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Integrated Process-System Modeling and Performance Analysis for
Serial Production Lines

Chen Li, Student Member, IEEE, Qing Chang*, Senior Member, IEEE, Guoxian Xiao, and Jorge
Arinez, Member, IEEE

Abstract— The performance of a smart manufacturing system
is affected by not only the constituent processes but also their
system-level interactions. However, in most current studies,
individual process modeling and system-level performance
evaluation are independent. This can substantially impact
production efficiency. In this paper, utilizing available sensor
data, an integrated data-enabled model is developed to
seamlessly fuse two conventionally separated system-level and
process-level models and analysis. A fast recursive method is
developed to evaluate the system yield. The permanent
production loss (PPL) concept is defined and evaluated based on
the proposed integrated model. Furthermore, PPL attributions
due to random downtime and quality issues have been identified.
Case studies have shown that the integrated model is of high
fidelity, and the PPL analysis can effectively identify the root
cause of production yield loss.

Index Terms—Intelligent and Flexible Manufacturing;
Discrete Event Dynamic Automation Systems; Manufacturing,
Maintenance and Supply Chains.

I. INTRODUCTION

Current manufacturing systems are increasingly complex,
dynamic, and connected. The performance of a multi-stage
manufacturing system is affected by individual process
parameters (process-level) and interconnections among
processes (system-level) [1] - [3]. To improve the throughput
and product quality, substantial efforts have been devoted to
process-level modeling (e.g., milling [4] and grinding [5], [6])
and system-level analysis and optimization [1], [7] - [9].

However, there has been a lack of a holistic model to
integrate the two crucial aspects. The salient gap between the
system-level and process-level analysis substantially impacts
production efficiency. Take the crankshaft production line as
an example. Each of the individual processes, e.g., grinding,
achieves the highest quality and productivity by optimizing
grinding operation parameters and related input variables
(e.g., tool selection and condition). However, without
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considering the overall system, such local process
optimization might lead to an “overproduction” and overflow
the downstream buffer. As a result, this effort not only does
not contribute to improving the system throughput but also
makes the parts stay in the buffer for a longer time, causing
potential quality problems due to environmental conditions.
From a system’s point of view, speeding up individual
processes may lead to the compounding effect of improving
the overall production throughput. However, such
requirements might not be feasible without knowing specific
process constraints (e.g., tool life and part quality). This
example illustrates the close-coupled interrelationship
between process and system; namely, process-level
performance directly impacts system-level performance and
vice versa.

However, effective integration of processes and system is
highly challenging. The conventional process-level
performance is typically predicted by multi-physics analysis
(e.g., heat transfer, mechanical deformation, etc.) using
model-based simulation and/or experiments [10], [11]. In
comparison, system-level performance evaluation is mainly
concerned with the time-stamped material flow (e.g.,
throughput), and the current methods mostly focus on long-
term steady-state performance based on simplified
mathematical models (e.g., Markov chains) [12] — [15], or
real-time performance analysis based on sensor data [8], [16].
Thus, the models and functions involved with the two levels,
i.e., process and system, are vastly different.

With the increasingly available data at both the process and
system levels, data-enabled approaches offer an
unprecedented opportunity to tackle the integrated modeling
problem. This paper aims to build an integrated data-enabled
mathematical model that integrates process-level and system-
level analysis to enable real-time production line analysis.

To this end, the contribution of this paper is threefold:1)
Leveraging the sensor data, develop a novel process-system
integrated data-enabled math model to incorporate process-
level and system-level dynamics seamlessly, and a fast
recursive algorithm to quickly evaluate both quality and
quantity performance; 2) Develop a data-enabled analytical
method to identify the real-time permanent production loss
(PPL) efficiently; 3) Develop a PPL attribution method to
identify the root cause and the problematic machines that are
most responsible for production loss in a real-time fashion.

