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Abstract— The performance of a smart manufacturing system 

is affected by not only the constituent processes but also their 

system-level interactions. However, in most current studies, 

individual process modeling and system-level performance 

evaluation are independent. This can substantially impact 

production efficiency. In this paper, utilizing available sensor 

data, an integrated data-enabled model is developed to 

seamlessly fuse two conventionally separated system-level and 

process-level models and analysis. A fast recursive method is 

developed to evaluate the system yield. The permanent 

production loss (PPL) concept is defined and evaluated based on 

the proposed integrated model. Furthermore, PPL attributions 

due to random downtime and quality issues have been identified. 

Case studies have shown that the integrated model is of high 

fidelity, and the PPL analysis can effectively identify the root 

cause of production yield loss. 

 
Index Terms—Intelligent and Flexible Manufacturing; 

Discrete Event Dynamic Automation Systems; Manufacturing, 

Maintenance and Supply Chains. 

 

I. INTRODUCTION 

Current manufacturing systems are increasingly complex, 
dynamic, and connected. The performance of a multi-stage 
manufacturing system is affected by individual process 
parameters (process-level) and interconnections among 
processes (system-level) [1] - [3]. To improve the throughput 
and product quality, substantial efforts have been devoted to 
process-level modeling (e.g., milling [4] and grinding [5], [6]) 
and system-level analysis and optimization [1], [7] - [9].  

However, there has been a lack of a holistic model to 

integrate the two crucial aspects. The salient gap between the 

system-level and process-level analysis substantially impacts 

production efficiency. Take the crankshaft production line as 

an example. Each of the individual processes, e.g., grinding, 

achieves the highest quality and productivity by optimizing 

grinding operation parameters and related input variables 

(e.g., tool selection and condition). However, without 

considering the overall system, such local process 

optimization might lead to an “overproduction” and overflow 

the downstream buffer. As a result, this effort not only does 

not contribute to improving the system throughput but also 

makes the parts stay in the buffer for a longer time, causing 

potential quality problems due to environmental conditions. 

From a system’s point of view, speeding up individual 

processes may lead to the compounding effect of improving 

the overall production throughput. However, such 

requirements might not be feasible without knowing specific 

process constraints (e.g., tool life and part quality). This 

example illustrates the close-coupled interrelationship 

between process and system; namely, process-level 

performance directly impacts system-level performance and 

vice versa.  
However, effective integration of processes and system is 

highly challenging. The conventional process-level 

performance is typically predicted by multi-physics analysis 

(e.g., heat transfer, mechanical deformation, etc.) using 

model-based simulation and/or experiments [10], [11]. In 

comparison, system-level performance evaluation is mainly 

concerned with the time-stamped material flow (e.g., 

throughput), and the current methods mostly focus on long-

term steady-state performance based on simplified 

mathematical models (e.g., Markov chains) [12] – [15], or 

real-time performance analysis based on sensor data [8], [16]. 

Thus, the models and functions involved with the two levels, 

i.e., process and system, are vastly different.  

With the increasingly available data at both the process and 

system levels, data-enabled approaches offer an 

unprecedented opportunity to tackle the integrated modeling 

problem. This paper aims to build an integrated data-enabled 

mathematical model that integrates process-level and system-

level analysis to enable real-time production line analysis. 

To this end, the contribution of this paper is threefold:1) 

Leveraging the sensor data, develop a novel process-system 

integrated data-enabled math model to incorporate process-

level and system-level dynamics seamlessly, and a fast 

recursive algorithm to quickly evaluate both quality and 

quantity performance; 2) Develop a data-enabled analytical 

method to identify the real-time permanent production loss 

(PPL) efficiently; 3) Develop a PPL attribution method to 

identify the root cause and the problematic machines that are 

most responsible for production loss in a real-time fashion. 

The remainder of the paper is organized as follows. Section 

II describes the production system to be analyzed. In Section 
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III, an integrated mathematical model is developed. A PPL 

identification and attribution methodology for a crankshaft 

line are proposed in Section IV. Numerical case studies 

demonstrated in Section V. Section VI summarizes the 

conclusion and future work. 

II. SYSTEM DESCRIPTION 

We intend to propose a formal integrated model for multi-

stage production lines to include key process parameters and 

outputs in the system-level flow-based models. The 

integration requires a comprehensive understanding of 

specific manufacturing processes, such as grinding, milling, 

cutting, etc. Therefore, to make this paper concrete and more 

accessible, we adopt the grinding process for further 

formulation. We use a segment of a crankshaft line consisting 

of multiple consecutive grinding processes to illustrate the 

integrated process-system modeling methods. In addition, we 

use yield as the performance metric that can simultaneously 

consider production throughput and production quality. Yield 

is defined as the number of compliant products among total 

production outputs [2]. 

2.1. Grinding process description 

Grinding is a commonly used process in finishing parts in 

numerous key manufacturing industry sectors such as 

aeronautical, automotive, and energy generation industries 

[17]. It directly impacts the functionality, dimensional 

accuracy, and surface integrity of the workpiece [18]. For the 

grinding process, thermal damage is one of the primary 

quality issues leading to defective products and further 

impacting the system yield. Thermal damage is caused by 

grinding burn, which occurs when the temperature of the 

workpiece in the grinding zone rises above the tempering 

temperature of the material due to inappropriate grinding 

parameters and leads to quality defects [17], [18]. Once the 

operating power exceeds a threshold power at a time point, a 

grinding burn will typically occur. We will adopt a well-

accepted grinding process model in [6] for the discussion. The 

threshold power at time 𝑡 is given by the following equation 

[6]: 

𝑃𝑏(𝑡) = 0.45𝑢𝑐ℎ(𝑣𝑤(𝑡)𝑎(𝑡)) + 𝐵(𝑣𝑤
2 (𝑡)𝑑𝑒𝑎(𝑡))

1
4 (1) 

where 𝑃𝑏(𝑡)  is the threshold power at time 𝑡 , 𝑢𝑐ℎ  is the 

power for chip formation for steel, 𝑑𝑒 is equivalent diameter, 

𝑣𝑤(𝑡) is workpiece speed at time 𝑡, 𝑎(𝑡) is the depth of cut at 

time 𝑡, and B is a constant related to burning temperature. 

