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ocean, whereas the resulting anoxic condi-
tions at the seafloor promoted the recycling 
of phosphate, an important nutrient. Such 
reinforcing feedback loops kept primary 
production at an increased level for a long 
time, before the increased burial of organic 
matter into the sediments was able to bal-
ance and, eventually, decrease excess atmo-
spheric CO

2
. 

The black shales—dark, organic-rich 
shale deposits—that first drew attention to 
the OAEs and their abundant fish fossils 
(5) have now given up yet another of their 
long-kept secrets. As confirmed by Slater 
et al., black shales have a low carbonate 
content and thus render very low numbers 
of fossil coccoliths, which are the calcite 
scales of coccolithophores. However, the 
authors prepared their rock samples with 
another purpose in mind—namely, to in-
vestigate different types of organic mat-
ter, including pollen and organic-walled 
plankton, which requires dissolving rocks 
in acids. Because calcite readily dissolves, 
researchers usually stay clear from acids 
when studying coccoliths, which are quan-
tified from untreated rocks. Herein lies a 
beautiful example of scientific serendipity: 
Instead of the coccoliths themselves, the 
exquisitely illustrated results reveal their 
micrometer-scale imprints pressed into 
the surfaces of organic matter. 

It is no surprise that because of the de-
structiveness of this method, this mode 
of coccolith preservation has been largely 
hidden from researchers. Slater et al. have 
shown this to be a common feature in 
Mesozoic black shales, including carbon-
ate-free samples, from widely separated 
locations and across OAEs of different 
ages. Most of the coccoliths that arrived 
at the seafloor were thus dissolved after 
they were buried within organic-rich sedi-
ments, which served as a mold for their re-
maining imprints. The findings of Slater et 
al. contradict the assumptions that lower 
numbers of coccolith fossils across OAEs 
reflect a primary signal of decreased coc-
colithophore calcite export production and 
what some have called “abundance crises” 
in the photic zone (2). The fossil imprints 
confirm undoubtedly that surface water 
conditions did not impair intracellular 
calcification by coccolithophores during 
OAEs, at least not during their blooms. 

The resilience of coccolithophores and 
other algae may be related to the peri-
odicity of these short-lived blooms. Most 
microalgae have evolved successful ways 
to survive suboptimal or extreme condi-
tions, usually by producing resting stages 
or switching between life phases with dis-
tinct ecophysiological traits. Still, global 
algal biomass may have shifted from coc-

colithophore-dominated, and therefore 
chalk-forming, producers to other noncal-
cifying producers. For example, nitrogen-
fixing cyanobacteria and green algae also 
contributed to primary production during 
OAEs (2, 3), but the actual proportions are 
difficult to quantify, given the selective 
preservation biases of fossil groups and 
between different sediment types.

The precise mechanisms and timing for 
the postburial coccolith disappearance act 
will need further exploration. For instance, 
the much younger organic-rich sediments 
called sapropels in the Mediterranean 
typically contain abundant coccoliths (6, 7) 
and may provide some clues. If treated to 
an acid bath, such sediments may or may 
not reveal similar imprints and be a test 
for the idea that a certain degree of over-
burden pressure and lithification was re-
quired for their formation.

Even with its inherent preservation bi-
ases and “noise-canceling” properties, the 
sedimentary record is still the only way 
to gauge the long-term consequences of 
climate change on marine ecosystems. 
Organisms higher up the food web, such 
as the nekton and benthos, saw their habi-
tats substantially diminished during OAEs 
(2, 3) and sapropel formation (6) for thou-
sands of years, which may be related to 
phytoplankton biomass resilience and sta-
bility (8). The Baltic Sea, a modern analog 
for marine anoxia, is experiencing severe 
eutrophication (9), creating conditions 
that support large cyanobacteria blooms in 
the surface waters but suffocating marine 
life below. In reality, the web of feedback 
loops around primary production is much 
more complex, but a key point is that the 
reinforcing and balancing feedbacks op-
erate on very different time scales, which 
determines the outcomes. Even though 
phytoplankton prove resilient to climate 
extremes, a full recovery after marine eco-
system disturbance may be a long wait. j
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T cell immune 
responses 
deciphered
A machine-learning 
approach reveals antigen 
encoding that predicts 
T cell responses

By Armita Nourmohammad 1,2,3 

A
n immune response involves a co-
ordinated orchestra of antigen-
recognizing cells (e.g., T cells) and 
signaling molecules to mount a 
specific response against a patho-
gen. Although systems immunology 

offers a growing list of molecular interac-
tions that are involved in antigen-specific 
immune responses, an understanding of 
how a response is mediated by different 
antigen characteristics is still lacking. On 
page 880 of this issue, Achar et al. (1) ad-
dress this question by using a robotic plat-
form to survey a broad range of functional 
T cell responses to different antigen stimu-
lations. Using machine learning, they con-
struct a simplified map that separates six 
different stereotypical classes of antigen-de-
pendent immune responses. Understanding 
this antigen-encoding could help guide im-
munotherapy, including engineering chi-
meric antigen receptor (CAR)–T cells and 
identifying vaccine antigens. 