The remainder of the paper is organized as follows. Section
II describes the production system to be analyzed. In Section
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III, an integrated mathematical model is developed. A PPL
identification and attribution methodology for a crankshaft
line are proposed in Section IV. Numerical case studies
demonstrated in Section V. Section VI summarizes the
conclusion and future work.

II. SYSTEM DESCRIPTION

We intend to propose a formal integrated model for multi-
stage production lines to include key process parameters and
outputs in the system-level flow-based models. The
integration requires a comprehensive understanding of
specific manufacturing processes, such as grinding, milling,
cutting, etc. Therefore, to make this paper concrete and more
accessible, we adopt the grinding process for further
formulation. We use a segment of a crankshaft line consisting
of multiple consecutive grinding processes to illustrate the
integrated process-system modeling methods. In addition, we
use yield as the performance metric that can simultaneously
consider production throughput and production quality. Yield
is defined as the number of compliant products among total
production outputs [2].

2.1. Grinding process description

Grinding is a commonly used process in finishing parts in
numerous key manufacturing industry sectors such as
aeronautical, automotive, and energy generation industries
[17]. It directly impacts the functionality, dimensional
accuracy, and surface integrity of the workpiece [18]. For the
grinding process, thermal damage is one of the primary
quality issues leading to defective products and further
impacting the system yield. Thermal damage is caused by
grinding burn, which occurs when the temperature of the
workpiece in the grinding zone rises above the tempering
temperature of the material due to inappropriate grinding
parameters and leads to quality defects [17], [18]. Once the
operating power exceeds a threshold power at a time point, a
grinding burn will typically occur. We will adopt a well-
accepted grinding process model in [6] for the discussion. The
threshold power at time ¢ is given by the following equation

[6]:

1

P, () = 0.45u, (v, (D)a(®)) + B(v2(Ddea(®))* (1)
where P, (t) is the threshold power at time t , u,, is the
power for chip formation for steel, d, is equivalent diameter,
v, (t) is workpiece speed at time t, a(t) is the depth of cut at
time t, and B is a constant related to burning temperature.

In order to avoid burning during the process, the grinding
power P;,:q; should not exceed its threshold P,. Thus, the
actual grinding power at time t is formulated as [6]:

a(t) %
Peotar(t) = uch(vw(t)a(t)) + 4upovy, (t) <d—> Agrr (2)

where p is friction coefficient, and p is the contact pressure,
Agpy is effective wheel wear flat area (dullness), which is a
function of V,,, and V, (t) is the number of parts processed by
each station since the previous dressing. Dressing refers to a
periodical treatment for the grinding wheels to remove the
current abrasive layer so that a new and sharp surface is

exposed to the work surface.

Therefore, at station S;, if Protoqr; > Pp i, the workpiece
will have thermal damage and will be removed from the
grinding station. Otherwise, if Pyoroa1; < Pp,i, the workpiece
will have no thermal damage and will be delivered to the next
grinding station.

2.2. Model description and notation

This paper considers a serial production line (such as a
crankshaft line), as shown in Fig. 1, which includes M
stations, M virtual buffers to store damaged workpieces, and
M — 1 inline buffers for compliant workpieces. Stations are
represented by rectangles, and buffers are represented by
circles. Since the defective parts will be dislodged right away
from their corresponding station, virtual storage buffers with
infinite capacity are attached to each station for modeling
purposes. The virtual storage buffers serve as counters for the
defects at each station.

O L Dan
®  ® O ®

Fig. 1. The structure of serial production lines with virtual storage buffers.
The following notations are adopted in this model:

1) S, denotes the i*" station, where i = 1,2, ..., M.

2)  v,,;(t) denotes the workpiece speed of station S; at
time t, wherei = 1,2, ..., M.

3) ay;(t) denotes the depth of cut of station S; at time
t,wherei =1,2,.., M.

4)  G;(t) indicates stock removal of station S; at time t,
wherei =1,2,.., M.

5) b is the workpiece width.