In order to avoid burning during the process, the grinding 

power 𝑃𝑡𝑜𝑡𝑎𝑙  should not exceed its threshold 𝑃𝑏 . Thus, the 

actual grinding power at time 𝑡 is formulated as [6]:  

𝑃𝑡𝑜𝑡𝑎𝑙(𝑡) = 𝑢𝑐ℎ(𝑣𝑤(𝑡)𝑎(𝑡)) + 4𝜇𝑝0𝑣𝑤(𝑡) (
𝑎(𝑡)

𝑑𝑒
)

1
2

𝐴𝑒𝑓𝑓 (2)
 

where 𝜇 is friction coefficient, and 𝑝0 is the contact pressure, 

𝐴𝑒𝑓𝑓 is effective wheel wear flat area (dullness), which is a 

function of 𝑉𝑤, and 𝑉𝑤(𝑡) is the number of parts processed by 

each station since the previous dressing. Dressing refers to a 

periodical treatment for the grinding wheels to remove the 

current abrasive layer so that a new and sharp surface is 

exposed to the work surface.  

Therefore, at station 𝑆𝑖 , if 𝑃𝑡𝑜𝑡𝑜𝑎𝑙,𝑖 > 𝑃𝑏,𝑖 , the workpiece 

will have thermal damage and will be removed from the 

grinding station. Otherwise, if 𝑃𝑡𝑜𝑡𝑜𝑎𝑙,𝑖 ≤ 𝑃𝑏,𝑖, the workpiece 

will have no thermal damage and will be delivered to the next 

grinding station.  

2.2. Model description and notation  

This paper considers a serial production line (such as a 

crankshaft line), as shown in Fig. 1, which includes 𝑀 

stations, 𝑀 virtual buffers to store damaged workpieces, and 

𝑀 − 1 inline buffers for compliant workpieces. Stations are 

represented by rectangles, and buffers are represented by 

circles. Since the defective parts will be dislodged right away 

from their corresponding station, virtual storage buffers with 

infinite capacity are attached to each station for modeling 

purposes. The virtual storage buffers serve as counters for the 

defects at each station. 

 
Fig. 1. The structure of serial production lines with virtual storage buffers. 

The following notations are adopted in this model: 

1) 𝑆𝑖 denotes the 𝑖𝑡ℎ station, where 𝑖 = 1, 2, … ,𝑀. 

2) 𝑣𝑤,𝑖(𝑡) denotes the workpiece speed of station 𝑆𝑖 at 

time 𝑡, where 𝑖 = 1, 2, … ,𝑀.  

3) 𝑎𝑤,𝑖(𝑡) denotes the depth of cut of station 𝑆𝑖 at time 

𝑡, where 𝑖 = 1, 2, … ,𝑀. 

4) 𝐺𝑖(𝑡) indicates stock removal of station 𝑆𝑖 at time 𝑡, 
where 𝑖 = 1, 2, … ,𝑀.  

5) 𝑏 is the workpiece width. 

6) 𝑉𝑤,𝑖(𝑡) is the number of parts produced since the 

previous dressing for station 𝑆𝑖 at time 𝑡, where 𝑖 =
1,2, … ,𝑀. 

7) 𝑇𝑖(𝑡) represents the real-time cycle time for station 

𝑆𝑖 at time 𝑡, where 𝑖 = 1, 2, … ,𝑀. 

8) Each inline buffer has a finite capacity. 𝐵𝑖  denotes 

𝑖𝑡ℎ buffer’s capacity, where 𝑖 = 2, 3, … ,𝑀. 

9) 𝑏𝑖(𝑡) = [𝑏2(𝑡), 𝑏3(𝑡), … , 𝑏𝑀(𝑡)]
′  are the buffer 

levels at time 𝑡.  
10) 𝐶𝑖(𝑡) = [𝐶1(𝑡), 𝐶2(𝑡), … , 𝐶𝑀(𝑡)]

′ are the number of 

defects, i.e., thermal damaged workpieces, at each 

station at time 𝑡.  

11) 𝑒𝑖 = (𝑗, 𝑡𝑖 , 𝑑𝑖), denotes a disruption event that 𝑗𝑡ℎ 

station 𝑆𝑗  is down at time 𝑡𝑖  with time duration of 

𝑑𝑖 , where 𝑖 = 1, 2, … , 𝑛𝑟 , 𝑗 = 1, 2,… ,𝑀 . 𝐸 =
[𝑒1, … , 𝑒𝑛], denotes a sequence of disruption events.  

12) 𝑆𝑀∗  denotes the slowest station of the production 

line, and 𝑇𝑀∗ denotes the cycle time of the slowest 

station.  

The following assumptions are also made to clarify the 

system.  

1) A station is blocked if it is operational, and its 

downstream buffer is full, as well as its downstream 

machine is down. 
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2) A station is starved if it is operational, and its 

upstream buffer is empty, as well as its upstream 

machine is down.  

3) When the 𝑖𝑡ℎ station 𝑆𝑖  is neither blocked nor 

starved at time 𝑡; it will run at its real-time rated 

speed 𝑣𝑖(𝑡) = 1/𝑇𝑖(𝑡) , which is dependent on 

process-level control parameters. 

