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The thermodynamically consistent Cahn-Hilliard-Extended-Darcy (CHED) model has been 
used to describe transient motion of a binary incompressible fluid flow in porous 
media. In this paper, we develop a series of linear, second-order, energy-dissipation-rate 
preserving numerical algorithms for the CHED model based on the energy quadratization 
strategy. We first extend the incompressible CHED model into a weakly compressible, 
thermodynamically consistent one using the generalized Onsager principle. Guided by the 
weakly compressible model, we then devise a couple of linear, second-order, decoupled, 
semi-discrete, temporal algorithms in the form of projection and the energy quadratization 
(EQ) method. The fully discrete algorithms are obtained by the use of the second-
order finite difference method on staggered grids in space. We show theoretically that 
the obtained numerical algorithms respect the energy-dissipation-rate and the volume 
conservation property at the discrete level for any time steps, making them unconditionally 
energy stable. Mesh refinement tests, coarsening dynamics of binary fluids, and the 
buoyancy-driven binary fluid motion in porous media are investigated numerically. In 
buoyancy-driven flow simulations, a new set of inflow and outflow boundary conditions 
are devised using the model. The numerical results compare well with the results in the 
literature.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Two-phase fluid flows in porous media typically involve transporting mixtures of solute and solvent in the porous media 
environment [10,14,36]. An effective model is commonly made up of the Darcy’s law coupled with transport equations 
for the solute and solvent in various forms. A simple phase field model for the transport of the binary fluid (solute and 
solvent) coupled with the Darcy’s law has been used recently, known as the Cahn-Hilliard-Darcy (CHD) model [26], which 
reduces to the Cahn-Hilliard-Hele-Shaw (CHHS) model when porosity is 1 [27,28]. We note however that they are in fact 
different when porosity is less than 1. When short-time transient dynamics is concerned, a time derivative is augmented 
to the Darcy’s law to yield the extended Darcy’s law [14,36], while large pores are present in the porous media, a viscous 
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term can be added to the Darcy’s law to produce the Brinkman model for porous media [4]. Of course, a time derivative 
can be added to the Brinkman model to make it an extended Brinkman model with a time derivative or inertia effect [32]. 
All these force balance laws can be coupled with phase field models to yield multi-phase field porous media models. If 
we use Cahn-Halliard (CH) dynamics for the phase fields, the resulting models are named respectively as Cahn-Hilliard-
(Darcy, Extended-Darcy, Brinkman, Extended-Brinkman) models. These models are abbreviated as CHD, CHED, CHB, and 
CHEB models, in which CHD is a limit of all others. They all belong to the class of multiphase fluid flow models known 
as the one fluid multiple component formulations of multiphase fluid flows for nonequilibrium fluid flow systems [2]. In 
addition to the adjectives for the force balance laws, the binary fluid can also be treated approximately as incompressible 
or compressible in porous media.

To model phase separation of incompressible binary fluid flows in porous media, we denote the Darcy velocity by v and 
the phase field or order parameter by φ ∈ [−1, 1], where φ = 1 represents the pure solute while φ = −1 the pure solvent. 
We adopt the following mixing free energy F for the binary fluid

F =
∫
�

χ fd(φ,∇φ)dx, (1.1)

where � is the material domain, χ is the porosity and one popular mixing free energy density is given by the double well 
potential with a conformational entropy

fd(φ,∇φ) = γ1

2
|∇φ|2 + f (φ), f (φ) = γ2

4
(φ2 − 1)2. (1.2)

Here γ1 measures the strength of the conformational entropy, and f (φ) is the bulk free energy of the binary fluid parame-
terized by γ2.

In this paper, we focus on the CHED model, which is the CH model coupled with the extended Darcy model with an 
“inertia” term parametrized by δ > 0 given below⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ∂tv = −∇p − γ v− φ∇μ,

∇ · v = 0,

χ∂tφ + ∇ · (φv) = ∇ · (M∇μ),

μ = f ′(φ) − γ1�φ,

(1.3)

where δ is also known as a constant parameter for mass, M = M(φ) ≥ 0 is the mobility coefficient for the transport of 
the phase field variable and γ = γ (φ) is the drag or the friction coefficient. If δ = 0, we recover the Darcy’s law in porous 
media.

Strictly speaking, this CHED model is valid only for the two phase fluid flows in porous media in which the two fluid 
components are of the identical mass density [27,28,32,38]. Should the densities of the two fluids are distinct, a quasi-
incompressible formulation must be used in order to arrive at thermodynamically consistent models [20,29,31,55,56]. Some 
numerical schemes have been developed to solve these quasi-incompressible multi-phase models with variable densities 
[19,22,41]. We are also looking into the effect of density differences between two fluids in a general quasi-incompressible 
model that also models fluid flows in porous media. We will report our results in the near future.

The total energy E of the incompressible CHED model (1.3) is defined by

E =
∫
�

δ

2
|v|2dx + F =

∫
�

[ δ

2
|v|2 + χ

(γ1

2
|∇φ|2 + f (φ)

)]
dx, (1.4)

which consists of the kinetic energy δ
2‖v‖2 and the free energy F . Under proper adiabatic boundary conditions, the energy 

dissipation law is given by

dE

dt
= −

∫
�

[γ |v|2 + M|∇μ|2]dx. (1.5)

Note that the CHED system in (1.3) is a coupled, nonlinear partial differential equation (PDE) system. Collins, Shen, and 
Wise [13] proposed an unconditionally energy stable and uniquely solvable finite difference scheme for the incompressible 
CHEB system of very viscous binary fluids using the convex splitting method. Recall the CHED system is composed of a 
Cahn-Hilliard-type dissipative equation and an extended Darcy equation. One can decouple this system and solve the Darcy 
velocity firstly from the force balance equation to decouple the velocity from the rest of the equations. In the meantime, the 
projection method proposed by Chorin [11,12] can be used to decouple pressure p from velocity v in (1.3). Han and Wang 
took this approach and developed a second-order accurate energy stable scheme for the CHD model based on the convex 
splitting strategy [26].

Several numerical approaches have been developed to construct energy stable numerical schemes for gradient flow 
models and gradient flow models coupled with hydrodynamics, including the convex splitting approach [39,42,47], the 
stabilizer approach [8,40], the energy quadratization (EQ) approach [20,54] and many others [3,6,7,9,16–18,23–26,30,37,43,
2
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45,46,52,57,58]. In particular, the EQ method has been applied to a host of thermodynamical and hydrodynamic models 
[5,20,50,51]. Badia, Guillén, and Gutiérres [1] pioneered the idea of transforming the free energy into a quadratic form to 
derive energy stable numerical schemes. Later, a group of researchers [21,40,53] populated the strategy and named it the 
EQ method and scalar auxiliary variable (SAV) method for any thermodynamical models, respectively, making it one of the 
versatile approaches for designing energy stable algorithms. In particular, in the SAV approach, the variable’s time evolution 
is independent of space, governed by an ODE in time, which may improve computational efficiency in some cases. The 
quadratic free energy functional makes it easier to design semi-discrete schemes of the higher-order and unconditional 
energy stability in time while being linear. Note that the EQ method is only used for semi-discretization in time, which 
allows one to choose any suitable methods to discretize the semi-discrete equations in space to attain high-order numerical 
schemes.

This paper aims to present a theory-guided approach to designing efficient, unconditionally energy stable schemes for 
incompressible fluid models in porous media (1.3). As we know from the finite difference method for differential equations, 
an effective equation exists behind every finite difference approximation to a differential equation. It is the effective equa-
tion that the numerical scheme actually approximates more closely than the original equation. The traditional approach in 
algorithmic design is to develop the finite difference approximation to the original equation firstly and then identify the 
effective equation. In this study, we turn the procedure around by deriving an effective equation firstly and then using 
it to guide the development of numerical approximation to the original equation. Compared with the previous numerical 
approaches where ones directly adopt the projection method to decouple the discrete equations, we present a modeling 
guided approach to developing thermodynamically consistent numerical algorithms for a hydrodynamical model for incom-
pressible binary fluid flows in porous media. This method produces decoupled, linear algorithms for the governing PDE 
system, which can be implemented and solved efficiently.

Specifically, we reformulate the incompressible CHED model using the generalized Onsager principle and then introduce 
relaxation dynamics to arrive at a weakly compressible CHED model. This weakly compressible model serves as the foun-
dation for designing the scheme involving the projection method. When this approach is coupled with another theoretical 
reformulation using the EQ strategy, we end up with decoupled, linear, unconditionally energy stable schemes for the cou-
pled CHED system. The projection method allows one to decouple the pressure from the momentum equation in the CHED 
system. The intermediate velocity in the projection method enables one to decouple the velocity field from the CH equation. 
In the end, we have a fully decoupled scheme for the coupled nonlinear PDE system. Subsequently, we combine the finite 
difference method on the staggered grids to complete the spatial discretization to arrive at fully discrete thermodynamically 
consistent schemes. Each decoupled scalar equation in the decoupled scheme is a Helmholtz-type equation which can be 
solved efficiently. The novelty of the work lies in the design of several second-order, linear, decoupled, energy-dissipation-
rate preserving schemes for the nonlinear coupled CHED system guided by the weakly compressible CHED model. We 
emphasize that the schemes devised in this paper preserve the energy-dissipation-rate even when the system is not dissi-
pative, for example, when the buoyancy effect is included through the Boussinesq approximation. In addition to examining 
the schemes using benchmark examples, we also propose a set of new inflow and outflow boundary conditions for the more 
realistic plug flow problem with inflow-outflow boundaries, where the boundary conditions are derived based on an energy 
dissipation consideration.

The rest of the paper is organized as follows. In §2, we formulate the incompressible CHED model using the generalized 
Onsager principle and extend it to weakly compressible to set the stage for applying the projection strategy. In §3, we 
reformulate the CHED system using the EQ method, derive second-order accurate energy stable numerical schemes and 
detail our decoupling strategy for some of the second-order numerical schemes. We then prove its unconditional energy 
stability and volume-preserving property. In §4, we discuss the spatial discretization on staggered grids in 2D and present 
fully discrete schemes. In §5, we present the numerical schemes for the CHED model with gravity and show their energy-
dissipation-rate preserving properties. The numerical validation is reported in §6, in which we demonstrate the second-order 
convergence rate, energy-dissipation-rate preserving property and conservation of volume of the schemes through some 
benchmark examples. In addition, a plug flow in a tube with inflow-outflow conditions is also discussed. Finally, we conclude 
the study in §7.

2. Model formulation

We derive a weakly compressible CHED model using the generalized Onsager principle [33–35,44,49] with a relaxation 
dynamics that reduces to the incompressible CHED model (1.3) in a limit. This derivation will guide us through the process 
of developing thermodynamically consistent numerical approximations to the coupled nonlinear partial differential equation 
system for incompressible binary fluid flows in porous media.

