) and (b) ¢(+=0)=rand(—0.001,0.001)+0.4. With the second order
scheme 3.3, the calculated results for t € [0,150] in log-log scale are presented. The parameters are set as
At=10"%10"3,10"2,10"1, v =0 and 6 =0.75 for the case in Eq. (3.3).

(a) «=0.125 (b) =04 (c) a=1 (d) «a=2.25

Figure 9: Steady state of the bubble assembles driven by the phase field diblock copolymer model. Here we
choose the initial condition ¢|;—o=rand(—0.005,0.005)+0.4 on domain [—7,7] x [—7T,7r|. The parameters are
set as M=1,6=0.06 and §=0.5. The profiles of ¢ with different & at time =100 are presented.

Fig. 10, we observe that the number of bubbles scales approximately as K, cca?/3. This
phenomenon agrees with the theoretical studies [39] and numerical results [51].

4.3 Numerical examples for the MBE model

In the last case, we consider the MBE model (2.22) with the initial condition as following;:
¢(x,y,t=0)=0.1(sin3xsin2y+sin5xsin5y). (4.4)

We take the computational domain as () = [0,277]? and discretize the space with 128 x
128 uniform grid points by the Fourier spectral method. And we define the roughness
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Figure 10: Log-log plot of the dependence of the number of bubbles on « in the bubble assemblies. As
a increases, the number of bubbles in the assemblies grows accordingly. For a =0.125,0.4,1,2.25,3.6, the
corresponding number of double bubbles are K, =4,9,15,25,34, respectively, which indicates that the number

of bubbles obeys a scaling law Ky oxa?/3 approximately.

measure function W(t) as

2
|Q|/ x y/ (J’C Y )) 4
where<p X y, fQ ,y,

We begin with the numencal test of the time accuracy for the second-order scheme
(3.4). Since the exact solution for MBE growth model is unknown, we use numerical
results of scheme (3.4) with v =0,At=0.00001 and N =128 as the exact solution. Taking
e¢=1 and the numerical errors are computed at T=1

In Fig. 11, the error versus time step At for the MBE growth model are shown using
the second order scheme 3.4 with different regularization parameter v = 0.0 (left) and
v =4.0 (right) and various parameter 6 =0.5,0.75,1.0,1.25,1.5 for the case in (3.3). With
different regularization parameter 7y = 0,4, the expected second order convergence rate
in time is obtained. From this figures, we can conclude that the error decreasing as 6
increasing.

In addition, we show the time evolution of the energy and rough for the MBE growth
model using the second order scheme 3.4 when t € [0,30] (left) and t € [5,11] (right) in
Fig. 12. We set the time step as At=10"3,10"* and y =0 and various parameter 0. From
Fig. 12, we observe the energy evolution is more closer to the exact one with time step
At=1073 as 0 decreasing.

Also, we present the time evolution of the energy (left) and rough (right) for the MBE
growth model using the second order scheme 3.4 when ¢ € [0,30] with §=0.5 and 6 =1.5
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Figure 11: Time accuracy convergence test. In the figures, the error versus time step At for the MBE growth

model are shown using second order scheme 3.4 with different regularization parameters with €2 =1 and various
parameter 6=0.5,0.75,1.0,1.25,1.5.

in Fig. 13. In this simulation, we set the time step at At = 10-3,10~* and v =0,10,20.
And, we enlarge the time evolution of the energy and rough with different time steps
and v at time region [5,11] in inset figures. From Fig. 13, we observe the energy and
rough evolution are consistent with the exact one with time step At=10"%, and At=10"3
by adding regularization parameter v = 20.0. But the results with At=10"2 by adding
regularization parameter y =0.0 and oy =10.0 is not accurate enough.

We plot the time evolution of the energy (left) and rough (right) for the MBE growth
model using the second order scheme 3.4 when t € [0,30] in Fig. 14. The time step is set at
At=10"%. And we set v=0and 0=0.5,0.75,1.0,1.25,1.5. It demonstrates that the evolution
of the MBE growth model is accuracy when At is small enough for various 6.