III. DATA-ENABLED INTEGRATED MODEL 

Our previous study [8] has developed a data-enabled 

system-level model to account for the real-time production 

output of serial production lines. In this paper, we will 

integrate the process-level model (i.e., grinding process as an 

example) and the system-level dynamic model by extending 

our previous data-enabled model. This integrated model takes 

both system-level and process-level parameters as inputs, and 

outputs will be the system yield. Thus, the integrated model 

considers quantity (based on system-level material flow) and 

quality (based on the grinding process model addressing 

threshold power). Therefore, to embed the process level 

knowledge, the state space equation of the integrated process-

system can be written as: 

𝑿̇(𝑡) = 𝑭(𝑿(𝑡), 𝑽𝒘(𝑡), 𝑮(𝑡), 𝒗𝒘(𝑡), 𝒂(𝒕), 𝑪(𝑡),𝑾(𝑡)) (3) 

𝒀(𝑡) = 𝑯(𝑿(𝑡)) (4) 

In the context of this manufacturing system, the physical 

meaning of each component could be described as follows: 

⚫ 𝑿(𝑡) = [𝑋1(𝑡), 𝑋2(𝑡), … , 𝑋𝑀(𝑡)]
′ , where 𝑋𝑖(𝑡) denotes 

the total production counts of station 𝑆𝑖 up to time 𝑡.  
⚫ 𝒀(𝑡) is the system yield, which denotes the number of 

compliant productions from the end-of-line station 𝑆𝑀 

up to time 𝑡. 
⚫ 𝑭(∗) = [𝑓1(∗), 𝑓2(∗), … , 𝑓𝑀(∗)]′ , where 𝑓𝑖(∗)  is the 

system dynamic function of station 𝑆𝑖. 
⚫ 𝑾(𝑡) = [𝑊1(𝑡),𝑊2(𝑡), … ,𝑊𝑀(𝑡)]

′ is the system status 

variable at time 𝑡, where 𝑊𝑖(𝑡) denotes whether station 

𝑆𝑖 is suffering a disruption event at time 𝑡. If a random 

disruption event ∃𝑒𝑘 ∈ 𝑬. 𝑠. 𝑡. 𝑒𝑘 = (𝑖, 𝑡𝑘, 𝑑𝑘)  and 𝑡 ∈
[𝑡𝑘, 𝑡𝑘 + 𝑑𝑘], then, 𝑊𝑖(𝑡) = 1, otherwise, 𝑊𝑖(𝑡) = 0. 

⚫ 𝑪(𝑡) = [𝐶1(𝑡), 𝐶2(𝑡),… , 𝐶𝑀(𝑡)]
′ , where 𝐶𝑖(𝑡)  denotes 

the accumulated defects coming from station 𝑆𝑖 at time 

𝑡.  
⚫ 𝒗𝒘(𝑡) = [𝑣𝑤,1(𝑡), 𝑣𝑤,2(𝑡), … , 𝑣𝑤,𝑀(𝑡)]′  denotes the 

workpiece speed at each station at time 𝑡.  
⚫ 𝒂(𝑡) = [𝑎1(𝑡), 𝑎2(𝑡), … , 𝑎𝑀(𝑡)]

′ represents the depth of 

cut for each station at time 𝑡. 
⚫ 𝑮(𝑡) = [𝐺1(𝑡), 𝐺2(𝑡), … , 𝐺𝑀(𝑡)]

′  is the stock removal 

for each station up to time 𝑡. 
⚫ 𝑽𝒘(𝑡) = [𝑉𝑤,1(𝑡), 𝑉𝑤,2(𝑡), … , 𝑉𝑤,𝑀(𝑡)]′  is the number 

of parts processed by each station since the previous 

dressing.  

According to the process model, the cycle time of station 

𝑆𝑖 is assumed to be controllable and is a function of process-

level control parameters at time 𝑡 as:  

𝑇𝑖(𝑡) =
𝐺𝑖(𝑡)

𝑣𝑤,𝑖(𝑡)𝑎𝑤,𝑖(𝑡)𝑏
(5) 

We define the accumulated defects between two stations 𝑆𝑖 
and 𝑆𝑗 within a time period [0, 𝑡] as 𝐶𝑖𝑗(𝑡): 

𝐶𝑖𝑗(𝑡) =

{
 
 

 
 −∑ 𝐶𝑘(𝑡)

𝑖−1

𝑘=𝑗
+∑ 𝐶𝑘(0)

𝑖−1

𝑘=𝑗
,         𝑖 > 𝑗

∑ 𝐶𝑘(𝑡) −∑ 𝐶𝑘(0)
𝑗−1

𝑘=𝑖

𝑗−1

𝑘=𝑖
,             𝑖 < 𝑗

(6) 

According to the conservation of the flow, the accumulated 

total production difference between two machines 𝑆𝑖  and 𝑆𝑗 

(∀𝑖, 𝑗 ∈ [1,2, … ,𝑀], 𝑖 ≠ 𝑗) at any time 𝑡 could be represented 

as: 

𝑋𝑖(𝑡) − 𝑋𝑗(𝑡) = 

{
 
 

 
 ∑ 𝑏𝑘(0)

𝑖

𝑘=𝑗+1
−∑ 𝑏𝑘(𝑡)

𝑖

𝑘=𝑗+1
+ 𝐶𝑖𝑗(𝑡), 𝑖 > 𝑗

∑ 𝑏𝑘(𝑡)
𝑗

𝑘=𝑖+1
−∑ 𝑏𝑘(0)

𝑗

𝑘=𝑖+1
+ 𝐶𝑖𝑗(𝑡), 𝑖 < 𝑗

(7) 

Therefore, the buffer conditions between stations 𝑆𝑖 and 𝑆𝑗 

at time 𝑡: 𝑋𝑖(𝑡) − 𝑋𝑗(𝑡) − 𝐶𝑖𝑗(𝑡) are bound by the condition 

that all buffers between machine 𝑆𝑖 and 𝑆𝑗 are full (for 𝑖 < 𝑗) 

or empty (for 𝑖 > 𝑗). Denote the boundary as 𝛽𝑖𝑗, we have 

𝛽𝑖𝑗 =

{
 
 

 
 ∑ 𝑏𝑘(0),                             𝑖 > 𝑗

𝑖

𝑘=𝑗+1

∑ 𝐵𝑘
𝑗

𝑘=𝑖+1
−∑ 𝑏𝑘(0)