2.1. The weakly compressible CHED model

2.1.1. Model formulation
Given the free energy F defined in (1.1), we denote chemical potential μ as μ = 1

χ
δF
δφ

= f ′(φ) − γ1�φ. From (1.4), the 
energy-dissipation-rate is calculated as follows
3
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d

dt
E =

∫
�

[
δv · vt + χμφt

]
dx+

∫
∂�

n · [χγ1φt∇φ
]
ds. (2.1)

We impose the momentum balance equation, continuity equation, transport equation of φ as follows

δvt + φ∇μ = −γ v− ∇p, (2.2a)

∇ · v = η�pt, (2.2b)

χφt = −∇ · (φv) + ∇ · (M∇μ), (2.2c)

where ∇ · (M∇μ) is the rate of production of φ, derived from the generalized Onsager principle [44]. The introduction of 
η∇2pt in the continuity equation is equivalent to introducing an artificial compressibility locally, where η ≥ 0 is a small 
constant parameter measuring compressibility of the binary fluid. This modified continuity equation retains the global mass 
conservation of the system under a proper boundary condition on p.

Substituting equation (2.2) into (2.1), we arrive at

d

dt
E =−

∫
�

[
γ |v|2+ η

2
|∇p|2t +∇μ · M∇μ

]
dx+

∫
∂�

n · [χγ1φt∇φ−p(v−η∇pt)+μ(M∇μ − φv)
]
ds. (2.3)

Introducing the modified energy Em defined by

Em = E +
∫
�

η

2
|∇p|2dx, (2.4)

we have the energy dissipation law

d

dt
Em = −

∫
�

[
γ |v|2 + ∇μ · M∇μ

]
dx +

∫
∂�

n · [χγ1φt∇φ−p(v−η∇pt)+μ(M∇μ − φv)
]
ds. (2.5)

2.1.2. Boundary conditions based on the generalized Onsager principle
We now discuss possible boundary conditions for the field equations in (2.2). The conditions for a zero boundary energy 

flux are called adiabatic boundary conditions. A few sets of sufficient adiabatic boundary conditions are given by

n · (v − η∇pt) = 0 or p = 0, on ∂�, (2.6a)

∂nφ = 0 or φ = φ0(x), on ∂�, (2.6b)

n · (M∇μ − φv) = 0 or μ = 0, on ∂�. (2.6c)

Notice that the field equations in (2.2) are valid in �, not necessarily on ∂�. So, the choice of boundary conditions has to 
be consistent with the field equations.

Integrating continuity equation (2.2b), we deduce∫
∂�

[n · v− ηn · ∇pt]ds = 0. (2.7)

This imposes a consistent condition (or constraint) on the choice of boundary conditions. A sufficient and consistent condi-
tion for (2.7) is given by

n · (v − η∇pt) = 0, on ∂�. (2.8)

Likewise, we integrate the transport equation for φ (2.2c) over � to obtain

χ
d

dt

∫
�

φ dx =
∫
∂�

n · (M∇μ − φv)ds. (2.9)

From the volume conservation of solute (i.e., d
dt

∫
�

φ dx = 0), we deduce∫
∂�

n · (M∇μ − φv)ds = 0. (2.10)

A sufficient and consistent boundary condition for conserving the volume of solute is then
4
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n · (M∇μ − φv) = 0, on ∂�. (2.11)

This leaves the choice of the adiabatic boundary conditions for φ to the following two

∂n∇φ = 0 or φ = φ0(x), on ∂�. (2.12)

Finally, we integrate momentum balance equation (2.2a) over � to yield∫
�

[δvt + γ v]dx = −
∫
∂�

n[p + φμ − χ
(
f (φ) + γ1

2
|∇φ|2)]ds. (2.13)

Notice that the chemical potential and the free energy are finite at the boundary for the binary fluid flows. If we impose 
the Dirichlet boundary condition on p, the surface integral at the right hand side of (2.13) is a finite value. However, the left 
hand side bulk integral could be made arbitrarily large by assigning initial velocity of the fluid flow large while satisfying 
proper boundary conditions. This indicates that the boundary condition on p cannot be the Dirichlet one.

In light of the above discussion, a set of sufficient boundary conditions that respects the above constraints and adiabatic 
boundary conditions is given by

n · v = 0, n · ∇pt = 0, ∂nφ = 0 or φ = φ0(x), n · (M∇μ) = 0, on ∂�. (2.14)

If n is independent of time, a sufficient condition n · ∇p = 0 implies n · ∇pt = 0. The set of boundary conditions in (2.14)
with n · ∇p = 0 in place of n · ∇pt = 0 is often used, which conserves both mass (globally) and volume. If n · ∇p|∂� = 0, 
it is also consistent with the field equation. In return, if we extend the momentum balance to the boundary, it yields 
n · ∇p|∂� = 0 from (2.14).

Under adiabatic boundary conditions (2.6) (and of course (2.14)), the energy-dissipation-rate of the weakly compressible 
CHED model in (2.5) reduces to

d

dt
Em = d

dt
[E + η

2
|∇p|2] = −

∫
�

[
γ |v|2 + ∇μ · M∇μ

]
dx ≤ 0, (2.15)

provided M is non-negative.

Remark 2.1. This model reduces to the incompressible CHED model at η = 0 and further to the CHD model at δ = 0. A set 
of sufficient conditions for a zero boundary flux in the incompressible model is given by

n · v = 0, ∂nφ = 0 or φ = φ0(x), n · (M∇μ) = 0, on ∂�. (2.16)

Remark 2.2. More general non-adiabatic, dissipative boundary conditions can be derived from the Onsager principle applied 
to the boundary:

φt = −G1∂nφ, n · (M∇μ − φv) = −G2μ, n · (v− η∇pt) = 0, on ∂�, (2.17)

where G1 and G2 are prescribed non-negative functions and their further generalization to non-negative definite operators 
is plausible. With boundary conditions (2.17), the energy-dissipation-rate for the modified energy is given by

d

dt
Em = −

∫
�

[
γ |v|2 + ∇μ · M∇μ

]
dx −

∫
∂�

[
χγ1∂nφG1∂nφ + μG2μ

]
ds. (2.18)

Notice that if G2μ 	= 0 on ∂�, the volume of solute given by 
∫
�

φdx is not conserved. When G2μ = 0, non-adiabatic 
boundary condition φt = −G1∂nφ respects the global mass conservation and conservation of the solute volume.

Remark 2.3. Viscosity can be added to the force balance equation to yield the CHEB model, where the momentum equation 
is given by

δ∂tv+ γ v = −∇p − φ∇μ + ∇ · (2νsD+ νv∇ · vI), (2.19)

where νs is the shear viscosity, νv is the volumetric viscosity and D = 1
2 (∇v + ∇vT ) is the rate of strain tensor. The energy-

dissipation-rate of this model is given by

d

dt
Em = −

∫
�

[
γ |v|2 + 2νsT r(D ·D) + νv(∇ · v)2 + ∇μ · M∇μ

]
dx

+
∫

n · [χγ1φt∇φ − p(v − η∇pt) + (2νsD+ νv∇ · vI) · v+ μ(M∇μ − φv)
]
ds.

(2.20)
∂�

5
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A set of non-adiabatic boundary conditions for the CHEB model derived from the Onsager principle are given by (2.17)
together with

n · (2νsD+ νv∇ · vI) = −G3v, on ∂�, (2.21)

where G3 is a non-negative function. The following adiabatic boundary conditions for the CHEB model

v = 0, ∂nφ = 0 or φ = φ0(x), n · (M∇μ) = 0, n · ∇p = 0, on ∂�, (2.22)

warrant the zero energy flux, mass flux and volume flux of solute across the boundary. When δ = η = 0, this model reduces 
to the incompressible CHB model.

2.2. An alternative formulation of the weakly compressible CHED model

2.2.1. Model formulation
Next, we recast the weakly compressible CHED model of (2.2) in a form suitable for deriving the projection method. We 

replace v by ṽ and define a new divergence free velocity field by

v = ṽ− η∇pt . (2.23)

Then we recast the weakly compressible CHED model as follows⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

δ∂t ṽ+ γ ṽ = −∇p − φ∇μ,

v = ṽ− η∇pt,

∇ · v = 0,

χ∂tφ + ∇ · (φṽ) = ∇ · (M∇μ),

μ = f ′(φ) − γ1�φ.

(2.24)

2.2.2. Boundary conditions based on the generalized Onsgager principle
The total free energy of system (2.24) is given by

Em =
∫
�

[ δ

2
|ṽ|2 + χ

(
f (φ) + γ1

2
|∇φ|2) + η

2
|∇p|2]dx. (2.25)

The time rate of change of the free energy is given by

d

dt
Em =

∫
�

−[
γ |ṽ|2 + ∇μ · M∇μ

]
dx+

∫
∂�

n · [χγ1φt∇φ + μ(M∇μ − φṽ) − pv
]
ds. (2.26)

The following adiabatic boundary conditions guarantee the zero energy flux and mass flux across ∂�

n · v = 0, ∂nφ = 0 or φ = φ0(x), n · (M∇μ − φṽ) = 0, on ∂�. (2.27)

Notice that boundary condition n · ṽ|∂� = 0 is equivalent to n · ∇pt |∂� = 0. So, a set of sufficient adiabatic boundary condi-
tions for zero mass flux and volume flux across ∂� is given by

n · v = 0, ∂nφ = 0, n · (M∇μ) = 0, n · ∇pt = 0, on ∂�. (2.28)

The energy-dissipation-rate reduces to

d

dt
Em = −

∫
�

[
γ |ṽ|2 + ∇μ · M∇μ

]
dx ≤ 0, (2.29)

provided M is non-negative.

Remark 2.4. With boundary conditions (2.28), modified free energy Em can also be expressed in the divergence free velocity 
v as follows

Em =
∫ [ δ

2
|v|2 + χ

(
f (φ) + γ1

2
|∇φ|2) + η

2
|∇p|2 + δη2

2
|∇pt |2

]
dx. (2.30)
�

6
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So, the energy-dissipation-rate is given by

d

dt
Em = −

∫
�

[
γ |v|2 + ∇μ · M∇μ + γ η2|∇pt |2

]
dx. (2.31)

Remark 2.5. When the weakly compressible CHED is used to approximate the incompressible CHED in numerical approxi-
mations, η is chosen in a compatible order with the numerical schemes. In particular, if �t is the time step size in our later 
proposed second-order numerical schemes, we will assign η = (�t)2

2δ in the CN scheme and η = 2(�t)2

3δ in the BDF2 scheme.

This formulation of the model with the artificial compressibility will guide us in the development of the projection 
method that is thermodynamically consistent at the discrete level.

2.3. The weakly compressible CHED model with gravity

Next, we examine the time rate of change of the energy in the weakly compressible CHED model driven by a buoyancy 
force −λ(φ − φ̂)ĝ due to gravity and density stratification, where ĝ = (0, 1) is the unit vector opposite to the direction of 
gravity, φ̂ = 1

|�|
∫
�

φ dx is a spatially averaged value of φ, and λ is a dimensionless parameter measuring the strength of 
buoyancy [26].