6) V,:(t) is the number of parts produced since the
previous dressing for station S; at time t, where i =
1,2,..,M.

7)  T;(t) represents the real-time cycle time for station
S; attime t, where i = 1,2, ..., M.

8) Each inline buffer has a finite capacity. B; denotes
it" buffer’s capacity, where i = 2,3, ..., M.

9)  b;(t) = [by(t), b3(t), ..., by (t)]" are the buffer
levels at time ¢.

10) C;(t) = [C,(t), C5(L), ..., Chy (t)]" are the number of
defects, i.e., thermal damaged workpieces, at each
station at time t.

11) & = (j,t;,d;), denotes a disruption event that j*
station §; is down at time ¢; with time duration of
d;, where i=1,2,..,n,., j=1,2,...M. E =
[é1, ..., &,], denotes a sequence of disruption events.

12) Sy~ denotes the slowest station of the production
line, and T+ denotes the cycle time of the slowest
station.

The following assumptions are also made to clarify the
system.

1) A station is blocked if it is operational, and its
downstream buffer is full, as well as its downstream

machine is down.
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2) A station is starved if it is operational, and its
upstream buffer is empty, as well as its upstream
machine is down.

3) When the i" station S; is neither blocked nor
starved at time t; it will run at its real-time rated
speed v;(t) = 1/T;(t) , which is dependent on
process-level control parameters.

III. DATA-ENABLED INTEGRATED MODEL

Our previous study [8] has developed a data-enabled
system-level model to account for the real-time production
output of serial production lines. In this paper, we will
integrate the process-level model (i.e., grinding process as an
example) and the system-level dynamic model by extending
our previous data-enabled model. This integrated model takes
both system-level and process-level parameters as inputs, and
outputs will be the system yield. Thus, the integrated model
considers quantity (based on system-level material flow) and
quality (based on the grinding process model addressing
threshold power). Therefore, to embed the process level
knowledge, the state space equation of the integrated process-
system can be written as:

X(t) = F(X(£),V,, (1), G(t), v, (1), a(t), C(1), W(1)) (3)
Y(t) = H(X(®)) 4)
In the context of this manufacturing system, the physical
meaning of each component could be described as follows:
® X(t)=[X.(t),X5(t), .., Xy (®)]', where X;(t) denotes
the total production counts of station S; up to time t.

® Y(t) is the system yield, which denotes the number of
compliant productions from the end-of-line station Sy,
up to time t.

® F() =[A(),f2(9), .. fu(x)], where fi(x) is the
system dynamic function of station S;.

o  W(t) = [W.(t), Wy(t), ..., Wy ()] is the system status
variable at time t, where W;(t) denotes whether station
S; is suffering a disruption event at time t. If a random
disruption event 3é, € E.s.t.&, = (i,ty,d;) and t €
[tr, tx + di], then, W;(t) = 1, otherwise, W;(t) = 0.

® (C(t) =[C.(t),Cy(0),...,Cuy(D)]", where C;(t) denotes
the accumulated defects coming from station S; at time
t.

® v,(t) = [Vy,1(0), V2 (t), ., vy (O]
workpiece speed at each station at time t.

® a(t) =[a(t),a,(t),..,ay(t)] represents the depth of
cut for each station at time t.

® G(t) =[G,(t),Gy(L),...,Gy ()] is the stock removal
for each station up to time t.

® V,(t)=[Vy1(t),Vy(t),..,Vyyu(t)]" is the number
of parts processed by each station since the previous
dressing.