𝑗

𝑘=𝑖+1
,   𝑖 < 𝑗 

(8) 

Thus, 𝑋𝑖(𝑡) − 𝑋𝑗(𝑡) − 𝐶𝑖𝑗(𝑡) ≤ 𝛽𝑖𝑗 Considering the 

interactions between 𝑆𝑖 and 𝑆𝑗, in the case of 𝑋𝑖(𝑡) − 𝑋𝑗(𝑡) −

𝐶𝑖𝑗(𝑡) < 𝛽𝑖𝑗 , station 𝑆𝑖  is neither starved or blocked by 𝑆𝑗 ; 

thus, it will process parts at its own rated speed. If 𝑋𝑖(𝑡) −
𝑋𝑗(𝑡) − 𝐶𝑖𝑗(𝑡) = 𝛽𝑖𝑗, the processing speed of station 𝑆𝑖 will 

be constrained by station 𝑆𝑗 . Define a segment function 

ξ(𝑢, 𝑣)  as ξ(𝑢, 𝑣) = {
+∞, 𝑢 < 0
𝑣,       𝑢 = 0

, The actual processing 

speed of station 𝑆𝑖 can be described as: 

𝑋𝑖̇ (𝑡) = 

min{

𝜉((𝑋𝑖(𝑡)−𝑋𝑗(𝑡)−𝐶𝑖𝑗(𝑡))−𝛽𝑖𝑗,1−𝑊𝑗(𝑡))(𝑣𝑤,𝑗(𝑡)𝑎𝑤,𝑗(𝑡)𝑏)

𝐺𝑗(𝑡)
,

(1−𝑊𝑖(𝑡))(𝑣𝑤,𝑖(𝑡)𝑎𝑤,𝑖(𝑡)𝑏)

𝐺𝑖(𝑡)

}      (9)  

Extend this equation to all stations in the system, then,  

𝑋𝑖̇ (𝑡) =

min

{
 
 
 

 
 
 

𝜉((𝑋𝑖(𝑡)−𝑋1(𝑡)−𝐶𝑖1(𝑡))−𝛽𝑖1),1−𝑊1(𝑡))(𝑣𝑤,1(𝑡)𝑎𝑤,1(𝑡)𝑏)

𝐺1(𝑡)
,

⋮
(1−𝑊𝑖(𝑡))(𝑣𝑤,𝑖(𝑡)𝑎𝑤,𝑖(𝑡)𝑏)

𝐺𝑖(𝑡)
,

⋮
𝜉((𝑋𝑖(𝑡)−𝑋𝑀(𝑡)−𝐶𝑖𝑀(𝑡))−𝛽𝑖𝑀),1−𝑊𝑀(𝑡))(𝑣𝑤,𝑀(𝑡)𝑎𝑤,𝑀(𝑡)𝑏)

𝐺𝑀(𝑡) }
 
 
 

 
 
 

  

= 𝑓𝑖(𝑿(𝑡), 𝑽𝒘(𝑡), 𝑮(𝑡), 𝒗𝒘(𝑡), 𝒂(𝒕), 𝑪(𝑡),𝑾(𝑡)) (10) 

In addition, 𝑽𝑤  as an input variable for calculating the 

grinding power, it is vital to embed it in the integrated model. 

𝑽𝑤  denotes the number of parts processed by each station 

since the previous dressing. If a dressing takes place at time 

𝑡, 𝑉𝑤,𝑖 is reset to 0, i.e., 𝑉𝑤,𝑖(𝑡 + 1) = 0. 

To summarize all stations, the state space function is: 
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𝑿(𝑡) = [

𝑓1(𝑿(𝑡), 𝑽𝒘(𝑡), 𝑮(𝑡), 𝒗𝒘(𝑡), 𝒂(𝒕), 𝑪(𝑡),𝑾(𝑡))

⋮
𝑓𝑀(𝑿(𝑡), 𝑽𝒘(𝑡), 𝑮(𝑡), 𝒗𝒘(𝑡), 𝒂(𝒕), 𝑪(𝑡),𝑾(𝑡))

] 

= 𝑭(𝑿(𝑡), 𝑽𝒘(𝑡), 𝑮(𝑡), 𝒗𝒘(𝑡), 𝒂(𝒕), 𝑪(𝑡),𝑾(𝑡)) (11) 

𝒀(𝑡) = 𝑋𝑀(𝑡) − 𝐶𝑀(𝑡) = 𝑯(𝑿(𝑡)) (12) 

The buffer levels of a certain buffer 𝐵𝑖+1  at time 𝑡 could be 

calculated as:  

𝑏𝑖+1(𝑡) = 𝑋𝑖(𝑡) − 𝑋𝑖+1(𝑡) + 𝑏𝑖+1(0) − 𝐶𝑖(𝑡) + 𝐶𝑖(0) (13) 
Therefore, up to time 𝑡, given the sensor data of random 

disruption events 𝑬, the control parameters 𝑣𝑤,𝑖(𝑡), 𝑉𝑤,𝑖(𝑡),

𝐺𝑖(𝑡), 𝑎𝑖(𝑡), and the initial buffer levels 𝑏𝑖(0), the system 

state at any given time can be recursively evaluated by Eqs. 

(11) - (13). 

It is worth emphasizing that the control parameters, namely 

𝑣𝑤,𝑖(𝑡), 𝑉𝑤,𝑖(𝑡), 𝐺𝑖(𝑡), 𝑎𝑖(𝑡), not only determine the overall 

production output and material flow as shown in Eqs. (5) - 

(7), but also define the quality performance at each station as 

shown in Eq. (1). Together, they incorporate process-level 

and system-level performance represented as system yield. 