Adopting the following force balance equation after the Boussinesq approximation (in which one introduces gravitational 
force accounting for density stratification, please refer to [27,28] for details)

δṽt + γ ṽ = −∇p − φ∇μ − λ(φ − φ̂)ĝ, (2.32)

we recast the weakly compressible CHED model with buoyancy as follows⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

δ∂t ṽ+ γ ṽ = −∇p − φ∇μ − λ(φ − φ̂)ĝ,

v = ṽ− η∇pt,

∇ · v = 0,

χ∂tφ + ∇ · (φṽ) = ∇ · (M∇μ),

μ = f ′(φ) − γ1�φ.

(2.33)

With adiabatic boundary conditions (2.27), the energy-dissipation-rate is given by

d

dt
Em = −

∫
�

[γ |ṽ|2 + ∇μ · M∇μ + λ(φ − φ̂)ṽ · ĝ]dx

= −
∫
�

[γ |v|2 + γ η2|∇pt |2 + ∇μ · M∇μ + λ(φ − φ̂)ṽ · ĝ]dx,
(2.34)

indicating that the total energy Em may no longer be semi-negative definite due to buoyancy. Then, we examine the com-
patibility issue between the boundary conditions of the model and the field equation extended to the boundary when an 
external force is added. If we insist n · ṽ|∂� = 0, the momentum balance equation when extended to the boundary now 
implies

n · ∇p = −λ(φ − φ̂)n · ĝ, on ∂�. (2.35)

Thus, if n ·∇p|∂� = 0 is imposed at the boundary, the momentum balance equation can not be extrapolated to the boundary 
should (φ − φ̂)n · ĝ|∂� 	= 0. However, if n · ∇pt |∂� = 0 is used as the boundary condition, it allows (2.35) when n and 
(φ − φ̂)n · ĝ are time independent. So, when buoyancy is considered, the boundary condition of the pressure must be 
handled with care. We will discuss it further in the numerical section later on.

2.4. Non-dimensionalization

For system (2.33), we introduce characteristic length scale l0, time scale t0 and density scale ρ0 to nondimensionalize 
the physical variables and parameters as follows

x̂ = x

l0
, t̂ = t

t0
, ρ̂ = ρ

ρ0
, v̂ = t0

l0
v, μ̂ = μ

μ0
, p̂ = p

p0
, τ̂ = μ0

p0
,

δ̂ = δ

ρ
, γ̂ = t0

ρ
γ , λ̂ = t20

ρ l
λ, η̂ = η

l2
, χ̂ = χ, M̂ = t30

ρ l4
M, γ̂1 = γ1

l2
.

(2.36)
0 0 0 0 0 0 0 0

7
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After we drop the ̂ on the dimensionless variables and the parameters for simplicity, we have the driven weakly compress-
ible CHED system with gravity reads as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

δ∂t ṽ+ γ ṽ = −∇p − τφ∇μ − λ(φ − φ̂)ĝ,

v = ṽ− η∇pt,

∇ · v = 0,

χ∂tφ + ∇ · (φṽ) = ∇ · (M∇μ),

μ = f ′(φ) − γ1�φ,

(2.37)

with the total energy

Ê =
∫
�

[ δ

2
|ṽ|2 + η

2
|∇p|2]dx+ F̂ =

∫
�

[ δ

2
|ṽ|2 + η

2
|∇p|2 + τχ

(
f (φ) + γ1

2
|∇φ|2)]dx. (2.38)

We would like to solve the above system subject to adiabatic boundary conditions

n · v = 0, ∂nφ = 0, ∂nμ = 0, ∂np = 0, on ∂�, (2.39)

and the energy-dissipation-rate is given by

d

dt
Ê = −

∫
�

[γ |ṽ|2 + τ∇μ · M∇μ + λ(φ − φ̂)ṽ · ĝ]dx. (2.40)

Here we only present the non-dimensionalized weakly compressible CHED system with gravity, the non-dimensionalized 
incompressible CHED system can be obtained by setting proper parameters into zero and is thus omitted for simplicity.

We next derive second-order, decoupled, energy-dissipation-rate preserving schemes for the weakly compressible CHED 
model guided by this formulation.

3. Temporally semi-discrete schemes

Given that the incompressible CHED model reduces to the CHD model at δ = 0, we will present numerical schemes for 
the incompressible CHED model in this section and remark the relevant steps to derive analogous schemes for the CHD 
model.

We first discuss the temporal discretization. Consider time domain [0, T ], we discretize it into equally distanced meshes: 
0 = t0 < t1 < t2 < · · · < tN = T , with time step �t = T

N . We adopt following notations

(•)n+ 1
2 = 1

2 (•)n + 1
2 (•)n+1, ¯(•)n+ 1

2 = 3
2 (•)n − 1

2 (•)n−1,

¯(•)n+1 = 2(•)n − (•)n−1, ˜(•)n+ 1
2 = 1

2
˜(•)n+1 + 1

2 (•)n.
(3.1)

Also, we denote the inner product and induced L2 norms as ( f , g) = ∫
�

f g dx, and ‖ f ‖ = √
( f , f ), ∀ f , g ∈ L2(�), respec-

tively.

3.1. Model reformulation using energy quadratization (EQ) methods

We reformulate the incompressible CHED model into an equivalent form using the idea of energy quadratization. By 
introducing an auxiliary variable q = √

2 f (φ) + 2A, where A is a large positive constant, such that f (x) + A > 0 for all 
x ∈R. We rewrite the free energy into a quadratic form

F̂ =
∫
�

τχ
[γ1

2
|∇φ|2 + q2

2
− A

]
dx. (3.2)

We denote g(φ) := ∂q
∂φ

= f ′(φ)√
2 f (φ)+2A

and reformulate the non-dimensionalized incompressible CHED model into an equiva-
lent one
8
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

δ∂tv = −γ v− ∇p − τφ∇μ,

∇ · v = 0,

χ∂tφ + ∇ · (φv) = ∇ · (M∇μ),

μ = g(φ)q − γ1�φ,

∂tq = g(φ)∂tφ,

(3.3)

with initial condition q|t=0 = √
2 f (φ) + 2A|t=0 and adiabatic boundary conditions given by

n · v = 0, ∂nφ = 0, ∂nμ = 0, on ∂�. (3.4)

From this reformulated and yet equivalent model, we devise a set of energy-dissipation-rate preserving schemes.

3.2. Linearly coupled scheme

Introducing the semi-implicit Crank-Nicolson (CN) method to the coupled system directly, we obtain a semi-discrete, 
second-order in time and unconditionally energy stable scheme for the CHED model.

Algorithm 3.1 (Coupled semi-implicit CN scheme for the incompressible CHED model). Given (φn, vn) and φn−1, we update 
(φn+1, vn+1) via the following scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ
vn+1 − vn

�t
= −γ̄ n+ 1

2 vn+ 1
2 − ∇pn+ 1

2 − τ φ̄n+ 1
2 ∇μn+ 1

2 ,

∇ · vn+ 1
2 = 0,

χ
φn+1 − φn

�t
+ ∇ · (φ̄n+ 1

2 vn+ 1
2 ) = ∇ · (M̄n+ 1

2 ∇μn+ 1
2 ),

μn+ 1
2 = −γ1�φn+ 1

2 + ḡn+ 1
2 qn+ 1

2 ,

qn+1 − qn = ḡn+ 1
2 (φn+1 − φn),

(3.5)

along with adiabatic boundary conditions

n · vn+1 = 0, ∂nφ
n+1 = 0, ∂nμ

n+1 = 0, on ∂�. (3.6)

In the numerical experiments, we use formula q0 = √
2 f (φ0) + 2A and μ0 = −γ1�φ0 + f ′(φ0) to compute the initial 

data for initial values of scheme (3.5).

Remark 3.1. When δ = 0, this scheme reduces to the one for the Darcy’s model. In practice, we use the incompressibility 
condition to eliminate the velocity field from the coupled system of equations

v
n+ 1

2 = 1

γ̄
n+ 1

2
[−∇p

n+ 1
2 − τ φ̄

n+ 1
2 ∇μ

n+ 1
2 ], ∇ ·

(
1

γ̄
n+ 1

2
∇p

n+ 1
2
)

+ ∇ ·
(
τ φ̄

n+ 1
2

γ̄
n+ 1

2
∇μ

n+ 1
2
)

= 0. (3.7)

The boundary condition used for pressure p is n · ∇p|∂� = 0 prescribed additionally. Here n · ∇p|∂� = 0 is derivable from 
(3.7) after extending the force balance equation in the normal direction to the boundary.

Then, we have the following theorem for volume conservation and energy dissipation.

Theorem 3.1. The solution of scheme (3.5)-(3.6) satisfies the semi-discrete volume conservation law

(φn+1,1) = (φn,1), (3.8)

and the energy dissipation law

Ên+1 − Ên = −�t
[
(γ̄ n+ 1

2 vn+ 1
2 ,vn+ 1

2 ) + (τ M̄
n+ 1

2 ∇μn+ 1
2 ,∇μn+ 1

2 )
]
, (3.9)

where the energy is defined as Ên = δ
2‖vn‖2 + τχ(

γ1
2 ‖∇φn‖2 + 1

2‖qn‖2 − A). So, the scheme is unconditionally energy stable.

Proof. The proof is similar to that of Th. 3.2 given below. So, it is omitted.
Note that volume conservation of the solute is given by ((φn+1 + 1)/2, 1) = ((φn + 1)/2, 1), equivalent to (3.8). �
9
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3.3. Linearly decoupled schemes

Using the weakly compressible CHED model formulated in (2.24) together with the EQ reformulation, we derive a semi-
discrete, decoupled, second-order, unconditionally energy stable, linear scheme, where only Helmholtz-type equations need 
to be solved in each time step. The scheme is given as follows.

3.3.1. Temporal discretization based on semi-implicit Crank-Nicolson (CN) methods
We apply the semi-implicit CN method to discretize the time derivative of the weakly compressible CHED model to 

arrive at a decoupled, second-order in time, energy stable scheme for the incompressible CHED model.

Algorithm 3.2 (Decoupled semi-implicit CN scheme for the incompressible CHED model). Given (φn, qn, pn, vn) and φn−1, we up-
date (φn+1, qn+1, pn+1, vn+1) via the following scheme

δ
ṽn+1 − vn

�t
= −γ̄

n+ 1
2 ṽ

n+ 1
2 − ∇pn − τ φ̄

n+ 1
2 ∇μ

n+ 1
2
, (3.10a)

δ
vn+1 − ṽn+1

�t
= − δη

(�t)2
∇(pn+1 − pn), (3.10b)

∇ · vn+ 1
2 = 0, (3.10c)

χ
φn+1 − φn

�t
+ ∇ · (φ̄n+ 1

2 ṽ
n+ 1

2
) = ∇ · (M̄n+ 1

2 ∇μ
n+ 1

2
), (3.10d)

μ
n+ 1

2 = −γ1�φ
n+ 1

2 + ḡ
n+ 1

2 q
n+ 1

2
, (3.10e)

qn+1 − qn = ḡ
n+ 1

2
(φn+1 − φn), (3.10f)

along with adiabatic boundary conditions

n · vn+1 = 0, ∂nφ
n+1 = 0, ∂nμ

n+1 = 0, ∂np
n+1 = 0, on ∂�. (3.11)

In order to make the scheme a second-order scheme for the incompressible CHED model, we set η = (�t)2

2δ . Then (3.10b)
reduces to

δ
vn+1 − ṽn+1

�t
= −1

2
∇(pn+1 − pn). (3.12)

Adding (3.12) to (3.10a), we obtain a second-order discretization of the force balance equation. This is a second-order in 
time, decoupled, linear scheme.