According to the process model, the cycle time of station
S; is assumed to be controllable and is a function of process-
level control parameters at time t as:

Gi(t)
vw,i(t)aw,i(t)b

denotes  the

Ti(t) = 5)

We define the accumulated defects between two stations S;
and S; within a time period [0, t] as Cj;(t):

(_ Z; 1]Ck(t)+z C(0), P>
> aw-Y o,

According to the conservation of the flow, the accumulated
total production difference between two machines S; and S;

Cij(t) = (6)

i <j

(Vi,j €[1,2,...,M],i # j) at any time t could be represented
as:
Xi(6) — X;(t) =

Zk=j+1bk(0) B Zk=j+1bk(t) +Ci(),i>
\ch:-ﬂb"(t) B Zi=,+1bk(0) +Cy(0),i <

Therefore, the buffer conditions between stations S; and S;
at time t: X;(t) — X;(t) — C;;(t) are bound by the condition
that all buffers between machine S; and S; are full (for i < j)
or empty (for i > j). Denote the boundary as f5;;, we have

(7

i
(z ~ b(0), P>
By=y_; " ; ®)
Y B-) b, i<
k=i+1 k=i+1
Thus, X;(t) — X;(t) — C;;(t) < B;; Considering the

interactions between S; and S, in the case of X;(t) — X;(t) —
Cij(t) < Byj, station §; is neither starved or blocked by S;;
thus, it will process parts at its own rated speed. If X;(t) —
X;(t) — Cyj(t) = Pyj, the processing speed of station S; will
be constrained by station S;. Define a segment function

5w v) as §wv) = {1 ng,

speed of station S; can be described as:

The actual processing

Xl(t) =
f((Xi(t)_Xj(t)_Cij(t))—ﬁij.l—Wj(f))(liw,j(t)aw,j(t)b)
min G;(® ' 9
(1-w;i(©) (vw,i(O)aw,i(E)D)
Gi(t)

Extend this equation to all stations in the system, then,

Xl(t) =

f((xi(t)—)ﬁ(t)—Ci1(t))_ﬁm)‘l—wl(f))(Vw,1(t)aw,1(t)b)
G1()

’

(1_Wi(t))(”w,i(t)aw,i(t)b) \
Gi(t) ’

min <

(X (O)-Xm®)—Cipg ()= Bim) 1-Wnm (1) Ww,m () aw,m(t)b)
Gm(®)
= fi(X(®),V,, (1), 6(1), v, (1), a(t), C(t), W()) ~ (10)
In addition, V,, as an input variable for calculating the
grinding power, it is vital to embed it in the integrated model.
V,, denotes the number of parts processed by each station
since the previous dressing. If a dressing takes place at time
t,V,;isresetto 0, i.e., V,;(t +1) = 0.
To summarize all stations, the state space function is:
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fi(X(®),V, (1), 6(1), v, (1), a(t), C(1), W(D))
X(t) = :
fu(X(@©),V,, (1), 6(1), v, (1), a(t), C(1), W(L))

=F(X(®),Vu(®),6(0), v, (0),a®),cO,W®) (1D
Y(t) = Xu(t) — Cu() = H(X(D)) (12)

The buffer levels of a certain buffer B;,, attime t could be

calculated as:
biy1(t) = X;(£) = Xi41(0) + b;41(0) — G;(®) + C;(0) (13)

Therefore, up to time t, given the sensor data of random
disruption events E, the control parameters v,,;(t), V,,;(t),
G;(t), a;(t), and the initial buffer levels b;(0), the system
state at any given time can be recursively evaluated by Egs.
(11) - (13).

It is worth emphasizing that the control parameters, namely
Vy,i(£), Vi (), G;(t), a;(t), not only determine the overall
production output and material flow as shown in Egs. (5) -
(7), but also define the quality performance at each station as
shown in Eq. (1). Together, they incorporate process-level
and system-level performance represented as system yield.

IV. PERMANENT PRODUCTION LOSS DIAGNOSIS

To measure the real-time performance of the production
line, it is necessary to understand and quantify the impact of
disturbance and quality issues on the system. A station’s
random downtime may cause a halt in production at one
station, thus starving downstream stations or blocking
upstream stations. In addition, the defects also result in a
production loss to the system. In this paper, permanent
production loss (PPL) is introduced as a quantitative
measurement of the impact on a serial production line due to
disruption events and quality issues. The overall permanent
production loss is defined as the qualified production
difference between the real serial production line and the ideal
serial production line. The ideal serial line is defined as a
virtual production line that does not suffer from any
disruption event (e.g., station’s random failure). It does not
have any quality issues (i.e., no defect). The ideal serial line
presents the best possible system performance. Definition 1
makes the PPL more accurate.