IV. PERMANENT PRODUCTION LOSS DIAGNOSIS 

To measure the real-time performance of the production 

line, it is necessary to understand and quantify the impact of 

disturbance and quality issues on the system. A station’s 

random downtime may cause a halt in production at one 

station, thus starving downstream stations or blocking 

upstream stations. In addition, the defects also result in a 

production loss to the system. In this paper, permanent 

production loss (PPL) is introduced as a quantitative 

measurement of the impact on a serial production line due to 

disruption events and quality issues. The overall permanent 

production loss is defined as the qualified production 

difference between the real serial production line and the ideal 

serial production line. The ideal serial line is defined as a 

virtual production line that does not suffer from any 

disruption event (e.g., station’s random failure). It does not 

have any quality issues (i.e., no defect). The ideal serial line 

presents the best possible system performance. Definition 1 

makes the PPL more accurate.  

Definition 1: Given a realization of a production line subject 

to a sequence of disruption events 𝑬 = [𝑒1, … , 𝑒𝑛]  and a 

sequence of quality problems 𝑸 = [𝑞1, … , 𝑞𝑛] , the overall 

permanent production loss of a serial production line during 

[0, 𝑇] is defined as the difference between the yields of the 

ideal serial line, denoted as 𝑌𝑖𝑑𝑒𝑎𝑙(𝑇), and the real-time yields 

𝑌(𝑇; 𝑬, 𝑸), that will never recover in any circumstances, i.e.,  

𝑃𝑃𝐿(𝑇) = 𝑌𝑖𝑑𝑒𝑎𝑙(𝑇) − 𝑌(𝑇; 𝑬, 𝑸) (14) 
Permanent production loss is an important indicator to 

evaluate the performance of the production line in real-time 

operation. As shown in Definition 1, both disruption events 

and quality issues will result in PPL to the production line. 

We will discuss the evaluation and attribution of PPL due to 

disruption events (𝑃𝑃𝐿𝐸)  and PPL due to quality issues 

(𝑃𝑃𝐿𝑞) in the following sub-sections.  

4.1. 𝑃𝑃𝐿𝐸  Identification and Attribution  

4.1.1. 𝑃𝑃𝐿𝐸 Identification  

Definition 2: Given a realization of a production line subject 

to a sequence of disruption events 𝑬 = [𝑒1, … , 𝑒𝑛]  and a 

sequence of quality problem 𝑸 = [𝑞1, … , 𝑞𝑛] during a period 

[0, 𝑇], the permanent production loss due to disruption events 

(𝑃𝑃𝐿𝐸) is  

𝑃𝑃𝐿𝐸(𝑇) = 𝑌𝑐𝑙𝑒𝑎𝑛(𝑇; 𝑸) − 𝑌(𝑇; 𝑬, 𝑸) (15) 
where 𝑌(𝑇; 𝑬, 𝑸) and 𝑌𝑐𝑙𝑒𝑎𝑛(𝑇; 𝑸) are the yields of the serial 

production line with and without disruption events 𝑬 =
[𝑒1, … , 𝑒𝑛].  

In order to evaluate 𝑃𝑃𝐿𝐸, it is necessary to identify the 

impact of station stoppages on the system performance. 

Because of finite inline buffer capacities and variations in 

processing times of different stations, a disruption event does 

not necessarily lead to a permanent system production loss. 

The opportunity window serves as a measurement of the 

system status directly related to the resilience to disruption 

events. Our previous study [8] has defined the concept of 

opportunity window and 𝑃𝑃𝐿𝐸 for the system with variable 

cycle time machines. We will extend these concepts and 

develop 𝑃𝑃𝐿𝐸  evaluation methods for a serial line to embed 

the process level knowledge. The summary of the related 

basic concepts is provided without detailed proof to make the 

paper self-contained.  

Opportunity window of a station 𝑆𝑗, denoted as 𝑂𝑊𝑗(𝑇𝑑), 

is the longest possible downtime on 𝑆𝑗 at time 𝑇𝑑 that would 

not result in permanent production loss at the end-of-line 

station. It can be defined as:  

𝑂𝑊𝑗(𝑇𝑑) = sup {≥ 0: 𝑠. 𝑡. ∃𝑇
∗(𝑑), 

∫ 𝑠𝑀(𝑡)𝑑𝑡 =
𝑇

0

∫ 𝑠̃𝑀(𝑡; 𝑒)𝑑𝑡, ∀𝑇 ≥ 𝑇
∗(𝑑)

𝑇

0

} (16) 

where ∫ 𝑠̃𝑀(𝑡; 𝑒)𝑑𝑡
𝑇

0
 and ∫ 𝑠𝑀(𝑡)𝑑𝑡

𝑇

0
 are the production 

volume of the end-of-line station 𝑆𝑀  at time 𝑇 , with and 

without disruption event 𝑒 = (𝑚, 𝑇𝑑 , 𝑑), respectively, 𝑇∗(𝑑) 
signifies the potential dependency of 𝑇∗on 𝑑.  

We proposed a method in [8] to segment a time horizon 

into a sequence of time intervals and considered  𝑂𝑊  and 

𝑃𝑃𝐿𝐸  within the small time period, and then aggregate them. 

We adopt the same idea in this paper. First, we define the real-

time slowest station 𝑆𝑀∗(𝑡) as the station has the largest cycle 

time 𝑇𝑀∗(𝑡) at time 𝑡 . Then, for this integrated model, the 

cycle time of the slowest station at time 𝑡 is: 

𝑇𝑀∗(𝑡) = max
𝑖=1,… ,𝑀

𝐺𝑖(𝑡)

𝑣𝑤,𝑖(𝑡)𝑎𝑤,𝑖(𝑡)
(17) 

Assume that the slowest station switches 𝐾 times during a 

time interval [0, 𝑇]  and denote the time point when the 

slowest station switches as 𝑡𝑘 , 𝑘 = 1,2, … , 𝐾 . We can 

segment the time [0, 𝑇]  into a sequence of time intervals 

[𝑡𝑘, 𝑡𝑘+1], 𝑘 = 1, 2, … , 𝐾. 