Remark 3.2 (Decoupled implementation). Next, we show how to implement the scheme in a fully decoupled way. From (3.10a), 
we have

∇ · (ṽn+ 1
2 φ

n+ 1
2 )=∇ ·

[
α1φ

n+ 1
2
( 2δ

�t
vn−∇pn

)]
−∇ ·

[
τα1(φ

n+ 1
2 )2∇μn+ 1

2

]
, (3.13)

where α1= 1

2δ/�t+γ
n+ 1

2
. Substituting (3.13) into (3.10d), we decouple φ from v and p,

φn+1 − φn

�t
+ ∇ ·

[
α1φ

n+ 1
2
( 2δ

�t
vn − ∇pn

)]
= ∇ ·

[(
M̄

n+ 1
2 + τα1(φ

n+ 1
2 )2

)
∇μ

n+ 1
2
]
. (3.14)

From (3.10f), we have qn+1 = qn + gn+ 1
2 (φn+1 − φn). Substituting it into (3.10e), we decouple q from φ,

μ
n+ 1

2 = −γ1�φ
n+ 1

2 + ḡ
n+ 1

2
(
qn + 1

2
ḡ
n+ 1

2
(φn+1 − φn)

)
. (3.15)

So this semi-implicit CN scheme can be implemented in a completely decoupled fashion. We will present the decoupled 
implementation of scheme (3.10)-(3.11) in several steps later in the fully discrete scheme.

Theorem 3.2. The solution of scheme (3.10)-(3.11) satisfies the volume conservation law

(φn+1,1) = (φn,1), (3.16)

and the energy dissipation law
10
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Ên+1 − Ên = −�t
[
(γ̄ n+ 1

2 ṽn+ 1
2 , ṽn+ 1

2 ) + (τ M̄
n+ 1

2 ∇μn+ 1
2 ,∇μn+ 1

2 )
]
, (3.17)

where the energy is defined as Ên = δ
2‖vn‖2 + (�t)2

8δ ‖∇pn‖2 + τχ(
γ1
2 ‖∇φn‖2 + ‖qn‖2

2 − A). So, the scheme is unconditionally energy 
stable.

Proof. Computing the inner product of (3.10d) with constant 1, and using (3.11), we obtain (3.16). Next, we prove the 
energy dissipation law.

Firstly, taking inner product of (3.12) with �t
2 vn+1, we obtain

δ

2
(||vn+1||2 − ||ṽn+1||2 + ||vn+1 − ṽn+1||2) = −�t

2
(vn+1,∇pn+1 − ∇pn). (3.18)

We take inner product of (3.12) with (�t)2

2δ ∇pn to deduce

(�t)2

8δ
(||∇pn+1||2 − ||∇pn||2 − ||∇(pn+1 − pn)||2) = �t(ṽn+ 1

2 ,∇pn) − �t

2
(vn+1 + vn,∇pn). (3.19)

Taking the L2 norm at both sides of (3.12), we have

(�t)2

8δ
||∇(pn+1 − pn)||2 = δ

2
||vn+1 − ṽn+1||2. (3.20)

Noticing n · vi |∂� = 0 and ∇ · vi = 0, we have (vi, ∇p j) = 0, (i, j = n, n + 1). Then we add (3.18), (3.19) and (3.20) to obtain

1

�t

[ δ

2
(||vn+1||2 − ||ṽn+1||2) + (�t)2

8δ
(||∇pn+1||2 − ||∇pn||2)

]
= (ṽn+ 1

2 ,∇pn). (3.21)

Secondly, taking inner product of (3.10d) with μn+ 1
2 and substituting (3.10e) into it, we have

τχ

�t
(−γ1�φ

n+ 1
2 + ḡ

n+ 1
2 q

n+ 1
2
, φn+1 − φn) − τ (∇μn+ 1

2 , φ̄
n+ 1

2 ṽ
n+ 1

2
) = −(τ M̄

n+ 1
2 ∇μn+ 1

2 ,∇μn+ 1
2 ), (3.22)

where n · ṽi |∂� = 0 is used. Taking inner product of (3.10f) with qn+ 1
2 , we have

τχ

2�t
(||qn+1||2 − ||qn||2) = τχ

�t
(ḡ

n+ 1
2 q

n+ 1
2
, φn+1 − φn), (3.23)

Taking inner product of (3.10a) with ṽn+ 1
2 , we obtain

δ

2�t
(||ṽn+1||2 − ||vn||2) = −(γ̄ n+ 1

2 ṽn+ 1
2 , ṽn+ 1

2 ) − (ṽn+ 1
2 ,∇pn) − τ (∇μn+ 1

2 , φ̄
n+ 1

2 ṽ
n+ 1

2
). (3.24)

Finally, adding (3.21), (3.22),(3.23) and (3.24), we arrive at

1

�t

[ δ

2
(‖vn+1‖2 − ‖vn‖2) + (�t)2

8δ
(‖∇pn+1‖2 − ‖∇pn‖2) + τχ

(γ1

2
(‖∇φn+1‖2 − ‖∇φn‖2)

+ 1

2
(‖qn+1‖2 − ‖qn‖2))] + (γ̄ n+ 1

2 ṽn+ 1
2 , ṽn+ 1

2 ) + (τ M̄
n+ 1

2 ∇μn+ 1
2 ,∇μn+ 1

2 ) = 0.

(3.25)

The decoupled semi-implicit CN scheme is therefore unconditionally energy stable. �
Remark 3.3. Note that the total energy as well as the corresponding energy-dissipation-rate have been written in terms of 
the divergence free velocity in both the continuous form and the discrete one. Semi-discrete decoupled scheme (3.10) is 
designed for incompressible model and thereby can be viewed as a second-order pressure correction scheme, where ṽ is 
used as an intermediate velocity. The difference between the energy and/or the energy-dissipation-rate in the continuous 
form and the semi-discrete form stems from the truncation error in the equation system (∼ O (�t2)) for the semi-implicit 
CN scheme. An analogous discrepancy appears in the BDF2 scheme which is defined in Sec. 3.3.2 as well.

Remark 3.4. In practice, if we set δ = �t , the scheme serves as a first order scheme for the incompressible CHD model even 
though the energy and the energy-dissipation-rate remain second-order accurate. This is the price we pay for decoupling 
the equations using the weakly compressible CHED model. Given the choice of η, we can’t take the limit δ → 0. Thus, we 
cannot obtain a corresponding, fully decoupled, second-order scheme for the incompressible CHD model this way.
11
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3.3.2. Temporal discretization based on second-order backward difference (BDF2) methods
When the BDF2 method is used to discretize the time derivative, we arrive at another decoupled, second-order, uncon-

ditionally energy stable scheme for the incompressible CHED model.

Algorithm 3.3 (Decoupled BDF2 scheme for the incompressible CHED model). Given (φn, qn, pn, vn) and (φn−1, qn−1, pn−1, vn−1), 
we update (φn+1, qn+1, pn+1, vn+1) via the following scheme

δ
3ṽn+1 − 4vn + vn−1

2�t
= −γ̄

n+1
ṽ
n+1 − ∇pn − τ φ̄

n+1∇μ
n+1

, (3.26a)

δ
3vn+1 − 3ṽn+1

2�t
= −∇(pn+1 − pn), (3.26b)

∇ · vn+1 = 0, (3.26c)

χ
3φn+1 − 4φn + φn−1

2�t
+ ∇ · (φ̄n+1

ṽ
n+1

) = ∇ · (M̄n+1∇μ
n+1

), (3.26d)

μ
n+1 = −γ1�φ

n+1 + ḡ
n+1

q
n+1

, (3.26e)

3qn+1 − 4qn + qn−1 = ḡ
n+1

(3φn+1 − 4φn + φn−1), (3.26f)

along with the boundary conditions given in (3.11).

Remark 3.5 (Decoupled implementation). From (3.26a), we have

∇ · (ṽn+1φ
n+1

)=∇ ·
[
α2φ

n+1
( 2δ

�t
vn− δ

2�t
vn−1−∇pn

)]
−∇ ·

[
τα2(φ

n+1
)2∇μn+1

]
, (3.27)

where α2 = 1
3δ
2�t+γ n+1 . Substituting (3.27) into (3.26d), we decouple φ from v and p. Substituting (3.26f) into (3.26e), we 

decouple q from φ as well. That is how we obtain the fully decoupled BDF2 scheme.

Theorem 3.3. The solution of scheme (3.26) satisfies the volume conservation law

(φn+1,1) = (φn,1), (3.28)

and the energy dissipation law

Ên+1 − Ên = −�t
[
(γ̄ n+1ṽn+1, ṽn+1)+(τ M̄

n+1∇μn+1,∇μn+1)+ τχγ1

4�t
‖∇φn+1− 2∇φn+∇φn−1‖2

+ δ

4�t
(‖vn+1−2vn+vn−1‖2+3‖vn+1−ṽn+1‖2)+ τχ

4�t
‖qn+1−2qn+qn−1‖2

]
.

(3.29)

where the energy is defined as Ên+1 = δ
4 (‖vn+1‖2 +‖2vn+1 −vn‖2) + (�t)2

3δ ‖∇pn+1‖2 +τχ
( γ1

4 (‖∇φn+1‖2 +‖2∇φn+1 −∇φn‖2) +
1
4 (‖qn+1‖2 + ‖2qn+1 − qn‖2) − A

)
. So, the scheme is unconditionally energy stable.

Proof. The proof of the conservation law is the same as that in Th. 3.2. Here, we mainly prove the energy dissipation law. 
The proof of the BDF2 scheme is similar to the treatment in [48].

Firstly, taking inner product of (3.26b) with 2�t
3δ vn+1 and ∇pn , respectively, taking the L2 norm of both sides of equation 

(3.26b), and adding the results lead to

(||vn+1||2 − ||ṽn+1||2) + 4(�t)2

9δ2
(||∇pn+1||2 − ||∇pn||2) = 4�t

3δ
(ṽn+1,∇pn). (3.30)

Secondly, taking inner product of (3.26d) with μn+1 and using n · ṽ|∂� = 0, we have
τχ

4�t
(3φn+1 − 4φn + φn−1,2μn+1) − τ (∇μn+1, ṽ

n+1
φ̄

n+1
) = −(τ M̄

n+1∇μn+1,∇μn+1). (3.31)

Taking inner product of (3.26f) with qn+1, we have
τχ

2�t
(3qn+1 − 4qn + qn−1,2qn+1) = τχ

�t
(3φn+1 − 4φn + φn−1, ḡ

n+1
q
n+1

). (3.32)

Taking inner product of (3.26a) with ṽn+1, we obtain

δ
(3ṽn+1 − 4vn + vn−1,2ṽn+1) = −(γ̄ n+1ṽn+1, ṽn+1) − (ṽn+1,∇pn) − τ (∇μn+1, ṽ

n+1
φ̄

n+1
). (3.33)
4�t

12
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Denoting the left hand of (3.33) as I = δ
4�t I0, we consider

I0 = (3vn+1 − 4vn + vn−1,2vn+1) − (3vn+1 − 4vn + vn−1,2vn+1 − 2ṽn+1) + (3ṽn+1 − 3vn+1,2ṽn+1)

:= I1 + I2 + I3.