Definition 1: Given a realization of a production line subject
to a sequence of disruption events E = [&;, ..., &,] and a
sequence of quality problems Q = [q4, ..., q,], the overall
permanent production loss of a serial production line during
[0,T] is defined as the difference between the yields of the
ideal serial line, denoted as Y;4.4; (T), and the real-time yields
Y(T; E, Q), that will never recover in any circumstances, i.c.,

PPL(T) = Yo (T) = Y(T; E, Q) (14)

Permanent production loss is an important indicator to
evaluate the performance of the production line in real-time
operation. As shown in Definition 1, both disruption events
and quality issues will result in PPL to the production line.
We will discuss the evaluation and attribution of PPL due to
disruption events (PPLg) and PPL due to quality issues
(PPLyg) in the following sub-sections.

4.1. PPLg Identification and Attribution

4.1.1. PPLg Identification

Definition 2: Given a realization of a production line subject
to a sequence of disruption events E = [&;,...,&,] and a
sequence of quality problem Q = [q,, ..., 5] during a period
[0, T], the permanent production loss due to disruption events
(PPLg)is

PPLg(T) = Ye1ean(T; Q) — Y(T; E, Q) (15)
where Y(T; E, Q) and Y04, (T; Q) are the yields of the serial
production line with and without disruption events E =
[€1) ) En].

In order to evaluate PPLg, it is necessary to identify the
impact of station stoppages on the system performance.
Because of finite inline buffer capacities and variations in
processing times of different stations, a disruption event does
not necessarily lead to a permanent system production loss.
The opportunity window serves as a measurement of the
system status directly related to the resilience to disruption
events. Our previous study [8] has defined the concept of
opportunity window and PPLg for the system with variable
cycle time machines. We will extend these concepts and
develop PPLg evaluation methods for a serial line to embed
the process level knowledge. The summary of the related
basic concepts is provided without detailed proof to make the
paper self-contained.

Opportunity window of a station S;, denoted as OW;(Ty),
is the longest possible downtime on S; at time T; that would
not result in permanent production loss at the end-of-line
station. It can be defined as:

OW;(Ty) = sup {= 0:5.t.3T"(d),

f sy(t)dt =f Sy (t; €)dt,vT = T*(d)}
0 0

where fOT Su(t; &)dt and fOT sy(t)dt are the production
volume of the end-of-line station S,, at time T, with and
without disruption event € = (m, T, d), respectively, T*(d)
signifies the potential dependency of T*on d.

We proposed a method in [8] to segment a time horizon
into a sequence of time intervals and considered OW and
PPLg within the small time period, and then aggregate them.
We adopt the same idea in this paper. First, we define the real-
time slowest station Sy, (t) as the station has the largest cycle
time Ty (t) at time t. Then, for this integrated model, the
cycle time of the slowest station at time t is:

Gi(t)
T () = (Dt r )

Assume that the slowest station switches K times during a
time interval [0,T] and denote the time point when the
slowest station switches as ¢t,, k=1,2,..,K. We can
segment the time [0,T] into a sequence of time intervals
[te tese], K =1,2, ..., K.