Assume that a downtime event 𝑒 = (𝑗, 𝑡, 𝑑) occurs during 

[0, 𝑇], if the slowest station switches 𝑘 times during the time 

interval [0, 𝑇] , then its opportunity window during each 

segmented interval can be represented as: 
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𝑂𝑊𝑗(𝑡) = 𝑇𝑀∗(𝑡𝑘)(𝑋𝑗(𝑡) − 𝑋𝑀∗(𝑡) − 𝐶𝑗𝑀∗(𝑡) + 𝛽𝑗,𝑀∗) (18) 

for ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1). 
Assume that a downtime event 𝑒 = (𝑗, 𝑡, 𝑑) occurs during 

[0, 𝑇]. The permanent production loss due to stations’ random 

failures can be represented as the summation of production 

loss within each slowest station switching interval, such that: 

          𝑃𝑃𝐿𝑒(𝑇) = ∫ 𝑠𝑗(𝑡
′)𝑑𝑡′ −∫𝑠𝑗(𝑡

′, 𝑒)𝑑𝑡′
𝑇

0

𝑇

0

 

=∑
𝑑𝑧 − 𝑂𝑊𝑗(𝑡𝑡𝑘)

𝑇𝑀∗,𝑘

𝐾

𝑘=1

, ∀𝑇 > 𝑇∗ (19) 

4.1.2. 𝑃𝑃𝐿𝐸 Attribution  

To further identify the impact of each station’s downtime 

on the production line yields, the 𝑃𝑃𝐿𝐸  needs to be attributed 

to individual stations. Based on our integrated data-enabled 

model, the real-time states 𝑿(𝑡), 𝑩(𝑡), and 𝑪(𝑡) from each 

station can be evaluated by using Eqs. (11) - (13). We adopt 

the same idea and segment the time interval [𝑡𝑎, 𝑡𝑏]  to a 

sequence of intervals [𝑡𝑘 , 𝑡𝑘+1), 𝑘 = 0,1, 2, … , 𝐾, where 𝑡𝑘 is 

the time point when the slowest station switches, and 𝑡0 = 𝑡𝑎, 

𝑡𝐾+1 = 𝑡𝑏. Let 𝑇𝑀∗,𝑘 denote the corresponding cycle time of 

the real-time slowest station at time 𝑡𝑘, and 𝑂𝑊𝑗(𝑡𝑘) be the 

opportunity window at time 𝑡𝑘.  

We first discuss single disruption event 𝑒1 = (𝑗, 𝑡1, 𝑑1) 
occurring during the time interval [𝑡𝑎, 𝑡𝑏]. For each of the 

slowest station switching interval [𝑡𝑘, 𝑡𝑘+1) , the slowest 

station remains the same. Thus, the 𝑃𝑃𝐿𝐸  due to 𝑒1  during 

single slowest station switching interval is: 

𝑃𝑃𝐿𝑒1[𝑡𝑘 , 𝑡𝑘+1] = 

max {0,
𝑡𝑘+1−𝑡𝑘

𝑇𝑀∗,𝑘
− 𝑋𝑗(𝑡𝑘) + 𝑋𝑀∗(𝑡𝑘) + 𝐶𝑗𝑀∗(𝑡) − 𝛽𝑗,𝑀∗} (20)  

If there are two disruptions 𝑒1 = (𝑗1, 𝑡1, 𝑑1)  and 𝑒2 =
(𝑗2, 𝑡2, 𝑑2)  occurring during [𝑡𝑘, 𝑡𝑘+1) , the 𝑃𝑃𝐿𝐸  can be 

attributed to the disruption event whose corresponding 

machine has a smaller opportunity window. If the opportunity 

window is equal, we attribute the production loss evenly to 𝑒1 

and 𝑒2.  

The 𝑃𝑃𝐿𝐸  analysis can be extended to a general case with 

multiple disruption events 𝑬⃗⃗⃗ = [𝑒1, … , 𝑒𝑛] occurring during a 

period [𝑡𝑎, 𝑡𝑏] . 𝑃𝑃𝐿𝐸  due to a disruption event 𝑒𝑖 =
(𝑗𝑖 , 𝑡𝑖, 𝑑𝑖), 1 ≤ 𝑖 ≤ 𝑛, during [𝑡𝑘, 𝑡𝑘+1] is:  

𝑃𝑃𝐿𝑒𝑖[𝑡𝑘, 𝑡𝑘+1] = 

{

max {0,
𝑡𝑘+1−𝑡𝑘
𝑇𝑀∗,𝑘

−(𝑋𝑗𝑖
(𝑡𝑘)−𝑋𝑀∗(𝑡𝑘)−𝐶𝑗𝑀∗(𝑡𝑘)+𝛽𝑗𝑖,𝑀

∗)

𝜌
, 𝑐𝑜𝑛𝑑. 𝐴

0,                                                                                𝑐𝑜𝑛𝑑. 𝐵

     (21)  

where condition A is 

min {

𝑋𝑗1(𝑡𝑘) − 𝐶𝑗1𝑀∗(𝑡𝑘) + 𝛽𝑗1,𝑀∗

⋮
𝑋𝑗𝑛(𝑡𝑘) − 𝐶𝑗𝑛𝑀∗(𝑡𝑘) + 𝛽𝑗𝑛,𝑀∗

} 

= 𝑋𝑗𝑖(𝑡𝑘) − 𝐶𝑗𝑖𝑀∗(𝑡𝑘) + 𝛽𝑗𝑖,𝑀∗ 

𝜌  is the total number of stations satisfying the condition 

during [𝑡𝑘, 𝑡𝑘+1], while condition B is 

min {

𝑋𝑗1(𝑡𝑘) − 𝐶𝑗1𝑀∗(𝑡𝑘) + 𝛽𝑗1,𝑀∗

⋮
𝑋𝑗𝑛(𝑡𝑘) − 𝐶𝑗𝑛𝑀∗(𝑡𝑘) + 𝛽𝑗𝑛,𝑀∗

} 

< 𝑋𝑗𝑖(𝑡𝑘) − 𝐶𝑗𝑖𝑀∗(𝑡𝑘) + 𝛽𝑗𝑖,𝑀∗ 

Therefore, the 𝑃𝑃𝐿𝐸  attributed to the disruption event 𝑒𝑖 =
(𝑗𝑖 , 𝑡𝑖, 𝑑𝑖) , 1 ≤ 𝑖 ≤ 𝑛 , during time period [𝑡𝑎, 𝑡𝑏]  can be 

summarized as: 