Here I2 = 0 follows from (3.26b), (3.26c) and (3.11). For I1, using the following identity

2a(3a − 4b + c) = a2 + (2a − b)2 − b2 − (2b − c)2 + (a − 2b + c)2, (3.34)

we have

I1 = ‖vn+1‖2 + ‖2vn+1 − vn‖2 − ‖vn‖2 − ‖2vn − vn−1‖2 + ‖vn+1 − 2vn + vn−1‖2. (3.35)

For I3, using the equality

2a(a − b) = a2 − b2 + (a − b)2, (3.36)

we obtain

I3 = 3(||ṽn+1||2 − ||vn+1||2 + ||vn+1 − ṽn+1||2). (3.37)

Finally, applying identity (3.34) to (3.31) and (3.32), substituting (3.35) and (3.37) into (3.33), then adding (3.30), 
(3.31),(3.32) and (3.33), we obtain

1

�t

[ δ

4

(
(‖vn+1‖2 + ‖2vn+1 − vn‖2) − (‖vn‖2 + ‖2vn − vn−1‖2)

)
+τχγ1

4

(
(‖∇φn+1‖2 + ‖2∇φn+1 − ∇φn‖2) − (‖∇φn‖2 + ‖2∇φn − ∇φn−1‖2)

)

+τχ

4

(
(‖qn+1‖2 + ‖2qn+1 − qn‖2) − (‖qn‖2+‖2qn−qn−1‖2)

)
+ (�t)2

3δ
(‖∇pn+1‖2−‖∇pn‖2)

]
= −

[
(γ̄ n+1ṽn+1, ṽn+1)+(τ M̄

n+1∇μn+1,∇μn+1) + δ

4�t
(‖vn+1 − 2vn + vn−1‖2 + 3‖vn+1 − ṽn+1‖2)

+τχ
( γ1

4�t
‖∇φn+1 − 2∇φn + ∇φn−1‖2 + 1

4�t
‖qn+1 − 2qn + qn−1‖2)].

(3.38)

The decoupled BDF2 scheme is therefore unconditionally energy stable. �
4. Fully discrete schemes

Given the semi-discrete schemes, we present their spatial discretizations using finite difference methods on staggered 
grids to arrive at the fully discrete schemes. Firstly, we introduce some notations and useful lemmas.

4.1. Notations and useful lemmas

Consider a square domain in 2D: � = [0, Lx] × [0, L y], where Lx and L y are the lengths in each direction. We discretize 
the domain into uniform meshes in each direction, and denote the mesh sizes: hx = Lx

Nx
and hy = L y

Ny
. Here Nx and Ny

are the number of meshes in each direction. Introduce the coordinates, s0 < 0 < s1 < s2 < · · · < sNs < Ls < sNs+1, with 
si = (i − 1

2 )hs , where s = x, y. We also introduce index sets

Is = {1,2, · · · ,Ns}, I0s = {0,1,2, · · · ,Ns},
I ŝ = {1,2, · · · ,Ns − 1}, Is = {0,1,2, · · · ,Ns,Ns + 1}, s = x, y.

With the notations above, we introduce the 1D sets for grid points in space

Es = {si+ 1
2
, i ∈ I0s }, s = x, y, Cs = {si |i ∈ Is}, s = x, x, y, y.

We define the following discrete function spaces

Cs1×s2 = {φ : Cs1 × Cs2 →R}, s1 = x, x, s2 = y, y,

Eew
x×y = {u : Ex × C y →R}, Ens

x×y = {v : Cx × E y →R}.
With the notations above, we denote φn the numerical approximation to φ(xi, y j, tn).
i, j

13
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4.1.1. Average and difference operators
Denote the cell-centered functions as φh, μh, ph, qh ∈ Cx̄× ȳ and the edge-centered functions as uh ∈ Eew

x×y , vh ∈ Ens
x×y . We 

define the east-west-edge-to-center average and difference operator as ax and dx:

axui, j = 1

2
(ui+ 1

2 , j + ui− 1
2 , j), dxui, j = 1

hx
(ui+ 1

2 , j − ui− 1
2 , j), axuh,dxuh ∈ Cx×y,

ax fi, j+ 1
2

= 1

2
( f i+ 1

2 , j+ 1
2

+ f i− 1
2 , j+ 1

2
), dx fi, j+ 1

2
= 1

hx
( f i+ 1

2 , j+ 1
2

− f i− 1
2 , j+ 1

2
), ax fh,dx fh ∈ Ens

x×y .

The north-south-edge-to-center average and difference operators are defined as ay and dy :

ayvi, j = 1

2
(vi, j+ 1

2
+ vi, j− 1

2
), dyvi, j = 1

hy
(vi, j+ 1

2
− vi, j− 1

2
), ayvh,dyvh ∈ Cx×y,

ay fi+ 1
2 , j =

1

2
( f i+ 1

2 , j+ 1
2

+ f i+ 1
2 , j− 1

2
), dy fi+ 1

2 , j =
1

hy
( f i+ 1

2 , j+ 1
2

− f i+ 1
2 , j− 1

2
), ay fh,dy fh ∈ Eew

x×y .

The center-to-east-west-edge average and difference operators are defined as Ax and Dx:

Axφi+ 1
2 , j =

1

2
(φi+1, j + φi, j), Dxφi+ 1

2 , j =
1

hx
(φi+1, j − φi, j), Axφh, Dxφh ∈ Eew

x×y .

The center-to-north-south-edge average and difference operators are defined as Ay and Dy :

Ayφi, j+ 1
2

= 1

2
(φi, j+1 + φi, j), Dyφi, j+ 1

2
= 1

hy
(φi, j+1 − φi, j), Ayφh, Dyφh ∈ Ens

x×y .

Define the discrete gradient operator ∇h as

∇hφh = (Dxφh, Dyφh), ∀φh ∈ Cx×y,

and the discrete divergence operator ∇h · • as

∇h · vh = dx(uh) + dy(vh), ∀vh = (uh, vh).

The discrete Laplacian operator �h is defined as

�hφh = dx(Dxφh) + dy(Dyφh), ∀φh ∈ Cx×y .

We also introduce the averaging operator A• as

Aφh =
[
Axφh

Ayφh

]
, ∀φh ∈ Cx×y .

4.1.2. Boundary conditions
We discretize the physical variables that satisfy Neumann boundary conditions at the cell center and the ones that satisfy 

Dirichlet boundary conditions at the edge center. So, if the cell-centered function gh ∈ Cx̄× ȳ satisfies homogeneous Neumann 
boundary condition, we have

g0, j = g1, j, gNx, j = gNx+1, j, j ∈ I y,

gi,0 = gi,1, gi,Ny = gi,Ny+1, i ∈ Ix.
(4.2)

If the velocity vh satisfies the Dirichlet boundary condition n · vh|∂� = 0, we have

u 1
2 , j = uNx+ 1

2 , j = 0, j ∈ I y, vi, 12
= vi,Ny+ 1

2
= 0, i ∈ Ix. (4.3)

4.1.3. Discrete inner products and norms
Based on the above definitions, we define the following discrete 2D weighted inner-products

(φh,ψh)2 = hxhy

Nx∑
i=1

Ny∑
j=1

φi, jψi, j, [uh, rh]ew = (ax(uhrh),1)2, [vh, wh]ns = (ay(vhwh),1)2,

(∇hφh,∇hψh)h = [Dxφh, Dxψh]ew + [Dyφh, Dyψh]ns.
For φh and velocity field vh , we define the following norms:
14
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‖φh‖2 = (φh, φh)
1
2
2 , ‖uh‖ew = [uh,uh]

1
2
ew , ‖vh‖ns = [vh, vh]

1
2
ns,

‖∇hφh‖2 =
√

‖Dxφh‖2ew + ‖Dyφh‖2ns, ‖vh‖2 =
√

‖uh‖2ew + ‖vh‖2ns.
Next, we introduce one useful lemma.

Lemma 4.1. For φh, vh and n · vh|∂� = 0, we have

[Axφh,uh]ew = (φh,axuh)2, [Dxφh,uh]ew + (φh,dxuh)2 = 0,

[Ayφh, vh]ns = (φh,ay vh)2, [Dyφh, vh]ns + (φh,dyvh)2 = 0.
(4.4)

4.2. Spatial discretization

We use finite difference methods on staggered grids in a 2D rectangular domain. Since the spatial discretization of the 
semi-discrete schemes developed in the previous section is similar, we only present a few selected ones in the following.

4.2.1. Second-order fully discrete linear decoupled semi-implicit CN scheme
Applying the staggered-grid finite difference discretization in space to semi-discrete scheme (3.10), we obtain a corre-

sponding fully discrete scheme as follows.

Algorithm 4.1 (Fully discrete decoupled semi-implicit CN scheme for the incompressible CHED model). Given (φn
h, q

n
h, p

n
h, v

n
h) and 

φn−1
h , we update (φn+1

h , qn+1
h , pn+1

h , vn+1
h ) ∈ (RNx,Ny , RNx,Ny , RNx,Ny , RNx−1,Ny × RNx,Ny−1) by solving the following alge-

braic linear system

δ
ṽn+1
h − vnh

�t
= −Aγ

n+ 1
2

h ṽ
n+ 1

2
h − ∇h p

n
h − τAφ

n+ 1
2

h ∇hμ
n+ 1

2
h , (4.5a)

δ
vn+1
h − ṽn+1

h

�t
= −1

2
∇h(p

n+1
h − pnh), (4.5b)

∇h · vn+ 1
2

h = 0, (4.5c)

χ
φn+1
h − φn

h

�t
+ ∇h ·

(
Aφ

n+ 1
2

h v
n+ 1

2
h

)
= ∇h ·

(
AM

n+ 1
2

h ∇hμ
n+ 1

2
h

)
, (4.5d)

μn+1
h = g

n+ 1
2

h q
n+ 1

2
h − γ1�hφ

n+ 1
2

h , (4.5e)

qn+1
h − qnh = g

n+ 1
2

h (φn+1
h − φn

h ), (4.5f)

where γ n+ 1
2

h = γ (φ̄
n+ 1

2
h ), gn+ 1

2
h = g(φ̄

n+ 1
2

h ), along with boundary conditions

n · vn+1
h (= n · ṽn+1

h ) = 0, n · ∇hφ
n+1
h = 0, n · ∇hμ

n+1
h = 0, n · ∇h p

n+1
h = 0. (4.6)

In a pointwise notation, the scheme reads as follows.{
δ
ũn+1
h −un

h

�t
=−Axγ̄

n+ 1
2

h ũ
n+ 1

2
h −Dxp

n
h−τ Axφ̄

n+ 1
2

h Dxμ
n+ 1

2
h

}∣∣∣
i+ 1

2 , j
, (i, j) ∈ (I x̂, I y), (4.7a)