Assume that a downtime event € = (j, t, d) occurs during
[0, T], if the slowest station switches k times during the time
interval [0,T], then its opportunity window during each
segmented interval can be represented as:

(16)

(7)
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OW; (1) = Ty (6 (X; () = Xop (8) = Cag= (8) + Bjar+) (18)
for Vt € [ty, tgs1)-

Assume that a downtime event € = (j, t, d) occurs during
[0, T]. The permanent production loss due to stations’ random
failures can be represented as the summation of production

loss within each slowest station switching interval, such that:
T T

PrLon) = [ sehar - [ s aar
0 0
5 d, — OW(tty)
ZZZ—JR,VT>T* (19)
k=1 T

4.1.2. PPLg Attribution

To further identify the impact of each station’s downtime
on the production line yields, the PPLy needs to be attributed
to individual stations. Based on our integrated data-enabled
model, the real-time states X(t), B(t), and C(t) from each
station can be evaluated by using Egs. (11) - (13). We adopt
the same idea and segment the time interval [t,, t,] to a
sequence of intervals [ty, try1), k = 0,1, 2, ..., K, where t; is
the time point when the slowest station switches, and t, = t,,
tx+1 = tp. Let Ty denote the corresponding cycle time of
the real-time slowest station at time t;, and OW;(t;) be the
opportunity window at time t.

We first discuss single disruption event &, = (j,t;,d;)
occurring during the time interval [t,, t,]. For each of the
slowest station switching interval [ti,t,,,), the slowest
station remains the same. Thus, the PPLg due to €; during
single slowest station switching interval is:

PPLg [ty tysa] =
max {0, 2= — X, (6) + Xy (6 + G- (©) = By} 20)

If there are two disruptions & = (ji,ty,d;) and &, =
(jo, t2,dy) occurring during [ty,tr.+1), the PPLg can be
attributed to the disruption event whose corresponding
machine has a smaller opportunity window. If the opportunity
window is equal, we attribute the production loss evenly to &;
and &,.

The PPLj analysis can be extended to a general case with
multiple disruption events E = [é4, ..., &,] occurring during a
period [t, t,] . PPL; due to a disruption event &; =
(i tiyd;), 1 < i <mn, during [ty, teq1] is:

PPLg [ty tyse] =

Tkt1—tk

max (01— (%7, Xpg ) =Cjag (B +B), )

p ,cond. A (21)

0, cond.B
where condition A is
X;, (&) — Ciym= () + Bjme
min :
X;, (&) — Ci m+ (&) + By m
= Xj,(t) — Cim (&) + Bjyme
p is the total number of stations satisfying the condition
during [ty, t41], while condition B is

X;, (&) — Ciym (i) + B me
min :
X, (&) — Gy () + Bjm
< X, (te) — Cim+ (i) + Bjyme
Therefore, the PPLg attributed to the disruption event &; =
(i tidy), 1 <i<n, during time period [t,,t,] can be
summarized as:
K
PPLyltats] = ) PPL [ttia]  (22)
The PPLj can be further a:tri%uted to each station. Given a
sequence of disruption events that occur at station S; denoted
as €1,..,6j, during the period [0,T], the permanent
production loss caused by downtime events of S; within [0, T]
can be deduced as:
n
PPLg;[0,T] = Z PPLg, | (23)
q=1

4.2. PPL, Identification and Attribution

For a serial production line, defects will be dislodged from
the system. Thus, these defects are also permanently lost to
the production line due to quality issues.

Definition 3: Given a realization of a production line subject
to a sequence of disruption events E = [&,,...,&,] and a
sequence of quality problem Q = [q, ..., 5] during a period
[0,T], the permanent production loss due to quality issue
(PPLy) is

PPLy(T) =Y, (T; E) —Y(T; E,Q) (24)
where Y (T; E, Q) and Y, (T; E) are the yields of the serial
production line with and without quality problems Q =
[G1, ) Gn]-

As we discussed in Section 2.1, a part is burned at station
Sj if Protqrj(t) > Py j(t) . The burned parts will be
immediately taken away from S; and delivered to its storage
buffer C;. The accumulated defects attributed to station S; up
to time T is denoted as:

PPL,;(T) = C;(T) (25)

Therefore, the overall permanent production loss (PPL)
attributed to station S; up to time T, can be summarized as:

PPL;(T) = PPLg j(T) + PPLg ;(T) (26)

V. CASE STUDY

This section provides case studies to demonstrate: 1) the
high fidelity of the proposed integrated data-enabled model
and the associated recursive calculation method in evaluating
system yield, and 2) the effectiveness of permanent
production loss attribution methods in identifying the root
cause of performance inefficiency. The following case studies
compare a serial line’s production counts and inline buffer
levels from the proposed integrated model and simulation
experiment. In addition, two experiments are conducted to
demonstrate that the proposed system performance (PPL)
attribution methods are effective.