𝑃𝑃𝐿𝑒𝑖[𝑡𝑎, 𝑡𝑏] = ∑𝑃𝑃𝐿𝑒𝑖

𝐾

𝑘=1

[𝑡𝑘, 𝑡𝑘+1] (22) 

The 𝑃𝑃𝐿𝐸  can be further attributed to each station. Given a 

sequence of disruption events that occur at station 𝑆𝑗 denoted 

as 𝑒𝑗,1, … , 𝑒𝑗,𝑛  during the period [0, 𝑇] , the permanent 

production loss caused by downtime events of 𝑆𝑗 within [0, 𝑇] 

can be deduced as: 

𝑃𝑃𝐿𝐸,𝑗[0, 𝑇] = ∑𝑃𝑃𝐿𝑒𝑗,𝑛

𝑛

𝑞=1

(23) 

4.2. 𝑃𝑃𝐿𝑞  Identification and Attribution  

For a serial production line, defects will be dislodged from 

the system. Thus, these defects are also permanently lost to 

the production line due to quality issues.  

Definition 3: Given a realization of a production line subject 

to a sequence of disruption events 𝑬 = [𝑒1, … , 𝑒𝑛]  and a 

sequence of quality problem 𝑸 = [𝑞1, … , 𝑞𝑛] during a period 

[0, 𝑇] , the permanent production loss due to quality issue 

(𝑃𝑃𝐿𝑞) is  

𝑃𝑃𝐿𝑞(𝑇) = 𝑌ℎ𝑦(𝑇; 𝑬) − 𝑌(𝑇; 𝑬, 𝑸) (24) 

where 𝑌(𝑇; 𝑬, 𝑸) and 𝑌ℎ𝑦(𝑇; 𝑬)  are the yields of the serial 

production line with and without quality problems 𝑸 =
[𝑞⃗1, … , 𝑞⃗𝑛].  

As we discussed in Section 2.1, a part is burned at station 

𝑆𝑗  if 𝑃𝑡𝑜𝑡𝑎𝑙,𝑗(𝑡) > 𝑃𝑏,𝑗(𝑡) . The burned parts will be 

immediately taken away from 𝑆𝑗 and delivered to its storage 

buffer 𝐶𝑗. The accumulated defects attributed to station 𝑆𝑗 up 

to time 𝑇 is denoted as: 

𝑃𝑃𝐿𝑞,𝑗(𝑇) = 𝐶𝑗(𝑇) (25) 

Therefore, the overall permanent production loss (PPL) 

attributed to station 𝑆𝑗 up to time 𝑇, can be summarized as: 

𝑃𝑃𝐿𝑗(𝑇) = 𝑃𝑃𝐿𝐸,𝑗(𝑇) + 𝑃𝑃𝐿𝑞,𝑗(𝑇) (26) 

V. CASE STUDY 

This section provides case studies to demonstrate: 1) the 

high fidelity of the proposed integrated data-enabled model 

and the associated recursive calculation method in evaluating 

system yield, and 2) the effectiveness of permanent 

production loss attribution methods in identifying the root 

cause of performance inefficiency. The following case studies 

compare a serial line’s production counts and inline buffer 

levels from the proposed integrated model and simulation 

experiment. In addition, two experiments are conducted to 

demonstrate that the proposed system performance (PPL) 

attribution methods are effective.  

To make the proposed integrated model and PPL 
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attribution method easy to follow in a real-world application, 

a flow chart is presented in Fig. 2. As shown in Fig. 2, the 

stock removal 𝐺(𝑡) , depth of cut 𝑎(𝑡) , workpiece’s speed 

𝑣𝑤(𝑡), number of parts processed 𝑉𝑤(𝑡), and the downtime 

recording 𝑊(𝑡) are inputs collected from the real plant floor 

sensor data. With these inputs for the integrated model, the 

real-time processing speed 𝑋̇(𝑡)  of each grinding machine 

and the stepwise 𝑃𝑃𝐿𝐸  can be evaluated by Eq. (10) and Eq. 

(21), respectively. Then, based on the quality inspection 

method discussed in Section 2.1 and Eq. (11), the system 

yields 𝑋(𝑡) and accumulated defects 𝐶(𝑡) can be recursively 

calculated. As described in Section 4.2, 𝐶(𝑡)  is the PPL 

caused by the quality issue. Meanwhile, the PPL due to 

downtime events 𝑃𝑃𝐿𝐸(𝑡) and its attribution to each station 

can also be identified with the recursive method.   

 
Fig. 2. The flow chart of the integrated model application.  

 

To make the Validation generally reliable, 100 numerical 

experiments are conducted on different process lines with 

various parameters. For demonstration purposes, we will 

present case studies on a segment of a crankshaft line that 

consists of four grinding stations, four virtual buffers for 

damaged workpieces, and three inline buffers similar to Fig. 

1. 

The process-level and system-level parameters for each 

grinding station and the system-level buffer parameters are 

shown in Table I and Table II, respectively. The dressing 

action is executed when a grinding station has processed 1000 

parts. In the experiments, these parameters are based on a real 

crankshaft line. However, we only show the mocked 

parameters and data for confidential consideration. In 

addition, we allow the control input, workpieces speed 𝑣𝑤 , 

varies within 10% of its original speed at each station based 

on a random policy to mimic the real production line 

operation, where the workpiece speed can be adjusted.  
 