{
δ
ṽn+1
h −vnh

�t
=−Ay γ̄

n+ 1
2

h ṽ
n+ 1

2
h −Dy p

n
h−τ Ayφ̄

n+ 1
2

h D yμ
n+ 1

2
h

}∣∣∣
i, j+ 1

2

, (i, j) ∈ (Ix, I ŷ), (4.7b)

{
δ
un+1
h − ũn+1

h

�t
= −1

2
Dx(p

n+1
h − pnh)

}∣∣∣
i+ 1

2 , j
, (i, j) ∈ (I x̂, I y), (4.7c)

{
δ
vn+1
h − ṽn+1

h

�t
= −1

2
Dy(p

n+1
h − pnh)

}∣∣∣
i, j+ 1

2

, (i, j) ∈ (Ix, I ŷ), (4.7d)

{
dxu

n+ 1
2

h + dyv
n+ 1

2
h = 0

}∣∣∣
i, j

, (i, j) ∈ (Ix, I y), (4.7e){
χ

φn+1
h −φn

h

�t
+ ∇h · (Aφ

n+ 1
2

h v
n+ 1

2
h ) = ∇h · (AMn+ 1

2
h ∇hμ

n+ 1
2

h )

}∣∣∣
i, j

, (i, j) ∈ (Ix, I y), (4.7f)
15
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{
μ

n+ 1
2

h = ḡ
n+ 1

2
h q

n+ 1
2

h − γ1�hφ
n+ 1

2
h

}∣∣∣
i, j

, (i, j) ∈ (Ix, I y), (4.7g){
qn+1
h − qnh = ḡ

n+ 1
2

h (φn+1
h − φn

h )

}∣∣∣
i, j

, (i, j) ∈ (Ix, I y), (4.7h)

where n ≥ 0, un+1
h , ̃un+1

h ∈ Eew
x×y, vn+1, ̃vn+1 ∈ Ens

x×y and φn+1
h , μn+1

h , pn+ 1
2

h ∈ Cx×y satisfy boundary conditions (4.2)-(4.3). We 
define φ−1

h ≡ φ0
h .

Algorithm 4.2 (Implementation of the fully discrete decoupled semi-implicit CN scheme for the incompressible CHED model). Fully 
discrete decoupled scheme (4.7) is implemented in the following fully decoupled steps
• Step 1: Update φn+1

h via

χ
φn+1
h −φn

h

�t
+ ∇h ·

(
A(α1φ

n+ 1
2

h )(
2δ

�t
vnh−∇h p

n
h)

)
=∇h ·

(
A
(
M

n+ 1
2

h + τα1(φ
n+ 1

2
h )2

)∇hμ
n+ 1

2
h

)
, (4.8a)

μ
n+ 1

2
h = −γ1�hφ

n+ 1
2

h + g
n+ 1

2
h

(
qnh + 1

2
g
n+ 1

2
h (φn+1

h − φn
h )

)
. (4.8b)

• Step 2: Update qn+1
h via

qn+1
h = qnh + g

n+ 1
2

h (φn+1
h − φn

h ). (4.9)

• Step 3: Update ṽn+1
h via

δ
ṽn+1
h − vnh

�t
= −Aγ

n+ 1
2

h ṽ
n+ 1

2
h − ∇h p

n
h − τAφ

n+ 1
2

h ∇hμ
n+ 1

2
h . (4.10)

• Step 4: Update pn+1
h via

�h p
n+1
h = 2δ

�t
∇h · ṽn+1

h + �h p
n
h. (4.11)

• Step 5: Update vn+1
h via

vn+1
h = ṽn+1

h − �t

2δ
∇h(p

n+1
h − pnh). (4.12)

This algorithm requires ∇h · v0h = 0 to begin with. Later on, it is guaranteed that ∇h · vnh = 0, for all n > 0.

As an analogy to Th. 3.2, we have the following fully-discrete conservation law and energy dissipation law for fully 
discrete scheme (4.7).

Theorem 4.1. The solution of scheme (4.7) satisfies the fully-discrete volume conservation law

(φn+1
h ,1)2 = (φn

h ,1)2, (4.13)

and the energy dissipation law

Ên+1
h − Ênh = −�t

[
(Aγ̄

n+ 1
2

h ṽ
n+ 1

2
h , ṽ

n+ 1
2

h )2 + (τAM̄
n+ 1

2
h ∇hμ

n+ 1
2

h ,∇hμ
n+ 1

2
h )2

]
, (4.14)

where the energy is defined as Ên
h = δ

2‖vnh‖22 + (�t)2

8δ ‖∇pnh‖22 + τχ(
γ1
2 ‖∇φn

h‖22 + ‖qnh‖22
2 − A). So, the fully discrete scheme is uncondi-

tionally energy stable.

Notice that pressure pn+1
h is a gauge variable and thus is not unique. We introduce the following condition

(pn+1
h ,1)2 = 0 (4.15)

to define the unique one. Then, we have the following existence and uniqueness theorem.

Theorem 4.2. For any τ , χ, γ1, α1, M, �t > 0, linear system (4.7) with the selection criterion (pn+1, 1)2 = 0 is uniquely solvable.
h
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n
h)
Proof. Note that the number of equations in linear system (4.7) is equal to the number of unknowns, with the selection 
criterion for p. The following proofs are arranged in order of the steps in Alg 4.2. To prove the unique solvability of linear 
system (4.8), we only need to prove the following equations given in (4.16) have only a zero solution.

2χφ
n+ 1

2
h − �t∇h ·

(
A(M̄

n+ 1
2

h + τα1(φ
n+ 1

2
h )2)∇hμ

n+ 1
2

h

)
= 0, (4.16a)

− (
(ḡ

n+ 1
2

h )2 + γ1�h
)
φ

n+ 1
2

h + μ
n+ 1

2
h = 0. (4.16b)

Taking discrete inner product of the first and second equation of (4.16) with μ
n+ 1

2
h and 2χφ

n+ 1
2

h respectively and using 
boundary conditions (4.2) and Lemma 4.1, we obtain

2χ(φ
n+ 1

2
h ,μ

n+ 1
2

h )2+�t
(
‖Ax

(
M̄

n+ 1
2

h +τα1(φ
n+ 1

2
h )2

)
Dxμ

n+ 1
2

h ‖2ew+‖Ay
(
M̄

n+ 1
2

h +τα1(φ
n+ 1

2
h )2

)
Dyμ

n+ 1
2

h ‖2ns
)
=0,

− 2χ(ḡ
n+ 1

2
h )2‖φn+ 1

2
h ‖22 − 2χγ1‖∇hφ

n+ 1
2

h ‖22 + 2χ(φ
n+ 1

2
h ,μ

n+ 1
2

h )2 = 0.

Subtracting the above two equations leads to

− 2χ(ḡ
n+ 1

2
h )2‖φn+ 1

2
h ‖22 − 2χγ1‖∇hφ

n+ 1
2

h ‖22
− �t

(
‖Ax

(
M̄

n+ 1
2

h + τα1(φ
n+ 1

2
h )2

)
Dxμ

n+ 1
2

h ‖2ew + ‖Ay
(
M̄

n+ 1
2

h + τα1(φ
n+ 1

2
h )2

)
Dyμ

n+ 1
2

h ‖2ns
)

= 0,
(4.17)

which implies

φ
n+ 1

2
i, j = 0, (i, j) ∈ (Ix, I y),

Dxφ
n+ 1

2

i+ 1
2 , j

= 0, Dxμ
n+ 1

2

i+ 1
2 , j

= 0, (i, j) ∈ (I x̂, I y),

Dyφ
n+ 1

2

i, j+ 1
2

= 0, Dyμ
n+ 1

2

i, j+ 1
2

= 0, (i, j) ∈ (Ix, I ŷ).

(4.18)

Combining (4.16) and (4.18), we obtain φn+1
h = μn+1

h = 0.
Similarly, we prove that the homogeneous linear equation given in (4.11) has only a zero solution. Taking discrete inner 

product of the homogeneous linear equation with pn+1
h and using boundary conditions (4.3) and Lemmas 4.1, we have 

∇h p
n+1
h = 0 which imply pn+1

i, j = pn+1
1,1 , (i, j) ∈ (Ix, I y). Noticing selection criterion (pn+1

h , 1)2 = 0, we obtain pn+1
h = 0. From 

(4.9), (4.10) and (4.12), we get qn+1
h = 0, ṽn+1

h = 0 and vn+1
h = 0. So, the decoupled linear scheme (4.7) with selection 

criterion (pn+1
h , 1)2 = 0 is uniquely solvable. �

Remark 4.1. If we choose n · ∇(pn+1
h − pnh)|∂� = 0, corresponding to n · ∇ph,t |∂� = 0, as the boundary condition for pressure 

p instead of n · ∇pn+1
h |∂� = 0 in semi-discrete scheme (3.10), the corresponding fully-discrete scheme can be shown to be 

uniquely solvable with selection criterion p0
1,1 = 0.

5. Incompressible CHED model with gravity

When gravity is included in the incompressible CHED model as a buoyancy term, the CHED model with gravity is no 
longer dissipative as we alluded to earlier. We extend the previously developed linear decoupled schemes to this non-
dissipative system emphasizing the preservation of the energy-dissipation-rate regardless of its definiteness.

Next, we present fully discrete numerical schemes for the incompressible CHED model with gravity succinctly. Since 
the main difference between the CHED system (2.24) and the CHED system with gravity (2.33) is that a buoyancy term is 
introduced in the momentum equation of (2.33), in the following numerical schemes, we only present the fully discrete 
scheme for the momentum equation and the fully discrete scheme for the other equations are omitted for simplicity.

5.1. Second-order fully discrete linear decoupled semi-implicit CN scheme

The unconditionally energy stable, fully discrete semi-implicit CN scheme reads as follows.

Algorithm 5.1 (Fully discrete decoupled semi-implicit CN scheme for the incompressible CHED model with gravity). Given (φn
h , q

n
h, p

n
h, v

and φn−1, we update (φn+1, qn+1, pn+1, vn+1) via the following scheme
h h h h h
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δ
ũn+1
h − un

h

�t
=−Axγ̄

n+ 1
2

h ũ
n+ 1

2
h − Dxp

n
h−τ Axφ̄

n+ 1
2

h Dxμ
n+ 1

2
h , (5.1a)

δ
ṽn+1
h − vnh

�t
=−Ayγ̄

n+ 1
2

h ṽ
n+ 1

2
h − Dyp

n
h−τ Ayφ̄

n+ 1
2

h D yμ
n+ 1

2
h − λAy(φ̄

n+ 1
2

h − φ̂h), (5.1b)

where n ≥ 0, together with (4.7c)-(4.7h). The spatial indices and boundary conditions of (5.1) are identical to those of (4.7).