In this example, we perform numerical simulations of coarsening dynamics in the
domain [0,12.8] x [0,12.8]. The initial condition is a random state by assigning a random
number, which varies from —0.001 to 0.001 to each grid point. The numerical schemes we
have proposed are unconditionally stable, but the global error accumulated in time evo-
lution will lead to the wrong solution, especially with the non-smooth initial condition.
Define At as the largest possible time step, which allows stable numerical computation.
In Table 2, we list the values of At, for the MBE growth model using second-order scheme
3.4 with regularization parameter v =0. The the semi-discrete scheme is approximated
by the Fourier spectral methods in space with Fourier mode number N =512. Table 2
demonstrates that different stability for different parameter 6.

We plot the time evolution of the energy (left) and rough (right) for the MBE growth
model using the second-order scheme 3.4 when t € [0.1,100] in Fig. 15. The power-law
scaling dynamics are observed, which agrees well with other published results [46]. This
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Figure 12: Time evolution of the energy for the MBE growth model using second order scheme 3.4. (a) Energy
evolution for t € [0,30]; (b) zoomed energy evolution for t € [5,11]; (c) roughness evolution for ¢ € [0,30]; and

(d) zoomed roughness evolution for t € [5,11]. The time step is set at At=10"3,10"* and =0 and various
parameter 0.

Table 2: At; with y=0 and different 6 for the MBE growth model using second order scheme 3.4.

0 0.5
At. | (0.0005,0.0005)

0.75
(0.0012,0.0013)

1.0
(0.0012,0.0013)

1.25
(0.0012,0.0013)

15
(0.0007,0.0008)

illustrates the effectiveness of the proposed schemes. In particular, when the time step
size is small enough, the evolution of the energy and rough are in agreement for various
6.

Here we use time step At =0.001. The parameters are chosen as y=0.0 and 6 =1.25.
The isolines of numerical solutions of the height function ¢ and its Laplacian A¢ for the
MBE growth model with random initial conditions are plotted in Fig. 16, which is in
substantial agreement with other published results [46].
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Figure 13: Time evolution of the energy and roughness for the MBE growth model using second order scheme
3.4 when £€[0,30] and t € [5,11] (inset figure). The time step is set at At=1073,10"% and 7v=0,10,20. (a)
6=0.5; (b) 6=1.5.
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Figure 14: Time evolution of the energy (left) and rough (right) for the MBE growth model using the second
order scheme 3.4 when t€[0,30]. The time step is set at At=10"% and =0 and #=0.5,0.75,1.0,1.25,1.5.
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Figure 15: Time evolution of the energy and roughness for the MBE growth model using the second order
scheme 3.4 when t€[0.1,100]. The time step is set at At=10"% or 1073 with =0 and §=0.5,0.75,1.0,1.25,1.5.

(b) A¢ at £=0,1,10,100

Figure 16: The isolines of numerical solutions of the height function ¢ and its Laplacian A¢ for the MBE growth
model with random initial condition. Snapshots for ¢ and A¢ are taken at t=0,1,10,100, respectively.

5 Conclusion

In this paper, we propose a new family of second-order numerical schemes for approxi-
mating phase field models. This new family of numerical schemes improves the invariant
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energy quadratization (IEQ) method by introducing extra free parameters, which could
be further tuned to improve the numerical schemes’ stability and accuracy. In addition,
the newly proposed scheme is linear, second-order accuracy in time, and unconditionally
energy stable. Convergence tests and several numerical examples are shown to verify the
effectiveness of the proposed schemes. Some explorations on the optimal choices of the
free parameters are conducted. We apply this new class of numerical algorithms to the
Cahn-Hilliard model, the diblock copolymer model, and the MBE model for illustration
purposes. The newly proposed schemes are rather general and apply widely to thermo-
dynamically consistent phase field models in the literature.
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