Table I. Parameters for the grinding stations 

Station 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 

Original workpiece speed (mm/s) 115 115 115 115 

Depth of cut (mm) 0.1 0.06 0.025 0.015 

Designed stock removal (mm3) 1.5 0.9 0.45 0.15 

Workpiece width (mm) 22 22 22 22 

MTBF (min) 500 600 450 600 

MTTR (min) 20 15 15 26 

 
Table II. Parameters of the inline buffers 

Buffer 𝑩𝟐 𝑩𝟑 𝑩𝟒 

Initial buffer level 5 9 6 

Buffer capacity 12 30 20 

5.1. Fidelity of the integrated data-enabled model 

For validation purposes, the output from the proposed 

integrated modeling and the recursive algorithm is compared 

with that from a simulation. We adopt a discrete event 

simulation software, Simul8, to perform the simulation.  

The simulation duration is one week, i.e., 5000 minutes, 

assuming 12 operation hours a day. The production counts 

and buffer levels derived from the proposed recursive 

calculation method are compared with the simulation results.  

The results are evidence that the production counts of each 

station and buffer levels of each buffer obtained by using the 

proposed integrated data-enabled model and recursive 

calculation are in high agreement with that derived from the 

simulation. For demonstration purposes, only the output of 

the end-of-line stations 𝑆4  and the buffer level of the last 

inline buffer 𝐵4 are shown in Fig. 3 and Fig. 4, respectively. 

The results from the integrated data-enabled model (“blue-

dash line”) and the results from the simulation (“red-solid 

line”) are almost overlapped with each other in the figures. A 

more precise detail can be found in the zoom-in window for 

both figures.   

Based on the comparison results of all samples, the average 

value of the maximum absolute errors of these 100 lines 

between the integrated model and simulation is 3.16%. Thus, 

the integrated process-system model is considered to be 

accurate.  
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Fig. 3. Comparison of production counts of station 𝑆4. 

 
Fig. 4. Comparison of buffer level of inline buffer 𝐵4. 

5.2. PPL Identification and Attribution 

Based on the integrated model, we further evaluate PPL 

and attribute the 𝑃𝑃𝐿𝐸  and 𝑃𝑃𝐿𝑞  to each station with the 

proposed methods in Section IV. As shown in Fig. 5, the 

overall PPL can be attributed to either random downtime (red-

shaded bars) or thermal damage (green-shaded bars) at every 

station. The PPL attribution provides a natural ranking of 

stations with problematic issues, i.e., machine reliability 

(related to random downtime) or inappropriate process 

parameter settings (related to thermal damage). With this, 

production control and maintenance activities can be 

prioritized appropriately, which will be our future work. In 

this paper, we only focus on PPL analysis, and we will 

validate whether the attribution of  𝑃𝑃𝐿𝐸  and 𝑃𝑃𝐿𝑞 to each 

station are correct based on our proposed methods.  

 

 
Fig. 5. PPL distribution for each station. 

5.2.1. Validation of 𝑃𝑃𝐿𝐸  Attribution 

The 𝑃𝑃𝐿𝐸   attribution to a specific station is a part of the 

overall production output loss caused by that station due to 

the downtime events. Therefore, if we remove all the 

downtime events on that station while keeping other 

conditions unchanged, we should expect that the overall 

production output is increased by an amount close to the 

attributed 𝑃𝑃𝐿𝐸  amount, assuming the proposed method is 

effective.  

A series of controlled experiments are performed to 

validate the accuracy of the 𝑃𝑃𝐿𝐸  attributions. We first obtain 

the 𝑃𝑃𝐿𝐸  attributions to each disruption event, and then 

aggregate to each grinding station based on Eqs. (22) – (23). 

The 𝑃𝑃𝐿𝐸  attribution result is shown as red shaded bars in 

Fig. 5. Then, in simulation, we observe a production output 

increase by removing all the disruption events at each station 

one at a time. The output improvement results of the 

controlled experiments using simulation are shown as blue-

checkboard bars in Fig. 6.  

The result shows that the 𝑃𝑃𝐿𝐸  attribution is in close 

agreement with the overall productivity improvement in the 

corresponding controlled simulation experiments. Hence, the 

proposed method is proved to be accurate in quantifying and 

ranking each station’s influence on the permanent production 

losses due to downtime events. 

 
Fig. 6. Overall production improvement and 𝑃𝑃𝐿𝐸 distribution. 

5.2.2. Validation of 𝑃𝑃𝐿𝑞  Attribution 

Once the real-time grinding power exceeds its threshold, 

thermal damage (burn) will happen to the part. The defects 

attributed to each station is the number of burned parts stored 

in the associated virtual buffer for defects.  

Therefore, the production output should increase if we 

ignore the thermal damage caused by a grinding station and 

deliver all parts to its downstream buffer. The increased 

amount should be close to the defects distributed to that 

station. A series of controlled experiments are carried out. We 

first obtain the defects of each grinding station by applying 

the proposed method, which is shown as green-shaded bars in 

Fig. 7. Then, in simulation, we ignore the thermal damage 

caused by each grinding station one at a time to evaluate the 

additional output due to the neglect of the burned parts. The 

simulation results of the controlled experiments are shown as 

blue-checkerboard bars in Fig. 7.   

The result shows that the defects attribution is in close 

agreement with the extra output due to the neglect of the 

burned parts in the corresponding controlled simulation 

experiment. We can conclude that the proposed method is 

accurate in each station’s contribution to permanent 

production losses due to thermal damage. 
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Fig. 7. Extra output due to ignore burned parts and defects distribution. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, a process-system integrated data-enabled 
model is built to incorporate the system-level and process-
level dynamics for a serial production line. The permanent 
production loss due to both disruption events and quality 
issues is identified based on the proposed model. In addition, 
the PPL attribution to each station caused by different issues 
can be quantified. In the future, we will design control policies 
based on this integrated model and PPL analysis to adjust each 
station’s process parameters to improve overall production 
performance. 
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