Discriminating between an organism’s 
self-molecules and foreign (nonself ) an-
tigens is the hallmark of adaptive immu-
nity. To achieve such specificity, the cur-
rent model of T cell development in the 
thymus proposes that cells with very high 
reactivity to self-molecules (strong ago-
nists) should be negatively selected, those 
with no reactivity (nonagonists) should 
die from neglect, and those with moderate 
reactivity (weak agonists) should be posi-
tively selected and enter peripheral tissues 
(2). This classification has led to the con-
cept of antigen quality as a predictor for 
the efficacy of adaptive immune responses. 

Antigen-specific immune responses are 
highly sensitive to even a small amount 
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of foreign antigens. To achieve 
such a degree of sensitivity 
and specificity, T cells sense 
the level of immune activity in 
their environments (quorum 
sensing) through interactions 
with signaling molecules and 
use this collective information 
to gauge the severity of a threat 
associated with an antigen 
(3). As a result, a mechanistic 
model of antigen-specific im-
mune responses could involve 
a large number of cellular and 
molecular interactions with 
feedback, which are at least 
partially unknown. 

However, complexity at 
the interaction level does not 
necessarily imply a lack of 
simplicity at a higher (coarse-
grained) level. Indeed, simplic-
ity is an emergent property of 
many biological systems with 
strongly interacting parts. This 
is reflected in the predictabil-
ity of coarse-grained molecu-
lar characteristics  in rapidly 
evolving populations (4, 5) or 
reproducibility in the structure 
of complex ecological commu-
nities (6). Achar et al. took a 
similar point of view to gener-
ate a predictive coarse-grained 
model of antigen-specific im-
mune responses to pathogens. Their top-
down approach is data-driven and enabled 
by the robotic platform with which they 
trace many immune response profiles (i.e., 
dynamics of different cytokine signaling 
molecules) in mouse and human T cell 
cultures upon exposures to different an-
tigens (see the figure). The key to gener-
ating such a model is to find an effective 
representation of an immune response. 
A powerful technique in machine learn-
ing is to produce reduced (latent) repre-
sentations from models trained on large 
amounts of data and relate these high-level 
representations to identifiable features 
(7). For example, in deep-learning models 
of facial recognition, latent representa-
tions correspond to the eyes and nose in 
an image. 

Achar et al. found a latent representa-
tion that separates immune response pro-
files based on the quality of the presented 
antigens, independent of their quantity. 
This observation implies that equilibrium 
binding association and dissociation of a 
T cell receptor (TCR) and an antigen can-
not be a good proxy for antigenicity—in 
equilibrium, a high binding probability of a 
TCR to an antigen can be achieved even for 

low-affinity antigens if they are available 
at large quantities. Indeed, antigen recog-
nition by T cells goes beyond equilibrium 
binding and involves kinetic proofreading 
mechanisms, whereby two or more antigen 
recognition events are combined to assure 
the fidelity of a response (i.e., the interac-
tions are kinetically proofread) (8–10). This 
mechanism is particularly crucial because 
self-antigens are present at much higher 
concentrations than nonself antigens, and  
their dissociation time from TCRs is only 
a few seconds shorter than that of nonself 
antigens (i.e., they have comparable bind-
ing constants).  

The structure of the inferred latent rep-
resentation reflects the amount of informa-
tion encoded by biologically plausible im-
mune profiles. Achar et al. found that the 
inferred latent representation can associ-
ate immune response profiles to six differ-
ent classes of antigens, which goes beyond 
the three conventional antigen classes of 
strong agonists, weak agonists, and nona-
gonists. It remains to be seen how these 
six classes are related to the biologically 
meaningful molecular features of antigens. 

Learning a latent representation from 
high-dimensional data can also be used to 

identify relevant parameters 
for a system, allowing predict-
ability (11). The artificial intel-
ligence (AI)–guided approach 
used by Achar et al. has likely 
identified the appropriate repre-
sentation in which the profile of 
an immune response can be pre-
dicted by a simple model with 
few parameters. The remaining 
step is to find a biological inter-
pretation for these parameters, 
which would enable experimen-
tal manipulation of the system,  
whereby a molecular environ-
ment (e.g., availability of differ-
ent cytokines) could be designed 
to elicit a desired immune re-
sponse from a given antigen. 

The importance of AI-guided 
design of immune and an-
tigen environments for bio-
medical interventions cannot 
be overstated. A controlled 
manipulation of an immune 
environment could enhance 
the success of an anticancer 
CAR-T cell immunotherapy by 
enabling a neoantigen derived 
from a patient’s tumor to elicit 
a desired immune response. 
The model can also inform 
antigen design protocols for 
immunotherapies and vaccine 
development. In addition, such 

a top-down data-driven approach to mod-
eling the immune system provides a frame-
work for constructing tractable theories for 
complex biological puzzles, from cracking 
the code of cell-fate differentiation during 
development to community assembly and 
resource allocation in ecological settings. j
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Antigen quality predicts T cell response
T cells can detect small amounts of pathogen-derived antigens and respond by 
proliferating and secreting different signaling molecules. A neural network trained 
on the complex profiles of signaling molecules over time reveals a simplified 
map that separates immune responses into six different classes, dependent on 
the quality of the presented antigens. 
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