Remark 5.1. As we alluded to earlier, the momentum balance equation can not be extended to the boundary while remaining 
consistent with the prescribed boundary condition. That means (5.1b) can only be used in the grid points inside the domain 
and not on the boundary. So we have to devise additional spatial operators to meet this demand. We then develop the 
center-to-north-south-edge average operator Ay at the boundary such that

Ay(φ̄
n+ 1

2 − φ̂)i, j+ 1
2

= 1

2

(
(φ̄

n+ 1
2 − φ̂)i, j+ 1

2
+ (φ̄

n+ 1
2 − φ̂)i+1, j+ 1

2

)
, (i, j) ∈ (Ix, I ŷ),

Ay(φ̄
n+ 1

2 − φ̂)i, 12
= Ay(φ̄

n+ 1
2 − φ̂)i,Ny+ 1

2
= 0, i ∈ Ix.

(5.2)

In the scheme for the incompressible CHED model with gravity, we must replace (5.1b) at the boundary by (5.2) to avoid 
violating volume conservation.

Although the model with gravity may no longer be energy dissipative, Alg 5.1 preserves the energy-dissipation-rate 
regardless it is positive or negative.

Theorem 5.1. The solution of scheme (5.1) satisfies the fully-discrete energy dissipation law

Ên+1
h − Ênh=−�t

[
(Aγ̄

n+ 1
2

h ṽ
n+ 1

2
h , ṽ

n+ 1
2

h )2+(τAM̄
n+ 1

2
h ∇hμ

n+ 1
2

h ,∇hμ
n+ 1

2
h )2+(λA(φ̄

n+ 1
2

h − φ̂h)ṽ
n+ 1

2
h , ĝh)2

]
, (5.3)

where the energy is defined by Ên
h = δ

2‖vnh‖22 + (�t)2

8δ ‖∇h p
n
h‖22 + τχ

( γ1
2 ‖∇hφ

n
h‖22 + ‖qnh‖22

2 − A
)
. So, the fully discrete scheme preserves 

the energy-dissipation-rate although the system may no longer be dissipative.

5.2. Second-order fully discrete linear decoupled BDF2 scheme

The unconditionally energy stable, fully discrete BDF2 scheme is given by the following algorithm.

Algorithm 5.2 (Fully discrete decoupled BDF2 scheme for the incompressible CHED model with gravity). Given (φn
h , q

n
h, p

n
h, v

n
h) and 

(φn−1
h , qn−1

h , pn−1
h , vn−1

h ), we update (φn+1
h , qn+1

h , pn+1
h , vn+1

h ) via the following scheme

δ
3ũn+1

h − 4un
h + un−1

h

2�t
=−Axγ̄

n+1

h ũ
n+1

h − Dxp
n
h−τ Axφ̄

n+1
h Dxμ

n+1
h , (5.4a)

δ
3ṽn+1

h − 4vnh + vn−1
h

2�t
=−Ayγ̄

n+1

h ṽ
n+1

h − Dyp
n
h−τ Ayφ̄

n+1
h D yμ

n+1
h − λAy(φ̄

n+1

h − φ̂h), (5.4b)

where n ≥ 0, together with (4.7c)-(4.7h). The spatial indices and boundary conditions of (5.4) are identical to those of (4.7).

The boundary treatment for the velocity vector in this scheme is given by (5.2) as well. For this algorithm, we show in 
the following theorem that it preserves the energy-dissipation-rate.

Theorem 5.2. The solution of scheme (5.4) satisfies the fully-discrete energy dissipation law

Ên+1
h − Ênh=−�t

[
(Aγ̄ n+1

h ṽn+1
h , ṽn+1

h )2+(τAM̄
n+1

h ∇hμ
n+1
h ,∇hμ

n+1
h )2+ τχγ1

4�t
‖∇hφ

n+1
h −2∇hφ

n
h+∇hφ

n−1
h ‖22+

(λA(φ̄n+1
h − φ̂h)ṽ

n+1
h , ĝh)2+ δ

4�t
(‖vn+1

h −2vnh+vn−1
h ‖22+3‖vn+1

h −ṽn+1
h ‖22)+

τχ

4�t
‖qn+1

h −2qnh+qn−1
h ‖22

]
.

(5.5)

where the energy is defined by Ên+1
h = δ

4 (‖vn+1
h ‖22 + ‖2vn+1

h − vnh‖22) + (�t)2

3δ ‖∇h p
n+1
h ‖22 + τχ

( γ1
4 (‖∇hφ

n+1
h ‖22 + ‖2∇hφ

n+1
h −

∇hφ
n‖2) + 1 (‖qn+1‖2 + ‖2qn+1 − qn‖2) − A

)
. So, the BDF2 scheme respects the energy-dissipation-rate at the discrete level.
h 2 4 h 2 h h 2
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6. Numerical results and discussion

In this section, we implement the proposed schemes and test their temporal-spatial convergence rates numerically. Then, 
we conduct numerical simulations on some benchmark examples using decoupled linear schemes. Finally, we consider a 
plug flow in the tube with inflow-outflow boundary conditions. In the numerical examples, Neumann boundary conditions 
are used except for the plug flow problem. In addition, we adopt f (φ) = 1

4 (φ2 −1)2 and ε = √
γ1 in all numerical examples.

6.1. Mesh refinement test

We first test convergence rates of decoupled schemes (3.26), (4.7) for the CHED model and (5.1), (5.4) for the CHED 
model with gravity. In all numerical experiments in this section, we fix computational domain � = [0, 1] × [0, 1] and use 
the following initial conditions

v(x, y, t = 0) =
(
sin(πx) cos(π y),− sin(π y) cos(πx)

)
,

φ(x, y, t = 0) = cos(πx) cos(π y),

p(x, y, t = 0) = cos(πx) cos(π y),

(6.1)

and parameter values M = 10−4, γ = 10, δ = 0.1.
Here, we conduct time-step refinement tests for the four schemes by choosing χ = 0.5, τ = 1, γ1 = 25 × 10−4, T =

2 × 10−2 and the number of grids in space M = N = 128. We successively decrease time step size k (k = 5×10−4

2n−1 for the 
BDF2 scheme, n = 0, 1, 2, .., 5). The error in time is calculated as the difference between the solution of the coarse time step 
and that of the adjacent finer time step. For spatial errors, we choose χ = 0.8, τ = 1, γ1 = 10−4, T = 1 ×10−2 and time step 
k = 2 × 10−4 to prevent the error due to time discretization from contaminating the numerical results while successively 
decreasing the number of grids in space (M = N = 256

2n−1 , n = 0, 1, 2, ...5).
For linearly decoupled BDF2 scheme (3.26) and linear semi-implicit CN scheme (4.7), the results are summarized in 

Fig. 6.1, where we observe second-order convergence in both time and space. For linearly decoupled semi-implicit CN 
scheme (5.1) and BDF2 scheme (5.4), we repeat the mesh refinement test, assuming the initial profiles are the same as (6.1)
and λ = 1. The results confirm second-order convergence as well, which are not shown for brevity.

6.2. Coarsening dynamics

Another benchmark example is coarsening dynamics of the CHED model in 2D. The simulation is carried out in do-
main � = [0, 1] × [0, 1] with parameter values χ = 0.8, τ = 1, γ1 = 10−4, δ = 0.1, M = 10−2 and γ = 100. We conduct the 
simulation of coarsening dynamics in 2D with the initial condition given by

φ(x, y, t = 0) = rand(x, y),

where rand(x, y) generates random numbers in [−1, 1] that follows a uniformly distribution. We define the roughness as 
R(t) =

√
1

|�|
∫
�
(φ(x, t) − φ̂)2dx, which is the standard deviation of the phase variable from the mean value. Here φ̂ is the 

average of φ in space. The discrete roughness is calculated as R (tn) =
√

hxhy
|�|

∑Nx−1
j=0

∑Ny−1
k=0

(
φn

j,k − φ̂n
)2

.

It is known that coarsening dynamics of the Cahn-Hilliard model follows a power law, where the energy decreases 
as O (t−1/4) and the roughness increases as O (t1/4) [15]. For the incompressible CHED model, we confirm that the same 
power-law behavior persists in the energy-dissipation-rate as O (t−1/4) and roughness as O (t1/4). Fig. 6.2 depicts coarsening 
of phase behavior and the scaling laws, which agrees well with the results from the simulation using phase field models 
with variable mobilities without Darcy’s hydrodynamics.

6.3. Interfacial dynamics

In this numerical example, we consider a situation where a lighter fluid layer is sandwiched by two heavier fluids. Due to 
the effect of buoyancy, the lighter fluid rises, and the heavier fluid layer on top eventually penetrates the lighter fluid layer 
below, causing the fluid interface to rupture. Numerical experiments on this example using several methods were reported 
in [26–28]. Here we use this as a benchmark example for our new algorithm.

We use square domain � = [0, 2π ] × [0, 2π ] and parameter values χ = 0.5, τ = 1, γ1 = 25 × 10−4, δ = 10−2, M = 1.5
and γ = 1.5. In addition, we choose the background density as unity and the initial profiles as follows
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Fig. 6.1. Accuracy test of decoupled linear BDF2 scheme (3.26) and semi-implicit CN scheme (4.7) for the CHED model. Log − Log plot of the error in L2
norm for φ, u and v as functions of time step k = �t and space step h. The dotted line is the reference line with a slope of 2 and the other three lines 
correspond to error in φ, u and v , respectively. (a), (c) confirm the second-order convergence in time while (b), (d) in space.

v(x, y, t = 0) = (0,0),

p(x, y, t = 0) = 0,

φ(x, y, t = 0) = tanh

(
y − y1(x)√

2ε

)
tanh

(
y − y2(x)√

2ε

)
,

y1 = π − (0.5 + 0.1cos(x)), y2 = π + (0.5+ 0.1cos(x)).

(6.2)

Time evolution of φ in the CHED model with gravity is shown in Fig. 6.3. The left, the middle and the right column 
corresponds to λ = 0.3, 0.5 and 1.2, respectively. Keeping all other parameter values the same in all three simulations, we 
observe that the larger λ is, the quicker dynamics takes place leading to more drops. When λ = 0.3, only one droplet forms 
after the rupture, while there are two satellite drops at λ = 0.5 and three at λ = 1.2. Comparing the first row of these three 
columns, we notice that a larger λ accelerates the evolutional process due to the effect of buoyancy: −λ(φ − φ̂)ĝ.

Our simulation results agree very well with those reported in [26], which were obtained using a combination of the 
convex-splitting and pressure-correction method. These numerical results indicate that the decoupled linearly semi-implicit 
CN scheme (5.1) works well. We also conduct the same simulation using BDF2 scheme (5.4), whose numerical results are 
indistinguishable from those in Fig. 6.3, indicating second-order, linearly decoupled BDF2 scheme (5.4) works well too.