To make the proposed integrated model and PPL
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attribution method easy to follow in a real-world application,
a flow chart is presented in Fig. 2. As shown in Fig. 2, the
stock removal G(t), depth of cut a(t), workpiece’s speed
vy, (t), number of parts processed V,(t), and the downtime
recording W (t) are inputs collected from the real plant floor
sensor data. With these inputs for the integrated model, the
real-time processing speed X (t) of each grinding machine
and the stepwise PP Ly can be evaluated by Eq. (10) and Eq.
(21), respectively. Then, based on the quality inspection
method discussed in Section 2.1 and Eq. (11), the system
yields X (t) and accumulated defects C(t) can be recursively
calculated. As described in Section 4.2, C(t) is the PPL
caused by the quality issue. Meanwhile, the PPL due to
downtime events PPLg(t) and its attribution to each station
can also be identified with the recursive method.

[ac2]
Equation (10) Inputs.

[X(L) = F(X(0,V, (1), 6(), v (1), a(0), €(1), W(1))
Equation (21)

[Pw.g(t*) = PPLE(L) + PPLg(AL) ) ]

[ X(t*) = X(©) + K(D)At ] [c(r*) = €O + k(DA ]

)

lPPL,:(t*')

Fig. 2. The flow chart of the integrated model application.

To make the Validation generally reliable, 100 numerical
experiments are conducted on different process lines with
various parameters. For demonstration purposes, we will
present case studies on a segment of a crankshaft line that
consists of four grinding stations, four virtual buffers for
damaged workpieces, and three inline buffers similar to Fig.
1.

The process-level and system-level parameters for each
grinding station and the system-level buffer parameters are
shown in Table I and Table II, respectively. The dressing
action is executed when a grinding station has processed 1000
parts. In the experiments, these parameters are based on a real
crankshaft line. However, we only show the mocked
parameters and data for confidential consideration. In
addition, we allow the control input, workpieces speed v,,,,
varies within 10% of its original speed at each station based
on a random policy to mimic the real production line
operation, where the workpiece speed can be adjusted.

Table I. Parameters for the grinding stations

Station S1 S, S;3 Sy

Original workpiece speed (mm/s) 115 115 115 115

Depth of cut (mm) 0.1 0.06 0.025  0.015

Designed stock removal (mm?®) 1.5 0.9 0.45 0.15

Workpiece width (mm) 22 22 22 22
MTBF (min) 500 600 450 600
MTTR (min) 20 15 15 26

Table II. Parameters of the inline buffers

Buffer B, B3 B,
Initial buffer level 5 9 6
Buffer capacity 12 30 20

5.1. Fidelity of the integrated data-enabled model

For validation purposes, the output from the proposed
integrated modeling and the recursive algorithm is compared
with that from a simulation. We adopt a discrete event
simulation software, Simul8, to perform the simulation.

The simulation duration is one week, i.e., 5000 minutes,
assuming 12 operation hours a day. The production counts
and buffer levels derived from the proposed recursive
calculation method are compared with the simulation results.

The results are evidence that the production counts of each
station and buffer levels of each buffer obtained by using the
proposed integrated data-enabled model and recursive
calculation are in high agreement with that derived from the
simulation. For demonstration purposes, only the output of
the end-of-line stations S, and the buffer level of the last
inline buffer B, are shown in Fig. 3 and Fig. 4, respectively.
The results from the integrated data-enabled model (“blue-
dash line”) and the results from the simulation (“red-solid
line”) are almost overlapped with each other in the figures. A
more precise detail can be found in the zoom-in window for
both figures.