Fig. 6.4 depicts three snapshots of the velocity field at t = 2.05, 2.85 and 3.55, respectively, at λ = 1.2. It shows that the 
fluid flow above the upper interface before the rupture is more unstable than that at the lower interface and the formation 
of two symmetric roll cells which drag the lighter fluid in the middle section of the fluid bridge towards the side, leading to 
the eventual rupture of the lighter fluid bridge. The two roll cells persist after the rupture pushing the two contracted fluid 
blobs upward along the side walls. In the meantime, the ruptured piece of the lighter fluid bridge breaks up into satellite 
droplets at a later time. The fluid near the bottom boundary is barely disturbed by the dynamics taking place in the middle 
of the domain.
20



Fig. 6.2. Coarsening dynamics of the CHED model simulated using fully discrete semi-implicit CN scheme (4.7). (a) Simulations of separation of two phases 
where spatial average concentration φ̂ = 0, the Log − log plot of energy shows the proper power-law behavior in the decaying energy as O (t−1/4). (b) 
Simulations of separation of two phases where spatial average concentration φ̂ = 0.2, the Log − log plot of roughness shows proper power-law behavior in 
the roughness as O (t1/4).

6.4. Dynamics in a plug flow

Finally, we consider a plug flow in a tube in a 2D domain with inflow-outflow boundary conditions. We set a rectangular 
section denoted by � = [0, Lx] × [0, L y] as the computational domain, and denote the top boundary by �u = [0, Lx] × L y , 
the bottom one by �b = [0, Lx] × 0 and the lateral one by �l . Fig. 6.5 is an illustration of the three types of boundaries in 
a plug flow geometry. We assume the flow before reaching the top boundary is a steady state flow driven by a constant 
pressure gradient given by

v = − 1

γ
[∇p + τφ∇μ + λ(φ − φ̂)ĝ], (6.3)

where p = p0 y + c0 and p0, c0 are constants. We assume the profile of the flow field is steady so that there is no mixing 
going on except for the transport by velocity v. The boundary conditions at the top boundary �u , are given as follows

n · v = v y0, n · ∇pt = 0, n · (M∇μ) = 0, φt = −G1n · ∇φ, at �u, (6.4)

where v y0 = − 1
γ n · [∇p0 + λ(φ0 − φ̂)ĝ] is a constant speed in the y direction.

When the flow reaches the bottom boundary, we once again assume it’s well-developed so that mixing has ceased to 
exist. We assume the surface energy due to the velocity field dissipates at the lower boundary. The boundary conditions at 
the bottom boundary �b are given by

n · v = α(p + φμ), n · ∇pt = 0, n · (M∇μ) = 0, φt = −G1n · ∇φ, at �b, (6.5)

where α ≥ 0.
Y. Li, W. Yu, J. Zhao et al. Journal of Computational Physics 444 (2021) 110561
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Fig. 6.3. Time evolution of the fluid phases in the CHED model under the influence of the buoyancy effect. The profiles of φ calculated using decoupled 
semi-implicit CN scheme (5.1) are depicted, where φ = 1 is indicated by red and φ = −1 by blue. Left-most column, λ = 0.3; Center column, λ = 0.5; 
Right-most column, λ = 1.2. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 6.4. Snapshots of the velocity field at selected time when λ = 1.2 (corresponding to the right-most column in Fig. 6.3). The velocity field v is shown at 
t = 2.05, 2.85 and 3.55, respectively. Zero contour (interface) of φ is depicted by the solid curve. The largest speed is about 0.5.

Fig. 6.5. An illustration of boundary �u,�b and �l . Also, a steady state fluid flowing from the upper boundary is depicted.

At the lateral solid wall boundary, the flux to the wall, the normal velocity, and n · ∇φ all vanish and the continuity 
equation implies n · ∇pt = 0. So, the boundary conditions at the lateral boundary �l are adiabatic ones given by

n · v = 0, n · ∇pt = 0, n · (M∇μ) = 0, n · ∇φ = 0, at �l. (6.6)

Since ∇ · v − η∇2pt = 0 in the flow field, we integrate the continuity equation over � to obtain

∫
�u

n · vds +
∫
�b

n · vds = 0. (6.7)

The time rate of change of the free energy in (2.38) is given by

dÊ
dt = −∫

�

[
γ |v|2 + η

2 |∇p|2t + τM|∇μ|2 + λ(φ − φ̂)v · g]dx− ∫
�b

[
χγ1G1(n · ∇φ)2 + α(p + φμ)2

]
ds

− ∫
�u

[
χγ1G1(n · ∇φ)2 + 1

γ (p + φμ)[p0 + n · φM∇μ + λ(φ − φ̂)n · g]]ds. (6.8)

Eq. (6.7) serves as a selection criterion to select reference pressure c0. In the numerical simulations presented next, we let 
G1 → ∞ so that the corresponding boundary condition is actually n · ∇φ = 0.

In the following two examples, we consider the dynamics of plug flow in a square domain � = [0, 2π ] × [0, 2π ] and 
choose the background density as unity and initial conditions as follows
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Fig. 6.6. Time evolution of binary fluid phases in the CHED model with gravity subject in plug flows with a zero pressure gradient inflow boundary 
condition. Profiles of φ obtained using decoupled semi-implicit CN scheme (5.1) are depicted, where φ = 1 is indicated by red and φ = −1 by blue.

v(x, y, t = 0) = (0,− 1

γ
[p0 + λ(φ0 − φ̂)]),

p0 = p(x, y, t = 0) = p0 y + c0,

φ0 = φ(x, y, t = 0) = tanh

(
y − y1(x)√

2ε

)
tanh

(
y − y2(x)√

2ε

)
,

y1 = π − (0.5 + 0.1cos(x)), y2 = π + (0.5+ 0.1cos(x)),

(6.9)

and boundary conditions

n · v = − 1

γ
n · [∇p0 + λ(φ0 − φ̂)ĝ], at �u, n · v = α(p + φμ), at �b, n · v = 0, at �l, (6.10a)

n · ∇pt = 0,n · (M∇μ) = 0,n · ∇φ = 0, at �u,�b and �l. (6.10b)

In order to compare with the numerical results in the previous Sec. 6.3, we take the same parameter values. In addition, we 
also set α = 10−5.

6.4.1. Dynamics in a plug flow with a zero pressure gradient
In the first example, we consider the case with a zero pressure gradient p0 = 0 and use (6.7) as the selection criterion 

for solving p uniquely. In addition, we also use it to set the initial pressure profile. Time evolution of φ in the CHED model 
with gravity is shown in Fig. 6.6. We observe that Fig. 6.6 presents a slightly different drop dynamics from that in Fig. 6.3 in 
terms of the number of satellite droplets formed after further breakup. With other conditions kept the same, three drops are 
formed in Fig. 6.3 while four in Fig. 6.6 owing to the plug flow inflow boundary condition. Three corresponding snapshots 
of the velocity field are depicted in Fig. 6.7, where the mechanism of bridge rupture and satellite droplet formation remains 
the same, except that the droplet location is pushed closer to the bottom boundary when the inflow boundary condition is 
imposed.

6.4.2. Dynamics in a plug flow with a non-zero pressure gradient
In the second example, we consider dynamics of plug flows with a pressure gradient p0 = 0.2 and use the initial and 

boundary conditions given in (6.9)-(6.10). Once again, we use (6.7) as the selection criterion for solving p. In addition, we 
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Fig. 6.7. Snapshots of the velocity field at selected time corresponding to the evolution in Fig. 6.6. Velocity field v is shown at t = 2.58, 3.03 and 3.55, 
respectively. Zero contour of φ is depicted by the solid curve. The largest magnitude of velocity field is about 0.8.

Fig. 6.8. Time evolution of the flow in the CHED model with gravity in a plug flow with a non-zero inflow pressure gradient. The profiles of φ obtained 
using decoupled semi-implicit CN scheme (5.1) are depicted, where φ = 1 is indicated by red and φ = −1 by blue.

also use it to set c0 for the initial pressure profile. Time evolution of φ in the CHED model with gravity is shown in Fig. 6.8. 
The drops formed are prone to be flushed out of the computational domain now. The corresponding snapshots of the 
velocity field are depicted in Fig. 6.9. The velocity field at the bottom boundary clearly shows outflow behavior. However, 
the velocity field in the ruptured lighter fluid blobs exhibits a circular flow field (roll cell) that pushes the blobs slowly 
upward.

Remark 6.1. In the decoupled linear schemes, the equation of φ has an enhanced, effective convective term proportional to 
λ. At large λ, this term may lead to oscillations if no additional oscillation diminishing mechanisms are implemented in the 
numerical scheme. Of course, the oscillations can be avoided to some extent by reducing the time step size. Compared with 
the CN scheme, the BDF2 scheme allows larger time steps while avoiding oscillations. This is because the BDF2 scheme 
introduces some additional dissipation in time. In Fig. 6.10, small scale oscillations in the result obtained using the CN 
scheme are visible, while there are no oscillations in the result obtained using the BDF2 scheme. We note that the value of 
λ should not be large physically since this model is derived from a Boussinesq approximation, which is only valid for small 
density variations.
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Fig. 6.9. Snapshots of the velocity field at selected time corresponding to the evolution in Fig. 6.8. The velocity field v is shown at t = 2.90, 3.05 and 3.15, 
respectively. Zero contour of φ is depicted by the solid curve. The largest speed in the velocity field is about 1.1.

Fig. 6.10. Energy evolution of the solution obtained from semi-implicit CN scheme (5.1) and BDF2 scheme (5.4), respectively, for the CHED model with 
gravity. (a) The energy oscillation is most prominent at the beginning of the computation in the solution obtained using the CN scheme. (b) There is no 
energy oscillation in the solution obtained using the BDF2 scheme. The initial profiles are the same as (6.2) with χ = 0.5, τ = 1, γ1 = 2.5 × 10−3, δ =
0.01, M = 0.05, γ = 1.5, λ = 20, and �t = 10−5.

7. Concluding remarks

We have formulated a model guided approach to developing thermodynamically consistent boundary conditions and 
numerical algorithms for an incompressible Cahn-Hilliard-Extended-Darcy (CHED) system. Using the energy quadratization 
(EQ) strategy, we have developed a series of linear, second-order, unconditional energy stable schemes for the model equa-
tion system. In particular, we are able to devise fully decoupled, linear, and energy-dissipation-rate preserving schemes 
guided by a thermodynamically consistent, weakly compressible CHED model. The combination of the EQ strategy and the 
weakly compressible reformulation of the CHED model serves as a powerful platform for designing fully decoupled numer-
ical approximations to the incompressible CHED model. Guided by the thermodynamically consistent weakly compressible 
model, we have devised a series of thermodynamically consistent, decoupled, linear, numerical algorithms that respect the 
energy-dissipation-rate of the system and volume of each fluid phase. To arrive at fully discrete energy stable schemes, 
we employ the finite difference method on staggered grids in space. We then prove systems of linear equations resulting 
from the linear schemes are uniquely solvable by exploiting the system’s energy dissipation property. Mesh refinement tests 
are carried out to confirm convergence rates of the schemes. After that, we present several numerical examples for fluid 
flow motion with and without the influence of gravity to showcase the accuracy, energy stability and volume preservation 
property of the schemes. In particular, we propose a set of new inflow-outflow boundary conditions for plug flows based 
on an energy dissipation argument at the inflow and outflow boundary. Compared with previous decoupled approaches, 
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this theory-guided approach has a great potential for developing faithful, structure-preserving numerical approximations to 
other thermodynamically consistent hydrodynamical models.
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