Based on the comparison results of all samples, the average
value of the maximum absolute errors of these 100 lines
between the integrated model and simulation is 3.16%. Thus,
the integrated process-system model is considered to be
accurate.
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Fig. 3. Comparison of production counts of station S,.
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Fig. 4. Comparison of buffer level of inline buffer B,.

5.2. PPL Identification and Attribution

Based on the integrated model, we further evaluate PPL
and attribute the PPL; and PPL, to each station with the
proposed methods in Section IV. As shown in Fig. 5, the
overall PPL can be attributed to either random downtime (red-
shaded bars) or thermal damage (green-shaded bars) at every
station. The PPL attribution provides a natural ranking of
stations with problematic issues, i.c., machine reliability
(related to random downtime) or inappropriate process
parameter settings (related to thermal damage). With this,
production control and maintenance activities can be
prioritized appropriately, which will be our future work. In
this paper, we only focus on PPL analysis, and we will
validate whether the attribution of PPLg and PPL, to each
station are correct based on our proposed methods.
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Fig. 5. PPL distribution for each station.

5.2.1. Validation of PPLg Attribution

The PPLy attribution to a specific station is a part of the
overall production output loss caused by that station due to
the downtime events. Therefore, if we remove all the
downtime events on that station while keeping other
conditions unchanged, we should expect that the overall
production output is increased by an amount close to the

attributed PPLg amount, assuming the proposed method is
effective.

A series of controlled experiments are performed to
validate the accuracy of the PP L attributions. We first obtain
the PPLy attributions to each disruption event, and then
aggregate to each grinding station based on Egs. (22) — (23).
The PP Ly attribution result is shown as red shaded bars in
Fig. 5. Then, in simulation, we observe a production output
increase by removing all the disruption events at each station
one at a time. The output improvement results of the
controlled experiments using simulation are shown as blue-
checkboard bars in Fig. 6.

The result shows that the PPLy attribution is in close
agreement with the overall productivity improvement in the
corresponding controlled simulation experiments. Hence, the
proposed method is proved to be accurate in quantifying and
ranking each station’s influence on the permanent production
losses due to downtime events.
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Fig. 6. Overall production improvement and PPL, distribution.

5.2.2. Validation of PPL Attribution

Once the real-time grinding power exceeds its threshold,
thermal damage (burn) will happen to the part. The defects
attributed to each station is the number of burned parts stored
in the associated virtual buffer for defects.

Therefore, the production output should increase if we
ignore the thermal damage caused by a grinding station and
deliver all parts to its downstream buffer. The increased
amount should be close to the defects distributed to that
station. A series of controlled experiments are carried out. We
first obtain the defects of each grinding station by applying
the proposed method, which is shown as green-shaded bars in
Fig. 7. Then, in simulation, we ignore the thermal damage
caused by each grinding station one at a time to evaluate the
additional output due to the neglect of the burned parts. The
simulation results of the controlled experiments are shown as
blue-checkerboard bars in Fig. 7.

The result shows that the defects attribution is in close
agreement with the extra output due to the neglect of the
burned parts in the corresponding controlled simulation
experiment. We can conclude that the proposed method is
accurate in each station’s contribution to permanent
production losses due to thermal damage.
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Fig. 7. Extra output due to ignore burned parts and defects distribution.

VI. CONCLUSION AND FUTURE WORK

In this paper, a process-system integrated data-enabled

model is built to incorporate the system-level and process-
level dynamics for a serial production line. The permanent
production loss due to both disruption events and quality
issues is identified based on the proposed model. In addition,

the

PPL attribution to each station caused by different issues

can be quantified. In the future, we will design control policies
based on this integrated model and PPL analysis to adjust each
station’s process parameters to improve overall production
performance.
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